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On the existence of F-crystals

R. Kottwitz and M. Rapoport

Abstract. Let (N, F) be an F-isocrystal, with associated Newton vector v in (Q™)4. To any
lattice M in N (an F-crystal) is associated its Hodge vector p(M) in (Z™)+. By Mazur’s
inequality we have (M) > v. We show that, conversely, for any p € (Z™)1 with g > v, there
exists a lattice M in N such that p = p(M). We also give variants of this existence theorem for
symplectic F-isocrystals, and for periodic lattice chains.

Mathematics Subject Classification (2000). Primary 11S25; Secondary 14L05; 14F30.

Keywords. F-isocrystals, Newton vector, Hodge vector.

By an isocrystal we mean a pair (IV, F'), consisting of a finite-dimensional vector
space N over the fraction field L of the ring W (F,) of Witt vectors of F,, and a
Frobenius-linear bijective endomorphism F' of N. Isocrystals form a category in
an obvious way. By Dieudonné, isocrystals are classified up to isomorphism by
their Newton slope sequence. More precisely, let

Q)4 ={lv1,...., ) €Q"; 11 222 ... 2 vn}.
Then we obtain an injective map (the Newton map)
{isocrystals of dimension n}/ ~— (Q")y, (N,F)— v(N,F).

Its image is characterized by the following integrality condition. Let us write
v € (Q")4 in the form

v= @)™, ... ,v(r)"), where v(1) > v(2) > ... > v(r).

Then the integrality condition states that mv(i) € Z, Vi=1,...r.

Let now (N, F') be an isocrystal of dimension n. Let M be a W (F,)-lattice
in N. Then the relative position of M and F'M is measured by the Hodge slope
sequence p = p(M) = inv(M, FM) € (Z")y. Here (Z™); = Z" N (Q™)4, and

(#1, - 5 ptn) € (Z7) 4 equals (M) iff there exists a W(F,)-basis e1,... , e, of M
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such that pley,...,ptre, is a W(F,)-basis of F(M). Mazur’s inequality states
that
p(M) =z v(N, F),

where the partial order relation on (Q™)4 is the usual dominance order, comp.
section 1.
One result in this paper is a converse to this statement.

Theorem A. Let (N, F) be an isocrystal of dimension n. Let p € (Z™)4 be such

that p > v(N, F). Then there exists a W(F,)-lattice M in N with pn = p(M).

This is the content of Theorem 4.11 below which also gives the corresponding
statement for the group of symplectic similitudes. As a matter of fact, one can
formulate a corresponding statement for any quasi-split group over a p-adic field F'
which splits over an unramified extension of F' ([R], section 4), and we conjecture
that Theorem A is true in this generality. Much of our argument in section 4
below is formulated in the context of a split group with simply connected derived
group, but we have not carried out the proof in this generality. Also note that
if v(N,F') € (Z")4, the general case of a split group was handled in [R] as an
application of the positivity property of the Satake isomorphism. This positivity
property also plays a crucial role in our proof of Theorem A. We also note that
when v(N, F') is of the form (N, F') = (v,... ,v), one can write down explicitly
a lattice M as in Theorem A, and similarly in the more general case when p is
decomposable with respect to v(N, F) (i.e., the Hodge polygon passes through
all break points of the Newton polygon). The general case is reduced to this
decomposable case, but then it does not seem so easy to produce explicitly a
lattice M with the required properties.

Theorem A may be considered as a statement on generalized affine Deligne—
Lusztig varieties. Let I C Z/nZ be a non-empty subset and let M, be a periodic
lattice chain of type I. Then the relative position of M, and F'M, is an element
n(M,) € WI\W /WI. Here W = Z" xS, is the extended affine Weyl group of GL,,
and W7 is the parabolic subgroup of 174 corresponding to I. The generalized affine
Deligne—Lusztiq variety of type I corresponding to w € W1 5 W/VVI is the set of
all periodic lattice chains M, of type I with p(M,) = w (comp. [R], section 4). Tt
seems a difficult question to determine for which w this set is non-empty. Theorem
A gives an answer to this question in case I = {0}, in which case a periodic lattice
chain of type I is simply a lattice and W'\ W /W can be identified with (Z") .

The question raised above becomes more tractable in case we form a certain
finite union of Deligne-Lusztig varieties. Let p € (Z")4 be a minuscule element
(i.e. g1 — ppn < 1) and consider Z™ as a subgroup of W. Let

Adm(p) = {fw e W; w < i/ for some u' € Syu}

be the p-admissible set ([KR]). For a non-empty subset I let Admp(p) be the
image of Adm(g) in W1\ W/W!. We note that by [KR] this coincides with the
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p-permissible subset of W1\ W/T/T/f_ Let X (u, F')7 be the union of the generalized
Deligne-Lusztig varieties of type I corresponding to elements in Admgz(u).
Our second main result in this paper is the following theorem.

Theorem B. Let = w, = (1"7,0""") for some 0 <r < n.
(i) For any non-empty subset [ C Z/nZ,

X(p, F); £ 0 if and only if p > v(N, F)
(i) For any non-empty subsets I and J of Z/nZ with J C I the forgetful map
X F)p — X(p, F)
18 surjective.

This is the content of Proposition 1.1, which concerns the group GL,,. Propo-
sition 2.1 is the analogous statement for the group GSp,,,, i.e. for isocrystals with
a symplectic structure. We note that for I = {0}, the statement (i) in Theorem
B reduces to the corresponding assertion in Theorem A, which in this case has
a simple proof. In section 3 we formulate the general problem. Section 4 is de-
voted to the proof of Theorem A, for GL,, and GSp,,,. In section 5 we treat the
groups Rp:/pGL,, and R/ pGSpy,, (restriction of scalars from a finite unramified
extension). If we had proved Theorem A for all unramified reductive groups, this
section could be eliminated. In section 6 we prove an auxiliary result which is then
used in section 7 to extend Theorem B to the groups Rp/,pGL, and Rp/;pGSpy,,.

In the body of the paper we deal with the more general case when Q,, is replaced
by a finite extension of Q, and L by the completion of its maximal unramified
extension (F'-isocrystals).

Our motivation for the results proved in this paper comes from the fact that
they make it possible to reformulate in many cases the conjecture in [LR] on
the reduction of Shimura varieties. Whereas in loc.cit. the concept of admissible
morphisms of Galois gerbs was defined using the Bruhat-Tits building, it is possible
to replace that condition by imposing on the corresponding element b € B(G) that
it lie in the subset B(G, ). Here B(G, p) is the finite subset of B(G) defined by
the group-theoretic version of Mazur’s theorem [K II], [RR]. The possibility of such
a reformulation is implicitly behind the considerations in section 6 of [K II].

When we presented these results at the Raynaud conference in Paris, Fontaine
pointed out to us that Theorem A was known to him earlier in a different guise (in
the case of GL,,). Namely, he had established the existence of a weakly admissible
filtration of type w on the isocrystal N, provided that x> (N, F'). From this the
existence of the lattice M follows by appealing to the theorem of Laffaille.

M. R. wishes to thank the department of mathematics of the University of
Chicago for its hospitality during his visit in the fall of 2000, when the results of
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this paper were obtained. He also thanks the department of mathematics of the
University of Minnesota for the possibility of presenting these results.

Notation. I a finite extension of Q,
L the completion of the maximal unramified extension of I’
Op resp. Oy, the rings of integers of F' resp. L
7 € Op a uniformizer
F the residue field of Oy,

o the relative Frobenius automorphism of L/F.

We follow the tradition of denoting a o-linear automorphism of an L-vector
space by F' (from “Frobenius”); there should be no danger of confusing this with
the notation for the ground field F'.

1. The result for GL,

Let (N, F) be an F-isocrystal, i.e. a finite-dimensional L- vector space with a
o-linear bijective endomorphism. Let n denote the dimension of N. To the F-
isocrystal (N, F') is associated its slope vector v = v(F) = (vq,... ,vn) € (Q")4.
Here (Q")y ={(v1,...,vn) €Q™" v1 > 19 > ... > vy}

Fix an integer r with 0 <r < mn. We call the F-isocrystal (N, F') minuscule of
weight r if the slope vector v = v(F') of (N, F') satisfies the following condition

0<y, <...<1n <1, ZVi:T. (1.1)

An equivalent condition is the following. Let w, be the vector (1,...,1,0,...,0),
where 1 is repeated r times and 0 is repeated n —r times. On (Q™)4 we have the
usual dominance order, for which v < p if and only if

v < m (1.2)
v+ ve < pptpe

2T I o VN RN T T S o L |
vit...tvp=u1r+...+ ln.

Then it is easy to see that the condition (1.1) is equivalent to the condition

v(F) < w,. (1.3)

Let I C Z/nZ be a non-empty subset and let I C Z the inverse image of I under
the canonical surjection Z — Z/nZ. A periodic lattice chain of type I in the
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L-vector space N is a set M of Op-lattices M; (i € I) for which

if i < jin I, then M; C M; with length (M;/M;)=j — (1.4.1)
My, =1 M. (1.4.2)

In case [ = Z/nZ we also speak of a full periodic lattice chain. 1f I consists of a
single element, then a periodic lattice chain of type I is simply given by a lattice
(namely M; for the unique ¢ € I with 0 < i < n). We denote by X7 the set of
periodic lattice chains of type I.

We now fix an F-isocrystal (N, F') of dimension n. We denote by X (w,, F') the
set of periodic lattice chains of type I in N which satisfy the following condition,

for all ¢ € I we have nM; C FM; C M; and dimg M;/FM; =r. (1.5)

An equivalent condition is the following. By the elementary divisor theorem
we can associate to any pair of Op-lattices M, M’ in N their relative position
inv(M,M’") = p = (p1,...,pn) € (Z")4. Here (Z7); = Z" N (Q")4. Then the
condition (1.5) is equivalent to

for all ¢ € I we have inv(M;, F'M;) = w,. (1.6)

Also it is clear that it suffices to check the conditions (1.5) and (1.6) on a set of
representatives of / mod n.
For a non-empty subset J of I there is an obvious forgetful map

X(wp, F)p — X(wp, 1) 5. (L.7)
We may now formulate the main result of this section.
Proposition 1.1. (i) For any non-empty I C Z/nZ we have
X(wr, F); # 0 if and only if F is minuscule of weight r.

(ii) For any non-empty subsets I and J of Z/nZ with J C I, the natural map
(1.7) is surjective.

To prove this proposition we make the following preliminary remarks.

a) Let I consist of a single element. Then the statement “X (w,, )5 # 0 = F
is minuscule of weight »” is exactly the content of Mazur’s theorem that the
Hodge polygon of an F-crystal lies below the Newton polygon of its associated
F-isocrystal and has the same endpoint (use the reformulations (1.3) resp. (1.6)
of the relevant conditions).

b) If X (w,, F); # 0 and J is a non-empty subset of I, then obviously X (w,, F) 7
#0.
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Taking into account a) and b) we see that (i) in Proposition 1.1 follows from
(ii) and the following lemma. Of course, this Lemma is a special case of Theorem
4.2 below, but this special case has a simple proof.

Lemma 1.2. Let F' be minuscule of weight r. Then there exists an O -lattice M
in N with
inv(M, FM) = w,.

Proof. Let us first assume that F is isoclinic, i.e. v(F) = (v, ... ,v) with0 < v < 1
and nv = r. In this case the F-isocrystal is uniquely determined up to isomorphism
and there exists a basis ej, ... , e, of N such that

Fei =ey, Feg=e3,...,Fe, 1 =¢,, Fe,=mn"¢j. (1.8)

Then the following lattice is as required,
M=0p7" 1100, 2 ea®... 007, 100 -6, ®...00 €, 1DOL €.

The general case follows since the F-isocrystal (N, F') is the direct sum of iso-
clinic F-isocrystals (N;, F;) (i = 1,...,s) which are minuscule of weight r;, with
Y T=Tu O

To prove (ii) of Proposition 1.1, we may assume that I = Z/nZ. Hence starting
from J we may enlarge J by one element at a time. We are then reduced to proving
the following statement.

Lemma 1.3. Consider Op-lattices M, M’ such that

M>M >nM,

Z

with inv(M, FM) = w,, inv(M', FM') = w,. Then there erxists an Op-lattice M
such that ~

M>M>M,
with dimp M /M’ = 1 and inv(M, FM) = w,.
Proof. We introduce the o~ !-linear operator V defined by the identity

VF=FV = (1.9)

Then, since F' is minuscule of weight r, the condition inv(M, FM) = w, on a
lattice M is equivalent to the condition

FMcM and VM C M. (1.10)
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Consider the F-vector space W = M/M’ with the induced o*Llinear operators
F,V which satisfy I'V = V F' = 0. By the previous remarks it suffices to find a
line £ in W which is stable under F' and V. We distinguish cases.

Case 1. F is bijective.

In this case there exists an F-basis of W consisting of F-invariant vectors
(Dieudonné). Let ¢ be the line generated by one of these basis vectors. Since

V =0 in this case, this line is stable under ' and V.
Case 2. Ker F #£ (0).

The map V induces a map from Ker F to itself. If this induced map fails to be
bijective, we take ¢ to be any line in its kernel. If the induced map is bijective, so
that there exists a basis of Ker F consisting of V-invariant vectors, then we take
¢ to be the line generated by one of the basis vectors. Il

2. The result for GSp,,

Let (N, {, )) be a symplectic vector space of dimension 2n over L. Let F be a
o-linear bijective endomorphism of N satisfying

<F:E,Fy>:C'<$7y>g7 $7y€N (21)
for some fixed ¢ € L*. We call (N, (, ), F') a symplectic F-isocrystal. The slope
vector v(F) of the F-isocrystal (IV, F') then satisfies

Mtuvey, =12+, 1=...=Vy+ Vpti =d, (2.2)

where d = val(c) is the m-adic valuation of c. We call the symplectic F-isocrystal
minuscule of weight r for some r with 0 < r < 2n if the underlying F-isocrystal
is minuscule of weight r in the sense of (1.1). Note that only » = 0, r = n and
r = 2n are possible and that then d = 0,1 or 2 respectively.

Let I be a non-empty symmetric subset of Z/2nZ, i.e., invariant under multi-
plication by —1. Let I be the inverse image of I under the surjection Z — Z/2nZ.
A periodic lattice chain M; (i € I) of type I is called selfdual if there exists d € Z
such that

M =M_;140,, i€l (2.3)

Here for any Op-lattice M in N we put
Mt ={zeN; (z,M)COL}. (2.4)

We denote by XIQ the set of selfdual periodic lattice chains of type I in V. Let
now (N, (, ), F') be a symplectic F-isocrystal. For a non-empty symmetric subset
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I'in Z/2nZ, let X“(w,, F); denote the set of periodic selfdual lattice chains of
type I in N which lie in the set X (w,, F')7 in the sense of (1.5) for GLg,.

The following result is the analogue of Proposition 1.1 in the present context.
Proposition 2.1. (i) For any non-empty symmetric subset I of Z/2nZ we have

X (wy, F)5 # 0 if and only if the symplectic F-isocrystal (N, { , ), F)

is minuscule of weight r.

(ii) For any non-empty symmetric subsets I and J of Z/2nZ with J C I, the
natural map
X (wp, F)f — X (wy,, F) 5

18 surjective.

Again, by Mazur’s theorem, we infer that if X%(w,, F); # 0, then F is mi-
nuscule of weight r (in particular » = 0, or n, or 2n). Conversely, assume that
F' is minuscule of weight ». If » = 0, then N admits a symplectic basis of F-
invariant vectors (Dieudonné), hence defines an F-form (N, (, )o) of (N, {, )).
Any self-dual Op-lattice in Ny defines an element of X% (wg, )7, where I = {0}.
Furthermore, the assertion (ii) of Proposition 2.1 just amounts to the fact that any
selfdual periodic lattice chain may be completed to a full selfdual periodic lattice
chain. This is well-known, comp. [KR], section 10. The case r = 2n reduces to
the previous one by replacing F by 71 . F. Hence from now on we may assume
that F' is minuscule of weight n.

Lemma 2.2. Let (N,{, ), F') be a symplectic F-isocrystal which is minuscule of
weight n. Then there erists a selfdual Op-lattice M such that

M>FM>aM and (FM)* =x"1FM .
In other words M € X% (w,, F); with I = {0}.
Proof. By hypothesis 0 < 1o, <19, 1 <...<r; <1and
VitV =Vt Vo1 = ... = Uyt Vpp1 = L
From the slope decomposition of N we deduce a direct sum decomposition
N=NeaoNa@N",
where N’ resp. N” includes all slope components of slope < 1/2 resp. > 1/2 and

where N is the sum of all slope components of slope 1/2. Then N’ and N" are
totally isotropic subspaces which are in duality by ( , ) and N is orthogonal to
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(N'&N"). A selfdual lattice in N'& N” may be obtained by taking any Op-lattice
M’ in N’ and then forming M’ & M" where

M'=M*={zeN" (z, M’y C OL}.

Using the result of section 1 for GL,s, where n’ = dim N’, we are reduced to
considering N, i.e., we may assume from the start that all slopes of N are equal
to 1/2. In this case the symplectic F-isocrystal is uniquely determined up to
isomorphism and there exists a basis of N such that

Fe; = —egn_it1, Feap_iy1 =me; 1 =1,...,nand
(€i,€5) =0, (an—it1,€2m—jt1) =0, (€5, €2,_j41) =035, 4,j=1,...,n.
Then the Op-lattice M generated by eq, ... , e, satisfies the required conditions.

O

To complete the proof of Proposition 2.1, it suffices now to prove assertion (ii)
in the case where I = Z/2nZ. Enlarging J one step at a time we then reduce to
the case in which J C I is as in [KR], 10.2. In other words, we fix k € .J such that
k+1 ¢ J and obtain I by adding to J one or two elements, namely the class(es)
of k+ 1 and —(k + 1) modulo 2nZ.

Let ¢ be the smallest integer in J such that ¢ > k; thus k < £ < k + 2n. Since
J C I, there is a natural map

f:Xf— X§. (2.5)

We are interested in the fiber f‘l(M) over an element M = (M, );cs of XJQ. We

associate to an element M = (M,);c; of f~1(M) the lattice M := Mj 1. Clearly
this lattice satisfies

M, Cc M C M, (2.6.1)
dimpM /My, = 1. (2.6.2)

Lemma 2.3. The map M — M is a bijection from f~1(M) to the set of lattices
M in N satisfying (2.6.1) and (2.6.2).

Proof. By Bruhat—Tits theory the fiber in question is a partial flag manifold for
the reductive quotient (a group over the residue field) of the parahoric subgroup
associated to I. In the case at hand this partial flag manifold turns out to be the
projective space described by (2.6.1) and (2.6.2), as we now check.

The map is obviously injective since M contains with M also Mt and all
multiples of these two lattices. To prove surjectivity we start with M satisfying
(2.6.1) and (2.6.2) and have to construct M € f~1(M) which gives M. We imitate
the proof of [KR], Lemma 10.3.
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Let P = JU {k + 1} (for m € Z, we write 7 for its class modulo 2n). Let
Q) = —P. Then I = PUQ; and for the inverse images P and @ of P and Q in Z,
we have P = —Q).

There is a unique periodic lattice chain X of type P such that X, 3 = M and
X; = Mj for j € J. Let d € Z be the unique integer such that MjL = M_; 49y for
j € J. There is a unique periodic lattice chain Y of type @ such that Yf( k1) =
7ML and Y; = M; for j € J.

We claim that

peEP qgeQ, p<qg—=X,CY, (2.7)

This is obvious if there exists j € J such that p < j < ¢, so we now assume the
contrary. It is harmless to suppose that p = k + 1. Then necessarily ¢ = ¢ — 1
and ¢ = —k. Consider the F-vector space V = My/M),. Then the lattices X, resp.
Y, correspond to subspaces Uy resp. Uy of V, where U is of dimension one and
Uy is of codimension one. We have to show that Uy C Us. But on V we have
the symplectic form defined by the fact that My = =" - M 15L7 where 7 is defined by
¢ = —k+r-2n. Furthermore, we have Y, 1 =#" - X kL+1' Equivalently, we have
Uy = Uf for the symplectic form on V. The claim now follows from the fact that
any line in a symplectic vector space is isotropic.
We also claim that

PEP qeQ q<p—=Y, CX,. (2.8)

This is clear since there always exists j € J such that ¢ < j <p.

Now suppose p € P, ¢ € @ and p = q. Then from (2.7) we have X, C Y.
But both are lattices which contain M}, _, .9, for sufficiently large » and with the
same index, hence X, = X,. Thus, without ambiguity, we may define the periodic
lattice chain M = (M;);cr of type I by putting M; = X; if i € P and M; = Y; if
i € Q. It is obvious that this is indeed a selfdual lattice chain contained in f—(M)

and that M — M. O
Using this lemma, the surjectivity assertion (ii) in Proposition 2.1 is reduced
to the corresponding statement for GLs,,, which is Lemma 1.3. (Il

3. The general problem

Let G be a connected reductive group over F. For simplicity we assume that G
splits over L. (The problem addressed in this section can be formulated without
this hypothesis, but then becomes more technical and even more speculative). Let
T be a maximal split torus over L. Let B = B(G o4, L) be the Bruhat-Tits building
of the adjoint group over L. To T corresponds an apartment in B. Let Ko be an
Iwahori subgroup of G(L) corresponding to an alcove in the apartment for 7'. Let
W be the lwahori Weyl group of T,

W = N(L)/T(L);. (3.1)
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Here N denotes the normalizer of T and T(L)l the maximal bounded subgroup
of T(L). Then T(L); = T(L)N Ky. Let K be the parahoric subgroup of G(L)
corresponding to a facet of the base alcove. (If G is simply connected, then K is
the stabilizer group of the facet. In general it is a subgroup of finite index of the
stabilizer group, cf. Def. 5.2.6 in F. Bruhat and J. Tits: Groupes réductifs sur un
corps local II, Pub. math. IHES 60 (1984), 197-376.) Let

WE = N(L)n K/T(L) n K. (3.2)
Then there is a canonical bijection
K\G(L)/K = WE\W/WK. (3.3)

We therefore obtain a succession of maps whose composition will be denoted by
inv,
inv : G(L)/KxG(L)/K—G(L)\(G(L)/KxG(L)/K)=K\G(L) k=W \W /WX

(3.4)
We now fix a conjugacy class of minuscule one-parameter subgroups  of G defined
over L. We may assume that p factors through 7' and determines an orbit in
X,.(T) under the conjugation action of the finite Weyl group W = N(L)/T(L).
Let Adm(p) C W be the admissible subset corresponding to v ([KR], Introduction),

Adm(p) = {w € W; w < t,, some u'}. (3.5)

Here 4/ denotes an element of the W-orbit in X,(T) defined by p, and ¢, the
corresponding element of W. In (3.5) appears the Bruhat order on W determined

by the base alcove. We denote by
Admg (p) € WE\ W /WK (3.6)

the image of Adm(p) under the natural projection. It is independent of the choice
of Ky contained in K. We will assume that K is o-invariant, or equivalently
that the corresponding facet in the building is o-invariant. Then K = K is a
parahoric subgroup of G(F). We note that, conversely, K determines K and the
corresponding o-invariant facet in B.

Our final choice is an element b € G(L). We then define
X(pu,b)x = {g € G(L)/K; inv(g,bo(g)) € Admg(n)}. (3.7)

Let K’ be a o-invariant parahoric subgroup of G(L) containing K. Then K’ =
K'(?) is a parahoric subgroup of G(F) and there is a canonical projection map

X(ﬂ’? b)K —>X(/"7 b)K/- (38)
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Let B(G) be the set of o-conjugacy classes in G(L) and let [b] € B(G) be the
o-conjugacy class of b. We denote by B(G, 1) the finite subset of B(G) defined by
the group theoretic version of Mazur’s theorem ([K I1], §6).

Conjecture 3.1. (i) For any parahoric subgroup K of G(F) we have
X(pb)x #0 <= [b] € B(G, p).

(ii) For any pair of parahoric subgroups K C K’ of G(F), the map (3.8) is
surjective.

It is not clear whether the hypothesis that w is minuscule is indeed necessary
for the statements in this Conjecture. The implication = in (i) is true for any
dominant p, when K is hyperspecial, [RR], Thm 4.2. For some other cases when
Conjecture 3.1 is known to hold true, c¢f. M. Rapoport: A guide to the reduction
modulo p of Shimura varieties, math. AG/0205022.

Let G = GL,,. A conjugacy class of minuscule one-parameter subgroups of G
is of the form p = w, + k- w, = w, + k-1 for a unique r with 0 < r < n and some
keZ. Here 1 = (1,1,...,1). The validity of Conjecture 3.1 is unchanged if p is
replaced by w,, so we assume this now.

The conjugacy classes of parahoric subgroups correspond in a one-to-one way to
the set of non-empty subsets I C Z/nZ and the corresponding coset space may be
identified with the space X7 of periodic lattice chains of type I. Let M = (M;);cr
and M’ = (M/);c; be two elements of X7. Then

inv(M,M') € Admg (n) & M; O M] D nM; and dimpM;/M] =r, Vie I .
(3.9)
Indeed, this follows from the identification of Adm i (p) with the p-permissible
set inside WK1 \ W/W¥Xr [KR], [HN]. In fact, for any dominant coweight z we
have (comp. [HN], 9.7)

inv(M, M') € Permy (u) <= inv(M;, M]) <p, Viel (3.10)

If 1 is minuscule, the inequality on the right hand side is necessarily an equality
which yields the condition appearing in (3.9). These remarks imply that the results
of section 1 prove Conjecture 3.1 in the case of GL,,.

Similarly, the results of section 2 prove Conjecture 3.1 in the case of G = GSpy,,.
In fact, in this case the p-admissible set is the intersection of the p-permissible set
for GLg,, with the extended affine Weyl group of GSp,,,, cf. [KR], see also [HN],
Prop. 9.7.
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4. A converse to Mazur’s inequality

In this section we let G = GL,, or G = GSp,,,. Our aim is to prove a converse
to Mazur’s theorem, strengthening for these groups Prop. 4.2. of [R]. Much of our
argument remains valid for an arbitrary split group with simply connected derived
group.

We start with a lemma which is the group-theoretic interpretation of the first
half of the proof of Lemma 1.2. Let A be a maximal split torus in G. We denote
by 71(G) the algebraic fundamental group of G. Since Gy, is simply connected,
71(G) is the factor group of X,(A) by the lattice generated by the coroots, and is
a free abelian group. We denote by

kot G(L) — 7T1(G) (4.1)

the homomorphism introduced in [K I1] (and denoted there by wg). We denote
by K = G(Op) the special maximal bounded subgroup determined by a Chevalley
form of G adapted to A.

Proposition 4.1. Let g € G(L) and let b € G(L) be a basic element. Then the
o-conjugacy class of b meets KgK if and only if ka(g) = ka(b).
Proof. One direction is trivial, since ¢ (K) = {0} and since o-conjugate elements
have identical images under k. For the converse direction we may use the Cartan
decomposition of G(L) to assume that ¢ € A(L) and even g = a € A(F). Let
w € W be an elliptic element, i.e. Xi(A)g = Xu(Zg)r. Here Zg denotes the
connected center of G. Equivalently, any w-invariant element of A(F") has finite
order modulo the center. For instance, we may take for w any Coxeter element of
W. Let w € Ng(A)(F) N G(Op) be a representative of w in G(Op). We claim
that aw is a basic element in G(L). Once this is established, we conclude from
ka(aw) = ka(a) = ke(b) that aw and b are o-conjugate ([K 1], 5.6), which finishes
the proof since aw € Kak.

To see that aw is basic it suffices to show that its norm under a sufficiently large
finite extension I of F' contained in L is central ([K I], 4.3.). Since aw € G(F),
we have to see that a sufficiently high power of aw is central. But

(a)" = a-wla)-...-w Y a) . (4.2)
If r is divisible by the order of w in W we have that aw(a) - ... w " 1(a) is w-
invariant and hence is of finite order modulo the center. The same applies to w"
and hence our claim is proved. (|

In the sequel we fix a Borel subgroup B = AU. We denote by X, (A)qom resp.
X.(A)Q,dom the set of dominant elements in X, (A) resp. X,(A)® Q. Recall ([K
II], 4.2) that to b € G(L) is associated its Newton point 7(b) € X+(A4)qQ dom- We
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will denote by < the usual partial order on X.(A)qQ dom, ie. v <V iff v/ —visa
non-negative linear combination of positive coroots. Note that, since the derived
group of G is simply connected, the partial order induced on X,(A)qom is that

! !
denoted in [R] by <, i.e. v <V iff v/ —v is a non-negative integral linear combination
of positive coroots.

Corollary 4.2. Let b € G(L) be basic with associated Newton point 7 = 7(b) €
Xi(A)Q,dom- Let p € Xu(A)qom with ¥ < pu. Then there exists h € G(L)/K with

inv(h,bo(h)) = p.

Proof. Let g = n# € A(F). Then kg(g) = rg(b) and applying the previous
proposition we find h € G(L) with h~1bo(h) € Kn*K, as desired. O

Remark 4.3. In the case of GL,, the previous construction can be made totally
explicit. In this case m1(G) = Z and any basic b € G(L) with kg(b) =r € Z is o-
conjugate to the element I" described by (1.8). Let p € (Z™)y with >0 4 p; = 7.
Then the lattice M spanned by the vectors

T2 Hiel, T2 Moo, ..., " e, _1,¢en (4.3)
satisfies inv(M, FM) = u.

Let now P = MN be a parabolic subgroup containing B, where M is the
unique Levi subgroup containing A. We sometimes consider M as a factor group
of P. For € X,(A) we denote by M () the image of Kn#K N P(L) in M(L).

Lemma 4.4. Let b € M(L) and let p € X.(A). Then the o-conjugacy class of
b in G(L) meets Kn* K if and only if the o-conjugacy class of b in M (L) meets
M(p).

Proof. Assume that the o-conjugacy class of b meets K7*K. By the Iwasawa
decomposition, there then exists p € P(L) with pbo(p)~! € Kn#K. Writing
p=m.n € M(L).N(L) we conclude that mbo(m)~t € M(u).

Conversely, assume there exists m € M (L) with mbo(m)~! € M(u). Hence
there exists n € N(L) with mbo(m) 'n € Kx*K. But by [K II], 3.6, the two
elements mbo(m)~'n and mbo(m)~! are o-conjugate by an element in P(L).
Hence b is o-conjugate in G(L) to an element in K7*K . O

Let o € X, (A) and let

P, =A{r e Xi(4); ka(v) =ra(p), v € Conv(Wpu)}. (4.4)
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Here we have denoted by kg : Xi(A) — 71(G) the map which sends p to kg (7H).
Also Conv(W i) denotes the convex hull of Wy in X.(A) ® R. Note that since
the derived group of G is simply connected, the first condition in (4.4) is implied
by the second.

Lemma 4.5. We have
k(M (1) = £ (Pp).

Proof. Let m € M () and let us prove that ar(m) € ka7 (Py). By the definition of
M () there exists n € N(L) with mn € Kn#K. Using the Cartan decomposition
of M we may write m = ky - ¥ - Ky, with ka, k), € Ky = M(Op). Then
kp(m) = sy (n”). Now mn = kyn¥ - n' - kjyy with n’ € N(L). Hence n"n/ €
K7*K. By Satake (comp. [R]) this implies v € Py

Conversely, let v € P,. Then by [R], Thm. 1.1. there exists u € U(L) such
that 7¥u € Kn#K. Writing u = upr.n with upy, € U(L) N M(L) and n € N(L) we
have 7% - upr € M(p). But the image of v in 71 (M) is equal to ks (7”unr) and
hence lies in k(M (@)). O

Proposition 4.6. Let b € M(L) be basic, and let p € X.(A). The o-conjugacy
class of b in G(L) meets Kn K if and only if kpr(b) € kar(Py).

Proof. This is a consequence of the results established so far. Indeed, the o-
conjugacy class of b in G(L) meets Kn*K iff the o-conjugacy class of b in M(L)
meets M(u). Now M(u) is a union of Kj-double cosets. Applying Proposition
4.1 to each Kjy-double coset (with M instead of G), we see that this holds iff
k(D) € kar(M(p)). But by the previous lemma we may identify xas (M (p)) and
Rpr (PH) [l

Recall that 1 € X, (A) is called minuscule (in the large sense) if (i, o) € {0,+1}
for all roots a. It is well-known that kg induces a bijection (Bourbaki: Groupes
et Algebres de Lie, ch. VI, §2, ex. 2)

{p € Xi(A)gom; p minuscule} — 71 (G). (4.5)

Recall our parabolic subgroup P = MN. We let Ay be the maximal split
torus in the center of M and let Xy, = X.(Anm) C Xi(A). Then xp induces an
injective map X,; < 71(M) with finite cokernel.

Lemma 4.7. Let G =GL,,. Let p € Xi(A)qom be minuscule and let x € m(M).
The following conditions on x are equivalent:

(i) z € kg (W)

(ii) Let v € Xy ® Q be the unique element mapping under Ky @ Q to x. Then
v € Conv(Wp).
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If = satisfies these conditions, let v € X.(A) be the unique M-dominant M -
minuscule element mapping to x, cf. (4.5). Then v € Wp.

Proof. Let G = GL,, and M = M( - Since p is minuscule, we may write
pw ==k 14w, where 0 < s < n, and k € Z and where we used the notation
1=w, =(1,...,1). Since adding to p an element of X does not affect the
assertion of the lemma, we may assume p = w,. But then it is obvious that

MWp)={(s1,...,8); 0 < <my, XI_18 = s} (4.6)
Here we have used the identification
7 (M) =71 (GLp, X ... x GLy,, ) =Z". (4.7)
The element v € X ® Q in (ii) is of the form
v=w)™, . .. v@)"), withm; -v(i)€eZ, Vi=1,...,r (4.8)
Then v € Conv(W ) iff
0<v(i) <1, Vi=1,...,r, and X]_ym; - v(i) = s. (4.9)

It is therefore obvious that by letting v vary over this set, its image in 71 (M) is
equal to Ky (Wp). If 2 = (s1,...,8,) € kpr(Wp), then the element 7 is equal to

p=(1°1,0™m17 %2 e 1% Qo))
which obviously lies in Ww;. (Il

Proposition 4.8. Let G = GL,, or G = GSpy,. Let v € X3 N Xu(A4)Q,dom
such that its image under Ky ® Q lies in w1 (M). Let v € X, (A) be the unique
M -domsnant M-minuscule element with kp (V) = kar(v). Let [P] be the unique
G-dominant element in Wi, Then we have, for every pu € Xy (A)qom with v < pu,

v < [p] < e

Proof. The first inequality is obvious since, v being central in M, we have
v € Conv(Wyv) C Conv(Wp).

The assertion follows since for v, v’ € X, (A)qQ dom We have v € Conv(Wv') if and
only if v < /.

Now we prove the second inequality. First we consider the case in which G =
GL,, M = M( We note that if g is minuscule, then by the previous

My )
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lemma we have 7 € Wyu. Hence [#] = p, which proves the proposition in this
case. We now proceed by induction on n. As in the previous proof we write
v=(v(1)™, .. . v(r)™).

Assume first that there exists a maximal proper parabolic P’ = M’N’ contain-
ing P such that v <M ' . This last condition means equivalently

veConv(Wyp) <= p—ve Z Ria".

onEAVM/

Here for any standard Levi subgroup M, AY, denotes the set of simple coroots
appearing in U N M.

The Levi subgroup M’ corresponds to the partition (25:1 my, Z;:k 11My)
for some k with 1 < k < r — 1. Let us subdivide the interval [0,n] into the r
subintervals I(i), ¢ =1,...,r, with

1(1) = [0,m1], I(1) = [my1,m1 +m2],... ., I(r)=[m1+...+m,_1,n]. (4.10)
Since v <M’ 1 we have sy (v) = k() which means
k
dSomp) = > (4.11)
=1 iel(1)u...uI(k)

where we adopt the convention that g = 0 in order to make sense of the right
side of this equation. The converse is also true by the following lemma applied to
M =M.

Lemma 4.9. Let v < p and rp(v) = kpp(p). Then v <M p.

Proof. We have by assumption

w—v= Z cat’, co €Ry.
avelAy

We want to show that ¢, =0, Va¥ € A%\ AY,. But AY \ AY, maps to a basis of
X,/ Xaq- Since k(i —v) = 0, we deduce

0=ryp(p—v)= Z coa’mod X¢ q. O
e AYNAY,
We will also need the following lemma.

Lemma 4.10. Let 1 € X, (A)qom- Let v € X, (A) be M-dominant with v <M p.
Then v is G-dominant and v < p.
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Proof. We have
w—v= Z coar”, ca € Ry

v
aVEAM

Let B € Ag\ Ay, Then (oY, 3) <0, VoV € AY;. Hence

<V7ﬁ> = <Ma/6> - Z Ca'<av>/6> ZO

Vv
acAy,

Finally, it follows trivially from v <™ p that v < p. (Il
We apply this lemma to M’ and the unique A’-dominant element [7]p in
W - 0. It satisfies [7] <M ' 1 by induction hypothesis. By the previous lemma
we therefore have []p = [P] < p which proves the proposition in this case.
Let us now assume that there is no proper Levi subgroup M’ containing M
such that v <™’ . By Lemma 4.9 this means that for k =1,... ,7 — 1 we have

k
> myew(g) < > m (4.12)
j=1

ieI(1)u...UI(k)

In this case we are going to prove the assertion by induction on the height of w. If
1 is minuscule, the assertion is already proved. Otherwise there exists a positive
coroot a" such that ' = u— " is dominant. It suffices to show that v < u/ since
then by induction hypothesis we have [#7] < 1/ and hence a fortiori [7] < p.

To prove v < 1/ we introduce the partial sum functions for i =0,... ,n,
@ i
Ni:ZV[:<I/?wi>7 Mi:ZMé:<M7wi>7 (413)
=1 e=1

M= ZW = (', wi).
e=1

We have to show that N; < M/, Vi = 1,...,n, knowing that N; < M;, Vi =
1,...,n. These functions of ¢ may be interpolated into continuous functions on
[0, n] which are affine-linear on consecutive intervals [0, 1],[1,2], ... and which are
convex, since v, p and p/ are all dominant. Furthermore, the function N is affine-
linear on the intervals I(1),1(2),...,I(r). Hence it suffices to check that

N(z) < M'(=) (4.14)

for the endpoints z of the intervals I(1), I(2), ..., I(r). At the left endpoint of I(1)
and right endpoint of I(r) we have equality in (4.14). Now consider the remaining
endpoints. By (4.12) we have N(z) < M(«). Since both arguments are integers
we conclude that N(z) < M(z) — 1. On the other hand, since the positive coroot

oY is of the form o = e; —e; for i < j (where e, ... , ey is the natural basis of
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X.(A) = Z"), it is obvious that M’(z) > M(z) — 1, which proves (4.14) in this
case. This completes the proof for GL,,.

Now let us assume that G = GSp,,,. We consider G as a subgroup of GLg,
by the symplectic basis e1, ..., e, With (e;, e2,_;j11) = 6;; and (e;,¢5) = 0 =
(entirenty) for i,j = 1,...,n. Let M be the Levi subgroup obtained as the
intersection (inside G’ : GLgn) of GSpy,, and M’ == My, ;. 2jme.....m1)-
The second equality that we need to prove for G and M follows from that same
inequality for G’ and M’, as we now check. Let v, 1, [7] be as in the statement
of the proposition. Letting A’ denote the diagonal maximal torus in G’, we may
view v as an element v’ € Xy g N X«(A’)Q dom, and we may then consider the
unique M’-dominant M’-minuscule element o’ with k0 (7') = ke (V'), as well as
the unique G’-dominant element [7'] in W&/, where W’ denotes the Weyl group
for G'. Working out explicitly what it means to be M-dominant and M-minuscule,
one sees that 7 is also M’-dominant and M’-minuscule, and hence that 7/ = ».
Similarly, working out what it means to be G-dominant (and using that W is a
subgroup of W), one sees that [7] is also G’-dominant and that [¢'] = [7]. Since
we have already proved the proposition for G’, we conclude that [#] < p in the
partial order for G'. Working out explicitly what this partial order is, one sees
that the same inequality also holds in the partial order for G, and we are done. [

Another way of formulating the previous proposition is that [¢] is the unique
minimal element of the set

{M € X (A)dom§ v < N}~ (415)

We can now prove the main result of this section.

Theorem 4.11. Let G = GL,, or G = GSpy,,. Let b € G(L), with associated
Newton pointv =D(b) € Xu(A)Q.dom- Let pn € Xiu(A)dom withv < p. Then the o-
conjugacy class of b in G(L) meets KntK. Equivalently, there exists h € G(L)/f(
with inv(h,bo(h)) = .

Proof. After replacing b by a o-conjugate, we may assume that b € M (L) is basic,
for a standard Levi subgroup M [K 1], 6.2. By Proposition 4.6 we have to show
that ras(b) lies in the image of P, in 71 (M). By Proposition 4.8. we find 7 € P,
with IiM(ﬁ) = IiM(b) O

By Magzur’s inequality we may summarize the previous theorem as an equality
of two subsets of X, (A)qom: Given b € G(L) we have

{1 € Xo(Adom; 3h € G(L)/K with inv(h,bo(h)) = pu} (4.16)
={1 € Xi(A)dom; 7(b) < u}.

Furthermore, by (4.15) this subset has a unique minimal element.
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Remark 4.12. Let b € M (L) be basic such that M is the centralizer of v = 7(b)
(i.e. b is G-regular, comp. [K I], 6.2.; recall that for any o-conjugacy class [b]
there exists a standard Levi subgroup M and an element b € [b] which satisfies
these conditions). Let p € Xy (A)qom such that mbo(m)~1 € Kyt Ky for some
m € M(L). Tt follows that v <M u, or, equivalently by Lemma 4.9, that v < p
and kpr(v) = kar(p). Conversely let p € Xy (A)gom such that v <M n. Assume
furthermore that there exists ¢ € G(L) with g~ 1bo(g) € Km#K and fix such an

element. Then, if G = GL,, or G = GSpy,,, it follows that g € M(L) - K.
Indeed, assume that G = GL,, and M = M,,, . ). Theisocrystal (N, F') =
(L™, bo) has slope vector

v = @)™, )™,

where v(1) > v(2) > ... > v(r). This chain of inequalities follows from the
assumption that M is the centralizer of v (equivalently, the break points of the
Newton polygon of (N, F') occur at my, mj +ma,... ,m1 + ...+ m,_1). On the
other hand, gK defines a lattice A in N such that p(A) = inv(A, FA) = . Now
the assumption v <M f tells us that the Hodge polygon of A goes through all
break points of the Newton polygon. Hence, by the Hodge-Newton decomposition
[Ka], Thm. 1.6.1., we can write

A= @ A, (4.17)
i=1

where A; = AN N; is the intersection with the isotypic component of slope v(7)
of N. If the lattice A; corresponds to g; - GL,,(Or), then gK = m - K where
m = (g1,...,9) € [[.; GLym,(L) = M(L) which proves the claim in this case.
The case where G = GSpy,, is similar.

It seems likely that the above conclusion holds for more general groups. But we
point out that the assumption that p be G-dominant is essential; it is not enough
to merely assume that u is M-dominant with v <M 4, as the following example
shows.

Let G =GLs, M = M(Zl) and

0 x 0
b=|(= 0o o0 |, (4.18)
0 0 =@

where @ > 0 is a fixed integer. Then v = ¥(b) = (a + %,a + %,a). Let p =
(2a+1,0,a). Then y is M-dominant but not G-dominant and v <™ 1. We claim
that there exists an element g € G(L)\ M(L).K with g~ 'bo(g) € Kn*K. Let

0 7 0
V==t 0 o0]. (4.19)
0o 1 x°
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Then 7(b') = v, hence b’ is o-conjugate to b and inv(03,b'0(03)) = [u], hence
Y € Kr*K. But an element g € G(L) with g~ 'bo(g) = b’ lies in M(L)K if and
only if O is decomposable with respect to the slope decomposition of L? for bo.
It is easy to see that O% is not decomposable.

5. Restriction of scalars

Let F’ be an unramified field extension of degree f of F'. Let V be a F'-vector

space of dimension n. In the first part of this section we will be concerned with

the group G = Rp//p(GL(V)). Let K C G(L) be a special maximal parahoric

subgroup defined over F'. The coset space G(L)/ K can be described as follows.
We fix an embedding F' — L. Then we can write

VerL= & N, (5.1)
JEZ/fZ

with N;={veV®rL; (z®1)-v=_1®0 7 (z)) -z, Vz € F'}.

Each summand is an L-vector space of dimension n. The coset space G(L)/ K
parametrizes lattices for Op ®o, Or in V ®p L, or equivalently Z/fZ-graded
Oy -lattices,

M= @ M, (5.2)
JEZ/FZ
where each Mj is an Op-lattice in Nj.

Next we fix a conjugacy class of one-parameter subgroups of G. Under the
decomposition

GopL= [] GLOV;) (5.3)
JEZ/fZ

this corresponds to an f-tuple of dominant cocharacters of GL,,,
p=(tj)jez/5z, b5 €(Z")4, Vi=1,....[. (5.4)
Finally, let b € G(L) and consider the o-linear operator
F=b (idy ®0) (5.5)

on V ®p L. Then deg F' =1 with respect to the grading (5.1). We introduce the
set

X(u7 bk @ inv (M,FM) = p}. (5.6)
JEZ/fZ

The last condition is equivalent to inv(M FM 1) = p, Vj € Z/fZ, where
each invariant is considered as an element of (Z ) Note that if pq,...,us are
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all minuscule, then by the minimality of minuscule elements with respect to the
!

partial order < on (Z"),, the set )%(p., b)k coincides with the set X (u,b)x of
section 3.

Theorem 5.1. We have

o]

X(p, b)) #0 < [b] € B(G, p).

We note that the direct implication is just the group theoretic version of
Mazur’s theorem which was proved in [RR]. To make the set B(G, p) more explicit,
we note the Shapiro bijection [K I1], 6.5.3.

B(G,p) = B(C, ). (5.7)

Here G’ = GL(V) is defined over I and
=3 b (5.8)
J

The map is obtained by associating to the o-linear operator (5.5) of V ®@p L the
of- linear operator on Ng =V ®pr L,

Ff : NO — No. (5.9)

The condition that [b] € B(G, p) is equivalent to the condition that the slope
vector v = v(F/) € (Q")4 be smaller than z/. Let us now fix b € G(L) satisfying

this condition and let us construct an element in )O( (p,b) . Let M = D, Mj be
any Z/ fZ-graded lattice and put

M;=FM_j, §=0,...,f (5.10)
Then Mj is a lattice in Ny and we obtain the following description of )O( (p,b)K:

X(p,b)x ={(Mo, My, ..., My); My = F' Mo, (5.11)
il’lV(]\Ij7 Mj+1) = My, VJ = 07 s 7f — 1}

We now apply Theorem 4.11 to the isocrystal (Vg, F'/). Since v < i/ we obtain
the existence of a lattice My in Ny such that

inv(My, F'F My) = 1. (5.12)
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We put My = FfMjy. To complete the proof of Theorem 5.1, it therefore remains
to fill in the remaining lattices My, ... , My_1. That this can be done follows from
the following well-known lemma.

Lemma 5.2. Let pg,...,pp1 € (Z™)1 be dominant vectors and let pn = 37 p;.
Let Mo, My be lattices with inv(Mo, My) = p. Then there exists a collection of
lattices My, My, ..., My_q such that inv(M;, M; 1) = p;, V5 =0,..., f—-1. O

Now let (V;(, )) be a symplectic vector space of dimension 2n over I’ and
let G = Rpyp(GSp(V,(, ))). Let K C G(L) be a special maximal parahoric
subgroup defined over I. The coset space G(L)/ K parametrizes Z/ fZ-lattices
M = @jeZ/fZ M; which are selfdual with respect to {, ) ® L up to a scalar in
F' ®p L. Since the summands in (5.1) are orthogonal to one another, we may
write

M = @D M; , where M} =c; - M;, ¢; € L, ¥j € Z/fZ. (5.13)
J

A conjugacy class of one-parameter subgroups of G corresponds to an f-tuple
of dominant cocharacters of GSp,,,,

p=(p3)jez/ 12, Hi € Xe(A)dom. (5.14)

Here X, (A) denotes the cocharacter module for GSpy,, and X, (A)qom = X«(A)N

(Z%")+.
Finally, let b € G(L), with associated o-linear operator F' = b - (idy ® o) on
V ©p L. We introduce the set

)O((u, b)g = {M = @ M;; Mjl = ¢;M; for some ¢; € L, Vj, (5.15)
JE€Z/fZ
inv(My, Mjy1) = py, Vit
We introduce as before the lattices M; = K J\;Lj forj =0,...,f. Then, since b is
a symplectic similitude, it follows that each lattice M; is self-dual up to a scalar.

We therefore may identify )o( (p, b) i with

iIlV(]\4j7 Mj+1) = M5, Vj = O7 T 7f — 1}
Theorem 5.3. We have

X(p,b)x £0 < [bt] € B(G, p).

‘We only sketch the proof which is analogous to the proof of Theorem 5.1. Again
the direct implication follows from [RR]. To see the reverse implication, let us



176 R. Kottwitz and M. Rapoport CMH

assume that [b] € B(G, ), or equivalently, that the slope vector of F// : Ny — Ny
is smaller than p/ =" g An application of Theorem 4.11 shows that there exists
alattice My which is selfdual up to a scalar such that inv(My, F'f My) = u'. We put
M; = FIMy. Applying Lemma 5.2 we find a chain of lattices Mg, M7, ... s Mp_q
such that inv(M;, M 1) = p; for j =0,..., f—1. But My is selfdual up to a scalar
and pig, ... ,pp—1 € Xi(A)dom; this implies successively that My, My, ..., My 4

are all selfdual up to a scalar. Hence we have indeed found an element of )% (p,b) K.

O

6. An incidence variety

Let k be an algebraically closed field of characteristic p. We fix a positive integer
f. For each 1 € Z/ fZ we fix a vector space W;, all of the same dimension m > 0.
Furthermore, for each i € Z/fZ we fix a semi-linear map ¢; : W;_; — W; with
respect to some automorphism ¢; of k£ and a semi-linear map ; : W; — W,_1 with
respect to some automorphism 7; of k. We assume that o; and 7; are all powers
(positive, negative, or zero) of the Frobenius automorphism of k. We impose the
conditions

viop; =0, w0, =0, VieZ/fZ. (6.1)

We might picture these data in a circular diagram. Whenever you turn back while
traveling through this diagram you are killed (Orpheus condition).

Wy
o1 /S 1 P2 N\ #2

Wo Wa (6.2)

onliﬁo Tl

The aim of the present section is to prove the following theorem.
Theorem 6.1. There erists a collection of lines £; C W; (1 € Z/ fZ) such that
pi(li-1) C by Pi(l;) C i, Vi€ Z/fZ.
Before starting the proof we make some comments. In the case f = 1 we are

given a vector space W # (0) and two semi-linear endomorphisms ¢ and ¢ of W
such that o = ¢ = 0. In this case we are looking for a line ¢ in W which is
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carried into itself under ¢ and . This is essentially the situation considered in
the proof of Lemma 1.3 where the existence of such a line is established. In the
case f = 2 we are looking at a diagram

¥Y1
AN
P1

L
Wo w1 (6.3)
Yo
—_—
Yo

29
We are searching for a pair of lines (£, ¢1) which are incident under g, 19, ©1, ¥1.
In this case it is again possible to establish the existence of such a pair of lines by
pure linear algebra. But already in this case a large number of case distinctions
has to be made and this approach quickly gets out of hand for a larger number of
vector spaces. Instead we use a density argument together with induction on f to
reduce the problem to a special case that can be treated directly.

Proof of Theorem 6.1. The special case goes as follows. Put

D= prpr1... 0201, (6.4)

a semilinear endomorphism of Wy, and assume that there exists a line £y in W such
that g = €y. Fori=1,..., f—1 definealine ¢; in W; by 4; :== p;0; 1 ... p2901£0.
Then p;€; 1 = ¢; and ¥;¢; = 0 for all 1 € Z/f7Z, so this collection of lines solves
our problem.

The following reduction technique will be needed in the induction on f. Sup-
pose f > 1 and that there exists j such that ¢; is bijective, in which case ¢; is
automatically 0. Given any family of lines ¢; solving our problem, we must have
£;_1 = 145, Using o, to identify W;_; with W}, and discarding the two maps
Yj, @; = 0, we are left with f — 1 vector spaces ..., W; o, W, 1 = W; W,14,...
and maps ¢;,¥; (¢ # 7) between them. In other words we have a new problem
of the same kind as our old one, but with f decreased by 1. There is an obvious
bijection between solutions of the old and new problems.

The idea of the density argument is to fix f, W;, oy, 7, and then to consider
the space M of all possible families of maps ¢;, 1; satisfying condition (6.1). More
precisely, for any finite dimensional k-vector spaces W, W’ and any integral power
7 of Frobenius, we denote by Hom, (W, W’) the k-vector space of 7-linear maps
¢ : W — W/, with scalar multiplication by « € k defined by (ay)(w) = a(p(w))
(for all w € W). Returning to our fixed data f, W;, o;, 7;, we now put

H; == Hom,,(W;_1, W;) x Hom,,(W;, W,_1), (6.5)

a finite dimensional k-vector space which we regard as a k-variety. Inside H; we
have the closed subvariety

M; = {(ps, ¥s) € H;  hyp; = 0 and p;¢0; = 0} (6.6)
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Finally we put M = HiEZ/fZ M;, the space of all families of maps ¢;,v; satisfying
(6.1), which we are now regarding as a (reducible) algebraic variety over k.

Writing P; for the projective space of lines in W, and writing P for the product
P = [z /tZ P;, we consider the total incidence variety I C M x P consisting
of (¢s,vi)icz/rz € M and (£;);c7, 7 € P such that

wili_1 C ¥y and by C (6.7)

for all i € Z/fZ. It is easy to see that [ is closed in M x P, hence that the
projection map « : I — M is proper. Thus M’ := (M) is closed in M, and since
Theorem 6.1 can be reformulated as the statement that M’ = M, it is enough
to show that M’ is dense in M. For this we need a better understanding of the
irreducible components of M.

Recall that all the vector spaces W; have the same dimension m > 0. For any
family r = (7);c7, sz of integers r; such that 0 < r; < m, we denote by M, the
subset of M consisting of families (4, v );cz, sz such that rank(p;) = r; for all
i€ Z/fZ. (As usual rank(ep;) is the dimension of the image of ¢;.) Thus M has
been decomposed into finitely many locally closed subsets My, and it is not hard
to see that each subset M, is irreducible. (In the linear case, i.e. when oy, 7; are
the identity, the projection map (¢, v:)icz ¢z — (¥i)icz/rz Mmakes M, into a
vector bundle over a homogeneous space for a product of general linear groups; in
general My is homeomorphic to such a vector bundle, and is therefore irreducible.)

For each r as above we are going to define a non-empty open subset Uy of My
such that Uy € M’. This will show that M’ is dense, as desired.

We define Uy to be the subset consisting of (¢, wi)igz/fz € M, satisfying the
following two open conditions. The first is that rank(y;) = m — r; for all ¢ (an
open condition since rank(v;) < m —r; follows from ¢;¢; = 0).

To formulate the second condition we again consider ® = @rp;_1... 0201,
the semilinear endomorphism of Wy that appeared in our earlier discussion of the
special case of the theorem. Note that rank(®) < ryiy = min{r; : i € Z/fZ}.
Let @ : im® — im ® denote the restriction of ® to the image of ® in Wy. The
second condition is that rank(®) = r,;;, and that the map ¢’ be invertible. This
is again an open condition on (v;,¥;);cz)rz € My.

We claim that U, is non-empty. Choose a basis in each vector space W, so
that we can represent the semilinear maps ;, ¥; by m x m matrices. Write F; for
the m x m diagonal matrix 1°0™~*% and F\ for the m x m diagonal matrix 051775,
Then put ¢; = E, 04, ¥; = F,,7;. Clearly (¢4, ¢i)i€Z/fZ lies in Us.

It remains to check that Uy C M’. In other words for (y;,i)icz/5z € Ur We
must show that there exists a solution to the problem of finding lines ¢; C W; such
that

wili_1 Ty, il Tl

There are two cases.
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Suppose first that rpyi, = 0, so that there exists j € Z/fZ such that r; = 0.
Thus ¢; = 0 and it follows from the first open condition that «; is bijective. In
this case we are done by induction on f, as discussed earlier.

Now suppose that rpi, > 0. By the second open condition im ® # 0 and the
restriction of ® to im & is bijective. Therefore there exists a line g in im ® C W)
such that ®¢5 = ¢y. From the special case treated directly at the beginning of this
proof we know that suitable lines ¢; do exist, and thus the proof the theorem is
complete. O

Remark 6.2 (O. Gabber). The conclusion of Theorem 6.1 is not true without
any hypotheses on the algebraically closed field k£ and the automorphisms o; and
7; of k. Indeed, in the case when all ¥; are zero, the theorem asserts the existence
of an eigenvector of the semi-linear map ® = psps_1---@op1. However, such an
eigenvector need not exist in general.

7. General parahoric subgroups

In this section we will prove Conjecture 3.1 in the cases when G' = Rp/,p(GLy)
or G = Ry p(GSpy,,), where I is an unramified extension of F.

We start with the first group. We recall some notation from section 5. Let
I’ be an unramified extension of degree f of F. Let V be a I’-vector space of
dimension n. After fixing an embedding F’ — L, we have a decomposition (comp.

(5.1));
VepL= € N;. (7.1)
J€Z/fZ

Let I C Z / nZ be a non-empty subset. As in section 1 we denote by I the inverse
image of I in Z. A Z/fZ-graded periodic lattice chain of type I is a set of Z/ fZ-
graded Op-lattices, one for each i € I,

M= @ M. (7.2)

JEZ/fZ

Here ]\71; = M?N N;. We require that, for fixed j the lattices M; form a periodic
lattice chain of type I in Ny, in the sense of (1.4). We denote by XIQ the set of
7/ fZ-graded periodic lattice chains of type I. The conjugacy classes of parahoric
subgroups of G(L) defined over F' are in one-to-one correspondence with the non-
empty subsets I of Z/nZ. If K is of type I we may identify G(L)/K with X¢.

We fix integers r; with 0 <r; <n, Vj € Z/fZ. We denote by p = (115) ez, sz
the corresponding minuscule dominant coweight of G, with p; = w, .

Let b € G(L). Then b defines the o-linear operator F' =b-(idy ® o) on V®p L,
which is of degree 1 for the grading (7.1). Taking into account the identification
of the p-admissible set with the p-permissible set for GL,, (compare the end of
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section 3) we may identify the set X (u,b)x of (3.7) in case K is of type I with
the following set

X(p,b);={(M});s € X¢; M D> FM; | D>rxMj, (7.3)
dimpMi/FM}_| =r;, ¥j € Z/fZ, Vi€ I}.
For each i € I and each j with 0 < j < f let us set M} = FjMij. Let N = Nj.

Then for fixed j, the lattices (M}); form a periodic lattice chain of type I in N.
In section 1 we denoted the set of periodic lattice chains of type I in N by Xj.

Let us continue to do so. We therefore obtain from an element of X IQ an f-tuple
of elements of X7. We see that in this way we may identify X (u,b)x with the
following set
X(p,b); = {(M}); €X]; M} = F/ Mg, (7.4)
Viel, 7=0,...,f—1}

Theorem 7.1. Conjecture 3.1 holds for G = Ry p(GL(V)).

We proceed as in the proof of Proposition 1.1. If I consists of a single element,
the statement (i) in Conjecture 3.1 follows from Theorem 5.1. Again in statement
(ii) it suffices to deal with the case when K is an Iwahori subgroup, and this is
then reduced to proving the surjectivity of the map

X(pb)r — X(p,b) 7 (7.5)

when J C I differ by one element. It therefore suffices to show the following
analogue of Lemma 1.3.

Lemma 7.2. Consider a commutative diagram of inclusions of lattices in N,

My > My > ... D My, D> My = F/M
u U u u

My > M{ > ... > M, D> M, = FM
U U U U

My D wMy D ... D wM;_ D wM; = 7 Ff My,

where My O M1 D wMj and M} D M;Jrl D wM; with
dimp M;/M; 11 = dimp M;/M y =r; forj=0,1,... f—1
Assume that My # M for one j, or equivalently, for all j. Then there ezists a

chain of lattices
LoD>L1D...D L1 DLy =FlL
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with the following properties
a) Lj D) Lj+1 D) 7TLj with dimFLj/Lj+1 =Ty, forj=0,...,f—1
b) M; C Ly C M; with dimFLj/MJ’v =1, forj=0,...,f—1

Proof. Consider for j =0,...,f — 1 the F-vector space
W; = MJ/MJ’ (7.6)

These vector spaces have all the same dimension > 1. The inclusions M1 C M,
resp. multiplication by 7 induce linear maps ¢ resp. ¢,
Py '
Wj Wj+1 7 :O7 7f—2. (77)
¥

Similarly F'f : My — My 1 and = - (FH-1: M;_1 — My induce of-linear resp.
o~/ linear maps ¥ resp. ¢
&

Wo__  W; 1. (7.8)
Y

It is obvious that we obtain in this way a diagram of the form (6.2) which satisfies
all hypotheses of Theorem 6.1. We infer the existence of lines (¢; C W}); which
are incident under the system of maps ¢ and . Let L; C M; be the inverse image
of £;, for j=0,..., f —1. Then we obtain a chain Lo D L1 D> ... D Ly_1 D Ly =
F¥ Lo which has the required properties. O

Variant 7.3. Let [’ be an unramified extension of degree f of F' and let D be a
division algebra with center V. Let V be a D-vector space of dimension m. Let
G = Rpyp(GLp(V)). Then G is an inner form of Rp//p(GLy,), where n = md
with d2 = dimp D. Since G is not quasisplit, Mazur’s inequality and its converse
do not apply directly. Still we will show by reduction to the case of Rp//p(GLy,)
that conjecture 3.1 holds also in this case. To simplify notations let us restrict
ourselves to the case f =1, ie., [/ = F.

Let Op be the maximal order in D. Let F be an unramified extension of F' of
degree d in D. Then we may write Op as

Op =Op[)/(IT-a=a’ -1 Ya€ Oz T¢=n). (7.9)

Here I1 is a uniformizer of Op and s is inverse to the invariant of D in Z/dZ.
Let us fix an embedding F' — L. Then we obtain an eigenspace decomposition
analogous to (7.1),

VerL= E N;. (7.10)
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Each L-vector space N; is of dimension n and deg Il = s with respect to this
grading. Put N = Np. Let K cC G(L) be a parahoric subgroup maximal among
those defined over F. Then G(L)/K parametrizes the lattices M in V @p L
which are Op ®o, Op-invariant. Such a lattice is a free module of rank m over
Op ®o, Or. We associate to M the periodic lattice chain in N,

LM)=..DMyD>IM_,>I?M_9,> .. DMy =My > .... (7.11)

Here M; = M N Nj, so that M = ¢, M;. Then L(M) is a periodic lattice chain
of type I = {0,m,...,(d—1)m} C Z/nZ. In this way we obtain a bijection

G(L)/K = X7~ CQL,(L)/K7. (7.12)

Here K7 is a parahoric subgroup of GL,, defined over F' and we have implicitly
chosen a basis of the L-vector space N. More generally, we obtain a bijection
between the sets of conjugacy classes of parahoric subgroups of G(F') and the
non-empty subsets I C Z/nZ which are invariant under the translation action
z+— z+m on Z/nZ. If K corresponds to I, then again

G(L)/K = X7~ QL,(L)/K7.

Let b € G(L). Then b defines the o-linear operator F' = b-(idy ®0o) on V&g L.
The relation between the Newton point of b and the slope vector of F' is given by

v(F) = (v(b)%). (7.13)

Here v(b)? € (Q™?)4 is the vector which repeats d times each entry of v(b) €
(Q")4. Let K C G(L) be a parahoric subgroup maximal among those defined
over F. We identify WX \ W /WX with W1\ W/W!, where I = m - Z/nZ and
where W1 = Wk, (Something analogous holds for any parahoric subgroup of
G(L) defined over F'). Let g,¢' € G(L)/f(. Let M and M’ be the corresponding
Op ®o, Orp-stable lattices in V ®p L, with corresponding decompositions M =
@jeZ/dZ M; and M’ = @jeZ/dZ MJ/ and corresponding periodic lattice chains
L(M) and L(M’). Let p € (Z"™)4 be a dominant cocharacter of G. Then

inv(g,g') € Admg (p) <= inv(L(M), L(M")) € Admg (u) (7.14)
= inv(My, M3) < p, Vj€Z/dZ.
Assume now that ¢’ = bo(g). Comparing the lattices M and M’ in V ®p L, we

obtain from (7.14) that
inv(M, FM) < (). (7.15)

(Here inv denotes the relative position of two lattices in V ®p L ~ L"?) By
Mazur’s inequality we infer that v(F) < (u). By (7.13) this implies that v(b) < p.
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This proves one implication of statement (i) in Conjecture 3.1. The remaining
assertions of the Conjecture follow from the case of GL,, and the preceding remarks
connecting the case at hand to the case of GL,,. O

We now turn to the case G = Rp//p(GSpy, ). We now let V' be an I'-vector
space of dimension 2n equipped with a non-degenerate symplectic form ( , ).
Let G = Rp/p(GSp(V,(, ))). The decomposition (7.1) is an orthogonal sum
decomposition with respect to (, ). Hence each summand ; is a symplectic
vector space of dimension 2n over L.

The conjugacy classes of parahoric subgroups of G(L) defined over I are in
one-to-one correspondence with the non-empty symmetric subsets I of Z/2nZ. A
Z/ fZ-graded periodic lattice chain (M;)” of type I is called selfdual, if for each
j € Z/ fZ the periodic lattice chain Mj of type I is selfdual in the sense of (2.3).
We denote by X[Q the set of Z/ fZ-graded selfdual periodic lattice chains of type
I. fKisa parahoric subgroup of type I defined over F, we may identify the
coset space G(L)/K with X¢.

We fix integers r; € {0,n,2n}, Vj € Z/fZ. We denote by u = (u;),cz/ sz the
corresponding minuscule dominant coweight of G, with p; = w;.

Let b € G(L). Then b defines the o-linear operator F'=b-(idy ® o) on V ®p L.
It is of degree 1 with respect to the grading (7.1) and there are scalars ¢; € L,
Vj € Z/fZ such that

(Fv, Fw) = ¢; - (v,w), v,w e Nj. (7.16)

We have the following description of the set X (u, b)x of (3.7) in case K is of type
I,

X, b)r = {(M)s; € XF5 (M]) € X(ps,b)1}- (7.17)
Here X(p,b)r is the set (7.3) for the group Ry p(GL(V)). In other words, the
elements of X “(u,b); are the Z/fZ-graded selfdual periodic lattice chains (MJ’)
of type I which satisfy

M} > FM;_ D> aMj; dim M}/FM; | =v;, Viel, Vi €Z/fZ.  (7.18)
Theorem 7.4. Conjecture 3.1 holds for G = R, p(GSp(V, (, ))).

We proceed as in the proof of Proposition 2.1. If I = {0}, the statement (i) of
Conjecture 3.1 follows from Theorem 5.3. In statement (ii) it suffices to deal with
the case when K is an Iwahori subgroup, and this is then reduced to proving the
surjectivity of the map

XG(/J'7 b)f—>XG(f"’7 b) 7 (7.19)

in the situation considered in (2.5). In other words,

I=Ju{k+T1,—(k+1)}, whereke Jwithk+1¢&J .
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We choose as in (2.5) a representative k of k in Z and denote by ¢ the next largest
element in .J. The assertion reduces to the corresponding statement for Glo,
(Lemma 7.2) with the following variant of Lemma 2.3.

Lemma 7.4. Let J C I as above. Let (M;) be a Z/fZ-graded selfdual periodic
lattice chain of type J. The set of refinements of(M;) into a Z/ fZ-graded selfdual

periodic lattice chain of type I 4s in one-to-one correspondence with the set of
Z/fZ-graded lattices (M) c7, sz with the property that

M} C My C M} and dimpM;/MF =1, VjeZ/fZ.
Proof. This follows from Lemma 2.3 applied to each direct summand N;, j € Z/fZ.
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