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Classification of graded Hecke algebras for complex
reflection groups

Arun Ram and Anne V. Shepler

Abstract. The graded Hecke algebra for a finite Weyl group is intimately related to the geometry

of the Springer correspondence. A construction of Drinfeld produces an analogue of a graded
Hecke algebra for any finite subgroup of GL(V). This paper classifies all the algebras obtained
by applying Drinfeld's construction to complex reflection groups. By giving explicit (though non-
trivial) isomorphisms, we show that the graded Hecke algebras for finite real reflection groups
constructed by Lusztig are all isomorphic to algebras obtained by Drinfeld's construction. The
classification shows that there exist algebras obtained from Drinfeld's construction which are not
graded Hecke algebras as defined by Lusztig for real as well as complex reflection groups.

Mathematics Subject Classification (2000). 20C, 20F, 52B.
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0. Introduction

This paper is motivated by a general effort to generalize the theory of Weyl groups
and their relation to groups of Lie type to the setting of complex reflection groups.
One natural question is whether there are affine Hecke algebras corresponding
to complex reflection groups. If they exist then it might be possible to use these

algebras to build an analogue of the Springer correspondence for complex reflection
groups.

A priori, one knows how to construct affine Hecke algebras corresponding only
to Weyl groups since both a finite real reflection group W and a T^-invariant
lattice (the existence of which forces W to be a Weyl group) are needed in the
construction. Our search for analogues of graded Hecke algebras for complex
reflection groups was motivated by Lusztig's results [Lu2] showing that the geometric
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information contained in the affine Hecke algebra can be recovered from the
corresponding graded Hecke algebra. Lusztig [Lu] defines the graded Hecke algebra
for a finite Weyl group W with reflection representation V. Let tg, g G W, be a

basis for the group algebra CW of W and let ka G C be "parameters" indexed by
the roots in the root system of W such that ka depends only on the length of the
root a. Then the graded Hecke algebra HgY depending on the parameters ka is

the (unique) algebra structure on S(V) <g> CW such that
(a) the symmetric algebra of V, S(V) S(V) <g> 1, is a subalgebra of HgY,

(b) the group algebra CW 1 <g> CW span-{l <g>tg | g G VF} is a subalgebra
of i7gr, and

(c) tSiv (siv)ts. — ka.{v,oi-) for all v G V and simple reflections sj in the
simple roots at.

This définition applies to all finite real reflection groups W since the simple roots
and simple reflections are well defined. Unfortunately, the need for simple reflections

in the construction makes it unclear how to define analogues for complex
reflection groups.

For finite real reflection groups, the graded Hecke algebra HgY is a "semidirect
product" of the polynomial ring S(V) and the group algebra CW. Drinfeld [Dr]
defines a different type of semidirect product of S(V) and CW, and Drinfeld's
construction applies to all finite subgroups G of GL(V). In this paper, we

(1) classify all the algebras obtained by applying Drinfeld's construction to finite
complex reflection groups G,

(2) show that every graded Hecke algebra HgY (as defined by Lusztig) for a

finite real reflection group is isomorphic to an algebra obtained by Drinfeld's
construction by giving explicit isomorphisms between these algebras.

The results from (2) show how Drinfeld's construction is a true generalization of
Lusztig's construction of graded Hecke algebras, something which is not obvious.
Our classification in (1) gives a complete solution to the problem of finding all
graded Hecke algebras for finite reflection groups.

A consequence of our classification is that there exist graded Hecke algebras
for finite real reflection groups which are not obtained with Lusztig's construction.

In this sense, Drinfeld's construction is a strict generalization of the algebras
Hgr. These new algebras, and the algebras corresponding to complex reflection
groups that are not real reflection groups, deserve further study and probably have

interesting representation theories.
For us, one surprising result of our classification is that no nontrivial graded

Hecke algebra structures exist for many complex reflection groups. In some sense,
this is disappointing, as we would have liked to find nontrivial and interesting
structures for each complex reflection group.

It might be that we have not yet hit upon the "right" définition of graded
Hecke algebras. For example, we show that there do not exist nontrivial graded
Hecke algebra structures, according to Drinfeld's definition, for any of the complex
reflection groups G(r, l,n) (Z/rZ) I Sn when r > 2 and n > 3. On the other
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hand, in the last section of this paper we are able to construct algebras that "look"
like they ought to be graded Hecke algebras corresponding to these groups. Is it
possible that there is a "better" définition of graded Hecke algebras which applies
to complex reflection groups and which includes the algebras that we introduce in
Section 5 as examples7

Acknowledgements. We thank C. Kriloff for numerous stimulating conversations

during our work on this paper. A. Ram thanks the Newton Institute for
the Mathematical Sciences at Cambridge University for hospitality and support
(EPSRC Grant No. GR K99015) during Spring 2001 when the writing of this

paper was completed.

1. Graded Hecke algebras

In this section, we define the graded Hecke algebra following Drinfeld [Dr]. Our
mam result in this section is Theorem 1.9c, which determines exactly how many
degrees of freedom one has in defining a graded Hecke algebra.

Let V be an n dimensional vector space over C and let G be a finite subgroup
of GL{V). The group algebra of G is

CG C-span{£3 | g G G}, with tgth tgh-

Let ag : V x V —? C be skew symmetric bilinear forms indexed by the elements of
G and let A be the associative algebra generated by V and CG with the additional
relations

thvth-i hv and [v, w] \. ag(v> w) tg-, f°r h € G and v, w G V,
gEG

(1.1)
where [v,w] vw — wv. These relations allow every element a G A to be written
in the form

«=Z)Vfl. P9eS(V), (1.2)
gEG

where S(V) is the symmetric algebra of V. More precisely, one must fix a section
of the canonical surjection T(V) —> S(V) from the tensor algebra of V to S(V)
and take the elements pg to be in the image of this section.

The structure of A depends on the choices of the "parameters" ag(v,w) G C.
Our goal is to determine when the algebra A will be a "semidirect product" of
S(V) and CG. This idea motivates the following definition [Dr].

The algebra A is a graded Hecke algebra for G if

A S(V) <g) CG as a vector space,
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or, equivalently, if the expression in (1.2) is unique for each a G A. A general
element a G A is a linear combination of products of elements tg and u-ll where

{«l, «2, • • • un} is a basis of V. There are two straightening operations needed to
put a in the form (1.2):

(a) moving t^'s to the right, and (b) putting UiUj pairs in the correct order.

These two straightening operations correspond to the two identities in (1.1). Note
that the "correct order" of UiUj is determined by the choice of the section of the
projection T(V) —> S(V). Let v\, V2, «3 be arbitrary elements of V and let h G G.

Applying the straightening operations to t^v\V2 gives

(rearrange v\ and V2)

th[vi,v2] + (hv2)(hvi)th (move th to the right),

and applying the straightening operations in a different order gives

thV\v2 {hvi){hv2)th
(move th to the right)

[hvi, hv2\th + (hv2)(hvi)th.

Setting these two expressions equal gives the relation

th[vi,V2]th-i [hvi, hv2], for all h G G, v\,V2 G V. (1.3)

Similarly, applying the straightening operations to v\V2Vs gives

[vi, v2]v3 + «2W1W3 (moving vx past v2)

[vi,V2]v3 -\- V2[v\,v3] -\- V2V3v\ (moving v\ past v3)

[vi,v2]v3 + V2[vi,v3] + [v2,v3]vi +v3v2vl (straightening v2 and v3),

and applying the straightening operations in a different order gives

viv2v3 vi [v2, v3] + W1W3W2 (moving v2 past v3)

v\ [v2, v3] + [v\, v3]v2 + «3«l«2 (moving v\ past v3)

vi[v2,v3] + [vhv3}v2 + v3[v1,v2] +v3v2vl (straightening Vl and v2).

These are equal if

[vi,[v2,v3}} + [v2,[v3,vi]} + [v3,[vi,v2]] =0, for al\vi,v2,v3 G V. (1.4)

Conversely, the identities (1.3) and (1.4) are exactly what is needed to guarantee

that any order of application of the straightening operations (a) and (b) will
produce the same normal form (1.2) for the element a. Thus we have

Lemma 1.5. Let A be an algebra defined as in (1.1). Then A is a graded Hecke

algebra if and only if the identities (1.3) and (1.4) hold in A.
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Using (1.1), the relations (1.3) and (1.4) can be rewritten in terms of the bilinear
forms ag:V x V ^ <C &s

ag(vi,v2) =ahgh-i(hvi,hv2) and (1.6)

ag(v3,vi)(gv2 -v2) + ag(v2, v:i)(gvi - vi) + ag(vi, v2)(gv3 - v3) =0 (1.7)

for ^1,^2,^3 € V and g,h G G.
Let } : V x V —> C be a (^-invariant nondegenerate Hermitian form on V.

For each g G G, set

V9 {v G V I gv v},
(V9)L {veV \ (v,w) =0 for all w G V9}, and

ker ag {v G V \ ag{v, w) 0 for all w G V^}.

Lemma 1.8. Lei G be a finite subgroup of GL(V) and let g G G.

(a) (yfl)^ {«-^ \veV}.
(b) Suppose g ^ 1. //codim(Vrfl) 2 and a:7 x7^C «s a sfew symmetric

bilinear form such that ker a V^3, i/iera a satisfies (1.7).
Lei A be a graded Hecke algebra for G defined by skew symmetric bilinear forms
ag:V x V ^C.

(c) Ifg+\ then kerag D V9.

(d) If g ^ 1 and as 7^ 0 i/iera keras V9 and codim(Vrfl) 2.

(e) If g ^ 1 and ag =^ 0 then, for all h G G7

±)as(6i, 62),

where {61,62} *s a &as*s o/(^/rfl) ara^ ^ • (^s) —*" (^s) *s ^e composition

of h restricted to (V9) with the canonical projection V —? V/V9.

Proof, (a) Consider the map <f>: V —> V^ given by </>(«) w — grw. Then ker</> V9
and im</> Ç (Vrfl)± since, if v G V, w G V^3, then

Since dim(im</>) codim(ker </>) codim(Vrfl) it follows that im</> (y3)^.
(b) Let «1,^2,^3 ^ ^- If anY vi ^ ^s, then (1.7) holds trivially for the skew

symmetric form a. So assume each V{ $ V9 and write each V{ as vf + v. where

vf G V9 and vT G (Vs)"1. Then

a{vhvj) a(v. ^ and vt - gvt v. - gv.

Since dim(Vrfl)± 2, at least one of the v. is a linear combination of the other
two. Say v^ c2v^ + C3V3 with c2, C3 G C. Substituting v-% — gvi vî — gvî
and v^ c2v2 + c^v^ then yields

a(v3, vi)(gv2 - v2) + a(v2, v3)(gvi - vx) + a{vx, v2)(gv3 - v3)

-v2) + a(v2,v3)(gvl - v± + a{vl v2 )(gv3 -v3) =0,
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and so (1.7) holds.

(c) Let v3 G V9 and v2 G V.

lîv2 G V9, then as(w2,w3)(^i -vi) 0 for all vi G V by (1.7). Since V9 =é V,
there is some v\ such that gv\ ^ v\ and so ag(v2,V3) 0.

r-1
II«2 ^ ^S) let «1 2_j S'fc'y2) where r is the order olg. By (1.6), ag(v3, gkv2)

fc=l
ag(g~kV3,v2) a>g(v3,V2), for any k, and so

0 as(w3,wi)(grw2 -v2) +ag(v
(r - I)ag(v3,v2){gv2 - v2) + ag(v3,v2)(gv2 - v2) rag(v3,v2)(gv2 -v2).

Thus 03(^3,^2) 0. Hence, for all v2 G V, ag(v3,v2) 0 and so V9 Ç keras.
(d) By (c), codim(Vrs) > codim(keras). Since ag ^ 0, there exist v,w £ V

with ag(v,w) ^ 0 and so codim(keras) > 2. Let «i — gv\ and «2 — (7^2 be

linearly independent elements of [V9)L. Then (1.7) implies that any element

V3 — 9V3 G (V9)1- is a linear combination of v\ — gv\ and v2 — gv2, and so

> codim(keras) > 2.

Thus V9 keiag and codim^) 2.

(e) Write hbx hnbi + h21b2 + {hbi)9 and hb2 h12bx + h22b2 + (hb2)9 with
hij G C and (hbt)9 G V9. Then

ah-^gh{hlM) ag(hbi, hb2)

ag(hnh + h21b2 + (hbi)9, h12h + h22b2 + (hb2)9)

(hnh22 - h2ihi2)ag(bi, b2) det(h^)ag(b1, b2)

since ag is skew symmetric and V9 Ç ker ag. D

The following theorem is a slightly strengthened version of statements (given
without proof) in [Dr].

Theorem 1.9. Let G be a finite subgroup of GL(V) and let Zo(g) {h G

G \ hg gh} denote the centralizer of an element g in G.

(a) If A is a graded Hecke algebra for G, then the values of ah-i h are deter¬

mined by the values of ag via the equation

ah-1gh(vlTv2) ag{hv\, hv2), for all g,h G G, v\,v2 G V.

(b) For g =/= \, there is a graded Hecke algebra A with ag =^ 0 if and only if

keiag V9, codim(ys) 2, and det(/i±) 1, for all h G ZG(g),
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where h is h restricted to the space (V9) In this case, ag is determined
by its value ag(bi,b2) on a basis {61,62} °.f (V9) ¦

(c) Let d be the number of conjugacy classes of g £ G such that codim(Vs) 2

and det(/i^) 1 for all h G Zo(g), where h1- is h restricted to the space
(V9)1-. The sets {ag}geG corresponding to graded Hecke algebras A form a

vector space of dimension d + dim((/\ V)G).

Proof, (a) is simply a restatement of (1.6).

(b) =>: If A is a graded Hecke algebra and ag ^ 0 then by Lemma 1.8d,

codim(Vs) 2 and keras V9. So ag is determined by its value ag(bi,b2) on a

basis 61,62 °f (^/s)±- Suppose h G Zq(ç). Then, by Lemma 1.8e,

«s(6i,62) ahgh-i(hbi,hb2) ag(hbi,hb2) =det(h±) ag(bi,b2),

and so det(/i±) 1. Note that h(V9) V9 and h^9)1- (V9)1- since, for each

v G V9, h{v) hg{v) gh{v).

¦^=: If codim(Vrfl) 2 then, up to constant multiples, there is a unique skew

symmetric form on V which is nondegenerate on (V9)1- and which has ker ag V9.
Fix such a form and then define forms ah, h G G, by

f ag{kvi,kv2) iîh k-1gk,
a>h(vi,v2) \ (1.10)

[ 0 otherwise,

for vi,v2 G V. Let a\ be any G-invariant skew symmetric form on V. Then this
collection {ag}geG of skew symmetric bilinear forms satisfies (1.6) by définition
and (1.7) by Lemma 1.8b. Thus (by Lemma 1.5), it determines a graded Hecke

algebra A via (1.1).

(c) From (a) and (b) it follows that the sets {ag}gea, running over all graded
Hecke algebras A for G, form a vector space. Since each of the collections {ag}g^\
constructed by (1.10) has its support on a single conjugacy class, these collections
form a basis of the vector space of sets {ag}g^\. The only condition on the form a\
is that it satisfies (1.6), which means that it is a G-invariant element of (f\ V)*.

D

The following consequence of Theorem 1.9 will be useful for completing the
classification of graded Hecke algebras for complex reflection groups.

Corollary 1.11. Assume that G contains h £ ¦ 1 for some £ G C\ {±1}. If A
is a graded Hecke algebra for G, then ag 0 for all g =^ I.

Proof. If h £ • 1 G G, then h G ZG(g) for every g G G and det(/i±) £2 if
codim(Vrfl) 2. The statement then follows from Theorem 1.9b. D
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2. The classification for reflection groups

A reflection is an element of GL(V) that has exactly one eigenvalue not equal to 1.

The reflecting hyperplane of a reflection is the (n — l)-dimensional subspace which
is fixed pointwise. A complex reflection group G is a finite subgroup of GL(V)
generated by reflections. The group G is irreducible if V cannot be written in the
form V V\ © V2 where V\ and V2 are (^-invariant subspaces. The group G is a

real reflection group if V C <8>r Vr for a real vector space Vr and G Ç GL(Vr).
The following facts about reflection groups are well known.

Lemma 2.1. Let G be an irreducible reflection group.
(a) [ST, Theorem 5.3] The number of elements g G G such that codim(Vs) 2

is 5^j<i mtmj where mi,.. mn are the exponents of G.

(b) [Ca, Lemma 2] If G is a real reflection group and g & G with codim(Vs) 2,
then g is the product of two reflections.

(c) [OT, Theorem 6.27] For any g G G, the space V9 is the intersection of
reflecting hyperplanes.

Remark. The statement of Lemma 2.1b does not hold for complex reflection
groups. Consider the exceptional complex reflection group G4 of rank 2, in the
notation of Shephard and Todd [ST]. All the reflections have order 3 and —1 G G4.

Suppose —1 rs for two reflections r and s. If s has eigenvalues 1 and w, where
u! is a primitive cube root of unity, then r^1 — s has eigenvalues —1 and —uj,

a contradiction to the assumption that r is a reflection. Thus — 1 G G4 is not a

product of two reflections.

Lemma 2.2. Let G Ç GL(V) be a complex reflection group. Let A be a graded
Hecke algebra for G and let g G G. Let VG {v G V \ gv v for all g G G} be

the invariants in V.
(a) If g 1 and dimy0 < 1, then ag 0.

(b) If the order of g is 2, then ag 0.

Proof, (a) Let (,}: V x V —> C be a nondegenerate G-invariant Hermitian form on
V and write V VrG©(VrG)± where (Ve)1- {v G V \ (v, w) 0 for all w G VG}.
Since dim(VG) < 1 and ai is skew symmetric, ai restricted to VG is 0. There is

a basis «i,... a.k of (Ve)1- and constants £1, ...,£&€ C, £j ^ 1, such that the
reflections si,... ,Sk given by

Sîv v + {& - l)p^-au ioiveV,
{(Xi,ai)

are in G. Equation (1.6) implies that, for any v G V,

& 1) ' "
3,0.,, stv) ai I ^ah v

V (a,-, 04}
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since ai(aj,aj) 0 (as a\ is skew symmetric). Since £j 7^ 1, a\{ai,v) 0 for
1 < 1 < k. Thus kerai V.

(b) Since g2 1, all eigenvalues of # are ±1. If codim(Vs) 7^ 2, then ag 0

by Theorem 1.9b. If codim(Vs) 2, then

g idVg © (-id(Va)j_)

as a linear transformation on V. By [Stl, Theorem 1.5], [Bou V, §5 Ex. 8], the
stabilizer, Stab(Vs), of V9 is a reflection subgroup of G and so there is a reflection
s G Stab(Vs) that is the identity on V9. So s G ZG{g) and det(s) det(s±) ^ 1,

where s1- is s restricted to (V9)1-. Thus, by Theorem 1.9b, ag 0. D

2A. Real reflection groups

If G Ç GL(V) is a real reflection group then V C<g>R VK and G Ç GL(VK), where
Vr is a real vector space. We shall assume that G is irreducible.

Let us recall some basic facts about real reflection groups which can be found
in [Hu] or [Bou]. The action of G on Vr has fundamental chambers wC indexed
by w G G. The roots for G are vectors a G Vr such that the reflections in G are
the reflections sa in the hyperplanes

Ha {veVK\ {v, a) 0}.

For each fundamental chamber C, the reflections s\, S2, ¦ ¦ ¦ sn in the hyperplanes
Hai,Ha2,... ,HOn that bound C form a set of simple reflections for G. The
simple reflections obtained from a different choice of fundamental chamber wC
are ws\w ws„w

Theorem 2.3. Lei G Ç GL(Vr) &e a real reflection group. Let s\, sn be a set

of simple reflections in G and let mtJ be the order of SiSj. Then g & G satisfies
g2 =/= 1, codwa(V9) 2, and det(h^) 1 for all h G Za(g) (the conditions m
Theorem 1.9c) if and only if g is conjugate to

Sj)k, withO < k <

for some 1 < i, j < n.

Proof. =>: Let a and ß be two roots such that V9 Ha n Hß (see Lemma 2.1c).
Then Ha n Hß has nontrivial intersection with some fundamental chamber G for
W, and we may assume that Ha and Hß are walls of the chamber G (since G is a

cone in Rn). Since choosing simple reflections with respect to a different chamber
wC corresponds to conjugation by w, we may assume that the reflections in the
hyperplanes Ha and Hß are simple reflections and a. a.\ and ß «2-
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k or g (s2S\)k, for some

^ 1, k ^ m/2, and so g is

The element g is an element of the stabilizer Stab(V9), which is a reflection
group by [Stl, Theorem 1.5]. Since codim(Vs) 2, Stab(Vs) is a rank two real
reflection group, and therefore a dihedral group. This dihedral group is generated
by the two simple reflections s\ and S2 in the hyperplanes Hai and HO2 (restricted
to (V9)^) and all reflections have determinant — 1. Let g1- be the element g
restricted to (V9)1-. Since g G Za(g), det(g^) 1, and so g must be a product
of an even number of reflections. Thus g (s\S2)
0 < k < m/2, where m is the order of s\S2- Since g2

conjugate to {s\S2)k for some 0 < k < m/2.

<=: Assume that g (stSj)k for some 0 < k < my/2. Then V9 Ha% n Haj
and so codim(Vs) 2. Since g is a product of an even number of reflections,
det(gr±) 1. The only elements of O(Vr) O2(M) that are diagonalizable in
GL(Vr) GL2O&) are ±1 and elements with determinant — 1. Thus, the
eigenvectors of the element g1- (which has distinct eigenvalues since it is not ±1) do
not lie in Vr, only in V C <g>R R. Let h G ZG{g) and let h1- G O(Vr) O2(R)
denote h restricted to (V9)1-. Since h1- commutes with g1- and g1- has distinct
eigenvalues, g1- and h1- have the same eigenvectors. Hence, det h1- 1. D

Using Theorem 2.3 and Theorem 1.9b, we can read off the graded Hecke algebras

for the irreducible real reflection groups from the Dynkin diagrams. For each

irreducible real reflection group, label a set of simple reflections s\,... sn using
the Dynkin diagrams below. If nodes i and j and nodes j and k are connected by
single edges, then SiSj is conjugate to SjS^ via the element sts0Sft.

The following table gives representatives of the conjugacy classes of g G G that
may have ag ^ 0 for some graded Hecke algebra A. We assume that the reflection
group G is acting on its irreducible reflection representation V. When G is the
symmetric group Sn acting on an n-dimensional vector space V by permutation
matrices, then dim(VrG) 1 and, by Lemma 2.2a and Theorem 2.3, ag ^ 0 for
some graded Hecke algebra A only iîg is conjugate to the three cycle (1, 2, 3) s\S2
(this example is analyzed in Section 3).

Type

Bn

Dn

E&, Ej, Eg

him)

Represent ative g
with ag ^ 0

S\ S4

S\S2j S2S3, S3S4

•^1^2? (^1^2) i ^2^3

(siS2)fc, 0 < k < m/2

Table 1. Graded Hecke algebras for real reflection groups
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1 2 n-2 n-1
Bn

12 3 n—\ n

3 4 n—l n

E7

4 5 6

Fa

1 b

1 5 2
o o-

3
/2(m)

FIGURE 1. Coxeter—Dynkin diagrams for real reflection groups

2B. Complex reflection groups G{r,p,n)

The irreducible complex reflection groups were classified by Shephard and Todd
[ST]. There is one infinite family denoted G{r,p,n) and a list of exceptional complex

reflection groups denoted G4,... G35. In this subsection, we classify the
graded Hecke algebras for the groups G(r, p, n).

Let r, p and n be positive integers with p dividing r and let £ e2?™/r. Let Sn
be the symmetric group ofnxn matrices and let

£, =diag(l, 1,... 1,£, 1,... ,1),

where £ appears in the jth entry. Then

G(r,p, n) j^1 • • -£Arlw I w G Sn, 0 < Aj < r — 1, Ai + • • • + An 0 modp}.

For A (Ai,... An) G (Z/rZ)n, let £A £Al • • •££". Then the multiplication in
G(r, p, n) is described by the relations

and for A, jj, G (Z/rZ)n, w G 5n,

where S*n acts on (Z/rZ)n by permuting the factors. Let Wj be the column vector
with 1 in the «tn entry and all other entries 0. The group G(r,p, n) acts on V := Cn
with orthonormal basis {v\,... vn} as a complex reflection group.
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Every real reflection group is a complex reflection group and several of these

are special cases of the groups G(r,p,n). In particular,
(a) G(l, 1, n) is the symmetric group Sn,
(b) G(2,1, n) is the Weyl group WBn of type Bn,
(c) G(2, 2, n) is the Weyl group VF£>n of type £>„, and

(d) G(r, r, 2) is the dihedral group .faM °f order 2r.
The reflections in G(r,p,n) are

£*p, 1 < i < n, 0 < A; < (r/p) - 1, and

îHjHhJ), 1 < * < j <n, 0<k<r-l,
where (i,j) is the transposition in Sn that switches i and j.
Conjugacy in G(r,p,n). Each element of G(r,p,n) is conjugate by elements of
Sn to a disjoint product of cycles of the form

By conjugating this cycle by C^lCS^1 ¦ ¦ ¦ &+ +Afe~1
e G(r'r' n)> we have

Ccec+A,+ +Afc({)--)Ä;)) where c=(A;_{)Ai + (A;-{-l)Ai+i + + Afc_i.

If «i, «2, • • • *£ denote the minimal indices of the cycles and c\,... ,C£ are the numbers

c for the various cycles, then after conjugating by ^ • • • ^ l^ie
°e

€

G(r,r,n), each cycle becomes

^*+ +Afc ({,...,*) except the last, which is ^t^i, ¦ ¦ ¦ n),

where a c\ + • • • + q and 6 a + Aî<: + • • • + An. If k n — i£ + 1 is the length
of the last cycle, then conjugating the last cycle by ^( ^j ij • • • Ç~l G G(r, r, n)
gives

C+fc^fcfe ...,n).
If we conjugate the last cycle by £? G G(r:p: n), we have

In summary, any element g of G(r,p, n) is conjugate to a product of disjoint cycles
where each cycle is of the form

£%{i,i+l,... ,k), 0<a<r-l, (2.4a)

except possibly the last cycle, which is of the form

£££«(**, ie + l,...,n), with 0 < a < gcd(p, k) - 1, (2.4b)
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where k n — i£ + 1 is the length of the last cycle.

Centralizers in G(r,p,n). Let ZGtrpn\{g) {h G G{r,p,n) \ hg gh} denote

the centralizer of g G G(r,p, n). Since G(r,p, n) is a subgroup of G(r, 1, n),

ZG(r,P,n) (öO ZG(rln){g)r\G{r,p,n),

for any element g G G{r,p, n). Suppose that g is an element of G(r, 1, n) which is a

product of disjoint cycles of the form ££({,... A;) and that /i G G(r, l,n) commutes
with gr. Conjugation by /i effects some combination of the following operations on
the cycles of g:

(a) permuting cycles of the same type, ££(*,••• &) and £^(i,... m) with 6 a
and k — t m — j,

(b) conjugating a single cycle ££({,... k) by powers of itself, and

(c) conjugating a single cycle ££(«,... A;) by £? • • • £|, for any 0 < 6 < r — 1.

Furthermore, the elements of G(r, l,n) which commute with g are determined by
how they "rearrange" the cycles of g and a count (see [Mac, p. 170]) of the number
of such operations shows that if g G G(r, 1, n) and ma^ is the number of cycles of
type C+fc(*' * + 1, • • • ,i+ k) for g, then

Card(ZG(rilin)(<;)) ]J(matk\ • fcm^ • rm^). (2.5)
a,k

Determining the graded Hecke algebras for G(r, p, n). It follows from
Lemma 1.8a that if g £?+6£sTa(«,... ,k), then (V^)1- has basis

{vk -vk-\,vk_i -wfc_2,... ,wi+i -Ca«J if 6 0, and {wj,... vk} if 6 ^ 0.

Thus, if g G G(r,p,n) and codim(Vrfl) 2, then g is conjugate to one of the
following elements:

(l,2,3), 0<a<gcd(p,3)-l,

It is interesting to note that these elements are also representatives of the conjugacy
classes of elements in G{r,p, n) which can be written as a product of two reflections.

We determine conditions on the above elements and on r, p, and n to give
nontrivial graded Hecke algebras:
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(z) The center of G{r,p, n) is

Z(G(r,p,n)) {£...& |n^ 0

Since £]*•••££ G Z{G{r,p,n)), it follows that p r or p r/2 whenever

z(G(r,P, n)) ç {±i} {e° • • • e°, ef ¦ ¦ ¦ a/2}.
(bl) If n > 4, the element Clfe^Ç3 e ^G(6) and has determinant £2 on (Vb)L

(b2) If n 3 and p 0 mod 3, the element £f ££ £3 G Za(b) and has

determinant £2p/3 on (Vb)L.
(cl) If n > 3, the element £i£2^2 e ZG(c) and has determinant £2 on (y0)^

(c2) If n 2, p r/2 and p is odd, the element £j £2 € Zq{c) and has

determinant £r/2 on (y0)^.
(dl) If n > 3, the element £i£^ G Za(d) and has determinant £ on (V*)-1-

span-{wi,w2}.
(d2) If p r/2, the element £^' G Zq(cX) and has determinant £r/2 on (V*)-1-.

(ef) The elements e and / have order 2.

Thus, it follows from Corollary 1.11, Theorem 1.9b, and Lemma 2.2b that if A is

a graded Hecke algebra for G(r,p,n), then

ab 0 unless (i) r 1, or
(ii) r 2, or
(iii) n 3 and p/0 mod 3,

ac 0 unless (1) r 2 and p 1, or
(ii) n 2 and p r/2,

p r, n 2 and p^O mod 2,

andae

as

0

0

0

unless

always,

always.

In the remaining cases, one uses the description of Za{g) given just before (2.5) to
check that all elements of Zo(g) have determinant 1 on (V9)1-. Note that n 3

and p/0 mod 3 imply that 05 0 for the elements b £"£3 a(l, 2, 3).
We arrive at the following enumeration of the nontrivial graded Hecke algebras

for complex reflection groups. (The tensor product algebra S(V) <g> CG always
exists and corresponds to the case when all of the skew symmetric forms ag are
zero). The table below gives representatives of the conjugacy classes of g G G that
may have ag ^ 0 for some graded Hecke algebra A.
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G(l,
G(2,

G(2,

G(r,

G(r,

G(r,

G(r,

Group

l,n)
l,n)
2,n)

r,2)
r/2,2)
r,3),
r/2,3)

sn

WB,
WD

h(r)
r/2

r^O
r/2

i, n

odd

mod

>3
> 3

3

mod 3, r ^2

Representative g
with as y^ 0

(1,2,3)

Ci(l,2), (1,2,3)

(1,2,3)

£^-fc, 0 < A; < r/2
^2/2(l,2)

(1,2,3)

(1,2,3)

Table 2. Graded Hecke algebras for the groups G(r,p,n)

2C. Exceptional complex reflection groups

The irreducible exceptional complex reflection groups G are denoted G4,... G35
in the classification ol Shephard and Todd. From Table VII in [ST], one sees that
the center ol G is ±1 only in the cases G4, G12, C?24 an(i G33. By Schur's lemma,
the center ol an irreducible complex reflection group consists ol multiples ol the

identity. Thus, by Corollary 1.11, the only exceptional complex reflection groups
that could have a nontrivial graded Hecke algebra (i.e., with some ag ^ 0) are G4,

G12, C24 and G33 (we exclude the real groups). We determine the graded Hecke

algebras for these groups using Theorem 1.9b and Lemma 2.2.

The rank 2 group G4 has order 24 and seven conjugacy classes. The following
data concerning these conjugacy classes are obtained from the computer software
GAP [S+] using the package CHEVIE [G+]. In the following table, w is a primitive
cube root ol unity and C(g) denotes the conjugacy class ol g.

Conjugacy class representatives for G4

Ordert)

det(ff)

\C(g)\

\Za(g)\

1

1

1

24

4

1

6

4

3

UJ

4

6

6

UJ

4

6

6

a'1

4

6

3

a'1
4

6

2

1

1

24

The elements with determinant 1 and order more than 2 in G4 all have order 4.

Il g is an element ol order 4, then |Zg(<;)| 4 and every element ol Za{g) has

determinant 1 since Zq(ç) is generated by g. Hence, by Theorem 1.9b and Lemma
2.2, ag can be nonzero for a graded Hecke algebra for G4 exactly when g has order
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4. Thus, the dimension of the space of parameters for graded Hecke algebras of
G4 is 1.

The rank 2 group G\2 has order 48. The computer software GAP provides the
following information about the conjugacy classes of G\2.

Conjugacy class representatives for G12

Order(gr)

det(g)

\C(g)\

\ZG(g)\

1

1

1

48

2

-1
12

4

8

-1
6

8

6

1

8

6

8

-1
6

8

2

1

1

48

3

1

8

6

4

1

6

8

If g is an element in G12 with order more than 2 and determinant 1, then g has

order 3, 4, or 6. Let h be any element of order 8. Then h has determinant —1

and commutes with h? of order 4. Hence, by Theorem 1.9b, if g has order 4,

then ag 0. Let gg be a representative from the class of elements of order 6.

Since |Zg(<76)| 6, Zo(gg) is generated by gg and hence every element of
has determinant 1. We can choose g\ as a representative for the conjugacy class

of elements of order 3. As gg and g\ commute, (gg} C Za{g§). But \(gg)\
6 |Zg(<73)|, so Zaigg) is generated by gg and every element of Za{gs) has

determinant 1. Thus, ag can be nonzero for a graded Hecke algebra A for G\2
exactly when g has order 3 or 6. Thus, the dimension of the space of parameters
of graded Hecke algebras for G12 is 2.

The rank 3 group G24 has order 336. Note that —1 G G24 since Z{G) {±1}.
Up to G-orbits, there are two codimension 2 subspaces, L and M, that are equal to
V3 for some g G G24 (see [OT, App. C, Table C.5]). Furthermore, Stab(L) ^ A2
and Stab(M) B2. We need only consider elements of order 3 in Stab(L) A2
and of order 4 in Stab(M) B2 (as the rest have order 1 or 2). In G24, there is

only one conjugacy class of elements of order 3 and only one conjugacy class of
elements of order 4 and determinant 1. The table below (obtained using GAP)
records information about these classes.

Certain classes of G24

Ordert)

det(ff)

\C(g)\

\Za(g)\

3

1

56

6

4

1

42

8

If g has order 3, Za{g) must contain 1, g, g2, and —1, and hence Za{g) is generated
by these elements since |Zg(et)| 6. Thus all elements of Za{g) have determinant 1
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on (V9)1-. If g has order 4 and determinant 1, then Za(g) must contain 1, g, g2, g3,

and — 1, elements which all have determinant 1 on (V9)^. Since |Zg(<;)| 8,

these elements generate Za(g) and so every element of Zc(g) has determinant 1

on (V9)1-. Hence, ag can be nonzero for a graded Hecke algebra of G24 exactly
when g has order 3 or g has order 4 and determinant 1. Thus, the dimension of
the space of parameters for graded Hecke algebras for G24 is 2.

The group G33 is the only exceptional complex reflection group of rank 5. It
has order 72 6! and degrees 4, 6,10,12,18. There are 45 reflecting hyperplanes
and the corresponding reflections all have order 2. Up to G-orbits, there are two
codimension 2 subspaces, L and M, that are equal to V9 for some g G G33 (see

[OT, App. C, Table C.14]). Furthermore, Stab(L) ^ A1 x A1 and Stab(M) A2.
We need not consider the case where V9 L since then g has order 2 and hence

ag 0 for any graded Hecke algebra by Proposition 2.2b.
We use a presentation for G33 in six coordinates from [ST]: Let V C with

standard coordinate functions x-% and consider the group generated by order 2

reflections about the hyperplanes H\ {x2 — x% 0}, H2 {x% — X4 0},
#3 {x\-x2 0}, H4 {x\-ujx2 0}, H5 {xi+x2 + x3+X4 + x5 + x6 0},
where wisa primitive cube root of unity. The fixed point space of this (reducible)
group is Y Hi n • • • n H5 {(0,0, 0,0, x, -x) \ x £ C}, and G33 is just the
restriction to YL. Let st be the order 2 reflection about Hi. Let g s\s%. Then
V9 HiC\ H3 and StahÇV9) A2. Let h (sis3s4)2, the diagonal matrix
with diagonal {w, w, w, 1,1,1}. Then h acts as w times the identity on (V9)1-
as (V9)1- Ç C-span{xi, x2, X3}. Hence, h commutes with g. But (V9)1- has

dimension 2 and h has determinant tu2 ^ 1 on (V9)1-. Thus, by Theorem 1.9b and
Lemma 2.2, ag 0 for any graded Hecke algebra. The same argument applied
to Y1- shows that G33 has no nontrivial graded Hecke algebras. In summary, the
dimension of the space of parameters for graded Hecke algebras for G33 is zero.

Group

G4

G12

G24

g with ag ^ 0

Order (g) 4

Order(gri) 3 and Order^) 6

Order(gri) 3 and Order(gr2) 4,det(gr2) 1

Table 3. Graded Hecke algebras for exceptional complex reflection groups

3. The graded Hecke algebras HgY

In [Lu], Lusztig gives a définition of graded Hecke algebras for real reflection groups
which is different from the définition in Section 1, which applies to more general

groups. It is not obvious that Lusztig's algebras are examples of the graded Hecke
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algebras defined in Section 1. In this section, we show explicitly how the definition
of Section 1 includes Lusztig's algebras.

Let W be a finite real reflection group acting on V and let R be the root system
of W. Let «i,... a.n be a choice of simple roots in R and let s\,... ,sn be the
corresponding simple reflections in W. Let sa be the reflection in the root a so

that, for v &V,

sov v — (v, av)a, where av 2a/(a, a).

Let i?+ {a > 0} denote the set of positive roots in R.
Let ka be fixed complex numbers indexed by the roots a G R satisfying

kwa ka, for all w G W, a G R. (3.1)

This amounts to a choice of either one or two "parameters", depending on whether
all roots in R are the same length or not. As in Section 1, let CW C-span{tfl | g G

W}, with tgth tgh, and let S(V) be the symmetric algebra of V. Lusztig [Lu]
defines the "graded Hecke algebra" with parameters {ka} to be the unique algebra
structure HgY on the vector space S(V) <g> CW such that

S(V) S(V) (g) 1 is a subalgebra of HgT, (3.2a)

CW 1 <g> CW is a subalgebra of Hgr, (3.2b)

and

ts.v (s;v)ts. -ka.{v,aY),
for all v G V and simple reflections sj in the simple roots 04.

(3.2c)

We shall show that every algebra HgY as defined by (3.2a-c) is a graded Hecke

algebra A for a specific set of skew symmetric bilinear forms ag.
Let ka G C as in (3.1). Use the notation

h= \ ^2kaavtSa, so that (v, h) \ J^ ka(v, av)tSa (3.3)
a>0 a>0

for v G y. The element h should be viewed as an element of V <g> CT^, and
(w, /i) G CW. With this notation, let A be the algebra (as in Section 1) generated
by V and CW with relations

tgv (gv)tg and [v,w] —[(v,h), (w,h)], for v,w G V, G VF.

(3.4)
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Note that A is defined by the bilinear forms

a,ß>0

The following theorem shows that the algebra A satisfies the defining conditions
(3.2a-c) of the algebra HgY.

Theorem 3.5. Let W be a finite real reflection group and let A be the algebra
defined by (3.4).

(a) As vector spaces, A S(V)IS>CW (and hence, A is a graded Hecke algebra).
(b) Ifv v — (v, h) for v G V, then

[v,w]=0 and tSîv (siv)ts. — kat(v, oî-),

for all v,w G V and simple reflections sj in W.

Proof. First note that if u, v G V then

[u, (v, h)] 2 V^ ka(v, av) (u, av)atSa [v, (u, h)]. (*)

Thus, for u, v, w G V,

[u, [v,w]]+[w, [u,v]} + [v, [w,u]}

[u, [(w, h), (v, h)}} + [w, [(v, h), (u, h)}} + [v, [(u, h), (w, h)}}

[[u, (w, h)], (v, h)] + [(w, h), [u, (v, h)}} + [[w, (v, h)], (u, h)]

+ [(v, h), [w, (u, h)}} + [[v, (u, h)], (w, h)] + [(u, h)], [v, (w, h)}}

[[w, {u, h)], {v, h)] + [{w, h), [v, {u, h)}} + [[v, {w, h)], {u, h)]

+ [{v, h), [w, {u, h)}} + [[v, {u, h)], {w, h)] + [{u, h), [v, {w, h)}}

0.

(3.6)
For v G V, h G W, and sj a simple reflection,

ts.(v, h)tSi — y ka(v,a )tSsa I — y ka(v, s^a )tSa I + ka^(v, at )ts^

a>0 V a>0

2
^2ka(siV,av)tSa j +k^{v, o^)tSz {stv, h) + kaz{v,o^)tSz.

(3.7)
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Using this equality, we obtain

ts.[v,w]ts. -tSz[(v,h),(w,
—[{siV, h) + ko^(v, a-)ts., {siW, h) + kaz{w,a^)tSz]

[s^, Sitv] - ka.(v,a-)[ts., (siW, h)] - ka.(w, a-)[(siV, h),ts.]

[s^, Sitv] - ka.(v, a%)(ts.(siW, h)ts. - (stw, h))ts.

+ ka.{w,aY)(ts.{siV,h)ts. - (siv,h))ts.
[stv, Sjw] - kax (v, «jV)((w, h)tSz + kaz (stw, a^) - (stw, h)tsj

+ ka.{w,a-)({v,h)ts. + ka.{siV,a-) - (siV,h)ts.)

[s^, .%w\ - kai (v, o^) {w, a-) (ai, h)ts. - k2a. (v, a^) {w, .%o^)

+ kai {w, aY)(v, a?) (at, h)tSi + k2Oi {w, a?)(v, s^)

The two identities (3.6) and (3.8), as in (1.3) and (1.4), show that the algebra A
is isomorphic to S(V) <g> CW.

(b) This can now be proved by direct computation. If v, w G V then

[v, w] [v- (v, h),w- (w, h)} [v, w] + [(v, h), (w, h)} - [v, (w, h)} + [w, (v, h)} 0,

by equation (3.4) and equation (*) in the proof of Theorem 3.5. If v G V and sj
is a simple reflection then, by (3.7),

ts.vts. ts.vts. — ts. (v, h)ts. stv — (siV, h) — ka; (v, at )ts% stv — ka% (v, at )ts%.

D

Theorem 3.5b shows that if A is the graded Hecke algebra defined by (3.4),
then the elements v, for v £ V, generate a subalgebra of A isomorphic to S(V)
and these elements together with the ts. satisfy the relations of (3.2c). Since part
(a) of Theorem 3.5 shows that A is isomorphic to S(V) <%>CW as a vector space, it
follows that A satisfies the conditions (3.2a-c), relations which uniquely define the
graded Hecke algebra A. Thus, Lusztig's algebras are special cases of the graded
Hecke algebras defined in Section 1. Furthermore, by comparing the dimensions
of the parameter spaces, we see that there are graded Hecke algebras that are not
isomorphic to algebras defined by Lusztig for the Coxeter groups F^, H3, H4, and

h{m).
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4. Examples

4A. The symmetric group G(l, l,n) £„

Let 7 be an n dimensional vector space with orthonormal basis v\,... ,vn and let
Sn act on V by permuting the v-%. Let A be a graded Hecke algebra for Sn. Any
element which is a product of two reflections is conjugate to (1, 2, 3) or (1, 2)(3,4).
The element (1, 2)(3, 4) has order 2 and so, in the algebra A,

since vt or v3 is in V9 keras for all other three cycles g. Since, by (1.6),

%,i,k)(v^vj) %,j,k)(v^vt) -a(i,j,k)(v^vj)y the graded Hecke algebra A is

defined by the relations

[vi,Vj] ß J2 ^(h3,k) ~ t{j,%k)) and fwvi vw(i)tw, (4.1)

where w G Sn, 1 < i, j < n, i ^ j, and ß an 2 3)(vl>v2)-
Let k G C. Then, with h as in (3.3),

Km
k s. \ ^

^ ' '

Zi \ I Zi
\i<£ t>£ J t^£

If / G CSn, let /I denote the coefficient of tq in /. Let A be the graded Hecke

algebra defined by the relations in (4.1) with

ß a(i,jj)(vhVj) [fa, h),{vh h)\\t

[k /4)(t(j£)t(Jj£) ~^t(i,j)t(i,£) ~t(j,£)t(i,j)) t(
^ /^-

If Vi vt — (vt, h) and s^ is the simple reflection ({, i + 1) then, by Theorem 3.5,

Wj-öj WjWj, ts.Vi vt+\ts% + k, tSîvî+\ vtts% — k, and

tSj^ =^Sj, for |{- j\ > 1,

and the algebra A is the graded Hecke algebra HgY for S*n which is defined in
Section 3. When k 1, the map

A —? CSn

(4.5)

is a surjective algebra homomorphism.

(4-3)
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4B. The hyperoctahedral group G(2, l,n) T^Bn

We use the notation from Section 2B so that the group G(2,1, n) is acting by
orthogonal matrices on the n dimensional vector space V with orthonormal basis

{«l,... ,vn}. In this case, £j denotes the diagonal matrix with all ones on the
diagonal except for —1 in the ({, «)th entry.

Let A be a graded Hecke algebra for G(2, l,n). If ß\ au 3 k\(vl,vJ) and

/?2 a^1(i 2)('ylj V2), then, in the algebra A,

Let ks, k£ £ C. Then, with h as in (3.3),
7 7 7

(4.7)
If / G CG(2, l,n), let / t

denote the coefficient of tg in /. With notation as in

(4.6), let A be the graded"Hecke algebra for G(2, l,n) with

ßi a(ij,e)(vhvj) l(vi,h)Avj,h)]\t(..e)

\ kVA' and

If vt vt — (vt, h), then, by Theorem 3.5, the vi commute and the algebra A is

the algebra Hgr for WBn defined in Section 3.

4C. The type Dn Weyl group G(2, 2, n) WDn

We shall use the notation from Section 2B so that the group G(2, 2, n) is acting by
orthogonal matrices on the n dimensional vector space V with orthonormal basis

{v\,... ,vn}. This is an index 2 subgroup of G(2, l,n), and our notation is the
same as used above for WBn.

Let A be a graded Hecke algebra for G(2, 2, n). If ß a/- ^ fc)(wj, Vj) then, in
the algebra A,

k,d=/?r4
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Let k G C. Then, with h as in (3.3),

(v*>h) \ (E(%/)+%&(^)) + E(-%/)+%&(^)) • (4-9)

\i<e i>£ I
If / G CG(2, 2,n), let / denote the coefficient of tg in /. With notation as in

(4.8), let A be the graded"Hecke algebra for G(2,2,n) with

If Vi Vi — (vi, h), then, by Theorem 3.5, the vi commute and the algebra A is

the algebra HgY for WDn defined in Section 3.

4D. The dihedral group .faM G(r,r,2) of order 2r

We shall use the notation for G(r, r, 2) from Section 2B so that the group G(r, r, 2)
is acting by unitary matrices on the 2 dimensional vector space V with orthonormal
basis {«1,^2}- The group G(r, r, 2) is realized as a real reflection group by using
the basis

£l —,= {v\ +v2), £2 —?=Svl ~V2)-
V2 «V2

This basis is also orthonormal and, with respect to this basis, G(r, r, 2) acts by
the matrices

cos(27rm/r) T sin(27rm/r) \ n<m<r 1

sm(27rm/r) ±cos(27rm/r) ~~ "~

Let A be a graded Hecke algebra for G(r, r, 2). The conjugacy classes of el¬

fe,C1
fcements which are products of two reflections are {£1^2 fe,C1 fc^2}) 0 < A; < r/2.

Then, in the algebra A,

[£l,£2]= 53 /?fc(t^ç-fc ~ V1«^' Where ^ a^ç-fc(£l'e2)- (4.10)

0<fc<r/2

When r is even, there are two conjugacy classes of reflections

{£1^^(1,2) I 0<k<r/2} and {£f+1^(2fc+1)(l, 2) | 0 < k < r/2}.

The reflection £™£2~m(12) is the reflection in the line perpendicular to the vector

a.m sin(—27rm/2r)ei + cos(—27
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and the vectors am can be taken as a root system for G(r, r, 2). With h as in (3.3)
and ks,k£ G C,

0<fc<r/2

+kesm(-(2k
(4.11)

0<fc<r/2

+ke cos(-(2A; + 1) 2n/2r)t2k+1

If / G CG(r,r,2), let /|t denote the coefficient of tfl in /. With notation as in

4.10, let A be the graded Hecke algebra for G{r,r,2) with

ßk =a,fc,-fc(£l,£2) [(£l,/l),(£2»]|t
12 £j£2

sin(A;27r/2r)rA;sA;£ if A; is odd (-4 -j^)

sin(A;27r/2r)§(A;g + k\) if A; is even.

If £j £j — (ej, /i), then by Theorem 3.5, the ej commute and the algebra A is the
algebra i7gr for /2(r) defined in Section 3.

When r is odd, all aspects of the calculation in (4.11) and (4.12) are the same
as for the case r even except that there is only one conjugacy class of reflections,
{£1^(1, 2) I 0 < k < r - 1}, and so ks ke.

4E. The group G(r,r/2,2), r/2 odd

We use the notation from Section 2B, or from above for the group G(r, r, 2). In
this case, the group is not a real reflection group, hence G(r, r/2, 2) acts by unitary
matrices but not by orthogonal matrices.

Let A be a graded Hecke algebra for G(r, r/2, 2). The only conjugacy class for
which ag can be nonzero is {t k r/2-k^ 2\

\ 0 < k < r}. Thus, in the algebra A,

[vi,v2\ i

k
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5. A different graded Hecke algebra for G(r, l,n)

The classification of graded Hecke algebras for complex reflection groups in
Section 2 shows that there do not exist graded Hecke algebras A S(V) <g> CG for
the groups G G(r, l,n), r > 2, n > 3. In this section, we define a different
"semidirect product" of the symmetric algebra S(V) and the group algebra CG
for the groups G{r, l,n). These algebras are not graded Hecke algebras in the
sense of Section 1, but they do have a structure similar to what we would expect
from experience with graded Hecke algebras for real reflection groups. Is it possible

that there is a general définition of graded Hecke algebras, different from that
given in Section 1, which includes the algebras defined below as examples for the

groups G(r, l,n)?
We shall use the notation for the groups G(r, 1, n) as in Section 2B so that the

group G(r, 1, n) is acting by monomial matrices on a vector space V of dimension

n with orthonormal basis {v\,... vn}. Let Si denote the permutation ({, i + 1) G

G(r, l,n).
Define H* l n to be the algebra generated by the group algebra CG(r, 1, n) and

V with relations

vtVj v3vll for all 1 < {, j < n,

t^Vj Vjt^, for all 1 < i,j < n,

ts,Vk=vkta„ iffc^{M+l}, (5-1)

r-1
ts Vi+l vlts + V"1 £,<>,-<> for 1 < { < n — 1.

The following proposition establishes an "evaluation homomorphism" for the
algebras H* 1 n

which is a generalization of the homomorphism in (4.5).

Proposition 5.2. Define elements V]~ in the group algebra CG(r, 1, n) by setting

v\ 0 and

vi° -12 y^ ttitrt(i.k)> for2<k<n.

Then there is a surjective algebra homomorphism

K\n -^ CG(r,l,n)
Vg Vg

Proof. We must check that the defining relations (5.1) of H* 1 n
hold with the

replaced by the V]~.
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For each 1 < k < n, let

Zk=v\-\ \-vk - 22 %C7£(jj)-

Then, for each k, zk G Z(CG(r, l,k)) since it is the sum of the elements of the con-
jugacy class of reflections t^^-ii \ in G(r, 1, k). So zk commutes with z\, ,zk
and therefore z\,... ,zn commute. Since vk zk — z^-i, it follows that v\,... ,vn
also commute.

If m > k then tçm clearly commutes with Z]~. If m < k then tçm commutes
with Z]~ since Z]~ G Z(G(r, 1, k)). So t^m commutes with z\,... ,zn and hence with

vi,... ,vn.
Since

- vk+i - Y,
0<£<r-l

it follows that

0<£<r-l 0<£<r-l

0<£<r-l

D
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