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Cycles algébriques et topologie des surfaces bielliptiques
réelles

Frédéric Mangolte

Résumé. On donne une caracterisation topologique des surfaces réelles totalement algébriques
parmi les surfaces bielliptiques. Ceci achevé la determination des surfaces réelles totalement
algébriques parmi les surfaces de dimension de Kodaira nulle. On décrit de plus un exemple de
surface algébrique complexe qui n'est déformation équivalente à aucune surface possédant une
structure réelle totalement algébrique non vide.

Abstract. Using topological data, we give a classification of totally algebraic real surfaces among
all the bi-elliptic surfaces. Thus this work comletes the determination of totally algebraic real
surfaces among all zero-Kodaira dimensional surfaces. Furthermore we give an example of a

complex algebraic surface which is not deformation equivalent to any surface with nonempty
totally algebraic structure.

Mathematics Subject Classification (2000). 14C25 14P25 14J27.

Mots clés. Algebraic cycles, real algebraic surfaces, hyperelliptic surfaces.

Introduction

Les surfaces bielliptiques1 constituent une classe particulière dans la classification

des surfaces algébriques. Sur C, une surface bielliptique peut être définie
comme le quotient d'un produit E x F de courbes elliptiques par l'action produit
d'un groupe fini G de translations de F dont l'action sur E admet P1 pour
quotient. Une surface bielliptique réelle est une surface bielliptique complexe munie
d'une involution anti-holomorphe (la structure réelle).

Pour une surface bielliptique X, la fibration d'Albanese

a : X (E x F)/G -+ Alb(X) F/G

est une fibration elliptique localement triviale non triviale. Les fibres de a sont
toutes isomorphes à E sur C. Lorsque X est réelle, F/G et E sont des courbes
elliptiques réelles. La partie réelle d'une courbe elliptique réelle lisse non vide est formée

1 Les surfaces bielliptiques sont classiquement appelées surfaces hyperelhptiques, je renvoie a
[Be] pour une justification de la terminologie utilisée ici.
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d'un ou deux ovales. Il est immédiat que le nombre de composantes connexes de

la partie réelle de X (c'est-à-dire l'ensemble des points fixes de l'involution) vérifie
0 ^ #X(R) ^ 4 et que chaque composante connexe est homéomorphe à un tore
T ou à une bouteille de Klein K. On arrive ainsi à quinze types topologiques
possibles a priori pour X(R). Récemment, F. Catanese et P. Frediani [CF] ont donné
les onze types topologiques effectivement réalisables. Si a. admet une section réelle,
on montre que seuls sept types topologiques sont réalisables, cf. Théorème 2.3.

Dans cet article, on s'intéresse à un invariant fin de la structure réelle : le groupe
i^lg(X(R),Z/2) C H1(X(M),Z/2) des cycles algébriques réels. Ce groupe est
engendré par les classes fondamentales des courbes algébriques réelles, cf. e.g. [BH].
La détermination de ce groupe pour une surface donnée est délicate. Lorsque
i^lg(X(R),Z/2) H1(X(M),Z/2), on dit que la structure réelle de X est
totalement algébrique. Avec le résultat suivant, on achève de déterminer les surfaces
réelles totalement algébriques parmi les surfaces de dimension de Kodaira nulle :

abéliennes, K3, d'Enriques, bielliptiques.

Théorème 0.1. Soit X une surface bielliptique réelle. Son diviseur canonique Kx
est de torsion, on note dx la torsion de K-x-

(1) SiX(R) ^0 eii7a1lg(X(R),Z/2) i^p^R), Z/2), alors X(R) est homéo¬

morphe à un tore. Si de plus dx est pair, a. admet une section réelle.

(2) Supposons que X(R) soit homéomorphe à un tore. Si dx est impair ou si
a admet une section réelle, alors H^g(X(R),Z/2) H1(X(M),Z/2).

Ce résultat s'inscrit dans l'étude des groupes de cycles algébriques réels des

surfaces de type spécial. C'est-à-dire, outre les surfaces de dimension de Kodaira
nulle, les surfaces rationnelles, réglées, elliptiques propres.

Pour une surface rationnelle X, on a toujours

[Si, 1989]. Lorsque X est une surface abélienne, l'égalité i7alg H1 implique que
X(R) est connexe [Hu, 1994] ou [Mal, 1994]. Si X est une surface K3, le groupe
Fa1lg(X(R),Z/2) est détaillé dans [Ma2, 1997]. Une surface d'Enriques réelle est
totalement algébrique si et seulement si elle est orientable [MvH, 1998]. Les surfaces

birationnellement réglées ont été traitées dans [Ku2, 2000] et dans [Ab, 2000]. Pour
les surfaces elliptiques propres régulières, voir [Ma3, 2000]. L'article [BK] est un
bon survey sur les cycles algébriques réels.

Si X est une surface algébrique appartenant à l'une des classes ci-dessus,

on peut toujours trouver une surface algébrique Y déformation équivalente à X
sur C et une structure réelle sur Y telle que Y (M) ^ 0 et i7a1lg(y(R),Z/2)
H1(Y(R),Z/2).

Théorème 0.2. Il existe une surface bielliptique X telle que pour toute surface
algébrique Y déformation équivalente à X sur C et pour toute structure réelle sur
Y ayant des points réels, on ait H\(Y(R),Z/2) ^ H1(Y(R),Z/2).
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On utilise le fait que la fibration d'Albanese ne possède de section ni pour X
ni pour Y. Voir aussi à ce sujet le Corollaire 2.4

Je remercie F. Catanese et P. Frediam qui m'ont communiqué une version
•préliminaire de leur preprint.

1. Cycles algébriques et orientabilité

Une surface algébrique réelle est un couple (X, a) où X est une surface
algébrique complexe et a une involution anti-holomorphe sur X. La partie réelle X(R)
est l'ensemble des points fixes de a, X(R) Xa. Sur une surface algébrique réelle

(X,a) de partie réelle non vide il existe un morphisme surjectif

défini essentiellement en associant à une courbe réelle la classe fondamentale de sa

partie réelle, cf. eg. [Si]. La décomposition

H1(X(R),Z/2) 0 H\V,Z/2)
VcX{WL)

où V décrit l'ensemble des composantes connexes de X(R) est orthogonale pour
le degré du cup-produit. Pour un diviseur réel D, on considérera la restriction
ip{D)\v à une composante connexe V de X(R) comme un élément de H1(V,Z/2)
ou de H1(X(M),Z/2) selon les cas.

On note wi(S) la première classe de Stiefel-Whitney du fibre tangent d'une
surface lisse S. Soit K-x un diviseur canonique de X. Nous utiliserons les propriétés
suivantes de y :

\/D e Biv(X)17, \/D' e Biv(X)17, <f(D).p(D') D.D' mod 2 ; (1.1a)

(1.1b)

Dans (1.1a), on considère à gauche le degré du cup-produit sur i71(X(R),Z/2)
et à droite l'intersection des diviseurs.

Rappelons qu'une surface lisse S est non orientable si et seulement si l'une des

deux conditions équivalentes suivantes est réalisée :

Wl(S)^0; (1.2a)

il existe une classe u G H1^, Z/2) qui vérifie u2 1 (1.2b)

Rappelons aussi que si S est difféomorphe à une bouteille de Klein, on a wi(S)2 =0.

L'argument suivant à été utilisé dans [MvH] pour les surfaces d'Enriques.

Théorème 1.3. Soit X une surface algébrique réelle dont le diviseur canonique
K,x est de d-torsion, d > 2 entier. Si #ilg(X(R),Z/2) H1(X(R),Z/2), alors
X(R) est vide ou orientable.
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Preuve. Soit X une surface algébrique réelle telle que

1/2) H\X(R),Z/2).
Soit D un diviseur dont la classe dans le groupe de Néron-Severi NS(X) possède

un multiple trivial, alors D.D' 0 pour tout diviseur D'. Lorsque D est réel,

on a <p(D) 0 dans H1(X(M.), Z/2). En effet, par hypothèse, toute classe de

cohomologie u G iï1(X(R), Z/2) est l'image par y d'un diviseur réel D' donc

(fi(D).u 0. Comme le degré du cup-produit est une forme non dégénérée sur
H1(X(M),Z/2), on a cp(D) 0. Maintenant, si X(R) ^ 0, on peut supposer Kx
réel, cf. [Si, 1.4.5]. Comme Kx est de torsion dans NS(X) on a <p(Kx) 0 d'où
wi(X(R)) 0 et X(R) est orientable. D

2. Surfaces bielliptiques réelles

Soit X une surface bielliptique, notons A Alb(X) la variété d'Albanese de

X et a: X —> A la fibration d'Albanese. Par définition, une surface bielliptique
admet une deuxième fibration elliptique

¦k: X -+ E/G^V1
dont les seules fibres singulières sont des fibres multiples mtLt où Lt est une courbe
elliptique lisse. Les fibres lisses de -k sont isomorphes à F sur C.

Lorsque X est munie d'une structure réelle a, la fibration -k : X —> P1 n'est pas
réelle en général. Par contre, par construction, la fibration a: X —> A est réelle.

Relativement à la fibration tt, un diviseur canonique de X est donné par

-2F0 (2.1)

ter
où Fo est une fibre lisse de tt. Le diviseur Kx est de dy-torsion. Les valeurs
possibles de dx sont données ci-dessous.

Toute surface bielliptique est de la forme (E x F)/G où G est l'un des groupes
suivants.

Surfaces bielliptiques sur C
G

Z/2
Z/2 0 Z/2
Z/3
Z/3 0 Z/3
Z/4
Z/4 0 Z/2
Z/6

#T
4

4

3

3

CO

CO

3

(mi,...,m#T)
(2,2,2,2)
(2,2,2,2)
(3,3,3)
(3,3,3)
(2,4,4)
(2,4,4)
(2,3,6)

dx
2

2

3

3

4

4

6

Table 1
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On renvoie à [CF] pour une présentation agréable de ce résultat classique dû à

Bagnera et De Franchis [BdF] et [BdF2].

Soit V C X(R) une composante connexe, soit Xx une fibre réelle de a
rencontrant V. Comme Xx est une fibre de a, on a X2 0 et comme a est lisse, la
restriction y{Xx)\v dans H1(V,Z/2) C H1(X(R),Z/2) vérifie {ip{Xx)\v)2 0.

De plus,

Y\v (2-2)

où la somme est restreinte aux courbes Lt réelles et de multiplicité mt paire.
On considère le cas où la fibration d'Albanese admet une section réelle.

Théorème 2.3. Soit X une surface bielhphque réelle dont la fibration d'Albanese

a admet une section réelle. Alors toutes les composantes connexes de X(R) sont
homéomorphes et si X(R) est non orientable, X(R) et A(H) sont non connexes.

Une composante connexe de X(R) est homéomorphe à un tore ou à une
bouteille de Klein et X(R) possède au plus quatre composantes. Comme a possède une
section réelle, X(R) ^ 0 et on obtient les sept types topologiques a,T (1 < a < 4)
et aK (2 < a < 4).

Preuve. On montre tout d'abord que deux composantes connexes V et V de X(R)
situées au dessus de la même composante connexe B de A(H) sont homéomorphes.
Soient x G B, la courbe elliptique E est un groupe abélien qui agit sur la fibre
réelle Xx de a. La partie réelle E(WL) est un sous-groupe qui agit sur XX(R). De

l'existence d'une section réelle, on déduit qu'une translation qui échange les deux

composantes connexes de XX(R) s'étend en un homéomorphisme de V sur V.
Supposons maintenant V non orientable. Soit Xx une fibre réelle de a rencontrant

V. De l'existence d'une section de a, on déduit que l'une au moins des fibres
multiples de tt, disons m\L\, est réelle et vérifie L\.XX 1 d'où

v>(L1)lv.<p(Xx)lv=<p(L1).<p(Xx) l.
D'après (1.2b), on a alors (cp(L1)\v)'2 1 dans i71(V,Z/2) Z/2 0 Z/2 car V

est non orientable.
Par ailleurs, on a ip(Li)2 0 car L\ 0 comme courbe réduite d'une fibre

de 7T. Il existe donc nécessairement une composante connexe V de X(R) telle que

f(Li) Lp(Li)\y + Lp(Li)\y> et (lp(Li)\v')2 1- La composante V est alors non
orientable. De plus, comme L\.Xy 1 pour toute fibre Xy de a, L\ réalise une
section de a. Les ensembles a(V) et a(V) sont donc disjoints dans A(R). D

Corollaire 2.4. Il existe des surfaces bielliptiques réelles dont la fibration d'Albanese

a admet une section complexe mais pas de section réelle.

Preuve. Il suffit de considérer le cas d'une surface bielliptique réelle de groupe
G TLjA: avec X(R) homéomorphe à une bouteille de Klein. Une telle surface

existe, cf. [CF, Sec. 8, Table 3]. La fibration d'Albanese d'une surface de type Z/4
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admet une section complexe. Mais d'après le Théorème 2.3, si X(R) est connexe
et non orientable, a ne peut admettre de section réelle. D

Le lemme suivant est un cas particulier de [Kul, Th. 2.1].

Lemme 2.5. Soit X une surface algébrique réelle telle que H^ (X(R), Z/2) soit

égal à H1(X(R),Z/2). Alors </£>(Pic°(X)<T) {0} dans iï"a1lg(X(R),Z/2).

Théorème 2.6. SoitX une surface bielliptique réelle dont la partie réelle satisfait
l'égalité H^lg(X(R), Z/2) ^(^(R), Z/2), alors X(R) est vide ou homéomorphe
à un tore.

Preuve. Soit X une surface bielliptique réelle. Dans ce cas le groupe de Néron-Severi

NS(X) est engendré par une fibre Xx de a. et par les courbes Lt réduites des fibres
multiples de -k. Soient mtLt et mt>Lt> deux fibres multiples réelles de tt, notons d le

pgcd de mt et mt'. Supposons que d ^ 2, le diviseur D (mt/d)Lt — (mt'/d)Lt' est
de d-torsion dans NS(X). D'après la preuve du Théorème 1.3, <p(D) 0. Quitte à

permuter t et t', on peut supposer que mt/d est impair. On a alors

(fi((mt/d)Lt) (fi(Lt)

On a donc une alternative : f(Lt) f(Lt') ou f(Lt) 0. À l'aide de la Table 1,

on déduit que l'image par y du sous-groupe de NS(X) engendré par les courbes Lt
réelles est de dimension < 1. Par ailleurs, d'après le Lemme 2.5, y est bien défini
sur NSpO«7.

L'application

est donc surjective et dimi7£[lg(X(R), Z/2) < 2. Par hypothèse, dimi71(X(R), Z/2)
vérifie la même inégalité et X(R) est connexe. Par ailleurs, le diviseur canonique
K-x d'une surface bielliptique est de dx-torsion avec dx € {2,3,4,6}. D'après le

Théorème 1.3, si la partie réelle X(R) est non vide, elle est orientable, et finalement,

homéomorphe à un tore. D

3. Sections de la fibration d'Albanese

Considérons une surface bielliptique réelle X. Le groupe de Néron-Severi NS(X)
est engendré par une fibre Xx de a et par les courbes Lt. La fibration a admet
donc une section réelle si et seulement si a admet une fibre réelle et si l'une des

courbes Lt est réelle et vérifie Lt.Xx 1. La première condition est équivalente à

Proposition 3.1. Soit X une surface bielliptique réelle dont la partie réelle X(R)
est homéomorphe à un tore. Si la torsion de Kx est impaire ou si la fibration
d'Albanese a admet une section réelle, on a iï"^lg(X(R), Z/2) H1(X(R),Z/2).
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Preuve. Soit Xx une fibre réelle de tt, s'il existe une courbe réelle L telle que
l'intersection L.XX soit impaire, on a <p(Xx).<p(L) 1. Ceci impose que les classes

<p{Xx) et y>(L) sont non nulles et engendrent F1(X(R),Z/2) Z/2 0 Z/2.
Si Kx est de torsion impaire, -k admet trois fibres triples. L'ensemble formé par

ces trois fibres est globalement fixé par la structure réelle, l'une d'entre elles est
donc réelle. En la notant 3L, on a L.XX 1.

Si a admet une section réelle, on note L l'image de cette section. La courbe L
est alors réelle et L.XX 1. D

Théorème 3.2. Soit X une surface hielliptique réelle telle que fCx soit de torsion
paire. Si X(R) ^ 0 et iï^lg(X(R),Z/2) F1(X(R),Z/2)7 alors a admet une
section réelle.

Preuve. D'après le Théorème 2.6, X(R) est homéomorphe à un tore. Le groupe
i71(X(R),Z/2) est engendré par <p(Xx) et <p(L) où Xx est une fibre réelle de a et
rah une fibre multiple réelle de -k. Comme X(R) est un tore, on a nécessairement
<p(Xx).<p(L) 1 i.e. XX.L 1 mod 2.

Considérons une fibre lisse Fç> de tt et notons k l'ordre du groupe G. On a

Fq.Xx k et Lt.Xx mt/k pour toute fibre multiple mtLt de tt. D'après la
Table 1, si G Z/2 0 Z/2 ou G Z/4 0 Z/2, Lt.Xx est pair pour toute courbe
Lt. Dans ce cas a n'admet même pas de section complexe et X ne peut vérifier
Fa1lg(X(R),Z/2) H1(X(W),Z/2).

Si G Z/2 ou G Z/4, a admet des sections complexes mais pas de section
réelle a priori (cf. Corollaire 2.4). Toujours d'après la Table 1, Lt.Xx vaut 1 ou 2,

donc L.XX 1 et L est une section réelle de a.
Si G Z/6, Lt.Xx 1, 2 ou 3 mais comme les multiplicités sont distinctes, les

trois fibres multiples sont nécessairement réelles et on peut supposer que mL est
la fibre de multiplicité 6 de -k. C'est donc l'image d'une section réelle de a. D

Corollaire 3.3. Soit G Z/2 0 Z/2 ou G Z/4 0 Z/2 et soit X une surface
hielliptique de groupe G. Toute structure réelle sur X ayant des points réels vérifie

Fa1lg(X(R),Z/2) + H\X(R),Z/2)
En effet, Kx est de torsion paire mais a. n'admet pas de section complexe.

4. Conclusion

Preuve du Théorème 0.1. Le théorème en question est le regroupement des résultats
2.6, 3.2 et 3.1. D

Preuve du Théorème 0.2. Si X est une surface bielliptique de groupe G et y une
surface algébrique déformation équivalente à X sur C, alors Y est une surface

bielliptique de groupe G. Réciproquement, deux surfaces bielliptiques de même
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groupe sont déformation équivalentes, cf. [FM]. D'après le corollaire précédent,
il existe donc exactement deux familles complètes de surfaces bielliptiques dont
chaque membre vérifie l'énoncé du Théorème 0.2 D

Au vu des résultats connus précédemment, [Hu], [Ma2] et [MvH], ce sont les

deux seules familles de surfaces de dimension de Kodaira nulle ayant cette
propriété.
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