Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 78 (2003)

Artikel: Real structures on minimal ruled surfaces
Autor: Welschinger, Jean-Yves

DOl: https://doi.org/10.5169/seals-58763

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-58763
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

(© 2003 Birkhauser Verlag, Basel
Comment. Math. Helv. 78 (2003) 418-446

0010-2571/03/020418-29 Commentarii Mathematici Helvetici

Real structures on minimal ruled surfaces

Jean-Yves Welschinger

Abstract. In this paper, we give a complete description of the deformation classes of real
structures on minimal ruled surfaces. In particular, we show that these classes are determined
by the topology of the real structure, which means, using the terminology of [5], that real minimal
ruled surfaces are quasi-simple. As an intermediate result, we obtain the classification, up to
conjugation, of real structures on decomposable ruled surfaces.

Mathematics Subject Classification (2000). 14J26, 14P25.
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0. Introduction

Let X be a smooth compact complex surface. A real structure on X is an antiholo-
morphic involution c¢x : X — X. The real part of (X, cx) is by definition the fixed
point set of ¢x. If X admits a holomorphic submersion on a smooth compact com-
plex irreducible curve B whose fibers have genus zero, then it is called a minimal
ruled surface. These surfaces are all algebraic, minimal — with the exception of the
blown-up projective plane — and of Kodaira dimension —oo (see [2]). Real minimal
ruled surfaces are one of the few examples of real algebraic surfaces of special type
whose classification under real deformation is not known, see the recent results [5],
[4], [3] and the survey [6] for detailed history and references. The purpose of this
paper is to fill this gap. Since all the ruled surfaces considered in this paper will
be minimal, from now on we will call them “ruled” rather than “minimal ruled”.

Rational surfaces are well known (see [5]), so we can restrict ourselves to non-
rational ruled surfaces. The ruling p : X — B is then unique and any real structure
cx on X is fibered over a real structure cg on B in the sense that cg op =pocy.
The topology of the real part of X as well as the topology of the real curve
(B, cg) provide us with a topological invariant under real deformation which we
call the topological type of the surface. This invariant is encoded by a quintuple of
integers: the number of tori and Klein bottles of RX, the genus of B, the number
of components of RB and the type of (B, cp) (see §3.2). The main result of this
paper is the following (see theorem 3.7 and proposition 3.4):
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Theorem 0.1. Two real (minimal) non-rational ruled surfaces are in the same
real deformation class if and only if they have the same topological type and home-
omorphic quotients. Moreover, any allowable quintuple of integers is realized as
the topological type of a real non-rational ruled surface.

Remember that in the case of rational ruled surfaces, the analogous result is
(see [5] or [6]):

Theorem 0.2. There are four deformation classes of real structures on rational
ruled surfaces, one for which the real part is a torus, one for which the real part
is a sphere and two for which the real part is empty. These two latter have non-
homeomorphic quotients. (Il

Note that as soon as the bases of the surfaces have non-empty real parts,
the condition on the quotients in theorem 0.1 can be removed. A quintuple of
integers is called allowable when it satisfies the few obvious conditions satisfied by
topological types of real non-rational ruled surfaces, see §3.2 for a precise definition.
Remember that any compact complex surface lying in the deformation class of a
non-rational ruled surface is itself a non-rational ruled surface (see, for example,
[1]). A definition of real deformation classes can be given as follows. Equip the
Poincaré’s disk A € C with the complex conjugation conj. A real deformation of
surfaces is a proper holomorphic submersion 7 : ¥ — A where Y is a complex
manifold of dimension 3 equipped with a real structure ¢y and 7 satisfies Tocy =
conj o . Then, when t €] — 1,1[€ A, the fibers Y; = 7~ 1(¢) are invariant under
cy and hence are compact real surfaces. Two real surfaces X’ and X" are said to
be in the same deformation class if there exists a chain X’ = Xo,..., X = X" of
compact real surfaces such that for every i € {0,..., k — 1}, the surfaces X; and
X,4+1 are isomorphic to some real fibers of a real deformation.

Remember that every ruled surface is the projectivization P(FE) of a rank two
complex vector bundle E over B (see [2]). Moreover P(E) and P(FE’) are isomor-
phic if and only if £/ = F'® L where L is a complex line bundle over B. A ruled
surface is said to be decomposable if I/ is decomposable, that is if I is the direct
sum of two complex line bundles. The paper is organized as follows. In the first
section, we give constructions of some particular real structures on decomposable
ruled surfaces. In the second section we obtain a classification, up to conjugation,
of real structures on decomposable ruled surfaces (see theorem 2.3). This result,
of independent interest, plays a crucial role in the proof of theorem 0.1. In this
section is also given a result independent of real algebraic geometry, which con-
cerns the lifting of automorphisms of the ruled surface X to automorphisms of
the rank two vector bundle F, see proposition 2.1. Finally, the third section is
devoted to the proof of theorem 0.1. This gives a complete description of the de-
formation classes of real structures on ruled surfaces. In particular, it shows that
these classes are determined by the topology of the real structure, which means,
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using the terminology of [5], that real ruled surfaces are quasi-simple.

Acknowledgements. I am grateful to V. Kharlamov for the useful remarks he
made on this paper. In particular, remark 3.13 is due to him.

1. Construction of some particular real structures
1.1. Meromorphic functions and real structures

Let B be a smooth compact complex irreducible curve. Denote by Pic(B) the
group of complex line bundles over B. This group is identified with the group
of divisors modulo principal ones. Let ¢ : B — B be a holomorphic or anti-
holomorphic automorphism, and let D = Zle nip;, n; € Z, p; € B, be a divisor on
B. Then we denote by ¢*(D) the divisor Zle n:;¢~'(p;) and by ¢(D) the divisor
Zleniqb(pi). The morphism on the quotient Pic(B) of the group of divisors
induced by ¢* will also be denoted by ¢*. We denote by Lg the trivial line bundle
over B and by L* the line bundle dual to L, so that L ® L* = Lg.

Suppose from now on that B is equipped with a real structure cp, that is an
anti-holomorphic involution cp.

Lemma 1.1. Let L € Pic(B) be a line bundle such that ¢(L) = L. Then, for
every divisor D associated to L, there exists a meromorphic function fp on B

such that div(fp) = cg(D) — D and fpfpocp = £1.

Proof. By assumption, D and cg(D) are linearly equivalent. As a consequence,
there exists a meromorphic function f such that div(f) = cg(D) — D. Then,
h = f o cp is a meromorphic function on B satisfying div(h) = D — cg(D). So fh
is a holomorphic function on B. This means that there exists a constant A € C*
such that f focg = A.

But for all z € B,

A= (fFocp)(cp(@) = focp(2)f@) = f(@)f o cple) = A

Thus A € R*, and we define fp = ﬁ E. O
Remark 1.2. As soon as RB is non-empty, fpfpocg = +1, since for every

x € RB we have fpfpocg(z) = |f(x)> > 0. Nevertheless, when RB = {), there
always exists a divisor D on B, of degree congruent to g(B) —1 mod (2) where
g(B) is the genus of B, such that fpfpocg = —1 (see [7], proposition 2.2).
Note also that the function fp given by lemma 1.1 is not unique, since for every
constant A € C such that |A| = 1, the function A\fp has the same properties.



Vol. 78 (2003) Real structures on minimal ruled surfaces 421

Lemma 1.3. Let L € Pic(B) be a line bundle such that ¢5(L) = L*. Then, for
every divisor D associated to L, there exists a meromorphic function fp on B

such that div(fp) = D+ cg(D) and fp = fpocg.

Proof. By assumption, ¢g(D) and —D are linearly equivalent. As a consequence,
there exists on B a meromorphic function f such that div(f) = D+ ¢p(D). Then,
h = foep is a meromorphic function on B satisfying div(h) = cp(D) + D =
div(f). Thus there exists a constant A € C* such that h = Af. But,

)\fhocB ¥ 7( f )

1
7focBifocBi focp i

Hence there exists 6 €R such that A=exp(2:0), and we define fp=exp(if)f.00

Remark 1.4. The function fp given by lemma 1.3 is not unique: for every A € R*,
the function Afp has the same properties. Note that every zero or pole of f on
RB has even order, so that the sign of fp is constant on every component of RB.

1.2. Some particular real structures

Let D = Zlenipi be a divisor on B, where p; € B and n; € Z (i € {1,...,k}).
We can assume that the set {p;|1 < ¢ < k} is invariant under cg (add some
points with zero coefficients to D if necessary). Denote by Uy = B\ {p;|1 <
i < k} and for every i € {1,...,k}, choose a holomorphic chart (U,,, ¢p,) such
that Up, NUp, = 0 if ¢ # j, cg(Up;) = Ucppy) and ¢y, : Up, = A = {2z €
C||z| < 1} is a biholomorphism. Require in addition that ¢, (p;) = 0 € A and
Bepips) OCB ogb]jil(z) =z forall 2 € Aandi e {l,...,k} (such charts always exist,
see [12]). Such an atlas is called compatible with the divisor D and the group
<cp >.
For every ¢ € {1, ..., k}, denote by v; the morphism:

(Up, \pi) xC — Uy x C
(:E, Z) = (x7¢Pz(x)7nzz)

The morphisms ¢; allow to glue together the trivializations U,, xC, i € {0, ..., k},
in order to define the line bundle L associated to D. Such trivializations are called
compatible with the divisor D and the group < cg >.

Let L (resp. X) be a line bundle (resp. a ruled surface) over B. The real
structure ¢z, on L (resp. cx on X) is said to be fibered over cp, or that it lifts cp,
if pocy, =cpop (resp. pocx = cg op) where p is the projection L — B (resp.
X — B).

Lemma 1.5. There exists a real structure on L € Pic(B) which lifts cp if and only
if cg(L) = L and for every couple (D, fp) given by lemma 1.1, fpfpocp = +1.
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Proof. = Let s be a meromorphic section of L and D = div(s). Let ¢;, be a real
structure on L and § = crosocg. Then 3 is another meromorphic section of L. This
implies that div(§) and div(s) are linearly equivalent. Since div(§) = cp(div(s)),
we deduce that cj(L) = L. Moreover, § = fs where f is a meromorphic function
on B satisfying div(f) = ¢p(D) — D. Since s = ¢ 050cg =cro(fs)ocp =
(focg)s=(focp)fs, wehave (f ocp)f =+1. Changing the section s, the same
is obtained for any couple (D, fp) given by lemma 1.1.

«=: Let L be a line bundle such that ¢} (L) = L and (D, fp) a couple given
by lemma 1.1 such that fpfpocg = +1. Denote D = Zlenipi and let Uy =
B\ {pi|1 <i<k}and (Up,,¢p,), i € {1,...,k}, be an atlas compatible with the
divisor D and the group < cg >.

The maps

UO x C — Uo x C
(z,2) — (ep(x), fp o cp(z)Z),

and for every i € {1,...,k},

Up; x C = Ugp(p,) xC

(z,2) = (c(z), fp o cp(@)p,(x) 27 %)

glue together to form an antiholomorphic map ¢y, on L. This map lifts ¢g and is
an involution, hence the result. O

Proposition 1.6. Let L € Pic(B) be a line bundle such that ¢ (L) = L*. Then to
every couple (D, fp) giwen by lemma 1.3 is associated a real structure cy, on the
ruled surface X = P(L@® Lq) which lifts cg. The real part of (X, cyp, ) 4s orientable
and consists of tT tori, where tT is the number of components of RB on which fp
is non-negative (see remark 1.4).

Remark 1.7. For the sake of simplicity, when there will not be any ambiguity on
the choice of the function fp, we will denote by c} (resp. cy ) the real structure
¢tp (resp. c_¢,). The real part of (X,c_y,) consists of ¢~ tori, where ¢~ is the
number of components of RB on which fp < 0. Obviously, t+ + ¢t~ = u(RB),
where p(RB) is the number of components of RB. Thus, when u(RB) is odd,
the real structures c} and ¢y on X cannot be conjugated, since the numbers of
components of their real parts do not have the same parity. Nevertheless, these
two real structures may sometimes be conjugated. This situation will be studied
in the next section, proposition 2.6.

Proof. Let (D, fp) be a couple given by lemma 1.3, so that fp = fpocp and
div(fp) = D+ cp(D). Let p; € B and n; € Z, i € {1,...,k}, be such that
D= Zle nip;. We can assume that the set {p; | 1 <14 < k} is invariant under cp.
Let Uy = B\ {p; |1 < i <k} and (Up,,¢p,), 1 € {1,..., k}, be an atlas compatible
with the divisor D and the group < ¢p >.
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The morphisms:

(U, \ ps) x CP! — Uy x CP?
(z, (21 1 20)) = (2, (Bp;(x) ™21 @ 20))

(i € {1,...,k}) allow to glue together the trivializations U,, x CP!, i € {0,...,k},
in order to define the ruled surface X.
Now, the maps
Uy x CP! — Uy x CP!
(z,(21: 20)) — (cB(2), (%0 : fp o cB(2)21)),
and for every i € {1,...,k},
Up, x CPt — Ucp(ps) X cp!
(z,(21: 20)) = (c(2), (Z : fpocp(x)dy,(z)

—n, N —Tip.
ceplps) ™ "'ps ——
Zl)

glue together to form an antiholomorphic map ¢y, on X. This map lifts cp and
is an involution. The first part of proposition 1.6 is proved.
Now, the fixed point set of cf,, in Up x CP! is:

{(z,(0: v/ fp(x))) € Uy x CP' |z € RB, fp(z) >0 and § € C, |0] = 1}.

The connected components of this fixed point set are then tori or cylinders de-
pending on whether the corresponding component of RB is completely included
in Uy or not. Similarly, the fixed point set of ¢;, in Up, x CP1 is:

{(z,(8; - \/ fo(x)z;*™)) € Uy, x CP' |z € RB, fp(z) > 0 and 6, € C, |6;] = 1},

where z; = ¢,,(x). This fixed point set is a cylinder if p; € RB and is empty
otherwise.

The gluing maps between these cylinders are given by 6 = —8; if z; = ¢, (z) <
0 and by 0 = 0; if x; = ¢p,(x) > 0. Since both id and —id preserve the orientation
of the circle Ut = {z € C||z| = 1}, the results of these gluings are always tori.
Thus, the real part of (X, ¢y, ) consists only of tori and the number of such tori is
the number of components of RB on which fp > 0, that is ¢1. ([l

2. Conjugacy classes of real structures on decomposable ruled
surfaces

2.1. Lifting of automorphisms of X

I could not find the following proposition in the literature, so I give it here.

Proposition 2.1. Let L be a complex line bundle over B and X be the ruled
surface P(F), where E =L & Lg.
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If L £ L* orif L = Lg, then every automorphism of X fibered over the identity
of B lifts to an automorphism of E. If L = L* and L # Lg, then the auto-
morphisms of X fibered over the identity of B which lift to automorphisms of K
form an index two subgroup of the group of automorphisms of X fibered over the
identity. In that case, the automorphisms of X which do not lift are of the form

¢’>\: |:2 >(\)s:|7

where A € C* and s is a non-zero meromorphic section of L.

Remark 2.2. The automorphims ¢, introduced in proposition 2.1 are holomor-
phic involutions of X.

Proof. Denote by O}, the sheaf of holomorphic functions on B which do not vanish
and by Aut(FE) (resp. Aut(X)) the sheaf of automorphisms of £ (resp. of X ) fibered
over the identity. These sheaves satisfy the exact sequence:

1— 0% — Aut(F) — Aut(X) — 1.
We deduce the following long exact sequence:

1 — H°B,0%) — H(B, Aut(E)) — H°(B, Aut(X))
— HY(B,0%) — HY(B, Aut(E))

We are searching for the image of the morphism H°(B, Aut(E)) — H°(B, Aut(X)).
To compute this image, let us study the kernel of the map 4, : H'(B,0%) —
HY(B, Aut(E)).

Remember that the group H'(B, 0%) is isomorphic to Pic(B). Such an isomor-
phism can be defined as follows: fix a divisor Z;Zl r;q;, where for j € {1,...,t},
r; € Zand g; € B. Denote by Uy = B\{¢; |1 < j <t} and for every j € {1,...,¢},
choose a holomorphic chart (U, ¢q;) of B such that Uy, N Uy, = 0 if 5 £ 7,
¢q; 1 Uy, = A = {z € C||z| < 1} is a biholomorphism and ¢4, (q;) = 0 € A.
Denote by U the covering of B defined by Uy, ..., U; and consider the following
sections of O% (5 € {1,...,t}):

Ih; : UpnU; — C*
T = ¢’qj($)rj = x;;”

where by definition z; = ¢4, (z) € A. These sections define a 1-cocycle of B with
coefficient in O% and we denote with the same letter {! its cohomology class in
HY(U,0%) and in HY(B,0%). This construction defines an isomorphism between
Pic(B) and H(B, 0%).

Solet I' € H'(B, 0%) be associated to the divisor 22:1 7;q5. Then m! =i, (1)
is the cohomology class of the 1-cocycle with coefficient in Aut(FE) defined by the
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following sections (5 € {1,...,¢}):
méj UgnU; — Aut(E)

z7 0
z— | 1 .
{ 0 =z }
Suppose that m' = 0 € H'(B, Aut(E)). Then 22:1 r;q; is of degree zero, since
0 = det(m!) = 21! € H'(B,0%). Moreover, since the map H'(U, Aut(E)) —
HY(B, Aut(E)) is injective (see [10], lemma 3.11, p. 294), m! is the coboundary
of a 0-cochain given in the covering U by the following sections (5 € {0, ...,t}):

m? U; — Aut(E)
N {%‘(35)
bj()

where a;, d; are O-cochains with coeflicients in Op, c; is a 0-cochain with coefficient
in Op(L), d; is a 0-cochain with coefficient in Og(L*) and a;d; — b;c; does not
vanish. Then, the equality m* = §m® can be written:

7).

! 1 07, 0y—1

vie{l,... t}, mo; = mo(mj) ,
which rewrites as my = x;j m?- (7 € {1,...,t}). Hence, we deduce that for j €
{1,...,t}, ap = x;jaj7 do = x;jdj7 by = x;"bj and cp = x;jcj. As soon as ag (resp.

dp) is non-zero, this implies that ag (resp. dp) is a meromorphic function over
B satisfying div(ag) > Z;Zl r;q; (resp. div(dp) > 22:1 rjq;). Since these two
divisors are of degree zero, they are equal. So Z;‘:1 7rjq; is a principal divisor and
I* = 0. When ag = dg = 0, we deduce that by (resp. ¢g) is a meromorphic section of
L* (resp. of L) satisfying div(by) > 22:1 r;q; (vesp. div(cg) > Z;Zl r;q;). Since
deg(L) = —deg(L*), these divisors are equal. We then deduce that L = L* and
that this line bundle is associated to the divisor 22:1 7545

In conclusion, when L # L*, the morphism i, is injective and when L = L*,
L # Lo, the kernel of i, is included into the subgroup of H*(B,0%) = Pic(B)
generated by L, which is of order two. In that case, it is not difficult to check that
the kernel of i, is exactly this subgroup of order two. Indeed, with the preceding
notations, it suffices to let ag and dy be equal to 0 and let by and ¢y be equal
to a same meromorphic section of L. This constructs a 0-cochain m® such that
dm® =i, (L). The first part of the proposition is proved.

To check the second part of the proposition, note that when L = L* #£ Lo,
H°(B,L) = H°(B,L*) = 0, so that the automorphisms of £ = L @& Ly fibered
over the identity of B are of the form

o]

where a,d € C*. The automorphisms of X fibered over the identity which lift to
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FE are then of the form
10 N
[0 )\} (AecCh).

It follows that the automorphisms ¢, do not lift to automorphims of £ and that
they are the only ones with this property. O

2.2. The conjugation theorem

Denote by ¢y, the real structure on Lo defined by:
BxC— BxC

(x,2) = (ep(2),7).

This real structure lifts cp.

Theorem 2.3. Let L be a line bundle over a smooth compact complex irreducible
curve B equipped with a real structure cp and let X = P(L® Lg) be the associated
decomposable ruled surface.

1. Suppose that L # L* and that there exists a real structure c;, on L which
lifts cg. Then there exists, up to conjugation by a biholomorphism of X, one and
only one real structure on X which lifts cg. It is the real structure induced by
cr, D cr,-

2. Suppose that cp(L) = L*. If L # L*, then every real structure on X which
lifts cp is conjugated to one of the two structures c} or cx given by proposition
1.6. The same result occurs when L = Lo or when L = L* and there is no real
structure on L which lifts cg.

3. Suppose that ¢5(L) = L = L*, that L # Lo and that there exists a real
structure cr, on L which lifts cg. Then every real structure on X which lifts cp is
congugated to the real structure cr, @ cr,, or to one of the two structures c} or ¢y
given by proposition 1.6.

In any other case, X does not admit real structures fibered over cp.

Remark 2.4. It follows from lemma 1.5 and remark 1.2 that when RB = 0, there
exists a real structure on L which lifts ¢p if and only if ¢ (L) = L.

Note that in the third case, the real structures c}; and cy are not conjugated
to ¢, ®cy,, since they are exchanging the two disjoint holomorphic sections of zero
square of X and ¢y @ cr, does not. Note also that when X = B x CP!, or when
w(RB) is odd, the real structures ¢ and ¢y, on X are not conjugated (see remark
1.7). Nevertheless, these two real structures may sometimes be conjugated, see
proposition 2.6.

Proposition 2.5. Let L be a line bundle over (B,cg) and let X = P(L & Lg).
Then there exists a real structure on X which lifts cg if and only if there exists a
real structure on L which lifts cp or ¢ (L) = L*.
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Proof. = To begin with, suppose that deg(L) # 0. Then, without loss of gen-
erality, we can assume that d = deg(L) > 0. The holomorphic section e of X
associated to L satisfy e o e = —d < 0, since its normal bundle is L*. Any other
section € of X is homologous to e+ kv, where k& € Z and v is the integer homology
class of a fiber. When € # ¢, we have € o e > 0, which means that k¥ > d. Then
éoé > d and this proves that e is the only holomorphic section of X with negative
square. Thus this section is invariant under the real structure of X, and so is its
normal bundle. This implies that there exists a real structure on L* which lifts
cp. Using duality, there exists one on L which lifts cp.

Suppose now that deg(L) = 0. If L is the trivial bundle, then X = B x CP!
and nothing has to be proved. Otherwise, the sections of X associated to L and
Lg are the only ones with zero squares. Indeed, a third holomorphic section with
zero square should be disjoint from them and these three sections would give a
trivialization of X. This would contradict the assumption that X # B x CP!. As
a consequence, we deduce the following alternative: either the real structure cx
preserves these two sections, or it exchanges them. In the first case, cx preserves
the normal bundles and we conclude as before. In the second case, cx exchanges
the normal bundles and so defines a morphism éx : L* — L, fibered over cp.
Let s be a meromorphic section of L*, so that div(s) = —D where D is a divisor
associated to L. Then éxosocp is a meromorphic section of L and div(éxosocg) =
g (div(s)) = —c5(D). Hence ¢ (L) = L*.

<—=: If there exists a real structure on L which lifts cp, then taking the direct
sum with ¢z, we get a real structure on L @& Ly which lifts cg. This structure
induces on X = P(L @ Lg) a real structure which lifts cg. If ¢j(L) = L*, the
result follows from proposition 1.6. (Il

Proof of theorem 2.3. When X = B x CP!, the second part of theorem 2.3 is clear.
Indeed, in this case every real structure on X which lifts ¢p is the direct sum of cp
and a real structure on CP'. Moreover, the group of automorphisms of X fibered
over the identity is then equal to {id} x Aut(CP'). So the second part of theorem
2.3 follows from the well known fact that, up to conjugation, there are two real
structures on CP'. Thus, from now on, we can assume that L # Lq. It follows
from proposition 2.5 that if there exists a real structure on X which lifts ¢p, then
either there exists a real structure ¢y, on L which lifts ¢g, or ¢ (L) = L*. This
already proves the last line of theorem 2.3. We will show the theorem in three
steps.

In the first step, we will prove that if there exists a real structure ¢y, on L which
lifts c¢p, then every real structure on X of the form cx o ¢, where cx is the real
structure of X induced by ¢y @ ¢p, and ¢ is an automorphism of X fibered over
the identity of B which lifts to an automorphism of ¥ = L & Ly, is conjugated to
cx. In the second step, we will prove that if ¢f; (L) = L*, then every real structure
on X of the form c} o ¢, where ¢ is an automorphism of X fibered over the
identity of B which lifts to an automorphism of F' = L & Ly, is conjugated either
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to ¢y o to c¢y. Finally, in the third step, we will prove that if ¢} (L) = L* = L,
then every real structure on X of the form c} o ¢, where ¢ is an automorphism
of X fibered over the identity of B which does not lift to an automorphism of
E = L @ Ly, is conjugated to a real structure of the form c¢;, @ cr,,, where ¢y, is a
real structure on L which lifts ¢g. Furthermore, this conjugation is given by an
automorphism of X fibered over the identity of B which lifts to an automorphism
of ¥ = L & Lg. In particular, when there is no real structure on L which lifts
cg, every antiholomorphic map of the form c} o ¢, where ¢ is an automorphism
of X fibered over the identity of B which does not lift to an automorphism of
E = L& Ly, is not an involution. The theorem follows from these three steps and
proposition 2.1.

First step: Suppose that there exists a real structure ¢;, on L which lifts
cp and let cx be the real structure of X induced by cr, @ cr,,. Let ¢x be another
real structure on X which is of the form cx o ¢, where ¢ is an automorphism of
X fibered over the identity of B which lifts to an automorphism of £ = L @& Ly.
The aim of this first step is to prove that cx and ¢x are conjugated.

Let ® be an automorphism of E = L @ Lo which lifts ¢. Then ® € End(FE) =
E®E* = L®L*® Ly® Lo. Thus there exist a,d € C*, b € H°(B,L*) and
c€ H°(B, L) such that

a C
o-[rc].

By assumption, the line bundle L is not trivial, so that either L or L* has no
non-zero holomorphic section. Without loss of generality, we can assume that it
is L, so that ¢ =0 and
a0
P [b d} |

By assumption, Egg = id, which implies that cx o poecx = ¢ 1. So there exists
A € C* such that cgo P ocg = AP~ L. But

1 d 0
-1 _ =
i ad{—ba}’

obocy = & L
o g cr,obocy d|”

and

Put A = a—ld)\7 we have Ad = @, Aa = d and —\b = cr, ©bocy. The two first
conditions imply that [A| = 1. Thus there exists @ € R such that A = exp(2i6).
So the previous conditions can be rewritten as exp(if)d = exp(if)a, exp(if)a =
exp(if)d and — exp(if)b = ¢y, o (exp(if)b) o ¢r,. Hence we can assume that

a0
v=5a)

where d =@ and b= —cy, obocy, (replace ® by exp(if)® which also lifts ¢).
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Now, denote by ¥ the automorphism of E defined by

10
‘I’bba]

a 0
1 , and
{—ib 1}

Then

9
=

—1 _ acy, 0
T eng el = {—%bocL+%cLoobacLo}

acy, 0
cr, ob acy,

= —cgod.

Q= 2l &=

(For the second equality, we used the relation —bo ¢y, = ¢, 0b.) Denote by ¢ the
automorphism of X induced by ¥, we then deduce that ¢! o cx o4 = éx, which
was the aim of this first step.

Second step: Suppose that ¢j(L) = L* and fix a real structure c} on X
given by proposition 1.6 (see remark 1.7). Let éx be another real structure on X
which is of the form c} o ¢, where ¢ is an automorphism of X fibered over the
identity of B which lifts to an automorphism of ¥ = L & Lg. The aim of this
second step is to prove that ¢x is conjugated either to c} or to cy. Let ® be an
automorphism of £ = L & Lg which lifts ¢. Since deg(L) = 0 and since L is not
trivial, we know that H°(B,L) = H°(B,L*) = 0. As a consequence, there exists
a,d € C* such that

a0
- {O d} .
2

Since ¢ = id, we know that § € R* and we can assume that ¢ = 1, d € R*
(replace ® by %cp) Let + be the automorphism of X defined by

10

_ 1 ~ = + or o=
where § = T Then ) conjugates ¢x to one of the two real structures cy. or cy.

Third step: Suppose that ¢ (L) = L* and fix a real structure c} on X given
by proposition 1.6. Let ¢x be another real structure on X which is of the form
c} o ¢, where ¢ is an automorphism of X fibered over the identity of B which does
not lift to an automorphism of ¥ = L @ Ly. The aim of this third step is to prove
that ¢x is conjugated to a real structure of the form ¢, @ cr, where ¢y, is a real
structure on L which lifts cg. Note that the automorphism ¢ and the involution
c} both exchange the sections of X associated to L and L. Thus ¢x preserves
these two sections. As a consequence, it preserves also the normal bundles of
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these sections and so induces a real structure on the line bundle L which lifts cpg.
Consider then the real structure ¢y, @ cr, on X, it follows from the first and the
second steps that it is conjugated to ¢x by an automorphism of X which lifts to
an automorphism of F. (Il

2.3. When are c} and cy conjugated?

In this subsection, a sufficient condition for c} and ¢ to be conjugated is given
(see proposition 2.6). One important example where this occurs is given by corol-
lary 2.8.

Proposition 2.6. Let L be a line bundle over (B, cg) such that cp(L) = L* and
let X = P(L® Lg) be the associated ruled surface. Let (D, fp) be a couple given
by lemma 1.8 and cypy, c_ ¢, be the associated real structures of X (see proposition
1.6). Suppose that there exists ¢ € Aut(B) of finite order such that pocg = cpogp
and:

a. either ¢*(L) = L and there exists a meromorphic function g on B such that
div(g) = (D) — D and (fpoy)(gop)gocsop = —fp,

b. or ¢*(L) = L* and there erists a meromorphic function h on B such that
div(h) = @(D)+ D and (hop)hocgop=—fpfpop.

Then, the real structures cy, and c_y, are conjugated in X.

Remark 2.7. When RB # (), the conditions a and b can be replaced by ¢*(L) €
{L,L*} and there exists € RB such that (fpfp o ¢)(z) < 0. Indeed, it is
not difficult to check that in the situation a, there always exists a meromorphic
function g on B such that div(g) = (D) — D and (fpoy)(gop)gocgop =¢€fp
where ¢ = 4+1. Similarly, in the situation b, there always exists a meromorphic
function k on B such that div(h) = ¢(D)+ D and (hoy)hocgop=c¢fpfp oy,
where ¢ = 1. Hence, conditions a or b are equivalent to require that ¢ = —1,
which is equivalent, when RB # (), to require that there exists z € RB such that
(fofpop)(z) <0.

Note that when g(B) > 2, the conditions given by proposition 2.6 are in fact
necessary and sufficient for cs, and c_y, to be conjugated, but this will not be
needed in what follows.

Corollary 2.8. Let g > 1 be an odd integer. Then there erists a smooth compact
irreducible real algebraic curve (B,cp) of genus g and empty real part together
with a complex line bundle L over B satisfying ci(L) = L*, such that the real
structures cg and ¢y on X = P(L® Lg) are conjugated.

Proof. Let us consider first the case ¢ = 1. Let B be the elliptic curve C/Z]i]
equipped with the real structure cg(z) =z + %7 so that RB = 0. Let py = 0,

Z

=73 p=5andq =3+4%
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Let D = p; — po and denote by L the associated complex line bundle over B.
Then ¢ (L) = L = L*. Denote by ¢ the involutive automorphism of B defined by
¢(z) =2+ 3. Then pocp = cpoyp and ¢*(L) = L. We will prove that ¢ satisfies
condition a of proposition 2.6.

For this, let f be a meromorphic function on B given by lemma 1.3, such
that focg = f and div(f) = D + ¢cg(D). Then fo¢ = f. Indeed, there
exists a holomorphic section s of the line bundle L such that div(s) = D and
s®(sogw)=f. Thus fop = (sop)®s =s®(sop) = f. Now let g be a
meromorphic function on B such that div(g) = ¢(D) — D = ¢1 — p1 — go + po and
g(goep) = —1. Such a function is given by lemma 1.1 and [7], proposition 2.2,
since D belong to the nontrivial component of the real part of (Jac(B),cg). Then
(fop)(goy)goecg o = —f, so that the condition a of proposition 2.6 is satisfied.
We deduce that the real structures c} and ¢y on X = P(L & L) defined by f
and —f (see proposition 1.6) are conjugated.

Now, let us consider the case g = 2k+1, k > 1. For j € {0,...,2k— 1}, denote
by p; = ;—kz € B and ¢; = % + Qj—kz € B (so that p; = pr and ¢; = §). Denote by
By, the double covering of B ramified over the 4k points p;, 4;, j € {0,...,2k—1}.
This covering can be chosen so that its characteristic class in H'(B\ {p;,4;|j €
{0,...,2k —1}};Z/27) is Poincaré dual to the sum of the 2k segments {(0,t) |t €

158, 57 €40, .k = 13} and {(3,) |¢ €]3}, 257 € {0,... .k = 1}}.
A

D2k—1 CIZk—IE
e Gk
P1 | Gi

Po Go 1

Denote by 7, : By — B the projection associated to the covering. The auto-
morphism ¢ of B lifts to an automorphism ¢;, of By such that ¢ o 7w, = 7, 0 ¢y.
Similarly, the real structure cp lifts to a real structure cp, on Bj such that
cg o = w0 ¢, and RB, = (. Denote by Ly = 7(L). This bundle sat-
isfles cp (Lr) = Ly = Lj = ¢j(Ly). Finally, denote by fr = f o7 and
gy = gomi. Then fr = frocp, and gigr ocp, = —1. Moreover, div(f;) =
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C*Bk(Dk) + Dk, Where Dk = WZ(D) = 2p1 —_ 2]907 and le(gk) = LpZ(Dk) — Dk We

have, (fr o ¢r)(gr © pr)ar © ¢, © @K = —fk, so that the condition a of proposition
2.6 is satisfied. We deduce that the real structures c}k and ¢y, on Xj, = P(Ly®Lo)
defined by fi and —fi (see proposition 1.6) are conjugated. (Il

Proof of proposition 2.6. Denote D = Zle n;p;, Where p; € B and n; € Z, i €
{1,...,k}. We can assume that the set {p; |1 < ¢ <k} is invariant under ¢ (add
some points with zero coefficients to D if necessary). Denote by Uy = B\ {p; |1 <
i <k} and for every i € {1, ..., k}, choose some holomorphic chart (U,,, ¢,,) such
that Up, NUp, =0 if i # j, o(Up,) = Up(py) and ¢p, : Up, = A={2€ C||z| <1}
is a biholomorphism. We require in addition that ¢,,(p;) = 0 and
(b(p(pi)osoogb;il g A —> A
T — exp(%)x if p; is a fixed point of order m; of .

(We put m; = 1 if ¢(p;) # p;. This atlas and these trivializations are compatible
with D and the group < ¢ >. It always exists, see [12].)

For every i € {1, ..., k}, denote by v; the morphism:

(Up, \ ps) x CP? — Uy x CP?
(@, (211 20)) = (@, (fp;(x) " 21 1 20)).

The morphisms ; allow to glue together the trivializations U,, x CP', i €
{0,...,k}, in order to define the ruled surface X.

Now suppose we are in the case a. Let g be the meromorphic function on B
such that div(g) = ¢(D) — D and (fpo)(gow)gocg 0@ = —fp. Consider the
maps:

Uy x CP! — Uy x CP?

(@, (21 : 20)) + (p(2), (g 0 p(x)21 : 20)),
and for every i € {1,...,k},
Up, x CP! — U, x CP?

(, (21 1 20)) = (p(2), (g 0 p(@)dp, ()" ™ exp(ZT )21 : 20)),
where p; denotes the point ¢(p;). These maps glue together to form an element
¢, € Aut(X) fibered over ¢.

The map ®, ! is given by:

Uy x CPY — Uy x CP?!
(, (21 : 20)) = (¢ (), (21 : g(@)20)).
And the map cy is given by:
Uy x CPL — Uy x CP!
(@, (21 : 20)) = (eB(2), (20 : —fp o cp()z1)).
Thus @;1 ocy o ®, is given in this trivialization by:
Us x CP' — Uy x CP!
(2, (21 : 20)) = (cB(z), (Z0: =(fpocB o p)(Gop)(gocp o p)(z)z1)).
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Since (fpow)(gop)gocs op = —fp, we conclude that @;1 ocy od, = c}.
Suppose now we are in the case b. Let h be the meromorphic function on B
such that div(h) = @(D)+ D and (hop)hocg o= —fpfpop. Consider then
the maps:
Uy x CP! — Uy x CP?
(@, (211 20)) = (p(2), (20 : hop(x)21))
and for all i € {1,...,k},

Up, x CP1 — Up, x CcPp!
(@, (211 20)) = ((), (20 : hop(x)¢p, (x) 777" exp(—2T)21)),

where p; denotes the point ¢(p;). These maps glue together to form an element
&y, € Aut(X) fibered over ¢.

The map <I>,:1 is given by:

Uy x CP! — Uy x CP?
(7, (21 : 20)) = (71 (), (20 : h(@)21)).
And the map cy is given by:
Up x CP! — Uy x CP!

(z, (21 : 20)) = (cB(2), (20 : —fp ° cB(z)21)).

Thus <I>,:1 ocy o Py is given in this trivialization by:

UoX(CPl —>U0XCP1
(@, (211 20)) = (eB(2), (=fpocpop(x)zn: hop(x)(hocpop)(z)zn)).

Since (hop)hocgop=—fpfpop, we conclude that <I>;1 ocyod, = c}. O

3. Deformation classes of real structures on ruled surfaces
3.1. The real part of (Jac(B), —¢5)

Remember the following well known result (see, for instance, [7], propositions 3.2
and 3.3):

Proposition 3.1. Let (B, cp) be a smooth compact irreducible real algebraic curve.
The Jacobian Jac(B) of B is equipped with the real structure —cf,. Then if RB # 0,
the real part of (Jac(B), —c}) has 2HRE)=1 conmected components, where u(RB)
is the number of components of RB. If RB =0, the real part of (Jac(B), —c%;) 4s
connected if g(B) is even and consists of two connected components otherwise. O

(Note that multiplication of ¢§ by —1 does not change the topology of the real
part of Jac(B).)
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Let L be a complex line bundle over B such that ¢ (L) = L*, that is an element
of the real part of (Jac(B), —c}), where Jac(B) is identified with the part of Pic(B)
of degree zero. Let (D, fp) be a couple given by lemma 1.3. The function fp is
real and of constant sign on every component of RB, thus it induces a partition of

RB in two elements RBN f,' (R% ) and RBN £, ' (R* ). It follows from theorem 2.3
that this partition only depends on the bundle L and not on the choice of (D, fp),
since it corresponds to the projections on RB of the real parts of (P(L & Lg),c%)
and (P(L @ Lo),cy). For the same reason, this partition actually only depends
on the connected component of the real part of (Jac(B), —c}) and hence is an
invariant associated to these components. Note that when RB # 0 has u(RB)
components, the number of partitions of RB in two elements is 2#&B)—1,

Lemma 3.2. When RB £ 0, the partitions associated to the real components of
(Jac(B), —c§) establish a bijection between the set of these components and the set
of partitions of RB in two elements.

Proof. Let L and L’ be two complex line bundles which belong to R Jac(B) and
such that their associated partitions of RB are the same. We will prove that they
belong to the same component of R Jac(B). The result follows, since the “partition
map” is then injective and hence bijective for cardinality reasons.

Let D (resp. D’) be a divisor associated to L (resp. L’). Let fp (resp. fp/) be
a non-zero meromorphic function on B such that fpocg = fp (resp. fprocg =
fo) and div(fp) = D + cp(D) (resp. div(fp) = D' 4+ cp(D’)). It follows from
lemma 1.3 that such meromorphic functions exist. Since the partitions of L and
L' are the same, we can assume that fp and fp/ have the same signs on every
components of RB (replace fpr by —fp otherwise). For every ¢t € [0,1], let
g =1 —t)fp+tfp. Then go = fp, g1 = fpr and for every t € [0, 1], g7 0 ¢5 = g:-
Moreover, for every t € [0, 1], g+ is non-zero and of constant sign on each component
of RB. Thus every real zero and real pole of g; is of even order. This implies that
there exists a continuous path (Dt)te[m] of divisors such that Dy = D and for
every t € [0,1], div(g:) = Dy 4+ ¢g(D;). In particular, L and L; are in the same
component of R Jac(B), where L; is the complex line bundle associated to Dy. It
suffices then to prove that Ly and L’ lie in the same component of R Jac(B).

Now D1+ ep(D1) = D' + ep(D’) = div(g1). So the divisor £ = Dy — D’
satisfy cp(F) = —E. Thus there exist £ € N and p',...,p* € B such that £ =
¥ ni(pt—ecp(p). Forevery i € {1,...,k}, choose a continuous path (%) refo,1]
such that p§ = p’ and pi € RB. For every 7 € [0,1], let E, = Zle n;(pt—cp(pl)).
Then Ey = E, E1 = 0 and for every 7 € [0,1], ¢g(E;) = —FE;. The path
F, = D' 4 E; is a continuous path of divisors such that Iy = D¢, Fi = D’ and
for every 7 € [0,1], Fr + ¢p(F;) = div(gy). This implies that the bundles L; and
L’ belong to the same component of R Jac(B), hence the result. O

Remark 3.3. Actually, the surjectivity of the “partition map” follows from a
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theorem of Witt (see [17] or [16], p. 101-102).

3.2. The topological type of a real ruled surface

Remember that to every smooth compact irreducible real algebraic curve (B, c¢g)
is associated a triple (g, i, €), called the topological type of (B,cp), where g is the
genus of B, u is the number of connected components of RB and € = 1 (resp. ¢ = 0)
if B is dividing (resp. if B is non-dividing). Two smooth compact irreducible real
algebraic curves are in the same deformation class if and only if they have the same
topological type (see [11]). Moreover, there exists a smooth compact irreducible
real algebraic curve of topological type (g, i, €) if and only ife=0and 0 < pu < g
ore=1,1<pu<g+land p=g+1 mod (2).

With the exception of the ellipsoid, that is CP! x CP' equipped with the real
structure (z,y) — (g,T), for every real structure cx on a ruled surface p : X — B,
there exists a real structure cg on the base B such that pocx = cpop. In particular,
the connected components of RX are tori or Klein bottles. Note also that in the
case of CP! x CP?, the ruling given by the projection p is not unique, whereas
it is for any other ruled surface. Since real structures on rational ruled surfaces
are well known (see theorem 3.6), we will assume from now on that the genus of
the base is non-zero. So let (X, cx) be a real non-rational ruled surface of base
(B, cg). The topological type of (X, cx) is by definition the quintuple (¢, k, g, p, €),
where (g, i, €) is the topological type of (B, cg), k is the number of Klein bottles
of RX and ¢ the number of tori of RX. Obviously ¢,k > 0 and t+ &k < pu. A
quintuple (¢, k, g, i, €) is called allowable if t,k > 0, t +k < p, g > 1 and either
e=0and0<u<gore=1,1<pu<g+landpu=g+1 mod (2).

Proposition 3.4. There exists a real ruled surface of topological type (t,k, g, p, €)
if and only if the quintuple (¢, k, g, u,€) is allowable.

Proof. If (¢, k, g, s, €) is the topological type of a real ruled surface, then the quin-
tuple (¢, k, g, p, €) is clearly allowable. Now, let (¢, k, g, 1, €) be an allowable quin-
tuple. It is well known (see [11] for instance) that there exists a smooth compact
connected real algebraic curve (B, cp) whose topological type is (g, u, €). If =0,
the ruled surface (B x CP',cp x conj), where conj is a real structure on CP?!,
is of topological type (0,0,g,0,0). If p # 0, choose a partition P of RB in two
elements such that one of them contains ¢ + & components of RB and the other
one u —t — k. It follows from lemma 3.2 that there exists a line bundle L over
B such that ¢i(L) = L* and the partition associated to L is P. Thus, it follows
from proposition 1.6 that there exists a real structure c} on the ruled surface
X = P(L & Lo) such that the real part of X consists of ¢t + k tori. Choose k of
these tori and make an elementary transformation on each of them, that is the
composition of the blowing up at one point and the blowing down of the strict
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transform of the fiber passing through this point. The result is still a real ruled
surface of base (B, c¢p) and the real part of this ruled surface consists of ¢ tori and
k Klein bottles, hence the result. O

3.3. The deformation theorem

Let A C C be the Poincaré’s disk equipped with the complex conjugation conj. A
real deformation of surfaces is a proper holomorphic submersion 7 : Y — A where
(Y, cy) is a real analytic manifold of dimension 3 and = satisfies 7o ¢y = conjon.
When t €] — 1, 1[€ A, the fibers Y; = 7~ () are invariant under cy and are then
compact real analytic surfaces. Two real analytic surfaces X’ and X” are said to
be in the same deformation class if there exists a chain X’ = X,..., Xy = X" of
compact real analytic surfaces such that for every ¢ € {0,...,k — 1}, the surfaces
X, and X, are isomorphic to some real fibers of a real deformation.

Proposition 3.5. The topological type of a real non-rational ruled surface is in-
variant under deformation.

Proof. Let (X, cx) — (B, ¢g) be areal ruled surface of topological type (¢, k, g, i, €)
with g > 1. Let 7 : Y — A be areal deformation of surfaces such that (Yg, cy |y, ) =
(X, cx). Then every fiber of 7 is a ruled surface with base of genus g (see [1] for
instance). Now since the deformation is trivial from the differentiable point of
view, the topology of the real part and the topology of the involution on the base
are invariant under deformation, hence the result. (Il

For the sake of completeness, let us recall the following well known result, see
[5] or [6]:

Theorem 3.6. There are four deformation classes of real structures on rational
ruled surfaces, one for which the real part is a torus, one for which the real part
is a sphere and two for which the real part is empty. These two latter have non-
homeomorphic quotients. ([l

Remember that the real structure for which the real part is a sphere is very
special. It only exists on CP' x CP! and is fibered over no real structure on the
base CP!. This comes from the existence of two rulings on CP! x CP! and the
involution (z,y) — (y, z) reversing them. This is the main reason why we do not
include the case of rational ruled surfaces in theorem 3.7.

Theorem 3.7. Two real non-rational ruled surfaces are in the same deformation
class if and only if they have the same topological type (t,k, g, u,€), except when
= 0. There are two deformation classes of real non-rational ruled surfaces of
topological type (0,0,4,0,0). For one such class of ruled surfaces (X,cx), the
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quotient X' = X /cx is spin, for the other one it is not.

This theorem 3.7 is a reformulation of the theorem 0.1 mentioned in the intro-
duction. Using the terminology introduced in [5], it means that real ruled surfaces
are quasi-simple. The definition of the topological type of a real ruled surface is
given in §3.2. Note that every allowable quintuple is the topological type of a real
ruled surface (see proposition 3.4).

Remark 3.8. If X = P(F) is a real non-rational ruled surface of topological type
(t,k,g,p,€) witht 4+ %k < p and k #£ 0, then X is not decomposable, whereas any
other topological type is realized by a decomposable real ruled surface. Remember
also that the deformation classes of complex ruled surfaces are described by the
genus of the base and by whether the surface is spin or not (see [14], theorem 5).
Then, real structures for which k is even only exist on spin ruled surfaces and real
structures for which k is odd only exist on non-spin ruled surfaces.

Let us sketch the proof of theorem 3.7.

Let (X, cx) be a real ruled and non-decomposable surface with base (B, cp). If
X admits a real holomorphic section, then we will prove that (X, cx) is in the same
deformation class that a real decomposable ruled surface (see proposition 3.9). If
X does not admit a real holomorphic section, then we will prove that there exists
a complex line bundle L € Pic(B) satisfying cj(L) = L*, such that (X, cx) is in
the same deformation class that the surface obtained from (P(L @ Lo), cx) after
at most one elementary transformation on each component of its real part (see
proposition 3.10).

After these two steps, it is possible to reduce the study of deformation classes
of real structures on ruled surfaces to the study of deformation classes of real
structures on decomposable ruled surfaces. It suffices then to check the theorem
3.7 for decomposable real ruled surfaces.

Proposition 3.9. Let (X, cx) be a real ruled surface of base (B, cg) which admits
a real holomorphic section. Then there erists a real deformation 7Y — A such
that for every t € R* N A, (Ya,eyly,) is isomorphic to (X,cx) and such that
(Yo, eyly,) 4s 4somorphic to (P(L & Lg),cr, @ cr,) where L € Pic(B) and ¢1, is a
real structure on L which lifts cp.

Proof. Let E be a rank two complex vector bundle over B such that X = P(F).
The real holomorphic section of X is given by a complex sub-line bundle M of E.
Denote by N the quotient line bundle E/M so that the bundle F is an extension
of N by M. Let p € HY(B, M ® N*) be the extension class of this bundle and let
p! be a 1-cocycle with coefficients in the sheaf Og(M ® N*), defined on a covering
U = (U;)se 1 of B, realizing the cohomology class u € H'(B, M ® N*). The bundle
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E is then obtained as the gluing of the bundles (M & N)
(MaN)

v, by the gluing maps:

Uz'ﬁUj - (]\469 N)|UjﬁUz‘

oy = o] () = Gt .
We can assume that for every open set U; of U, there exists T € I such that
Ur = cg(U;) (add these open sets to U if not). We can also assume that there
exists J C I such that the open sets (U;);cs cover B and such that the real
structure cx : X|y, — X|u; lifts to an antiholomorphic map F|y, — E|u; (take a
refinement of U if not). Since by hypothesis the section of X associated to M is
real, these antiholomorphic maps are of the form:

(M@ N)ly, = (M@N)

Ur

(o e = ente | 5 ot | (1))

n

where a; (resp. b;, resp. d;) is an antiholomorphic morphism M|y, — M|y, (resp.
Ny, — M|y, resp. N|y, — N|p,) which lifts cg. Since cx is an involution, we
have for every i € J, a;oa; = dyod; € O%|y, and aob;+-brod; =0 € Op(N*®M)|y,.
Moreover, for i, j € J such that U;nU; # 0, the gluing conditions are the following:
a; = )\aj, d; = )\dj and b; + pg © d; = )\(aj O Wi + bj) where A\ € OE U;nU; -

Now let Y be the complex analytic manifold of dimension three defined as the
gluing of the charts C x P(M @& N)|u,, ¢ € J, with change of charts given by the

maps:
Cx P(M& Ny, — Cx P(M & N)|y,
o, m oz ) 1+ o, Ll) “ﬂ (’Z)) = (t, 2, (m -+ tpyn : n).

The projection on the first coordinate defines a holomorphic submersion 7 : Y —
C. The surface 7 1(0) is isomorphic to the decomposable ruled surface P(M & N),
whereas, as soon as t € C*, the fiber Y; = 7 !(¢) is isomorphic to the ruled surface
X = P(E). Such an isomorphism ¢, : ¥; — X is given in the charts P(M & N)|y,,
i€ J, by:

P(M & N)ly, — P(M & N)|y,

(z,(m:n)) — (z,(m:tn)).
Denote by cy the real structure on Y defined on charts C x P(M & N)
Cx P(IM® N)|ly, = Cx P(M & N)|y,

(t,z,(m:n)) — (E,CB(xL [Cg ZC[Z} <7:>>

This real structure satisfies mocy = conjon where conj is the complex conjugation
on C. Moreover, when ¢t € R*, ¢, gives an isomorphism between the real ruled

U; by:
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surfaces (Yz, cyly,) and (X, cx). Hence, the restriction of 7 : Y — C over A C C
is a real deformation which satisfies proposition 3.9. [l

Proposition 3.10. Let (X, cx) be a real ruled surface of base (B, cp), which does
not admit any real holomorphic section. Then, there exists L € Pic(B) satisfying
¢s(L) = L* and a ruled surface (X' cx/) obtained from (P(L @ Lg),cx) after
at most one elementary transformation on each of its real components, such that
(X,cx) and (X', cx/) are in the same deformation class.

Remember that an elementary transformation on the ruled surface X is by
definition the composition of a blowing up of X at one point and the blowing
down of the strict transform of the fiber passing through this point.

Lemma 3.11. Let X = P(L® Lo) be a decomposable ruled surface of base B. Let
s B — X be the section defined by L and D be a divisor associated to L. Then
the ruled surface obtained from X after an elementary transformation at the point
s(z), z € B, is the surface P(L(x) @ Lo) where L(z) is the complex line bundle
associated to the diwisor D + zx. (|

Lemma 3.12. Let (X, cx) be a real ruled surface of base (B, cg), which does not
admit any real holomorphic section. Then X has a very ample holomorphic section
S which is transversal to its image under cx.

Proof. Let us first construct a very ample section on X. Let F be a rank two
complex vector bundle over B such that X = P(F), and let A be an ample line
bundle over B. Then by definition, for sufficiently large n, the bundle E* @ A™
is generated by its global sections. Choosing N such global sections, it provides
a surjective morphism of bundles B x CN — E* ® A™. This induces an injective
morphism between the dual bundles ¥ ® (A*)" — B x CV and thus an embedding
X — B x CPN-1. Fixing an embedding B — CP3, we deduce an embedding
X — CP? x CPN~1. Finally, combining this with Segre embedding, we obtain
an embedding X — CP*¥~1 associated to a very ample linear system of sections
on X.

Now, let us prove that in this linear system, there exists a smooth section
S transversal to c¢x(S). From Bertini’s theorem (see [8], theorem 8.18) there
exists, in this linear system, a smooth section S associated to a hyperplane H of
CP*N—1 transversal to X. By hypothesis, S cannot be real, so that the intersection
cx(S) NS consists of a finite number of points. We will prove that after a small
perturbation of H, this intersection can be assumed transversal. Indeed, let = €
ex(S)Nn S. If z € RX, the intersection of H with 7,X is a line, which is the
tangent of S at X. The section S is transverse to cx (S) at « if and only if this line
is not fixed by the differential d,cx. Since the fixed point set of this involution is
of half dimension, the intersection of S and cx(S) at = can be made transversal
after a small perturbation of H, keeping the intersection point z. Now, if z ¢ RX,
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then since the section S is smooth, the points z and cx (z) belong to two different
fibers of X and in particular to non-real ones. Suppose that the line D, ¢ CP*VN—1
Jjoining them is transversal to both the planes T, X and T, (,yX. Then there exists
a pencil P of hyperplanes of CP*¥~1 containing H and parametrized both by the
lines of T, X C CP*N~! and the lines of T, (;n X C CP*V~!. This means that each
line of T}, X passing through x, and similarly each line of T¢, () passing through
cx(z), is contained in one and only one hyperplane of P. Also, P contains no
other hyperplane.

This pencil P thus provides us with a holomorphic identification between the
projective lines P(T, X) and P(T,, (,)X). Under this identification, the differential
dycx reads as an anti-holomorphic involution of 7, X and once more, the section
S is transversal to ¢x(S) at z if and only its tangent line is not fixed by this
involution d,cx. This can always be guaranteed after a small perturbation of H.
Since small perturbations do not perturb the transversality of transversal points,
this process strictly increases the number of transversal points between S and
cx(S) and so gives the result after a finite number of steps. It thus only remains
to prove that the line D, can indeed be assumed transverse to both the planes
T.X and 1., ()X, after a small perturbation of H if necessary.

For this, note that the embedding B — CP? can be chosen real. The set of
points of B whose tangent is not a real line of CP? is a dense open subset U C B
(for the usual topology, not the Zariski’s one), invariant under cg. The set U
is in fact the complementary of the real part of the dual curve. Let z € X be
a point such that y = p(z) € U where p is the projection X — B. Since the
line joining y to cp(y) is real, it is not tangent to B at y and cp(y). Let Hy be
a hyperplane of CP? passing through y and cp(y) and transverse to B. Then
H; x CPN~! is transverse to X in CP? x CPY~!. Let Hy be a hyperplane of
CPN~! such that CP? x H, does contain neither = nor cx (x). Then the divisor
(Hy x CPN~—1) 4 (CP? x Hy) is associated to a hyperplane Hy of CP*N =1 which
contains both z and cx (z) and which is transverse to X at these points. Then H
contains the line D, and since by construction it also contains the fibers through z
and cx (z), its transversality with X at z and c¢x (x) implies the one of D,. Hence
for any point z belonging to the open set p~'(U) of X, the line D, is transverse
to X at z and cx(z). Since it is not hard to observe that any non-real intersection
point of S and cx (S) can be moved to p~!(U) after a small perturbation of H,
this completes the proof of lemma 3.12. Il
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Remark 3.13. To prove the transversality part of lemma 3.12, the following sim-
pler argument has been communicated to me by V. Kharlamov. First notice that
once you have two very ample line bundles and a generic couple of sections of these
bundles, the zero sets of these sections intersect transversally. Now take 1 to be
the line bundle associated to the constructed very ample section S and L to be
the bundle associated to cx (S). On the space of couples of holomorphic sections of
these bundles, we have the following real structure: (si,s2) — (530¢x,310¢x).
We are exactly interested in couples which belong to the real locus of this real
structure. The result follows from the standard fact that there are generic points
on this (non-singular) real locus.

Proof of proposition 3.10. Let S C X be a very ample holomorphic smooth sec-
tion, transverse to its image under cx. Such a section is given by lemma 3.12. The
set cx(S) N S is finite and invariant under cx. Denote by X; the ruled surface
obtained from X after an elementary transformation on every point of this set.
Since it is invariant under cx, the real structure cx induces a real structure cx,
on Xi. Moreover, the strict transform Sy of S satisfies cx, (S1)NS; = 0. Thus X;
is a decomposable ruled surface, and cx, exchanges the two holomorphic sections
Sy and ¢x (S1). The inverse of an elementary transformation is still an elementary
transformation, so we deduce that (X, cx) is obtained from the real decompos-
able ruled surface (X1, cx, ) after performing elementary transformations on points
{z1,- %691, - - YL Y1y - - Ui} Where ex, (z;) = z; and ex, (y;) =7;. Note that
all the points {z1, ..., %k, y1,---,Y1, Ty, -- -, Y, + belong to different fibers of X;. It
remains to see that this number of points can be reduced to one at most for each
component of RXq, changing the decomposable real ruled surface X if necessary.

For every j € {1,...,l}, choose a piecewise analytic path y;(t), t € [0,1],
such that y;(0) = vy, y;(1) € 51 and p(y;(t)) is constant, which means that
y;(t) stays in a same fiber of X;. Let y,(t) = cx, (y;(¢)) and denote by X the
ruled surface obtained from X; after elementary transformations in the points
y1(1), ..., w(1),77(1),...,7,(1). The real structure cx, induces a real structure
cx, on Xo. The surface (X», cx, ) is in the same deformation class that (X, ex, ).
Moreover, X is also a decomposable ruled surface. Indeed, the strict transform S
of Sy is a holomorphic section of X satisfying cx, (S2)NSe = @. Thus (X, c¢x) is in
the same deformation class that the surface obtained from the real decomposable
ruled surface (X», cx,) after performing elementary transformations on the strict
transforms of the points z1,...,z; € RXy, still denoted by x1,...,z; € RXo.
Now for each pair of points z1, 2 lying in a same connected component of RX5,
we can make the elementary transformation on the point z5. Then, the image of
the fiber passing through x5 is a real point 2, in the new surface X/ obtained. So
we can choose an analytic path from z; to z/, in the real part of X/} and we deduce
that the surface obtained from X, after making the elementary transformations
on the points z1,z9 is in the same deformation class that the one obtained from
X/ after an elementary transformation on z5, which is X5 itself. Hence each pair
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of points lying in a same connected component of RX, can be removed and so
(X, ex) is in the same deformation class that the surface obtained from the real
decomposable ruled surface (Xs,cx,) after performing at most one elementary
transformation on each of its real components. Since cy, exchanges two disjoint
holomorphic sections of Xs, it follows from theorem 2.3 that (X, cx,) is of the
form (P(L @ Lo), ci) where L € Pic(B) and ci(L) = L*. O

Lemma 3.14. Let g > 1 be an odd integer and (B,cp) be a smooth compact
irreducible real algebraic curve of genus g and empty real part. Let L be a complex
line bundle over B satisfying ¢y (L) = L*. Then the real ruled surfaces (P(L &
Lo),cx) and (P(L® Lg),cyx) are in the same deformation class.

(In lemma 3.14, the real structures ¢} and ¢y on X = P(L @ Lg) are those
given by proposition 1.6.)

Proof. Without changing the deformation class of X = P(L & Lg), we can assume
that the base of this surface is the real algebraic curve (B, ¢p) given by corollary
2.8. Then, if L belong to the same real component of (Jac(B), —c}) that the
bundle given by corollary 2.8, we can assume, without changing the deformation
class of X = P(L @ Lg), that L is exactly this bundle. In that case, the result
comes from corollary 2.8.

Let X = P(L@® Lg) be the ruled surface given by corollary 2.8, and ® : X — X
be the automorphism conjugating c} and cy. Let x; be a point on the section of
X associated to L and y; = ¢k (21) = cx(z1). Let 23 = ®(z1) and y2 = ®(y;) =
ck(z2) = cx(z2). Denote by Y; (resp. Y3) the ruled surface obtained from X after
one elementary transformation on the points z; and y; (resp. z5 and y3). Then
the real structures ci and cy lift to the real structures c}i,1 (resp. c,jEZ) on Y; (resp.
Y3), and @ lifts to a biholomorphism W : ¥; — Y, such that ¢j, = Pl ocy, oW and
Cy, = pol oc;% oW. But the real ruled surface (Y1, ¢y, ) is in the same deformation
class that (Y27c;,2). Indeed, it suffices to choose an analytic path z; linking z;
to x3 in the section of X associated to L and to consider the surfaces (Yi,cy. )
obtained from (X, cy ) after an elementary transformation on the points z; and
cx ().

Hence the real ruled surfaces (Y1, cy. ) and (Y71, c}tl) are in the same deforma-
tion class. To conclude, it remains to see that they do not come from the same
connected component of (Jac(B), —c%) that (X,cx). This follows from the fact
that the quotients Y/ c)i,1 and X /c§ are not homeomorphic. Indeed, these two
quotients are sphere bundles over the non-orientable surface B’ = B/cp. But
Yy/ c)i,1 is obtained from X/ c}( after one elementary transformation in one point.
Thus one of these two quotient is spin, and one is not. Hence the result. (Il

Proof of theorem 3.7. Let (X1, cx,) and (X, cx,) be two real non-rational ruled
surfaces of bases (B, cp,) and (Bs, cp,) respectively, which have the same topo-
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logical type (¢, k, g, i, €). We have to prove that they are in the same deformation
class, as soon as p # 0.

Let us first consider the case of decomposable ruled surfaces, that is let us
assume that X; and Xs are decomposable. If ¢ + k < p, it follows from theorem
2.3 that X1 = P(L; ® Lo) (resp. Xo = P(Ly @ Lg)), where Ly € Pic(By) (resp.
Ly € Pic(By)) and ¢, (L1) = L7 (vesp. ¢, (L1) = L3). Moreover, it follows from
proposition 1.6 that in this case & = 0. The partition Py (resp. P2) in two elements
of RB; (resp. RBj) associated to Ly (resp. Ls) consists of one element containing
t components of RB; (resp. RB3) and one element containing p — ¢ components
of RBy (resp. RB2) (see §3.1 for the definition of the partition). Since (Bi,cg,)
and (Bs, cp, ) have same topological type (g, i, €), there exists a piecewise analytic
path of smooth real algebraic curves connecting them (see [11]). Moreover, this
path can be chosen such that the ¢ components of RB5, which form an element of
the partition Ps, deform into the ¢ components of RB; which form an element of
the partition P;. This follows from the presentation in [11] of a real algebraic curve
as the gluing of a Riemann surface with boundary with its conjugate, the gluing
maps being either identity or antipodal. Thus (X3, cx, ) is in the same deformation
class that a ruled surface (X, cg,) of base (B, cp, ). Moreover, Xy = P(Ly® Lo)
where L, € Pic(By), cj, (lN}Q) = Z’Q‘ and the partitions associated to Lo and L, are

the same. From lemma 3.2, it follows that Zg and L are in the same component
of the real part of (Jac(B;), —cp, ) and hence the surfaces ()?2, c;(z) and (Xy,cx,)
are in the same deformation class.

If t + k = p, it follows from theorem 2.3 that X; = P(L1 & Lg) (resp. Xp =
P(Ly @ Lo)), where Ly € Pic(By) (resp. Ly € Pic(Bz)) and either cp (L1) = L}
(resp. cp,(L1) = L), or ci, (L1) = Ly (resp. cp,(L1) = L2). In the first case,
Ly (resp Lo) is in the same component of the real part of (Jac(Bi), —cp, ) (resp.
(Jac(Ba), —cp,)) that Lo, since t + k = p. Thus (Xi,cx, ) (resp. (Xa,cx,)) is in
the same deformation class that (B; x CP?, c)i() (resp. (By x CP1, cf()) Moreover,
when 1 # 0, only one of the two real structures cy, say c} satisfies t + k = p.
In the second case, denote by D, — D_ a divisor associated to L, where D,
D_ are positive divisors and invariant under ¢g,. Then X1 = P(Lp +OL p_) and
cx, = ¢Lp, ®cpp_ - Thus, it follows from lemma 3.11 that (X1, cx, ) is obtained

from (B; x CPY, ¢, @ cr,) after performing elementary transformations on the
points of the section associated to Lp, (resp. Lp_) over the locus of D, € By
(resp. D_ € By). Without changing the deformation class of the surface, we can
assume that the elementary transformations are only done on real points of (B; X
CP!, cp,, @ecr,) with at most one on each of its real components. Indeed, the extra
real points can be removed as in proposition 3.10 and every couple of conjugated
imaginary points can be moved to real points following a standard deformation:
embed the disk (A, conj) in a real section of X, and for every t € A, denote by
Y; the surface obtained from X after an elementary transformation on the points
t and —t in A (we still denote by A its image in X by the chosen embedding).
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The dimension 3 complex manifold Y obtained gets two real structures, one which
lifts conj in A and one which lifts —conj. This thus define two real deformations
of ruled surfaces and shows that the real ruled surfaces obtained from X after
making elementary transformations on the points :I:% € Aor :I:% € A are in the
same deformation class. Hence, without changing the deformation class of the
surface (X1,cx,), we can assume that the elementary transformations are done
only on real points of (B; x CP', ¢, @ cr,) with at most one on each of its real
components. The total number of such elementary transformations is then k since
the topological type of (X1, ¢x, ) is (¢, k, g, p, €). If X1 and X5 are two such surfaces,
there exists a piecewise analytic path of smooth real algebraic curves connecting
(B1,cp,) and (Ba,cp, ), such that the & components of RBy over which are done
the elementary transformations deform on the k£ components of RB; over which are
done the elementary transformations. Hence in both cases, (X1, cx,) and (Xo, ¢x, )
are in the same deformation class. Since the real structures c} and cr, @ cp, are
conjugated on B; x CP?, which follows from theorem 2.3 for instance, we deduce
that the real decomposable ruled surfaces (X1, cx,) and (Xo, cx,) are in the same
deformation class if and only if they have the same topological type (¢, k, g, s, €),
except when g = 0. In that case, if g is even, it follows from proposition 3.1 that
the same method as before leads to the fact that (X1, cx, ) and (X, ¢x,) are in the
same deformation class that (B x CP!,c}) or (B x CP', cy). But the quotient
(BxCP')/ck is spin and (B x CP')/cy is not, so the surfaces (B x CP?, ¢}) and
(B x CP!, cy ) are not in the same deformation class. If g is odd, it follows from
proposition 3.1 that the same method as before leads to the fact that (Xy,cx,)
and (Xo,cx,) are in the same deformation class that (P(L @ Lo), ¢ ), where L
belongs to one of the two components of the real part of (Jac(B), —cj). But it
follows from lemma 3.14 that (P(L @ Lo),c ) and (P(L @ Lo),cy ) are in a same
deformation class. The result follows from the fact that (B x CP')/c% is spin
and P(L& Lp)/ c_jf( is not when L is not in the same component of the real part of
(Jac(B), —c}) that Lg.

Now let us prove the theorem in the general case, which means that we no
more assume that X; and X, are decomposable. From propositions 3.9 and 3.10,
it follows that these surfaces are either in the same deformation class that some
real decomposable ruled surfaces, or in the same deformation class that some
ruled surface obtained from a decomposable one of the form (P(L @ Lg), c)i() after
at most one elementary transformation on each of its real components. In this
second case, we can assume that L does not belong to the same component of
the real part of (Jac(B), —c§) that Ly (otherwise the surface can be deformed
to a decomposable ruled surface). Since the topological types of these surfaces
are different from those realized by decomposable ruled surfaces, we can assume
that either X; and X, are both decomposable, or that they are both from this
second class. In the first case, the theorem follows from what we have already
done. Let us assume we are in the second case. Then there exists L; € Pic(By)
(resp. Ly € Pic(B2)) such that c¢p (L1) = L] (resp. cp,(L2) = L5) and (Xy,cx,)
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is obtained from (P(L; @ Lo),c%) after making k elementary transformations in
k disjoint real components. The surfaces (P(L1 @ Lo),c%) and (P(Ls @ Lo),ck)
have same topological type (¢t + k,0, g, pi, €), with g > 0. Thus they are in the
same deformation class. Moreover, in the same way as before, this deformation
can be chosen so that the k marked real components of (P(Ls & Lo), ck) deform
to the k marked real components of (P(L; @ Lo),c%). It follows that (Xi,cx,)
and (X2, cx,) are in the same deformation class. O
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