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Fundamental groups of algebraic fiber spaces

Ichiro Shimada

Abstract. Let f : E — B be a dominant morphism, where F and B are smooth irreducible
complex quasi-projective varieties. Suppose that the general fiber F}, of f is connected. We
present an algebro-geometric condition under which the boundary homomorphism 8 : m2(B) —
71 (Fy) is well-defined, and makes the sequence

7T2<B) — 7T1<Fb) — 7T1<E) — 7\'1(B) — 1
exact. As an application, we calculate the fundamental group of the complement to the dual
hypersurface of a smooth projective curve.

Mathematics Subject Classification (2000). 14F35, 14D05.

Keywords. Fundamental group, second homotopy group, algebraic fiber space, homotopy exact
sequence, dual hypersurface.

1. Introduction

We work over the complex number field C.
Let EF and B be smooth irreducible quasi-projective varieties, and let

f:E— B
be a projective surjective morphism. Throughout this paper, we assume that the
general fiber of f is connected. Let Z be a reduced hypersurface of . We denote
by E the complement F'\ Z to Z in F, and by f the restriction f|F of f to E.

Then
f:F— B

is a dominant morphism with the general fiber being a smooth irreducible quasi-
projective variety. For a point a € B, we denote by I, the fiber f(a), and by
7o the scheme-theoretic intersection of F', and Z. We put

F, = fYa)=F,\ Z,.
We choose a general point b of B, and a point b of Fj. Let
1 Iy = F
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denote the inclusion morphism. We will study the homomorphisms
iy - T (Fy,b) = m(E,B)  and  fy @ m(E,b) — my(B,b)

on the topological fundamental groups induced by the morphisms i and f. By
investigating the homotopy lifting property of the morphism f, we will show the
following:

Theorem 1.1. Suppose that f : E — B and Z satisfy the following conditions.

(C1) BEvery irreducible component of the hypersurface Z is mapped surjectively onto
B by f.

(C2) The locus Sing f C E of the critical points of f is of codimension > 3 in E.

(C3) The locus {a € B | Z, is not reduced } is contained in a Zarisks closed subset
of codimension > 2 in B.

Then the boundary homomorphism

9 : ma(B,b) — mi(F,b)
is well-defined, and the sequence
m(Bb) o m(Fnb) = m(B)

s exact.

m(B,b) — 1

In fact, Nori [8, Lemma 1.5 (C)] has proved that, under a condition milder
than (C1)—(C3), the sequence

m(Fyb) 2 m(Eb) 5 m(Bb) — 1

is exact.

A special case of Theorem 1.1, where B is an affine space AY | E is a product F x
AN of a smooth irreducible projective variety F' and AV, and f is the projection,
was proved in [10].

As an application, we will calculate the fundamental group of the complement
to the dual hypersurface of a smooth projective curve.

Let C be a compact Riemann surface of genus g > 0, and L — C a line bundle
of degree d > 2g + 1. Then the complete linear system |L| embeds C into the
projective space

Py :=P*H°(C, L)

parameterizing all hyperplanes of the vector space H°(C, L) of dimension d —
g+ 1. Let Cp denote the image of this embedding. We denote by CY the dual
hypersurface of C, in the dual projective space P} of Pr,. Let B(C, d) be the braid
group on d strings on the Riemann surface C; that is, B(C,d) is the fundamental
group of the space

Sym?¢ C'\ AL,

where Sym? C is the symmetric product of d copies of C, which parameterizes
all effective divisors of degree d on C, and A”é is the hypersurface of Sym?C
parameterizing all non-reduced effective divisors of degree d.
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Theorem 1.2. If L corresponds to a general point of the Picard variety Picd(C’)
of isomorphism classes of line bundles of degree d on C, then m (P} \ C)) is
isomorphic to the kernel of the natural homomorphism

B(C,d) — Hi(C,Z).

Theorem 1.2 was stated in [3]. However the proof in [3] seems to be incomplete,
because the family of the complements Py \ CY is, in general, not locally trivial
over Pic*(C)). Another proof of Theorem 1.2 was also given in [7], but the proof
is sketchy.

A finite presentation of B(C, d) is given in [1], [2] and [9]. A finite presentation
of the kernel of the natural homomorphism from B(C,d) to H1(C,Z) is given in
[6] and [7].

This paper is organized as follows. In §2, we collect miscellaneous definitions
and lemmas that will be used in this paper. In §3, we state Nori’s lemma [8,
Lemma 1.5 (C)], and give a proof which is different from Nori’s original proof, and
uses a similar idea as the proof of Theorem 1.1. In §4, we define the boundary
homomorphism 9 from 7o (B) to 71 (Fp), and in §5, we prove Theorem 1.1. In §6,
we prove Theorem 1.2.

The author would like to thank Professor Vik. S. Kulikov for helpful discussions.

Notation and terminologies

(1) We consider algebraic varieties with the complex topology unless otherwise
stated. An algebraic morphism ¢ : X — Y is said to be locally trivial over
Y if it is locally trivial over Y as a continuous map in the complex topology.

(2) The Zariski closure of a subset A of an algebraic variety is denoted by A~.

(3) For an algebraic variety X, we denote by Sing X the singular locus of
X. For a morphism ¢ : X — Y with X and Y smooth, we denote by
Sing ¢ C X the locus of critical points of ¢.

(4) We denote by I the closed interval [0,1] in R. For a subset A of I*, we
denote by A° the interior of A in R¥, by (A)~ or A the closure of A, and
by dA the boundary A\ A° of A.

(5) Let p be a point of a topological space X, and w : (I*,dI*) — (X,p) a
continuous map. We denote by [u] the element of 74 (X,p) represented by
u. The constant map from I* to the point p is denoted by 0,,.

(6) Let ¢ : X — Y and ¢ : Z — Y be continuous maps. We say that ¢ is
locally trivial over ¢ or over Z if the pull-back

W P X=XxyZ — Z

of ¢ by ¢ is locally trivial over Z.
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2. Preliminaries
2.1. Transversality

Let M and N be connected C* differentiable manifolds, and S a closed subman-
ifold of N, which may have several connected components of various dimensions.
Let Y be a smooth irreducible quasi-projective variety, and T a closed, reduced
(and possibly reducible) subvariety of Y.

Definition 2.1. (1) We say that a C>**-map ¢ : M — N intersects S transversely
if, for any p € ¢~ (S), we have

(d¢)p(TpM) + T¢(p)S - T¢(P)N'

(2) We say that a continuous map v : I¥ — N intersects S transversely if there
exists an open subset U of I* satisfying

v HS) c U cUc (IF

such that the restriction

v|lU: U —= N

of v to U is a C*°-map that intersects S transversely in the sense of (1) above.
(3) We say that a C*°-map ¢ : M — Y intersects T transversely if the following
hold;
e o Y(SingT) = 0, so that ¢ can be regarded as a C>*-map to Y\ Sing T, which
contains 1"\ SingT" as a closed submanifold, and
e as a C*-map to Y \ Sing T, ¢ intersects the closed submanifold 7"\ Sing T
transversely in the sense of (1) above.
(4) We say that a continuous map w : I* — Y intersects T' transversely if there
exists an open subset U of I* satisfying

w(T) cU cU c (IF°

such that the restriction w | U of w to U is a C°°-map that intersects T transversely
in the sense of (3) above.

Let A, V and W be open subsets of M such that the closure V of V in M is
compact and contained in W. Suppose that a distance function

d: NxN - Rso

on N is given. Using the approximation theorem of continuous maps by C*°-maps
and the elementary transversality theorem ([5]), we can easily prove the following:

Lemma 2.2. Let ¢g : M — N be a continuous map. Suppose that the restriction
do| A of ¢o to A is a C*°-map intersecting S transversely. Then, for any positive
real number ¢, there exists a continuous map ¢1 : M — N with the following
properties;
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e there exists a homotopy from ¢g to ¢1 that is stationary on M\ W,

e the restriction ¢1 | (AUV) of ¢1 to AUV is a C*>-map intersecting S trans-
versely, and

e d(do(z),P1(x)) <& for any z € M. O

Starting from Ty := T, we put
Tir1 = Sing T3,

where T} is considered as a subscheme of Y with the reduced structure. Then T,
is empty for n large enough. By definition, T; \ T;11 is a closed submanifold of
Y \Ti+1. Applying Lemma 2.2 to these closed submanifolds repeatedly, we obtain
the following:

Corollary 2.3. Let oo : M — Y be a continuous map such that pg| A is a C*°-
map intersecting T transversely. If

dimp M + 2dim SingT" < 2dim Y,

then there exists a continuous map p1 : M — Y with the following properties;
e there exists a homotopy from ¢q to @1 that is stationary on M\ W, and
o the restriction o1 | (AUV) of o1 to AUV is a C™-map intersecting T trans-
versely. ([l

Corollary 2.4. Let wo : I* — Y be a continuous map such that wy *(T) is con-
tained in (I*)°. If
k+2dim SingT < 2dimY,

then there s a continuous map wi : I* — Y intersecting T transversely that is
homotopic to wy relative to OIF. (Il

2.2. Local triviality of a C*°-map

Let M and N be C*> manifolds, and R a closed submanifold of M, which may
have several connected components of various dimensions. Let ¢ : M — N be a
C®-map.

Lemma 2.5. Let K be a non-empty compact subset of M contained in the inverse
image ¢~ (p) of a point p € N. Suppose that ¢ is smooth at every point of K, and
that the restriction ¢ | R of ¢ to R is smooth at every point of RN K. Then there
exist open neighborhoods V' of p in N and U of K in M contained in ¢~ (V') such
that the pair of the C*°-maps

(6|U,6|UNR) : (UUNR) —» V

is locally trivial. (Il
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2.3. The topological discriminant locus of an algebraic morphism

Let X and Y be smooth irreducible quasi-projective varieties, and ¢ : X — Y a
dominant morphism.

Definition 2.6. The topological discriminant locus >4 is the minimal Zariski
closed subset among the Zariski closed subsets ¥ of Y with the following properties;

e Y contains the locus ¢(Sing ¢) of the critical values of ¢, and
e ¢ is locally trivial over Y \ ¥. (See Notation and terminologies (1) and (6).)

There always exists the topological discriminant locus 4 (possibly ¥y = 0)
such that ¥4 # Y ([8, Lemma 1.5 (A)]).

2.4. Bertini’s Theorem
See [4, Theorem 1.1] for the proof of the following:

Lemma 2.7. Let X C P be an irreducible quasi-projective variety of codimension
cin PN, and let A be a general linear subspace of PN with dimension ¢+ 1.

(1) The scheme-theoretic intersection AN X is an irreducible curve.

(2) Suppose that dimSing X <dim X — 2. Then AN X is smooth.

(3) Suppose that X is smooth. Then the inclusion AN X — X induces a
surjective homomorphism from w1 (AN X) to m(X). O

3. Nori’s lemma

Let f : E — B be as in §1. We denote by >y C B the topological discriminant
locus of f. We will consider 3 as a reduced subscheme of B. In particular, we
have

dimSing ¥y < dim B — 2.

Since we have assumed that the general fiber of f is connected, F, is connected
for any a € B\ ¥;. Since b € B is general, we can assume b ¢ 3.

Proposition 3.1 ([8], Lemma 1.5 (C)). Suppose that the Zariski closed subset
Ei={a€eB | F,\(I,NSingf)=0}"
is of codimension =2 in B. Then the sequence
mi(Fob) 2 (BB L% m(Bb) — 1

s exact.
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We hope that the proof of Proposition 3.1 given below will be helpful in un-
derstanding the idea of the proof of Theorem 1.1. First we prove the following
lemmas, which will be also used in §4.

Lemma 3.2. Let £ : [ — B\ ¥y be a path. Suppose that points po € Fey and
p1 € Feqry are given. Then there erists a lift E:1— E\f1(Xy) of & that satisfies

£(0) = po and £(1) = py.

Proof. Since f is locally trivial over ¢, the pull-back *E — I of f by & is trivial.
Since the fiber of £*F — I is connected, the existence of the lift £ connecting po
and pq follows. O

Lemma 3.3. Letv : IxI — B be a continuous map that intersects 3y transversely
and satisfies v (1) = 0. Suppose that we are given a lift

(vp)~ : Ix {0} — E
of the restriction vg :=wv |I x {0} of v to I x {0}. Then there exists a lift
v:Ixl— F
of v such that the restriction ¥ | I x {0} of ¥ to I x {0} is equal to (vo)™, and that
- 1(Sing f) is empty.

Proof. Since v intersects Y transversely, v—!(3;) is a finite set of points of (I x I)°.
In particular, the image of (vo)™ is disjoint from Sing f, because Sing f C f~(3)
by the definition of the topological discriminant locus. We put

v (%) = {p1,...,pn}.

Since v(p;) ¢ Ei, there exists at least one point of F,,,y at which f is smooth.
Hence there is an open neighborhood U; of v(p;) on which a holomorphic local
section

si Ui — fHUy)
of f is defined. Note that s;(U;) N Sing f = §). There exists a homeomorphism
W IxI S IxI
such that ¢ | I x {0} is the identity map of I x {0}, and that
Y(p) = (i/(N+1),1/2) € (I x I)° for every p; € v (Xy).
We choose a sufficiently small positive real number p, and put

Al i={(my) elIxI | (z—i/(N+1)*+(y—1/2)*<p*},
Zl = {(i/(N+1),t)elxI | tel0,1/2—p}.
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We then put

N
A=y N(A), Zi=¢7N(Z) and Q:=(Ix{0}) u | J(AUZ).

i=1
Since p is small enough, we can assume that v(A;) C U;. Therefore a lift
(v|A)~ Ay — E
of v| A; can be defined by
(v|A)~ =s;0(v]|Ay).

Note that
(v]A:)~(As) N Sing f = 0. (3.1)

We put
I x{0)NnZi={ri}, AinZi={q}, and G = (v|A) (@) €E.
Since Z; Nv=Y(Xy) = 0, v(Z;) is contained in B\ ¥;. By Lemma 3.2, we have a
lift
(7)|Z,L')N : Z,L — kK
of v| Z; such that (v|Z;)~(r;) = (vo)~(r;) and (v | Z;)™~(q;) = ¢;. Then a lift
@Wl@Q)~: Q= E
of v| @ can be defined by
(vo)™(p)  ifpelx{0},
W @)~(p) = Wl Z)~(p) ifpe Z,
(v]Ai)™(p) ifpe A
Note that v =13 ) is contained in the interior of §). Hence f is locally trivial over

the restriction v | (I x )\ Q°) of v to (I x I)\ Q°. Since @ is a strong deformation
retract of I x I, we can extend (v| Q)™ to a lift

v:Ix]l - E
of v. Since Sing f is contained in f~1(3), we have
77 1(Sing f) C v (%) C UA,.

Since @ | A; coincides with (v |A;)™, we have 3~ !(Sing f) = 0 by (3.1). By con-
struction, ¥ | I x {0} coincides with (vg)™. O

Proof of Proposition 3.1. The surjectivity of f, follows immediately from the con-
nectedness of the general fiber of f. It is also obvious that Im, is contained in
Ker f.. Hence all we have to prove is Ker f, C Im,.
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Fia. 3.1. The curve segment Z; connecting r; and g;

Suppose that a loop B
w: (I,0) — (E,b)

represents an element [u] of Ker f,. By Corollary 2.4, we can assume that
u L(f71(3y)) = 0. There is a homotopy

w: (1,0 x I — (B,b)
from the loop
fou: (I,AI) — (B,b)

to the constant loop 0. We have w!(3¢) C (I x I)°. Note that Z; C ¥;. By
Corollary 2.4 and the assumption on the codimension of =1, we can assume that
w intersects Yy transversely, and that w~1(Zy) is empty. We put
K= @I xI)u(I x{0}).
We can define a lift
(w|K)™Y: K - F
of w| K by
o b ifpedlxl,
(w|K)™(p) == o
u(t) if p=(¢,0) € I x {0}.

There is a homeomorphism
¢C:(UxI,Ix{0}) = (IxI,K)

that is locally diffeomorphic at each point of (wo ¢)~1(% ¢). Then wo ¢ intersects
Y; transversely. We define a lift of (wo () |I x {0} to be the composite (w|K)™~ o
(C|1 x {0}). This lift can be extended to a lift (wo )™ of w o { by Lemma 3.3.
Hence we can extend (w | K)™ to a lift

@ : (I,dI) x I — (E,b)
of w by defining @ := (wo ()~ o (1. We define a loop
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0p u
0p w Oy 0z @ 0
fou u

Fia. 3.2. The homotopy w and its lift @

o o (1,01) — (Fy,b)
to be the restriction @ | I x {1} of @ to I x {1}. Then w yields a homotopy from
the given loop v in E to the loop v’ in Fy,. Therefore we have
[u] = [/] € Tmi,.

Thus Ker f, C Imi, is proved. (Il

4. The boundary homomorphism
We consider the following condition on f : £ — B.

Condition (S). There exists a locally closed smooth irreducible subvariety S of
F with the following properties.

Let g : S — B denote the restriction of f to S. For a point ¢ € B, we
denote by G, the fiber g~ (a).

(S1) The morphism g is dominant.
(S2) Let X; C B be the topological discriminant locus of g. Then the Zariski
closed subset
Ey = Ef n Eg
of B is of codimension > 2.
(S3) The Zariski closed subset

Eg Z:{CLEB | Ga\(GamSingf)ZQ}:

of B is of codimension > 2.
(S4) If a € B is general, then G, is connected, and the inclusion of G, into F,
induces a surjective homomorphism from 71 (G,) to 71 (F,).

Proposition 4.1. Suppose the following:
(a) The Zariski closed subset
Ey={aeB | F,\ (F,NSing f) is empty or not connected }~

of B is of codimension > 2.
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(b) The condition (S) s satisfied.
(¢) The Zariski closed subset Sing f of F is of codimension > 2.

Then there erists a homomorphism @ from wo(B,b) to m(Fy,b) such that Ker i,
coincides with Im 0.

Proof. There exists a proper Zariski closed subset Y. oy of B containing the union
¥ U2, such that the pair

(fr9) : (E,S) — B

of the morphisms f and g are locally trivial over B\ ¥y 4. Let EE £.9) be the union
of all irreducible components of ;s ;) that are not contained in >y U>,. We put

i n= E/(f,g) N (Zf U 29)7

which is a Zariski closed subset of B with codimension > 2. The Zariski closed
subset

:Z:EQUESUE4UE5

of B is of codimension > 2 by the assumptions.

Definition 4.2. We say that a continuous map
w: (I?,81%) — (B,b)
is good if w intersects Y o) transversely, and wHE) is empty. A lift
w:I? - FE

of a good continuous map w is said to be a good lift if w(K) consists of a single
point b, where K := (I x {0})U (8] x I), and @~ !(Sing f) is empty.

Let [w] be an element of wo(B,b). We can assume that [w] is represented by
a good continuous map w by Corollary 2.4. Because Y¢ is contained in Xy oy, w
intersects >y transversely. Because Z; in Proposition 3.1 is contained in Z4, we
have w~!(Z;) = 0. There is a homeomorphism

¢ (P Ix{0}) = (I*,K)
such that w o ¢ intersects ¢ transversely. By Lemma 3.3, we can lift w o ¢ to
(wo )™« (I, Ix {0}) — (E,b)
such that (wo ()™~ (I?)NSing f = @. Putting w := (wo )~ o™, we obtain a good
lift
@ : (I, K) — (E,b)

of w. We will define d([w]) to be the element of 71 (Fy,b) represented by the loop

@|Ix{1}: (I,0I) — (Fy,b).
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To show that this definition makes sense, we will prove that the homotopy class
of the loop w |1 x {1} in F}p does not depend on the choice of a good continuous
map w representing [w], and a good lift w of w. Let

wo : (I%,01%) — (B,b) and w : (I%,dI%) — (B,b)
be good continuous maps representing a same element [w] € mo(B,b), and let
w1 (I, K) — (E,b) and w; : (I*,K) — (E,b)
be good lifts of wy and w1, respectively. There exists a homotopy
h: (I?,0I?) x I — (B,b)
from wq to wy. We choose a sufficiently small positive real number 7, and let
p I’xT = I*x1I

be the continuous map defined by

(p,0) if t € [0, 47],
pp,t) =< (p, (t —47)/(1 —87)) ift € [47,1 — 47],
(p,1) if t € [1 — 47, 1].

Then the continuous map
hop: (I?,0I°) x I — (B,b)

is also a homotopy from wg to wy. We replace h by h o p. By the definition of
good continuous maps, both of wy L(g) and wfl(E) are empty. Hence we have

hHE) C I? x (47,1 — 47).
Moreover, there exist open subsets Ag and A; of I? satisfying
w;l(E(ﬁg)) c A, C A4, C (PP (v=0,1)
such that the restrictions
wy | A, + A, — B (v=0,1)
of w, to A, are C*°-maps intersecting Y 4y transversely. We put
A= (Ao x (0,47)) U (A x (1 —47,1)).

Then h| A is a C*°-map intersecting Y; ;) transversely, and (h|A) " (Z) is empty.
There exist open subsets V and W of I? x I satisfying

R Sy UE)N (I x3r,1-37)) CV C V
C W cCW c (I?)° x(2r,1—27).
By Corollary 2.3, we obtain a continuous map
W:I*xI— B

with the following properties;
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e h and b/ are homotopic relative to (12 x I)\ W, and
e the restriction »' | AUV is a C*°-map intersecting Y; ;) transversely, and its
image is disjoint from Z.
In particular, '’ is again a homotopy from wg to w; stationary on 0I2. We
replace h by h’. Then the homotopy h has the following properties;
o h{(E) =0,
e h (%) is a one-dimensional manifold with the boundary, and the bound-
ary Oh~ (34,4 is contained in (I?)° x 01,
o h(p,t) = h(p,0)if t € [0,27], while h(p,t) = h(p,1) if t € [1 — 27, 1].
Note that h=1(3;), h~1(3,) and h’l(EEf’g)) are disjoint, and each of them is a
union of connected components of h~(3; g)).
We put
L= (K xI)u(I*xal),
and define a lift
(h| L)Y : L — F

of h| L by the following;
b ifpekK,
(L)~ (p,t) == q wolp) ift=0,
wi(p) ift=1.

For the well-definedness of 9, it is enough to show that the lift (k| L)™ extends to
a lift _ _
h:(I*,K)xI — (E,b)

of h; that is, there exists a lift h of h such that h|L coincides with (h|L)™.

Because the restriction of such a lift & to I x {1} x I will yield a homotopy from
the loop wq | I x {1} to the loop wy |1 x {1} in F}.

We will modify h by a homeomorphism
V:?PxI S IPxl.

We denote by
H:I’xI - B

the composite ho ¥ of h and ¥. We put
T o= H {5 ).
For a subset J of I, we put
Ly=In(I*xJ).

When J consists of a single point ¢, we write I'; instead of I'y;;. By choosing an
appropriate homeomorphism ¥, we can assume the following.

(W1) UL(L) = I? x {0}.
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Fia. 4.1. The homeomorphism ¥

(¥2) There exists an open subset A of I? x {0} such that
ey CACAcC(I?)° x {0}, and
e H(p,t) = H(p,0) if (p,0) € Aand ¢t € [0,7].

In particular, we have I'g -) = I'o x [0, 7].

(¥3) The closed subset I' of I? x [ is a closed submanifold of (1?)° x I with
boundary. From (¥1) and (W2) above, the boundary JT" is equal to Ty,
which is a finite subset of points of A. The interior I'* = T"\ 9T’ of " is a
one-dimensional manifold.

(W4) The projection ¢ : T'° — I° given by (p,t) — ¢ is a Morse function. If
(gi,7:) € I'° and (g5,v;) € I'° are distinet critical points of ¢, then the
critical values v; and v; are also distinct.

Let (g1,71), ..., (gn,vn) be the critical points of ¢. By renumbering, we have

Ty <<y < 1.

For t € I, we define
H; : I°’x[0,t] - B

to be the restriction of H to I? x [0,¢]. We can define a lift
Hy: I*’x {0} - FE

of Hy by N
Hy := (h| L)~ o (¥|I° x {0}),

because ¥ induces a homeomorphism from I? x {0} to L by (¥1) above. It is
enough to show that Hp extends to a lift

H :I’xI > E
of H = Hy, because H; o ! will be the desired lift b of h = H o U1,
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Definition 4.3. We say that a lift H, of H, has the property (V) if there exists
an open subset V; of I? x {t} satisfying

o, CV,CV,C(I?)° x {t}, and

° f]t maps V; to the subvariety S of E.

First we will extend I:To to a lift
H, :’x[0,7] - E
of H; with the property (V). We put
Io={(c1,0),...,(cm,0)}.

Then we have
H{cy,t) = H(ey,0) for te]0,7].

We put ~
a, = H(c,,0) € ¥y, and o, = Hg(c,,0) € Fy,.

Because {170_1(Sing f) =0 and @E_l(Sing f) = 0 by the definition of good lifts,
the point a,, = (h| L)~ (¥(c,,0)) is not contained in Sing f. Because h~1(Z) = ),
we have H~!(Z) = 0, and hence a, ¢ Z. This implies the following;

o I, \ (F,, NSing f) is connected,

e (G, ¢ Sing f, and

e a, ¢ Y,. In particular, g is smooth at every point of G, .
We choose a point o, € G, \ (G,, NSing f). Then we can connect o, and «/, by
a path

& I — F,, \ (F,, NSing f).

Since &, (1) is compact, there exist, by Lemma 2.5, an open neighborhood D, of
a, in B and an open neighborhood M,, of &,(I) in f~(D,) such that the pair

(flMlug'MumS) : (MWMVOS) — D,

is locally trivial. We choose a small closed disk A, in I? with the center ¢, such
that
e A, x {0} C A, where A is the open subset of I? x {0} that has appeared
in (¥2), and
o Holp, 0)e M, for all pe A,.
Then H(p,0) € D, for all p € A,, and hence we have

H(A, x[0,7]) C D,.
We can define a lift
(H[({ev} x[0,7]))7 : {ep} x [0,7] = F
of H|({e,} x [0,7]) by
(H |({ev} x [0, 7)) (ev,t) :=&u(t/T) € Fa,.
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This lift satisfies
(H|({c,} x [0, 7))~ (cy,0) = e, = Ho(c,,0), and
(H |({ev} x [0, 7)) (ey,7) = o, € Go, N M,,.
Since g | (M, N S) is locally trivial over D,, and H(A, x {7}) is contained in D,,

we have a lift
(H|A, x{t}H)™~ : A, x{t} = M, NS

of H|A, x {7} with respect to g| (M, NS) such that

H Ay x {7} (er, T) = a,.
We put

Qv = (A, x{0}) U ({e} x [0,7]) U (A, x {7}).
By gluing Ho | A, x {0}, (H|({c,} x [0,7]))™ and (H | A, x {r})™ together, we
obtain a lift
(H|QU)N : Qu — F

of H|Q, such that (H | Q,)~(Q,) C M,. Since Q, is a strong deformation retract
of A, x [0,7], and A, x [0, 7] is mapped in D, by H, we can use the homotopy
lifting property of the locally trivial map f| M, : M, — D,, and extend (H | Q, )"~
to a lift

(H|A, x[0,7]) : A, x [0,7] = F

of H|A, x [0,7]. We then put

s

Ri= (2 x{0}) U | ] (A, x[0,7]).

v=1
Gluing H, and (H|A, x [0,7])~ (: =1,...,m) together, we obtain a lift
(HIR : R — F

of H|R. Since R is a strong deformation retract of I? x [0,7], and f is locally
trivial over

H|((I* x [0,7)\ R*) : (I” x [0,7]) \ RB* — B,
we can extend (H | R)™ to a lift
Hy - I’x[0,7] = E
of H,. By the construction, H. is an extension of Hy. Moreover, since U, (A X
{7}) is an open subset of I?x {7} containing I, and is mapped into U, (M,NS) C S

by H, this extension H, has the property (V).
Next we prove the following:

Claim 4.4. Suppose that we are given a closed interval [u,v] contained in |7, 1]
and o lift B
H, : ’x[0,u] = E
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f /
[ ——

\ >(Q¢»’h‘)
-~ (gi,%) <

/~\_’/—‘

Case 1 Case 27 Case 2~

Fia. 4.2. The three cases

of H,, with the property (V). Then H, can be extended to a lift
H,  ’x[0,0] - E

of H, with the property (V) in the following two cases:

Case 1. The closed interval [u,v] contains no critical values of the Morse
function ¢ : T° — I°. (See the condition (V4).)

Case 2. There exists a critical value v; of ¢ such thatu = v;—e and v = v;+¢,
where ¢ is a sufficiently small positive real number.

Starting from }NIT and repeating the extension of ITIU to Efu in the above two
cases, we can extend H, toalift H, : I? x I — I of H = H,. The well-definedness
of the boundary homomorphism 9 : mo(B) — mo(Fp) will thus be established.

Proof of Claim 4.4. We divide Case 2 into the following two sub-cases:
Case 27. The critical point (g;,~;) of ¢ is of index +1.
Case 2. The critical point (g;, ;) of ¢ is of index —1.
By the property (V) of H,, we have an open subset V(') of I2 x {u} such that

L, C V(W) € V(T © (I*° x {u},

and that H, maps V(I',) into S. We decompose I'f, .| into the disjoint union of
I‘fu o] and Fﬁb o where Ff; o 18 the union of all connected components of I',, .
that do not contain any critical point of ¢, and Ffu o] = L) \Ff; o In Case 1,
Ffu,v] w,v]
In both cases, each connected component of Ff; 3] is mapped homeomorphically

onto [u,v] by the projection ¢. We put
FZ = F[;,u] N (IQ X {’I},}) - {(Cl7u)7 FEE G (Ck7u)}'

is empty, while in Case 2, Ff consists of a single connected component.
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There exists a trivialization
(12 X [u,@LFf;m]) %) (]2 X {u}>F'Z) X [’U,71}]

N v

[, 0]

of the pair (I? x [u, v], Ff; U]) of topological spaces over [u, v] such that the restric-
tion o |I? x {u} of the homeomorphism o is the identity map of I? x {u}. For

each point (c,,u) of I, we choose a sufficiently small closed disk A, in I? with
the center ¢, such that A, x {u} C V(T',), and put

k
T, =0 YA, x[uwo]), T:=|]1T.
==l

Then T'is a closed tubular neighborhood of I'f, , in I 2 X [u,v]. Since we have
H-YE)=0,Tn H'(%,) is empty. Hence, by taking A, small enough, we can
assume that

TNH (%, =0

Then g is locally trivial over H |T. Since
T, :=TnI*x {u}) =(UA,) x {u}
is contained in V(I ), the property (V) of H, implies
H,(T,) C S.

Therefore, using the homotopy lifting property of the pull-back of g : S — B by
H|T:T — B, we can extend H, | T, to a lift

(H|T)” :T — 8
of H|T with respect to g. Gluing H, and (H |T)™~ together, we obtain a lift
Hyr : (Px[0,u))UT - E
of the restriction
HI((IPx[0,u)UT) : (I?x[0,u])UT — B
of H that satisfies

H,r(T)C S (4.1)
Case 1. In this case, we have I', ,) = Ff; T and hence
(1% % [0,9]) \ (I x [0,u]) UT)° (4.2)

is disjoint from I'. Hence f is locally trivial over the restriction of H to (4.2).
Moreover, (I2 x [0,u]) UT is a strong deformation retract of I? x [0, v]. Hence we
can extend ITIU’T to a lift

H, : I’x[0,0] - E



Vol. 78 (2003) Fundamental groups 353

P

A, 0 {ud

1% s {u}

Fia. 4.3. Case 1

of H,. Since
T2 :=T° N (I? x {v})

is an open subset of 12 x {v} containing Iy, and H, (1) = ﬁ%T(qu ) is contained
in S, the lift H, thus constructed has the property (V).

Case 2. Note that the critical point (g;,v;) of the Morse function ¢ in the
region 2 x [u,v] is not contained in H~1(3,), because H (=) = 0. Note also
that, taking the closed discs A, small enough, we can assume that

T n Ffuw] = @

Case 27. Since ¢ is small enough, there exists a positive real number § such
that the closed subset

R={(pt) e x[uv] | p—a| <6 ute/2<t<0}
of I? x I satisfies the following;
I, yCR TNR=0 and H '(3)NR=0.

We put
A=A{aq} x [u,u+e/2,

which is a line segment connecting
ro = (gi,u) € I? x {u} and 7y :=(g,u+t¢e/2)€R.
Since ¢ is small enough, we can assume that
TNA=0.
We put

Bo == Hu(ro) € Fri(ry)-
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Z fagd
I = Ju}

Fic. 4.4. Case 271

Since H(rq) ¢ ¥4, we have a point
B1 € Guy-
Since H=1(¥;) N A =0, Lemma 3.2 gives us a lift
(HINY : A= F
of H | A such that
(H|A)~(ro) = fo = Hu(ro) and (H|A)*(r1)=pi € 5.

Since g is locally trivial over H | R and {r{} is a strong deformation retract of R,
we have a lift
(HIR”:R— S

of H | R with respect to g such that
(H|R)™(r1) = p1 = (H|A)™(r1).
We put
Q:=(I’x[0,u)UTUAUR.
Gluing ﬁ%T, (H|A)~ and (H | R)™ together, we obtain a lift
H|Q)™:Q > FE
of H[Q. Since the interior of Q contains I'jg ), f is locally trivial over
HI|((I* x 0,2\ Q) : (I* x [0,4])\ Q" — B.

Moreover, @ is a strong deformation retract of I? x [0,v]. Hence we can extend
(H| Q)™ to alift
H, : I’x[0,0] = E
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of H,. Note that
(R°UT?)N (12 x {v})

is an open subset of I? x {v} containing I',,, and it is mapped to S by I;TU from
the construction. Thus the lift H, has the property (V).

Case 2. Since H }(Z) = ), we have

Since ¢ is small enough, there exist an open ball V in (I% x I)° containing (g;,¥;)
and coordinates (z,y, z) defined on V such that the following hold:

VT, VAH \(8) =0, VNH (S, ) =0, VAT =0
The critical point (g;,;) is the origin (0,0,0) of the coordinates (z, v, 2).

The projection V — I onto the second factor of I? x I is given by

(.’E7y72) = Z+’Y’L

The real one-dimensional curve Ff is given by

uv]

{(0s7—5") | —VE<s<VE}
in terms of (z,v, 2).
We introduce the usual Euclidean distance |-, -|| on V' with respect to (z,y, z). Let
p be a sufficiently small positive real number, and let P be the set of all (p,t) € V
satisfying
o ¢ € [u,v], and
e there exists a point (p',t') € I', ; such that [[(p,?), (p',¢')|| < p.

[u,v
Then P is a closed tubular neighborhood of Ffu v In I? x [u,v]. Taking p small
enough, we can assume that

P, =P (1% x {u})

is contained in the open neighborhood V(I',) of T, in I? x {u}. Let D be the
connected component of

(VA (12 x [u,0])) \ P?) 0 {z = 0}

containing the point (0,0, —¢). Then D is homeomorphic to the 2-dimensional
closed disk. We put

Ao =DnN(I?x {u}), and A;:=DnNP.

Let rg and 1 be the end-points of the line segment Ag. Then Aj is a curve segment
on the boundary of the tube P connecting rg and r{, and the boundary 9D of the
disk D is Ag UAy. Since

H ' (S9)ND=TUH Y (Z)UH( o) ND=0,
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Fia. 4.5. Case 2™

the pair (f, g) of the morphisms is locally trivial over H | D. Since D is contractible,
we have a trivialization

(H|DY'E,(H|D)*S) = (F,G)xD

YD

(H|D)*(f,9) "\ / prp
D

of the pull-back of (f,g) by H|D, where (F,G) is a pair of topological spaces
homeomorphic to the general fiber of (f,g). The continuous map

F[U|A01Ao—>E

naturally yields a lift
So - AO — (H|D)*E

of Ag — D with respect to (H | D)*f. We fix a homeomorphic path
A: T = A
from 7o to r1, and define a path s, : I — F by
s6(t) == prp(¥p(so(A()))),

where

prp: FxD — F

is the natural projection. Because rg and r; are contained in P, C V(T",), Hu(ro)
and H,(ry) are contained in S. Hence we have

50(0) € G, sp(1) € G.
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Note that both of F' and G are path-connected. Moreover, from the item (S4) of
the condition (S), the inclusion G — F' induces a surjective homomorphism from
71 (G) to 7 (F). Since G is path-connected, we have a path

sh: I —@G

from s{(1) to s{(0). Then sjs) is a loop in F' with the base point s,(0). Hence
there exists a loop
862 : (I7 81) — (G7 36(0))
such that
[s0a] = [sosa] in 71 (F, 55(0)).
We define a path
s): I — G

from s{(0) to s4(1) to be the conjunction of the loop s, and the inverse path
(sh)~! of s in G

o 1= by - (sh) 7"
Then s and s} are homotopic in F' relative to 8. Thus we have a homotopy

n:IxI —F
from s{ to s} stationary on 1. We have a continuous map

T:IxI — D

such that
e 7 maps I x {0} to Ag and I x {1} to A; homeomorphically,

e 7 contracts {0} x I to the point 7o, and {1} x I to the point ry,
e the homeomorphism 7| I x {0} from I x {0} to Ag coincides with the home-
omorphic path A : I — Ag, and
¢ 7 induces a homeomorphism from I° x I to D\ {rg,71}.
Then there exists a unique continuous map
np : D — F
such that 7 factors as np o 7. We define a continuous map
mp: D — FxD
by 71p(p) := (np(p),p). Then we can define a lift
(HID):D—FE
of H|D by
(H|D)~ = prgoyp' ofip,
where prg : (H|D)*E — FE is the natural projection, and #p is the homeo-

morphism from (H|D)*E to F x D that has appeared in the trivialization of
(H | D)*(f,g) over D. Then we have

(H|D)™ Ao = Hy | Ao,



358 I. Shimada CMH

because (H | D)™ | Ag coincides with
prposg : Ag — F

by the construction. Hence we can glue ﬁ%T and (H | D)™~ along Ag, and obtain
a lift

Hyrup : (I*x [0,u)UTUD — E

of H|((I? x [0,u]) UT U D). Since s} is a path in G, we have
ﬁu,TUD(Al) cs.

Since P, = PN (I? x {u}) is contained in V(I',,), we have

Hu,TUD(Pu) C S.

Since P, U Ay is a strong deformation retract of P, and g is locally trivial over
H| P, we can extend H, 7up | (P, UAq) to a lift

(H|P)* . P — S
of H | P with respect to g. We put
R:=I*x[0,u)UTUDUP.
Gluing f[u’TUD and (H | P)™ together, we obtain a lift
(H|IR™ :R - E

of H|R. Since R is a strong deformation retract of I x [0,v], and f is locally
trivial over (12 x [0,v]) \ R°, we can extend (H | R)™ to a lift

H, : I’x[0,0] - E

of H,. Since T° = T° N (I? x {v}) is an open subset of I? x {v} containing I',,
and
H,(T;)=H,r(T;) C S,

v

the lift H, thus constructed have the property (V).
Thus the proof of Claim 4.4 is completed. [l

The boundary map 9 : mo(B,b) — m1(Fy, b) is now well-defined. If
w: (I?,0I*) — (B,b) and w' : (I%,0I%*) — (B,b)
are good continuous maps, and
@: (I’ K) — (E,b) and @ : (I*,K) — (E,b)
are their good lifts, then the continuous map

wtw' : (I?,01°) — (B,b)
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defined by
w(2s,t) if s €[0,1/2]
w'(2s — 1,t) ifse[1/2,1]

(w+w')(s,t) = {

is also a good continuous map, and the continuous map
W+ (I°,K) — (E,b)

defined in the same way is a good lift of w 4 w’. Hence 9 is a homomorphism.
Now we will prove that Imd coincides with Keri,, using the condition (c). It is

obvious that Im 0 is contained in Ker7,. Suppose that a loop
v : (I,8I) — (Fy,b)
represents an element of Keri,. Then there exists a homotopy

@ : (I,dI) x I — (E,b)

in ' from the constant loop 0; to v. Note that w(K) consists of a single point b. If
FY(=) had an irreducible component of codimension 1 in F, then the assumption
that the codimension of = in B is > 2 implies that this irreducible component of
F (=) would be contained in Sing . Hence f~(Z) must be of codimension > 2
in . By Corollary 2.4, we can assume that

@ l(Sing /) =0, @ (FHE) =0,
and that @ intersects f~'(X(; ) transversely. Then
w:i=fow : (I?,0I°) — (B,b)

is a good continuous map, and w is a good lift of w. Hence we have [v] = 9([w]).
Therefore Ker 7, is contained in Im 9. O

5. Proof of Theorem 1.1

By Propositions 3.1 and 4.1, it is enough to show that the three conditions (C1)-
(C3) in Theorem 1.1 imply the conditions (a)—(c) in Proposition 4.1. (Note that
=1 is contained in Z4.) Since Theorem 1.1 is trivial when dimFE = dim B or
dim B = 0, we will assume

dimE > dim B > 0.

The condition (c) follows immediately from (C2).
Claim 5.1. The Zariski closed subset
Z¢:={a€ B | F, is not irreducible }~

of B is of codimension > 2.
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Proof of Claim 5.1. Suppose that =g had an irreducible component =} of codimen-
sion 1 in B. Let ¢ be a general point of Ef. Since 75 is connected, there exist two
irreducible components of F¢ intersecting at a point p. Since £ is general in =5,
FY(E}) is not locally irreducible at p. Let A; and A, be distinct local irreducible
components of f~1(Zf) at p. Then A; N Ay is of codimension 2 in E, because
both of A; and A, are hypersurfaces in the smooth variety E. Since A1 N A is

contained in Sing f, we get a contradiction to (C2). O
Claim 5.2. The Zariski closed subset =4 of B is of codimension > 2.

Proof of Claim 5.2. Suppose that =4 had an irreducible component =} of codimen-
sion 1 in B. Let £ be a general point of Zj. By Claim 5.1, FE is irreducible. If
F} is empty, then F¢ is contained in Z. Since ¢ is general in =, the hypersurface
fYZ}) would be contained in Z, and hence we get a contradiction to (C1). If F¢
is non-empty and contained in Sing f, then Fg is contained in Sing f and hence
we get a contradiction to (C3). Therefore I \ (F¢ N Sing f) is non-empty. Since
¢ € E4, the Zariski open subset F: \ (Fg N Sing f) of F¢ must be not connected,
which contradicts to the irreducibility of Fg. O

Thus all we have to prove is that the condition (S) is satisfied. Let 2;1)7 ey
Z(fk) be the irreducible components of ¢ with codimension 1 in B, and let {(4)

be a general point of ng). By Claim 5.1, F((i) is irreducible. By the condition
(C2), FC(i) N Sing f is of codimension > 2 in F((i)' By the condition (C3), Z¢(; is
reduced.

Since E is quasi-projective, we can embed E into a projective space PY. We
choose a general linear subspace A of PV with

dimA ;=N —dimFE 4+ dim B + 1.

Let a be a general point of B, and let d be the degree of Z, in PY. Then F, N A
is a smooth connected projective curve, and Z, N A consists of distinct d points.
Moreover, by Lemma 2.7, the inclusion F, N A — F, induces a surjective homo-
morphism from the fundamental group of the punctured Riemann surface F,NA to
the fundamental group of F,. Moreover F((i) NA is a smooth connected projective
curve disjoint from Sing f with genus equal to the genus of ', N A by Lemma 2.7,
and Z¢; N A consists of distinct d points.
We put
S=ANE

Then the general fiber G, of g is a compact Riemann surface minus d distinct
points, and its fundamental group is mapped surjectively onto the fundamental
group of F,. Since the genus of the compactification of the fibers of g and the
number of the punctured points do not vary locally around ((7), the point {(7) is
not contained in ;. Hence Hy = ¥y N Y, is of codimension > 2 in B.
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Let Z(1, ..., Z™) be the irreducible components of Z. Note that
dimZY) = dimE — 1 > N — dimA,

because we have assumed dim B > 0. Since A is general, Lemma 2.7 implies that
ZU) N A is irreducible of dimension equal to dim B, and the restriction of f to
ZU) N A is generically finite. Therefore the locus

{aeB | dim(Z,nA)>1}

is contained in a Zariski closed subset of B with codimension > 2. Hence the
locus {a € B | G, = 0} is also contained in a Zariski closed subset of B with
codimension > 2. Therefore, if =3 had an irreducible component of codimension
< 1in B, then it must be contained in f(Sing f) and hence in 3. Because G
is non-empty and disjoint from Sing f, {(4) is not contained in E3. Hence =3 is of
codimension > 2 in B. Therefore the condition (S) is satisfied. O

6. Proof of Theorem 1.2

For a line bundle L — C of degree d on C, we denote by [L] € Pic?(C) the
corresponding point of the Picard variety. We consider the natural morphism

7 : Sym? C — Pic?(0),
which is smooth and projective. The fiber 7~ '(|L]) of 7 over [L] € Pic(C) is
identified with the projective space
PY =P,H(C, L)

of one-dimensional linear subspaces of H°(C,L). The dual hypersurface Cy C
Py of the curve C, C Py is the intersection of 77 1([L]) with the hypersurface
A% c Sym? C. We equip A‘é with the reduced structure. The degree of CY does
not depend on [L]. Hence the scheme-theoretic intersection of 7 1([L]) and AY is
reduced for any [L] € Pic?(C). We denote by 7 the restriction of 7 to Sym? C'\ A%,.
Then Theorem 1.1 implies that the sequence

I — m(PY\CY) — m(Sym!C\AY) =5 m(Pic?(0)) — 1,

is exact for a general [L] € Pic?(C), because my(Pic*(C)) = 0. Therefore 71 (P) \
CY) is isomorphic to the kernel of the natural homomorphism

B(C,d) — H{(C,Z),

because T, is identified with this homomorphism. [l
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