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Asymptotic behaviour of Betti numbers
of real algebraic surfaces

F. Bihan

Abstract. Let X, be a nonsingular real algebraic surface of degree m in the complex projective
space CP3 and RX,, its real point set in RP3. In the spirit of the sixteenth Hilbert’s problem, one
can ask for each degree m about the maximal possible value 3; ;, of the Betti number b; (RX )
(1 =0 or 1). We show that 83; ,,, is asymptotically equivalent to I; - m3 for some real number I;
and prove inequalities % Lilg & % and % Ll & %

Mathematics Subject Classification (2000). 14P25, 14J99.
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Introduction

A real algebraic surface X in the complex projective space CP3 is the complex zero
set in CP3 of some real homogeneous polynomial in four variables. The real zero
set of this polynomial is a surface RX, in the real projective space RP3, called real
point set of X. (More generally, a real variety is a complex variety X equipped
with an antiholomorphic involution ¢ : X — X, the real point set RX of X is then
the fixed point set of ¢.) From now on X,,, will denote a real nonsingular surface
of degree m in CP>.

This paper deals with the topological classification problem of real point sets
RX,, for a given degree m (the case m = 4 is a part of the sixteen Hilbert’s problem
going back to 1900) and more specifically with the question of the maximal possible
values f3;, (i = 0 or 1) of the Betti numbers b;(RX,,) (where homology groups
are taken with coefficients in Z/2). The topological classification problem (and
thus the last question) is now completely solved for m < 4 (see [K1]). For m > 5,
even the values of 3; ,,, are not known (see [I-K1], [B2] and [O] for the case m = 5).
Here, we are interested in the asymptotic behaviour (when m — +00) of 3; ,,,. We
first show that 3; ,,, is asymptotically equivalent to [; - m? for some real number
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l; (Proposition 1.1). A standard application of the Smith-Thom and Comessati
inequalities leads to the upper bounds [y < % and /] < % (see [D-K] for a recent
survey on the topology of real algebraic varieties). On the other hand, the best
lower bounds previously known were Iy > o5 [V2] and Iy > 25 [I2]. In this
paper, we shall improve these lower bounds by showing that [y > % and [y > %
(Theorem 1.2).

We define algebraic surfaces of type Dy, in some weighted projective space (see
2.1). Such a real nonsingular surface can be equivariantly deformed, by a small
deformation, to a real nonsingular surface of degree 2k in CP® with equation
fk(Z)2 —e- for,(Z) = 0, where f;(Z) is a real homogenous polynomial of degree
iin Z = (Zo: Z1: Zy: Z3) and 0 < € < 1 (a small perturbation of a double
surface). Assuming that the surfaces Xop and X defined by for, and fj, respec-
tively, are nonsingular surfaces intersecting transversely, the corresponding surface
of type Day,, and thus the real surface in CP3 with equation fk(Z)2 —e for(Z)=0
for small € > 0, is then a nonsingular surface whose topological type of real point
set is determined by that of the triple (RP? RXo;,RX}). This construction of
real nonsingular hypersurfaces resulting from small perturbations of double hyper-
surfaces is classical in real algebraic geometry and seems to go back, at least, to
K. Rohn. In fact, this is essentially the construction used in [V2] where the bound
lp > Ql is obtained. The deformation we use comes from a paper of E. Horikawa
[Ho] where complex surfaces of type Dg are found in the deformation family of
sextics in CP3.

In this paper, we apply the above construction in order to produce surfaces
in RP? with large Betti numbers. This is done using the famous construction
method of real algebraic hypersurfaces due to O. Viro (see [V3, V4, V5, R]), its
combinatorial version the combinatorial patchworking, and the extension of this
last version to the case of complete intersections obtained by B. Sturmfels [S1].
The construction presented in this paper has its own interest since it gives an
increasing function relating Betti numbers of real algebraic surfaces in CP? and
numbers of even (or odd) ovals of real plane curves (see Remark 2, Section 5).
Moreover, this construction can be easily generalized in higher dimensions.

From now on, all polytopes and polyhedral subdivisions shall have integral
vertices i.e. vertices with integer coordinates.

1. Results

As in the introduction, let f3; ,,, denote the maximal possible value of b;(RX,,) for
a given m (¢ = 0 or 1). The following result is due to I. Itenberg and V. Kharlamov
[I-K2].

Proposition 1.1. The sequence f3;,, is asymptotically equivalent, when m —
+oo, to l; - m> for some real number I;.
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By

m3

Proof. By Smith—-Thom inequality the sequence is bounded, hence admits a

superior limit /;. We are going to show that [; is indeed the limit of £ 2 in the
following way: for a given ¢ > 0, we construct using the Viro method a family
of surfaces X, in CP? such that b;(RX,,)/m> > l; — ¢ for any sufficiently large
degree m.

Let X; be a given surface in CP® (we shall have b;(RX})/k® close to [;).
For any positive integer number m, denote by T,,, the tetrahedron with vertices
(0,0,0), (m,0,0), (0,m,0) and (0,0,m) in R. Let p be any positive integer
number. Take any convex triangulation of T, all of whose tetrahedra have euclidian
volume %, or equivalently which contains the maximal number p? of tetrahedra (see
2.2 for the definition of a convex triangulation and [I2] for examples of so-called
primitive or unimodular convex triangulations of T},). Consider now the convex
triangulation of the tetrahedron 7T},; 4y obtained from the previous triangulation
by applying the transformation z — (k+4)-z. The resulting triangulation contains
p° tetrahedra such that each of them has euclidian volume %. The crucial
point is that each of these p® tetrahedra contains in its interior the image of T},

under some affine unimodular integral transformation. Indeed, any tetrahedron
(k+4)*
6

P (with integral vertices) having euclidian volume is the image of T} 44
under such a transformation ¢p. We have then ¢p((1,1,1) 4+ T}) C Int(P) since
(1,1,1) + T}, € Int(Tyy4). Therefore, we can refine the above triangulation of
Tp(k44) in order to obtain a convex triangulation {Q;, j € J} (here the Q;’s
are tetrahedra) containing p® disjoint images of T by affine unimodular integral
transformations. Now, let (Zo : --- : Z3) be homogenous coordinates of CP? and
assume that RXyN{Z; =0} =0 fors=0,---,3. Let f be some affine polynomial
defining the surface X}, in the chart {Zy # 0} with affine coordinates (%7 g—i, g—i)
The previous assumption implies that RX, = {f = 0}N(R*)*. We can associate to
the triangulation {Q;, j € J} of Ty 14y a collection {f;,5 € J} of nondegenerate
polynomials (see 2.2 for the definition of a nondegenerate polynomial) verifying
the following conditions:

o f; has Q; as Newton polytope for any j € J,

e the truncation of f; and f;; to a common face of (); and @Q);s coincide,

e if (); is one of the p° images of T}, under some affine unimodular integral
transformation, then f; is the image of f under the corresponding monomial
change of coordinates.

The first two conditions allow us to apply the Viro method in order to construct a
nonsingular surface X4 4y whose real point set is homeomorphic to a topological
surface obtained by gluing together the sets {f; = 0} N (R*)3 for j € J (the
gluing being determined by the triangulation). The third condition ensures that
{f; = 0} (R*)? is homeomorphic to { f = 0}N(R*)®, hence to RX. It follows that
these p® homeomorphic copies of RX}, are disjoint in RX p(k+4) since the gluing is
made along intersections of the {f; = 0} with the coordinate and infinity planes.
Note also that for the same reason these p® homeomorphic copies of RX}, contained
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in RX,(x14) do not intersect the coordinate or infinity planes. In particular, we
obtain b;(RX,14)) > p® - bi(RX},), which leads to
bi(RX p(1+4)) % bi(RX}) B bi(RX%) - 1 (1)
3 (k+4)3 — k3 k3 (1+4/k)31
Let € > 0 be given. From the definition of /;, for sufficiently large k there exists
a surface Xy verifying

bi(RXy)
Then, such a surface can obviously be chosen in order to verify RX;N{Z; =0} =0
for : =0,---,3. Recall that the sequence % is bounded. Therefore, by (1) one

can also assume that the surface X,z 4) constructed from Xy, verifies

bi(RX p(rray) _ bi(RXy)
2 — .
P ktr4)3 = k3 ¢/4 (3)

Now, fix some sufficiently large k in order to have the inequalities (2) and (3)
and consider a family of surfaces { X, x4y, > po} constructed as before for each
P > po, Where pp is some positive integer number. Extend this family to a whole
family F = {X,, m > po(k + 4)} in the following way: if m is any integer
number such that p(k+4) < m < (p+ 1)(k + 4) for some integer p > pg, then
consider the union of X, 4y with m — p(k + 4) planes which do not intersect
the p> homeomorphic copies of RX;, contained in RX,(r+4) (as we have noticed
before, these p® homeomorphic copies do not intersect the coordinate planes, hence
we can take planes which are close to the coordinate ones) and take for X, any
smoothing of the resulting surface. It follows that b;(RX,,) > p® - b;(RX}) and,
using m < (p+ 1)(k +4), we obtain

bi(RX) - bi(RXr)  bi(RXy) 1 1 ()
m? Tk k? (1 +4/k) 1+ 1/p)P L
Recall that the sequence B — is bounded. Consequently, if po is chosen sufficiently

large, then by (4) and (3), for any surface X,,, € F we shall have
bi(RX,,) _ bi(RXy)

—3 > i €/2. (5)
and thus by (2)
bi(RX,,)
— 3 Z l’L — €,
m

O

Remark 1.1. The previous proof works in any dimension. Namely, one can show
the asymptotic equivalence, when m — 400, between the sequence ,6’1(2 of the
mazimal possible values of the Betti numbers b;(RX)}) (i =0, -+ ,n—1) and some

real number lgn) times m™ (where i, n are fized and X denotes a nonsingular real
algebraic hypersurface of degree m in CP™).
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The largest part of the paper is devoted to constructions of surfaces proving
the following result.

Theorem 1.1. Let i = 0 or 1. For any € > 0, there exists a family of surfaces
X, in CP? such that

bi(RX,) > (% - e) - m?

for any sufficiently large degree m.

As a corollary of Theorem 1.1 and the classical upper bounds lp < %, [1 < %7
we obtain the main result of this paper.

Theorem 1.2. The real numbers lg and ly verify

13 5 13 5
2w Sl — and — <l <-.
6 1 18 6

2. Constructions
2.1. Surfaces of type Doy

Denote by CP*(k) the four dimensional weighted complex projective space with
homogeneous coordinates Zy, Z1, Za, Z3 of weight 1 and Z4 of weight k (where k
is some positive integer number). A real surface of type Day, is a surface Y defined
in CP*(k) by a system of equations of type

{ Zs* — fau(Z) =0,
f(Z) =0,

where for,(Z) and fi,(Z) are real homogeneous polynomials of degree 2k and k in
the variables Z = (Zo : Z1 : Zs : Z3), respectively. The surface Y is then real
with respect to the standard complex conjugation (Z : Zy) — (Z : Z4) in CP*(k).
Assume that the real surfaces X, and X defined, respectively, by for, and f; in
CP? are nonsingular surfaces (this will be always the case later). Then, we shall
say that Y is associated with the pair (Xag, Xi).

Proposition 2.1 (see [Ho|). Let Y be a real surface of type Doy, associated with
a pair of (nonsingular) surfaces (Xaop, Xp) whose real point sets intersect trans-
versely. Then, there erists a small equivariant deformation of Y to a real nonsin-
gular algebraic surface of degree 2k in CP3. In particular, the real point set of the
latter surface is homeomorphic to RY.

Proof. A desired deformation is given by the family of surfaces Y€, ¢ € R and
Y? = Y, defined in CP*(k) by {Z*> — fox(Z) = 0, fu(Z) — ¢Zy = 0}. The
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projection CP*(k) \ {(0 : 1)} — CP?, (Z : Z;) — Z, produces an equivari-
ant isomorphism between Y€, ¢ # 0, and the real surface X¢ in CP? defined by
(@)2 — far(Z). Since RXy, and RX) are nonsingular surfaces intersecting
transversely, both surfaces RY and RX€ are nonsingular and homeomorphic for
sufficiently small e. (|

Let Y be a surface of type Dsj, as in Proposition 2.1, then Y is isomorphic to the
double covering of X branched along the curve Xy N Xs,. Moreover, the topology
of RY is given by that of the triple (RP? RXs;,RX}). Namely, the surface RY
is projected two-to-one onto the interior of RX,” = RXj N {for(Z) > 0} and
one-to-one onto the boundary RXs, NRX}, of RX,?.

RY
2
RX,, NRX), C RX;

2.2. A particular case of Sturmfels’s theorem

We use the extension due to Sturmfels [S1] of the combinatorial patchworking in
order to construct a pair of surfaces (X%,X' k), Where Xy is a real nonsingular
surface of degree 2k in CP? and X & is a real surface of degree k in CP? having
a single nondegenerate point as singularities. In the rest of this paper, we shall
assume k > 3. Consider the sets

P = {(x7y7z)€ZS, z,y,2>0, k—1<z+4+y+z <k}
Py = {(z,y,2) € Z3, z,y,2 >0, x+y+ 2 < 2k},

and denote by P; the convex hull of P;. For each positive real number ¢, let
fit(2) € Rz1, 22, 23] be a so-called affine Viro polynomial defined by

fir(2) = silw)tit)z®,
weP;
where s; takes values 1 (s;(w) will be sometimes called sign of w) and v; : P; —
R is a convex function. Define the polytope P = conv{(w, v;(w)), w € P;} and
denote by G the lower part of P¥. By projecting faces of G¥ C R3 x R onto R?,
the function v; defines a polyhedral subdivision 7; of P;. Polyhedral subdivisions
of polytopes obtained in this way are called conver. Assume that 7y and 7 are
triangulations with sets of vertices P; and P, respectively. In this case, the above
Viro polynomials are called T-polynomials.

Consider the Minkowsky sums P = Py + P, P¥ = P"* + P*2 and denote by
G the lower part of P¥. Projecting faces of G¥ C R3 x R onto R3, we get a
polyhedral subdivision 7 of P. Each face I'Y of G has a unique representation
FY = F"1 4+ F"2 where F'% is a face of G¥, which induces, via the projection,
a particular representation I' = Fy + F,, where F; is a simplex of 7;, of each
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polytope F' of the subdivision 7. We shall refer to this particular representation
when writing F' = Fy + Fy, with F' € 7 and F; € 7;. Assume that for each polytope
F = F, + F, of 7, we have dim(F') = dim(F}) + dim(F,). Then, the subdivision
(or decomposition) 7 is called mized decomposition ([S1]).

Let R™ be the group of symmetries in R™ generated by reflections with respect
to the coordinate hyperplanes. Let us identify (Z/2)" with R™ by sending r =
(ri,-+,mn) to ((z1, -+ ,20) — ((=1)"21,--,(=1)"2,)). For any polytope T
in R™, let T* be the union of all the symmetric copies (1) of T for r € R".
For any face I of T* and any vector o € Z™ orthogonal to I', identify I" with its
symmetric copy @(I') (where @ denote the reduction of a in (Z/2)"). Denote by
T the resulting space.

Denote by 7* (resp. 7;°) the unique subdivision of P* (resp. P;*) which extends
7 (resp. 7;) and which is invariant with respect to R™. Extend s; to a distribution
of signs on the set of vertices of 7;* following the rule: s;(r(w)) = s;(w)- (—1)<T’w>7
where (, ) is the usual scalar product in (Z/2)°. For each vertex w = wy + wy of
7*, where w; € 7, define its sign vector s(w) = (s1(wy), s2(w2)).

We perform the construction of piecewise linear surfaces in P; and P. For any
tetrahedron of 77 having at least two vertices with different signs, consider its
edges having endpoints with different signs and select the triangle or quadrangle
having the middle points of these edges as vertices. The union of all the selected
pieces is a piecewise linear surface in P. Denote by S; its image in P;. For any
three-dimensional polytope (a prism or a tetrahedron) F' = Iy + I, of 7% such that
S1NFy #£ 0, select the Minkowsky sum (S7 N Fy )+ Fy (a quadrangle or a triangle).
The union of all the selected pieces is a piecewise linear surface in P*. Denote by
St its image in P. Similarly, for any three-dimensional polytope F = Fy + Fy of
7* such that gg NIy £ 0, select Fy + (5‘2 N Fy). The union of all the selected pieces
is a piecewise linear surface in P* whose image in P is denoted by 52,

Remark 2.1. By construction, we clearly have the following properties.

(1) The distribution s; is constant on each connected component of P; \ S; and
its value changes while passing through S;.

(2) The coordinate s; of the distribution of sign vectors s is constant on each
connected component of P \ S and its value changes while passing through
S

Consider the affine chart {Zy # 0} of CP? with coordinates z = (z1, 29, 23),
where z; = g; Let ¢ : CP3 — CP? be the blowing up of CP3 at the point
O=(1:0:0:0) (so O has affine coordinates (0,0,0) in {Zy # 0}). Consider the
real structure on CP3 which lifts that of CP3. Let X r and Xo; be the real surfaces
in CP? which are defined in the chart {Zy # 0} by fi,t and fo;, respectively.
Denote by L the exceptional divisor of ¢ and by Wy, W5 the strict transforms of
X r and Xo, respectively. Finally, denote by p the facet of P supported by the
plane {z +y+2z=Fk—1}.
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The following proposition is a particular case of a result of Sturmfels.

Proposition 2.2. Assume that 7; (i = 1,2) is a triangulation with set of vertices
P; and 7 is a mired decomposition of P. Then, for sufficiently smallt > 0, the
polynomials f1; and fo; are nondegenerate, the surfaces RWy and RWy intersect
transversely, and there exists a homeomorphism h : RP® — P sending RL, RW;
and RWy to p, ST and S2, respectively. Consequently, if U is any neighbourhood of
O €RP? and V = hoq ' (U), then hoq~ ! induces a homeomorphism RP*\U —
P\V sending RX; \RX; NU and RXox \RXo,NU to ST\ SNV and 52\ S*NV,

respectively.

An affine polynomial f in n variables is nondegenerate if for any face I" of its
Newton polytope (including the Newton polytope itself), the truncation fU of f
to ' defines a nonsingular hypersurface in the real torus (R*)" (see [R]). The
non-degeneracy of f1; and fo; (for sufficiently small ¢ > 0) implies that RWq,
RWj5, RX9; are nonsingular surfaces and the surface RX & has the single point O
as singularities (moreover O is a nondegenerate singularity of RX k). Furthermore,
we obtain that for sufficiently small ¢ > 0 the surfaces RX r and RXy; intersect
transversely since, by Proposition 2.2, this is the case for the surfaces RW; and
RWs.

2.3. Smoothing

Let X & be a given real surface in CP? defined by some nondegenerate polynomial
f1 having as Newton polytope the polytope P; described in 2.2. We use the Viro
method in order to smooth X, k-

For any positive integer number m, let us denote by 7,,, the tetrahedron which
is the convex hull of {(z,y,2), z,y,2 > 0, 24+ y + 2 < m}. Decompose the
tetrahedron T} into the union of the polytopes Pi, T;_o and the intermediate
polytope I = conv{(z,y,z2), z,9,2 > 0, k-2 < z+4+y+2z < k—1} Letw
and g be nondegenerate real polynomials with Newton polytopes Ty 5 and I,
respectively, and assume that any truncation of two polynomials among fi,v and
g to a common face of their Newton polytopes coincide. Consider any convex
function v : T, — R which is linear on Py, T},_» and I but not linear on the union
of any two of them, and which vanishes identically on P; but is strictly positive
outside P;. For example, take v(z,y,2) =0on Py, v(z,y,2) = (k—1)—(z+y+2) on
Tand v(z, vy, z) = 2k—3—2(z+y+2z) on Tj,_2. The associated Viro polynomial p;(z)
is equal to fi(z) plus a polynomial with the property that each of its coefficients
contains ¢ to a strictly positive real number. Therefore, the polynomial p.(z)
defines for a sufficiently small ¢ a real surface X, of degree k in CP? which is a
small perturbation of X;. By Viro theorem (see [V3] or Theorem 4.2 in [R]) we
obtain that RX} is a nonsingular surface homeomorphic to a topological surface
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obtained by gluing together {f; = 0}N (R*)*, {v = 0} N (R*) and {g = 0} N (R*)?
following the subdivision of Ty. In particular, if V;_o denotes the nonsingular real
surface of degree k — 2 in CP? defined by the polynomial v, the Viro theorem
implies the following statement.

Proposition 2.3. For sufficiently smallt > 0, the polynomial p.(2) is nondegen-
erate and there exist two small neighbourhoods Uy and Us of O € RP?, Uy C Uy,
which can be chosen as small as wanted for t small enough, such that RXy is
homeomorphic,

(1) inside Uy, to some affine part of RVj_ o,

(2) outside Us, to RX,, outside a small neighbourhood of O € RP3.
Furthermore, we have

bi(RX 1) = bi(RVj_s) + O(k?).

The last inequality in Proposition 2.3 is an easy consequence of the Smith—
Thom inequality together with the equality 6[vol(Ty ) —vol(Ty—2)] = k* —(k—2)3 =
O(k?) (where vol(-) denotes the euclidian volume). This inequality will be useful
later since we shall be interested in the Betti numbers of RX} for k£ big enough.

2.4. Real surfaces of type Dy

Let X9 and X « be surfaces in CP? defined by T-polynomials fo,1o and fi,, re-
spectively, as in 2.2, and assume that the value %y is sufficiently small in order
to have the properties stated in Proposition 2.2. Perform the smoothing of )?k
described in 2.3 and let X be the resulting surface defined by the Viro polynomial
pe. For ¢ > 0 sufficiently small, the surface Xj, is a nonsingular surface, further-
more, its real point set RX} intersects R Xy transversely, because so does RXy
and Xy is a small deformation of X;. Consequently, if Y is the surface of type Doy
associated with (Xs, Xi), then RY is nonsingular and there exists (Proposition
2.1) a small deformation of Y to a real nonsingular surface of degree 2k in CP>
whose real point set is homeomorphic to RY.

The topogical type of RY (in fact, its “asymptotic part”) will be obtained using
the proposition below. Recall that the topological type of RY is closely related to
that of RX;” =RX;, N {fa2.,(Z) > 0}.

Proposition 2.4. Let U be any neighbourhood of O in RP? and V = ho ¢ *(U)
be the corresponding neighbourhood of p in P (see Proposition 2.2). Supposet > 0
is sufficiently small.

Then, there exists a homeomorphism

RP3\U — P\ V
sending RXp \RX,NU to Sl\SlmV and RXop \ RXop, NU to S’Q\SQHV
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Moreover, if U NRXo = 0 and 52((0,0,0)) = +1 (the sign given by sy at the
vertez (0,0,0) of Ps), then

° RX; NU coincides with RX, NU,

e the above homeomorphism RP*\U — P\V sends RX; N(RP3\U) to SHT N

(P \ V), where SLt s the intersection of S! with the connected components
of P\ S? containing vertices on which sy takes the value +1.

Proof. For sufficiently small values of ¢, the surface RX}, is homeomorphic to RX k
in the complementary part of 2/ in RP?, and intersects transversely R Xoy. Hence,
for sufficiently small ¢, the pair (RXo;, RX}) is homeomorphic to (RXq, RX}) in
the complementary part of 2/ in RP3. It remains to use Proposition 2.2 to obtain
the desired homeomorphism RP*\ U — P\ V.

Suppose now U NRX9; =0 and 52((0,0,0)) = +1. Then fo 4, takes a positive
value in the point O, hence in the whole U since U NRX9r = . Consequently,
connected components of RX}, contained in U/ are connected components of RX ,j .
Moreover, the distribution s takes the value +1 in all the vertices of 7* contained
in p*, hence in V since VN 52 = §. The last part of the proposition is now obvious
in view of Remark 2.1. Il

3. Application

We apply simultaneously the construction described in Section 2 in order to ob-
tain two real nonsingular surfaces Yy, and YQ}Z of type Dy, associated with pairs
(XS, Xi) and (X2 Xy), respectively. The surfaces Y, will give, via deformation,
surfaces in RP? with a large number of connected components while the surfaces
YJ: will give surfaces in RP? with a large number of handles (superscripts “c” and
“h” are for components and handles, respectively).

Let us describe a mixed decomposition 7 of P and distributions of sign vectors
(s1,s8) and (s1, s%) producing as in 2.2 pairs of surfaces (Xj, X5,) and (X, X1 ),
respectively. Denote by py the facet of Py supported by the plane {z +vy+ 2z = k}
and by ps the facet of P, supported by {#z = 0}. The decomposition 7 of P we are
going to use is obtained as follows. First, decompose P into the Minkowsky sums
(see Figure 1)

Pl gy (07070)7 Al =p1+ [(07 07 0)7 (2k7070)]7
(0,0,k) + P, Az =[(0,0,k), (0, k,0)] + pa.

Then, subdivise all these polytopes using convex triangulations 7y and 7 of Py
and P,, respectively. Namely, the decomposition consists of the following three
dimensional polytopes:
e o+ (0,0,0) for any tetrahedron o € 71,
¢ (0,0,k) 4+ o for any tetrahedron o € 7,
e 01 + 09 for any triangle oy € 7 contained in p; and any edge o9 € 7
contained in the edge [(0,0,0), (2k,0,0)] of P»,
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e 01 + 09 for any edge o1 € 71 contained in the edge [(0,0, k), (0, k,0)] of P,
and any triangle oo € 71 contained in ps.

2k 0,0,k)+P,

Az

P1+(0,0,0) A1

Fia. 1. A mixed decomposition of P

Let @ C RxR? be the convex hull of the set {e1} x P1U{es} x Py (where ¢, is an
integer number). In other words, the polytope @ is the join {e;} X P; % {ea} x Ps.

Lemma 3.1 (see [S2]). Mized decompositions of P are in one-to-one correspon-
dence with conver triangulations of Q. Such a correspondence may be described as
follows. Let 7q be any triangulation of Q). It induces for i = 1,2 a triangulation
7; of Py and each four dimensional simplex of T is a join {e1} X 01 * {ea} x 02,
where o; € 1;. The corresponding three dimensional polytope in the decomposition
of P is then the Minkowsky sum o1 + o9.

Take the joins {e1} x Py * {ea} x {(0,0,0)}, {e1} x {(0,0,k)} * {ea} x Pa,
fe} x pi * {ea} x [(0,0,0), (2, 0,0)] and {e1} x [(0,0,k), (0,k,0)] * {es} x ps,
and refine them in the unique possible way using convex triangulations 71 and 7.
The resulting triangulation 74 of @) is obviously convex and corresponds to the
decomposition 7 above. Therefore, by Lemma 3.1, the decomposition 7 is a mixed
decomposition.

To achieve the description of 7, it remains to define triangulations 7 and 7.
We simultaneously define associated distributions of signs s1, s§ and s&. First, let
us recall the notion of T-curves, which are, by definition, those curves constructed
by means of the combinatorial patchworking (see [I1]).
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3.0.1. T-curves in RP2. For any positive integer number m, denote by t¢,, the
triangle with vertices (0,0), (m,0), (0, m) in R?. Start with a convex triangulation
(with integral vertices) v of ¢,, and a distribution of signs s : vert(y) — %1 at
the vertices of v. Extend v to a triangulation v* of ¢} invariant with respect to
R?2. Extend s to a distribution of signs on the set of vertices of ~* following the
rule: s(r(w)) = s(w) - (—1)<T’m7 where (, ) is the usual scalar product in (Z/2)°.
For each triangle of v* having at least two vertices with different signs, select the
segment joining the middle points of its two edges having endpoints with different
signs. The union of the selected pieces is a piecewise linear curve in ¢ , denote by
@ its image in %,y,.

Theorem 3.1 (Viro, see [[1]). There exists a nonsingular curve A of degree m in
RP? such that the pair (RP? RA) is homeomorphic to (t,,,d).

Such a curve A is called a T-curve and may be obtained as the zero set of
some T-polynomial associated with the considered triangulation and distribution
of signs.

3.0.2. Triangulation and distribution of signs for P;. Identify p; with the
triangle 5, in R? using the map (z,y, z) — (y, 2). We use a triangulation of ¢; and
a distribution of signs at its vertices which produce a T-curve of degree k in RP?
being an M-curve, i.e. having Wléﬂ + 1 ovals (see [I1]). Namely, take any
primitive convex triangulation of ¢ (a triangulation of ¢,, is called primitive if its
set of vertices coincides with that of all the integer points contained in ¢,,) and
the distribution of signs at its vertices which takes values +1 in any point with
both coordinates even and —1 otherwise. Then, we extend the triangulation of pq
to any convex triangulation 7 of P, and choose any distribution of signs s; at
the vertices of 7; which extends the above distribution.

3.0.3. Triangulation and distributions of signs for P,. Identify po with
the triangle ¢ using the map (z,y, z) — (z,y). Take any primitive convex tri-
angulation v of ¢y, and consider any distribution of signs s, at its vertices which
produce a T-curve of degree 2k in RP? whose real point set consists of 2k + O(k)
ovals such that % + O(k) of them are even ovals (an oval of a curve in RP? is
called even, resp. odd, if it is lying inside an even, resp. odd, number of ovals of
the curve). Such a T-curve does exist [Ha]. We define the restrictions of s§ and
sk to the set of vertices of v in the following way. On the subset of those vertices
lying on the segment [(0,0), (2k, 0)], let s§ and s} take value +1 in the points with
even z-coordinate and —1 in the other points. On the complementary subset, let
s5 coincide with s, and sk coincide with the opposite distribution —s~. Finally,
take the cones with vertex (0,0, 2k) over all the triangles of v, and choose any sign
for the vertex (0,0,2k). Consider two T-curves A° and A" of degree 2k in RP?
associated with (v, s§) and (v, sh), respectively (in fact the restrictions of s§ and
sk to the set of vertices of 7). Both curves have 2k? 4+ O(k) ovals in RP? such that

%ﬁ + O(k) of them are even ovals. Let a° and @" be the corresponding piecewise
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linear curves constructed in {9,. Replacing sy by —s, if necessary, assume that
the ovals of @° bording from the exterior components of £2; \ @ on which s§ takes
values +1 are in one to one correspondence with the even ovals of A°. Then, the
ovals of @ bording from the exterior components of £z » \ @"* on which s} takes
values +1 are in one to one correspondence with the odd ovals of AP,

Let X, X5, and Xélk be surfaces in CP? defined by T-polynomials Titos 54,
and f£t0 associated, respectively, with the pairs (71, s1), (72, s5) and (72, s%) de-
scribed above. Assume that ¢, is sufficiently small in order to have the properties
stated in Proposition 2.2 for the pairs of surfaces (X, X§,) and (X, X5, ). Let
X, be a surface in CP? obtained starting from X x as in 2.3. It is defined by some
Viro polynomial p;. Denote by A¢ and A” the real curves given by the intersection
of X with X5, and X[, respectively.

Proposition 3.1. For sufficiently small t > 0, the curves RA® and RA" are non-
singular curves with 3k> + O(k?) connected components.

Proof. The proof is the same for both curves, let us only deal with the curve A°.
For sufficiently small ¢ > 0, the curve RA® is nonsingular since it is a transversal
intersection of two nonsingular surfaces. The polynomial f3, does not vanish at
O, hence there exists a neighbourhood U of O in RP? such that RA® C RP? \U.
Then, by Proposition 2.4, the curve RA® is homeomorphic to ¢ = = 5§10 s? 4,
where S' and S%¢ are surfaces in P constructed as in 2.2 ' starting from (741, 31)
and (7, s§), respectively. Denote by 51 C P1 and Sg a © P2 the piecewise linear
surfaces constructed as in 2.2 from (71, 1) and (79, 32) respectively.

The edge [(0,0,0), (2k, 0, 0)] of P, is triangulated in 2k edges. All the symmetric
copies contained in {x > 0} of these 2k edges have endpoints with different signs,
in other words, each of these copies is intersected by the surface 5’270. Therefore, in
each of the four orthants forming {z > 0}, the corresponding copy of A; contains 2k
pieces of 52:¢ and each piece is a triangle obtained as the Minkowsky sum of a copy
of p; with the middle point of a copy of an edge lying on [(0,0,0), (2k,0,0)]. The
map (z,y,2) — (y,z) allows us to identify the triangulation, and the associated
distribution of signs, of each copy of p; contained in {z > 0} with those obtained
as in 3.0.1 for the corresponding copy of t;. We have chosen a triangulation of
and a distribution of signs at its set of vertices which produce a T-curve of degree
k in RP? havmg + O(k) ovals. This means that the surface Sy intersects the
copies of p; contalned in {x > 0} in k—; + O(k) ovals. Therefore, in {x > 0},
the symmetric copies of A; contain % + O(k) pieces of St and each piece is a
cylinder obtained as the Minkowsky sum of one of these ovals with a copy of
[(0,0,0), (2k,0,0)]. Finally, each of these cylinders intersects 2k triangles of 52,
hence we obtain &% + O(k?) ovals of & contained in the symmetric copies of Aj.

The edge [(0,0, k), (0, k,0)] of P is triangulated into k edges. All the symmet-
ric copies, contained in the four orthants forming {y - 2 > 0}, of these k edges
are intersected by the surface S;. Therefore, in each of these four orthants, the
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corresponding copy of Ay contains k pieces of St and each piece is a triangle ob-
tained as the Minkowsky sum of a copy of ps with the middle point of a copy
of an edge lying on [(0,0, k), (0,%,0)]. The map (z,y,z) — (z,y) allows us to
identify the triangulation, and the associated distribution of signs, of each copy of
p2 contained in {y - z > 0} with those obtained as in 3.0.1 for the corresponding
copy of tor. We have chosen a triangulation of f9; and a distribution of signs at
its set of vertices which produce a T-curve of degree 2k in RP? having 2k* + O(k)
ovals. This means that the surface 5270 intersects the copies of py contained in
{y-2>0}in 2k% + O(k) ovals. Therefore, in {y - z > 0}, the symmetric copies of
Ay contain 2k? + O(k) pieces of 52:¢ and each piece is a cylinder obtained as the
Minkowsky sum of one of these ovals with a copy of [(0,0,0), (2k,0,0)]. Each of
these cylinders intersects k triangles of S, hence we obtain 2k + O(k?) ovals of
¢ contained in the symmetric copies of As.

Consequently the curve RA® has at least 3k + O(k?) ovals. It is not difficult
to see that RA® has asymptotically no more connected components. Anyway, this
follows from Harnack theorem since the genus of A° is 3k% + O(k?). O

Proposition 3.2. For sufficiently smallt > 0, the real point sets of the surfaces
Y2 and Y of type Dy, associated with (X, Xx) and (X2, Xi) (m = 2k), re-
spectively, are nonsingular surfaces. Moreover, if bo(RVj,_o) = ak® + O(k?) and
b1 (RVy_2) = BK® + O(k?), then one has

o bo(RY;) = 132120 . 533 1 O(m?), by(RY,S) = 228 . m? + O(m?),

o bo(RY;R) = 222 .03 1 O(m?) |, bi(RY;E) = BE22 . m3 4 O(m?).

Proof. We have already seen in 2.4 that RY,2 and RY,? are nonsingular surfaces for
sufficiently small ¢ > 0. Set RX$ = {Z € RXy, f§, (Z) >0} and RX! = {Z ¢
RXy, fi;, (%) 2 0}. Let U be any neighbourhood of O in RP? such that RX3, N
U =0 (resp. RXS, NU = 0). By Propositions 2.3 and 2.4, for sufficiently small
t > 0, connected components of RX}, contained in U are connected components
of RX¢ (resp. RX ﬁ) and the topology of RX; NU coincides with that of some
affine part of RVj_o. It follows (see Proposition 2.3) that the Betti numbers bg
and by of the largest subset of RX¢ (resp. RX") consisting of closed (i.e. without
boundary) connected components Verlfy by = ak3 + O(k?) and by = Bk* + O(k?).

Let 51, §%:¢ and %" be surfaces constructed in P starting from (71, s1), (72, 55)
and (7o, 32)7 respectively. Denote by SC (resp. Sh) the intersection of S with
connected components of the complementary part of S2e (resp. G2k ) in P \Von
which s§ (resp. s) takes the value +1. In {& > 0}, each cylinder of S! (see the
proof of Proposition 3.1) contained in a symmetric copy of Ay is cut by S2e (resp.
521 into 2k-+O(1) small cylinders and two non consecutive of them are connected
components of gi (resp. gh) There are, in {z > 0}, & B O(k) cylinders of S*
contained in the symmetric copies of A1, hence we obtaln 5+ O(k?) connected
components of gi (resp. S’ﬁ) and thus of RX¢ (resp. RX}&) by Proposition 2.4,
which are homeomorphic to a cylinder. As in 3.0.1, let ¢ and a" be the piecewise



Vol. 78 (2003) Asymptotic behaviour of Betti numbers 241

linear curves constructed in #o, starting from (v, s§) and (v, s%), respectively. In
{y - z > 0}, each symmetric copy of Ay contains k triangles of S' and each oval
of a° (resp. @) lying on a symmetric copy of ¢, gives rise to k ovals of the curve
51nS%¢ (resp. STNS%M) lying on the corresponding k triangles of 5! (see the proof
of Proposition 3.1). Each connected component of £\ @° (resp. a5, \ @") on which
55 (resp. sk) takes the value +1 and lying on a symmetric copy of toy, gives rise to k
homeomorphic connected components of Si (resp. Sﬁ) lying on the corresponding
k triangles of S, The connected components of tor \ @° on which s§ takes the
value +1 are borded from the exterior by even ovals of a° and from the interior by
odd ovals of a°. Therefore, we obtain % + O(k?) connected components of §i7
and thus of RX¢, which are homeomorphic to disks with holes. The total number

of these holes is ’“3—3 +O(k?). The connected components #5;, \ @ on which s? takes
the value +1 are borded from the exterior by odd ovals of & and from the interior
by even ovals of @". Therefore, we obtain %3 +O(k?) connected components of Sf_,
and thus of RX ﬁ, which are homeomorphic to disks with holes. The total number

of these holes is % + O(k?). 1t is not difficult to see that RX¢ (resp. RX") has
asymptotically no more connected components (this follows from Proposition 3.1).
The computation of the asymptotic behaviour of the Betti numbers of RY? and
RY#L is now obvious. (Il

4. Iteration and proof of Theorem 1.1
4.1. Tteration

We construct, by induction on the integer number n > 0, two families C" =
{Cr, m >m,} and H" = {H}, m > m,} consisting of nonsingular real surfaces
Cr and H of degree m in CP? for any integer number m > m,,.

As starting families C° and H?, let us take a family of surfaces X,, of degree
m in CP? constructed by Viro [V1] which verify bo(RX,,) = %3 + O(m?) and
bi(RX,,) = % + O(m?). We describe now the induction step. Assume that the
families C™ and H™ have been constructed. For each integer number k such that
k —2 > my, we construct the surfaces C3," and HJ," of the families C"*! and
H™t! as follows. Asin 2.3, use the surfaces C7'_, and H]' , in place of the surface

V2 in order to perform two smoothings of the surface X ., constructed in Section 3
(perturbing C}_, and H}} , a little if necessary, one can assume that these surfaces
are defined by nondegenerate polynomials with Newton polytope T;_»). Let X/
and X ,’j be the resulting surfaces, respectively. Consider now surfaces Yz and
Y], of type Doy associated with (X5, X¢) and (X[, X1, respectively, where X5,
and X7, are the surfaces constructed in Section 3. Assume that the parameters
of Viro’s polynomials defining X7 and X ,? are sufficiently small in order to have
the properties described in Proposition 3.2. The surfaces C;,j ! and H;,j L are



242 F. Bihan CMH

then obtained applying to Yy, and Yt respectively, the equivariant deformation
described in 2.1.

At this point of the construction, the family C"*! (resp. H"t!) contains sur-
faces C’;‘,jl (resp. H;,jl) for any integer number k such that k —2 > m,,. Take the
union of each surface C3," ! (vesp. H. g 1y with a plane and smooth the resulting sur-
face in order to obtain the whole families C**! and H" ! with my, 1 = 2(m, +2).
The following result may be easily derived from Proposition 3.2.

Proposition 4.1. The surfaces C}, and H) verify
(1) bo(RC2) ~ af -m? and by(RCT) ~ B%-m? when m — +oo, where o
and 7 are recursively defined by

ot =L g 1341202

Tl 48
(2) bo(RHZ) ~ of -m® and by(RHEY) ~ 7 -m
and B} are recursively defined by

1 a1 541202

0
G =g Yh R

6n+1 _ 5+ 6/8?
s (< 24 ?

when m — +oo, where o

and 2=

wowl N

2 13+ 637
nd =3 =P

4.2. Proof of Theorem 1.1

The sequences o and 37 defined in Proposition 4.1 converge to % and

spectively. Therefore, for sufficiently large n and m, we have

13

18 re-

bo(RO™) > (% —e) m3 and b (RH") > (% —e) -

for a given ¢ > 0.
5. Concluding remarks

1. Viro’s conjecture. Viro proposed the inequality b;(RX) < ht1(X) for any
real nonsingular projective and simply connected surface X as a natural gen-
eralization of the Ragsdale conjecture for real plane curves. Since then, both
conjectures were shown to be false in general (see [I1, 12, B2, B1]). However,
both remain open if the surface (resp. the curve) is assumed to be an M-surface
(resp. an M-curve) i.e. if it is maximal with respect to the Smith-Thom in-
equality (resp. Harnack inequality). For a surface X,,, in CP2, Viro’s conjecture
asserts that b1(RX) < 2m® + —2m? + Zm. Furthermore, X,, is an M-surface
if b,(RX,,) = 2bo(RX,,) + b1(RX,,) = m>® — 4m? + 6m. We note that the
surfaces H)' constructed in this paper are not far from being M-surfaces since
by (RH™) = m?* + O(m?) (this follows from 2a} + 87 = 1, which is easily proven
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recursively) and are at the same time (for large m and n) strong counter-examples
to the Viro conjecture.

2. Limits of the method. There is an increasing function relating the coeffi-
cients % and % in Theorem 1.2 with the coefficient % in the number §~k2+0(lf) of
even ovals of the plane curves we have used. Namely, using curves with a-k>+O(k)
even ovals, one obtains coeflicients & + 1—12 and g + % instead of é—g and 22 in The-

- 6 18

orem 1.2, respectively. The inequality @ < 7 is well-known in the topology of
real algebraic curves. This implies that our construction cannot give lower bounds

better than % and % for lp and [y, respectively.

3. Generalization. Our construction can be generalized in order to construct
real nonsingular algebraic hypersurfaces in CP™ with large Betti numbers for any
integer number n > 1. In this way, we obtain increasing functions relating the real
numbers 1§”> introduced in Remark 1.1 with corresponding real numbers for lower
dimensional real hypersurfaces. All this will appear in a forthcoming paper.

References

[B1] F. Bihan, Constructions Combinatoires de Surfaces Algébriques Réelles, Thesis, Univer-
sity of Rennes (France), 1998.

[B2] F. Bihan, Betti numbers of real numerical quintic surfaces, in: Topology, Ergodic Theory,

Real Algebraic Geometry. Rokhlin’s Memorial, 31-39, ed. V. Turaev and A. Vershik,
Amer. Math. Soc. Transl. ser. 2, vol. 202, 2001.

[D-K] A. Degtyarev and V. Kharlamov, Topological properties of real algebraic varieties: du
coté de chez Rokhlin, Russian Mathematical Surveys, Vol. 55, No 4, 2000.

[Ha] B. Haas, Les multilucarnes: nouveaux contre-exemples a la conjecture de Ragsdale, C.R.
Acad. Sci. Paris. Ser. 1. (1995), 1507-1512.

[Ho]  E. Horikawa, Deformations of Sextic Surfaces, Topology 32, no. 4 (1993), 757-772.

[11] L. Ttenberg, Counter-examples to Ragsdale Conjecture and T-curves, Cont. Math. (Pro-
ceedings, Michigan 1993) 182 (1995), 55-72.

[12] L. Itenberg, Topology of real algebraic T-surfaces, Revista Matematica 10 (1997), Special
Issue, suppl., 131-152.

[I-K1] L Itenberg and V. M. Kharlamov, Towards the maximal number of components of a non-
singular surface of degree 5 in RP?, Amer. Math. Soc. Trans. (2) 173 (1996), 111-118.

[I-K2] L Itenberg and V. M. Kharlamov, Private communication.

[K1] V. M. Kharlamov, Topological types of nonsingular surfaces in RP?3 of degree 4, Funct.
Anal. Appl. 10 (1976), 55-68.

[K2] V. M. Kharlamov, Real algebraic surfaces, Proc. Internat. Congress Math., Helsinki 1
(1978), 421-428 (in Russian).

0] S. Orevkov, Real quintic surface with 23 components, C. R. Acad. Sci. Paris Ser. 1
Math. 333 (2001), no. 2, 115-118.

R] J.-J. Risler, Construction d’hypersurfaces réelles [d’apres Viro|, Séminaire Bourbaki vol.
1992-93, Astérisque 216 (1993), Exp. no. 763, 3, 69-86.
[S1] B. Sturmfels, Viro’s theorem for complete intersections, Annali della Scuola Normale

Superiore di Pisa (4) 21 (1994), no. 3, 377-386.
[32] B. Sturmfels, On the Newton polytope of the resultant, Journal of Algebraic Combina-
torics 3 (1994), 207-236.



244 F. Bihan CMH

[V1]  O. Viro, Construction of M-surfaces, Funktsional. Anal. i Prilozhen. 13 (1979), no. 3,
71-72.

V2] O.Viro, Construction of multicomponent real algebraic surfaces, Sov. Math. Doklady 20
(1979), 991-995.

V3] O. Viro, Gluing of algebraic hypersurfaces, smoothing of singularities and contruction of
curves, in: Proc. Leningrad Int. Topological Conf. (Leningrad, Aug. 1983), 149-197 (in
Russian), Nauka, Leningrad, 1983.

[V4] O. Viro, Gluing of plane algebraic curves and construction of curves of degree 6 and 7,
187-200, Lect. Notes Math., vol 1060, Springer-Verlag, Berlin—Heidelberg, 1984.

V5] O. Viro, Real algebraic plane curves: constructions with controlled topology, Leningrad
Math. J. 1 (1990), 1059-1134.

(W] G. Wilson, Hilbert’s sixteen problem, Topology 17 (1978), no. 1, 53-74.

F. Bihan

Université de Lausanne
Faculté des Sciences
Institut de Mathématiques (IMA)

BCH

CH-1015 Lausanne
Switzerland
e-mail: Frederic.Bihan@ima.unil.ch

(Received: April 26, 2000)

To access this journal online:
http://www.birkhauser.ch




	Asymptotic behaviour of Betti numbers of real algebraic surfaces

