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Cycles algébriques et topologie des surfaces bielliptiques
réelles

Frédéric Mangolte

Résumé. On donne une caractérisation topologique des surfaces réelles totalement algébriques
parmi les surfaces bielliptiques. Ceci achéve la détermination des surfaces réelles totalement
algébriques parmi les surfaces de dimension de Kodaira nulle. On décrit de plus un exemple de
surface algébrique complexe qui n’est déformation équivalente & aucune surface possédant une
structure réelle totalement algébrique non vide.

Abstract. Using topological data, we give a classification of totally algebraic real surfaces among
all the bi-elliptic surfaces. Thus this work comletes the determination of totally algebraic real
surfaces among all zero-Kodaira dimensional surfaces. Furthermore we give an example of a
complex algebraic surface which is not deformation equivalent to any surface with nonempty
totally algebraic structure.

Mathematics Subject Classification (2000). 14C25 14P25 14J27.

Mots clés. Algebraic cycles, real algebraic surfaces, hyperelliptic surfaces.

Introduction

Les surfaces bielliptiques!constituent une classe particuliere dans la classifi-
cation des surfaces algébriques. Sur C, une surface bielliptique peut étre définie
comme le quotient d'un produit F x F' de courbes elliptiques par ’action produit
d’un groupe fini G de translations de F' dont ’action sur E admet P! pour quo-
tient. Une surface bielliptique réelle est une surface bielliptique complexe munie
d’une involution anti-holomorphe (la structure réelle).

Pour une surface bielliptique X, la fibration d’Albanese

a: X=(EFxF)/G— Alb(X) =F/G
est une fibration elliptique localement triviale non triviale. Les fibres de « sont

toutes isomorphes & E sur C. Lorsque X est réelle, F//G et E sont des courbes ellip-
tiques réelles. La partie réelle d'une courbe elliptique réelle lisse non vide est formée

1 Les surfaces bielliptiques sont classiquement appelées surfaces hyperelliptiques, je renvoie &
[Be] pour une justification de la terminologie utilisée ici.
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d’un ou deux ovales. 1l est immédiat que le nombre de composantes connexes de
la partie réelle de X (c’est-a-dire I’ensemble des points fixes de I'involution) vérifie
0 < "X (R) < 4 et que chaque composante connexe est homéomorphe & un tore
T' ou a une bouteille de Klein K. On arrive ainsi a quinze types topologiques pos-
sibles a priori pour X (R). Récemment, F. Catanese et P. Frediani [CF] ont donné
les onze types topologiques effectivement réalisables. Si o admet une section réelle,
on montre que seuls sept types topologiques sont réalisables, cf. Théoreme 2.3.

Dans cet article, on s’intéresse a un invariant fin de la structure réelle : le groupe
Hallg (X(R),Z/2) C H'(X(R),Z/2) des cycles algébriques réels. Ce groupe est en-
gendré par les classes fondamentales des courbes algébriques réelles, cf. e.g. [BH].
La détermination de ce groupe pour une surface donnée est délicate. Lorsque
H, (X(R),Z/2) = H'(X(R),Z/2), on dit que la structure réelle de X est to-
talement algébrique. Avec le résultat suivant, on achéve de déterminer les surfaces
réelles totalement algébriques parmi les surfaces de dimension de Kodaira nulle :
abéliennes, K3, d’Enriques, bielliptiques.

Théoréme 0.1. Soit X une surface bielliptique réelle. Son diviseur canonique Kx
est de torsion, on note dx la torsion de Kx.

(1) Si X(R) £0 et Hallg(X(RLZ/Q) = HY{(X(R),Z/2), alors X(R) est homéo-

morphe a un tore. Si de plus dx est pair, o admet une section réelle.

(2) Supposons que X(R) soit homéomorphe a un tore. Si dx est impair ou si

o admet une section réelle, alors Hallg(X(R)7Z/2) = HY(X(R),Z/2).

Ce résultat s’inscrit dans ’étude des groupes de cycles algébriques réels des
surfaces de type spécial. C’est-a-dire, outre les surfaces de dimension de Kodaira
nulle, les surfaces rationnelles, réglées, elliptiques propres.

Pour une surface rationnelle X, on a toujours

Hy,(X(R),Z/2) = H(X(R), Z/2)

alg

[Si, 1989]. Lorsque X est une surface abélienne, 1’égalité Hallg = H' implique que
X(R) est connexe [Hu, 1994] ou [Mal, 1994]. Si X est une surface K3, le groupe
H;lg(X(R),Z/Q) est détaillé dans [Ma2, 1997]. Une surface d’Enriques réelle est
totalement algébrique si et seulement si elle est orientable [MvH, 1998]. Les surfaces
birationnellement réglées ont été traitées dans [Ku2, 2000] et dans [Ab, 2000]. Pour
les surfaces elliptiques propres régulieres, voir [Ma3, 2000]. L’article [BK] est un

bon survey sur les cycles algébriques réels.
Si X est une surface algébrique appartenant a l'une des classes ci-dessus,

on peut toujours trouver une surface algébrique Y déformation équivalente a X
sur C et une structure réelle sur Y telle que Y(R) # @ et HL (Y(R),Z/2) =

HY(Y(R),Z/2).

lg

Théoréme 0.2. [l existe une surface bielliptique X telle que pour toute surface
algébrique Y déformation équivalente a X sur C et pour toute structure réelle sur

Y ayant des points réels, on ait H;lg(Y(IR)7 Z/2) # HY (Y (R),Z/2).
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On utilise le fait que la fibration d’Albanese ne posséde de section ni pour X
ni pour Y. Voir aussi a ce sujet le Corollaire 2.4

Je remercie F. Catanese et P. Frediani qui m’ont communiqué une version
préliminaire de leur preprint.

1. Cycles algébriques et orientabilité

Une surface algébrique réelle est un couple (X, o) olt X est une surface algé-
brique complexe et o une involution anti-holomorphe sur X. La partie réelle X (R)
est I'ensemble des points fixes de o, X (R) = X 7. Sur une surface algébrique réelle
(X, o) de partie réelle non vide il existe un morphisme surjectif

¢: Pic(X)° — HL (X(R),Z/2)

alg

défini essentiellement en associant & une courbe réelle la classe fondamentale de sa
partie réelle, cf. eg. [Si]. La décomposition

HY(X[R),Z/2)= P H'(V.Z/2)
VCX(R)

ou V décrit I’ensemble des composantes connexes de X (R) est orthogonale pour
le degré du cup-produit. Pour un diviseur réel D, on considérera la restriction
¢(D)v & une composante connexe V de X(R) comme un élément, de H'(V,Z/2)
ou de H*(X(R),Z/2) selon les cas.

On note w1(S) la premiére classe de Stiefel-Whitney du fibré tangent d’une
surface lisse S. Soit K x un diviseur canonique de X . Nous utiliserons les propriétés
suivantes de ¢ :

VD e Div(X)?, YD’ € Div(X)?, (D).o(D')=D.D" mod 2; (1.1a)
wi(X(R)) = ¢(Kx) . (L.1b)
Dans (1.1a), on considere & gauche le degré du cup-produit sur H!'(X(R),Z/2)

et a droite l'intersection des diviseurs.

Rappelons qu’une surface lisse S est non orientable si et seulement si 1’'une des
deux conditions équivalentes suivantes est réalisée :

wi(S) #0; (1

il existe une classe v € H'(S,Z/2) qui vérifie u> =1 . (1.

Rappelons aussi que si S est difféomorphe 4 une bouteille de Klein, on a w;(S)? =0.
[argument suivant & été utilisé dans [MvH] pour les surfaces d’Enriques.

Théoréme 1.3. Soit X une surface algébrique réelle dont le diviseur canonique
Kx est de d-torsion, d > 2 entier. Si Hallg(X(]R),Z/Q) = HY(X(R),Z/2), alors
X(R) est vide ou orientable.
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Preuve. Soit X une surface algébrique réelle telle que

HL (X(R),Z/2) = HY(X(R),Z/2).

alg

Soit D un diviseur dont la classe dans le groupe de Néron-Severi NS(X ) possede
un multiple trivial, alors D.D’ = 0 pour tout diviseur D’. Lorsque D est réel,
on a p(D) = 0 dans H'(X(R),Z/2). En effet, par hypothése, toute classe de
cohomologie v € H(X(R),Z/2) est I'image par ¢ dun diviseur réel D’ donc
p(D)uw = 0. Comme le degré du cup-produit est une forme non dégénérée sur
H'(X(R),Z/2), on a o(D) = 0. Maintenant, si X(R) # @, on peut supposer Kx
réel, cf. [Si, 1.4.5]. Comme Kx est de torsion dans NS(X) on a ¢o(Kx) = 0 d’out
w1 (X (R)) =0 et X(R) est orientable. O

2. Surfaces bielliptiques réelles

Soit X une surface bielliptique, notons A = Alb(X) la variété d’Albanese de
X et ao: X — A la fibration d’Albanese. Par définition, une surface bielliptique
admet une deuxiéme fibration elliptique

7: X - E/G=P!

dont les seules fibres singuliéres sont des fibres multiples m,L; ol L; est une courbe
elliptique lisse. Les fibres lisses de 7 sont isomorphes a F' sur C.
Lorsque X est munie d’une structure réelle o, la fibration 7: X — P! n'est pas
réelle en général. Par contre, par construction, la fibration a:: X — A est réelle.
Relativement & la fibration =, un diviseur canonique de X est donné par

Kx = —2F) + Z(mt — 1 Y (2.1)
teT

ou Fy est une fibre lisse de w. Le diviseur Kx est de dx-torsion. Les valeurs
possibles de dx sont données ci-dessous.

Toute surface bielliptique est de la forme (£ x F')/G ou G est I'un des groupes
suivants.

Surfaces bielliptiques sur C
G #T (ml,...,m#T) dX
Z/2 4 (2,2,2,2) 2
Z/20Z/2| 4 (2,2,2,2) 2
Z/3 3 (3,3,3) 3
Z/38Z/3 | 3 (3,3,3) 3
Z/4 3 (2,4,4) 4
Z/A®Z/2| 3 (2,4,4) 4
Z/6 3 (2,3,6) 6
Table 1
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On renvoie & [CF] pour une présentation agréable de ce résultat classique di a
Bagnera et De Franchis [BdF] et [BdF2].

Soit V' C X(R) une composante connexe, soit X, une fibre réelle de o ren-
contrant V. Comme X, est une fibre de o, on a X2 = 0 et comme « est lisse, la
restriction (X, )y dans HY(V,Z/2) C H'(X(R), Z/2) vérifie (¢(Xo)v)? = 0.

De plus,

wi(V) = p(Kx)v = ZW(Lt)\V (2.2)

ol la somme est restreinte aux courbes L, réelles et de multiplicité m, paire.
On considere le cas ou la fibration d’Albanese admet une section réelle.

Théoréme 2.3. Soit X une surface bielliptique réelle dont la fibration d’Albanese
a admet une section réelle. Alors toutes les composantes conneres de X(R) sont
homéomorphes et si X(R) est non orientable, X(R) et A(R) sont non connezes.

Une composante connexe de X (R) est homéomorphe & un tore ou & une bou-
teille de Klein et X (R) possede au plus quatre composantes. Comme a possede une
section réelle, X (R) # 0 et on obtient les sept types topologiques aT' (1 < a < 4)
et aK (2 <a <4).

Preuve. On montre tout d’abord que deux composantes connexes V et V/ de X (R)
situées au dessus de la méme composante connexe B de A(R) sont homéomorphes.
Soient x € B, la courbe elliptique E est un groupe abélien qui agit sur la fibre
réelle X, de «. La partie réelle F(R) est un sous-groupe qui agit sur X,(R). De
I'existence d’une section réelle, on déduit qu’une translation qui échange les deux
composantes connexes de X, (R) s’étend en un homéomorphisme de V/ sur V.

Supposons maintenant V' non orientable. Soit X, une fibre réelle de « rencon-
trant V. De 'existence d’une section de «, on déduit que I'une au moins des fibres
multiples de 7, disons miL1, est réelle et vérifie L;.X, =1 d’ou

e(L)jv-p(Xa)jy = p(L1).p(Xg) = 1.

Dapres (1.2b), on a alors (¢(L1)v)? =1 dans HY(V,Z/2) 2 Z/2 /2 car V
est non orientable.

Par ailleurs, on a ¢(L{)? = 0 car L} = 0 comme courbe réduite d'une fibre
de 7. Il existe donc nécessairement une composante connexe V' de X(R) telle que
(L) = o(L1)jv + ¢(L1)v+ et (p(L1)jv)? = 1. La composante V' est alors non
orientable. De plus, comme L;.X, = 1 pour toute fibre X, de «, L réalise une
section de a. Les ensembles a(V) et (V') sont donc disjoints dans A(R). O

Corollaire 2.4. [l existe des surfaces bielliptiques réelles dont la fibration d’Alba-
nese o admet une section complexe mais pas de section réelle.

Preuve. 11 suffit de considérer le cas d’une surface bielliptique réelle de groupe
G = Z/4 avec X(R) homéomorphe & une bouteille de Klein. Une telle surface
existe, cf. [CF, Sec. 8, Table 3]. La fibration d’Albanese d'une surface de type Z/4
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admet une section complexe. Mais d’apres le Théoreme 2.3, si X(R) est connexe
et non orientable, a ne peut admettre de section réelle. [l

Le lemme suivant est un cas particulier de [Kul, Th. 2.1].

Lemme 2.5. Soit X une surface algébrique réelle telle que Hallg(X(R)7Z/2) soit
égal & H'(X(R),Z/2). Alors o(Pic®(X)7) = {0} dans HY_ (X (R),Z/2).

alg

Théoreme 2.6. Soit X une surface bielliptique réelle dont la partie réelle satisfait
Végalité H),, (X (R),Z/2) = H'(X(R), Z/2), alors X (R) est vide ou homéomorphe

a un tore.

Preuve. Soit X une surface bielliptique réelle. Dans ce cas le groupe de Néron-Severi
NS(X) est engendré par une fibre X, de « et par les courbes L; réduites des fibres
multiples de 7. Soient mL; et my Ly deux fibres multiples réelles de 7, notons d le
pged de my et my . Supposons que d > 2, le diviseur D = (my/d)Ls—(my /d) Ly est
de d-torsion dans NS(X). D’aprés la preuve du Théoreme 1.3, ¢(D) = 0. Quitte &
permuter ¢ et ¢’, on peut supposer que m;/d est impair. On a alors

((me/d)Ls) = p(Ly) -

On a donc une alternative : o(L;) = ¢(Ly) ou ¢(L;) = 0. A laide de la Table 1,
on déduit que I'image par ¢ du sous-groupe de NS(X) engendré par les courbes L,
réelles est de dimension < 1. Par ailleurs, d’apres le Lemme 2.5, ¢ est bien défini
sur NS(X)°.
L’application
@1 NS(X)” — Hiy(X(R),Z/2)

est donc surjective et dim H}) (X (R),Z/2) < 2. Par hypothese, dim H' (X (R), Z/2)
vérifie la méme inégalité et X (R) est connexe. Par ailleurs, le diviseur canonique
Kx d’une surface bielliptique est de dx-torsion avec dy € {2,3,4,6}. D’apres le
Théoreme 1.3, si la partie réelle X(R) est non vide, elle est orientable, et finale-
ment, homéomorphe a un tore. Il

3. Sections de la fibration d’Albanese

Considérons une surface bielliptique réelle X. Le groupe de Néron-Severi NS(X)
est engendré par une fibre X, de a et par les courbes L;. La fibration o admet
donc une section réelle si et seulement si o admet une fibre réelle et si I'une des
courbes L; est réelle et vérifie L;. X, = 1. La premiere condition est équivalente a

AR) £ 0.

Proposition 3.1. Soit X une surface bielliptique réelle dont la partie réelle X (R)
est homéomorphe a un tore. Si la torsion de Kx est impaire ou si la fibration

d’Albanese o admet une section réelle, on a Hallg(X(R)7 Z/2) = H{(X(R),Z/2).
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Preuve. Soit X, une fibre réelle de =, g’il existe une courbe réelle L telle que
Iintersection L.X,, soit impaire, on a ¢(X;).¢(L) = 1. Ceci impose que les classes
@(X,) et ¢(L) sont non nulles et engendrent H'(X(R),Z/2) = Z/2 & Z/2.

Si Kx est de torsion impaire, 7 admet trois fibres triples. L’ensemble formé par
ces trois fibres est globalement fixé par la structure réelle, 1'une d’entre elles est
donc réelle. En la notant 3L, on a L.X, = 1.

Si a admet une section réelle, on note L I'image de cette section. La courbe L
est alors réelle et L.X, = 1. O

Théoréme 3.2. Soit X une surface bielliptique réelle telle que Kx soit de torsion
paire. $i X(R) # 0 et HY (X(R),Z/2) = HY(X(R),Z/2), alors o admet une

section réelle.

lg

Preuve. D’apres le Théoreme 2.6, X(R) est homéomorphe & un tore. Le groupe
HY(X(R),Z/2) est engendré par ¢(X,) et p(L) ou X, est une fibre réelle de o et
mL une fibre multiple réelle de 7. Comme X (R) est un tore, on a nécessairement
P(Xg)p(L)=11e Xz.L=1 mod 2.

Considérons une fibre lisse Fy de 7 et notons k& l'ordre du groupe G. On a
Fy. X, = ket L;. X, = my/k pour toute fibre multiple m;L, de w. D’apres la
Table 1, si G =Z/2® Z/2 ou G = Z/4® Z/2, L;.X, est pair pour toute courbe
L;. Dans ce cas a n’admet méme pas de section complexe et X ne peut vérifier
H!\ (X (R), Z/2) = H(X(R),Z/2).

Si G=127Z/2 ou G =7Z/4, o admet des sections complexes mais pas de section
réelle a priori (cf. Corollaire 2.4). Toujours d’apres la Table 1, L;.X, vaut 1 ou 2,
done L.X, = 1 et L est une section réelle de o.

SiG=127Z/6, L. X, = 1, 2 ou 3 mais comme les multiplicités sont distinctes, les
trois fibres multiples sont nécessairement réelles et on peut supposer que ml est
la fibre de multiplicité 6 de 7. C’est donc 'image d'une section réelle de «. O

Corollaire 3.3. Soit G = Z/2® Z/2 ou G = Z/4A & Z)2 et soit X une surface
bielliptique de groupe G. Toute structure réelle sur X ayant des points réels vérifie

Hag(X(R), Z/2) # H' (X(R), Z/2) .

En effet, K x est de torsion paire mais oo nadmet pas de section complexe.

4. Conclusion

Preuve du Théoréme 0.1. Le théoreme en question est le regroupement des résultats
2.6,3.2et 3.1. O

Preuve du Théoréme 0.2. Si X est une surface bielliptique de groupe G et Y une
surface algébrique déformation équivalente a X sur C, alors Y est une surface
bielliptique de groupe G. Réciproquement, deux surfaces bielliptiques de méme
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groupe sont déformation équivalentes, cf. [FM]. D’apres le corollaire précédent,
il existe donc exactement deux familles completes de surfaces bielliptiques dont
chaque membre vérifie I’énoncé du Théoreme 0.2 O

Au vu des résultats connus précédemment, [Hu], [Ma2] et [MvH], ce sont les
deux seules familles de surfaces de dimension de Kodaira nulle ayant cette pro-
priété.
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