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The canonical decomposition of once-punctured
torus bundles

Marc Lackenby

Abstract. We determine the canonical polyhedral decomposition of every hyperbolic once-
punctured torus bundle over the circle. In fact, we show that the only ideal polyhedral de-
composition that is straight in the hyperbolic structure and that is invariant under a certain
involution is the ideal triangulation defined by Floyd and Hatcher. Unlike previous work on
this problem, the techniques we use are not geometric. Instead, they involve angled polyhedral
decompositions, thin position and a version of almost normal surface theory.

Mathematics Subject Classification (2000). 57N10, 57M50.

Keywords. Hyperbolic, 3-manifold, canonical polyhedral decomposition, once-punctured torus
bundle.

1. Introduction

Epstein and Penner proved that any complete, non-compact, finite volume hyper-
bolic manifold admits a canonical decomposition into hyperbolic ideal polyhedra
[2]. This is an important construction, particularly in dimension three, and yet it
remains mysterious. Although it can be computed in practice for any particular
hyperbolic 3-manifold, as demonstrated by the computer program SnapPea [11],
it is difficult to determine the decomposition of an infinite family of examples. In
this paper, we do exactly that for once-punctured torus bundles over the circle
that admit a hyperbolic structure. They have a natural ideal triangulation, first
constructed by Floyd and Hatcher [3], which we term the monodromy ideal tri-
angulation. 1t is described in detail in §2 of the paper. Our main result is the
following.

Theorem 1. The canonical polyhedral decomposition of a hyperbolic once-punctured
torus bundle over the circle is its monodromy ideal triangulation.

Hyperbolic structures on once-punctured torus bundles were first studied by
Jorgensen. He produced an unpublished manuscript on quasi-Fuchsian once-
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Figure 1.

punctured torus groups [5], but this did not deal with bundles. More recently,
Akiyoshi, Sakuma, Wada and Yamashita have developed his methods further [1],
and Akiyoshi has a programme for dealing with the bundle case. All these ap-
proaches have been highly geometric. Our techniques, however, are much more
topological. They draw on Gabai’s concept of thin position [4] and almost normal
surface theory, due to Rubinstein [8], Thompson [10] and Stocking [9].

A once-punctured torus admits an involution, as shown in Figure 1, which
commutes with any linear homeomorphism of the once-punctured torus. Hence, it
induces a fibre-preserving involution of any once-punctured torus bundle over the
circle. The canonical decomposition is preserved by this involution. We will prove
the following stronger version of Theorem 1.

Theorem 2. Any ideal polyhedral decomposition of a hyperbolic once-punctured
torus bundle that is straight in the hyperbolic structure and that is invariant under
the fibre-preserving involution is equivariantly isotopic to the monodromy ideal
triangulation.

The assumption that the decomposition is invariant under this involution is
vital. For example, the figure-eight knot complement, which is a once-punctured
torus bundle, admits several straight ideal triangulations, as follows. Start with
the canonical decomposition into two ideal tetrahedra. Remove a common face,
forming a single ideal polyhedron. This can then be decomposed into three ideal
tetrahedra arranged around an edge, which form another straight ideal triangula-
tion of the knot complement.

A key concept in this paper is that of an angled polyhedral decomposition of
a 3-manifold M. A polyhedron is a 3-ball with a specified graph in its boundary,
which must satisfy the following conditions:

e each vertex has valence at least three;

e no edge is a loop;

e each complementary region is a disc with at least three edges in its boundary.
An ideal polyhedron is a polyhedron with its vertices removed. The resulting punc-
tures are termed ideal vertices. An ideal polyhedral decomposition of a 3-manifold
M is a decomposition of M — dM into ideal polyhedra, with faces glued home-
omorphically in pairs. An angled polyhedral decomposition is an ideal polyhedral
decomposition, together with an assignment to each edge of each ideal polyhedron
of an interior and exterior angle in the range (0,7), which sum to 7. These must
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satisfy the following conditions:

e the sum of the interior angles around each edge is 27;

e for any closed curve in the boundary of an ideal polyhedron that misses the
ideal vertices, that intersects each edge transversely at most once and that
does not lie wholly in a face, the sum of the exterior angles of the edges
it runs over is at least 27, with equality if and only it it encircles an ideal
vertex.

The second of the above conditions is, by Rivin’s theorem, exactly the requirement
that an ideal polyhedron with a given convex angle assignment to its edges be
realizable in hyperbolic space [7]. However, the hyperbolic structures on these
ideal polyhedra need not match up correctly under the face identifications, and
therefore an angled polyhedral decomposition is significantly more general than a
decomposition of a hyperbolic 3-manifold into straight ideal polyhedra. A similar
concept (an angled spine) was introduced in [6]. We will in fact prove the following
stronger version of Theorem 2.

Theorem 3. Any angled polyhedral decomposition of a once-punctured torus bun-
dle that is invariant under the fibre-preserving involution is equivariantly ambient
isotopic to the monodromy ideal triangulation.

The strategy of the proof is to place the 1-skeleton of M in ‘thin position’
in the fibration. We establish that either all the edges can be simultaneously
equivariantly isotoped into fibres, or one of the fibres can be placed in a position
that resembles almost normal form. We term this fairly normal form, and it seems
to arise naturally when a 3-manifold admits certain sweep-outs by surfaces with
non-empty boundary. As in [6], it is possible to assign an ‘area’ to this fairly
normal surface F', which is defined additively over the discs of intersection with
the ideal polyhedra, and which turns out to be —27x(F'). However, using the fact
that F'is invariant under the involution and the fact that F lies in a thick region of
thin position, we deduce that some disc area has more than 27 or two discs have
area more than 7. It is simple to prove that each disc has non-negative area. This
gives a contradiction, since the Fuler characteristic of a once-punctured torus is
—1. We therefore deduce that all the edges of the ideal polyhedral decomposition
can be made simultaneously level in the fibration. With some further work, this
implies that it is the monodromy ideal triangulation.

I would like to thank Brian Bowditch for introducing me to this problem.
I would also like to thank Makoto Sakuma who gave a talk on his work with
Akiyoshi, Wada and Yamashita [1] on quasi-fuchsian once-punctured torus groups,
and the canonical decomposition of two-bridge link complements. It seems likely
that the techniques of this paper can be applied to two-bridge links.
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2. The monodromy ideal triangulation

This section contains a description of the monodromy ideal triangulation defined
by Floyd and Hatcher [3]. The once-punctured torus F' can be constructed from
two ideal triangles by gluing their sides in pairs, and any ideal triangulation of F'
takes this form. Floyd and Hatcher found a very elegant way of encoding the set
of isotopy classes of such ideal triangulations as the vertices of a tree.

372

Figure 2.

This tree is dual to a tessellation of the hyperbolic plane by ideal triangles. The
ideal vertices of this tessellation are @ U {oo} in the circle at infinity. Associated
to each ideal vertex, there is a properly embedded arc in F' with that slope. Two
ideal vertices are joined by a geodesic if and only if the corresponding arcs can
be isotoped off each other. These geodesics divide the hyperbolic plane into ideal
triangles, forming the required tessellation, which is known as the diagram of
PSL(2,Z). (See Figure 2.) The ideal vertices of an ideal triangle correspond
to three disjoint non-parallel properly embedded arcs in I, and hence an ideal
triangulation. Thus, there is one vertex of the dual tree for each isotopy class
of ideal triangulation of the once-punctured torus. Two vertices of the tree are
joined by an edge if and only if their corresponding ideal triangulations differ by an
elementary move, which involves removing one of the edges, resulting in a square
with side identifications, and then inserting the other diagonal of the square.

The monodromy of a once-punctured torus bundle induces a homeomorphism
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of this tree. Any homeomorphism of a simplicial tree either has a fixed point or
leaves invariant a unique copy of R, known as the azis. In the former case, the
monodromy is periodic, and hence the bundle is not hyperbolic. In the latter case,
we pick a vertex on the axis. The unique path in the tree from this vertex to its
image under the monodromy homeomorphism runs along the axis. It specifies a
sequence of elementary moves. These induce an ideal triangulation of the bundle,
as follows. Start with the once-punctured torus with its initial ideal triangulation.
Realize the first elementary move by attaching an ideal triangulation to the once-
punctured torus, as shown in Figure 3. Continue in this fashion along the path
in the graph as far as the final vertex. We then glue the top and bottom ideal
triangulations via the monodromy. The result is the monodromy ideal triangulation
of the bundle.

3. Fairly normal surfaces

It is a famous result, due to Rubinstein [8] and Stocking [9], that a strongly
irreducible Heegaard surface of a compact orientable 3-manifold can be placed in
almost normal form in any given triangulation. The arguments rely heavily on
Gabai’s concept of thin position [4]. Many of these techniques generalise to other
settings: bridge decompositions of link complements, and surface fibrations over
the circle. However, it does not seem to be possible in general to deduce that the
relevant surface (be it a bridge punctured 2-sphere or a fibre) can be placed in
almost normal form. But there is a weaker version of the theory which we now
introduce.

Suppose we are given an ideal polyhedral decomposition of a compact orientable
3-manifold with non-empty boundary. Truncate the ideal vertices, making the
polyhedra compact. These polyhedra now have two types of faces: interior faces,
which are truncated copies of the original faces, and boundary faces which are links
of ideal vertices. The edges of the truncated polyhedra also come in two types,
boundary edges which lie in M, and interior edges which we denote by A'. Note
that no two interior edges are adjacent.

A properly embedded surface F is fairly normal if it intersects each polyhedron
in fairly normal discs. A fairly normal disc is a properly embedded disc with the
following properties:
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Figure 4.

e it intersects any boundary face in at most one arc;

e it intersects any interior face in arcs, that each starts and ends in distinct

non-adjacent edges of the face;

e it intersects any interior edge at most twice;

e it is not parallel to a disc in the boundary of the polyhedron disjoint from

the interior edges.
A weakly normal disc is a properly embedded disc satisfying the first two of the
above conditions. Note that in any given polyhedron, there are only finitely many
fairly normal disc types, but they are far more numerous than normal discs. Some
examples of fairly normal discs in truncated tetrahedra are shown in Figure 4.

We will show that, when M fibres over the circle, and when the ideal polyhe-
dral decomposition is angled, then either there is an ambient isotopy taking each
interior edge into a fibre, or some fibre can be placed in fairly normal form. This
is nothing new: fairly normal surfaces are a generalisation of normal surfaces, and
it is well known that a fibre can be ambient isotoped into normal form. However,
the fairly normal surface will have a number of extra properties, which will even-
tually lead to a contradiction in the case of a once-punctured torus. For example,
it will have the maximal number of intersection points with A® over all fibres not
containing level edges.

When the ideal polyhedral decomposition is angled, it is possible to assign an
area to weakly normal (and more general) discs. This is the sum of the exterior
angles of the interior edges the disc runs over (counted with multiplicity), plus the
number of arcs of intersection with the boundary faces multiplied by 7, then with
27 subtracted. The area of a fairly normal surface F' is the sum of the areas of its
discs. It is shown in [6] that the area of a properly embedded surface F' is equal
to —2mx(F).

Many of the fairly normal surfaces I’ we will consider will have a face com-
pression disc which we define to be a disc D embedded in a polyhedron P, such
that

e D is disjoint from A

e the interior of D is disjoint from P U F';

e the boundary of D is an arc in F', an arc in an interior face and possibly an

arc in a boundary face;

e the arc 9D N AP is not parallel in P — A® to a subarc of F'N dP.
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For example, both the fairly normal discs shown in Figure 4 have face compression
discs.

If a weakly normal disc is surgered along a face compression disc, the result is
two discs that need not be weakly normal. For they may have an arc of intersection
with an interior face that has endpoints

e in the same boundary edge,
e in the same interior edge, or
e in adjacent interior and boundary edges.

In the first case, the endpoints of this arc must close up in the boundary face to
form a closed curve that is disjoint from the interior edges and that intersects the
boundary faces in only one arc. We call such a disc boundary-trivial.

In the second and third cases, there is an obvious isotopy of the discs that
reduces the number of intersections with the interior edges. We may repeat this
procedure until we end with discs that are boundary-trivial or weakly normal.
Note that in the third case, we always end with a weakly normal disc.

We now define a certain type of fairly normal disc in a polyhedron P. Let « be
either an interior edge of P or an arc properly embedded in an interior face with
endpoints in distinct boundary edges. Let A{«) be a small regular neighbourhood
of a in 9P, and let D be a properly embedded disc with boundary dA («). Then
D is a weak bigon. 1t is a bigon if o was an interior edge. Note that a fairly normal
weak bigon is a bigon.

Lemma 4. Let D be a weakly normal disc. Then the area of D is non-negative.
The area is zero if and only if it is the link of an ideal verter or a weak bigon.

Proof. Consider first the case where D is disjoint from the boundary faces. Suppose
that it intersects some interior edge more than once. It then has a face compression
disc disjoint from the boundary faces. If we surger along this disc, the result is
two new discs. The area of D is the sum of the areas of these two discs, plus
2m. If these discs fail to be weakly normal, there is an isotopy that reduces their
area and that takes them to weakly normal discs. Thus, we may assume that D
intersects each interior edge at most once. But, then by the definition of an angled
polyhedral decomposition, its area is non-negative and in fact is strictly positive
unless the disc is the link of an ideal vertex.

Suppose now that D intersects the boundary faces in a single arc. The interior
edges emanating from the boundary face containing this arc have exterior angles
that sum to 27. Thus, there is a way of isotoping the arc off the boundary face so
that the new points of intersection with the interior edges have total exterior angle
at most 7. So, the resulting disc has area at most that of D. It may fail to be
weakly normal, in which case there is an isotopy which removes two intersection
points with the interior edges. Repeat until we end with a weakly normal disc
D’. By the above argument, DD’ has non-negative area and hence so does D. If
the area of D is zero, then D’ must have been the link of an ideal vertex. Also,
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D would have been obtained from D’ by isotoping D’, without introducing any
intersection points with interior edges, so that a single sub-arc of D runs over a
boundary face. The only way of doing this is to isotope 8D’ along an interior edge
or across an interior face. But in both cases, the resulting D has positive area.

If D intersects the boundary faces in more than two arcs, then the area is
positive. If it intersects the boundary faces exactly two times, the area is non-
negative, and is in fact strictly positive unless it is disjoint from the interior edges.
But in this case, we claim that D is a weak bigon. For, as above, there is an
isotopy of D removing one of its arcs of intersections with the boundary faces
without increasing its area. After a further isotopy that does not increase area, we
end with a weakly normal or boundary-trivial disc. In the former case, this disc
has positive area since it has only a single arc of intersection with the boundary
faces. Hence D also has positive area. In the latter case, D was originally a weak
bigon. Il

A consequence of the above lemma is that a fairly normal surface cannot be
a sphere or a properly embedded disc. Also, by observing that bigons cannot be
glued to links of ideal vertices, we see that a fairly normal surface with zero Euler
characteristic is composed either entirely of vertex links or entirely of bigons.
Hence, it is a boundary-parallel torus or a compressible annulus. This implies
that a compact orientable 3-manifold with an angled polyhedral decomposition is
irreducible, atoroidal, an-annular and has non-empty boundary consisting of tori.
Its interior therefore admits a complete finite volume hyperbolic structure.

We now define some further types of fairly normal disc. Let « be an arc in the
boundary of a polyhedron P such that

e the interior of « is disjoint from the boundary faces;

e the endpoints of « lie on boundary edges of distinct boundary faces;

e the intersection of o with each interior face is a collection of arcs, each of
which runs between distinct non-adjacent edges of the face;

e « intersects each interior edge at most once.

Let A(«) be a small regular neighbourhood of « in P, and let D be a properly
embedded disc with boundary A («). Then D is an arclike fairly normal disc,
and « is its associated arc. An arclike disc in a truncated ideal tetrahedron is
shown in Figure 5.

We give some further definitions. Let D be a properly embedded disc parallel
to a boundary face in a polyhedron P. Pick one or two disjoint arcs « in 9P,
starting in D and running across an interior face to a boundary face. Ensure
that each component of « is not parallel to a sub-arc of an interior edge, and that
if o consists of two arcs, they are not parallel. Modify by D by isotoping along o.
The result is a modified vertex link.

Similarly, let D be two non-parallel ideal vertex links. Let « be an arc in an
interior face, running between the two discs of D). Ensure that « is not parallel
to a sub-arc of an interior edge. Modify D by isotoping the boundaries of the two
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Arclike disc Modified vertex link Modified vertex link Fused vertex link

Figure 5.

discs towards each other along «, and then fusing to form a single disc, which we
term a fused vertex link.

Lemma 5. Let D be a fairly normal disc in a polyhedron P. Suppose that D has
a face compression disc, and also that, if D is arclike, the face compression disc
does not lie on the same side as its associated arc. Then the area of D is at least
7. Moreover, if D is invariant under an involution of P that preserves the disc’s
orientation and transverse orientation, then it has area at least 2w. If either of
these inequalities are equalities, then the disc must be disjoint from the interior
edges or be a modified vertex link or a fused vertex link.

Proof. Surger D along the face compression disc to give two discs Dy and Ds
properly embedded in P. They need not be weakly normal, but after an isotopy
that does not increase area, we end up with discs D] and D) that are weakly
normal or boundary-trivial.

If D} and D} are both boundary-trivial, then D was arclike and the face com-
pression disc lay on the arc side, contrary to hypothesis. So, at least one D] is
weakly normal, and so has non-negative area, by Lemma 4. If either of D{ or D}
are boundary-trivial, then the face compression disc was disjoint from the bound-
ary faces of P. In this case, the area of D) is equal to the area of i plus the area
of Dy plus 27, and hence is at least w. If both D] and D) are weakly normal,
then they have non-negative area. The area of D is obtained by adding the area
of D1 and D, and then adding either 7w or 27, depending on whether the face
compression disc ran over a boundary face or not. Thus, we deduce that the area
of D is at least .

Now suppose that this inequality is an equality. Then D; and D, must be
equal to D} and D). If Dy, say, is boundary-trivial, then Dy must be a weakly
normal disc with zero area. By Lemma 4, it is either a vertex link or a weak
bigon. Hence, D is either a modified vertex link or disjoint from A!. If D¢ and
Dy are both weakly normal, then they must both have zero area, and the face
compression disc must have run over a boundary face. So, D1 and Dy must be
weak bigons and hence, in this case, D is disjoint from A?.

‘We must now show that if D is invariant under an involution that preserves its
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orientation and transverse orientation, then it has area at least 27. The involution
of P must be a rotation of order two, which preserves each component of P — D.
The involution takes the face compression disc to another. It is a straightforward
matter to ensure that these two discs are disjoint after an equivariant ambient
isotopy. If we now surger D along both these discs, the result is three discs Dy,
Dy and D3, where Dy is attached to Dy and Ds. So, Dy and Ds are swapped
by the involution and D5 is invariant. There is an equivariant isotopy that takes
Dy and D3 to discs D) and D} that are weakly normal or boundary-trivial, and
that takes Ds to a disc D5 that is weakly normal or that has boundary in a single
interior face. We call the latter type of disc face-trivial. Note that not all the discs
can be trivial, for then D would be arclike and its face compression disc would
have been on the arc side.

Consider first the case where the face compression discs are disjoint from the
boundary faces of P. Then the area of D is the sum of the areas of Dy, Dy and
D3, plus 4x. If Dj is face-trivial, its area is —27 and the areas of Dj and D} are
non-negative. If D] and D} are boundary-trivial, then their areas are —m, and
the area of DJ is non-negative. Thus, we deduce that the area of D is at least
27. The case where the face compression discs intersect the boundary faces of P
is easier. Each D] is weakly normal, and the area of D is the sum of the areas of
D1, Dy and Ds, plus 27. Hence, the area of D is at least 2. The case of equality
is straightforward and is omitted. (Il

4. Levelling the interior edges

In this section, we will prove the following result.

Theorem 6. Let M be a once-punctured torus bundle with an angled polyhedral
decomposition that is invariant under the fibre-preserving involution. Then there
is an equivariant ambient isotopy taking each interior edge into a fibre.

Proof. We place a transverse orientation on the fibres, so that, locally, we may
speak of one fibre being ‘above’ or ‘below’ another.

We may equivariantly ambient isotope the interior edges of M so that the
following conditions hold. Each interior edge either lies entirely in a fibre, or is
transverse to the fibration at all but finitely many critical points, which are local
maxima or minima. We may assume that the endpoints of each non-level interior
edge are critical; in other words, their end tangents are horizontal. We may also
assume that a fibre cannot contain both level edges and critical points, and that
if a fibre contains more than one critical point or more than one level edge, then
it contains precisely two and these are swapped by the involution. The fibres
containing critical points or level edges we term critical. Critical fibres are divided
into three types:
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e interior-critical, which contain an isolated critical point in the interior of M;

e boundary-critical, which contain an endpoint of a non-level edge;

e level-critical, which contain a level edge.

Define the weight of a critical fibre to be

e two, if the fibre is interior-critical and it contains two critical points (that

must be swapped by the involution);

e the number of level edges it contains, if it level-critical;

e one, otherwise.

Let the width of A! be the sum, over all critical fibres, of the product of the weight
of the fibre and its number of transverse points of intersection with A'. Perform
an equivariant ambient isotopy which minimises width. The 1-skeleton is then in
thin position.

The reason for the weighting in the definition is as follows. Suppose that local
maxima of A!, in distinct adjacent critical fibres, can be equivariantly isotoped
past each other. Then we do not want this to alter the width of A, This is the
case with this choice of weighting. See Figure 6, for example.

weight2 - -- weight 1
weight | =g === -m- -=-¢- =) weight 2 --m-- .- -m--
weight 1 - - weight 2 === =---
weight 2 == = -m--m- ——— weightl-ﬁ-- --
Figure 6.

Suppose that not all the edges of Al are level. Consider an interval I of fibres,
disjoint from the interior-critical and boundary-critical fibres, starting just below a
local maximum for A, and descending to just above a local minimum for A*. We
may assume that each fibre in I, other than the level-critical fibres, has maximal
intersection with A! among all fibres not containing level edges. The interval I
is possibly divided up into sub-intervals by level-critical fibres. Consider one such
sub-interval I’, which we initially take to be the highest sub-interval. All fibres in
this sub-interval are equivariantly ambient isotopic, leaving A! invariant. Hence,
by examining the supremal fibre, we see that each fibre in I’ has a strict upper
disc, which is defined as follows. An wupper disc (respectively, lower disc) for a
fibre I’ is an embedded disc D in M such that

e its boundary is the union of an arc in F, an arc in A' and possibly an arc in

oM,

o the above arcs of D N A! and D N dM are the only points of intersection

between D and OM U A';
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Figure 7.

e near D N F, its interior is disjoint from F', and it emanates from the upper
(respectively, lower) side of F';
e D and its image under the fibre-preserving involution are either equal or
disjoint.
An upper or lower disc is strict if its interior is disjoint from F'. Strict upper discs
are shown in Figure 7.

If, directly below I’, there is a level edge, then each fibre F' in I’ has a lower-
parallelity disc, which is an embedded disc in M such that

e its boundary is an arc in F, an edge of A’ and two arcs in M

e its interior is disjoint from A U dM U F;

e it is attached to the lower side of F

e it and its image under the fibre-preserving involution are either equal or

disjoint.

Upper-parallelity discs are defined similarly.

We define an upper disc and a lower disc for a fibre F' to be a thinning pair
if they are disjoint away from F' N A' and the same is true of the upper disc and
the image of the lower disc under the involution. The following results are easy
generalisations of standard facts about thin position:

e No fibre can have a thinning pair of upper and lower discs.

e No fibre can have an upper disc contained in a lower disc or vice versa.

o If a fibre contains a level edge of Al then it has no upper disc and no lower

disc.
We will prove only the first of the above statements, as the remainder have similar
proofs. Suppose that U and L are upper and lower discs that form a thinning
pair. Consider the intersection between U and the critical fibres, which we may
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assume is a sub-arc of U, a finite collection of points on U, properly embedded
simple closed curves and properly embedded arcs that are disjoint except possibly
at their endpoints. Let D be a subdisc of U separated off by an extrememost arc
«. If the endpoints of « are equal, there is an equivariant isotopy of U, keeping
AU fixed, that removes o. Otherwise, we equivariantly isotope D N A' across D
to remove a, which does not increase the width of A'. We can isotope L similarly.
Thus, we may assume that U and L lie just above and just below a fibre. There
is then an equivariant ambient isotopy that decreases the width of A, either by
moving the maximum of U past the minimum of L or by cancelling these critical
points. This is impossible, since the 1-skeleton is in thin position.

Claim 1. In the interval I’, some fibre F' intersects each interior face of M trans-
versely in the following components: simple closed curves, arcs with endpoints in
OM , arcs with endpoints in distinct interior edges, and arcs with an endpoint in
an interior edge and a non-adjacent boundary edge.

We must show that some fibre F' in I’ intersects each face transversely and has
neither of the following components of intersection with an interior face: an arc
with endpoints in the same interior edge, or an arc running from an interior edge
to an adjacent boundary edge. Note that, in each case, this arc separates off an
upper or lower disc. We term these local upper and lower discs. It is impossible
for any fibre to have both local upper and local lower discs, by thin position.

During the isotopy specified by the interval I’, we may assume that I intersects
each interior face transversely, except at finitely points in I’, where the intersection
with any interior face performs the following moves:

e add or remove an innermost simple closed curve;

e add or remove an extrememost arc with both its endpoints in the same bound-

ary edge;

e move two curves together (possibly the same curve) until they meet at a

point, then resolve this singularity;

e move a curve towards a boundary edge, until it meets the edge at a point,

then resolve this singularity;
e move the endpoints of two arcs in the same boundary edge towards each

other until they meet, and then resolve this singularity by pulling them away
from the boundary edge.
If the face is invariant under the involution, then two copies of a move may occur
simultaneously in the face.

The first two moves do not affect the existence of local upper or lower discs. If
two fibres differ by the third, fourth or fifth move, it is impossible for one to have
a local lower disc and the other to have a local upper disc. For the non-transverse
fibre between them would have both such discs, and a small isotopy would make
these a thinning pair.

Now, the highest fibre of I’ has an upper disc with interior disjoint from the
interior faces. Hence, it cannot have a local lower disc. Similarly, the lowest fibre
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of I’ cannot have a local upper disc. Hence, we deduce that some fibre F' in I’ has
no local lower and no local upper disc, which proves the claim.

Claim 2. There is an equivariant ambient isotopy, that is fixed on the interior
edges, taking F' into fairly normal form.

We will perform a series of moves that will each reduce the number of compo-
nents of intersection with the interior faces. Hence, they will eventually terminate.

Suppose that we were to perform equivariant compressions and boundary-
compressions to the components of intersection between F' and the polyhedra,
so that afterwards each such component is a disc that intersects each boundary
face in at most one arc. The resulting surface we call F. It is a collection of
spheres and discs, together with a single once-punctured torus. The number of
compressions and boundary-compressions used (n, say) is equal to the number of
spheres and discs. Each component of intersection between I’ and each polyhedron
is either weakly normal, boundary-trivial or face-trivial. The area of each sphere
and disc is negative, and so, by Lemma 4, it must contain a boundary-trivial or
face-trivial disc. But a face-trivial or boundary-trivial disc can only be attached to
another such disc. So, there are in total 2n trivial discs in 7. The original surface
F is obtained from F' by attaching n tubes, at least one of which must be attached
to the once-punctured torus component. Hence, if n > 0, some trivial disc lies in
F. We can perform an equivariant isotopy of F' to remove this disc. The resulting
surface still satisfies Claim 1. Thus, we can repeat until F' is composed of weakly
normal discs. If one of these discs fails to satisfy the last condition in the definition
of being fairly normal, there is an obvious equivariant isotopy in the complement
of the interior edges that reduces the number of intersections with the boundary
faces. Finally, if a disc of F' intersects an interior edge more than twice, then a
thinning pair of upper and lower discs can be found, contradicting thin position.
This proves the claim.

Claim 3. If a fairly normal fibre F' has a strict upper disc, then it has a face
compression disc on the upper side of F'. If I’ has an upper-parallelity disc, then
either there is a face compression disc on the upper side of F, or this upper-
parallelity disc can be ambient isotoped into a polyhedron. Similar statements are
true for discs below F.

Consider the intersection of the strict upper disc U with the interior faces. We
may assume that, near A!, the only intersection between U and the interior faces
is A1 N AU. Thus, the intersection is A N QU and a collection of arcs and simple
closed curves properly embedded in U, disjoint from A!. The closed curves may
be removed. Consider an extrememost arc in U away from A'NoU. If it has both
endpoints in dM, it may be removed. The arc separates off a disc that lies in a
polyhedron P. If this is not a face compression disc, then its intersection with 0P
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is parallel in the complement of A! to an arc in F N AP. There is then an ambient
isotopy of U, removing this arc of intersection. Repeating this process, we isotope
U into a polyhedron P. A further small isotopy in P makes it a face compression
disc.

The situation with an upper-parallelity disc U is similar. The intersection
between U and the interior faces is again a collection of simple closed curves and
arcs, and by the above argument, we may assume that it consists only of arcs
running between distinet components of U N dM. Consider such an arc « in the
disc that is closest (in U) to the edge of Al, separating off a sub-disc of U. This
sub-disc forces o and the edge of A! to be parallel in a polyhedron. We may
therefore isotope U to remove «, and repeat until the parallelity disc lies entirely
in a single polyhedron. This proves the claim.

So far we have not used the fact that F' is a once-punctured torus. We will do
so now, by means of an area argument.

Claim 4. If a fairly normal fibre I’ has a face compression disc on its upper side,
then this is attached to an arclike disc with the arc on its upper side. A similar
statement is true for a face compression disc below F'.

Suppose that the face compression disc does not emanate from the arc side of
an arclike disc. Then, by Lemma 5, the fairly normal disc to which it is attached
has area at least w. Moreover, if it invariant under the involution, then it has area
at least 27. This disc and its image under the involution therefore account for all
the area of F. By Lemma 5, each is disjoint from A, or is a modified or fused
vertex link. The remaining discs have zero area, and hence by Lemma 4, each is
a bigon or vertex link.

Case 1. The discs with positive area are disjoint from A'.

A vertex link disc cannot be attached to a disc disjoint from A'. Therefore,
there are no vertex link discs. So, F is entirely disjoint from A'. But F was, by
construction, a fibre with maximal intersection with A'. This is a contradiction.

Case 2. The discs with positive area are modified vertex links.

A modified vertex link has arcs of intersection with interior faces that run from
an interior edge to a boundary face. These arcs cannot be attached to a vertex
link or to a bigon. So, this arc must be attached to a modified vertex link on the
other side of the face. But this creates a component of dF which bounds a disc in
OM , which does not occur. Thus, this case does not arise.

Case 3. The only disc with positive area is a fused vertex link.
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A bigon cannot be attached to a fused vertex link or to a vertex link. So, I
consists only of a fused vertex link and vertex links. This implies that F' is closed,
which is a contradiction, proving the claim.

We know that the fairly normal fibre F'in I’ has a strict upper disc. Hence, by
Claim 3, it has a face compression disc on its upper side. By Claim 4, it therefore
has an arclike disc with the arc on the upper side. It cannot therefore have an
arclike disc with the arc on the lower side. For this would imply that it has a
thinning pair of lower and upper discs, contradicting thin position. So, I’ has no
face compression disc on its lower side. Now, either F' has a strict lower disc or
there are level edges directly below F' in the fibration. In the former case, Claim 3
implies it has a face compression disc on its lower side, which we have already ruled
out. So directly below F' there are level edges. These give rise to lower-parallelity
discs P. Since F' has no face compression discs on its lower side, Claim 3 gives
that the lower-parallelity discs can each be isotoped into a polyhedron.

Claim 5. F' has at most two arclike discs, and if it has exactly two, then these
are swapped by the involution. Also, the lower-parallelity discs P are attached to
these arclike discs.

If not, then we can find an arclike disc D disjoint from P. This arclike disc gives
rise to an upper disc for the fibre containing the level edges in P. This contradicts
thin position, and so establishes the claim.

The fibre I directly below the level edges is obtained by isotoping I across P.
By Claim 5, F" is fairly normal and has no arclike discs. (See Figure 8.) So, directly
below F’, there cannot be a local minimum for A', by Claims 3 and 4. So, below £’
there are more level edges, which give rise to further lower-parallelity discs. These
can be each isotoped into a polyhedron. But this implies that the parallelity discs
above I are disjoint from those below F’. They therefore extend to parallelity
discs below [ that are disjoint from its arclike discs. Without changing the width,
we may equivariantly isotope the level edges below I’ and the level edges above
I’ past each other. This creates a fibre containing a level edge and having an
upper disc, which contradicts thin position. ([l

Parallelity disc P

Arclike disc of F Fairly normal
discs of F’/

Figure 8.
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5. Conclusion of the proof

Lemma 7. Every interior edge is invariant under the involution, and its orien-
tation is reversed.

Proof. Fach interior edge e lies in a fibre which is preserved under the involution.
This involution leaves invariant every properly embedded essential arc in the fibre,
up to isotopy, and reverses its orientation. Thus, e and its image either coincide
or are parallel in the surface. However, it is impossible for distinct edges in a
fibre to be parallel. For, the parallelity disc between two adjacent edges lies in the
complement of A'. The intersection between this disc and the interior faces is a
collection of properly embedded arcs and simple closed curves. By removing in-
nermost curves and extrememost arcs, the disc may be isotoped into a polyhedron.
We then see that e must coincide with its image. O

Proposition 8. The fized point set of the involution cannot have an arc of inter-
section with any face.

Proof. Via standard Morse theory, we may apply an equivariant isotopy of the
interior faces, keeping the interior edges fixed, so that the interior of each face has
only finitely many critical points in the fibration. This gives a singular foliation
on each face. We define the critical leaves to be those that contain critical points.
So, the complement of the critical leaves has a product foliation. In the interior
of the faces, we may take the critical points to have the following standard forms:

e saddles, which form a 4-valent vertex of a critical leaf;

e maxima and minima, whose corresponding critical leaf is a point.

We insist that each boundary edge is either level or has finitely many critical points
of the following forms:

e maxima and minima, which create a critical leaf that is a point;

e half-saddles, which contribute 2-valent vertices to a critical leaf.

Near each level edge, we may arrange that each interior face has a finite number
of switches, shown in Figure 11. We may assume that each fibre not containing
level edges contains at most two critical points, and that if it does contain two,
then these are swapped by the involution. We may also arrange that fibres contain-
ing level edges are disjoint from the saddle, half-saddle, maximum and minimum
critical points.

We may remove all maxima and minima as follows, at the cost of introducing
ridges (see Figure 12). These are properly embedded arcs in an interior face, with
endpoints in M, which are level in the fibration and form either the highest or
lowest points in a neighbourhood of the arc.
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Figure 13.

For suppose that there is a local maximum, say. The adjacent complementary
region R of the critical leaves has a product foliation consisting of properly embed-
ded arcs or circles, depending on whether the maximum lies in the boundary or
the interior of M. Hence, R contains no other maxima or minima. So, it contains
another type of critical point. There are a number of possibilities for the critical
point (or points) in dR and for the maximum. In each case, we can cancel the
maximum with a critical point (or points). For example, if the maximum lies on
the boundary of M, and the other critical point is a half-saddle, then these may
be cancelled to form a ridge. The only small complication is when the maximum is
in the interior of the face and there is a single critical point in R that is a saddle.
It may be the case that R runs over this saddle twice. But then R separates off
a subdisc of the face, which contains at least one maximum or minimum. So, by
passing to an innermost region, we can assume this case does not arise. Thus, we
may ensure that each face now has no maxima or minima. This implies that the
complement of the critical leaves is foliated by arcs, and that each complementary
region has two critical leaves in its boundary. The region can be viewed as a square
in which the height monotonically descends from one critical leaf to the other.

Suppose now that a face contains an arc of intersection with the fixed point set
of the involution. Then, the face is subjected to a rotation about this arc. Since
each interior edge is reversed by the involution, the gluing pattern of the edges of
the face must be as shown in Figure 13, possibly with further identifications. The
arc of the fixed point set has endpoints in two interior edges of the face, the ‘top’
and ‘bottom’ edges, ¢t and b. Consider the complementary region R of the critical
leaves attached to the part of ¢ that intersects the fixed point set, and consider
the critical leaf in R not intersecting ¢. Its intersection with the fixed point set is
not a critical point, since the fixed point set is transverse to the fibration. Hence,
emanating from this point is a sub-arc « of the critical leaf. There are the following
possibilities for the next critical points along this arc:

1. « is properly embedded in the face and ends in switches.

2. o ends in saddles.

3. a ends in half-saddles.

4. « contains a subset of the bottom edge b.

Let us consider Case 1. The switches lie in interior edges e and €', neither of
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which can be ¢ or b. These must be the same edge in M, since each interior edge
is preserved under the involution. The arc « and the edge e = ¢’ both lie in the
same fibre F'. Consider the arc 3 in the face that starts in dM, runs forwards
along e as far as an endpoint of «, then runs along «, then runs backwards along
e’ back to dM. This is shown in Case 1 of Figure 14 as a dotted arc. Since e is
an essential embedded arc in F' and the interior of « is embedded, 3 is homotopic
in F' to a properly embedded arc. Hence, it and its image under the involution
are homotopic in I’ as unoriented arcs. Thus, we deduce that 5 and its image
are homotopic in M via a homotopy whose interior misses A'. However, this is
impossible, by the following claim, since 3 and its image are distinct essential arcs
in the face, not parallel to an interior edge. The proof of this claim is simple and
omitted.

Claim. Suppose that two properly embedded arcs in interior faces are homotopic,
via a homotopy that misses A'. Then either these are parallel arcs in the same
face, or they are both parallel in the faces to interior edges, or they are both
inessential in their faces.

Cases 2 and 3 are dealt with similarly. In each case, we apply the argument of
Case 1 to the dotted arcs in Figure 14. Consider now Case 4. The non-singular
leaves in R end in boundary edges. These cannot be adjacent to both ¢ and b.
Suppose that they are not adjacent to b. Then, emanating from b in the boundary
of R, there are either switches or level boundary edges. In the former case, the
critical leaf continues from the switches to other interior edges e and €’, which are
swapped by the involution. We can apply the argument of Case 1 to the dotted
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arc shown in Figure 14. In the latter case, the level boundary edges are attached
to other interior edges e and ¢’. To apply the argument of Case 1 to the dotted
arc in Figure 14, we need to know that it is homotopic in its fibre I' to a properly
embedded arc. This is clear if e and b are distinct interior edges. We claim that
they cannot be the same edge. Suppose that they were. If the orientations of ¢/,
b and e were all consistent around dR, then their concatenation would not be a
primitive element of Hy(F,dF), and hence would not be homotopic to a properly
embedded arc. However, their concatenation is homotopic to such an arc, as can
be seen by considering a nearby non-singular leaf. If the orientations of e and b
are inconsistent around dR, then the level edge between them would have to start
and end at the same point, and hence would close up to form a level closed curve
in M. But, it and its image under the involution have disjoint interiors, which
would then not be possible. So, we can again apply the argument of Case 1.

Denote the number of polyhedra by p, the number of interior faces by f and
the number of interior edges by e. When the fixed point set is cut along the points
of intersection with the 2-skeleton, the result is s arcs, say. We have the following
inequalities:

e p > s, since each polyhedron can contain at most one arc of the fixed point set
in its interior. This is an equality if and only if each polyhedron is invariant
under the involution.

e s > ¢, as Lemma 7 implies that each interior edge intersects the fixed point
set, and Proposition 8 gives that no face contains an arc of intersection with
the fixed point set. This is an equality if and only if the fixed point set is
disjoint from the interior of the faces.

e ¢ > p, as each polyhedron has at least four faces, and each interior face lies on
the boundary of two polyhedra (or forms two faces of a single polyhedron).
Hence, 2f > 4p. But by Euler characteristic, e — f + p = 0 and so this
gives the required inequality. This is an equality if and only if each ideal
polyhedron is an ideal tetrahedron.

We then deduce that the above inequalities must be equalities. Therefore, each
polyhedron is a tetrahedron that is preserved by the involution. The fixed point
set must run through every tetrahedron exactly once between the midpoints of
opposite edges. The interior faces of each tetrahedron are partitioned into two
orbits, and the two faces in an orbit form a square with side identifications. The
involution applies an order two rotation to this square, and reverses the orientation
of each of the interior edges. Hence, the side identifications of the square are those
of a once-punctured torus. We therefore see that the ideal triangulation is obtained
from a copy of the once-punctured torus by successively attaching ideal tetrahedra,
realizing elementary moves, and then gluing top to bottom. In this sequence of
moves, no move can be immediately followed by its inverse, as this would create
an edge with valence two, which is impossible in angled polyhedral decomposition.
Hence, this is the monodromy ideal triangulation of a representation of M as a
once-punctured torus bundle. However, M fibres over the circle in only one way,
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since it easy to check that Ho(M,0M) =2 Z. As the space of ideal triangulations
of the punctured torus is a tree, there is only one possible such sequence of moves
that realizes the monodromy. Thus, this is the monodromy ideal triangulation of
M for the given bundle structure. This proves Theorems 1, 2 and 3.

References

(1]

2]
(3]
(4]
(5]
(6]
(7]

(8]

[9]
[10]

(11]

H. Akiyoshi, M. Sakuma, M. Wada and Y. Yamashita, Ford domains of punctured torus
groups and two-bridge knot groups, in: Knot Theory, Conference Proceedings, Toronto,
1999.

D. B. A. Epstein and R. C. Penner, Euclidean decomposition of non compact hyperbolic
manifolds, J. Differential Geom. 27 (1988), 67-80.

W. Floyd and A. Hatcher, Incompressible surfaces in punctured torus bundles, Topology
Appl. 13 (1982), 263-282.

D. Gabai, Foliations and the topology of 3-manifolds I11, J. Differential Geom. 26 (1987),
479-536.

T. Jgrgensen, On pairs of once-punctured tori, unfinished manuscript.

M. Lackenby, Word hyperbolic Dehn surgery, Invent. Math. 140 (2000), 243-282.

I. Rivin, On geometry of convex ideal polyhedra in hyperbolic 3-space, Topology 32 (1993),
87-92.

J. H. Rubinstein, Polyhedral minimal surfaces, Heegaard splittings and decision problems
for 3-dimensional manifolds, Proceedings of the Georgia Topology Conference, AMS/IP
Stud. Adv. Math, vol. 21, Amer. Math Soc. (1997) 1-20.

M. Stocking, Almost normal surfaces in 3-manifolds, Trans. Amer. Math. Soc. 352 (2000),
171-207.

A. Thompson, Thin position and the recognition problem for the 3-sphere, Math. Res. Lett.
1 (1994), 613-630.

J. Weeks, SnapPea, available at http://thames.northnet.org/weeks/index/

Marc Lackenby
Mathematical Institute
Oxford University
24-29 St Giles’

Oxford OX1 3LB
England

(Received: January 4, 2002)



	The canonical decomposition of once-punctured torus bundles

