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Generalized Whittaker vectors for holomorphic and quater-
nionic representations

Nolan R. Wallach

Abstract. The conjugacy class of parabolic subgroups with Heisenberg unipotent radical in a
simple Lie groups over C not of type C),, contains an element defined over R for each quater-
nionic real form. In this paper we study the Whittaker models for quaternionic discrete series of
these real forms and prove results analogous and by analogous methods to the case of simple Lie
groups over R that are the automorphism groups of tube type Hermitian symmetric domain and
(so-called Bessel models) for holomorphic representations. In particular we calculate the decom-
position of the space of Whittaker vectors under the action of the stabilizer of the corresponding
character in a Levi factor of the Heisenberg parabolic subgroup.

Mathematics Subject Classification (2000). 22E46, 22E47.

Keywords. Representations, Lie groups, Whittaker vectors, quaternionic discrete series.

1. Introduction

The Fourier coefficients of a classical automorphic function at a cusp can be inter-
preted as defining certain classes of continuous functionals on the space of smooth
vectors of the corresponding automorphic representation. The constant term (zero
Fourier transform) yields a conical vector. The other Fourier coeflicients yield
Whittaker vectors. In the classical theory the underlying group (at the infinite
place) is SL(2,R) and the representations occurring are principal series for Maas
forms and discrete series for the holomorphic forms. Recently, B. Gross has ex-
tended the circle of ideas involving classical holomorphic automorphic forms to
the forms on arithmetic quotients of split G5 corresponding to quaternionic dis-
crete series. Here the “Fourier coefficients” are replaced by generalized Whittaker
vectors parametrized by binary forms over R of degree 3. His theory suggested
that the classical holomorphy condition (the only non-zero Fourier coefficients are
the positive ones) be replaced with a quaternionic condition which translates to
positive discriminant. That this is true is a consequence of the main theorem of
this paper.

Research partially supported by an NSF Summer research grant.
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Before we give a description of the main results of the paper we will explain
what we mean by a generalized Whittaker vector. Let GG be a real reductive group
and let P be a proper parabolic subgroup with unipotent radical N. We fix a Levi
subgroup of P (that is a Lie subgroup, M, of P such that the map M x N — P,
m,n — mn is bijective). Let ¢» : N — S! be a unitary character. The abelian-
ization of N, V' = N/[N, NJ, is isomorphic as a Lie group with an n-dimensional
vector space over R. The set of unitary characters can be identified with the real
dual space of V', V* as follows: if A € V* then the corresponding unitary charac-
ter is n — exp(iA(n[N, N])). We will say that the character corresponding to X is
generic if the orbit of A under the action of M on N by conjugation is open in V*.
If (w, H) is a unitary representation of G then we will use the notation H> for
the smooth Fréchet representation of G on the C'*° vectors in H. We will denote
by Whjzo(H ) the space of all continuous linear functionals, v, on H* such that
v(m(n)h) = ¥(n) " tv(h) for all h € H*® and n € N. In the case of G = SL(2,R)
with P the standard parabolic subgroup consisting of upper triangular matrices

e v={[o5eerf = {[} ] er]

and it is clear that the condition that a unitary character of N be generic is just
that it be non-trivial. It follows from a result of C.Moore that if (7, H) is an
appropriate choice holomorphic discrete series representation for G then all of the

generic ¢ such that WA (H) # 0 are of the form v ({(1) T}> = exp(itz) with

all ¢ > 0 (an independent proof will be found in section 2 furthermore the choice
will be made). The analogous situation for G is that one of the two parabolic
subgroups of dimension 9 has a 5 dimensional Heisenberg group for its unipotent
radical. We will fix this parabolic subgroup (that this is a correct choice for quater-
nionic discrete series is clear from the paper of [Gr-W] also there will be evidence
later in this introduction) the identity component of M has commutator group
locally SL(2,R) and its action on the unitary characters on NN is via the 4 dimen-
sional, irreducible representation (the binary forms of degree 3). The condition
that a unitary character be generic is that the discriminant of the corresponding
form be non-zero. We prove (following Gross’s suggestion) that the condition that
there exist a non-zero Whittaker vector for a quaternionic discrete series trans-
forming by v is that the discriminant be positive. The structure of the space of
such vectors is also described (also conjectured by Gross). We will describe this
aspect in full generality later in this introduction.

We will now describe the main results of this paper. Let G be a connected
simple Lie group over R let K be a maximal subgroup of G subject to the con-
dition that if Z is the center of G then K/Z is compact. We say that G is of
Hermitian type if K contains a one dimensional center (denoted T') it is said to
be of quaternionic type if K contains a normal subgroup, Ky, isomorphic with
SU(2) such that the isotropy representation of SU(2) on the tangent space to the
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identity coset in G/K is equivalent to a multiple of the action of the unit quater-
nions on the quaternions under left multiplication. If G is of Hermitian type then
a unitary irreducible representation is said to be holomorphic or antiholomorphic
if it is admissible when restricted to T' (this means that as a representation of T’
it splits into a direct sum of one dimensional representations with finite multiplic-
ity). If G is quaternionic then a unitary irreducible representation of G is said to
be quaternionic if it is admissible when restricted to K1. We will first describe
the results in the Hermitian case. We note that if G is simply connected then
T' is isomorphic with R under addition. Thus the group of unitary characters of
T is also isomorphic with R under addition. If (w, H) is an irreducible unitary
representation of G that is admissible with respect to T" then the set of unitary
characters that occur in the decomposition of H when restricted to T all either
positive or negative. We say that G is of tube type if there exists a connected
subgroup G4 of G that is locally isomorphic with SL(2,R) and T' C G1 (we may
and do assume that T is locally SO(2) in SL(2,R)). We will assume that G is
tube type. Fix P; in Gy corresponding to the upper triangular parabolic subgroup.

with fix h € Lie(G1) such that h corresponds to the diagonal matrix [(1) _()Jin

Lie(SL(2,R)). Then using the element h we can construct a parabolic subgroup
P of G. Let y € Lie(G1) be such that y corresponds to the matrix

o)

Then we may look upon y as defining a unitary character of N via v, (exp(z)) =
exp(iB(y,z)) (here N is abelian and we can therefore identify it with its Lie
algebra). One can show that the orbit of ¢, is an open convex cone, C, and that
if 1 is such that WhiZ(H) # 0 for some holomorphic representation (after we
have made a choice consistent with that for G1), (w, H), then 4 is in the closure
of the orbit of ¢y. If H is generic in a suitable sense (e.g. it is a holomorphic
discrete series representation) then Whi?(H) # 0 for all ¥ in the closure of the
orbit and the action of the stabilizer, My, of ¢ on the space Whio(H ) # 0is
equivalent with its restriction to a specific finite representation of M to M, that
is explicitly computable from the minimal K-type (it is in fact the action of M
on Wh3°(H)). The point of this discussion is to point out the critical role of one
specific subgroup of G that is locally isomorphic with SL(2,R). The key is that
groups locally isomorphic with SL(2,R) are the smallest non-compact simple Lie
groups that are of Hermitian type.

We will now look at the quaternionic case. Here the smallest such group that
is non-compact is locally isomorphic with SU(2,1). We now assume that G is
quaternionic. We note that if G is not locally Sp(n, 1) then there exists a Lie
subgroup of G, S that is locally isomorphic with SU(2,1) containing Ky and in-
variant under the Cartan involution of G corresponding to K, . We fix a minimal
parabolic subgroup, Py, of S. Let P; = M;N; be a Levi decomposition and
let A; be the identity component of the center of M. Fix h € Lie(A1) such



Vol. 78 (2003) Whittaker vectors 269

that the eigenvalues of ad(h) on Lie(Ny) are strictly positive. Then using h we
can use the standard method to construct a parabolic subgroup, P = M N with
M = {g € Glad(g)h = h}. This real parabolic subgroup is up to conjugacy the
one that was studied in [Gr-W]. The generic unitary characters of Ny form a single
orbit of M; (indeed they are just the non-trivial characters). We will say that a
unitary character ¢ of N is admissible if the restriction of ¢ to mNym ™! is non-
trivial for all m € M. The admissible unitary characters of N form a single orbit
of M (which in the special case of G5 is the orbit of positive discriminant and will
be described in general in section 7 of this paper). The main theorem is that if
(m, H) is a quaternionic discrete series of G and if ¢ is a generic unitary character
of N then thZO(H ) # 0 if and only if ¢ is admissible and if so the representation
of My on Whi?(H) is determined as the restriction to My of a finite dimensional
representation of M constructed from the minimal K-type of H (in particular it
depends only on H). The first example that indicates the full subtlety of this result
is G locally isomorphic with SO(4, 4), that is, the smallest real rank 4 quaternionic
group. The result rests on a subrepresentation theorem for quaternionic discrete
series in (degenerate) principal series induced from finite dimensional representa-
tions of P and an analogue of the multiplicity 1 theorem for generalized Whittaker
model for these induced representations. The subrepresentation theorem and the
result on Whittaker models (Theorem 12) are of independent interest. The latter
is a special case of a general theorem on such models (based on a strengthening of
Bruhat theory due to Kolk and Varadarajan [Ko-V]) which will appear in a later
paper. However, full details for the case at hand are in this paper.

The literature in the holomorphic case is very rich and we are certain to have
missed appropriate references to important contributions. (One such piece of work
is [Gr-D] which also contains a substantial bibliography.) We have given an exposi-
tion of this case to emphasize the similarities and differences with the quaternionic
case. Also, the material of section 10 of this paper is perhaps new (even in the case
of the holomorphic discrete series since it involves the full spectrum from conical
to Whittaker).

We would like to take this occasion to heartily thank the first reviewer of this
paper for his list of “clarifications requested” and his second set of questions which
turned out to involve gaps and one error in the original manuscript. The reviewer
suggested that we look at the main result of [Ko-V] as a method of fixing the
error. This important extension of Bruhat theory did indeed help significantly.
Fortunately, no statement of a main result was changed in fixing these lapses.
As indicated above, the material of this paper stems from some questions and
conjectures of B. Gross. We would like to thank him for the initial question, for
his amazing intuition that consistently helped us stay on the correct path and for
his encouragement during this project.
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2. The case of G locally SL(2,R)

In this section we will collect some results about Whittaker models for G a covering
group of SL(2,R) with covering homomorphism v : G — SL(2,R). Some of them
are not so readily accessible so we will give a relatively self contained exposition.
We take the usual basis

01 00 10
x=foo]r=[ra] 1o 5]
for Lie(G) which we identify with Lie(SL(2,R)) via the differential of v. Let P be
the usual parabolic subgroup consisting of the normalizer in G of span H, X. Then
P =MN with M = Zexp(RH) and N = exp(RX) and Z is the center of G. Let
o : M — C* be a group homomorphism. We extend o to P by setting o(n) = 1,
n € N. Let I(o) denote the representation obtained by inducing (unnormalized)
o from P to G. Let 1°°(0) be the space of all C* vectors in I(o) with the usual

topology. This space can be described as the space of all C*® mappings, f, from
G to C satisfying

fpg) = o(p)f(9)
with the C°° topology. G acts on [°°(o) by the right regular representation
7. (g9)f(z) = f(zg). Let K = SO(2). Then G/P = K/Z = SO(2)/{£1}. We
set I(o)k equal to the space of K finite vectors in I*°(o).

If x is a unitary character of IV then there exists r,, € R such that x(expzX) =
e”"x* for x € R. We denote by Wh°(I(0)) the space of all continuous linear
functionals A : I°(¢) — C such that A(w(n)f) = x(n)"'A(f) for n € N and
f € I*°(o). The following result is well known (see [J]).

Theorem 1. If ry # 0 then dim WhS(I(o)) = 1.

We will now discuss the implication of this result to Whittaker models for the
discrete series of G. We set H = {z € C|Imz > 0}. Let n be in R and let H?
denote the space of all holomorphic f : H —C such that

/ / |f (& +iy)Py" P dyda < oo.
—o0 J0

We set o oo
(f,9) = [ /0 - iy s

for f,g in H. The group G acts on the Hilbert space H” as follows.

dz—b
—cZera)

D (@)f() = (=ez+a) " f(
if
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Here we use the branch of (—cz + a)™™ that agrees with the usual rational func-
tion for n € Z. Then one can check that this action defines a non-zero unitary
representation of G if n > 1. Setting

(z —i)*

fen(2) = ik
and
cosf sinf
k(o) = {—Sinﬁ cos@}
then

Di(k(e))fk,n - 67(n+2k)wfk,n~

The functions f% , form a basis ofithe space of K-finite vectors in H?, (Hﬁ) K.
We set H™ equal to the space of all f with f € H?. With g € G (given as above)
acting by

—dczz_—i-ba) ’

Dy ()f(2) = (=2 +a) " f(

Thus (D)}, H?) and (D, , H") are dual representations under the pairing

o= [ / " #ls it gy gl

with f € HY and g € H".

As above, if (7, H) is a (strongly continuous) representation of G with, H,
the space of C™° of m and if x is a unitary character of N then we will use WhS® (H)
for the space of all A : H>*® — C that are continuous in the standard topology of
H> and

A(r(n)o) = x(n)~'A(v)
for v € H* and n € N. The following result is a consequence of a theorem of C.
Moore. We will now outline a more direct proof.

Theorem 2. If ry > 0 then dim Wh?(HY) =1 and Wh'(HZ) = 0. If r, <0
then dim Wh?(HY) = 1 and WhSS(H™) = 0.

Proof. The argument is based on a realization of the representations H7 that
is joint work with B. Kostant. We define the following operators on C°°(R>?)
(R>? = (0, 00) )depending on a parameter o € R.

RE(E) =29 () + £(0),21(0) = 5 5(0),
2 CV2
JF(t) = Qi(t%(t) + %(t)) vi =5+ 2) 5.

We note that all of these operators are formally skew-adjoint on L?(R>, dt).
Set y = J + x. Then one can check that

[z,y] = h, [h, 2] = 2z, [h,y] = —2y.
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We note that if g, (t) = e=/2t%/2 then
Jgo = —i(a+1)ga.
We set e = hii(;ﬂ’)? f= hH(;ﬂ). Then
[, e

]:2267[‘]7](] :_2if7 [€7f]:_i‘]'

We also observe that
ego, = 0.

Set gn,o = ["go then
Jgno=—i(la+142n)gy q.

We set 7,(X) = z, v%(Y) = y and vy, (H) = h. Let V, be the span over C of
the functions gy, o for n > 0. Then (v, V) is a representation of Lie(SL(2,R)).
We note that J = v,(Y — X) (note that exp(f(Y — X)) = k(#)~1). This implies
that (ya, Va) for a > 0, a € Z is equivalent with the underlying (g, K') module of
H*! Since an irreducible (g, K) module can have at most one invariant non-zero
Hermitian form up to multiple this implies that there exists a unitary operator
T: H*' — L2(R>7 dt) that maps the space of K-finite vectors (the span of the
fr,041) onto V,,. We note that this implies that we can define a unique unitary
representation of G on L?(R>°, dt) with underlying (g, K ) module V,,. We will use
the same notation ~y,, for this representation. Then T defines a unitary intertwining
operator between D_, | and v,. We also note that

w ([o4]) 10 =0,

We finally come to the key point. If » € R>° then let 6,(f) = f(r). Then &,
defines a continuous functional on the space of C*-vectors for ~v,. We also note

b (o ([22]) ) =i

This implies that if » > 0 and if

()

then ¢, € Wh;o(Hf‘“). If we apply complex conjugation we have proved that if
ry >0 then Wh(HYT) # 0 and if 7, < 0 then WhS(H*T") £ 0.
As is well known, if & > 0, « € N then the representation

(2= @ HE e

is a quotient of I°°(o) for o defined as follows:

h O
_ p—(a+1)
“([oa]) =
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for h € R*. Fix « and the corresponding ¢ then for each character xy on N we
have
1 = dimWh(I(0)) > dim WA (HST) + dim WA (H>T).

The theorem now follows. O

Remark 1. The theory of Verma modules implies that the Harish-Chandra mod-
ules (va, Vi) are irreducible for o > —1. Thus these modules give an implementa-
tion of the analytic continuation of the discrete series. We refer the reader to [K2]
for an account of the implications of this model. Also see section 10 in this paper.

3. Some properties of holomorphic representations

We will freely use the notation of the previous section. Let go be a simple Lie
algebra over C. Then then a real form, g, of g¢ is said to be of Hermitian type if
each Cartan involution of g, €, has the property that the fixed point set £ has a
one dimensional center, ¢. Fix g of Hermitian type and a Cartan involution 6 of g.
Then we say that g is of tube type if there exists a homomorphism ¢ : 5{(2,R) — g
such that ¢(—v?) = 0(¢(v)) for v € sl(2,R) (the superscript T' corresponds to
transpose) and
PR(X -Y)) =rc.

Throughout the rest of this section we will assume that g is of tube type and
we fix ¢ as in our definition. We set pc = {z € g¢|fz = —z}. Set h, = idp(X =Y.
Then ad(h,) has two eigenvalues on po, £2. Let p* denote the eigenspace with
eigenvalue 2 and p~ with eigenvalue —2. Then ps = p* @ p~. We note that both
pt and p~ are commutative Lie subalgebras of g. We set q = ¢, p™. Then g
is a parabolic subalgebra of go. If W is a t¢ module then we extend the action
to g by letting p™ act by 0. Let U(h) denote the universal enveloping algebra of
a Lie algebra h. We will identify U(q) with its image in U(gc) under the natural
inclusion. We define a go module

NW) = Ulge) Q.
U(q)
Assume that G is a connected Lie group with Lie algebra g and that K is the
connected subgroup of G with Lie algebra £. If W is the differential of a finite
dimensional K module then N(W) is a (g, K )-module under the action

k- (g®w) = Ad(k)g@kw

for g € U(ge) and w e W. If W is irreducible then the module N(W) is called a
holomorphic (g,K) module.

We will use the notation H = ¢(H). Then ad(H) has three eigenvalues on g,
0,2, —2. We set n equal to the eigenspace for eigenvalue 2 and m the eigenspace
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for eigenvalue 0. Then m is the Lie algebra of M = {g € G|Ad(g)H = H} and
n is an abelian Lie algebra. Let N = expn (we apologize for the two uses of the
letter N there should be no confusion since the group and the module will be
clearly separated by context). Then @1 = M N is a parabolic subgroup of G. Set
g1 = Lie(M)c@Lie(N)c. Then one can show (see [Wa2] and [E-W]) that g and
g1 are opposite parabolic subalgebras (that is g N gy is a Levi factor of both g and
q1). This implies that there exists an element n € No and p € exp(p™) such that
Ad(p)Lie(K)e = Ad(n)Lie(M)c. We observe that if x € p* and v € N(W) then
there exists k depending on # and v such that zfv = 0. We therefore see that
N(W) has a K¢ exp(p™)-module structure. We can thus define a Lie(M)c module
structure on W given by 1@Quw = Ad(n)(u)(1Qw) for w e W and u € Lie(M)c.
We will use the notation W for any element in the isomorphism class of this
module. Let G¢ be a connected simply connected Lie group with Lie algebra g¢
and let G be the connected subgroup of G with Lie algebra g. Suppose that W
is a finite dimensional K-module which we extend to a holomorphic K- module.
Then n~'Mn is contained in K¢ and thus we have an isomorphism class of M-
modules whose differentials give the class of the W. We will also use the notation
W for any element of this isomorphism class of M-modules. The fact that the two
parabolic subalgebras are opposite now has the following consequence.

Theorem 3. Assume that W is a finite dimensional tc module then as (g1, K N
M)-module N (W) is isomorphic with U(ng)@W .

If V is a g-module and if 4 : n — C is an R-linear map (hence a Lie algebra
homomorphism since n is commutative) then we denote by Why (V) (Wh for
Whittaker vector, as usual) the space of all elements A € V* such that A(zv) =
—(z)A(v) for v € V and z € n. If U is a finite dimensional (m, K N M) module
then there exists a unique representation of M on U whose differential yields that
module structure. We will use the same notation for that AM-module. If ¢ € n*
then we set My = {m € M|y o Ad(m) = ¢}. With all of this notation and these
conventions in place the above theorem has the following immediate consequence.

Corollary 1. Let W be a finite dimensional K-module and let ¢ be an element
of nE then Why(N(W)) is isomorphic as an My-module with the module contra-

gredient to W.

This result says that there are always formal (e.g. algebraic) Whittaker vectors.
We have seen in the previous section that under some regularity conditions such
vectors do not necessarily exist. We will now derive a theorem that generalizes
Theorem 2. We first recall the structure of the holomorphic discrete series. We
won’t be as explicit as we were in the case of SL(2,R). We fix a maximal abelian
subalgebra, t, of € then to is a Cartan subalgebra of g and of €5. Let ® denote
the root system of go with respect to to and let $; be the root system of € with
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respect to to. Let @; be a fixed system of positive roots for €5 and let ®1 be
the system of positive roots in ® given by ®; U {a € ®|ar(h,) = 2}. Let p denote
the half sum of the positive roots of ® and let «, denote the unique simple root
in ®1 that is not in QJ;. Let Z denote the center of G. Recall that a unitary
representation, (7, H), of G is said to be square integrable modulo the center if

LMHMQMWWm<w

for all v € H. The basic result on the holomorphic discrete series is the following
theorem of Harish-Chandra [HC].

Theorem 4. Let W be an irreducible, unitary K-module with highest weight A
relative to ®;. Then a necessary and sufficient condition that N(W) be the un-
derlying (g, K) module of a representation square integrable modulo the center of
G is that (A + p, o) < 0.

If W satisfies the condition of the above theorem then we will use the notation
(Txtp, H Ate) for a choice of an irreducible square integrable representation of G
with underlying (g, K)-module N(W).

Let N denote the connected subgroup of G with Lie algebra n (that is N =
expn) as above. If ¢ is a unitary character of N we will also use the notation
1 for its differential. The non-degeneracy of B implies that there exists vy € n
such that ¢ (z) = iB(yy, z) for z € n.

If (7, V) is a (strongly continuous) representation of G on a Hilbert space the
H*® will denote the space of all C*> vectors with the usual topology. If ¢ is a
unitary character of N then we will use the notation Whizo(V) to denote the space
of all continuous functionals A on H> such that A(7(n)v) = ¥(n) tA(v) for all
n € N and v € H*®. Then we note that (N(W) the space of K-finite vectors of
HAH)).

Whep (HM?)

vowy © Why(N(W)

as an M,-submodule.

Let S, denote the simply connected covering group SL(2,R). Let ¢ : S, — G
be the homomorphism whose differential is what we have been calling ¢. By going
to a covering group of G we may assume that ¢ is injective. Set S = ¢(S,). We
note that the representations (m;,, H*"*) are unitary and when restricted to C,
the center of K are admissible. Thus since S contains C it and the eigenvalues of
—igp(X —Y) are strictly negative it follows that as a representation of S.

HA = (Bym, (\H?
n
a unitary countable direct sum with finite multiplicities my, ().

Lemma 1. Let ¢ be a nontrivial unitary character of N. Let (7,V) be a repre-
sentation of G on a Banach space and let X be a continuous linear functional on
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V> such that

A(m(n)o) = p(n) " A(v)
forn € N and v € V®. Then for each k > 0 there exists a continuous seminorm

g on V' such that
A(r(exp(tH)o) < ey (o)

for allt >0 and v e V=°.

Proof. We observe that there exists a continuous seminorm & on V>° such that

A (g)o)l < lv(g)]"k(v)
for all g € G and v € V° (here v is a covering homomorphism onto a linear Lie
group with Lie algebra isomorphic with Lie(G) and ||...||is a norm on v(G) see
[Wa3]). We will write ||g|| = ||lv(g)||Since ||...]| is a norm it follows that there
exists m € N and C > 0 such that

lexp(tH)|| < Ce™
for ¢ > 0. Since ¢ is nontrivial there exists X € n such that d¢(X) = —i. Thus
iA(v) = A(r(X)v)
for all v € V*°. If t € R then we have
A7 (exp(tH)v) = A(n(X)w(exp(tH)v) =
A (exp(tH)m(Ad(exp(—tH)) X o) = e~ A (exp(tH)w (X o).

Hence
(7 (exp(tH)w)| < Cel™ Dtk (n(X o)

for all v € V= and ¢t > 0. Set &(v) = Cr(n(X)v). Repeating this argument we
find
IA(r(exp(tH)v)| < ™ D (n(X o).

The obvious iteration of this idea implies the result. ([l

If z € n then we will say that = is positive if + € Ad(M)X. We will write
x > 0if z is positive. We will say that a unitary character, ¢ of N is positive if
—idip(z) > 0 whenever = > 0. The main result of this section is

Theorem 5. Let A+ p be a Harish-Chandra parameter for a Holomorphic discrete
series. A mecessary and sufficient condition that

Whi (HM?) #0
is that ¢ be either positive or the trivial character if this is so then
W (HM)| v oy = Why (N(W)

as an My-module.



Vol. 78 (2003) Whittaker vectors 277

Remark 2. In light of Corollary 1 this theorem gives a complete description of
continuous generalized Whittaker models for holomorphic discrete series.

Proof. We first observe that as a representation of S the representation 7y, o ¢
splits into a direct sum with finite multiplicities of the representations H ﬁ (see
the observations above). If there exists € Ad(M)X such that —iy(z) < 0 then
replacing ¢ by ¢ o Ad(m)~! the restriction of any element of W hy, (N(W)) cannot
extend to a continuous linear functional on any of the spaces (H f_)o" But this
implies that thf(H”’") = 0. If there exists « € Ad(M )X such that ¢(x) = 0 but
¢ # 0 then replacing ¢ by ¢ o Ad(m)~! (if necessary) we may assume ¢ (X) = 0.
Thus if V is an irreducible S direct summand of H*? then V is equivalent with
H f‘”; for some k. The space of K NS-finite vectors in V' consists of K-finite vectors,
which we will denote Vi. If X € WhZO(HAﬂ’) then Ay, factors through Vi/XV;
which is a one dimensional space. The element H thus acts a scalar . This implies
that if v € V; then A(7w(exp(tH))v) = e #*A(v). Now the previous lemma implies
that Xjy; = 0. Since the sum of the spaces V; (as described) is dense in (H*7)>,
Hence thzo(HM'p) = 0 in this case also.

To complete the proof we must (only) show that if ¢ is positive or if v = 0
then WhS(HA#) £ 0. If ¢ = 0 this is an immediate consequence of the fact that
N(W)/aN(W) #£ 0. We may therefore assume that 1 is positive.

To complete the proof of the theorem we will need several structural results that
we shall see have analogues in the quaternionic case. We will therefore interrupt
the present proof to present these ideas.

We denote by P, the projection of g onto p given by Py(z) = ﬁi The key
result is

Lemma 2. Set £; = tNm and p; = Pyn. Then we have

[p1,p1] C ey, [B1,p1] Cpy.

In other words, if we set g1 = €1 @ p1, then it is a reductive Lie algebra over R
with given Cartan decomposition.

The proof is a direct calculation using [n,n] = 0 and [H, [n,6n]] = 0.

We now consider the decomposition g = n@ mPn. Let P, denote the pro-
jection onto n corresponding to this decomposition. We note that all of the pro-
jections that we have defined intertwine the adjoint action of M N K on g. This
implies that if g is a maximal abelian subspace of p; then since Ad(M N K)a = p;
it follows that Ad(M N K)P,a = n. Fix a maximal torus, T, of K and let &7 be
a system of positive roots compatible with the parabolic subalgebra q = ¢ p™.
Let 1 ..., be the system of strongly orthogonal roots constructed as in [He, pp.
385-386]. Let u; be the Lie subalgebra of gc isomorphic with s/(2.C) that has
roots +v;. We note that the complexification of our original algebra with basis
X,Y, H is the diagonal subalgebra of the direct sum of the u;. We may choose
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0 # X; € u;Nnsuch that X; —0X; € p1. Then ), R(X; —6X;) is maximal abelian
in p hence in p;. This implies that

Ad(M N K) (Z RXi) —n.

We also note that we can choose X; such that Y~ X; = X. Furthermore, Ad(M N
K)X =X.

The Cartan decomposition implies that M = (KNM ) exp(a)(KNM) we assert
that this implies

Lemma 3. ¢ is positive or trivial if and only if (x) = iB(y,z) with y =
—Ad(/ﬂ)(Zi yié‘Xi) with y; >0 and k€ MN K.

Proof. By the above we see that since X =) X; we have
Ad(M)X = {Ad(k) > 2 Xl > 0,k € Kn M}.

If Y € Onthen Y = —Ad(k) > 4:0X; with y; € R and k € M n K. Thus the
condition of positivity comes down to

B (Z vt Xi, Ad(k) > xX) <0

for all k € KN M and all z; > 0. In particular if we take £ = 1 this implies that
yi > 0. If all of the y; > 0 then y = —Ad(m;) (Zexi) with m; € M. Thus

B(y, Ad(m)X) = —B(6X, Ad(m1) *Ad(m)X) =
— B(0X, Ad(k)Ad(a)X)
since mflm = kaky with k, k1 € KN M and a € A. Since Ad(K N M)X = X we

have
B(y, Ad(m)X) = —=B(6X, Ad(a)X) = = > a"B(6X;, X;) > 0.

O
We will now complete the proof of Theorem 5. We note that M acts transitively
on the interior of the set of positive elements. This implies that if Whg*(H ATPY £0

for one positive element in the interior then it is nonzero for all of them. If
v € N(W) and v # 0 then the function

foln) = (m(n)v, )

is nonzero and in L?(N) N L*(N) (cf. [Wa3, Theorem 4.5.4, p. 126]). This implies
that there exists an open subset of unitary characters y such that

/N x(m)~Lfu(m)dn £ 0.
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Now the functional

Aw) = /Nx(n)fl {r(n)w,v)dn

for w € (H*7)> defines an element, of Wh3° (H**#). Thus there is an open subset
of x such that Whjzo(H At+e) £ 0. Now the above vanishing results imply that if
thf(H APy = 0 for all ¢ positive in the interior then we have a contradiction.
We now look at the boundary of the set. Suppose that ¢(X) = iB(Y, X). Then
up to conjugacy by an element of M we may assume that ¥ = — > ,0X; with
y; >0fori <randy,=0fori>r. Seth, =H, 1+ -+H (H =—-[X;0X,]).
Let n, be the sum of the eigenspaces for (strictly) positive eigenvalues of ad(h,).
Let g, be the centralizer of h, in g. We denote by g, the ideal in g, generated by
nNg, and #(nNg,). Then g, is a Lie algebra of the type we have been studying and
(HAP)> /on, (H tr)*° is the space of smooth vectors for a holomorphic discrete
series for the connected real Lie subgroup G, of G with Lie algebra g,. In this
context the restriction of ¢ to N N G, is in the interior of the set of positive
characters. The preceding argument now implies the full result.

In section 10 we will show how these results and the techniques of section 9
can be used to prove the theorem announced in the introduction.

4. The case of SU(2,1)

In this section we will prove several results analogous to those of section 2 (the
case of SL(2,R)) for the quaternionic (hence in this case) generic discrete series
for G = SU(2,1). To fix notation we take (z,w) = 2101 + 29w — 23ws. Then G is
the group of all elements of SL(3,C) such that (gz, gw) = (2, w) for all z,w € C.
We will write g = Lie(G). We take K to be the subgroup of all matrices in G of

the form
u 0
0 det(w)?

with u € U(2). We take H to be the matrix

001
000
100

and a = RH, A = ¢* in G. We denote by M the subgroup of K consisting of
matrices of the form

w 0 0
0uw20
0 0 wu

with © € C and |u] = 1. The element ad(H) has eigenvalues 0,41, +2 on g. We
set n equal to the direct sum of the eigenspaces for adH corresponding to the
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eigenvalues 1 and 2. We put N = e". Then KAN is an Iwasawa decomposition
of G and P = M AN is a proper parabolic subgroup of G given in terms of its
standard Langlands decomposition corresponding to our choice of K. Let

10
-]t

Then the Cartan involution of G' corresponding to K is 6(g) = I2,1912,1.
We set _
1 10—
X=-(000
2lio—i
and _
1 -5 0 —
Y==-[000
2l io0 4

Then RX = [n,n] and we have
(X,Y]=H,[H X]=2X,[HY]=-2Y.

Also RX + RH + RY form the Lie algebra of the subgroup H, = SU(1,1)

imbedded in G, as
al0b

{% E} — (010
“ boa

We note that CX + CY + CH is just the Lie algebra of SL(2,C) imbedded in

go =sl(3,C) as follows

o b a0 b
{ :|I—> 00 O
c —a
c 0 —a
Let
010 1 00
r=]1000(,h=]0-10
000 000

Let b denote the Borel subalgebra of g consisting of trace 0 and of the form

* ok ok
0x0

0 * *

Let h denote the diagonal Cartan subalgebra of g. Then b is f-stable and bnés =
h 4+ Cz. Thus the simple positive roots corresponding to this choice of Cartan
subalgebra and Borel subalgebra are both non-compact. We write b = h @ u
with u the nilradical of b. We note that, in the usual ¢ notation ([Bour]) the
simple roots are oy = 1 — €3 and as = €3 — g9 and the compact positive root
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is B = ¢e1 —e3 = a1 + as. The coroot associated with 3 is h. We also write
A1, Ay dominant integral forms defined by A;(d;) = d;; (the upper check indicates
coroot).

Associated with this choice of Borel subalgebra is the generic discrete series.
Which we will now study. Let T' C G be the maximal torus of K with complexified
Lie algebra h. That is, the diagonal elements of GG. If x is a unitary character
of T with A = dy € h* then we write x = xa and we will also use the notation
th = x(t). If A is regular and dominant with respect to the choice of b then there
is an associated an equivalence class of square integrable representations of G. We
choose a representative (my, HX) = (wa, H*) of the class.

At the other extreme there is the principal series of representations of G. Let
¢ be a unitary character of M and let v be a (quasi-)character of A which we
will write as @ — a” with v € af,. We denote by (7¢ ., H*") the representation
of G induced from the quasi-character man — &(m)a”. The space of H®" is a
subspace of the functions f : G — C such that f(mang) = £(m)a”t* f(g) for all
m € N, a€ A and n € N and the action by G is by right translation. Here, as
usual, p(h) = tr(adh,) for h € a. Equivalently, p(H) = 2. We note that Lie(P)c
is a Borel subalgebra of g and h; = (a & Lie(m))o is a Cartan subalgebra of g¢.

Let o be an inner automorphism of g such that o(b) = Lie(P)c and o(h) = ;.
It is unique up to multiplication by an automorphism of the form e*¥") with h € §.
We choose it as ¢ = Ad(g) with

ﬁ
0

=0

K
I
T

Then A oo defines a Lie algebra homomorphism of Lie(P)s to C. This homo-
morphism exponentiates to a quasi-character of P. We will write ma —— {a(m)a?s
for the corresponding character of M A. We observe that if y is a dominant in-
tegral weight and if ®* and ®_,, are the corresponding Zuckerman translation
functors (cf. [Wa3], [K-V]) than (sub K denotes K-finite vectors) ®*((H")g) =2
(HM ) e, @ ((HA ) ) 22 (HY) ¢ and if o is an element of the Weyl group then
q)su((HésA,usA)K) o (HESAHH,VSHSM)K and &, ((HESAﬂM,usAHM)K)g (HgsAJ’sA)K.
These assertions will be abbreviated to the statement that the families A — H%
and A — HSA VA are coherent.

If (7, H) is a representation of G we will use the notation H, for the space if
C™ vectors in H relative to the action 7 and Hg for the space of K-finite vectors.

Theorem 6. Let A be a unitary character of T' that is dominant and reqular rel-
atwe to b which we write as miA{ + malAy. There erist continuous injective G-
intertwining operator Rf\ from (HM) into (Hé“j’"“j Joo forj =1,2,3 and pu1 = A,
po = (mq + mo)A1 — maly and ps = —miAqy + (m1 + mo)As. We write Rp for
RL.
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Proof. In [Wal, p. 183] on can find this result stated for K-finite vectors. The
K-finite case implies the result for C* in light of [Ca], [Wad]. Since there are
no proofs in [Walll] we will give a sketch of a proof based on [J-W] and [K-W].
[K-W] gives 2 Szegd quotient maps for this discrete series. The conjugate dual
parameters are exactly the ones corresponding to po and ps in the statement (see
[K-W, Theorem 10.8, p. 195]). We now consider Ry. We first look at the case
when &4 = 1, that is, the corresponding principal series representation is spherical.
Then we must have A = mf with m > 0 and m € Z. Hence v = mp. Then in this
case the result is now an immediate consequence of Theorem 5.1 (3) and Theorem
8.2 in [J-W]. To complete the proof we observe that both of the families A — H%
and A — H&¥A are coherent (see the discussion preceding the statement of the
theorem). O

We will now examine in more detail the case (that appears in the proof above)
when we have an embedding into a spherical principal series representation (that
is £ =1). As in [Wal] this corresponds to the case (A, a1) = (A, ag). This implies
(in light of the integrality and dominance assumption) that A = mg with m > 0.
In this case we have £ = 1 and v = mp.

We note that the conjugate dual principal series to 7 ,,, I8 71 _y,,. Thus 7y
appears as a quotient of my _,,,. Let ¢ : N — S! be a unitary character. Then
we have the following spaces:

L WhE(H ) = {X € (Hg")*|X - X = dp(X)A}.

2. WhZO(HEv”) ={A e (HY) Aome,(n)~t =9(n)A}.

Here the “prime” indicates the continuous dual of the Fréchet space HS”. If
1 is generic (which means in this special case that ¢ # 1) and if m > 0 then since

the only generic subquotient of Hfl(’%p is H g ? the maps

H?{’bﬁ _ Hll(’mp7H;1(7ump . H}?ﬁ
induce respectively (via pullback) isomorphisms [Kol] implies that
Wh{,f(Hl’mp) = I/Vhff(hmﬂ)7 th;(H‘mﬁ) o thf(Hl’m").

Also at the level of C°° vectors the work of [Ca] and [Wa3, Chapter 11] imply that
we have continuous G-homomorphisms

HIf — BEF, By ™ — Hof
which induce
Whep (HV™) = WhP (H™P), Whip (H ™) = WhY (H™).

Let s, be the non-trivial element of the Weyl group of G acting on M A. (Then
8ola = —1.) We will fix a representative an element s* € K such that Ad(s*) = s,.
We set for f € HSY

Jgjl/(f) - /Nq/J(n)f(S*n)dn.
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Here we have made a choice of Haar measure on N and we observe that standard
estimates of Harish-Chandra (cf. [Wa3, Theorem 4.5.4, p. 126]) imply that this
integral converges absolutely and uniformly in compacta of {v € a},| Re (v, p) > 0}
and Jgu € Whip(H®") for v in this set.

Theorem 7. Let A be a unitary character of T' that is dominant and regular rel-
ative to b and let ¢ be a generic unitary character of N then

1. dimWhK(HA) =dim{\ € (HE)*|X -\ = dyp(X)A} = 2.

2. WhOO(HA)*{)\E(HA) Ao (n)~t=9p(n)A} =C EAVAORA'

3. Let v € (HY) oo then there exists a constant C(v) € C such that

/ (n) (r(n)w,v) dn = C(v)JgA up (Baw)

for w € (HY)o. Furthermore, the integral in the left hand side of this equation is
absolutely convergent and the conjugate linear map v — C(v) is not identically 0.

Proof. The first result is due to Kostant [Kol]. The second can be proved as
follows. If A = mp with m > 0 then the result follows from the multiplicity 1
theorem for Whittaker models of spherical principal series. For the general case
follows by using the observation of coherence of both the principal series and the
discrete series (as in the proof of Theorem 6) and the methods of the proof of
Theorem 7.2 in [Wa5]. The last assertion follows from Lemma 15.3.7, Lemma
15.7.5 and the proof of Theorem 15.7.1 (in 15.7.6) of [Wa3]. O

5. Some properties of quaternionic real forms

Let G¢ be a connected simply connected simple Lie group over C. Let G be a
quaternionic real form of G¢ and let K C G be a maximal compact subgroup.
We recall that (up to conjugacy) there is only one quaternionic real form and
one is described as follows. Fix Ty a Cartan subgroup of G¢ with Lie algebra
h. Let go = Lie(@) identified with the complexification of g = Lie(G). Let &
be the root system of the h acting on go. Fix &1 a system of positive roots and
gu a compact real form of g such that f M g, is a maximal abelian subalgebra.
Let 8 be the largest root of ®* and let 3 € h be the corresponding coroot. Set
f = emied(B) Set gf = {X € g,]0X = £X}. Then G is the connected subgroup
of Ge such that Lie(G) = g +ig, . Let A be the set of simple roots of * and

Ape = {a € Ala(p) > 0}. We write 8 = > A maa. The following result is a
combination of Table 2.5 and Corollary 4.6 in [Gr—W].

Lemma 4. If G, is of type A, then A,. consists of two elements. Otherwise
Ape = A{ao} (i-e. consists of one element) and in all cases Y7 cn Mo = 2.

The next result is a critical step in our analysis of principal series embeddings
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and generalized Whittaker models for quaternionic discrete series. We will denote
by { , ) the Weyl group invariant form induced on § by a multiple of the Killing
form such that (3,8) = 2. If @ € ® then we use the notation (gg), for the
corresponding root space.

Proposition 1. Assume that G is not of type Ayn. If (3,5) = {(ap, ) = 2
then ®, = {*a,, (8 — a,), 2B} is a root subsystem of ® of type Ay and if
ue = Ca, + CA + Zaeéo(gc)a then uc N g 4s a real form of ug isomorphic with
su(2,1). If Gg is of type A, then there are 2 non-compact simple roots oy, ag
and we have ®; = {+ay, (8 — o), 25} is a root system of type Ay for 1 = 1,2
and for either i uc = Cé, + CB + Zae{n(gc)a then ug N g is a real form of ug
isomorphic with su(2,1).

Proof. We first consider the case when G¢ is not of type A4,,. We note that with our
normalization (3, a,) = 1. Soif we do the algebra we find that (68— a,, 5—a,) =2
and (e, 8 —a,) = —1. This implies that 3 — 2q, is not a root. Hence &, is indeed
a root subsystem of type A;. The real form g Nug is clearly the quaternionic real
form of Ay (i.e. is constructed as above using ug Nh, T = {a,, (8 — a0), 5})
which is isomorphic with su(2,1). The case of A,, is even easier. O

Note. If we look at Table 2.5 in [Gr-W] then we see that if G¢ is not of type C,
then the hypothesis of the Proposition are satisfied. Hence there is a “canonical”
su(2,1) contained in g. The exceptional cases corresponds to the real Lie groups
Sp(n—1,1), n > 2.

For the rest of this section we will assume that G¢ is not of type C,, and that
if G is of type A, then we have chosen a, to be one of the two non-compact

simple roots. Thus we have made a choice of a 1 = su(2, 1) in g for each case. As
in [Gr-W] we set 2d = |[{a. € DT|8 — a € P}

Proposition 2. As a u-module go = uc @ {z € gcol|lz,u] =0tV & V* with
V' equivalent as a w (= su(2,1))-module with (d — 1)-copies of the standard 3
dimensional irreducible module.

Proof. We note that € ug and that the eigenvalues of ad(3) on g¢ are 0,41, +2
with the +2 eigenspaces each 1 dimensional and contained in us. Thus on g /uc,
ad(B) has eigenvalues 1 and 0. In the notation of the previous section /3 cor-
responds to the element h € su(2,1). If we use the system of positive roots for
ucNh such that o, 8 — o, are the simple roots and if Ay, Ay are the corresponding
basic highest weights then if A = m1A{ + moAs then we have A(B) = mq + ma.
Hence if A were a highest weight of a non-trivial irreducible representation oc-
curring in go/uc then we must have m; + mq = 1. Hence my = 1 and mg = 0
or vice-versa. Now if F' is the finite dimensional irreducible representation with

highest weight Ay then F' is the 3-dimensional standard representation and F™*
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has highest weight Ay. Since the Killing form of g is non-degenerate on ugs we
see that the representation of uc on ge/uc is self-dual. Thus the multiplicity of
F must be the same as that of F*. It is also clear that multiplicity must be %

the dimension of the eigenspace for 1 for ad(3). Since the eigenspace for 1 in ug

is 2-dimensional we see that the multiplicity of F' in go/uc is % =d-—1as
asserted. The multiplicity of the trivial one dimensional representation of us in
go/uc is equal to dim{z € go|[z, u] = 0} since u¢ is reductive. O

We note that in particular, the result implies that if U/ is the connected sub-
group of G such that Lie(U) = u then U is isomorphic with SU(2,1). Let Ugs be
the connected subgroup of G with Lie(Us) = ug. Then Ug is isomorphic with
SL(3,C).

In the previous section we began with a maximally split Cartan subalgebra of
Lie(SU(2,1)) and derived from it a maximal torus of a maximal compact sub-
group. Here we will trace our steps in the opposite direction. If we identify
ucN(hP P, ce+Ja) with the theta stable Borel subalgebra, b, of Lie(SU(2,1))c
of the previous section then we may retrace the steps in its construction finding ele-
ments X,Y, H € usuch that [X,Y]|=H, [H,X]|=2X, [H,Y]|=-2Y,0H = —H,
0X = —Y. Further, adH has eigenvalues —2,—1,0,1,2 and {z € u|[H,z] = 2z} =
RX. Indeed, H is the coroot of the largest root relative to a Borel subalgebra of
u that is the complexification of a minimal parabolic subalgebra of u. So these
assertions follow from the previous proposition.

We set m = {z € glad(H)z = 0} and ny = {z € glad(H)x = z}, no = {z €
glad(H)z = 2z}. Put n = ny +ny. We set p = m+n and note that p is a parabolic
subalgebra of g. We also note that p N u is a minimal parabolic subalgebra of u.
We set P = {g € G|Ad(g)p C p and N = expn the nilradical of P.

Lemma 5. We can write n = anNud W such that relative to the decomposition
in the preceding Proposition, W C (V & V*).

Proof. We note that if 2z,w € ny then [z, w] = w(z, w)X with w a symplectic struc-
ture on ny. Let W = {w € ny|w(w,unmny) = 0}. Then since w is nondegenerate
when restricted to « N\ ny we have ny —unn; @ W. Now ng = RX C u. Thus
n=unNn® W. The definition of w also implies that [uNn, W] = 0. We therefore
see that the us cyclic space (under ad) of a non-zero vector in W is a sum of irre-
ducible subspaces that have highest weight either A; or Ay. Thus W C (V @ V*)
as asserted. (Il

We set Mc = {g € Go|Ad(g)H = H}. We put M = McNG. Then P = MN.
We will determine the set of open orbits of the action of M onn;. Since 0(M) = M,
these results will also determine the orbit structure of M acting on fn,;. We will
say that z € ny is generic if Ad(M)z is open in n;. We will use the notation
Lie(M) and m interchangeably.
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In [Gr-W] we proved that the ring of polynomial semi-invariants for Ad(M¢)
acting on (ny)¢ is Clu] with v homogeneous of degree 4 and that Ad(M¢) has a
unique Zariski open orbit in (ny)c given by the subset of z such that u(z) # 0.

Lemma 6. Suppose that x € ny and there exists y € Ony such that [z,y] = 2H.
Then x is generic.

Proof. We note that {z,y, 2H} forms a standard basis of a Lie algebra isomorphic
with s{(2,R). If we apply the representation theory of s{(2,R) we have that the
eigenspace for 2ad(H) with eigenvalue 2 is equal to the image under ad(z) of the
0 eigenspace. The 0 eigenspace is Lie(M) and the eigenspace for eigenvalue 2 is
ny. Thus [Lie(M),z] = ad(z)Lie(M) = ny. Hence Ad(M )z is open. O

We now observe that if z € unny is non-zero then there exists y € unény
such that [z,y] = 2H. This every non-zero element of uNny is generic. If z € ny
then we note that ad(x)*Y is a multiple of X. If z is a non-zero element of uNny
then this multiple is non-zero. We define a polynomial of degree 4 on (ny)c by
ad(z)*Y = f(z)X. Then f is real valued on n; and non-zero. Furthermore, if we
changed the choice of X,Y (maintaining the commutation relation [X,Y] = H)
we would only change f by a positive real number. We note that f is a non-zero
multiple of u defined above.

Proposition 3. Let z € ny then the following are equivalent:

1) x s generic.

2) There exists y € Ony such that [z,y] = 2H.

3) f(x) £0.

Furthermore, under the condition 1) ad(z) s injective on On. In particular the
element y in 2) is uniquely determined by x.

Proof. Suppose that z is generic. Then [Lie(M), z] = ny. Thus if we complexify we
see that Ad(M¢ )z is open in (ng)c. Hence there exists m € M¢ such that Ad(m)x
is in uNny. Thus the observations above imply that there exists u € (6n1)¢ such
that [z,u] = 2H. Now uw = y + 4w with y,w € ny. So [z,u] = [z,y] + i[z, w].
Since H, [z, y], [z, w]| € g we see that [z,w] = 0 and [z,y] = 2H. This proves that
1) implies 2). That 2) implies 1) is the content of the previous lemma.

We will now prove the equivalence of the third condition. We note that if
m € Mg then f(Ad(m)z) = x(m)?f(z) with x(m) defined by Ad(m)X = x(m)X.
If we apply the argument above to z generic then we find that there exists m € Mg
such that f(Ad(m)z) # 0. Thus f(z) # 0. Thus 1) implies 3). To prove that 3)
implies 2) it is enough to observe (as we have above) that {z € (n1)¢|f(z) # 0}
consists of a single Mg orbit.

We will now prove the last assertion. We note that #n is the direct sum of the
—2 and the —4 eigenspace for ad(2H). Thus the representation theory of s{(2, R)
implies that ad(z) is injective on On. If [z,y] = [z,v] = 2H. Then [z,y —v] = 0.
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Proposition 4. Let z € nibe generic. Let y denote the element of Ony as in 2)
in the proposition above. Then the Lie algebra generated by {z,y, X, Y} is either
isomorphic with sl(3,R) or su(2,1). Furthermore, it is isomorphic with sl{(3,R) if
f(x) > 0 and isomorphic with su(2,1) if f(z) <O.

Proof. Let h be the Lie algebra described in the statement. Then if we follow the
proof of the previous corollary we and make the same identifications see that there
exists m € M¢ such that Ad(m)he is isomorphic with the Lie algebra

CH,, DCHsDg0, D950, DI, Do, DD 5-

This Lie algebra is of type As. Thus the Lie algebra that we are studying is a real
form of As. Since it contains nilpotent elements it must be either isomorphic with
sl(3,R) or su(2,1).

To prove the last assertion of the proposition we will give another formula for
f(z). Let B denote the Killing form of g. We note that the element ad(z)?Y €
Lie(M) N § and B(ad(z)?Y, H) = 0. Since the Lie algebras s/(3,R) and su(2,1)
are respectively split or quasi-split over R and since p N f is a minimal parabolic
subalgebra of . We see that the element ad(z)?Y is semi-simple and has real
eigenvalues in the case of sl(3,R) and purely imaginary eigenvalues in the case
of su(2,1). Let g(2) = B(ad(2)?Y,ad(2)?Y) = tr(ad(ad(2)*Y)?) for z € (ni)c.
We note that g(z) = B(ad(2)*Y,Y) = f(2)B(X,Y). Since [X,Y] = H this says
that B(H,H) = B([X,Y],H) = B(X,Y). Thus g(z) = B(H, H)f(2), a strictly
positive multiple of f. Since g(z) > 0 in the case of s/(3,R) and g(z) < 0 in the
case of su(2,1) the proof is complete. O

Our final goal of this section is to give a description of the open orbits of Ad(M)
in ny to the extent that will be necessary for our analysis of Heisenberg—Whittaker
models (however Lemma 7 is not directly related to this goal but it uses some of
the ingredients in our analysis and might be useful in other contexts). As in [Gr-
W] we will see that there is a uniformity in the answer only for the quaternionic
real forms of real rank 4. If 2 € ny is generic and if the Lie algebra generated by
{z,y, X, Y} (as above) is isomorphic with s«(2,1) then we will say that z is of
complex type. Note that if z € uNny is non-zero then z is generic and of complex
type by the results above.

Proposition 5. Let z € ny be of complex type. If Ad(M)x Nu= 0 then there
exists m € M such that B(Ad(m)y,unny) = {0}.

Proof. Assume that =z € ny is of complex type. Let v denote the Lie algebra
generated by {z,y, X,Y}. Set j = ad(z)?Y then B(j,H) = 0 and {j, H} span a
Cartan subalgebra of v. We note that vs is isomorphic with si(3, C). Choosing the
positive roots of ve to be compatible with n N v the argument given in Proposi-
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tion 2 implies that g decomposes into the direct sum of the adjoint representation,
the centralizer of v and the direct sum of d—1 copies of the standard 3 dimensional
representation direct sum with its dual. This implies that if we multiply « by a
positive real number (which doesn’t change its M-orbit) we may assume that the
eigenvalues of ad(j) are given as follows: in m¢ they are 0,£2¢ in (ny)o they
are £3¢ each with multiplicity 1 and %i each of multiplicity d — 1. Furthermore,
N0 = {z € nyad(4)%2 = —9z}.

Now let x, € nyNu be non-zero and let j, be the element constructed as above
for x,. The conjugacy of maximal compact tori in A implies that there exists
m € M such that Ad(m)j commutes with j,. Replace j by this conjugate. Now
ad(j)(niNu) C n My, since nyNu is the full eigenspace for ad(j,)? for eigenvalue —9
in ny. Thus ad(j)? has spectrum contained in {—1,—9} on this space. If ad(5)?
has one eigenvalue g on nyMu then there exists z € nyNu such that z # 0 and
ad(§)?z = pz. But nyNu is the real span of z and ad(j,)z thus since [j, j,] = 0 we
see that there are two possibilities ad(5)? is —1 on nyNu or ad(4)? is —9 on nyMu.
If the latter is true that nyMu = n;No and hence x is conjugate to x,. Otherwise,
since, ad(j)%*y = —9y (On1Nv is the span of ad(z)Y and ad(j)ad(x)Y’) we see that
if z € nyNu then

—9B(y, 2) = B(ad(j)*y, 2) = By, ad(j)*2) = —B(y, 2).
this completes the proof. (Il

Let z € ny and y € Ony be such that [z,y] = 2H. Let £ : sl(2,R) — g be

defined by

01 00 10

|:OO:| — x, |:1 O:| — 1, [0 _1:| — 2H.
This exponentiates to a group homomorphism (also denoted &) of SL(2,R) into
G. Let

Jo1
s = _1 0 v

Define g, = £(s). If we set h = 2H. Then the eigenvalues of ad(h) on g are 2 with
multiplicity 2d, —2 with the same multiplicity 0 with multiplicity 2d + dim{« €
m|[u, z] = 0}, 4 and —4 each of multiplicity 1. Thus as a representation of SL(2,R)
the composition Ad o ¢ splits into F* @(2d — 1)F? @(dimg—6d — 2)F°. Here F*
is a representative of the class of the irreducible k£ + 1 dimensional representation
of SL(2,R). Now s acts by —1 on the 0 weight space of > and by 1 on the 0
weight space of F*. We therefore have

Lemma 7. Let o0 = Ad(g,) then o is an involutive automorphism of m such that
m? = {z € m|o(z) = 2z} = Rad(y)’ X Pm® (m® = {z € m|[z, 2] = 0}). Further-
more, Rad(y)?X = Rad(z)?Y.

Proof. Since the 0 weight space for h is m. It is clear, from the above, that o is
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involutive on m. Also the 1 eigenspace for ¢ acting on m is the direct sum of the
zero weight space in F* and the isotypic space of FC. This latter space is easily
seen to be m®. Since X (resp. Y) is a highest (resp. lowest) weight vector for the
component of g corresponding to %, the observations above now complete the
proof. |

We will now begin our discussion of the orbits. We will first study the low
real rank cases. Suppose that G is of type A, 11 with » > 1. Then G is locally
isomorphic with SU(2,n) and the action of M on ny is that of C* x SU(1,n — 1)
on C" looked upon as a real vector space. Also we have action (2, u)z = z2uz. Let
(...,...) denote a SU(1,n — 1)-invariant Hermitian form of signature (1,n — 1).
Then one can check that up to positive scalar multiple we have f(z) = —(z,2).
Thus the generic elements are exactly the non-isotropic vectors. If n = 1 it is
clear that there is exactly one open orbit (the non-zero vectors). In the case when
n > 1 there are 2 open orbits (z,2) > 0 and (z,2) < 0.

The next case we will study is that of BD. Here G is locally isomorphic with
the identity component of SO(4,n) with n > 3. Here M acts on V = ny by the
action of GL(2) x SO(2,n — 2) on RZQR" with the R factor endowed with a
non-degenerate symmetric bilinear form ( , ) of signature (2,n — 2). Let ey, g
be the usual basis of R?. If v € V then we can write

’U:61®111+62®’02

we define h(v) = det [{v;,v;)]. The generic elements are precisely those vectors v
such that h(v) # 0. Set F'(v) equal to the span over R of {vy,v9}. If n =3, and
h(v) # 0, then there are 2 possible signatures for the form restricted to F(v) :
(2,0) and (1,1). If » > 4 then there are 3 possibilities (2,0), (1,1), (0, —2). Using
these observations one can see that in the case of SO(4,3) there are two open
orbits and for SO(4,n) with n > 4 there are 3. A direct calculation shows that up
to a positive multiple f(v) = —h(v) (yet another formula for f).

We note that at this point we have with relative ease completely dealt with all
of the quaternionic real forms of classical type. After we show that the case of Gy
is essentially the same as SO(4, 3).we will handle the remaining quaternionic real
forms (all of real rank 4) by reducing to the case of SO(4,4)

We now look at the case of G5. If we consider the imbedding of G5 into SO(4, 3)
compatible with our choice of Heisenberg parabolic subgroup over R then each Go
open orbit intersects in an SO(4, 3) open orbit. Indeed, the action of the identity
component of M for Gy is given through the action of RX x SL(2,R) on S%(R?)
(third symmetric power). This can be made consistent with the “picture” for
SO(4,3) by observing that the map g — g®5S?(g) acting on R?®S?(R?) factors
through SL(2,R)xS0O(1, 2) and then using multiplication in the symmetric algebra
to map to the space S3(R?). On checks that under this mapping the orbits of the
M for SO(4, 3) map onto those for G5. Hence the result for G5 corresponds that for
S0(4,3). We are left with the R rank 4 quaternionic real forms of the exceptional
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groups.

We will now study the orbit structure on the subset of ny consisting of those z
with f(z) > 0. To do this analysis we fix a 6-equivariant imbedding of Lie(SO(4,4))
into Lie(G) with the property that Lie(U) is a subalgebra of Lie(SO(4,4)) con-
structed as above and Lie(S0(4,4) contains the Lie algebra, a, of a four dimen-
sional R-split (algebraic) subtorus of M. Let z € ny be such that f(z) > 0 then
ad(7) has real eigenvalues. The conjugacy of R-split tori implies that there ex-
ists m € M such that Ad(m); € a. Thus we see that we can conjugate z into
the image of Lie(SO(4,4)) in the imbedding described as above. As in the study
above of the elements of complex type we may replace x by a positive real mul-
tiple such that the eigenspace for (adj)® with eigenvalue 9 in v is v Nn;. Thus
the 2 dimensional eigenspace with eigenvalue 9 for Ad(Ad(m)j) in ny is contained
in the image of Lie(SO(4,4)). Thus Ad(m)z is contained in this image. The
result for SO(4,4) now implies that where f is positive consists of exactly one
orbit. In the case when f(z) < 0 that is A(v) > 0 Proposition 5 implies that
if the orbit of z is not equal to Ad(M)(unNny; — {0}) then there exists m € M
such that B(Ad(m)y,unny) = {0}. The same conclusion can be made from cal-
culations in SO(4,4) to see that if f(z) > 0 then there exists m € M such that
B(Ad(m)y,unny) = {0}. We have proved.

Proposition 6. Assume that G is of real rank 4. Assume that x is generic and = ¢
Ad(M)unny —{0}). Then there exists m € M such that B(Ad(m)y,unny) =

{0}

6. Embeddings of quaternionic discrete series into degenerate
principal series

We retain the notation of the previous section. We will also assume that the
condition of section 5 is satisfied (i.e. that G¢ is not of type C,,). The quaternionic
discrete series of GG is the family of discrete series associated with the system of
positive roots T (see [Gr-W; section 5]). If A € h* is PT-dominant integral then
we will write (ITy, L) for a representative of the corresponding equivalence class
of quaternionic discrete series representations. We will first study the case when
A=Ap=p+(k—d—1)p with k > d+ 1. (This weird parametrization is because
then sgA = p — kB. Here as usual, s is the root reflection about 8.) We will
denote this representation as (I, L*).

We recall that Lie(K) = Lie(K;) & Lie(Ks) with Ky =2 SU(2). The rep-
resentations IIx are admissible as Ki-modules. Let U C G be the connected
subgroup with Lie(U) = u as in Proposition 1 in the previous section. The results
in that section imply that U = SU(2,1) and that K; C K. This implies that as
a representation of U the restriction of Il splits into a direct sum of irreducible
representations with finite multiplicities. We now describe the constituents in this
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decomposition explicitly. We first need a bit of notation. Let g denote the #-stable
parabolic subalgebra of g given by

{2 € gol[B, 2] = 0}P{z € gol[B, 2] = 2} P {z € gel[B, 2] = 22}

We set V = {z € g¢|[3,2] = «}. Then V is a K, module under Ad. This notation
will only be used in the proof of the following result.

Theorem 8. Assume that G # U. The representation (Il y, LF) splits into the
orthogonal direct sum

@ PHd—=2)(q+d =2\ (e 11p)A1+(k-1+q)A2
d—2 d—2

,q>0

Proof. (The notation in this proof will only be used here. It is consistent with
[Gr-W] but not with the previous section.) As a representation of Ky x K the
discrete series L* splits into the direct sum:

@52k72+n(c2) ® Sn(v)

n>0

as in [Gr-W] Proposition 5.7. Here K; =~ SU(2) with K; acting trivially and V is
a Ky module with K acting trivially. Now U N K> is the center of U N K. We
find that as a U N Ky-module V =V N Lie(U)c @ V'. With V' contained in the
orthogonal complement of Lie(U). We write W =V N Lie(U)g. Now UN K, is a
circle group with character group ZAlgAQ . We note that as a U N Ky-module we

have (the subscripts indicate U N Ky-isotypic components)

W =Wyniona) W gniona), V' =V, DV aine

Here dimWiS(AlgAz) =1 and dimVj;A 1 =d—1>0. Thus

S'WV)= D S (Wyarz02) )OS (W _gaizna ST (Viyay SRSV sysy ).
ptqtkti=n

We note that Sk(Wig(Al—Az )) is a one dimensional UM K5 module on which UN K,
2

acts by the character :|:3/<;(A1+A2). We denote this one dimensional module as
(CiSMAl;AQ )
The K-decomposition described above implies that as a U N K module we have

A @ Sk+l+n(c?) ®(C(kfl)(/‘1;’\2 )®Sn(W)
n>0

Using this it is an easy matter to see that the decomposition of I1; as a K N U
module is exactly as described in the assertion of the theorem. Since the K-
character determines a discrete series representation the result follows. ([l
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We will now use the preceding result to describe an imbedding of L* into
spherical (degenerate) principal series induced from P. As usual, if (7, H) is
an admissible representation of G and if K is a compact subgroup of G then
Hpr will denote the K'-finite C* vectors of H. If (0,V) is a finite dimensional
representation of P then we will use the notation /(o) for the representation
induced (non-unitarily) from P to G. Define x : P — R* by Ad(p)X = x(p)X,
peP.

Theorem 9. Letuy be a Lie subalgebra of g isomorphic with su(2,1) and contain-
ing Lie(K1) and X, Y, H. Letk > d+1 then there exists an injective (g, K )-module
homomorphism of Lk into I(x**|x|)k.

Proof. In the course of this proof we will use the notation of the previous section.
We observe that n = nNu@W as in Lemma 5 section 5. Since [n,n] C nNu we
see that n N1 is a normal subalgebra of n and the projection of W into n/nNu is
a bijective linear map onto an abelian Lie algebra. We will now use the previous
theorem to analyze the m N u@n-module L% /(n N u)L% . We will think of this
space as a W module with W identified with its image in n/n Nu. We note that
as an m Nu-module W = Wy, @Wa, (see Lemma 5 section 5). Also Ly = Lk .
We note that we are identifying characters A and A o 0. Thus

ko prd =2\ (q+d—=2)  (—1+p)Ar+(h—1+9)A2
’ ﬁpeq§0< 4—2 >( 2 i .

p+d—2) (q+d—2

Thus if we set ¢, 4 = ( ) then we have

d—2 d—2
L /(nnw) Lk
K K
k—1 A k—1 A k—1 A k—1 A
_ @ cp,qH§(1 +p)A1+(k—1+q) 2/(nﬁu)H§(1 +p)A1+(k—1+q)A2
p,q20

as a m N u@PW-module. As an m N u-module we have (taking into account the p
shifts)

k—1 A k—1 A k—1 A k—1 A
HEQ +p)A1+(k—1+q) 2/(nﬁu)H§(1 +p)Ar+(k—1+g)A2

= Cletppta+ (i a)re KD bt pra— A —(kra—2)8s KD C(bbp-2)A1+ 2htptg—L)Ae-
by Theorem 6. The decomposition above of W implies that

VA= @ cpqugcl—1+P)A1+(k~1+q)Az/(n A Ll)H}{kl_l—}—p)AH—(k*l"&_q)AZ

p+q>0

is a m Nu@W-submodule of L% /(nNu)L% . By comparing weights we see that W
acts trivially on (L% /(nnu)L%)/Z. Let v denote the natural projection of L% /(nN
u)LE onto L% /nLk . We therefore have an (m Nu)@n-module homomorphism of
L’;( onto Cya, +xn, (with n-1=0). We now compute the 2k-eigenspace for H in
Ly /(nnu)Ly. We note that H acts by 2k +p + g on Cyppya,+(kiq)a, and by
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k+p+1on C(2k+p+q,1)/\1,(1€+q,2)/\2 or Cf(k+q72)A1+(2k+p+q71)A2~ Thus the 2k
eigenspace is

Crrr-+42) ED D crt1.0(C3hrp)Ar—(k+p—2)20 DT (kp—2) A1 + (3k+p)A2)-
p>0

We now note that we have as basis of m N u the elements H and .J with
1(J) =i and Ay(J) = —i. Thus the weights of J on C(apypya,—(ktp—2)a, and
—(k+p—2)A1+(3k+p)A, are respectively 4k + 2p and —(4k 4 2p). We recall that
> d+ 1 > 3. We also note that the eigenvalues of ad(J) on go are 3i, —34, 1,
—1i, —2i. Since the 2k eigenspace for H on L’;(/nL’;( is a J-module quotient of the
2k eigenspace of L% /(n Nu)L% the above weight theoretic arguments imply that
[m, m|p(Crp,4a,)) = 0. Thus Lie(P) acts on v(Cga, +a,)) by kdx. To complete
the proof of the theorem we must show that if m € M then it acts on V(Ck(A1+A2))
by [x(m)|x(m)**.

If m € MNK then since K is a normal subgroup of K we see that mKm ™~ C
K. Also Ad(m)H = H and RAd(K,)H = {2z € |8z = —z} = u_. Thus Ad(m)
stabilizes u_. Since u =u_ + [u_,u_] it follows that Ad(m)u =u. Fix z € unn,
with B(0z,z) = —1. Then if y = —cz we have B([z,y], H) = —c¢B(x, [0z, H]) =
—cB(x,0zx). Thus if we take ¢ = 2B(H, H) then [z,y] = 2H. Let M° denote the
identity component of M. If m € KNM then Ad(m)unn; Cunny. Let U denote
the connected subgroup of G with Lie algebra u. Then K NM NU acts transitively
on {z € unNny|B(z,0z) = —1}. Thus there exists u € K N M N U such that
Ad(uw)Ad(m)z = x. Since KN M NU is connected, this implies that if (M NK)* =
{m € KN M|Ad(m)z = z}then (M N K)*M® = (M N K)M° = M. We therefore
must show that if m € (KNM)® then it acts on v(Cy(a, +4,)) by x(m)* 1. Fix such
an m. Then we note that Ad(m)y =y (since Ad(m)H = H), Ad(m)X = x(m)X,
and Ad(m)Y = x(m)Y. Thus if x(m) = 1 then Ad(m) acts trivially on u so
B(m) = 1. In particular, since the subrepresentation H (k=1)(A1+A2) geeurs with
multiplicity one in L* we see that m acts as a scalar on that space. The scalar,
can thus be calculated from the action of K on the minimal K-type which has
highest weight (k — 1)3. We now look at the case when x(m) = —1 (note that
x(m) is a unitary character taking real values). This time we have

A
C
k

Ad(m)z = z, Ad(m)y =y, Ad(m)X = —X, Ad(m)Y = -Y.

This implies that if we identify U with SU(2, 1) then mum ' = @ (complex conju-
gation). Hence on Uq (identified with SL(3,C)) we have mum ™t = I 1 (u?) 1154
(here we use the notation of section 3 and super T is transpose). This implies
that Ad(m) preserves the -root space and 3(m) = xm). We observe that since
m € K it preserves the minimal K-type. Since it normalizes u it preserves the
space HE—D(A1+A2) it therefore acts on the space V(Cra,+4,)) by its value on
the minimal K-type which is the scalar 3(m)*~!. This completes the proof. O
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7. Generic characters

In this section we will study generic unitary characters of N with P = M N as in
the previous sections. We will use the definition in [Wa5] which we will now recall
in our context. Let ¢ : no — C be a Lie algebra homomorphism. Then there
exists zy € (0ny)c such that ¢¥(u) = B(zy,u) for u € ng. We say that ¢ is generic
Ad(Mc¢)zy is open in (6n4)c.

If ¢ is a unitary character of N then we will also use the notation ¢ for its
differential. Then ¢ = i¢ and so zy = izy. If we interchange I with —H then we
note that ¢ is generic if and only if z4 is generic. The results in section 5 imply
that there exists a unique 4 in ny such that [z4, z4] = 2H. In this section we will
determine the generic unitary characters of N that give rise to Whittaker models
for the quaternionic discrete series. Before we can do this we will need some simple
analytic results.

We first give a simple asymptotic result on the growth of certain generalized
matrix entries. Let ¢ : n — iR be a Lie algebra homomorphism. We will identify
with the corresponding unitary character of N. If (7, V') is Hilbert representation
of G then we will use the notation

WhF (V) = {x e Vo |hom(n) ™' = 4(n)A}.

Lemma 8. Let (w,V) be a Hilbert representation of G. If ¢ # 0 (i.e. not the
trivial unitary character) then for each k = 1,2,... there erists a continuous
seminorm vy on Vs such that

Ar(exptH)o)| < e o (v)
fort >0 and v € V.
Proof. The argument is essentially the same as that in Lemma 1 section 3. Fix z €
ny such that ¢(z) £ 0. We may assume that ¢(z) = —i. Then A\(w(z)v) = iA(v).

Also Lemma 11.5.1 in [Wa3] implies that there exists a continuous seminorm g on
Vs and ¢ > 0 such that

IA(m(exptH)v)| < e pu(v)
for all t > 0 and v € V.. We have
Ar(exptH)v) = —iX(w(z)w(exptH)v) = —iX(w(exptH )n(Ad(exp —tH )z )v)
= —ie ‘ANr(exptH)n(x)v).

‘We therefore have
A(r(exptH)v)| < e Pe u(n(z)v.

We set pi1(v) = p(w(z)v. Then |A(m(exptH)v)| < e e uy(v) forallv € Voo, t > 0.
We replacing i by 141 and ¢ by ¢—1 we can repeat this argument. The result follows
by the, by now, obvious iteration of this method. ([l
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‘We will now come to the crux of the matter.

Theorem 10. Let ¢ be a non-trivial unitary character of N. Let k > d — 1 and
let A e Whizo(Lk). If Y(nNu) =0 (recall that we are using the same notation for
i and the differential of 1) then A = 0.

Proof. The representation L* is admissible with respect to K N U. Thus the
decomposition given in Theorem 8 in section 6 applies to the K-finite vectors
which are contained in the C* vectors. Let W be an irreducible summand of L*
restricted to U. Then Wi~y C LE,. Since ¢/(nnu) = 0 it follows that AW
factors through Wirp/(mNu)Wkny). This space is finite dimensional and is

invariant under the action of H. This implies that there exist ¢1,...,¢cq4 € C,
non-negative integers n1,...,nq and linear functionals ¢; 5, ¢ = 1,...,d and j =
0,...,n; on Wi~y such that

(I (exp tH o) = Zecittj i (v)
4,7

for all v € Wiy. We note that if ¢(t) =3, ; e“'tIa;; (finite sum) with a;; € C
and if for each m € Z, m > 0 there exists C,, such that

|(t)] < Cre™™

for all £ > 0 then a;; = 0 for all 7j. Thus Lemma 8 implies that A\jw,.,, = 0. This
implies that A\Llfmu = 0. Since L% ,; is dense in L%, A = 0. O

This leads us to a new definition. Let i) be a non-degenerate character of N.
Then we say that ¢ is admissible if ¢ o Ad(m)jnqy 7 0 for all m € M.
The main result of this section is

Theorem 11. Let ¢ be a non-degenerate unitary character of N. Then the fol-
lowing are equivalent

1. There exists k > d+ 1 such that WhZO(Lk) #+0.

2. Whp(L*) #0 for allk > d +1.

3. ¥ is admissible.

Furthermore, the set of admissible characters of N form a single orbit under
the action of M.

Proof. We note that the preceding theorem implies that if condition 1.is true for
1 then ¢ is admissible. Thus we see that 2. implies 1. implies 3. We therefore
must only prove that 3. implies 2. This assertion will be proved as follows. We
will first show that for each k& there exists at least one non-degenerate 1 such
that thf(Lk) # 0. We will then prove the last assertion of the theorem. The
combination implies that Whl‘f(l}k) # 0 for all admissible ¢». This will complete
the proof. We now began the implementation of the plan.
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To prove that there exists some non-degenerate 1 such that tho(Lk) #0. We
observe that if A = (k —1)(A1 + A2) then we have a unitary imbedding of H%
into L% (see Theorem 4). We will identify this space with its image. We will
apply Theorem 7 in section 4 which implies that there exists a unitary character
x of NNU and v,w € H#_;; such that

/ x(n) " (ma(n)v, w) dn # 0.
NAU

Now, N NU is a normal subgroup of N. Thus if we set
o) = [ xtn) " Mafam)o,w)dn
NAU

for x € N. We note that the standard estimates of Harish-Chandra (cf. [Wa3,
7.2.1]) imply that the function |¢(z)| is in L2 (N/N nU) N L*(N/N nU). This
implies that

WWZAMMMWMan

defines a continuous function on the set of unitary characters on N that extend
x. Since the set of non-degenerate characters that extend x form an open dense
subset we see that there must exist ¢ such that Q(¢) # 0. Hence if we define

Auw) = /N P(n) g (n)u, w) dn

for w € Lk then A # 0 and A € WhZO(L"“) We now begin the second step of the
proof.

There are several special cases that we must consider before we do the “general
case”. If go is of type A, 1 then we are considering the real form SU(2, n) with
n > 1. If n =1 then we have seen in the discussion of generic orbits in section 2
that there is only one open orbit this concludes the proof in this case. If n > 2
then we have seen that there are two open orbits

Ox = {¢| £ (z4,24) > 0}

and both are complex. We note that unny C {z|(z,z) > 0}. Proposition 5
section 5 implies that all of the admissible characters are contained in O,. The
theorem now follows in this case.

We next look at the when is G locally isomorphic with (split) G5 or SO(4, 3).
We have seen that there are exactly two orbits for the action of M on ny in either
of these cases. We will now show that in this case admissible implies complex. We
note that it is enough to check this for the case of G5. Here we can identify ny
with the binary forms of homogenous of degree 3. With the identity component of
[M, M] acting through the classical action of SL(2,R) on the binary forms. The
invariant f is up to a positive scalar multiple the negative of the discriminant.
That is, if

a(z,y) = aox® + a1’y + aszy® + agy®
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then the discriminant is
aja3 — dagal — 4adas — 27a2a + 18apaiasas.

The space uNny is spanned by p(z,y) = 2% — zy? and ¢(z,y) = —2?y +y>. The
[M, M]-invariant pairing is given by

Q(a7 b) — 2@0[)3 — 3@3[)0 — a1b2 =f= Cllgbl
if
a(z,y) = aomg + a1$2y + a2$y2 + a3y3

and
b(z,y) = boz® + biz’y + bazy? + bay®.

The form h(z,y) is admissible if and only if Q(h o g,p) or Q(ho g,q) is non-zero
for each g € GL(2,R). Consider the form h(z,y) = 23 + 3> Then if we set

|1 -1
97111
we calculate that both Q(hog,p) and Q(hog,q) are 0.
We are left with the quaternionic real forms of real rank 4. For these Proposition

6 implies that the only possible admissible characters ) such that z4 can be
conjugated into uNny. These form a single orbit. This completes the proof. O

8. The Heisenberg—Whittaker vectors for certain degenerate prin-
cipal series representations

In this section we will give a complete analysis of Heisenberg—Whittaker models for
the degenerate principal series associated with the Heisenberg parabolic subgroup.
In the next section we will apply these results to the quaternionic discrete series
Before we begin we discuss the nature of the stabilizer of a generic character of N
in M.

If ¢ is a unitary character of N then set My, = {m € M|y o Ad(m) = ¢}. We
note that My = M, = {m € M|Ad(m)z = z} with & = z4 if ¢ = i¢.

We will be using a theorem of [Ko-V] to analyze the space WhiX(Ip s, ) for 4
a generic character of N. We first observe that the Bruhat Lemma implies that

e U PwP
SEWM\W/ Wiy

where W is the (small) Weyl group of G and W3, is the (small) Weyl group of
M. There is exactly one double coset Pw,P that is open and all the others have
strictly lower dimension. Fix a minimal parabolic subgroup P, = M,N, with
M, C M of G contained in P and set P¥ = P, N M. Let M, = °M,A, with
A, the identity component of the R-split torus in M,. We will look upon W as
Ng(A,)/Ck(A,) (as usual) where Ng denotes normalizer in K and Ck denotes
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centralizer in K (note Ck(A,) = M,. Let wg be the maximal element of W with
respect to the choice of P, and let wjy; be the longest element of Wy, relative to
PZ. Since M is the centralizer of the coroot of the highest root relative to P, we see
that we can choose a representative k € Ni(A,) for wg such that EME—1 = M.
We may take w, to be equal to wgwps and it is easy to check that we can choose
a representative of w,, k, € Nx(A,), such that k,Nk; ! = 0(N). Hence we have

Pw,P = Nk,P.

We note that H € Lie(A,). Let ® be the set of restricted roots of A, on Lie(G).
If « is a restricted root then we will use the notation g® for the corresponding A4,
weight space. Let ®T be the system of positive roots corresponding to P, and let
@}, be the positive roots that are roots of P¥. Now [n,n] is a one dimensional
space that is A, invariant. Let ¢ denote the corresponding restricted root (the
coroot of §). We note that

T — o1, = {a € ®|(5a) >0}
Let ¥ = &% — &1, — {§}. We can write ¥ as a disjoint union of subsets ¥, each
consisting of one element or it consists of two such that if we set nJ = > oes, 8°

then the form w defined by [u,v] = w(u,v)X on ny is non-degenerate on each of
the spaces n/ Furthermore, [n7,n*] = 0 if j # k.

Lemma 9. Let ¢ be regular character of N. If w € W is such that wq)j\'l c ot
and if ¥ is trivial on kN, kNN with k a representative of w then kEN,k~1NN =

{1}.

Proof. We first make some observations. We assume that w satisfies w@& c ot.
We fix an linear order > on Lie(A,)* that produces $+.

1. If ws = —§ then kNk~'N N = {1}.

If o € ¥ then (§,a) = (w16, w la) = —(6,w ta). Thus (§,w ta) < 0.
Hence w™ 1% = —¥.

2. If —=%; C wd™ for some i then kNE~1N N, = {1}.

Indeed, if ¥; = {a} and if —a € wPtthen —a = wy with v € X U {4} (since
wd}, C ). Now 20 =4, [g72, g ] = g% # 0. Hence, [g7,g7] # 0. But then
the bracket must be g°. This implies that wd = —§. Now apply 1. above. If
Y, = {a, A} and w®" O —3; then, as before, there must v, p € ¥ U {d§} such
that wy = —a, wp = —A. But then (as in the previous case) we must have
07 g * = g ° # 0 and hence [g7, g#] # 0 so as before [g7, g*] = g° and hence
wd = —4d as in the previous case.

Write ¢(z) = iB(y, z) for all z € ny withy € fny. Nowy = > y; with y; € 6g*
and a; € 3, giving an enumeration of ¥. Suppose that ¢ is trivial on KNk~ ' NN
and that kNk~' NN +# {1}. We will derive a contradiction. Since ¢ is generic we
have ad(y)*X = c¢Y with ¢ # 0. Hence

Y = ad(y)4X - Z ad(yh )ad(yi2 )ad(yis)ad(yi4 )X
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the sum over all indices 1 <41, 19,143,174 < |%|. There must therefore be a choice of
4 indices (possibly not distinct) ji, j2, Ja, ja such that

a’d(yjl )ad(yjz )ad(yja )ad(yj4 )X =aY

with @ # 0. In particular this implies that 6 — oy, — oy, — o5, — ¢, = —d. Thus
20 = aj, + aj, + oy, + oj,. We assert that we may assume that w ™ 'a;, < 0.
Indeed, if w™toy, > 0 then g*% C Ad(k)n, Nn and so dy)(Ad(k)n, Nn) # 0. This
would imply that w=!6 < 0. On the other hand 2. implies that if & € ¥ and if
wla < 0 then w™1(d — ) > 0. However since

(0 —aj) +(0—ap)+(0—az)+ (6 —ay) = 26,
we have the (desired) contradiction w='§ > 0. O

Lemma 10. Let ¢ be a reqular character of N and let m € M and k € K such
that k is a representative of w € W such that w®}, C ®T and kNk~' NN #£ {1}
Then

Y\mkN(mk)-1nN 7F 1.

Proof. The conclusion is equivalent with the assertion that

Yo Ad(m)jpnp-1nn 7 1.

But this follows from the previous lemma since the regularity of ) implies that of
o Ad(m). O

We are almost ready to apply a result of [Ko-V]. To do so we will need a bit
more notation.

We set A = exp(RH). Let X(M) denote the set of all continuous homomor-
phisms from M to R = {z € R|z > 0}. Set M° = NyexnKer(x). If (o, H,)
is a finite dimensional representation of M° and if v € C then we will denote by
o, the representation of P on H, given by o, (mexp(tH)n) = e+ is(m) for
m € M°,te€Randne& N. Weset I3°  equal to the space of C°° vectors in the
induced representation I(,) (see section 6). Let 7o be the action of M on the
representation space. Set s, = w;l (that is wywe). We denote by U, ,, the space
of all f € I, , supported in Ns, P and having compact support module P. With
this notation in hand, we have

Theorem 12. Let ) be an regular unitary character of N and let A € WhiF (1%, ).
Then if A\, =0 then A =0.

Proof. We apply Theorem 3.15, p. 82 of [Ko-V]. This theorem is a generalization
of Bruhat theory which (fortunately applies to the case at hand). The specific
case of the theorem we will use is their case iii). To refer to their notation we
consider the Lie group H = P x P acting on G via (p1,p2)g = plgpgl. (Sorry
about all of the H’s). We also have H' = N x P acting as a subgroup of H. We
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consider the representation u of H' on H, given by w(n,p) = ¥(n)o,(p). This is
a finite dimensional representation of H ", H acts on G with a finite number of
orbits (see the discussion above). On an orbit PwP with w®,, C & of H the
orbits of H are NmkP with m € M and k a representative of w. Lemma 10
implies that if PwP is not the unique open orbit (which is also an orbit of H ')
then we have ¥, n(mr)-1nn # 1. Let y = mk. The stability group of y in H'is
the group of all pairs (n, p) with nmkp—! = mk. That is m~1nm = kpk~!. Since
Ad(k) permutes the root spaces and normalizes Lie(A,) and since wd,, C &1 we
see that the stability group of y is H' consists of the set of pairs (n,y~'ny) with
n € Ad(m)(N N kN,k=1). Thus if NyP is not the open orbit Lemma 10 implies
that equation (3.27) of [Ko-V] is satisfied. Thus (taking appropriate inverses) and
using the standard Bruhat theoretic arguments (cf. [Wa5], [Ko-V, p. 88 second
paragraph]) the Theorem follows. Il

Corollary 2. Let My act on Whip(Ig, ) by m - X = Xon,,(m)~'. Then
Whizo (I%, ) is equivalent with a subrepresentation of the representation contra-
gredient to (o, Hy) as an My-module.

Proof. We first note that if 7' € (C2°(N))" (continuous linear functionals in the
usual topology) is such that T o R, = 4(z)~'T (R, f(y) = f(yx)). Then

T(f) = «(T) /N F(n)b(n)dn.

This can be seen as follows. Let {X;} be a basis of Lie(N) (thought of as left
invariant vector fields). Then we have

X;T = —p(X;)T

in the sense of distributions. Thus

(Zx - Swapir—o

J

The elliptic regularity theorem implies that 7' is given by integration against real
analytic n = dim N-form on N. The transformation law now easily implies that
the form is ¥(n)w with w invariant.

If f e CP(N)and v € H, then we define S(f@uv)(psin) = o,(p)f(n)v for
p€P,neN. If X € Whip(Ig, ) then we have T) ,(f) = MS(f@v)) defines
a distribution on N and T’ ,(R,f) = ¢(x)Ty ,(f) for all 2 € N. Thus we have a
C-bilinear pairing defined on Whjzo(f"o ) x H, defined by

P,ov

T3u(F) = 00) [ Fms(n)dn.
N
A direct calculation shows that

(m - A v) = () o(symsy )" lw).
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These observations combined with the previous theorem complete the proof. 0O

We now come to the main result of this section which is now proved by exactly
the same method as that of Theorem 7.2 of [Wa5].

Theorem 13. Let ) be a generic unitary character of N then Whg® UE, ) is
equivalent as an My, with the representation contragredient to (O‘MIw H,).

9. Heisenberg—Whittaker vectors for quaternionic discrete series

The purpose of this section is to prove the theorem for Heisenberg—Whittaker
vectors for quaternionic discrete series that is analogous to Theorem 5 for abelian
Whittaker vectors for holomorphic discrete series. We will first recall a few results
from [Wa5]. If V is a g-module and ¢ : n — C is a Lie algebra homomorphism
then we say that V is a Whittaker module with respect to ¢ if for each v € V'
there exists m > 0 such that (X — ¢(X))™v = 0 for all X € n. We denote by
C, the n-module that has action given by . We set W, (V) = {v € V|Xv =
(X)v, X € n}. We recall the two results of [Wa5] that we will be using (we note
that the assertion about the action of M, in the second result is a consequence of
the construction of the map T').

Theorem 14. If ¢ is an admissible character of n and if V is a Whittaker module
for g with respect to i then

Hi(n,VRC_y) =0

fori>0.

Theorem 15. Let F' be a finite dimensional g-module, let 1 be an admissible
character of w and let V' be a Whittaker module for g with respect to ¢ that is also
a compatible My module (m - X -v = (Ad(m)X) - m -v). Then there exists an
element T € U(g)Mv depending only on the dimension of F' such that the action
of T on VQF' induces an My-module isomorphism of

Wy (VIQF — Wy (VRQF).

In addition we will need the following simple consequence of Theorem 15 [Wa5,
Proposition 1.3]. First we need a bit of notation. If V is an n-module then we
set V[y] = {v € V|(z — ¢(z))*v = 0 for all z € n and some k}. If Visag
module then since the adjoint action of n on g is nilpotent we see that V[¢] is a
g-submodule of V. If W is a vector space then we define an n-module structure on
Homc(U(n), W) as follows: zf(g) = f(gz). We set P(W) = Homeg(U (n), W)[¢].
If W is a compatible module M, then we can define a compatible action of A,
on P(W) by setting mf(g) = m - f(Ad(m) tg).
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Proposition 7. If V is a Whittaker module for a generic character i that is a
compatible My-module then V is isomorphic with P(Wy(V)) as a compatible My
and n-module.

Before we can state the main result of this paper we need to recall several
properties of quaternionic discrete series representations. We will use the notation
of section 6. Let (ITx, L) be as in that section. Then the general theory of discrete
series implies that the irreducible representation, (7, V3 ), of K with highest weight
A= A+p—2p. (p. the half sum of the positive roots of K) occurs with multiplicity
1in LA and it is the lowest K-type in a sense unimportant to us in this context
(see [H-S]). Since K is locally isomorphic with Ky x K the representation V)
is isomorphic with a tensor product Fjy@Wx, with Iy the k + 1 dimensional
irreducible representation of K| = SU(2). Let T} be the maximal compact torus
of Ky such that there exists a maximal compact torus of Ky such that T} x Th
corresponds to our chosen torus for K. Let Lc denote the complexification of
the subgroup of G corresponding to T} x K. As in the holomorphic case the
group L¢ is isomorphic with the subgroup M¢ = {g € Ge|Ad(g)H = H} (see the
previous section for H). There is also an isomorphism of L¢ onto M¢ given by an
appropriate Cayley transform (see [Gr-W]). We may thus look upon Cyz@W,, as

a representation of M¢ which we denote by the symbol Wj.

Theorem 16. Let i be a generic unitary character of N. If (Ilx, LA) is a quater-
nionic discrete series representation of G then WhZO(LA) = 0 unless 9 is admis-

sible. If 1) is admissible then as an My-module thzo([/\) is isomorphic with the

representation contragredient to ﬁ/\;

Proof. We set o equal to the irreducible representation of M gotten by restric-
tion of |x|Wy to M (see Theorem 9). We will denote by I(A) the corresponding
(unnormalized) parabolic induced representation induced from P = M N. Then
A — L* and A — I(A) form coherent families (see the discussion preceding
Theorem 6 section 4 for the special case of SU(2)). Theorem 9 implies that
dim Homg g (L) ke, I(A)x) = 1 if A = Ay, for k > d + 1. Coherence of the family

implies that the same result is true for dominant integral A. We set I(A) equal to
the admissible, smooth conjugate dual of I(A). Then A — I(A) is also a coherent
family of parabolic induced representations and since the representations LA are
unitary we have dim Homg g (I(A)k, (L*) k) = 1. The theorem of Casselman and
the author (cf. [Wad]) implies that up to scalar multiple there exists a unique, non-
zero continuous intertwining operator T : I| (A)> — (L*)* which is surjective (by
the exactness of this globalization). The adjoint map T} : ((L*)>) — (I(A)®) is
injective. The intertwining condition implies that T4 (Why (L") C Whj;o(j (A)).
If A = Ay with & > d+1 then Corollary 2 of section 8 and Theorem 11 of section 7
imply the assertions of the theorem. To complete the proof of the theorem we will
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need to study coherence properties of generic Whittaker vectors in these coherent
families.

We note that the injectivity of the adjoint map implies that if + is a generic
character of N then WhZO(LA) is equivalent as an M, module with a subrep-

resentation of the contragredient module to VV\; (here note that the inducing
module for T(A) is equivalent with that for I(A) as an My-module). We now
consider the module ((L*)®)[¢]. If F is a finite dimensional G-module then
(LARQF)™) 4] = ((LA)®)[w]QF*. Thus from the definition of the Zucker-
man translation functors we have ((LA1#)°°)/[¢] is a compatible M, and g sub-
module of ((L*)*®) [4|@F* and ((L*)*)'[¢] is a compatible M, and g submod-
ule of ((LAT#)>)[/]QF for pu dominant integral. Applying Theorem 16 and
Proposition 7 we find that WhZO(LAJr“) is isomorphic with an M, submodule

of tho(LAJF“)@F* and Whi;o(l/\) is isomorphic with an My submodule of
WhZO(LA)®F. This implies that if WhZO(LA) = 0 for one element of the family
then thZO(LA) = 0 for all elements of the family. Thus Theorem 11 implies that
WhZO(LA) #+ 0 for some A only if ¢ is admissible. To complete the proof of the
theorem we must show that if ¢ is admissible then thpo(LA) is isomorphic with

Whi (I(A)) as an My-module. For this we note that (iii) in the proof of Theorem
7.2 of [Wab] proves that if p is dominant integral then

H((T(A)®) []) 2 (T(A + ) ) [¢]

and

L ((T(A+ ) [9]) = (1(A)™) 4]

as a compatible g and My-modules. Now T} defines an isomorphism of WhZO(LAk)

with WhZF(I(Ag)) thus by Proposition 7 it defines an My -module isomorphism

of ((LA*)>=)[4] onto (I(Ay)>°)[}]. This combined with the above translation
formulas implies that the compatible g and My-modules ((LA*T#)>)/[¢)] and
(I(A + 1)) [)] are isomorphic for all dominant integral . This implies by
using the ®_, for appropriate o that ((L2)>)[¢] and (I(A)>)[¢/] are isomorphic
as compatible g and My-modules for all A that are dominant integral and regu-
lar. In particular, this implies that thf(LA) and thzo(f (A)) are isomorphic as
My-modules. The proof is now complete. Il

10. The main result for holomorphic representations

In this section we will give an analysis of generalized Whittaker vectors for holo-
morphic representations. We will use results and notation in section 3. We will
confine our attention to the case when G is simply connected. We first need some
results on canonical completions (in the sense of Casselman and the author) of
Harish-Chandra modules for general semisimple Lie groups. This theory was (un-
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fortunately) developed with the assumption that G has finite center. The theory
goes through unchanged if we confine our attention to the class of (g, K)-modules,
V that have a K-invariant pre-Hilbert space structure. That is V splits into a
direct sum of irreducible finite dimensional representations of K each equivalent
with a unitary representation. We will now give a rapid tour through some of the
necessary changes for the context at hand. Let W be a finite dimensional (g, K)-
module unitary as a K-module and let N(W) = U(g)@y o)W with K-acting as

in section 3. Then N (W) is in the class that we had singled out above. Let W be
the M-module corresponding to W as in that section. As a (q1,M N K) module
NW)=U (n)®ﬁ7 (we will treat this isomorphism as equality). This implies that
NW)/mEN(W) = (Un)/n*Un)@W as a (q1, M N K)-module. This module
integrates to a representation of @)1 = M N. In general if V is a finite dimensional
smooth representation of Q1 then we denote by I(V') the space of all f: G —V
of class C*° and such that f(qz) = qf(z) for all z € G, q € Q1. We endow
1(V') with the C*°-topology and have G act by the right regular representation
(¢f(x) = f(zg)). Then I(V) is an admissible, smooth, Fréchet G-module. We can
now apply the methods of 4.2.2 and 4.2.3 in [Wa3, pp. 112-113] to see that the
intertwining operator Ty, : N(W) — I((U(n)/n"U(n))@W) given by Frobenius
reciprocity (4.2.2 [op. cit]) is injective for k sufficiently large. If &, are sufficiently
large then Lemma 11.5.5 (or at least its proof) of [Wa4, p. 87] implies that the clo-
sure of Image(T},) is isomorphic with the closure of Image(7;). We will denote this
smooth Fréchet G-module by N(W). This the canonical completion (globaliza-
tion) as in the work of Casselman and the author in this context. The arguments
in Chapters 10 and 11 of [Wad] apply. Using the fact that W — N(W) defines
an exact functor from the category of finite dimensional (g, K')-modules unitary
as K-modules to the category of (g, K)-modules we have delineated we have

Theorem 17. The functor W — N(W) defines an exact functor from the cate-
gory of all finite dimensional (q, K)-modules that are unitary as K-modules to the
category of smooth Fréchet representations of G. Furthermore, if N(W) is the
underlying (g,K)-module of a (strongly continuous) representation (v, H) of G (H
a Hilbert space). Then N (W) is equivalent as a smooth Fréchet module with the
representation of G on the C* wvectors of H.

We are now ready to state and prove our main result in this context.

Theorem 18. Let (7w, H) be a unitary representation of G such that Hr = N (W)
for an appropriate irreducible unitary representation, W, of K. If 1 is a unitary
character of N that is not 0 or positive then Whjzo(H) = 0. If 9 is positive
and generic then th[j’(H) is isomorphic as an My with the restriction of the

contragredient M-module to w.
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Proof. We note that if F' is a finite dimensional G-module and if W is a uni-
tary finite dimensional unitary representation of K then WQF is a finite dimen-
sional K-representation that admits an invariant Hilbert space structure. We have
NWF) =~ N(W)RF. This implies that N(WQF) = N(W)QF. Let C de-
note the center of K. Then C is isomorphic with the additive group of R. Let
J € Lie(C) be such that exp(RJ) = C and ad(J) acts on p™ by multiplication
by i. If A € R let xx be the unitary character given by xx(exp(tJ)) = . If W
is a finite dimensional, irreducible, unitary representation of K then there exists
A = A(W) such that the action of C' on W is given by multiplication by x». We
also denote by Wy the unitary K-representation W restricted to the commutator
subgroup of K. If A(W) < ¢(Wy) then Harish-Chandra’s criterion implies that
N (W) is the underlying (g, K )-module of an element of the relative discrete series
and thus Theorem 5 in section 3 implies the result in this case.

In general, the vanishing assertion of the theorem follows from Lemma 1 in
section 3 as in the beginning of the proof of Theorem 5. Thus to complete the
proof we must show that if « is a generic, positive unitary character of N and
that if W is an irreducible unitary representation of K then in the notation of the

previous section Wy, (N (W)/) is isomorphic as an M, module with the restriction
of the contragredient M-module to W. (Here (W)/ denotes the space of all
continuous linear functionals on N(W)). We will denote by W the contragredient
M-module to W restricted to M. We observe that Corollary 1 in section 3 implies
that Wy, (N (W)/) is equivalent to a submodule of W. We will now follow the line
of argument in the proof of Theorem 7.2 in [Wa5].

Let F' be a finite dimensional irreducible representation of G such that o

is one dimensional and the action if C' is given by x, with ¢ > 0. It is well
known that such a module, F', exists. Then as a (g, K')-module we have 0 = Iy C
Fy, Cc ... C Fy = F with F;/F;_1 irreducible. We may assume that F; = ja
We assume that if W, is an irreducible representation of the commutator group,
[K, K], of K and that if W restricted to [K, K] agrees with Wy and satisfies

A(W) < s then W¢(N(W)/) is isomorphic as an My-module with W. We will show
that if A(W) < s then Ww(N(W®FP+)/) is isomorphic with W@ F?" as an M-
module. Since the assumption is true for A(W') < ¢(Wpy) it will imply the result for
AW) < e(Wo) + p, then for \(W) < e(Wp) + 2u,. .. Hence it will imply the result.

Also by the above we need only show that dim Wy, (N(W@F** )/) =dimW. Then
we can apply the results in the previous section to see that

—_—

NW) [WIQF* = NWRF) [¢]
and

Wy(NW) ®@F*) = Wy (N(WRF) ).

If we apply the analog of Theorem 16 of the previous section to this context we
il B pig
see that Wy, (N(W@F) ) is equivalent as an My-module with W& F*. Theorem
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18 implies that we have a G-module filtration

0C NWRF)CNWRIF)C- - C NWRF;) = N(W)QF

with each of the spaces closed in the largest and

NWQF)/NWQF;—1) = N(WQF;/F;_1)

as smooth Fréchet modules. Now we observe that
—_— —_—
Wy(NWRF) ) ——— C Wy (N(WRF) ).
SNVSF) ) v © Ve (N
Thus

dim Wy (N(WRF) ) < dim W.

INw@F) —
—_—

Set X; ={A e Wy (N(WQF) )|)\|N(W®Fl) = 0}. Then

dim X > dim W dim F' — dim W.

P——

Now Xj restricted to N(W (@I ) pushes down to a subspace of W (N (WQF, /) )
whose dimension is at most dim W dim(F5/F;). Thus

dim X5 > dim W dim F' — dim W dim F5.

Continuing in this way we eventually find that dim Xy 1 > dimW dim F—
dim Wdim Fy_y. But X4 is a subspace of Wy (N(WQF/Fy_1)) whose di-
mension is at most dim W dim(F'/Fy_1). Thus the inequality is an equality. We
now have the exact sequence

0= Xe1 — Wy(NWRF)) —» Wy(NWRFs_1))

with the last arrow given by restriction. This now implies that
dim Wy, (N(W®Fy_1) ) > dim W dim F,_;

so we have equality. We now do the same argument with W, (N (W®Fd,1)/).

Continuing in this way we eventually have dim Ww(N(W®F1)/) > dim W. This
implies the result. O
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