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Restriction map in a regular reduction of SU(n)%

Sébastien Racaniere

Abstract. The quasi-Hamiltonian reduction of SU(n)Zg at a regular value, in the centre of
SU(n), of the moment map is isomorphic to a moduli-space of semi-stable vector bundles over a
Riemann surface. We describe the restriction map from the equivariant cohomology of SU(n) 29
to the cohomology of the moduli space in terms of natural multiplicative generators of these
cohomologies.

Mathematics Subject Classification (2000). 53D20, 14H60.
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Motivations

All cohomologies will be taken with coefficients in the field Q of rational numbers.
For a compact connected Lie group G, we denote FG — BG the universal
principal G-bundle. If G acts on a manifold M, we denote (M )g the space M xg
EG. The equivariant cohomology HZ (M) of M with respect to the action of G
is by definition the Cech cohomology of (M)g. For an account of equivariant
cohomology see [6] and [14].

Let g be an integer bigger than 1. Let 7 be the group

g
™= <a17b17' E '7a’g7bgac; H[ak7bk] =G "= 1>
k=1
Let n and dd be integers with n bigger than 1 and let ¢ be the n-th root of unity
¢ = e ™% Put B = (I, where I is the identity matrix in the special unitary
group SU(n). We define

S5 = {p € Hom(r, SU()) | p(c) = 6}
the space of SU(n)-representations of = such that 3 is the image of ¢. Because 3
is in the centre of SU(n), the group SU(n) acts on S and its quotient

mg = Sz/SU(n)

is the moduli space of SU(n)-representations of 7 that send ¢ to j.
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Narasimhan and Seshadri [17] have shown that mg is isomorphic to the moduli
space of holomorphic semi-stable vector bundles of rank n, degree d, and fixed
determinant over a compact Riemann surface X of genus g. For d and n co prime,
mg is compact and smooth. In this case, Atiyah and Bott [1] showed that this
space is symplectic, proposed a family of multiplicative generators of its cohomol-
ogy and gave an inductive formula (on the rank n) for the Betti numbers of mg.
Their method consists in studying an infinite dimensional Hamiltonian space. In
1993, Huebschmann [8] and Jeffrey [10] independently gave a group cohomology
construction of the symplectic form on mg (their results are summarised in a joint
paper [9]). In 1998, Alekseev, Malkin and Meinrenken [2] showed that Hueb-
schmann and Jeffrey’s construction fits in a more general setting: one can get the
moduli space mg (and many others, moduli spaces of flat connections on a prin-
cipal bundle) as the Marsden—Weinstein reduction of a quasi-Hamiltonian space.
This space is SU(n)zg , it is relatively simple in contrast with the usual descrip-
tions of msz as a Hamiltonian reduction. A quasi-Hamiltonian (or g-Hamiltonian
for short) space is a Hamiltonian space with a group valued moment map. Its
2-form is not symplectic in general but the Marsden—Weinstein reduction is well
defined and the reduced space is symplectic.

An important result about Hamiltonian spaces is the

Theorem 0.1 (Kirwan). Let M be a symplectic manifold. Assume G is a compact
Lie group acting symplectically on M and assume there exists a moment map ¢
for this action. Let O be the null vector of the dual of the Lie algebra of G. The
restriction map

Hg(M) — Hg(671(0))

18 surjective.

It is a natural question to ask if this theorem is still true for g-Hamiltonian
spaces. It is quite easy to see that the answer is no. For example, to get mg, one

considers SU(n)* with moment map 1
SU(n)™ —  SU(n)
(A1,Bi, ..., Ay, By) — szl[Ak7 By]
the product of the commutators and a certain 2-form (see [2] for more details).

Then the reduced space at 3 being symplectic and compact, its degree two co-
homology (which is isomorphic to HéU(n)(ufl(ﬂ))) contains a non trivial class

(SU(n)*) = {0}. Thus the map

7t Hium (SUM)™) — Hiuo (1 (B))

whereas HéU(n)

is not surjective.
Our aim is to give a description of this last map r (Theorem 5.1) when d and
n are co prime. Note that in [3], a theorem of localisation in the context of quasi-
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Hamiltonian spaces is given. It may be interesting to see how our theorem could
be used to apply this localisation theorem to the reduction of SU(n)Qg at ;.

This paper is organised in the following way. Section 2 gives a (very short)
review of the prerequisites on g-Hamiltonian spaces and semi-stable bundles. In
particular, Narasimhan and Seshadri’s theorem (see Theorems 2.9 and 2.13) is
used throughout this article to identify ms with p~1(3)/SU(n) and H*(mg) with
HgU(n)(u‘l(,@)). In Section 3, we give a construction of a universal bundle on
mg x X, we then recall how Biswas and Raghavendra [4] use this bundle to define
a set {ag, by j,dp,2 <k <n,1 <j <2g} of canonical multiplicative generators of
the cohomology of mz (Theorem 3.4). In the next section we define a bundle on
SU(n)zg x X — {point} and use it to get a set {cx,04,2 <k <mn,1 <j < g} of
multiplicative generators for the equivariant cohomology of SU(n)Qg (Theorems
4.4 and 4.6). Finally in Section 5 we prove the

Theorem 5.1. The restriction map

r: Hyuny (SU(M)*) — Hgyg (0 (D)
is given by

rley) = ag fork=2,...,n
(o) = bpy fork=2,...,n,5=1,...,2¢g.
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2. Prerequisites

In paragraph 2.1, we recall the definition of semi-stability for holomorphic vector
bundles and state Narasimhan and Seshadri’s theorem (Theorem 2.9). Then in
§2.2, we give the definition of a q-Hamiltonian space and restate Narasimhan and
Seshadri’s result in the language of g-Hamiltonian spaces (Theorem 2.13).

2.1. Semi-stable bundle

The following constructions are due to Narasimhan and Seshadri [17]. Apart from
the proof of Proposition 2.1, everything in this paragraph is from their article.
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Let X be a Riemann surface of genus g, g > 2. Fix a point zp of X. We will
first give a construction of a ramified covering Y — X used in [17].

Proposition 2.1. There erists a simply connected covering
p:Y — X
with only one point of ramification xo of order n. Qutside of this point, the map
Y —{p H(zo)} — X — {xo}

is a covering with group
g
7w ={a1,b1,...,aq,bg,c;c = H[ak7bk]7cn =1).
k=1

Proof. We start by constructing Y, then we show that it is simply connected. Let
D be an open neighbourhood of xy biholomorphic to an open disc in C centred
at zero. Let D' = D — {x0}. The fundamental group of X’ = X — {z¢} has a
presentation

Wl(X/) = <a’17b17 .. '7a9>bg>>

such that the element []{_,[ax, bx] is the class of a small circle « included in D’
and going counter clockwise around zg. Let 7 be the group

9
7= {a1,b1,...,a4,by,¢c;c= H[ak,bk],cn =1).
k=1
The natural surjective map
(X)) — 7
defines a galoisian covering
p:Y — X'

with group 7. Fix a point z1 of D’. We take it as the base point for the fundamental
groups of X, X’ and D’. Let us decompose p~!(D’) in its different connected
components

p iD= | Vo
acA
Fach
v, 2 D’

is a connected covering. As D’ is a disc minus its centre, this last covering group
is generated by the element in 7 corresponding to the loop +. The connected
covering of a disc with its centre removed is either the upper half complex plane
with the exponential as a projective map or a disc with its centre removed and
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a projection map of the type z —— 2™, where m is a positive integer. Here, the
class of v acts as ¢, thus V, is a disc with its centre removed and, for each o,
V, 2 D'
is the map z —— 2". Let
Y =" {JD )/~
acA
where for y € Y’ and (z, o) € (D, a)
y ~ (z,a) if and only if p(z) = y.
The natural projection

Y — X

is a covering with a unique ramification point at xy with order n. We now have to
check that Y is simply connected. We get Y’ from Y by removing a discrete set
of points. Hence the map

m(Y") — m(Y)

is surjective. The sequence
{1} > mY) - mX) — 7 — {1}

is exact. The kernel of 71(X’) — 7 is the normal subgroup generated by ¢”. Let
a in 71(X’) be the class of a loop 7 : [0,1] — X’. The class of v™ is ¢". Let us
lift -~+" -n~'in Y’. To do so we have to take a lift 7 of 5 in Y’ and then take
a lift ™ of v satisfying 37(0) = 7(1). The loop we wanted is 77- " - 7. There
exists a such that

777, € Vou

thus 3" is homotopic to the constant loop in Y. The image of a-c¢® - a~! by
71 (Y") — m1(Y) is 1, hence the image of m1(Y’) — 71(Y) is {1} and

m(Y) = {1}.

Choose a yo in p~ (o). In the presentation

g
7w = (ay,by,...,a4,by, ¢ H[ak,bk] —=c, " =1)

k=1
of m, we can assume that c is a generator of the isotropy group m,, of .
For a representation p : # — GL(n) of 7, we denote F.(p) the vector bundle
YxC*—Y

with the action:
X (Y xC") — Y

(v (w,0))  — (v 9, p(7)v).



Vol. 78 (2003) Restriction map in a regular reduction of SU(n)% 399

Let E be the sheaf of germs of holomorphic sections of E;(p). The group 7 acts
on the image sheaf p,(E). Let pT(E) be the subsheaf of 7-invariant elements of
p«(E). It is a rank n locally free sheaf of Ox-modules. It defines a holomorphic
vector bundle, pT(E,), of rank » on X. A set of transition functions is obtained
in the following way. Let {U;}7, be a finite open covering of X satisfying:
(1) all non-empty intersections of sets of the type U; is contractible,
(2) zg € Uy and U:il U =X — {ZEo},
(3) there exist discs {D;}7, in Y such that yo € Dy and Uy is the quotient of
Do by my,, the restriction p|p, is an homeomorphism of D; with U, for all
non zero i.

For each triplet 4, 4, k, choose a connected component W;; 5 of p~1(U; N U;) N Dy
If U;nU; is not empty, we denote ; ; the element of 7 satisfying v; ;Wi  ; = Wy ;.
According to [17, p. 550] :

Proposition 2.2. On each {U;}, the bundle pI (E,) is trivial and a set of tran-
sition functions is given by:

gij=p(vg) mUNUj, fori,j#0
g0, = fo.ip(y0,s) in Ug N U, fori##0

where fo; : Uy NU; — C* depends only on 7.
Definition 2.3. Let W be a degree d(W) and rank r(W) holomorphic vector

bundle on X. It is said to be stable, resp. semi-stable, if for each proper subbundle
V., we have

r(V) Sy P W) S Wy

av) _ dWw) dv) _ dw)

Remark 2.4. If d(W) and r(W) are co prime then the notions of stability and
semi-stability are equivalent.

Recall that d is an integer, 0 < d <n —1, and { = e~2™% is an n-th root of
unity. Let z be a coordinate in a neighbourhood of 4o such that 7, is the group of
multiplications by ¢*. Up to a change of generator ¢ of Tye, We can assume that c
acts by multiplication by e’% . Let 7 be the character of 7y, defined by 7(c) = ¢.
A representation p : 7 — U(n) is said to be of type 7 if for all v € 7, , we have
p(v) = 7(v)L. For any representation p of type 7 we have:

dpi(E,)=d—n (see [5, p. 13]).
Again, according to [17]:
Theorem 2.5. A holomorphic vector bundle of rank n and degree d —n on X

is semi-stable if and only if it is isomorphic to a pf(E,), where p : 1 — U(n)
is a unitary representation of type 7. This bundle is stable if and only if the
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representation p is irreducible. Moreover, two such bundles are isomorphic if and
only if their corresponding unitary representations are isomorphic.

Remark 2.6. For d and n co prime, any representation p : 7 — U(n) of type 7
is irreducible [17, Prop. 9.3].

Let n be the moduli space of rank n, degree d, stable holomorphic vector
bundles over X.

Remark 2.7. Let M be a holomorphic line bundle of degree 1 over X (it always
exists). The moduli space of rank n stable holomorphic vector bundles with fixed
determinant of degree d — n over X is isomorphic to the moduli space of rank n
stable holomorphic vector bundles with fixed determinant of degree d over X. The
isomorphism is induced by the map which to a bundle £ — X associates ' ® M.

We fix such a bundle M and use it to identify the two moduli spaces of Remark
2.7. Thus we have

Theorem 2.8. The moduli space n is isomorphic to the quotient of the space of
unitary representations of type T of w by the action of U(n).

The map which to a class of bundles in n associates its determinant is a fibration
over the moduli space of line bundles of degree d. Its fibre is called the moduli
space of rank n stable holomorphic line bundles over X with fixed determinant
(of degree d). We get all such bundles by taking only representations p : © —
SU(n) of type 7. Let S be the set of such representations. We identify it with
{(A1,By,..., Ay, B,) € SUN)™ | TT9_,[Ar, Br] = ¢TI} by:

g
S — {(A1, By, ..., Ay, By) € SUm)* | T [Ar, Bi] = ¢T}
k=1

p — (pla1), p(b1), ..., play), p(by)).

The action of SU(n) on the representations becomes, under this identification, the

diagonal action by conjugation of SU(n) on SU(n)Zg In this article we work with
m rather than n. We have:

Theorem 2.9. Let d be an integer, 1 < d < n — 1, co prime with n. Let m be
the moduli space of rank n holomorphic stable vector bundles over X with fired
determinant (of degree d). The map

S —m
p — pi(E,)

is a PSU(n)-principal bundle.
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Proof. The only thing that is left to check is that for a representation p =
(A1, By,..., Ay, By) € S (recall we have identified S with a set of matrices), its
stabiliser Stab(p) is the centre of SU(n). Let C be in the stabiliser of p. Let A
be an eigenvalue of C' and let F) be its eigenspace. As C' commutes with each
of the A;, B;, the subspace Fj is stable by the unitary representation p. As p is
irreducible, Fy = C™ and C is in the centre of SU(n). On the other hand, any
matrix in the centre of SU(n) does leave p invariant. We have indeed a free action
of PSU(n) on S. O

2.2. Quasi-Hamiltonian spaces

The definition of a g-Hamiltonian space is due to Alekseev, Malkin and Mein-
renken. Roughly speaking this is a Hamiltonian space with a group valued mo-
ment map. When the group is a torus, the definition reduces to the usual one of
a Hamiltonian torus action whose moment map takes its values in the torus itself
(see McDuff [15] and Weitsmann [19]).

Let G be a compact Lie group. Let 6 and 8 be respectively the left invariant and
right invariant Maurer-Cartan forms on . Choose a G-invariant scalar product
(,) on the Lie algebra g of G. Define a 3-form y on G by

1

= —{(16,61,0).

X

Definition 2.10 ([2]). Let (M, G, w, ) be a 4-tuple where M is a manifold acted
on by a compact Lie group G, w is a G-invariant 2-form on M and p is an equivari-
ant map from M to G (for the action by conjugation of G on itself). This 4-tuple
(or simply M if there is no risk of confusion) is a q-Hamiltonian space if

(B1) dw = —p*x )

(B2) tfvehw = Sp*(0+6,€)

(B3) kerw, = {ve(x) | £ € ker Ad, 5y + 1}

The map g is called the moment map.

This definition is a generalisation of the definition of a Hamiltonian space in the
sense that any compact Hamiltonian space can be endowed with a g-Hamiltonian
structure (this is an easy corollary of [2, Prop. 3.4.]).

A first example of a ¢-Hamiltonian space is a conjugacy class in a Lie group
with moment map the inclusion of the conjugacy class in the group (see [2, §3]).
The example that will be of interest to us is

Theorem 2.11 ([2]). Let G be a compact Lie group and g > 1 an integer. There
exists a 2-form w on G29 such that the map

J G*9 — G
(0,17[)17 v '7a97bg) — Hi:l[alﬁ bk]
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and the diagonal action of G on G*9 by conjugation makes (G*9,G,w, u) into a
q-Hamiltonian space.

In particular we will apply this theorem with G = SU(n). An important
fact about g-Hamiltonian spaces is that one can take their Marsden—Weinstein
reduction. More precisely:

Theorem 2.12 ([2]). Let (M,G,w, u) be a g-Hamiltonian space. Let h be in the
centre of G. The moment map p is a submersion at x € M if and only if the
stabiliser of x in G is finite. If this is the case for any point of u=1(h), the reduced
space u~(h)/G is an orbifold (a manifold if the action of G on p~1(h) is principal)
on which the restriction of w to u~*(h) descends to define a symplectic form. We
call this space the reduction of M at h.

As a corollary of Theorems 2.2, 2.12 and 2.9 we have:

Theorem 2.13. Let n,d be co prime integers, n > 2 and 0 < d < n —1. Let
= e~ 2% be an n-th root of unity and B8 = (1 in the centre of SU(n). The moduli
space mg of rank n stable holomorphic vector bundles with fized determinant (and
degree d) over a Riemann surface X of genus g is isomorphic to the reduction of the

q-Hamiltonian space SU(n)Z‘q at 5. It is a compact smooth symplectic manifold.

2.3. Characteristic classes of principal bundles

Following Biswas and Raghavendra [4], we define in this section some characteristic
classes of a projective bundle. We will see that when the projective bundle comes
from a vector bundle of degree 0, these characteristic classes are the same as the
Chern classes of the vector bundle.

Let Q[X1,...,X,] be a polynomial ring in n variables. The cohomology of
BU(n) is isomorphic to the subalgebra of invariant polynomials in the algebra
Q[X1, ..., X,], under the action of the symetric group S,, on the variables. For
k an integer in [1, n], the Chern class ¢; in H*(BU(n)) corresponds to the Schur

polynomial
DD, N,

1<iy) < <ip<n

The projection from U(n) to PU(n) defines a fibration BU(n) — BPU(n) with
fiber BU(1). This fibration is cohomologically trivial and H*(BPU(n)) injects
into H*(BU(n)). Let us define

1 n
Y, = X, — EZ}(,ﬁ.
k=1

The image of H*(BPU(n)) in H*(BU(n)) is the ideal generated by the polyno-
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mials
o= >, Y.V, fo2<k<n
1<iy <<, <

The k-th characteristic class of a projective bundle over a manifold M is the pull-
back of p; under the classifying map M — BPU(n).

For a vector bundle F' of degree 0, that is when the first Chern class vanishes,
we have pi(F) = ¢i(F) for k in [2,n]. It will be the case in particular if the
structure group of the vector bundle is SU(n). This corresponds to the fact that
the projection BSU(n) — BPU(n) defines an isomorphism in cohomology.

3. Construction of a universal bundle

In this section, we fix d, n, ( and 3 as in Theorem 2.13. We use the notations
of that theorem and of Theorem 2.2 with G = SU(n). We construct a universal
bundle on mg, that is a vector bundle U over mg x X, holomorphic in the X
direction, such that for any class [E] in mg, the restriction of U to {[E]} x X is in
the class [E]. We then use this bundle to define natural multiplicative generators
of the cohomology of mg.

Recall that we defined page 399 an open covering of X by subsets {U;},.
Define a complex vector bundle T over S x X (where we have identified S to
p~(CT)) as being trivial over the S x U; and with transition functions:

(SxU)n(SxU;) — U(n)
plvg) zeUnUy, i,j#0
(p: ) "\ foul@)p(r0s) T € Uo N Ui, i £ 0

According to Proposition 2.2:

Proposition 3.1. The bundle T satisfies: for all p in S
Tlgpyxx = pi(Ep).

Define an action of SU(n) on 1" by defining it on each T'|sxu, by
SU(n) x (SxU; xC") — SxU; xC"
(97 (p7x7u)) — (gp7$7g(u))
This action is well defined because if z € U;NU; and t = (p, z,u) is in S x U; x C”,
then in the trivialisation S x U; x C", t is written ¢t = (p, z, v(x)p(v; ;)(v)) where
v(z) is a scalar and
g (p,z,v(@)p(vi5)(w) = (g p, 2, g(v(@)p(7i,5) ()
= (g poa,0(@)gp(71,1)9 " 9(w)).
This last term is (g - p,z, g(u)) written in S x U; x C™. This action is a lift for
the action of SU(n) on S x X. Unfortunately it does not come from an action of
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PSU(n) and the bundle T" does not descend to a bundle on m x X. Indeed the
centre Z/nZ of SU(n) acts trivially on S but the generator (I of Z/nZ acts by
multiplication by ¢ in the fibres. To overcome this problem, we can construct a
line bundle L on S with an action of SU(n) lifting the action on S and such that
(T also acts by multiplication by ¢ in the fibres. We will also denote L the induced
bundle on S x X. The bundle T"® L* has the property of Proposition 3.1 but the
action of SU(n) reduces to an action of PSU(n). By taking the quotient we get

Proposition 3.2. Let M be the line bundle of Remark 2.7. The bundle
U=Me(TeL")/PSU(n) —mx X

is a universal bundle for mg. That is, if [E] € mg is the class of a bundle E — X
then Ul gjxx is isomorphic to E.

We still have to prove the existence of the bundle L.

Lemma 3.3. There ezists a line bundle L over S with an action of SU(n) lifting
the one of SU(n) on S. This action satisfies: (1 acts by multiplication by ¢ in the
fibres.

Proof. The proof is inspired from [16].

The bundle M ® T is a family (parameterised by S) of rank n, degree d stable
holomorphic vector bundles. Let F be in this family and let & be an integer. By
Serre duality,

HY(E® (Qx)") = H(BY ® (Qx)'*)"
and this is the null vector space. Otherwise there would exist a non zero homo-
morphism (Q%)¥~! — EY and thus a subbundle of EV of degree bigger than or
equal to 2(g — 1)(k — 1) > 0. This is impossible because E is stable.

The H(E ® (Q%)F) form a holomorphic bundle (see [13]) Ay over S of rank
uy the dimension of H(FE ® (2%)*). By Riemann-Roch, we have

up = d(E® (Qx)*) +n(l —g)
= d(E) + 2nk(g — 1) + n(1 — g)
=d+n(g—1)(2k—-1)
=2hk+d—h (where h = n(g —1)).

We have
(ug,u1) =1 (d+3h,d+ h)=1< (2h,d+ h) =1
< d+ his odd and (d,h) = 1.

As d and n are co prime, d and h are co prime if and only if d and g — 1 are co
prime. If in addition we assume g —1 is odd then d+n(g—1) is odd (d and n have
different parities). In this case, there exist integers a and b such that au; +bug = 1
and we can take

L= (A"A)"® (A" Ay)P.
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Otherwise, there exists g’ > g such that ¢’ — 1 is odd and (d,g’ —1) = 1. The
injection
SU(n)%¥ — SU(n)>
(A17B17...7A97Bg) — (A17B17...7A9,B 1,1 7171)

gr -1

restricts to an equivariant injection
S -5

where S’ is the set of 2¢’-tuple of matrices

g/
S'={(A1, By, ..., Ay, By), [ [ 14w, Bi] = CT}.
k=1

We have seen we can construct on S’ a line bundle with the required properties.
We take L to be the restriction of this bundle to S. O

Let us use the universal bundle to define classes in H*(mg).

FIGURE 1. Bouquet of 2g circles (with g = 4)

Let B be a bouquet of 2¢ circles (Figure 1) embedded in X’ in such a way that
X' retracts on B. Each of the 2g circles defines a class in H1(X). Let ay, ..., a4
be their Poincaré duals. They form a basis of H'(X). Let x be the class of the
volume form on X of volume 1. Let us decompose the characteristic classes of the
projective bundle P(U). For k in [2,n]:

2g
Pe(PU)) =ar @1+ > b ®a;+dp @ k.
=1

Then, according to Biswas and Raghavendra [4], we have
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Theorem 3.4. The family
{a’k7 bk,jy dky 2 S k S n, 1 SJ S 29}

is a multiplicative system of generators of H*(mp) o~ HgU(n)(ufl(ﬁ)).

4. A bundle over (SU(n)2g)SU<n) x X" and its Chern classes

Let B be a bouquet of 2g circles (Figure 1) embedded in X’ in such a way that X’
retracts on B. The theory of vector bundles with their Chern classes is the same on
B and X’. We want to construct a complex vector bundle on (SU(n)Qg)SU(n) x B.

Denote B’ the star with 2g branches (see Figure 2), that is B = (U?il[m 11;)/ ~,

FIGURE 2. A star with 2¢ branches (with again g = 4)

where ~ is the equivalence relation that identifies all the 0 to a point. There is a

natural map
n:B — B.

It is defined by means of the exponential exp : [0,1] — S'. Denote
Dy, = (SU(n)* x EU(n) x B' x C")/ ~
where ~ is the relation:
((p1,- -1 p2g),€,0,v) ~ ((Adapy, . .., Adapay), A€, 15, Ao pi(v)),
Vi e [1,2g], VA € SU(n).

The projection )
D, — (SU(n))su(n) x B

makes D,, into a rank n complex vector bundle over (SU(n)% Jsum) X B. We
wish to compute the characteristic classes of the projectivised bundle P(D,,) of
D,,. Notice that as the structure group of D, reduces to SU(n), the classes
pi(P(D)) are equal to the Chern classes ¢ (D).
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Let us describe the cohomology of (SU(n)Qg)SU(n) x B. By the Kiinneth for-
mula, we have

H*((SU(n)*)su(m) x B) = Hiy () (SUM)*) ® H*(B).

Proposition 4.1. Let G be a compact Lie group. Let k be an integer bigger than
0. Let G act on G* diagonally by conjugation. The equivariant cohomology of G*
is isomorphic, as a graded algebra, to H*(G*) @ H*(BG).

Proof. The fibration (G¥)g — BG is cohomologically trivial (see [3]) so that
we have an isomorphism of graded vector spaces between H}(G*) and H*(G*) ®
H*(BG). The proposition then follows from the fact that for any compact Lie
group, its cohomology is an exterior algebra on a finite number of elements and
from the

Lemma 4.2. Let q: N — M be a cohomologically trivial fibration with fiber F.
Assume that the cohomology of F' is an exterior algebra on a family {&1,...,&}.

Thenthe cohomology of N is isomorphic, as a graded algebra, to the tensor product
of H*(F) and H*(M).

Proof. Let J be the set of strictly increasing sequences of integers I = (i1,...,14p)
such that iy > 1 and 4, <r. For I € J with I = (i1,...,14;), let

=8, N N&,.

The family {{r}re5 forms a basis of H*(F).

To say that the fibration N — M is cohomologically trivial is equivalent (by
the Leray-Hirsch Theorem) to saying that the inclusion of a fiber F into N induces
a surjection H*(N) — H*(F'). For i € [1,7], let (;, in H*(N), be a pre-image of
&. For I € Jwith I = (41,...,14p), let

Cr==Giu N NGy,
The map

H*(F) — H*(N)
2ol = XA

is a morphism of algebra and the map

H*(F) ® H*(M) — H*(N)
QoA ex — QA& ®q (x)

is an isomorphism of graded algebra. O
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According to the previous proposition, we have isomorphisms
* 2 * 2 *
HSU(n)(SU(n) 9 ~ HZ(SU(n) Y ® H*(BSU(n))
4 ®j11H*(SU(n)) ® H*(BSU(n)). (3.1)

For all k& > 2, the fibration SU(k) — S?*~! with fiber SU(k — 1) is cohomo-
logically trivial (see Hatcher [7]). Let ~y; be the volume form of volume 1 on
S?k=1 The cohomology of SU(n) is the exterior algebra freely generated by the
family {oy, 2 < k < n}, where o} is a class of degree 2k — 1 which pulls-back
under the restriction SU(k) — SU(n) to the image of v; by H2F—1(S%k—1)
H?*~1(SU(k)). Denote oy, ; the image of oy, € H**1(SU(n)) by the homomor-
phism H*(SU(n)) — H*(SU(n)*) induced by the projection on the j-th factor
SU(n)* — SU(n). We have

Lemma 4.3. The algebra H*(SU(n)Zg) 18 the exterior algebra freely generated by
the family {0} 5, 2 <k <n, 1 <j <2g, degoy,; =2k —1}.

In addition, we know that H*(BSU(n)) = QJca, ..., cy]. From the preceding
lemma and Proposition 4.1, we deduce

Theorem 4.4. Let A be the exterior algebra freely generated by the family {oy, ;,
2<k<n,1<j<2g, degoyp,; =2k —1}. The SU(n)-equivariant cohomology
of SU(n)Zg is isomorphic, as a graded algebra, to A ® Qea, ..., cp).

When there is no risk of confusion, we will write c; and o ; instead of respec-
tively 1 ® ¢; and o ; ® 1.

Remark 4.5. The injection ¢ of SU(n) into SU(n + 1) and the map BSU(n) —
BSU(n + 1) induce isomorphisms

H¥(SU(n+1)) = H¥(SU(n)) for k < 2n and k = 2n + 2 (4.1)

and

HF(BSU(n + 1)) = H*(BSU(n)) for k < 2n. (4.2)
With the notations of Theorem 4.4, we have

Proposition 4.6. The Chern classes of D,, are:

Co(Dn) = 1,
Cl(Dn) - 07
cr(Dn) = (1®cr)® 1+ 37 (ok; ®1) @y for k > 2.

Proof. The classes co(D),) and ¢1(D,,) are trivially 1 and 0 (the structure group is
SU(n)). Assume from now on that & > 2. Let us write the Chern classes of D,,
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in H*((SU(n)*)su(n) X B) as
cr(Dy) = 4™ ®1+Zﬁ,§”j®aj

We will prove the proposition by induction on n. For n =1, SU(1) is just a point,
the bundle D1 is trivial and we are already done. Suppose the proposition to be
true for a given n, n > 1 and let us prove it for n 4+ 1. We need to prove that
'y,gnﬂ) =1® ¢y and ﬁ(nﬂ) =o0p; ®1.
Let
m : (SU(n)*)su(m) — (SUM+ 1) )suimr),
the map induced by the inclusion SU(n) — SU(n + 1) and
¢=mxidp : (SUn)*)sum) x B — (SU(n + 1)*)gy(nr1y X B.

The bundle ¢* D,, ;1 is isomorphic to D,,&C. Hence, for all k, we have ¢;(¢*D,, 1) =
ci(Dy,). Thus

(m* ) ®1+Z m* By ) @y = ®1+ZBM ® .
g=

From this we deduce

gD = ™ and w0 = 0.

Because of the isomorphisms (4.1), (4.2) and the induction hypothesis, we have:

,E"H) = 1®c¢ for k < n,
,F:jl) =og;®1 for k <n.
There only remains to compute yfl Qi ) and the B(T;lj The class 'yr(:fll) belongs

to

HZS2. ,(SUm+ 1D*) = D HY(SU(n +1)*) © HY(BSU(n 1 1)).
ptg=2n+2

Let us decompose it

,(:fll) Z 5("“) ® cg

where E(kn+1) is in H2+2-28(SU(n + 1)*) and where we have put ¢o = 1 in

HY(BSU(n)), ¢; = 0. The classes ,6’( J:EJ) are in

HZYL ,(SUm D) = @ HY(SU(n +1)*) ® HY(BSU(n 1 1)).
p+q=2n+1
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We decompose them in

n+1 n+1
Bty =2 0y e
k=0
where 6,27?1) belongs to H2"1-26(SU(n + 1)*?). The bundle ¢*D, 1 = D, ® C
has a nowhere vanishing section, hence its Euler class ¢*¢,,1(D,+1) vanishes.
Because of the isomorphisms (4.1) and (4.2), we deduce that the {Eénﬂ), 1<
k < n} and the {(5,&?’1) 1 <k <mn, 1< j<2g} vanish. Remark that the
{(552&1;7 1 < j < 2g} are linear combinations of the 9,415, 1 < j < 2g. Let us
define a section

?

s: BSU(n +1) — (SU(n+ 1)*)su(ms1) X B
€] — ([(I,...,I),¢e],1)

where, for e in EU(n + 1), we denote by [e] its class in BSU(n + 1). The Euler

class of the bundle s* D, 1 is e X,, 1. Since s* Dy, 1 isequal to EU(n + 1) X su(nt1)
C" 1 we have ¢ = 1. As a conclusion we have

1
'y,(ﬁ:; | ® Xpt1.

Let
h:SU(n+ 1)29 — (SU(n+ 1)29)SU(n+1)

be the inclusion of a fiber (we will always write h this application, omitting the
subscript n). The bundle

P

20 = (h x idp)* Dusa

is isomorphic to

F%

29,2 (SU(n+1)* x B' x C*1)/ ~

where ~ is the relation:
((Ph w2z 7929)7 1j7v) ~ ((pl, B )p29)707p;1(’l))), for all ] in [17 29]
The Euler class of 9 is

(n+1
Cn+1 n+1 Z n+1,j

Let f; : S — B (resp. g; : SU(n+1) — SU(n + 1) g) be the inclusion of the j-th
circle (resp. SU(n+ 1)) in B (resp. SU(n +1)*9). The ﬁ,(ﬁjllj) are characterised
by:
. * n+1 n+1
ent1(sugnpe x ) F ) = 6105 @ ey,

or

. ” n 1 n 1 de
ens1((idsugn e X £3) iy ™) = B @ o (4.3)
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Let us define a vector bundle E over SU(n + 1) x S* by
E=(SU(n+1)x[0,1] x C)/ ~,

where ~ is the relation
(p,1,0) ~ (p,0,p" " (v)).

The bundle (idggy(,,1)2a X fj)*FQ(;H) is isomorphic to (g; xidg1)*E. Hence there
exists a real A such that
de

Cng1(E) = Aoapi1 ® o

If (p,t,v) belongs to SU(n+ 1) x [0,1] x C**1 let us write [p,t,v] for its class
in E. Let (e,...,en11) be the canonical basis, over the field C, of C*t!. The
family (e1,%€1,...,€n11,i€ns1) is then a basis of C"T1 over R. A section of E is
given by:
s:8U(n+1)x 8 — E
(A,e?9)  +—— [A,0,(0A + (1 — B)id)ey].

Let us determine its zeros. The vector (§A + (1 — 0)id)e; vanishes if # = % and

A= {_1 Q} L Ae U(n), detA = —1. Fix ¢ an n-th root of —1. The zero set Z

0 A
({3 &2 e}

Lemma 4.7. The section s intersects the zero section sq transversally.

of s is

Proof. We want to prove that for all z of Z
TyoyIms + TyoyImsg = T o) .
We have
Tiz0)E =~ To(SU(n+1) x SH) & C"™ ~su(n+ 1) @ R C™ 1!

and
TymyImsg = su(n+1) R {0},

TywyIms = Tus(T,(SU(n + 1) x S1)).
Let z be the point (A = {_1 O~} 1)
0 CA|?2
Ll os(A L +e)=[AL+e (G +e)A+ (3 —e)id)e]
= [A, I+, —2ee]

= (O7 17 —261).
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Let J be in su(n + 1),
dilE|E:03(exp(£J)A7 %) = %|E:o[exp(£J)A, %7 %(exp(sJ)A +id)eq]
A,

= le—olexp(e )4, 3, 5(exp(ed)(—e1) + e1)]

= (J ¥ A7O, %(—J@l + 61)).

We conclude the proof of Lemma 4.7 by noticing that, for any k, it is possible to
find J in su(n + 1) such that Jey is equal to e or ieg. O

Lemma 4.8. The Fuler class of the bundle F is
de
Cn+1(E) =041 ® 2_
T
Proof. According to the preceding lemma, the Euler class of E is Poincaré dual of
7, that is it is characterised by

Vv e HV "H(SU(n+1) xSl)7/ 1/:/ vAcpi1(E)
z SU(n+1)x S
where n? — 1 = dim(SU(n + 1) x S') —2(n + 1). This Euler class is of the type
dé
cnt1(E) Oopt1 @ or

where X is a real we are going to compute. The injection
SU(n) — SU(n+1)

-1 0

0 ¢A
identifies SU(n) to the fibre above (—1,0,...,0) of the projection SU(n+1) —
S?7+1 that is Z. Let v be the cohomology class of a volume form of volume 1 over
SU(n). The decomposition H*(SU(n + 1)) = H*(SU(n)) ® H*(S?" 1) defines a
class

A —

v=y®1.

As the integral of v on Z is 1, we have

/ vAcp1(E)=1,
SU(n+1)x S

de
A/ (’Y®1)A(02n+1®2—):1.
SU(n+1)x St T

that is

The conclusion follows since the integral in the left-hand side of the equality is
equal to 1. ([l

Proposition 4.6 follows from this lemma. (Il



Vol. 78 (2003) Restriction map in a regular reduction of SU(n)% 413
5. Description of the restriction map
Using results of the previous sections, we wish to prove:

Theorem 5.1. The restriction map r is described by

rley) = ap fork=2,...,n

r(ong) =bpy fork=2,...,n,j=1,...,2g.
In particular, Im(r) 4s multiplicatively generated by

Im(r) = {ap, b, 6 =2,...,n,5=1,...,2g).

Notice that for n equals 2, we get that r is surjective modulo the symplectic
form on mg (this result has been in [18]).

It is also very interesting to compare this theorem with [11, Theo. 7.1] where a
group cohomological construction of multiplicative generators of H*(mg) is given.

Proof. The key point of the proof is to compare the bundles U of Section 3 and
D,, of Section 4.

From now on, if g € SU(n), we denote g its class in PSU(n). Over each Sx U,
1=20,...,m, the bundle M ® T'® L* is trivial. In each of these sets, the action of
PSU(n)on M @ T ® L* is

PSUn)x M (SxU;xC") o L* — Me(SxU xC") o L*
m® (g, (p,z,u) 1) — m& (g pz,9(u) ®(g-1).

Lemma 5.2. We have
PU)=P(M e (T'® L*)/PSU(n)) = P(T)/PSU(n).

Proof. This time, PSU(n) acts on P(T") by
PSU(n) x (S x U; x CP™) — (S x U; x CP")

(9, (p, =) — (g9 p,z,9(u))
and the announced isomorphism is
P(U) = P(T)/PSU(n)

class of m ® (p,z, u) @ I — class of (p,z,u).
(|

Lemma 5.3. There exists an action of m# x PSU(n) on S x Y’ x CP" ! such that
the quotient
(8 xY'x CP" 1 /(x x PSU(n))

is isomorphic to
PU) g
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Proof. The bundle T restricted to S x X’ is trivial on each S x U;, i # 0 and
transition functions are given by
(SxU;)Nn(SxU;) — SU(n)
(p, ) — (Vi)
The group 7 acts freely on Y’ and T|gxx is (S x Y’ x C™)/x, where the action

of 7 is
x(SxY' xC") — SxY'xCn

(s (g w)) = (o7 - s p(V)u).
Let us consider the projective bundle P(T")|sxx/. It is isomorphic to (S x Y’ x
CP" 1) /x. The subspace P(T)|sxx~ is stable by PSU(n) and the action comes
from an action of PSU(n) on S x ¥’ x CP" !, That is
PSU(n) x (Sx Y’ x CP" 1) — §xY’'x CP"!
(3, (p,y, 7)) — (g9 p,y,9(u)).
This action commutes indeed with the one of «, the result follows. O

The pull-back of the bundle U — (S/PSU(n)) x X’ to (S)sum) x X’ by the
natural map
1 (8)sum) x X' — (8/PSU(n)) x X'
is a vector bundle, we will denote it F'. Its projectivised bundle is
P(F) = (P(T))sum) — (S)sum) x X'

We will now state a proposition which will be our main tool in the study of the
map 7

Proposition 5.4. There is a projective bundle P(D) over (SU(n)QQ)SU(n) x X’
whose restriction to (S)su(m) x X' is isomorphic to P(F).

First proof. The projection p : Y/ — X' is a covering. Its - group is w. Let
q:Y' — Y’ be the universal covering of Y. The composed map = pogq : Y’ — X'
is the universal covering of X’. Its group is

7 (X)) = {ay, by, .. g, bg)

and we have a projection m{(X") 2, 7 whose kernel is the group of the covering
Y =Y.

The open covering of X’ by the {U;}7*, is such that any intersection of open
sets of the type U, is contractible. In particular, for all 7, there exists a disc D in
Y’ such that p P D; — U is a diffeomorphism. Choose, for all 4, j, k, a connected
component W; ofp YunU; N D LU NU; (Z) let 3; ; be the element of
71(X’) such that 7; ij = Wﬂ i- In Proposition 2.2, we can take the W;; ; and
i, such that

Wijk = D(Wiji)svig = 0(Fiz).
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Let us identify the set of representations p : 71(X’) — SU(n) to SU(n)* by

P (p(al)vp(bl), o >p(a9)7 p(bg)).
Let
T — SUn)* x X'

be the rank n complex vector bundle defined by the following properties:
(1) T'|sun)2axu; 1s trivial,
(2) the transition functions are

91,5 = p(Fig) on SUM)™ x (U; N Uy).

The restriction of this bundle to S x X” is T'|sx x-. The action of SU(n) on T'|sxx-
is then the restriction of the SU(n) action on 1" defined on each T"|gys(,,y20 7, by
SU(n) x (SU(R)¥ x U; x C") — SU(n)* x U; x C"

(97(/)73:7“)) == (9%773979(“))

Notice that this action is a lift of the action of SU(n) on SU(n)Qg x X'. Thus the
bundle

P(F) = (P(T))sum) — (S)sum) x X’
is the restriction of the bundle

(P(T"))sum) = (SUM)*)su@my x X'

Second proof. We have seen that
P(U)|mexxr 22 (S x Y x CP* 1) /(7 x PSU(n)),
hence

P(F) = (S x EU(n) x Y’ x CP" 1) /(r x SU(n)).

Let us define, in a similar way as before, an action of 71(X’) on SU(n)* x EU(n) x
Y’ x C™ and denote D the bundle we obtain when quotienting by 7 (X’) x SU(n).
The projection S x EU(n) x Y/ x C" — 8§ x EU(n) x Y’ x C" is equivariant for
the respective actions of m1(X’) and 7. It induces an action on the quotient and
defines an isomorphism between

(S x EU(n) x Y’ x C™)/(m(X') x SU(n))

and
(S x EU(n) x Y' x C") /(7 x SU(n)).

We deduce that P(F') is isomorphic to P(D)[(s)g ., xX7- O

Remark 5.5. The bundle D — (SU(n)Qg)SU(m x X' is isomorphic to (17 x
EU(n))/SU(n).
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When restricted to (SU(n)ZQ)SU(n) x B, the bundle D is isomorphic to D,
(restricted to (u'(¢I))su@) x B). Denote w the injection of (S)su@y x X’ in

(SU(n)Zg)SU(n) x X'. The induced map w* in cohomology is r x idg+(xy. The
restriction w* D,, of D, to (8)gu(n) x X’ has the same projectivisation as F'. Thus,
because of Proposition 4.6, we have for every k

29
pe(P(F)) = ar @1+ Y bl ® oy (5.1)
j=1
= pe(P(w*Dy))
= w'pr(P(Dy))
29
= r(l@p) @1+ Y r(or; ®1)® a5 (5.2)
j=1
Theorem 5.1 follows from the comparison of Line (5.1) and Line (5.2). O
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