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Asymptotic behaviour of Betti numbers
of real algebraic surfaces

F Bihan

Abstract. Let Xm be a nonsingular real algebraic surface of degree m in the complex projective
space CP3 and VLXm its real point set in RP3. In the spirit of the sixteenth Hilbert's problem, one

can ask for each degree m about the maximal possible value ßi,m of the Betti number bi(VLXm)
(i 0 or 1). We show that ßi,m is asymptotically equivalent to li ¦ m3 for some real number 1}

and prove inequalities -^ < lo < jtj and j^ < li < ^.

Mathematics Subject Classification (2000). 14P25, 14J99.
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Introduction

A real algebraic surface X in the complex projective space CP3 is the complex zero
set m CP3 of some real homogeneous polynomial m four variables. The real zero
set of this polynomial is a surface MX, in the real projective space RP3, called real

point set of X. (More generally, a real variety is a complex variety X equipped
with an antiholomorphic involution c : X —> X, the real point set M.X of X is then
the fixed point set of c.) From now on Xm will denote a real nonsingular surface
of degree m in CP3.

This paper deals with the topological classification problem of real point sets

RXm for a given degree m (the case m 4 is a part of the sixteen Hilbert's problem
going back to 1900) and more specifically with the question of the maximal possible
values ßlm (i 0 or 1) of the Betti numbers bi(RXm) (where homology groups
are taken with coefficients in Z/2). The topological classification problem (and
thus the last question) is now completely solved for m < 4 (see [Kl]). For m > 5,

even the values oi ßi,m are not known (see [I-Kl], [B2] and [O] for the case m 5).
Here, we are interested in the asymptotic behaviour (when m —> +oo) of ßi,m. We

first show that ßim is asymptotically equivalent to lt m3 for some real number
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li (Proposition 1.1). A standard application of the Smith-Thorn and Comessati

inequalities leads to the upper bounds Iq < j^ and h < § (see [D-K] for a recent

survey on the topology of real algebraic varieties). On the other hand, the best
lower bounds previously known were Iq > ^ [V2] and l\ > j^ [12]. In this

paper, we shall improve these lower bounds by showing that Iq > || and /i > -j|
(Theorem 1.2).

We define algebraic surfaces of type T>ik in some weighted projective space (see

2.1). Such a real nonsingular surface can be equivariantly deformed, by a small
deformation, to a real nonsingular surface of degree 2k in CP3 with equation
fk{Z) — e ¦ f2k{Z) 0, where fi(Z) is a real homogenous polynomial of degree

i in Z [Ziq : Z\ : Z2 : Z3) and 0 < e <C 1 (a small perturbation of a double
surface). Assuming that the surfaces X^k and Xk defined by f^k and fk, respectively,

are nonsingular surfaces intersecting transversely, the corresponding surface
of type T>2k, and thus the real surface in CP3 with equation fk{Z) — e • fikiZ) 0

for small e > 0, is then a nonsingular surface whose topological type of real point
set is determined by that of the triple (RP3,RX2fc,RXfc). This construction of
real nonsingular hypersurfaces resulting from small perturbations of double hyper-
surfaces is classical in real algebraic geometry and seems to go back, at least, to
K. Rohn. In fact, this is essentially the construction used in [V2] where the bound
fe > 21 is obtained. The deformation we use comes from a paper of E. Horikawa
[Ho] where complex surfaces of type T)q are found in the deformation family of
sextics in CP3.

In this paper, we apply the above construction in order to produce surfaces
in RP3 with large Betti numbers. This is done using the famous construction
method of real algebraic hypersurfaces due to O. Viro (see [V3, V4, V5, R]), its
combinatorial version the combinatorial patchworktng, and the extension of this
last version to the case of complete intersections obtained by B. Sturmfels [SI].
The construction presented in this paper has its own interest since it gives an
increasing function relating Betti numbers of real algebraic surfaces in CP3 and
numbers of even (or odd) ovals of real plane curves (see Remark 2, Section 5).
Moreover, this construction can be easily generalized in higher dimensions.

From now on, all polytopes and polyhedral subdivisions shall have integral
vertices i.e. vertices with integer coordinates.

1. Results

As in the introduction, let /3im denote the maximal possible value of &i(RXm) for
a given m (i 0 or 1). The following result is due to I. Itenberg and V. Kharlamov
[I-K2].

Proposition 1.1. The sequence /3îm is asymptotically equivalent, when m —>

+oo7 to h ¦ m3 for some real number li.
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Proof. By Smith-Thorn inequality the sequence ^f- is bounded, hence admits a

superior limit l-%. We are going to show that l-% is indeed the limit of ^ß- in the
following way: for a given e > 0, we construct using the Viro method a family
of surfaces Xm in CP3 such that bi(HXm)/m3 > h — e for any sufficiently large
degree m.

Let Xk be a given surface in CP3 (we shall have bi(M.Xk)/k3 close to lt).
For any positive integer number m, denote by Tm the tetrahedron with vertices
(0,0,0), (m, 0, 0), (0, m, 0) and (0, 0, m) in R3. Let p be any positive integer
number. Take any convex triangulation of Tp all of whose tetrahedra have euclidian
volume |, or equivalently which contains the maximal number p3 of tetrahedra (see

2.2 for the définition of a convex triangulation and [12] for examples of so-called

primitive or unimodular convex triangulations of Tp). Consider now the convex
triangulation of the tetrahedron Tp^k+/^ obtained from the previous triangulation
by applying the transformation x —> (fc+4) -x. The resulting triangulation contains

p3 tetrahedra such that each of them has euclidian volume ^ +e ' The crucial
point is that each of these p3 tetrahedra contains in its interior the image of Tk
under some affine unimodular integral transformation. Indeed, any tetrahedron

P (with integral vertices) having euclidian volume ^ +6 ' is the image of Tk+4
under such a transformation <fp. We have then y>p((l, 1,1) + T^) C Int(P) since

(1,1,1) + Tk C Int(Tfc_|_4). Therefore, we can refîne the above triangulation of
Tp{k+A) m order to obtain a convex triangulation {Qj, j G J} (here the Q^'s
are tetrahedra) containing p3 disjoint images of Tk by affine unimodular integral
transformations. Now, let (Zq '¦ • • • '¦ Z3) be homogenous coordinates of CP3 and
assume that RX^ n {Zt 0} 0 for 1 0, • • • ,3. Let / be some affine polynomial
defining the surface Xk in the chart {Zq ^ 0} with affine coordinates (^, ^-, J1).
The previous assumption implies that MXj, {/ 0}n(R*) We can associate to
the triangulation {Qj, j G J} of Tpçk+4:^ a collection {fj,j G J} of nondegenerate
polynomials (see 2.2 for the définition of a nondegenerate polynomial) verifying
the following conditions:

• fj has Qj as Newton polytope for any j G J,
• the truncation of fj and fo> to a common face of Qj and Qo> coincide,

• if Qj is one of the p3 images of T]~ under some affine unimodular integral
transformation, then fj is the image of / under the corresponding monomial
change of coordinates.

The first two conditions allow us to apply the Viro method in order to construct a

nonsingular surface Xp^k+^ whose real point set is homeomorphic to a topological
surface obtained by gluing together the sets {fj 0} n (R*) for j G J (the
gluing being determined by the triangulation). The third condition ensures that

{fj 0}n(R*)3 is homeomorphic to {/ 0}n(R*)3, hence to RXk. It follows that
these p3 homeomorphic copies of RX^ are disjoint in ll"p(fcf4) since the gluing is
made along intersections of the {fj 0} with the coordinate and infinity planes.
Note also that for the same reason these p3 homeomorphic copies of M.Xk contained
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in RXp(fc+4) do not intersect the coordinate or infinity planes. In particular, we
obtain bi(MJCpçi-+4)) > p3 ¦ bl(RXk), which leads to

h(RXp{k+4))
>

bt(RXk) bt(RXk)

p( k3 k3

Let e > 0 be given. Prom the définition of /$, for sufficiently large k there exists
a surface X^ verifying

*S£J S <,-</*. (2)

Then, such a surface can obviously be chosen in order to verify RX^ n {Zt 0} 0

for i 0, • • • ,3. Recall that the sequence ^p1 is bounded. Therefore, by (1) one
can also assume that the surface Xpçi-+4) constructed from Xk vérifies

h(RXp{k+4)) bt(RXk)

3(k 4)3
e/4 [i)p( k3 e/4' [i)

Now, fix some sufficiently large k in order to have the inequalities (2) and (3)
and consider a family of surfaces {Xp^k+^,p >po} constructed as before for each

P > Po, where po is some positive integer number. Extend this family to a whole

family T {Xm, m > po(k + 4)} in the following way: if m is any integer
number such that p(k + 4) < m < (p + l)(k + 4) for some integer p > po, then
consider the union of Xp(fc+4) with m — p(k + 4) planes which do not intersect
the p3 homeomorphic copies of RXk contained in ll"p(fcf4) (as we have noticed
before, these p3 homeomorphic copies do not intersect the coordinate planes, hence

we can take planes which are close to the coordinate ones) and take for Xm any
smoothing of the resulting surface. It follows that bi(RXm) > p3 ¦ b^RXk) and,
using m < (p + l)(k + 4), we obtain

6,(RXfc)
_

h(RXk) r 1 i
~ k3 k3

' L
[(1 +4/fe)(l + l/p)]3J ' U

Recall that the sequence -^ is bounded. Consequently, if po is chosen sufficiently
large, then by (4) and (3), for any surface Xm G T we shall have

3 ^ 73 £/2- 5
mö kö

and thus by (2)
h(RXm) > h -

D

Remark 1.1. The previous proof works in any dimension. Namely, one can show

the asymptotic equivalence, when m —? +oo7 between the sequence pf^ of the

maximal possible values of the Betti numbers ^(RX^) (i 0, • • • n— 1) and some

real number l\n' times mn {where i, n are fixed and X"t denotes a nonsingular real
algebraic hypersurface of degree m in CPn).
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The largest part of the paper is devoted to constructions of surfaces proving
the following result.

Theorem 1.1. Let i 0 or 1. For any e > 0, there exists a family of surfaces
Xm in CP3 such that

for any sufficiently large degree m.

As a corollary of Theorem 1.1 and the classical upper bounds Iq < -^, l\ < |,
we obtain the main result of this paper.

Theorem 1.2. The real numbers In and l\ verify
13 5 13 5
— < In < — and — < /i < —.
36 - ° - 12 18 " 1 " 6

2. Constructions

2.1. Surfaces of type T>2k

Denote by CP4(k) the four dimensional weighted complex projective space with
homogeneous coordinates Zq,Zi,Z2,Zs of weight 1 and Z4 of weight k (where k
is some positive integer number). A real surface of type T>ik is a surface Y defined
in CP4(k) by a system of equations of type

Z42-f2k(Z)=0,
\fk(Z) 0,

where f-2k{Z) and fk{Z) are real homogeneous polynomials of degree 2k and k in
the variables Z (Zq : Z\ : Z2 : Z3), respectively. The surface Y is then real
with respect to the standard complex conjugation (Z : Z4) —> (Z : Z4) in CP4(k).
Assume that the real surfaces X^k and X]. defined, respectively, by f^k and ff. in
CP3 are nonsingular surfaces (this will be always the case later). Then, we shall

say that Y is associated with the pair

Proposition 2.1 (see [Ho]). Let Y be a real surface of type T>2k associated with
a pair of (nonsingular) surfaces {X.2k, -^k) whose real point sets intersect
transversely. Then, there exists a small equivariant deformation of Y to a real nonsingular

algebraic surface of degree 'Ik in CP3. In particular, the real point set of the

latter surface is homeomorphic to MY.

Proof. A desired deformation is given by the family of surfaces Ye, e G M and
Y° Y, defined in CP4(k) by {Z42 - f2k(Z) 0, fk(Z) - eZ4 0}. The
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projection CP4(k) \ {(0 : 1)} -> CP3, (Z : Z4) -> Z, produces an equivari-
ant isomorphism between Ye, e=^0, and the real surface Xe in CP3 defined by
(tkj: ') — f2k(Z). Since RX2fc and RX^ are nonsingular surfaces intersecting
transversely, both surfaces MY and MXe are nonsingular and homeomorphic for
sufficiently small e. D

Let y be a surface of type T>2k as in Proposition 2.1, then y is isomorphic to the
double covering of Xk branched along the curve XkC\X2k- Moreover, the topology
of MY is given by that of the triple (RP3,RX2fc,RXfc). Namely, the surface MY
is projected two-to-one onto the interior of MX^ MXk n {f2k{Z) > 0} and
one-to-one onto the boundary MX2k f~l MXk of

2

RX2fc n MXk c RX+

2.2. A particular case of Sturmfels's theorem

We use the extension due to Sturmfels [SI] of the combinatorial patchworking in
order to construct a pair of surfaces (X2fc,Xfc), where X2k is a real nonsingular
surface of degree 2k in CP3 and Xj, is a real surface of degree k in CP3 having
a single nondegenerate point as singularities. In the rest of this paper, we shall
assume k > 3. Consider the sets

Vi {(x, y, z) e Z3, x, y, z > 0, k-l<x + y + z<k},
P2 {(x,y,z)eZ3, x,y,z>0, x + y + z<2k},

and denote by Pj the convex hull of Pj. For each positive real number t, let
fi,t(z) € R[-zi, -Z2j Z3] be a so-called affine Viro •polynomial defined by

fitt(z) Y, st{w)t^whw,

where s^ takes values ±1 (sj-(w) will be sometimes called s^ra of w) and z/j : Pt —>

R+ is a convex function. Define the polytope P"* con-y{(w, z/j(w)), w G Pj} and
denote by GVi the lower part of PVi. By projecting faces of GVi C R3 x R onto R3,

the function vi defines a polyhedral subdivision rt of Pt. Polyhedral subdivisions
of polytopes obtained in this way are called convex. Assume that t\ and t2 are
triangulations with sets of vertices V\ and P2, respectively. In this case, the above

Viro polynomials are called Î"-polynomials.
Consider the Minkowsky sums P Pi + P2, Pv PUl + PU2 and denote by

Gu the lower part of Pu. Projecting faces of G" C R3 x R onto R3, we get a

polyhedral subdivision t of P. Each face Fv of Gv has a unique representation
F" F"1 + F"2, where F"1 is a face of GVi, which induces, via the projection,
a particular representation F F\ + P2, where Fi is a simplex of tj, of each
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polytope F of the subdivision t. We shall refer to this particular representation
when writing F F\ + F2 with F G t and Ft er,. Assume that for each polytope
F Fi + F2 of t, we have dimf^) dim(i'i) + dimf^)- Then, the subdivision
(or decomposition) t is called mixed decomposition ([SI]).

Let 72.™ be the group of symmetries in 1" generated by reflections with respect
to the coordinate hyperplanes. Let us identify (Z/2)n with 72.™ by sending r
(n,--- ,rn) to ((xi,--- ,xn) -> ((-l)rixi,--- ,(-l)rixn)). For any polytope T
in R™, let T* be the union of all the symmetric copies r(T) of T for r G 72™.

For any face F of T* and any vector a G Z™ orthogonal to F, identify F with its
symmetric copy a(F) (where a denote the reduction of a in (Z/2)n). Denote by
T the resulting space.

Denote by t* (resp. t*) the unique subdivision of P* (resp. P/) which extends

t (resp. tj) and which is invariant with respect to 72.™. Extend s^ to a distribution
of signs on the set of vertices of t* following the rule: Si(r(w)) Si(w) ¦ —l)'r'
where } is the usual scalar product in (Z/2) For each vertex w w\ + w2 of
t*, where wt G t*, define its sign vector s(w) (si(wi), 52(^2))-

We perform the construction of piecewise linear surfaces in Pi and P. For any
tetrahedron of t* having at least two vertices with different signs, consider its
edges having endpoints with different signs and select the triangle or quadrangle
having the middle points of these edges as vertices. The union of all the selected
pieces is a piecewise linear surface in P*. Denote by Si its image in Pj. For any
three-dimensional polytope (a prism or a tetrahedron) F F1 + F2 of t* such that
S\C\Fi ^ 0, select the Minkowsky sum {S\C\F\)-\-Fi (a quadrangle or a triangle).
The union of all the selected pieces is a piecewise linear surface in P*. Denote by
S*1 its image in P. Similarly, for any three-dimensional polytope F F\ + F2 of
t* such that ^2 n F2 ^ 0, select F\ + (§2 n F2). The union of all the selected pieces
is a piecewise linear surface in P* whose image in P is denoted by S*2.

Remark 2.1. By construction, we clearly have the following properties.

(1) The distribution sj is constant on each connected component of Pt \ Si and
its value changes while passing through Si.

(2) The coordinate sj of the distribution of sign vectors s is constant on each

connected component of P \ Sl and its value changes while passing through
S\

Consider the affine chart {Zq ^ 0} of CP3 with coordinates z (z-i, z2, 23),
where zi |^. Let q : CP3 -^ CP3 be the blowing up of CP3 at the point
O (1 : 0 : 0 :°0) (so O has affine coordinates (0, 0, 0) in {Zo ^ 0}). Consider the
real structure on CP3 which lifts that of CP3. Let X]. and X2k be the real surfaces
in CP3 which are defined in the chart {Zq ^ 0} by /ijt and f2it, respectively.
Denote by L the exceptional divisor of q and by W\, W2 the strict transforms of
X]. and X2k, respectively. Finally, denote by p the facet of P supported by the
plane {x + y + z k — 1}.
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The following proposition is a particular case of a result of Sturmfels.

Proposition 2.2. Assume that t% (i 1,2) is a triangulation with set of vertices
Vl and t is a mixed decomposition of P. Then, for sufficiently small t > 0, the

polynomials f\^ and fi,t are nondegenerate, the surfaces RW\ and RW2 intersect
transversely, and there exists a homeomorphism h : RP3 —? P sending ML, WW\
andWW2 top, S1 and S2, respectively. Consequently, iflA is any neighbourhood of
O G RP3 and V h o q^1 (IÀ), then ho q

1 induces a homeomorphism RP3 \U—?
P\V sending RXk\RXkDU and RX2fc \RX2fc nW ioS'1\S'1nV and S2 \ S2 n V,
respectively.

An affine polynomial /inn variables is nondegenerate if for any face F of its
Newton polytope (including the Newton polytope itself), the truncation /r of /
to F defines a nonsingular hypersurface in the real torus (R*)n (see [R]). The
non-degeneracy of /ijt and j^,t (f°r sufficiently small t > 0) implies that RT^i,
RW2, RX2fc are nonsingular surfaces and the surface RX^ has the single point O

as singularities (moreover O is a nondegenerate singularity of RX^). Furthermore,
we obtain that for sufficiently small t > 0 the surfaces M.X/. and M.Ä2k intersect
transversely since, by Proposition 2.2, this is the case for the surfaces RT^i and

2.3. Smoothing

Let Xk be a given real surface in CP3 defined by some nondegenerate polynomial
/1 having as Newton polytope the polytope Pi described in 2.2. We use the Viro
method in order to smooth Xj,.

For any positive integer number m, let us denote by Tm the tetrahedron which
is the convex hull of {{x,y,z), x,y, z > 0, x + y + z < m}. Decompose the
tetrahedron T]. into the union of the polytopes Pi, Tk-2 and the intermediate
polytope / conv{{x,y, z), x,y, z > 0, k — 2<x + y + z<k — 1}. Let v
and g be nondegenerate real polynomials with Newton polytopes Tfc_2 and /,
respectively, and assume that any truncation of two polynomials among f\ ,v and

g to a common face of their Newton polytopes coincide. Consider any convex
function v : T]~ —> R+ which is linear on Pi, Tk-2 and / but not linear on the union
of any two of them, and which vanishes identically on Pi but is strictly positive
outside Pi. For example, take v{x, y,z) 0 on Pi, v{x, y, z) (k—1) — (x+y+z) on

/ and v{x, y, z) 2k—3—2(x+y+z) on Tk-2- The associated Viro polynomialpt(z)
is equal to f\{z) plus a polynomial with the property that each of its coefficients
contains t to a strictly positive real number. Therefore, the polynomial pt(z)
defines for a sufficiently small t a real surface Xk of degree k in CP3 which is a

small perturbation of Xf.. By Viro theorem (see [V3] or Theorem 4.2 in [R]) we
obtain that RXk is a nonsingular surface homeomorphic to a topological surface
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obtained by gluing together {/i 0} n (R*)3, {v 0} n (R*)3 and {g 0} n (R*)3
following the subdivision of Tk. In particular, if Vk-2 denotes the nonsingular real
surface of degree k — 2 in CP3 defined by the polynomial v, the Viro theorem
implies the following statement.

Proposition 2.3. For sufficiently small t > 0, the polynomial pt(z) is nondegen-
erate and there exist two small neighbourhoods U\ and Ui of O G RP37 U\ C Ui,
which can he chosen as small as wanted for t small enough, such that RXk is
homeomorphic,

(1) inside U\, to some affine part ofRVk_i,
(2) outside U^, to RXk outside a small neighbourhood of O G RP3.

Furthermore, we have

h(RXk) bt(RVk_2) + O(k2).

The last inequality in Proposition 2.3 is an easy consequence of the Smith-
Thorn inequality together with the equality 6[vol(Tk)—vol(Tk^2)} k3 — (k — 2)3

O(k2) (where vol(-) denotes the euclidian volume). This inequality will be useful
later since we shall be interested in the Betti numbers of RXk for k big enough.

2.4. Real surfaces of type T>ik

Let Xik and X]~ be surfaces in CP3 defined by T-polynomials ji,ta an(i /i,t0,
respectively, as in 2.2, and assume that the value to is sufficiently small in order
to have the properties stated in Proposition 2.2. Perform the smoothing of Xj,
described in 2.3 and let X]. be the resulting surface defined by the Viro polynomial
pt. For t > 0 sufficiently small, the surface X]. is a nonsingular surface, furthermore,

its real point set RX^ intersects RX2fc transversely, because so does RX^
and X]. is a small deformation of X].. Consequently, if Y is the surface of type T>2k

associated with (X.2k,Xf.), then MY is nonsingular and there exists (Proposition
2.1) a small deformation of y to a real nonsingular surface of degree 2k in CP3
whose real point set is homeomorphic to MY.

The topogical type of MY (in fact, its "asymptotic part") will be obtained using
the proposition below. Recall that the topological type of MY is closely related to
that of RX+ RXfc n {h,to{Z) > 0}.

Proposition 2.4. Let U be any neighbourhood of O in RP3 and V h o </^1(W)
be the corresponding neighbourhood of p in P (see Proposition 2.2). Suppose t > 0

is sufficiently small.
Then, there exists a homeomorphism

RP3 \U —> P \ V

sending RXk \ RXk D U to S1 \ S1 n V and RX2k \ KX2fc DU to S2 \ S2 DV.
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Moreover, iflÀC\RX2k 0 and S2((0,0, 0)) +1 (the sign given by s2 at the

vertex (0,0,0) ofP2), then

• RX+ n IA coincides with RXk n U,

• the above homeomorphism RP3\IA -> P\V sends RX+ D (RP3\IA) to S1^ D

(P\V), where Slt+ is the intersection of S1 with the connected components
of P \ S*2 containing vertices on which s2 takes the value +1.

Proof. For sufficiently small values of t, the surface RXk is homeomorphic to
in the complementary part of U in RP3, and intersects transversely RX2k- Hence,
for sufficiently small t, the pair (RX2k,RXk) is homeomorphic to (RX2k,RXk) in
the complementary part of U in RP3. It remains to use Proposition 2.2 to obtain
the desired homeomorphism RP3 \IA —> P \ V'.

Suppose now lAC\RX2k 0 and S2((0,0,0)) +1. Then f2ito takes a positive
value in the point O, hence in the whole U since U n RX2fc 0. Consequently,
connected components of RXk contained in U are connected components of RX~£.
Moreover, the distribution s2 takes the value +1 in all the vertices of t* contained
in p*, hence in V since V n S*2 0. The last part of the proposition is now obvious
in view of Remark 2.1. D

3. Application

We apply simultaneously the construction described in Section 2 in order to
obtain two real nonsingular surfaces Y"2cfc and Y^j, of type T>2k associated with pairs
(X|fc, Xk) and (X^., Xk), respectively. The surfaces Y"2cfc will give, via deformation,
surfaces in RP3 with a large number of connected components while the surfaces

Y^k will give surfaces in RP3 with a large number of handles (superscripts "c" and
"h" are for components and handles, respectively).

Let us describe a mixed decomposition t of P and distributions of sign vectors
(si, s|) and (s\1 s\) producing as in 2.2 pairs of surfaces (Xk, -X"|fc) and (Xk, Xi;k),
respectively. Denote by p\ the facet of P\ supported by the plane {x + y + z k}
and by p2 the facet of P2 supported by {z 0}. The decomposition t of P we are
going to use is obtained as follows. First, decompose P into the Minkowsky sums
(see Figure 1)

Pi + (0,0,0), Ai Pl + [(0, 0, 0), (2k, 0,0)],
(0,0, k) + P2, A2 [(0,0, k), (0, k, 0)] + p2.

Then, subdivise all these polytopes using convex triangulations t\ and t2 of Pi
and P2, respectively. Namely, the decomposition consists of the following three
dimensional polytopes:

• a + (0,0,0) for any tetrahedron a G t\,
• (0,0, k) + a for any tetrahedron a G t2,
• o-y + a2 for any triangle o-y G t\ contained in p\ and any edge a2 G t2

contained in the edge [(0,0,0), (2k, 0,0)] of P2,
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• <7i + <72 for any edge a\ G t\ contained in the edge [(0,0, k), (0, k, 0)] of Pi
and any triangle <T2 £ t\ contained in p2.

(0,0,k)+P2

Pj+(0,0,0) Ai

FlG. 1. A mixed decomposition of P

Let g c be the convex hull of the set {ei}xPiU{e2}xP2 (where ej is an
integer number). In other words, the polytope Q is the join {ei} x Pi e^} x P-2-

Lemma 3.1 (see [S2]). Mixed decompositions of P are in one-to-one correspondence

with convex triangulations of Q. Such a correspondence may be described as

follows. Let tq be any triangulation of Q. It induces for i 1, 2 a triangulation
Ti of Pi and each four dimensional simplex of tq is a join {ei} x o\ * {e2J x <T2,

where at £Tj. The corresponding three dimensional polytope in the decomposition
of P is then the Minkowsky sum o\ + o^.

Take the joins {ei} x Pi * {e2} x {(0,0,0)}, {ei} x {(0,0, A;)} * {e2} x P2,

{ei} x pi * {e2} x [(0, 0,0), (2k, 0, 0)] and {ej x [(0, 0, k), (0, k, 0)] * {e2} x p2,
and refîne them in the unique possible way using convex triangulations t\ and ti
The resulting triangulation tq of Q is obviously convex and corresponds to the
decomposition t above. Therefore, by Lemma 3.1, the decomposition t is a mixed
decomposition.

To achieve the description of t, it remains to define triangulations t\ and t^.
We simultaneously define associated distributions of signs si, s\ and s\. First, let
us recall the notion of T-curves, which are, by définition, those curves constructed
by means of the combinatorial patchworking (see [II]).
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3.0.1. T-curves in RP For any positive integer number m, denote by tm the
triangle with vertices (0,0), (m, 0), (0, m) in R2. Start with a convex triangulation
(with integral vertices) 7 of tm and a distribution of signs s : vert(7) —> ±1 at
the vertices of 7. Extend 7 to a triangulation 7* of t*m invariant with respect to
1Z2. Extend s to a distribution of signs on the set of vertices of 7* following the

rule: s(r(w)) s(w) ¦ — ly'w', where } is the usual scalar product in (Z/2)
For each triangle of 7* having at least two vertices with different signs, select the
segment joining the middle points of its two edges having endpoints with different
signs. The union of the selected pieces is a piecewise linear curve in t*ml denote by
a its image in tm.

Theorem 3.1 (Viro, see [II]). There exists a nonsmgular curve A of degree m in
RP2 such that the pair (RP2,RA) is homeomorphic to (tm, à).

Such a curve A is called a T-curve and may be obtained as the zero set of
some T-polynomial associated with the considered triangulation and distribution
of signs.
3.0.2. Triangulation and distribution of signs for P\. Identify p\ with the
triangle tf. in R2 using the map (x, y, z) —> (y, z). We use a triangulation of tf. and

a distribution of signs at its vertices which produce a T-curve of degree k in RP2

being an M-curve, i.e. having 2 + 1 ovals (see [II]). Namely, take any
primitive convex triangulation of t]~ (a triangulation of tm is called primitive if its
set of vertices coincides with that of all the integer points contained in tm) and
the distribution of signs at its vertices which takes values +1 in any point with
both coordinates even and —1 otherwise. Then, we extend the triangulation of p\
to any convex triangulation t\ of Pi, and choose any distribution of signs s\ at
the vertices of t\ which extends the above distribution.
3.0.3. Triangulation and distributions of signs for P2. Identify p-2 with
the triangle t^k using the map (x,y,z) —> (x,y). Take any primitive convex
triangulation 7 of £2fc and consider any distribution of signs s7 at its vertices which
produce a T-curve of degree 2k in RP2 whose real point set consists of 2k2 + O(k)
ovals such that ^|—\- O(k) of them are even ovals (an oval of a curve in RP2 is

called even, resp. odd, if it is lying inside an even, resp. odd, number of ovals of
the curve). Such a T-curve does exist [Ha]. We define the restrictions of s2 and

s2 to the set of vertices of 7 in the following way. On the subset of those vertices
lying on the segment [(0,0), (2k, 0)], let s2 and s\ take value +1 in the points with
even x-coordinate and —1 in the other points. On the complementary subset, let
s2 coincide with s7 and s2 coincide with the opposite distribution — s7. Finally,
take the cones with vertex (0,0, 2k) over all the triangles of 7, and choose any sign
for the vertex (0,0, 2k). Consider two T-curves Ac and Ah of degree 2k in RP2
associated with (7, s2) and (7, s2), respectively (in fact the restrictions of s2 and

s\ to the set of vertices of 7). Both curves have 2k2 + O(k) ovals in RP2 such that
^|—\- O(k) of them are even ovals. Let ac and ah be the corresponding piece wise
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linear curves constructed in t^k- Replacing s7 by — s7 if necessary, assume that
the ovals of ac hording from the exterior components of t^k \ àc on which s\ takes
values +1 are in one to one correspondence with the even ovals of Ac. Then, the
ovals of ah hording from the exterior components of tk-i \ ah on which s\ takes
values +1 are in one to one correspondence with the odd ovals of Ah.

Let Xk, X^k and X^k be surfaces in CP3 defined by T-polynomials /i.t0, /fto
and $2ta associated, respectively, with the pairs (t\,s\), (t2,s^) and {t2,s^)
described above. Assume that to is sufficiently small in order to have the properties
stated in Proposition 2.2 for the pairs of surfaces (Xfc,X|fc) and (Xfc,X|fc). Let

Xk be a surface in CP3 obtained starting from Xk as in 2.3. It is defined by some
Viro polynomial pt. Denote by Ac and Ah the real curves given by the intersection
of Xk with X|fc and X^, respectively.

Proposition 3.1. For sufficiently small t > 0, the curves ~RAC and~RAh are non-
singular curves with 3A;3 + O(k2) connected components.

Proof. The proof is the same for both curves, let us only deal with the curve Ac.
For sufficiently small t > 0, the curve ~RAC is nonsingular since it is a transversal
intersection of two nonsingular surfaces. The polynomial /| to does not vanish at
O, hence there exists a neighbourhood U of O in RP3 such that RAC C RP3 \ U.
Then, by Proposition 2.4, the curve ~RAC is homeomorphic to c S*1 n S2c,
where S*1 and S2-c are surfaces in P constructed as in 2.2 starting from (ti, si)
and (T2,Sr,), respectively. Denote by Si C Pi and S*2.c C Pi the piecewise linear
surfaces constructed as in 2.2 from [t\, s\) and (t2, s^), respectively.

The edge [(0, 0,0), (2k, 0, 0)] of P2 is triangulated in 2k edges. All the symmetric
copies contained in {x > 0} of these 2k edges have endpoints with different signs,
in other words, each of these copies is intersected by the surface S^.c- Therefore, in
each of the four orthants forming {x > 0}, the corresponding copy of Ai contains 2k

pieces of S2c and each piece is a triangle obtained as the Minkowsky sum of a copy
of pi with the middle point of a copy of an edge lying on [(0,0,0), (2k, 0, 0)]. The

map (x, y, z) —> (y, z) allows us to identify the triangulation, and the associated
distribution of signs, of each copy of p\ contained in {x > 0} with those obtained
as in 3.0.1 for the corresponding copy of £&. We have chosen a triangulation of tk
and a distribution of signs at its set of vertices which produce a T-curve of degree
k in RP2 having ^- + O(k) ovals. This means that the surface Si intersects the

copies of p\ contained in {x > 0} in ^- + O(k) ovals. Therefore, in {x > 0},
the symmetric copies of Ai contain ^- + O(k) pieces of S1 and each piece is a

cylinder obtained as the Minkowsky sum of one of these ovals with a copy of
[(0,0,0), (2fc, 0,0)]. Finally, each of these cylinders intersects 2k triangles of S2-c,

hence we obtain k3 + O(k2) ovals of c contained in the symmetric copies of Ai_
The edge [(0,0, k), (0, k, 0)] of P\ is triangulated into k edges. All the symmetric

copies, contained in the four orthants forming {y ¦ z > 0}, of these k edges

are intersected by the surface S\. Therefore, in each of these four orthants, the
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corresponding copy of A2 contains k pieces of S*1 and each piece is a triangle
obtained as the Minkowsky sum of a copy of p-2 with the middle point of a copy
of an edge lying on [(0,0, A;), (0, A;, 0)]. The map (x,y,z) —> (x,y) allows us to
identify the triangulation, and the associated distribution of signs, of each copy of
P2 contained in {y ¦ z > 0} with those obtained as in 3.0.1 for the corresponding
copy of tik- We have chosen a triangulation of t-ih an(i a distribution of signs at
its set of vertices which produce a T-curve of degree 2k in RP2 having 2k2 + O(k)
ovals. This means that the surface §2^ intersects the copies of pi contained in
{y • z > 0} in 2k2 + O(k) ovals. Therefore, in {y ¦ z > 0}, the symmetric copies of
A2 contain 2k2 + O(k) pieces of S2'c and each piece is a cylinder obtained as the
Minkowsky sum of one of these ovals with a copy of [(0, 0,0), (2k, 0, 0)]. Each of
these cylinders intersects k triangles of S1, hence we obtain 2k3 + O(k2) ovals of
c contained in the symmetric copies of A2.

Consequently the curve ~RAC has at least 3k3 + O(k2) ovals. It is not difficult
to see that ~RAC has asymptotically no more connected components. Anyway, this
follows from Harnack theorem since the genus of Ac is 3k3 + O(k2). D

Proposition 3.2. For sufficiently small t > 0, the real point sets of the surfaces
Y^ and Y^ of type Vm associated with (X|fc,Xfc) and (X^X^) (m 2k),
respectively, are nonsingular surfaces. Moreover, if bo(WVk-2) ak3 + O(k2) and
6i(RVfc_2) ßk3 + O(k2), then one has

O(m2) &i(Rl^) ^±f • m3 + O(m2),
O(m2) 5i(RÏ^) ^^ • m3 + O(m2).

Proof. We have already seen in 2.4 that RY^j and WY^ are nonsingular surfaces for
sufficiently small t > 0. Set RX^ {Z G RXk, friM(Z) > 0} and RX^ {Z G

RXfc, /2\to (Z) > {)}. Let U be any neighbourhood of O in RP3 such that RX|fc n
U 0 (resp. RX|fc C\U 0). By Propositions 2.3 and 2.4, for sufficiently small
t > 0, connected components of RX^ contained in U are connected components
of RX<1 (resp. RX^:) and the topology of RXk n U coincides with that of some
affine part of RVfc_2- It follows (see Proposition 2.3) that the Betti numbers 60

and 61 of the largest subset of RX^. (resp. RX^;) consisting of closed (i.e. without
boundary) connected components verify 60 cuk3 + O(k2) and b\ ßk3 + O(k2).

Let S1, S2'c and S2'h be surfaces constructed in P starting from (t\, s\), (t2, s^)
and (t2,S2"), respectively. Denote by S^_ (resp. S+) the intersection of S*1 with
connected components of the complementary part of S2'c (resp. S2'h) in P \ V on
which S2 (resp. S2) takes the value +1. In {x > 0}, each cylinder of S*1 (see the
proof of Proposition 3.1) contained in a symmetric copy of Ai is cut by S2'c (resp.
S2'h) into 2k+O(l) small cylinders and two non consecutive of them are connected

components of S^_ (resp. S^). There are, in {x > 0}, ^- + O(k) cylinders of S1

contained in the symmetric copies of Ai, hence we obtain ^- + O(k2) connected

components of S^_ (resp. S^_), and thus of RX^ (resp. RX^:) by Proposition 2.4,
which are homeomorphic to a cylinder. As in 3.0.1, let ac and ah be the piecewise
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linear curves constructed in t^k starting from (7, s2) and (7, s2), respectively. In
{y • z > 0}, each symmetric copy of A2 contains k triangles of S*1 and each oval
of ac (resp. à!1) lying on a symmetric copy of t^k gives rise to k ovals of the curve
S'1nS'2'c (resp. S'1nS'2'1) lying on the corresponding k triangles of S*1 (see the proof
of Proposition 3.1). Each connected component of t2fc\àc (resp. t2k\àh) on which
s2 (resp. s2) takes the value +1 and lying on a symmetric copy of tik gives rise to k

homeomorphic connected components of S^_ (resp. S^_) lying on the corresponding
k triangles of S1. The connected components of lik \ äc on which s2 takes the
value +1 are borded from the exterior by even ovals of ac and from the interior by
odd ovals of ac. Therefore, we obtain ^|—\- O(k2) connected components of S1^,

and thus of RX^, which are homeomorphic to disks with holes. The total number

of these holes is ^- + O(k2). The connected components tik \ àh on which s2 takes
the value +1 are borded from the exterior by odd ovals of ah and from the interior
by even ovals of ah. Therefore, we obtain ^- + O(k2) connected components of S1^,

and thus of RX^:, which are homeomorphic to disks with holes. The total number

of these holes is ^ + O(k2). It is not difficult to see that RX^ (resp. RX^:) has

asymptotically no more connected components (this follows from Proposition 3.1).
The computation of the asymptotic behaviour of the Betti numbers of RY^j and
RY"iï is now obvious. D

4. Iteration and proof of Theorem 1.1

4.1. Iteration

We construct, by induction on the integer number n > 0, two families Cn

{C^, rn > rn-n} and Hn {H^, m > mn} consisting of nonsingular real surfaces

C^ and H'm of degree m in CP3 for any integer number m > mn.
As starting families C° and H°, let us take a family of surfaces Xm of degree

m in CP3 constructed by Viro [VI] which verify bo(RXm) ^ + O(m2) and

&i(RXm) ^r—h O(m2). We describe now the induction step. Assume that the
families Cn and Hn have been constructed. For each integer number k such that
k — 2 > mn, we construct the surfaces C^1 and H^1 of the families Cn+1 and
Hn+1 as follows. As in 2.3, use the surfaces C%_2 and H£_2 in place of the surface

Vfc_2 in order to perform two smoothings of the surface Xk constructed in Section 3

(perturbing C^_2 and H^_2 a little if necessary, one can assume that these surfaces

are defined by nondegenerate polynomials with Newton polytope Tk-z)- Let Xj:
and X\ be the resulting surfaces, respectively. Consider now surfaces Y2k and

Y2k of type T>2k associated with {X2k, Xk) and {X2k, Xk), respectively, where X2k
and X2k are the surfaces constructed in Section 3. Assume that the parameters
of Viro's polynomials defining Xk and Xk are sufficiently small in order to have
the properties described in Proposition 3.2. The surfaces Cr2kl and Hr2kl are
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then obtained applying to Y"2Cfc an(i Y^, respectively, the equivariant deformation
described in 2.1.

At this point of the construction, the family Cn+1 (resp. Hn+1) contains
surfaces Cv^1 (resp. H^1) for any integer number k such that k — 2 > mn. Take the
union of each surface C^1 (resp. H^1) with a plane and smooth the resulting
surface in order to obtain the whole families Cn+1 and Hn+1 with mn+i 2(mn + 2).
The following result may be easily derived from Proposition 3.2.

Proposition 4.1. The surfaces C^ and H^ verify
(1) &o(RC™) - a™ • m3 and &i(RC™ - /3™ • m3 w/iera m -? +oo7 w/iere a™

and /3™ are recursively defined by

0=l B+1=13+12a;

(2) bo(RH^) - Q.1 ¦ m3 and 6i(Ri7^) - /?£ • m3 w/iera m -^ +oo7 w/iere
and ß^ are recursively defined by

4 <+111 6 h 48 n 3 ft 24

4.2. Proof of Theorem 1.1

The sequences a™ and /?£ defined in Proposition 4.1 converge to || and y|,
respectively. Therefore, for sufficiently large n and m, we have

m3 and 6i (RF™ )>f--eVm3
for a given e > 0.

5. Concluding remarks

1. Viro's conjecture. Viro proposed the inequality &i(RX) < /iljl(X) for any
real nonsingular projective and simply connected surface X as a natural
generalization of the Ragsdale conjecture for real plane curves. Since then, both
conjectures were shown to be false in general (see [II, 12, B2, Bl]). However,
both remain open if the surface (resp. the curve) is assumed to be an M-surface
(resp. an M-curve) i.e. if it is maximal with respect to the Smith-Thorn
inequality (resp. Harnack inequality). For a surface Xm in CP3, Viro's conjecture
asserts that &i(RX) < |m3 -\—2m2 + |m. Furthermore, Xm is an M-surface
if 5*(RXm) 250(R^m) + biiRXm) m3 - 4m2 + 6m. We note that the
surfaces H^ constructed in this paper are not far from being M-surfaces since

m3 + O(m2) (this follows from 2a™ + /3™ 1, which is easily proven
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recursively) and are at the same time (for large m and n) strong counter-examples
to the Viro conjecture.

2. Limits of the method. There is an increasing function relating the coefficients

|| and y| in Theorem 1.2 with the coefficient | in the number | ¦k2+O(k) of
even ovals of the plane curves we have used. Namely, using curves with a-k2 + O(k)
even ovals, one obtains coefficients | + yj and f + \ instead of || and ^| in
Theorem 1.2, respectively. The inequality a < | is well-known in the topology of
real algebraic curves. This implies that our construction cannot give lower bounds
better than | and | for Iq and l\, respectively.

3. Generalization. Our construction can be generalized in order to construct
real nonsingular algebraic hypersurfaces in <CPn with large Betti numbers for any
integer number n > 1. In this way, we obtain increasing functions relating the real

numbers if1 introduced in Remark 1.1 with corresponding real numbers for lower
dimensional real hypersurfaces. All this will appear in a forthcoming paper.
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