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Commentarii Mathematici Helvetici

GW invariants and invariant quotients

Mihai Halic

Abstract Given a complex projective variety and a connected reductive group acting on it
we investigate the relationship between the Gromov{Witten invariants of the variety and those

of its invariant quotient for the group action Certain so-called Hamiltonian invariants naturally
appear in the context

Mathematics Subject Classi¯cation 2000 14H10 14L30 14N35

Keywords Gromov{Witten invariants group actions Hamiltonian invariants

Introduction

Gromov{Witten theory became a major tool in enumerative geometry because

the Gromov{Witten invariants GW-invariants for short give in some cases the

number of curves in projective varieties satisfying certain incidence conditions

However it is usually quite di±cult to explicitly compute these invariants and
therefore it is useful to know their behavior under `modi¯cations' of the variety
we start with; typical examples are the blow-up or the symplectic connected sum

In the present paper we are dealing with group actions The starting point
of this study was the question: given a projective variety and a group acting on
it is there any relationship between the GW-invariants of this variety and those

of its quotient for the group action In this form it is rather hopeless to answer
the question so that it eventually became: given a projective variety X with a

very ample line bundle OX 1 X and a connected linearly reductive group G
whose action on X is linearized in OX 1 is there any relationship between the

GW-invariants of X and those of its invariant quotient X G under the additional
assumption that G acts freely on the G-semi-stable locus of X Certainly such
an assumption makes the geometric invariant theory on X trivial because in this
case Xss X G is simply a principal G-bundle We shall see however that this
assumption appears quite naturally in the context and even so we will have to
face rather complicated situations

The strategy adopted to attack the question above is the following: the G-
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action on X induces one on the space of stable maps to X and two maps in the

same G-orbit with image contained in the semi-stable locus of X induce the

same map into the quotient The ¯rst idea which comes to mind is to compare

the invariant quotient for this action of the moduli space of stable maps to X
with the moduli space of stable maps to the quotient X G For a reason which
will become clear in a moment this strategy is correct only in genus zero for in
higher genera changes are needed

Let me present more precisely the setting of the problem: the group G and
the variety X are as above and A 2 H2 X ; Z is a homology class which can
be represented by a morphism C Xss with C a smooth projective curve of
genus g; we let Â : Á¤A 2 H2 X G; Z be the push-forward for the projection
Á : Xss X G What we would like to compute are the GW-invariants of X G
corresponding to the class Â

For making clear the logic of the article I shall start with a naive comparison
of the expected dimensions of the moduli spaces of stable maps involved here the

precise meaning of the notations will be given later on :

D̂
: exp dim Mg;k X G; Â 3 ¡ dim X G g ¡ 1 + c1 X G ¢ Â + k;

D¡ dim G: exp : dim :Mg;k X; A G
3 ¡ dim X g ¡ 1 + c1 X ¢ A + k ¡ dim G;

and therefore

D̂ ¡ D ¡ dim G g ¢ dim G:
From this computation we deduce that in general the space Mg;k X G; Â is larger
than Mg;k X; A G the only exception happening in genus zero Very shortly
the explanation for this phenomenon is that the projective line is the only one

smooth curve which has the property that the trivial principal G-bundle over it is
rigid In higher genera the trivial principal G-bundle can be deformed in 'several
directions' whose number agrees with the di®erence above This is the reason
why for computing higher genus invariants of X̂ we will need to consider maps

into a larger variety ¹X whose construction in the case when G is a torus is given
in lemma 6 1

The article is organized as follows: the ¯rst section recalls some basic facts

about stable maps and their moduli spaces the reference being [9]
In section 2 we describe the G-semi-stable points of the moduli space of stable

maps Mg;k X; A The results obtained in this section hold in full generality no
matter what the G-action on X looks like We obtain the su±cient result theorem
2 5 which says that a map with image contained in the semi-stable locus of X
is G-semi-stable as a point of Mg;k X; A and a necessary result corollary 2 4
which says that a stable map representing a G-semi-stable point of M g;k X; A
does not have its image contained in the unstable locus of X

Section 3 characterizes the semi-stable points of M g;k X; A from a symplectic
point of view which will be useful later on in section 6 where we will give an
algebro-geometric construction of the space of maps needed for de¯ning certain
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`Hamiltonian invariants' We compute an explicit formula for the moment map on
the space of stable maps which corresponds to a C¤-action proposition 3 5 and
using it we give theorem 3 7 a second proof for theorem 2 5

Finally section 4 closes the ¯rst part of the article giving a partial answer to the

initial problem that of comparing the genus zero GW-invariants of X and X G
Theorem 4 2 states under certain transversality assumptions which are technical
in nature that if G acts freely on the semi-stable locus of X A is a spherical class

for which a representative may be found to lie entirely in the stable locus Xss and
Â denotes the push-forward class in X G then

GW 0;k
X G;Â

â1; : : : ; âk GW0;k
X;A a1³; : : : ; ak :

In this equality the ai's are the classes on X determined by the âi's on X G
via the rational quotient map essentially by pull-back and ³ denotes the class

of a rational slice for X K X G We conclude the section with some explicit
computations

Sections 5 6 and 7 grew out from the attempt at understanding from an al-
gebraic point of view the Hamiltonian invariants de¯ned in [6] and [14] in the

case of torus actions Maybe I should say a word about the origin of this inter-
est: on one hand in sections 2 and 3 we have tried to develop the algebraic tools
needed for computing the GW-invariants of a quotient variety while on the other
hand the papers [6] and [14] bring into the scene some new invariants constructed
using real-analytic methods which are associated to Hamiltonian group actions

on symplectic manifolds For particular choices of certain parameters these ones

should compute the GW-invariants of the Marsden{Weinstein quotient of the sym-
plectic variety on which the group acts Since in the case of projective varieties

the symplectic reduction and the geometric invariant quotient basically agree it
was natural to try relating the two constructions: the algebro-geometric and the

real-analytic one

It turns out that the construction of these `Hamiltonian invariants' ¯ts well in
the frame of the previous sections We identify proposition 6 2 the moduli spaces

introduced in [6 14] with the space of stable maps into the variety ¹X : P£ C¤ rX
where P P ic0C r

£ C denotes a Poincar¶e bundle parameterizing principal
G C¤ r-bundles over the curve C so that the real-analytic and the algebraic
points of view actually coincide

In the last section we prove theorem 7 2 under the same transversality as-
sumptions as in theorem 4 2 the conjecture formulated in [6] which states that for
certain choices of the parameters these Hamiltonian invariants of X coincide with
Gromov{Witten invariants on the quotient X G

Acknowledgements I thank both referees for their remarks which have helped
me to improve the presentation of this article and also for pointing out errors in
the original manuscript
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1 Some preparatory material

In this section I shall recall from [9] the de¯nition of a stable map the construction
of the space Mg;k X; A as a projective scheme and the description of an ample
line bundle on it

In the whole paper X denotes a complex projective irreducible variety and

OX 1 X denotes a very ample line bundle on it; let X Pr be the embedding
given by the linear system of OX 1

De¯nition 1 1 A stable map [ C; x; u ] to X consists of the following data:
i a connected reduced complete algebraic curve C; x with k distinct marked

points x x1; : : : ; xk The singularities of C are at most ordinary double points

and the markings lie in the smooth locus of C ;
ii the equivalence class of a morphism u : C; x X Two morphism

u : C; x X and u0 : C0; x0 X are equivalent if there exists an isomorphism
° : C C0 such that ° xj x0j for j 1; : : : ; k and u u0

± °;
iii the stability means that the automorphism group of the map C; x; u is

¯nite

By abuse of language we shall often call a stable map and denote it by C; x;u
the morphism u : C;x X itself satisfying i + iii and not the equivalence

class de¯ned by it
A stable map [ C; x; u ] is said to represent the 2-homology class A 2 H2 X ; Z

if u¤
[C] A Composing such a map with the inclusion X Pr one obtains a

stable map to Pr which represents an integral multiple d of the class ` of a line

in Pr In the sequel we shall brie°y recall the construction of the moduli space

Mg;k Pr; d of stable maps of genus g with k marked points representing the class

d` 2 H2 Pr ; Z The moduli space Mg;k X; A will be a closed subscheme of it
It is immediate that the stability condition is equivalent to the fact that the

line bundle L C;x;u : C x1 + ¢ ¢ ¢ + xk ­ u¤OX 3 C is ample and a combi-
natorial argument proves that there is an integer f ¸ 1 having the property that
for any stable map C; x; u to Pr of genus g and with k marked points repre-
senting the class d` 2 H2 Pr; Z the line bundle L­fC;x;u C is very ample and

H1 C; L­f
C;x;u 0 Fix such an integer f once for all For any k-pointed genus

g stable map C; x; u representing the class d` one gets an embedding

uY : jL­f
C;x;u j; u : C ¡ P³H0 C;L­fC;x;u

_´ £ Pr » PN
£ Pr : Y;

into a product of two projective spaces The dimension of the projective spaces

P³H0 C; L­fC;x;u
_´ is independent of the choice of the stable map with the prop-

erties mentioned above and is given by a Riemann-Roch formula Notice that C is
determined as a subvariety of Y up to a P Gl N + 1 -action and that the Hilbert
polynomial P of C inside Y does not depend on the choice of the stable map
C; x; u Denoting by H : HilbP

Y
the Hilbert scheme of closed subschemes of Y
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whose Hilbert polynomial is P to each stable map C; x;u one associates a point
in H £ Y k as follows:

C; x; u 7 uY ¤C; uY x1 ; : : : ; uY xk :

The natural P Gl N + 1 -action on PN induces an action on H £ Y k and two
stable maps C1;2; x1;2; u1;2 are isomorphic if and only if they are in the same

PGl N+1 -orbit The stability condition translates into the fact that the stabilizer
of any stable map under this action is ¯nite

It is proved in [9] that there is a certain subscheme S of H £ Y k such that
Mg;k Pr; d S P Gl N + 1 One of the main results obtained in that paper is
that Mg;k Pr; d is a separated and proper scheme projective over C Following
[9] we are going to describe an ample line bundle on Mg;k Pr; d The Hilbert
scheme H is projective an embedding of it into a projective space being obtained
as follows: L : OPN 1 £ OPr 1 Y is a very ample line bundle and for large

enough integral values of l the restriction homomorphism

W : H0 Y; L
l 0

©

k

Mj 1

H0 Y; L
l j ¡ H0 Y; OC ­Ll

©

k

Mj 1
L

l
xj

is surjective at each point C; x1; : : : ; xk 2 H£Y k For distinguishing between the

di®erent direct summands of W we have used upper indices for the same vector
space H0 Y; Ll Moreover under the same assumption that l is large enough the

dimension

dim H0 Y; OC ­ Ll
©

k

Mj 1
Ll

xj P l + k : q + k

is independent of the point C; x1; : : : ; xk 2 H £ Y k

It is proved in [7] that the map

H £ Y k ¡ Grq+k W_ ;

C; x 7
0
@

H0 Y; OC ­Ll
©

k

Mj 1
Ll

xj1
A

_

is a closed immersion Composing it with the usual projective embedding of the

Grassmann variety one obtains the projective embedding of H £ Y k:

H £ Y k ¡ P Ã
q+k

^ W_ ;

C;x 7 det
0
@

0
@

H0 Y; OC ­ Ll
©

k

Mj 1
Ll

xj1
A

_

1
A

:
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The induced ample line bundle on H £ Y k is

det Qk : det ³Q ¢ Ll ¢k
´ ; 1 1

where Q Grq ³H0 Y; Ll _´ is the universal quotient bundle The ¯bre of Qk

at a point C; x 2 H £ Y k is Qk C;x H0 Y; OC ­ Ll © L
l
j 1 Ll

xj Since Qk
is invariant under the P Gl N + 1 -action det Qk is also It is proved in [9] that
det Qk descends to an ample line bundle on Mg;k X; A S P Gl N + 1

2 The semi-stable points on Mg;k X; A

Here is the setup: G is a connected linearly reductive complex algebraic group
which acts on the complex irreducible projective variety X and we choose a

very ample line bundle OX 1 X which is G-linearized This action naturally
induces one on the space of stable maps by

G £ Mg;k X; A ¡ Mg;k X; A ;

g; [ C; x; u ]
7

[ C; x; gu ];

where gu : C X is de¯ned by gu p : g ¢ u p for all p 2 C In order to
compute the geometric invariant quotient of M g;k X; A we need a linearization
of the action in an ample line bundle

The linearized G-action on X extends to a linearized action on

OPr 1 Pr : P³H0 X; OX 1 _´
such that X is invariant We have already mentioned in the previous section that
Mg;k X; A is a closed subscheme of Mg;k Pr; d and on this last one we have

described an ample line bundle Our next task is to linearize the G-action in it
Using the notations of the previous section M g;k Pr ; d S P Gl N+1 where

S is some subscheme of H£Y k On H£Y k there are two actions: the ¯rst one is the

PGl N +1 -action on H and the second one is the G-action induced by that on the

factor Pr in Y PN
£Pr Since the P Gl N +1 and the G-actions on Y commute

the induced actions on H £ Y k commute also For this reason G-semi-stable
points on Mg;k Pr; d will be the images of G-semi-stable points of S; therefore it
is enough to describe the linearized G-action on detQk H £ Y k Since G acts

on L Y it acts also on H0 Y; Ll by gS y : gSg¡1y for all S 2 H0 Y; Ll
and all y 2 Y The dual action on H0 Y; Ll _ is given by g; §

7

g§ where

hg§; Si : h§; g¡1Si The induced action on
q+k

^ W_ is now obvious because

W H0 Y; Ll 0
© L

k
j 1 H0 Y; Ll j

For ¯nding the G-semi-stable points we shall use the Hilbert{Mumford crite-
rion Given ¸ : C¤ G a one parameter subgroup of G a 1-PS for short there
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is a ¯nite direct sum decomposition corresponding to the characters of C¤:

H0 Y; Ll M
m2Z

H0 Y; Ll m;

¸ t S tmS 8t 2 C¤ 8S 2 H0 Y; Ll m:

We want to ¯nd out when the point

2

4

q+k

^ 0@
H0 Y; OC ­Ll 0

©

k

Mj 1
Ll

xj1
A

_

3

5

2 P Ã
q+k

^ W _

is ¸-semi-stable so we have to study the C¤-orbit of a representative of this point

in
q+k

^ W_

Let ¾1; : : : ; ¾q be a basis of HomC ¡H
0 C; Ll 0 ; C¢

and ¿1; : : : ; ¿k be generators

of Hom Llxj ; C j 1; : : : ; k Notice that the choice of the ¿j 's is equivalent to
the choice of representatives x0j 2 CN

£ Cr+1 of xj xj;1; xj;2 2 Y because

Lxj OPN¡1 1 xj;1 ­OPr 1 xj;2 Using the epimorphism

W H0 Y; Ll 0
©

k

Mj 1

H0 Y; Ll j {C¡ H0 C; Ll
©

k

Mj 1
Ll

xj ¡ 0;

¾1; : : : ; ¾q ; ¿1; : : : ; ¿k can be extended to linear functionals on W

S1; : : : ; Sq : H0 Y; Ll 0 ¡ C

hSj ; Si : h¾j ; {C Si j 1; : : : ; q 8S 2 H0 Y; Ll 0

and
T1; : : : ; Tk : H0 Y;Ll ¡ C

hTj ; Si : h¿j ; S xj i j 1; : : : ; k 8S 2 H0 Y; Ll j :

The Tj 's represent just the evaluations of the homogeneous polynomial S at the

points x0j representing xj
Let us remark that the linear functionals Sj act only on H0 Y; Ll 0 and eval-

uate identically to zero on the other copies H0 Y; Ll j j 6 0 A similar remark
is valid for the Tj 's: they evaluate identically to zero on H0 Y; Ll j0 j0

6 j
The semi-stability condition reads

0
62 C¤ ¢ S1 ^ ¢ ¢ ¢ ^ Sq ^ T1 ^ ¢ ¢ ¢ ^ TkV

q+k W _

which is equivalent to the existence of S1; : : : ; Sq+k ; S
01
; : : : ; S

0q+k 2 W such that

8
<

:

0
6

lim
t 0h¸ t ¢ S1 ^ ¢ ¢ ¢ ^ Sq ^ T1 ^ ¢ ¢ ¢ ^ Tk ; S1 ^ ¢ ¢ ¢ ^ Sq+ki;

0
6

lim
t 1h¸ t ¢ S1 ^ ¢ ¢ ¢ ^ Sq ^ T1 ^ ¢ ¢ ¢ ^ Tk ; S

01 ^ ¢ ¢ ¢ ^ S
0q+ki:

2 1
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Each vector Sj ; S
0j is the sum of 1 + k vectors corresponding to the direct sum

decomposition of W Moreover as pointed out before each of the Sj 's and Tj 's
evaluate non-zero only on vectors in a certain component of W Consequently for
this last condition to be satis¯ed one may assume that

S1; S
01

: : : ; Sq; S
0q 2 H0 Y;L

l 0 and Sq+j ; S
0q+j 2 H0 Y; Ll j j 1; : : : ; k:

Since the C¤-action of the 1-PS ¸ of G induces the decomposition H0 Y; Ll

©m2Z H0 Y; Ll m we can further assume that
Sj 2 H0 Y; Ll 0

mj ; S0j2 H0 Y; Ll 0
m0j

for j 1; : : : ; q

and

Sq+j 2 H0 Y;Ll jmq+j ; S0q+j 2 H0 Y; L
l j

m0
q+j

for j 1; : : : ; k:

We are now going to compute the ¯rst condition in 2 1 :

h¸ t ¢ S1 ^ ¢ ¢ ¢ ^ Sq ^ T1 ^ ¢ ¢ ¢ ^ Tk ; S1 ^ : : : Sq ^ Sq+1 ^ ¢ ¢ ¢ ^ Sq+ki
hS1 ^ ¢ ¢ ¢ ^ Sq ^ T1 ^ ¢ ¢ ¢ ^ Tk;

¸ t¡1 S1 ^ ¢ ¢ ¢ ^ ¸ t¡1 Sq ^ ¸ t¡1 Sq+1 ^ ¢ ¢ ¢ ^ ¸ t¡1 Sq+ki
hS1 ^ ¢ ¢ ¢ ^ Sq ^ T1 ^ ¢ ¢ ¢ ^ Tk;

t¡m1S1 ^ ¢ ¢ ¢ ^ t¡mq Sq ^ t¡mq+1 Sq+1 ^ ¢ ¢ ¢ ^ t¡mq+kSq+ki
t¡P

q+kj 1 mj
¢ hS1 ^ ¢ ¢ ¢ ^ Sq; S1 ^ ¢ ¢ ¢ ^ Sqi ¢ Q

k
j 1hTj ; Sq+ji

t¡P
q+kj 1 mj

¢ h¾1 ^ ¢ ¢ ¢ ^ ¾q; {¤C S1 ^ ¢ ¢ ¢ ^ {¤C Sqi ¢ Q
k
j 1 Sq+j x0j :

Doing the computations corresponding to the second condition in 2 1 we ¯nd the

Proposition 2 1 The point [ C; x;u ] 2 Mg;k X; A is G-semi-stable if and only
if for any 1-PS ¸ : C¤ G there are sections

S1; S
01

: : : ; Sq ; S
0q
; Sq+1; S

0q+1; : : : ; Sq+k; S
0q+k 2 H0 Y; L

l

satisfying the properties:

i ¸ t Sj tmjSj for j 1; : : : ; q + k with
q+k

X
j 1

mj ¸ 0;

¸ t S
0j tm0jSj for j 1; : : : ; q + k with

q+k

X
j 1

m0j · 0;

ii f{¤C S1; : : : ; {¤C Sqg and f{¤C S1; : : : ; {¤
C Sqg are bases for H0 C; Ll ;

iii Sq+j xj ; S
0q+j xj 6 0 for j 1; : : : ; k

The point [ C; x; u ] 2 Mg;k X; A is G-stable if the same holds but with strict
inequalities in i
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The shortcoming of this proposition is being too algebraic and therefore di±cult
to check in practice For this reason we shall try to ¯nd necessary conditions on
one hand and su±cient conditions on the other hand for it Let us start with the

necessary conditions An easy consequence of the proposition above is the

Corollary 2 2 If the point [ C; x; u ] 2 Mg;k X; A is G-semi-stable then for all
1-PS ¸ : C¤ G there are sections

Sj 2 H0 Y; Ll mj j 1; : : : ; q

satisfying the properties:

i f{¤
C

S1; : : : ; {¤
C

Sqg is a basis for H0 C; Ll ;

ii the set fmjgj 1;:::;q contains simultaneously positive and negative integers

Proof For a ¯xed 1-PS of G there are two possibilities in the previous proposition:
either all the mj 's vanish for j 1; : : : ; q and we are done or it is not so Assume

that all mj ¸ 0 for j 1; : : : ; q Because the sum P
j q+k
j 1 m0j · 0 it follows that

there must exist a m0
q+h · 0 We know that S

0q+h xq+h 6 0 and therefore the

restriction {¤
C

S
0q+h 6 0 Because f{¤

C S1; : : : ; {¤C Sqg is a basis of H0 C;Ll one can
write {¤CS

0q+h as a non-zero linear combination of these vectors Now all we have

to do is to replace a section from the set fS1; : : : ; Sqg which appears in this linear
combination with S

0q+h ¤

The next proposition gives a geometrical restriction which must be satis¯ed by
the G-semi-stable maps in M g;k X; A

Proposition 2 3 If C; x; u 2 M g;k X; A is a stable map which is G-semi-
stable then for each 1-PS ¸ : C¤ G there is an irreducible component C± of C
such that the image of the map

ujC±
: C± ¡ X

is not contained in the ¸-unstable locus of X

Proof The line bundle Ll Y is again very ample and its associated linear system
gives an embedding

Ll
OPR¡1 1

# #

Y jLlj¡¡ PR¡1 P³H0 Y; Ll _´
The G-action on Ll Y induces one on OPR¡1 1 PR¡1 For a stable map
C; x; u which is G-semi-stable and ¸ : C¤ G a 1-PS of G corollary 2 2 ensures

the existence of sections Sj 2 H0 Y; Ll mj whose restrictions to C give a basis of
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H0 C; Ll ; in particular they are linearly independent Because of the direct sum
decomposition

H0 Y; Ll M
m2Z

H0 Y; Ll m;

these sections can be completed with sections

Sq+1 2 H0 Y; Ll mq+1 ; : : : ; SR 2 H0 Y; Ll mR

to a basis of H0 Y; Ll This basis de¯nes coordinates on H0 Y; Ll _ » CR in
which the ¸-action is diagonal

Claim There exists an irreducible component C± of C having the property that
among fS1; : : : ; Sqg there are two sections Sj 2 H0 Y;Ll mj and Sj0 2 H0 Y; Ll mj0

such that mj0 · 0 and mj ¸ 0 and their restriction to C± is non-zero

We know already that there are two sections S® and S¿ such that m® · 0 and
m¿ ¸ 0 and their restriction to C is nonzero Let C® and C¿ respectively two
irreducible components of C on which these two sections do not vanish Because C
is connected there is a chain of irreducible components C®; C¯; : : : ; C¿ connecting

these two components Since fS1; : : : ; Sqg is a basis of H0 C; Ll and Ll C is
very ample it follows that there are sections S®¯; S¯° ; : : : ; S¾¿ with the property
that: S®¯ does not vanish at a certain point in C®\C¯ S¯° does not vanish at a
certain point in C¯\C° ; : : : ; S¾¿ does not vanish at a certain point in C¾ \C¿

Notice that S®¯ does not vanish on C® and C¯ S¯° does not vanish on C¯ and
C° and so on Let m®¯;m¯° ; : : : denote the weights of the sections S®¯ ; S¯° ; : : :
respectively If m®¯ ¸ 0 then the component C® satis¯es the requirement of the

claim If it is not the case we look at the chain C¯ ; : : : ; C¿ whose length is one less

than the length of C®; : : : ; C¿ Because at the end C¿ the weight m¿ is positive

an induction argument on the length of the connecting chain shows that it must
exist an irreducible component C± of the chain C®; : : : ; C¿ having the property of
the claim

Let us look now at the image of a point p 2 C± inside PR¡1: a representative

p0 2 CR of it will have non-zero coordinates with both positive and negative

weights for the ¸ action so p is in the ¸-semi-stable locus of Y Since obviously
Y ss PN £ Xss we deduce that u p is in the ¸-semi-stable locus of X ¤

In the case of a torus action this proposition implies the

Corollary 2 4 Suppose that a torus T acts on X If C;x; u 2 Mg;k X; A is a
T -semi-stable point and C is irreducible then the image of u is not contained in
the T -unstable locus of X
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Proof By the Hilbert{Mumford criterion

Xss
G \¸ 1¡P S of T

Xss

¸ :

Since C is assumed irreducible proposition 2 3 implies that for any 1-PS ¸ of G
the image of u intersects the ¸-unstable locus of X in ¯nitely many points; denote

by C0 ¸ the Zariski open subset of C consisting of points which are mapped by
u into the ¸-semi-stable locus of X Because in a torus there are countably many
one-parameter subgroups

C
6 [¸ 1¡PS of T

C ¡ C0 ¸ :

¤

In what follows we want to prove a weakened converse of proposition 2 3 which
is useful when the unstable locus Xunstable

OX 1 has large codimension in X
In this case it is reasonable to think that `many' curves in X won't meet this locus

at all

Theorem 2 5 A stable map [ C; x; u ] 2 Mg;k X; A having the property that

Image u : C X ½ Xss
OX 1

is a G-semi-stable point of Mg;k X; A

Proof The geometric invariant quotient
b
X X G is a projective subvariety of

c
Pr Pr G This last geometric quotient can be described as

c
Pr ProjÃXn

H0 Pr; OPr n
G

:

Let's denote by Á : Pr ss

c
Pr the quotient map There is an invertible sheaf

M
c
Pr such that Á¤M OPr m0 j Pr ss for some m0 > 0 see [13] Theorem

1 10 It has the additional property that for large enough values of n

H0

c
Pr ; Mn Á¤

»
H0 Pr; OPr nm0

G
:

The assumption that the image of the stable map is contained in the semi-stable
locus of X implies the existence of the commutative diagram

C; x u¡ Xss

b
u & Á

b
X:



156 M Halic CMH

Remark 2 6 The map
b
u : C; x

b
X is still stable Indeed problems appear

only if
b
u contracts some P1-components without enough special points on them

which are not contracted by u If C± denotes such a P1-component of C

degu¤C± OX m0 deg

b
u¤C±M 0;

so that u must be constant on C± This contradicts the stability of u

The group G acts on Y PN £Pr trivially on the ¯rst factor and consequently
its invariant quotient is

b
Y : PN £c

Pr The quotient map Ã : Y ss
L ¡ b

Y is just
Ã idPN ; Á Let us de¯ne the line bundle

M : OPN m0 £ M ¡ b
Y :

It has the property that
Ã¤M OPN m0 £ Á¤M OPN m0 £ OPr m0 jY ss L

m0
jY

ss

and it can be easily checked that

H0

b
Y ; M

n Ã¤

»
H0 Y; L

nm0 G

for large n There is again a commutative diagram

C;x

ûY
'O

OOOOOOOOOOO

uY
/ Y ss PN £ Pr ss

Ã idPN ;Á
²

b
Y PN £ c

Pr :

Because uY is an embedding

b
uY is also The 1-dimensional subvariety

b
uY ¤C of

b
Y has Hilbert polynomial:

b
P n h0 C;

b
u¤Y Mn ¡ h1 C;

b
u¤Y Mn

h0 C; u¤Y L
nm0 ¡ h1 C; u¤

Y L
nm0 P nm0 ;

where P is the Hilbert polynomial of uY ¤C ½ Y It is independent of C; x; u 2
Mg;k X; A satisfying the hypothesis of the proposition

Grothendieck proves in [7] that there is an integer k > 0 such that for all n ¸ k

Mn is generated by its global sections and moreover for any closed subscheme

b
Z

of
b
Y whose Hilbert polynomial is

b
P there is an epimorphism

H0

b
Y ; M

n ¡ H0

b
Y ; O

b
Z ­M ¡ 0:

Recall that for obtaining a projective embedding of Mg;k Pr; d we had to chose

a high enough power Ll Y Since Ã¤M L
m0

jY
ss we can chose from the

very beginning an integer l large enough such that Ã¤Mn
Ll

jY ss with n ¸ k
l nm0
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The following three relations

8
>
>
<
>
>:

H0 C; u¤Y Ll H0 C;
b
u¤Y Mn

H0

b
Y ; Mn ¡ H0 C;

b
u¤Y Mn ¡ 0

H0

b
Y ; Mn

Ã¤

»
H0 Y; Ll G

2 2

prove that there are G-invariant sections S1; : : : ; Sq 2 H0 Y; Ll G such that the

restrictions f{¤C S1; : : : ; {¤C Sqg form a basis of H0 C; u
¤Y Ll The problem with the

marked points is easy: by hypothesis u x1 ; : : : ; u xk 2 Xss
OX 1 and we may

consider their images

b
uY x1 ; : : : ;

b
uY xk 2

b
Y The number n was chosen large

enough to ensure that Mn is globally generated by its sections Consequently
we ¯nd

b
Sq+1; : : : ;

b
Sq+k 2 H0

b
Y ; Mn such that

b
Sq+j xj 6 0 for j 1; : : : ; k

Since H0

b
Y ; Mn

Ã¤

»
H0 Y; Ll G there are G-invariant sections Sq+1; : : : ; Sq+k 2

H0 Y;Ll G such that Sq+j xj 6 0 for j 1; : : : ; k
The q + k sections S1; : : : ; Sq ; Sq+1; : : : ; Sq+k now obviously satisfy the condi-

tions of the proposition 2 1 ¤

Corollary 2 7 If the stable map [ C; x; u ] has the property that Image u ½ Xs
0

then [ C; x; u ] 2 M g;k X; A
s

0 As usual Xs
0

denotes the set of G-stable points
which have ¯nite stabilizer

Proof There are two things to prove in this statement: the ¯rst one is that the

stabilizer of [ C; x; u ] in G is ¯nite and the second one is that this point is indeed
stable

When k > 0 for any x 2 x we have StabG[ C;x; u ] ½ StabGu x and therefore

the stabilizer of the map is indeed ¯nite Let us prove that it is so in general
Consider a representative u : C;x X of the point [ C;x; u ] and de¯ne H :
StabG[ C; x; u ]: Let's assume that H is not ¯nite By de¯nition for any h 2 H
there is an automorphism °h 2 Aut C; x having the property that hu u°h In
particular for all h 2 H Image hu Image u For ³ 2 C an arbitrary point u ³
has ¯nite stabilizer in G by assumption and therefore dimH ¢u ³ dim H > 0
Since H¢u ³ ½ Image u which is one dimensional we deduce that dimH 1 Let
us look at the connected component of the identity H± of H: it is a connected
1-dimensional group and therefore isomorphic either to the multiplicative group
Gm or to the additive group Ga In both cases lim

t 1
t¢u ³ 2 Image u will be ¯xed

This contradicts the assumption that Image u ½ Xs
0

We will show that the point [ C; x; u ] is G-stable using proposition 2 1 For a
1-PS ¸ : C¤ G there are sections S1 2 H0 Y; Ll m1

and S
01 2 H0 Y; Ll m01

with
m0

1 < 0 < m1 and whose restriction to C is non-zero this is because Image u ½
Xss Using now 2 2 we complete S1 and S

01
with G-invariant sections Sj ; S

0j 2
H0 Y;Ll in order to ful¯ll the requirements of proposition 2 1 ¤
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3 The symplectic perspective of the problem

In order to have a geometrically clearer picture of what is going on we shall
investigate the symplectic counterpart of the problem studied in the previous sec-
tion It is well-known that the invariant quotient in algebraic geometry has a
very close analogue in symplectic geometry namely the Marsden{Weinstein quo-
tient More precisely assume that a complex algebraic linearly reductive group
G acts on a projective variety X and the action is linearized in a very ample
line bundle OX 1 X Let K be the maximal compact subgroup of G and
denote m : X k¤ the moment map for the K-action which takes values in
the dual of the Lie algebra of K Assume also that the G-action on X is such
that Xss Xs

0 that is all the G-semi-stable points are stable and have ¯nite

stabilizer Under these assumptions we have the

Result A point x 2 X is semi-stable if and only if Gx\m¡1 0
6 ; Moreover

the inclusion m¡1 0 K Xss G is a homeomorphism

Details and further references can be found in [10]

It is clear that the map ¼ : Mg;k X;A Mg;k which associates to a stable
map [ C; x; u ] its stabilized curve [ Cst; xst ] is preserved by the G-action In
order to ensure that the space M g;k exists we shall assume that 2g¡2+k > 0 It
is also clear that a point [ C; x; u ] 2 Mg;k X; A is G-semi-stable if and only if it is
G-semi-stable when it is viewed as a point in the ¯bre Mg;k X;A £Spec Ck[ Cst;xst ]
of ¼ where k[ Cst;xst ] denotes the function ¯eld of the corresponding point This
remark justi¯es the following construction: for a quasi-stable curve C of genus g

that is a connected and projective curve whose singularities are at worst ordinary
double points let us de¯ne

MC;k X; A : ½u : C; x X
¯
¯
¯
¯

C; x;u is a stable map;

jxj k; u¤
[C ] A

¾ :

We should notice at this point that for de¯ning this space we do not divide it out
by the reparametrisations of C as we do in the case of stable maps see de¯nition
1 1 and this choice will eventually allow us to work with honest maps instead of
equivalence classes of maps

Lemma 3 1 MC;k X;A has a natural quasi-projective scheme structure

Proof We may assume as usual that X Pr Recall that a map C; x; u is sta-
ble if and only if L C;x;u C x1 + ¢ ¢ ¢ + xk ­ u¤OPr 3 C is ample Also

there is an integer f f g; k; r; d > 0 with the property that Lf
C;x;u C

is very ample In this way any stable map C; x; u gave rise to an embed-

ding C P³H0 C; Lf
C;x;u

_´ into a space isomorphic to PN where N + 1
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dimH0 C; Lf
C The ambiguity in the choice of this isomorphism is given by ele-

ments in PGl N + 1 In order to de¯ne the space MC;k X; A we shall use a ¯xed
but otherwise arbitrary stable map C; x0; u0 Let us consider the ¯xed embedding

C j0

¡ P µH0 ³C; Lf
C;x0;u0 ´

_¶ PN 3 1

de¯ned by the very ample line bundle O 1 : Lf
C;x0;u0

and let e be its degree

on C For another stable map C; x; u the Hilbert polynomial of its graph ¡u ½
C £ Pr is

P n Â O¡u ­OC n £ OPr n n e + d + Â ¡u n d + e + 1¡ g :

So each stable map C; x;u de¯nes a point ¡u; x 2 HilbP
C£Pr £ C £ Pr k Using

the embedding j0 : C PN the graph ¡u can be viewed as a subvariety of
PN £ Pr Y and its Hilbert polynomial with respect to the very ample line

bundle L OPN 1 £ OPr 1 Y is P also
Clearly the same is true for any closed subscheme Z of C £ Pr : the Hilbert

polynomial inside C £Pr with respect to OC 1 £OPr 1 is the same as the Hilbert
polynomial of its image j0¤Z inside Y with respect to L So we obtain a closed
immersion

HC : HilbP
C£Pr ¡¡¡¡ HilbP

Y H:

The ample line on H is det Q H where Q is the universal quotient bundle on
some Grassmann variety see section 1 Remember that there is a subscheme

S of H £ Y k corresponding to the locus of k-marked genus g stable maps to Pr
which represent d times the generator of H2 Pr; Z Let consider the commuting
diagram

MC;k Pr; d : HC £ C £ Pr k
£H£Y k S

²

/

S

²

HC £ C £ Pr k
/

H £ Y k:

Since MC;k Pr; d HC £ C £ Pr k is an immersion MC;k Pr; d is a quasi-
projective scheme Its ample line bundle is determined by the restriction to S of
det Qk H£Y k The space MC;k Pr; d is quasi-projective being an open subset
of MC;k Pr ; d ¤

Remark 3 2 MC;k X; A is the Gromov compacti¯cation of MC;k X; A It
is also projective if C;x0 is a stable curve in the sense of Deligne-Mumford
remember that we have used a ¯xed stable map C; x0; u0 for the embedding

j0 : C PN In this case the intersection of the P Gl N + 1 -orbit of a stable
map in S H £ Y k with the image of HC £ C £ Pr k

H £ Y k consists

of ¯nitely many points Consequently the map MC;k Pr; d Mg;k Pr; d is
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generically ¯nite on its image Because Mg;k Pr ; d is projective the conclusion
follows

For the symplectic point of view it is convenient to consider MC;k X; A with its

reduced scheme structure so that we look at it naively as being a quasi-projective

variety The Zariski tangent space of MC;k X; A at a point C; x; u is

T C;x;u MC;k X; A ½ ½ s; v1; : : : ; vk

¯̄
¯̄

s 2 H0 C; u¤TX
vj 2 TxjC; j 1; : : : ; k

¾ :

In the sequel we shall compute the KÄahler form on MC;k X; A induced by its

projective embedding We can see that the ample line bundle det Qk H £ Y k

introduced in section 1 and de¯ned by 1 1 is det p¤E¤
Ll ­ ev¤ Ll £k where

E¤
Ll Ll

OPN l £ OPr l
# #

MC;k X; A £ C
E j0;E

¡¡¡¡¡¡ PN £ Pr; with E u; ³ : u ³
p #

MC;k X; A
and

MC;k X; A
ev ev1;:::;evk

¡¡¡¡¡¡¡¡¡ ¡PN
£ Pr

¢
k

; evj j 0; evj ;

C; x; u 7¡ j0 x1 ; u x1 ; : : : ; j0 xk ; u xk :

The KÄahler form on MC;k X;A induced by its projective embedding is ¡1 2¼i£
[curvature of det p¤E¤

Ll ­ ev¤ Ll £k ] For computing this curvature we need
a Hermitian metric on L and a KÄahler metric on the ¯bres of MC;k X; A £C

p

¡MC;k X; A i e on C The ¯bres of p will be all isometric the KÄahler form on
them being

°C :
1

e j¤
0 PN ; e : degCOPN 1 : 3 2

This choice re°ects the fact that for de¯ning the space MC;k X; A we have re-
quired the maps C; x; u to have a ¯xed domain of de¯nition On OPN 1 and

OPr 1 consider the Hermitian metrics whose curvatures are ¡2¼i PN
and¡2¼i Pr

respectively with
PN and

Pr the corresponding Fubini-Study forms There is an

induced Hermitian metric on L OPN 1 £ OPr 1 and a fortiori on E¤
Ll

It is easy to see which is the expression of the curvature of ev¤ Ll £k at a point
C; x; u 2 MC;k X; A :

­1 : ¡
1

2¼i Rev¤ Ll £k

C;x;u le
k

Xj 1

°C xj + l
k

Xj 1
¡ev

¤j Pr ¢ C;x;u :

For computing the curvature of det p¤E¤
Ll the ¯rst thing to notice is that this

line bundle is actually the determinant of the derived direct image of E¤
Ll since
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by p1
¤E¤

Ll 0 see section 1 Consequently we may apply the di®erential form of
the Atiyah-Singer index theorem for families which is proved in a series of papers

[3 4 5] by J -M Bismut D Freed H Gillet Ch Soul¶e According to [5] theorem
0 1 page 51 if C is a smooth curve the curvature

­2 : ¡
1

2¼iRdetp¤E¤Ll
Z

C
T d µ¡

1

2¼iR
TC ¶ ¢ exp µ¡

1

2¼iR
E¤Ll¶ :

Here RTC denotes the curvature of the relative tangent bundle of the projection

p i e of TC corresponding to the KÄahler metric °C
on C and RE¤Ll is the

curvature of the line bundle E¤
Ll with respect to the Hermitian metric induced

by that on Ll Let ° : ¡1 2¼i RTC ; it is a real form of type 1; 1 on C and
therefore ° h°C with h : C R a smooth function having the property that
RC

h°C
2 1 ¡ g On the other hand

¡
1

2¼iR
E¤Ll lE¤ µ¡

1

2¼iR
L¶ lE¤

PN + Pr l e°C + E¤
Pr :

The form ­2 is the degree two term in

Z
C

µ1 +
1

2°¶µ1 + l e°C + E¤
Pr + l2

2
e°C + E¤

Pr
2¶ :

Making the computations we obtain:

­2
l2
2

Z
C

e°C + E¤
Pr

2 + l
2

Z
C

e°C + E¤
Pr ^ °

l2
2

Z
C

E¤
Pr

2 + 2eE¤
Pr ^ °C + l

2
Z

C
E¤

Pr ^ °

l2
2

Z
C

E¤
Pr

2 + l2e Z
C

E¤
Pr ^ °C + l

2
Z

C
h¢E¤

Pr ^ °C :

This proves the

Proposition 3 3 The curvature of the line bundle det p¤E¤
Ll ­ ev¤ Ll £k di-

vided by ¡2¼i is ­ ­1 + ­2 It represents the KÄahler form on MC;k X; A
induced by the projective embedding described in lemma 3 1

Let us come back to the initial set-up: a complex connected linear algebraic
group G acts on a smooth irreducible complex projective variety X and the action
is linearized in a very ample line bundle OX 1 X In this case using the linear
system associated to OX 1 we may assume that G acts on Cr+1 and by an
appropriate choice of coordinates we are allowed to assume that the maximal
compact subgroup K of G is included in U r + 1 There is an induced action
of G so a fortiori of K on MC;k X; A de¯ned by: g £ C; x; u 7 C; x; gu
Because the K-action preserves the Fubini-Study form

Pr and the maps E and ev
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are obviously both K-equivariant it follows that ­ is K-invariant also Our next
goal is to determine the moment map corresponding to this Hamiltonian action

We start by studying the case when G C¤; the induced S1-action on X gives

rise to a vector ¯eld » on X having the property that L» 0 and L»J 0
because S1 acts on X by isometries The vector ¯eld J» does not preserve in
general but still preserves the complex structure of X In fact the vector ¯eld
J» corresponds to the holomorphic action of R¤+ C¤ The moment map
m : X ¡ R corresponding to the action is S1-invariant and

dmx J»x »x; J»x k»xk
2;

so that m is increasing along the °ow lines of J»

Let us denote by V the vector ¯eld on MC;k X; A determined by the holo-
morphic S1-action on MC;k X; A At a point C; x; u

V C;x;u u¤»; 0; : : : ; 0 2 H0 C; u¤TX £ Tx1C £ : : : TxkC:

Lemma 3 4 The function

ª : MC;k X; A ¡ R;

ª : l2eZ
C

m ± E °C + l2Z
C

m ± E E¤
Pr + l

2
Z

C
h m ± E °C + l

k

Xj 1

m ± evj

is a moment map for the S1-action

Proof Because E; evj ; m; Pr are all S1-invariant it follows that ª is also For
proving that ª is a moment map we need to show that its di®erential is the same

as the contraction of the KÄahler form ­ on MC;k X;A with the vector ¯eld V It
what follows the symbol \ " will always denote the contraction of a di®erential
form with a vector ¯eld

The contraction V °C xj
0 because the Tx1C £ ¢ ¢ ¢ £ TxkC-component of

V is zero
V ev

¤j Pr ev
¤j

evj¤V Pr ev
¤j

»evj ¢ Pr
ev

¤j
dmevj ¢

d m ± evj :

V Z
C

E¤
Pr ^ °C Z

C
V E¤

Pr ^ °C Z
C

V E¤
Pr ^ °C :

At a point p 2 C

Vp E¤
Pr p E¤ ³E¤Vp Pr ;u p ´ E¤ ³»u p Pr ;u p ´

E¤ ³»u p Pr ;u p ´ E¤ dmu p d m ± E p:

and consequently

V Z
C

E¤
Pr ^ °C Z

C
d m ± E ^ °C Z

C
d m ± E °C

d Z
C

m ± E °C :
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V Z
C

h ¢ E¤
Pr ^ °C Z

C
V h ¢ E¤

Pr ^ °C

Z
C

h ¢ V E¤
Pr ^ °C Z

C
h ¢ d m ± E ^ °C

Z
C

d h m ± E °C d Z
C

h m ± E °C :

For writing equality we have used that dh ^ °C
d

Ch ^ °C
0:

V Z
C

E¤
Pr

2 2 Z
C

V E¤
Pr ^ E¤

Pr 2 Z
C

d m ± E E¤
Pr

2 Z
C

d m ± E E¤
Pr d µ2 Z

C
m ± E E¤

Pr¶
All together these equalities show that ª is indeed a moment map ¤

Using the previous computations one can derive easily the formula of the

moment map on MC;k X; A for general group actions

Proposition 3 5 Let m : X k¤ be the moment map for the K-action on X
Then the function

ª : MC;k X; A k¤;

ª : l2eZ
C

m ± E °C + l2Z
C

m ± E E¤
Pr + l

2
Z

C
h m ± E °C + l

k

Xj 1

m ± evj

is the moment map for the K-action on MC;k X; A

Proof Because E; evj ; Pr are all K-invariant and

m a ¢ x Ad a¡1
¢ m x ; 8x 2 X; 8a 2 K;

it follows that this latter property holds for ª also In order to check that the

formula gives indeed a moment map we must show that
dª; a Va ­; 8a 2 k:

Here Va stays for the vector ¯eld on MC;k X; A induced by the in¯nitesimal action
of a and ; denotes the natural pairing between k and its dual Since this relation
is linear in a on one hand and k is generated as a vector space by the tangent
vectors a¸ : d

dµ¸ eiµ jµ 0 for ¸ : S1 K a 1-PS on the other hand it is enough
to check the equality above for such a¸'s

For a ¯xed one parameter subgroup ¸ the pairing ª; a¸ is given by the same

formula as ª except that m is replaced with m¸ : m; a¸ ; but the function m¸
de¯ned in this way is nothing but the moment map corresponding to the induced
S1-action on X and the lemma 3 4 implies that ª; a¸ equals the moment map

ª¸ on MC;k X; A corresponding to the induced S1-action But for this one we

do know already that dª¸ Va¸ ­ ¤
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Remark 3 6 It is interesting to study the moment map for large e and l We

should recall that e is de¯ned in 3 1 as the degree of a certain very ample line

bundle on C used to get a ¯xed embedding of C into a projective space while
l is an integer large enough for obtaining a projective embedding of the Hilbert
scheme H actually l does depend on e Because X is compact the moment map
m is bounded and therefore the last two terms in 1

el2ª are of order O¡
1
el ¢

We will
show that the ¯rst term is of order O¡

1
e ¢

Indeed since maps u 2 MC;k X; A are

holomorphic the pull-back u¤
Pr ¸ 0 as a form on C This implies that

¯
¯
¯
¯

1

e
Z

C
m ± u u¤

Pr

¯
¯
¯
¯

·
maxX jmj

e
Z

C
u¤

Pr
d maxX jmj

e
Oµ

1

e
¶;

where d denotes as usual the degree of the composite map C X Pr which
is a constant

The conclusion of this discussion is that for large e and l
1

el2ª » Z
C

m ± E °C ; 3 3

so the zero set of ª will be close to the zeros of this second function Notice that
the right hand side of 3 3 is the moment map corresponding to the KÄahler form

­1 : Z
C

E¤
Pr ^ °C

on MC;k X; A
At this point some care is required because °C

as it is de¯ned by 3 2 does

depend on e However it is well-known see [16] that the sequence of such metrics

converges to a metric on C which was still denoted °C

Recall that the smooth real-valued function h de¯ned on C is the \quotient"
RTC °C where RTC denotes the curvature of the tangent bundle of C with respect
to the KÄahler form °C This last form was de¯ned in terms of a ¯xed projective

embedding of C; in particular it does not depend on l For obtaining the projective

embedding of the Hilbert scheme we had to take large positive integral values for
l and therefore we may assume that le + 1

2h is a strictly positive function on
C Notice also that since u is holomorphic and

Pr is a positive 1; 1 -form the

1; 1 -form u¤
Pr on C is still positive Now we recover easily the

Theorem 3 7 2 5 A stable map C; x; u with C smooth having the property
that Image u ½ Xs

0 OX 1 de¯nes a G-stable point in Mg;k X; A

Proof According to the Hilbert{Mumford criterion it is su±cient to prove the

statement for every 1-PS ¸ : C¤ G For a ¯xed 1-PS ¸ of G the point C;x; u
is ¸-stable if its C¤-orbit meets the zero-level set of the function ª¸ on MC;k X; A
Assume for instance that ª¸ C; x; u < 0 By hypothesis Image u ½ Xs

0 ½ Xs ¸
so that under the R¤+-action all the points u p ; p 2 C; meet the m¡1

¸ 0 -level
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As C is compact we ¯nd r À 0 which depends on u with the property that
m¸¡¸ r u p

¢ > 0 for all p 2 C Since

ª¸ C; x; u lZ
C
µle +

1

2
h¶ m¸ ± u °C + l2Z

C
m¸ ± u u¤

Pr + l
k

Xj 1

m¸ u xj ;

for such a large r the translated map ¸ r u has the property thatª¸ C; x; ¸ r u >
0 A continuity argument proves that there is a unique r0 with C; x; r0u 2ª¡1
¸ 0 It is also clear from the hypothesis that C; x; u has ¯nite stabilizer ¤

For G C¤ we can improve the result above namely if u : C; x X is a
morphism whose image is not contained in the unstable locus of X then it de¯nes

a stable point in MC;k X; A for a suitable linearization of the action In view
of corollary 2 4 this result is optimal and completely characterizes the C¤-stable
points of MC;k X; A : a point C; x; u is stable if and only if u C is not contained
in the C¤-unstable locus of X

Let us prove this remark: we are going to show that for such a morphism u
lim

r +1ª ru > 0 and lim
r ¡1ª ru < 0 Since Xss Xs

0
0 2 R is a regular

value of the moment map m : X R and there exists an ´ > 0 such that any
½ 2 ¡´; ´ is regular for m Consider a relatively compact open subset U" b C
such that u U" ½ Xs

0
1¡ " · RU" °C · 1 with

0 < " < ´
4 1 + maxX jmj

:

Since u U" ½ Xs
0

we deduce that for r À 0 m ru p > ´ 2 for all p 2 ¹U"
Writing C ¹U" [ C n U" we obtain that for such a large r

1

l2eª ru Z
C

m ± ru °C +
1

e
Z

C
m ± ru ru ¤

Pr

+
1

2le
Z

C
h m ± ru °C +

1

le

k

Xj 1

m¡ru xj ¢

¸ ´
2

1 ¡ " ¡ " max
X jmj¡Oµ

maxX jmj
e

¶

´
2 ¡ " 1 + max

X jmj ¡Oµ
maxX jmj

e
¶:

We can see that for e large enough that is for suitable choice of the linearization
for the S1-action on MC;k X;A ª ru is positive A similar study applies in the

r ¡1 limit
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4 First application: comparison of invariants

In this section we shall use the results obtained so far for comparing the genus

zero Gromov{Witten invariants of a projective manifold with those of its invariant
quotient for a group action Before stating our result we introduce the following

De¯nition 4 1 Let f : M K N be a rational map We de¯ne f¤ : H¤ N
H¤ M by f¤® : PDM¡p¤ ¡f \ q¤®

¢
where ¡f ½ M £ N denotes the closure

of the graph of f with the projections p and q on M and N respectively and PD
stands for Poincar¶e-duality

This is just another way to express the correspondence induced by f and we

should keep in mind that f¤ is not a ring homomorphism in general

Theorem 4 2 Consider a complex connected linearly reductive group G acting

on the irreducible projective variety X and also a linearization of the action in a
very ample line bundle OX 1 X Denote by ³ 2 H2 dim G X; Q the class of a
rational transverse slice to X K X̂ Let A 2 H2 X ; Z be a class which can be

represented by a morphism P1 Xss and denote Â the class of its image in X̂Suppose that the following conditions are satis¯ed:
a1 G acts freely on the G-semi-stable locus of X so that the quotient map

Xss X G :
X̂ is a principal G-bundle according to [12] Corollaire 1 ;

a2 M0;k X; A is generically smooth and has the expected dimension;

² In the case when G is a complex torus assume moreover that:
a3 every irreducible component of M0;k X;A contains a point represented by

a morphism P1 Xss;
a4 M0;k X̂ ; Â ½ M0;k X̂ ; Â is a dense open subset

² For general reductive G assume that both M0;k X; A and M0;k X̂ ; Â are irre-
ducible

Then for any ®̂ 2 H¤ X̂
k; Q the following equality between the genus zero

Gromov{Witten invariants holds:

GW 0;k
X̂;Â

®̂ GW0;k
X;A ® [ prXk

X ¤³ ;

where ® 2 H¤ Xk ; Q is obtained from ®̂ using the correspondence induced by the

rational map Xk K X̂
k and prXk

X : Xk X denotes the projection onto the ¯rst
component

Before proceeding to the proof of the theorem I would like to discuss

When are the hypothesis in theorem 4 2 satis¯ed The condition a1 on G to
act freely on the semi-stable locus of X is necessary in order to ensure the equality
of the expected dimensions of the spaces of stable maps involved inhere It is un-
likely to have any relations between the invariants if there are semi-stable points

in X with positive dimensional stabilizers I have imposed the condition a2 in
order to avoid the use of the virtual class which could be a rather di±cult task in
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the present context Condition a3 excludes the existence of irreducible compo-
nents of M0;k X; A such that the images of all the corresponding morphisms cut
the unstable locus of X Condition a4 says that there should be no irreducible
component of M0;k X̂ ; Â such that all its points represent stable maps whose

domain of de¯nition are trees of P1's
I would like now to enumerate some cases where the theorem above applies

Lemma 4 3 Assuming a1 the requirements of 4 2 are satis¯ed in the following

cases:
i if G is a torus when X is a convex variety and TXss is generated by G-

invariant sections or
ii for general G when both X and

X̂
are homogeneous varieties

We should recall that a projective variety X is called convex if for any morphism
À : P1 X H1 P1; À¤TX 0 Standard examples of such varieties are those

whose tangent bundle is globally generated; homogeneous varieties are very special
instances of such objects Theorem 2 in [9] says that for convex varieties the

moduli spaces M0;k X; A are generically smooth and the singularities are of
¯nite quotient type

Proof i The ¯rst remark is that in these conditions
X̂ is a convex variety too:

this follows from the exact sequence

0 ¡ O Lie G ¡ T inv
Xss ¡ T

X̂ ¡ 0

on X̂
associated to the principal bundle Xss

X̂Since both X and X̂
are convex M0;k X; A ½ M0;k X;A and M0;k X̂ ; Â ½

M0;k X̂ ; Â are open and dense see [9] theorem 2 page 56 so that a4 is
full¯lled; convexity implies also that we are working in the expected dimension
The only thing to check is condition a3 : since M0;k X; A ½ M0;k X; A is
dense we may restrict our attention to stable maps whose domain is P1 Since

the evaluation map ev at the k + 1 th marked point on M0;k+1 X; A is sub-
mersive any morphism P1 X can be `pulled away' from the unstable locus of
X Indeed if Xunstable X has codimension at least two the inverse image

ev¡1 Xunstable M0;k+1 X; A has the same property since ev is submersive

so the direct image of this set has codimension at least one in M0;k X;A In the

general case let us write Xunstable ¢ [ Z with ¢ ¢1 [ ¢ ¢ ¢ [ ¢s a union
of irreducible divisors and Z X of codimension at least two We have seen
that this later component does not cause any trouble so let us study the ¯rst
one The assumption on the class A implies that A ¢ ¢¾ 0; 8¾ 1; : : : ; s
Let us focus now on an irreducible component of M0;k X; A : since X is convex
M0;k X; A ½ M0;k X; A is dense and therefore it certainly contains a morphism
u : P1 X representing A but it might happen that its image is contained in ¢
The submersivity of the evaluation map implies that we can deform u into a u0

whose image is not contained in ¢ and is also disjoint from Z But in this case
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u0 P1
¢ ¢¾ ¸ 0 with equality if and only if u0 P1 \ ¢¾ ; for all ¾ 1; : : : ; s;

since A ¢ ¢¾ 0 we deduce that u0 is disjoint from Xunstable

ii The statement is the content of the article [17] ¤

Let us return now to the proof of theorem 4 2 and consider the following
commutative diagram:

M0;k X;A
evX

k¡¡¡¡¡ V |V¡¡¡¡¡ Xk

R0

y y y
r0\M0;k X;A [evX

k K

b
V

|
b
V¡¡¡¡¡ dX

k

R00

y y
r00

M0;k
b
X ;

b
A

evc
X
k¡¡¡¡¡ W |W¡¡¡¡¡ X̂

k :

4 1

The notations are as follows: V and W are respectively the images of the

morphisms evX
k

and ev bXk
both with the reduced scheme structure The group G

acts on Xk in a diagonal fashion and the evaluation morphism evX
k

is G-equi-
variant The invariant quotients of Mg;k X; A V and Xk are denoted respectively\Mg;k X; A

b
V and

dX
k Notice that

b
V

6 ; as soon as there are stable maps whose

image is contained in the G-semi-stable locus of X The universality property
of quotients implies the existence of the rational map [evX

k
The quotient map

Xk K X̂
k naturally factorizes through a rational map r00 :

dX
k K X̂

k whose

general ¯bre is isomorphic to Gk G If G was a torus then r00 would have been

the quotient map for the induced Gk G-action on

dX
k

Proposition 4 4 Under the assumptions of theorem 4 2 the map

R00 : M0;k X; A G K M0;k X̂ ; Â

is birational

Proof We start noticing that R00 is generically injective on its image Indeed we

may restrict our attention to maps whose image is contained in Xss: for G a torus

this is just the assumption a3 while for general G it follows from the assumption
of the irreducibility of the space of stable maps and the assumed existence of one

such map If u1; u2 : P1 Xss are morphisms such that Á ± u1 Á ± u2 it follows

from a1 that there is a morphism g : P1 G such that u2 ³ g ³ u1 ³ for all
³ 2 P1 Since G is a±ne the morphism g must be constant and therefore u1 and
u2 represent the same point in M0;k X;A G

Write
M0;k X; A [º M0;k X; A º
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as the union of its irreducible components Assumption a3 says that each com-
ponent M0;k X;A º contains a non-empty open subset M0;k X; A o

º having the

property that its points represent stable maps de¯ned on P1 with image com-
pletely contained in the G-semi-stable locus of X

We know already that the maps R00º : M0;k X;A o
º M0;k X̂ ; Â are birational

on their image; let us denote M0;k X̂ ; Â º the closures of these images They
are distinct irreducible components of M0;k X̂ ; Â each of them having expected
dimension In fact for [ P1; x; u ] 2 M0;k X; A o

º the composite [ P1; x; û ] 2
M0;k X̂ ; Â º is a smooth point of M0;k X̂ ; Â ; this can be seen pulling back by u
the exact sequence

0 ¡ Tg ¡ TXss ¡ Á¤T
X̂ ¡ 0; 4 2

on X where Tg denoted the trivial sub-bundle generated by the in¯nitesimal action
of G

For proving that R00 is dominant we have to show that if M0;k X̂ ; Â ¹ is an
irreducible component of M0;k X̂ ; Â then ¹ is one of the º's coming from X

Let us start with the case when G is a torus: Á : Xss

X̂ is a principal bundle
and therefore de¯nes a class ° 2 ·H1

X̂; OX̂
G The Chern homomorphism

de¯nes the class

ch ° ±1; : : : ; ±r 2 H2

X̂; Z ©r ; with r rk G

The assumption a4 says that it is enough to restrict ourselves to morphisms

û : P1
X̂: the topological type of the principal bundle û¤Xss P1 is given by

the r-tuple of integers

¡h±1; Âi; : : : ; h±r; Âi¢ 0; : : : ; 0 :

The last equality holds because the class Â is induced by the class A 2 H2 Xss; Z
Since Pic0 P1 f1g we deduce that û¤Xss P1 is a holomorphically trivial
torus bundle and consequently it has a section This in turn implies that there is
a morphism u : P1 Xss such that û Á ± u

When G is an arbitrary reductive group let us consider the principal bundle

ev¤Xss ¡ M0;k+1 X̂; Â ; 4 3

where as before ev stays for the evaluation at the k + 1 th marked point We

know that there is a morphism u0 : P1 Xss representing the class A; for the

composed map û0 : Á ± u0 this means that the principal bundle û
¤0
Xss P1

has a section and consequently is holomorphically trivial We shall look now at
4 3 as being a family of principal bundles over P1 parameterized by M0;k X; A

having the property that the points corresponding to û0 are trivial principal bun-
dles According to [15] theorem 4 2 the in¯nitesimal deformations of the trivial
principal bundle P0 P1 are parameterized by

H1 P1; P0 £Ad g H1 P1; OP1 ©dim G 0; where g Lie G :
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This means that the trivial bundle over P1 is rigid so that there is a whole
Zariski open subset U ½ M0;k X̂ ; Â having the property that for any v 2 U
v¤Xss P1 is holomorphically trivial Since our assumption is that M0;k X̂; Â
is irreducible we deduce that U is dense and we can repeat word-by-word the

previous argument We should notice again that the exact sequence 4 2 implies

that M0;k X̂ ; Â is generically smooth and has the expected dimension
In both cases we must check that if v 2 M0;k X̂ ; Â has the property that the

¯bration v¤Xss P1 is trivial and u is a section then indeed u¤
[P1] A This

can be seen as follows: denoting EG BG the `universal' G-¯bration we have

the diagram

H2 X̂ » H2 EG £G Xss

#
c

0 ¡ H2 X ¡ H2 EG £G X ¡ H2 BG ¡ 0;

and the class Â is mapped into 0 2 H2 BG since the ¯bration v¤Xss P1 is
topologically trivial The lower sequence is exact because BG is simply con-

nected and consequently the class c Â 2 H2 EG £G X actually lives in H2 X
Since the homomorphism c is canonical and for the morphism u0 : P1 Xss

½ X
we know that u0¤

[P1] A we deduce that c Â A ¤

For the proof of theorem 4 2 we remark that if V ½ M and W ½ N are

complete irreducible subvarieties such that V \ Dom f 6 ; and the restriction

fV : V K W is dominant then for any ® 2 H¤ N

hf¤®; [V ]i deg fV h®; [W ]i;
where we set deg fV 0 when dim V > dim W This claim follows from the fact
that V £ N ¢ ¡f ¡fV

Proof of theorem 4 2 We have seen in proposition 4 4 that

M0;k X; A [º M0;k X; A º ; M0;k X; A G [º M0;k X; A º G

and
M0;k X̂ ; Â [º M0;k X̂; Â º :

Moreover R00º : M0;k X; A º G K M0;k X̂ ; Â º are birational for all º Let
Vº ½ Xk and Wº ½ X̂

k be respectively the images of the k-point evaluation maps

on M0;k X; A º and M0;k X̂ ; Â º Then Vº G is the closure of the image of the

evaluation map on M0;k X;A º G and there is a natural map r00º : Vº G K Wº
compatible with the other arrows in 4 1 which is dominant

The class ³ which appears in the statement of the theorem is just the class

of a \rational section" of the quotient Á that is ³ : 1
d Z for a general complete
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intersection Z X which transversally intersects in d points the closures of the

general G-orbits in X With this choice for Z the rational map Vº\ Z£Xk¡1 K

Vº G is generically ¯nite of degree d
Consider ®̂ 2 H¤ X̂

k and let ® : Á¤®̂ for Á : Xk K X̂
k The discussion

preceding this proof applied to the composite Vº \ Z £ Xk¡1 d:1
K Vº G

r00ºK Wº
shows that

h®; [Vº \ Z £ Xk¡1 ]i d ¢ deg r00
h®̂; [Wº ]i:

We can write therefore

Z
M0;k X̂;Â º

evX̂
k

¤
®̂ deg evX̂

k h®̂; [Wº ]i
deg evX̂

k
d ¢

deg r00º
h®; [Vº \ Z £ Xk¡1 ]i

deg\evX
k;º h®; [Vº] \ prXk

X
¤³i deg evX

k;º h®; [Vº ]\ prXk
X

¤³i
deg evX

k;º h® [ prXk
X

¤³ ; [Vº ]i Z
M0;k X;A º

evX
k

¤ ® [ prXk
X

¤³ :

This ¯nishes the case when deg r00º 6 0 When deg r00º 0 that is r00 is not
generically ¯nite both sides are zero Summing these equalities after º we get
the conclusion ¤

Remark 4 5 Let us consider ®̂ ®̂1 ­ ¢ ¢ ¢ ­ ®̂k 2 H¤ X̂
k; Q and denote re-

spectively ®j : Á¤®̂j 2 H¤ X; Q The equality which appears in the theorem
reads

GW 0;k
X̂;Â

®̂1 ­ : : :­ ®̂k GW0;k
X;A ³ [ ®1 ­ : : :­ ®k ;

and this form is somewhat odd since the left-hand-side is symmetric in the k
entries we consider cohomology classes of even degree while the right-hand-side

is not symmetric in an obvious way This means that we get relations among the

enumerative invariants of X
GW 0;k

X;A ³ [ ®1 ­ : : :­ ®j ­ : : :­ ®k GW 0;k
X;A ®1 ­ : : :­ ³ [ ®j ­ : : :­ ®k ;

for all j 2; : : : ;k and the more complicated the group action the less apparent
are these relations

Another aspect of the problem is that it is possible to construct rather com-
plicated quotients

X̂
starting with `simple' varieties X Using this approach one

may hope to get a better insight to the Gromov{Witten invariants of the quotients

4 1 Some examples

The requirements in theorem 4 2 make its applications rather restricted but we

shall see that there are several cases where the theory does apply and relates the

enumerative invariants of apparently non-related objects
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4 1 1 For n0; n1; : : : ; np ¸ 1 integers and n : n0 + n1 + ¢ ¢ ¢ + np consider the

linearized C¤ p-action on Pn+p+1 given by

C¤ p
£ Cn+p+1 ¡ Cn+p+1;

t1; : : : ; tp £ z0; z1; : : : ; zp : t1 : : : tpz0; t¡1
1 z1; : : : ; t¡1

p zp ; with zj 2 Cnj+1:

The unstable locus of Pn+p is the union
S

p
j 0fzj 0g which has codimension

larger than two and the stabilizer of any semi-stable point is f
p+1p1g so that

the semi-stable locus coincides with the properly stable one The corresponding
geometric quotient of Pn+p is Pn0 £ Pn1 £ ¢ ¢ ¢ £ Pnp and the quotient map is

Á : Pn+p s

¡ Pn0
£ Pn1

£ : : : £ Pnp ;

Á [z0; z1; : : : ; zp] [z0] £ [z1] £ : : : £ [zp]:

Any stable map u : P1 Pn+p s of degree d induces a stable map of multi-degree

d; d; : : : ; d into the quotient A rational slice to Á is just a general n-plane so

that the class ³ appearing in theorem 4 2 is just ³ Hp where H is the standard
generator of the cohomology ring of a projective space

Consider the simplest case when n0 n1 1 Say that we look at rational
curves of degree d in P3 and a fortiori of bidegree d; d in the quotient which is
P1

£ P1 The class ³ H in this case and according to the result

GW 4d¡1
P3;d point £ line £ : : : £ line

| {z }4d¡2 times

GW4d¡1
P1£P1; d;d point £ : : : £ point

| {z }4d¡1 times

:

In more down-to-earth terms the number of rational curves of bidegree d; d in
P1

£P1 passing through 4d¡1 general points equals the number of rational curves

of degree d in P3 passing through a point and another 4d ¡ 2 general lines

4 1 2 Given two integers m > n > 0 consider the linearized Sln C -action on
Pmn¡1 : P Hom Cm; Cn given by

S ln C £ Hom Cm; Cn ¡ Hom Cm; Cn ; g; A 7 gA:

The Sln C -semi-stable points of for this action is the set P Hom Cm; Cn ss of
homomorphisms whose rank is n The stabilizer of the stable points is Z nZ
but this does not represent any problem because P Sln C acts freely its action
linearizes in O n and the corresponding semi-stable locus is the same as that of
the Sln C -action The quotient is the Grassmannian Grm¡n Cm with quotient
map

Á : Pmn¡1 s

¡ Grm¡n Cm ;

Á [A] Ker A; 8A 2 P Hom Cm; Cn s:
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There are morphisms P1 Pmn¡1 ss in each degree d > 0 an example being

[³0 : ³1]
7¡ 0

BBBB
@

³d
0 ³d

1 : : : 0 0 0

0

³d
1 0 0

0 : : : 0 ³d
0 ³d

1 0

1
CCCCA

:

The class induced in the Grassmannian is nd times the class of a line The closure

of the inverse image of a point in Grm¡n Cm is a n2 ¡ 1 -plane in Pmn¡1; this
can be seen easily looking at the inverse image of hen+1; : : : ; emi where e1; : : : ; em
is the standard basis of Cm Consequently the rational slice ³ for the quotient
map is just a n m¡ n -plane in the projective space whose class is Hn2¡1

The pull-back of a Schubert cycle ¾¸ in the Grassmannian is Á¤¾¸ d ¸ H j¸j 2
Aj¸j Pmn¡1 for some integer d ¸ If k P

k
j 1 j¸jj ¡mnd ¡ n m ¡ n + 3 we

obtain the equality
GWk

Grm¡n Cm ;nd ¾¸1 ­ : : :­ ¾¸k

k

Yj 1

d ¸j ¢ GWk
Pmn¡1;d H j¸1j+n2¡1 ­ : : :­H j¸kj :

The question which comes to mind is how can be computed the numbers d ¸ If

f0g ½ F1 ½ ¢ ¢ ¢ ½ Fm Cm is the standard °ag of Cm then

Á¤¾¸ f[A] j dim Ker A\ Fn+j¡¸j ¸ j; j 1; : : : ;m¡ ng
and this is just a degeneration locus of the evaluation homomorphism

" : Cm ­OPmn¡1 ¡1 ¡ Cn:

The degree of this subvariety of Pmn¡1 is given by a determinantal formula which
can be found in [8] theorem 14 3 page 249 In the particular case when ¾¸ ¾k
k 1; : : : ; n is a special Schubert cycle we need to compute the degree dk of the

subvariety f[A] j dim Ker A\Fn¡k+1 ¸ 1g f[A] j "jFn¡k+1 [A] is not injectiveg
½ Pmn¡1 According to [8] theorem 14 4 page 254 dk is the coe±cient of Hk in
the development of 1 1 ¡H n¡k+1 which is ¡

n
k¢

This example can be generalized: take m > mp > : : : > m1 > 0 integers and
let

G : Slmp C £ : : : £ Slm1 C ;

W : Hom Cm; Cmp
© Hom Cmp ; Cmp¡1

© : : : © Hom Cm2 ; Cm1 :

We consider the linearized G-action on P W given by

G £ W ¡ W;

gp; : : : ; g1 £ Ap; : : : ; A1 : gpAp; gp¡1Ap¡1 ¢ Ap; : : : ; g1A1 ¢ : : : ¢ Ap :

The G-semi-stable locus of P W is the set of p-tuples Ap; : : : ; A1 with all the

Aj 's surjective and the stabilizer of these points is Z mpZ £ : : : £ Z m1Z
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Denoting dj : m¡mj the quotient for the action is

Á : P W s ¡ Fdp;:::;d1 W ;

Ap; : : : ;A1 7¡ ¡K
er Ap; : : : ; Ker A1 ¢ : : : ¢ Ap ¢;

where Fdp;:::;d1 W : f0 ½ Wdp ½ : : : ½ Wd1 ½ W g is the variety of °ags of
dimensions dp < : : : < d1 in W

5 Second application: Hamiltonian GW-invariants

The second application concerns the so-called Hamiltonian Gromov{Witten in-
variants which were recently introduced in [6 14] The purpose of this and the

next sections is to put into an algebro-geometric perspective the construction per-
formed in these preprints and to show how is that related to the problem studied
in this article at least in the case of torus actions

In what follows K will denote the compact torus S1 r and G Kc C¤ r
will be its complexi¯cation We assume that G acts holomorphically on a projective

variety X and that the action is linearized in a very ample line bundle OX 1 X
Then the maximal compact subgroup K will preserve a symplectic form on X
representing the ¯rst Chern class of OX 1 and we get a Hamiltonian action on
X The explicit formula for the corresponding moment map can be found in [10]
lemma 2 5 page 24

In all the rest C denotes a smooth projective curve with a KÄahler metric on
it As usual EG BG and EK BK will stand for the universal G and K-
bundles; they are uniquely determined up to homotopy by the condition that are

contractible and G and K act freely on them so that we may take EG EK : E
The K-equivariant homology of X is de¯ned as HK

¤ X : H¤ E £K X and
elements of it can be constructed as follows: one starts with a principal K-bundle
P M over a closed C1-manifold M of real dimension d together with a K-
equivariant map U : P X The d-dimensional equivariant homology class

de¯ned by this data is the image of the fundamental class of M under

Hd M »
Ã¡ HK

d P ¡ HK
d X :

For every K-equivariant 2-homology class B 2 HK
2 X; Z there is a closed Rie-

mann surface § and a principal K-bundle P § together with a K-equivariant
map U : P X representing the class B Moreover if § is connected and
P; P 0 § represent the same class then P and P 0 are isomorphic as K-bundles

In other words the choice of an equivariant homology class uniquely determines

the topological type of the principal bundles over a ¯xed Riemann surface which
can represent this homology class

Given a principal K-bundle P C the complexi¯ed bundle P £K G will be

denoted P c The gauge groups of P and P c are respectively

G P ff : C S1 r
g and G c P ff : C C¤ r

g:



Vol 77 2002 GW invariants and invariant quotients 175

A base point ³0 2 C will be ¯xed once for all Corresponding to it we will consider
the based gauges G c

0 P of P c which are the identity at ³0 The full gauge group
is then the direct product of C¤ r with the based gauge group

5 1 A-holomorphic maps

Now we turn to another ingredient used in the de¯nition of the Hamiltonian GW-
invariants

De¯nition 5 1 1 i Given a connection A 2 A P and a K-equivariant map
U : P X the operator dAU is de¯ned as

TpP 3 w 7¡ dUp w + » A w U p ;

where » a x is the tangent vector at x 2 X determined by a 2 Lie K
ii A K-equivariant map U : P; A X is called A-holomorphic if ¹@AU 0

where

¹@AU :
1

2
dAU + JX ± dAU ± JC :

The notation JC stands for the complex structure induced on the A-horizontal
spaces of P by the complex structure of C

In more down to earth terms a K-equivariant map U : P;A X is A-
holomorphic if and only if

dUp fJv JdUp

e
v ;

where

e
v and fJv denote respectively the A-horizontal liftings in p 2 P of the vectors

v; Jv 2 T C

De¯nition 5 1 2 Cf [6] section 3 2 Denote

XB :
©

U; A 2 C1K P;X; B £ A P j ¹@AU 0ª
the space of K-equivariant A-holomorphic smooth maps which represent the class

B 2 HK
2 X

Any K-equivariant map U : P X induces a map ¹u : C P £K X Then U
is A-holomorphic if and only if ¹u is holomorphic One has to be careful with the

integrable complex structure on P £K X which is induced by the connection A
For vectors tangent to the ¯bres of P £K X C the complex structure agrees

with that of X while for v 2 T C in a local trivialization P » C £ K
JP£KX v Jv + » A Jv ¡ J» A v : 5 1

In this formula and in all the rest of the paper for a 2 Lie K » a will denote
the vector ¯eld on X induced by the in¯nitesimal K-action

Clearly the real gauges act on XB but it turns out that the complex gauges

act also The formula for it is given in the lemma below



176 M Halic CMH

Lemma 5 1 3 The complex gauges G c P act on XB as f£ U; A 7¡ f ¢U; f ¢A
where

f ¢ U p : f¡1 p U p 5 2

and

f ¢ A : A + f¡1df k + ¤ f¡1df ik: 5 3

Some explanation is in order: any a 2 Lie G Lie K © iLie K can be

uniquely written a ak + iaik with ak; aik 2 Lie K The ¤ in the formula
represents the Hodge star operator on C

Proof It is clear that formula 5 2 just extends the action of the real gauges by
composition on the right We shall prove the formula for the action of f on A by
¯nding a connection A0 on P which makes A0-holomorphic the map U 0 : f ¢ U
For doing computations we use a local trivialization of P so that P itself may be

assumed trivial as long as the objects found in the end are globally de¯ned
In what follows ³ denotes a point on C By assumption P C £ K and

U ³; g¡1 gu ³ for some u : C X I want to ¯nd a connection A0 on P such
that ¹@A0U 0 0 Since U 0 is K-equivariant it is enough to check this condition at
points ³; 1 2 P Because U is A-holomorphic

dU ³;1 Jv ¡A Jv JdU ³;1 v ¡ A v

for v 2 T³C or equivalently
du³ Jv + » A Jv u ³ Jdu³ v + J» A v u ³ : 5 4

Formula 5 2 implies that
dU 0

³;1 Jv ¡A0 Jv f¡1 ³ du³ Jv ¡ f¡1 ³ » f¡1df Jv u ³
+f¡1 ³ » A0 Jv u ³

and

JdU 0

³;1 v ¡ A0 v f¡1 ³ Jdu³ v ¡ f¡1 ³ J» f¡1df v u ³
+f¡1 ³ J» A0 v u ³ :

For U 0 to be A0-holomorphic it is necessary and su±cient that the di®erence of
these two quantities is zero Imposing this condition we ¯nd

0 Jdu³ v ¡ du³ Jv ¡ J» f¡1df v u ³ + » f¡1df Jv u ³
+J» A0 v u ³ ¡ » A0 Jv u ³
5 4

» A Jv u ³ ¡ J» A v u ³ ¡ » A0 Jv u ³ + J» A0 v u ³
+» f¡1df Jv u ³ ¡ J» f¡1df v u ³

»¡A Jv ¡A0 Jv
¢u ³ ¡ J»¡A v ¡ A0 v

¢u ³
+»¡ f¡1df Jv

¢u ³ ¡ J»¡ f¡1df v
¢u ³ :
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It remains to separate the Lie K and iLie K components of the last line

»¡ f¡1df Jv ¢ ¡ J»¡ f¡1df v ¢
»¡ f¡1df k Jv + i f¡1df ik Jv

¢ ¡ »¡i f¡1df k v ¡ f¡1df ik v
¢

»¡ f¡1df k Jv + f¡1df ik v
¢ ¡ J»¡ f¡1df k v ¡ f¡1df ik Jv

¢
:

Inserting this into the previous relation we obtain

0 »¡A Jv ¡A0 Jv + f¡1df k Jv + f¡1df ik v
¢

¡J»¡A v ¡A0 v + f¡1df k v ¡ f¡1df ik Jv
¢
:

For A0 de¯ned by

A0 A + f¡1df k ¡ f¡1df ik ± J;

the last equality is satis¯ed Notice that in general this is the only possible choice

for A0 since the vectors » and J» are linearly independent in most cases

Using local normal coordinates on C it follows that for any 1-form ® 2 ­1
C

® ± J ¡ ¤® ¤

Remark 5 1 4 i It follows from formula 5 3 that the G c
0 P -action on XB is

free

ii Any f : C C¤ r is of the form f ³ R ³ ' ³ with R : C Rr and

' : C S1 r Formula 5 3 becomes

f ¢ A A + '¡1d'¡ i ¤ d log R : 5 5

The form '¡1d' is closed but not necessarily exact; it is exact if and only if

'¤
: ¼1 C ¼1 S1 r is the zero homomorphism or equivalently ' exp iµ

for some µ : C Rr However it always de¯nes an integral 1-cohomology class

and conversely any integral 1-cohomology class can be represented in this form
Using the Hodge decomposition of ­1

C this discussion implies that the pointed
complex gauge equivalence classes of connections in P are parameterized by

H1 C; Rr H1 C; Zr ;

where H1 C; Rr denotes the space of harmonic Rr-valued 1-forms on C This
quotient is just the rth power of the familiar Picard variety of C when H1 C; Rr
is given the complex structure de¯ned by the Hodge-star of C

iii In the genus zero case i e C » P1 all gauges admit a globally de¯ned
logarithm Therefore all connections are gauge equivalent which is the same saying

that in a given topological principal bundle P P1 there is only one equivalence

class of holomorphic structures
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5 2 Short digression on the Picard variety
All the statements in this section should be well known but we are recalling them
in order to ¯x the notations As I have already mentioned the quotient

H1 C; Rr H1 C; Zr
¡H

1 C; R H1 C; Z ¢
r P ic0C r

is the rth power of the Picard variety of C when H1 C; Rr is regarded as a
complex vector space with complex structure given by the Hodge-star of C It is
a projective torus which parameterizes topologically trivial holomorphic principal
C¤ r-bundles over C We are somewhat sloppy at this point because the r copies

of the C¤'s are labeled in our case so we can talk about the ¯rst copy the second
one and so forth Otherwise the C¤ r-bundles over C would be parameterized
by Symr

¡ P ic0C r
¢

: P ic0C r Sr
Let

P
c
r ¡ P ic0C r

£ C

be a universal principal C¤ r-bundle It has the property that for any point
¿ 2 P ic0C r the restriction P

c
r ¿ ¡ C represents the point ¿ We shall be

interested in describing a connection in this bundle which induces its holomorphic
structure

Let us start with the

Lemma 5 2 1 For any ® 2 H1 C ;Zr there is a unique '® : C S1 r such
that '® ³0 1 and '¡1

® d'® ® The point ³0 2 C was ¯xed from the beginning

Proof Clearly we may assume that r 1 The uniqueness part is immediate

For the existence part notice that if ® is exact i e ® dµ for µ : C R
then ' : exp i µ ¡ µ ³0 does the job Homotopy classes of maps C R are

parameterized by HomZ H1 C ; Z ; Z » H1 C; Z so for ® 2 H1 C; Z there exists

'0 : C S1 such '0 ³0 1 and [ '0 ¡1d'0] [®] 2 H1 C ; Z By the discussion
above there exists '0 : C S1 such that '0 ³0 1 and '¡1

0 d'0 ®¡ '0 ¡1d'0

Now ' : '0'0 will be convenient ¤

Remark 5 2 2 The map

H1 C; Zr
3 ®

7¡ '® 2 C1¡C; S1 r
¢

is a morphism of groups i e '®'¯ '®+¯
Fix once for all a real connection A0 in the smooth C¤ r-bundle P c C i e

one coming from a connection in the real S1 r-bundle

Lemma 5 2 3 i On H1 C; Rr £C there is a natural closed Rr-valued 1-form
Â which is de¯ned by

Â A;³ a; v : A v for a; v 2 T A;³ ¡H
1 C; Rr £ C¢:
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ii The real connection A : A0 + Â de¯nes a holomorphic structure on the

bundle pr¤CP c H1 C ; Rr £ C

Proof The curvature of A is FA pr¤CFA0 + dÂ For a 2 H1 C; Rr and v 2 T C
dÂ¡ a; 0 ; 0; v

¢
a v and dÂ evaluates zero on other pairs of vectors

It is easy to see that for any 1-form a on C and any tangent vector v to C

¤a Jv a v This implies that the connection A de¯nes indeed a holomorphic
structure in pr¤CP c because its curvature is a 1; 1 -form on H1 C; Rr £ C ¤

Proposition 5 2 4 i The group H1 C ; Zr acts holomorphically by real gauges

on pr¤CP c by

H1 C; Zr £ ¡H1 C ; Rr £ P c
¢ ¡ H1 C; Rr £ P c;

® £ A; p : A + ®; R'® p :

ii The holomorphic principal bundle

P
c
r A0 : pr¤CP c H1 C; Zr ¡ P ic0C r

£ C

is a universal principal C¤ r-bundle which parameterizes holomorphic bundles

over C having ¯xed topological type de¯ned by A0 It also comes with the connec-
tion induced by A

Proof i Remark 5 2 2 implies that the formula above is indeed an action It is also
holomorphic because H1 C ; Zr preserves the connection A; indeed A+® '®A:

ii The statement is a direct consequence of 5 1 4 ¤

We should say that we have worked with complex principal bundles throughout
this section because the accent was put on their holomorphic structure But P

c
r A0

is the complexi¯cation of a real S1 r-bundle Pr A0 P ic0C r
£ C and the

connection A comes from a connection in Pr A0 because the connection A0

¯xed from the beginning was real and the action on pr¤CP c was done by real
gauges

6 Moduli spaces

In this section we shall see that the spaces introduced in [6] and [14] for de¯ning

invariants of Hamiltonian group actions have nice algebraic interpretations

The authors of [6] introduce a perturbation of

~SC;k X ; B :
©

U;A 2 XB j ¤FA + m ± U 0ª £ P k
o±

G P 6 1

and

SC;k X ;B : ~SC;k X ; B Gk: 6 2
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In the de¯nition above m : X Rr is the moment map corresponding to the

S1 r-action and P k
o is the open set in P k consisting of k points which project

to k distinct points of C The group actions are as follows:

f £ ¡ U;A £ p1; : : : ; pk ¢
: f ¢ U; f ¢ A £ Rf p1 p1; : : : ;Rf pk pk

and

g1; : : : ; gk £ £
U; A £ p1; : : : ; pk ¤

:
£

U; A £ Rg1 p1; : : : ; Rgk pk ¤;

for f 2 G P and g1; : : : ; gk 2 K S1 r The letter `R' denotes the right action
of G on the principal bundle The expected dimension of this space is

2D : exp:dimRSC;k X; B 2 1 ¡ g n¡ r + 2cK1 X ¢ B + 2k; 6 3

where cK
1

X denote the K-equivariant ¯rst Chern class of X
The space SC;k X; A can also be expressed as the in¯nite dimensional invariant

quotient as

SC;k X;B ³Xs
B £ P c k

o G c P ´ Gk: 6 4

The notation Xs
B ½ XB stands for the set of so-called stable pairs and G c P acts

on XB as described in lemma 5 1 3

For the present purposes it will be more convenient to use this second descrip-
tion Since G c P G c

0 P £G and the actions of G c P and Gk on XB commute

SC;k X ; B can be constructed in a di®erent way: ¯rst take the quotient for the

free G c
0 P £ Gk-action which is ¯nite dimensional and after make the invariant

quotient for the remaining G-action

K-equivariant maps U : P X and G-equivariant maps U c : P c X will be

used interchangeably That there is no harm in doing so follows from the fact that
any K-equivariant U de¯nes in the obvious way a G-equivariant U c; conversely
any such U c de¯nes a corresponding U composing it with the inclusion j : P P c

Lemma 6 1 i The variety ¹X de¯ned by

¹X : P
c
r A0 £G X Pr A0 £K X;

carries a natural structure of a complex projective variety Its complex dimension
is dim ¹X gr + dim X + 1 where g is the genus of C and r dim G

ii Any K-equivariant A-holomorphic map U : P X with A 2 A P
which represents an equivariant 2-homology class B 2 HK

2 X ;Z de¯nes a holo-
morphic map ¹u : C ¹X which represents a class ¹B 2 H2 ¹X ; Z depending on B
only If ¼ : ¹X P ic0C r

£C is the natural projection ¼
¤ ¹B 0© [C] Moreover

cK
1

X ¢ B c1 T rel
¹X ¢ ¹B where T rel

¹X
denotes the ¼-relative tangent bundle

iii Consider an A-holomorphic K-equivariant map U : P X and g 2
G c

0 P Then U and gU de¯ne the same map C ¹X
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Proof i ¹X has a holomorphic structure because P
c
r A0 P ic0C r

£ C is a
holomorphic bundle according to lemma 5 2 3 That it is also a projective variety
follows from the fact that the Picard torus is projective

ii Remark 5 1 4 implies that given U : P; A X there is a unique fA 2
G c

0 P depending on A such that

fA ¢ A harmonic part of A¡ A0 : h A¡ A0 2 H1 C ; Rr :

The composed map

P fh A¡A0 g£idP £fAU

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ H1 C ; Rr £ P

| {z }pr¤CP

£X ¡¡¡¡ Pr A0 £ X 6 5

is K-equivariant and therefore de¯nes

¹u : C ¡ Pr A0 £K X ¹X :

Since fAU : P X is fAA-holomorphic it follows that this map is holomor-
phic If p³ 2 P or in P c denotes a point lying over ³ 2 C the explicit formula
for ¹u is

³ ¹u
7¡ £

[h A¡ A0 ; p³ ]; fAU p³ ¤; 6 6

where the square brackets denote obvious equivalence classes

Suppose that P ½¤E for a map ½ : C BK Then from the commutative

diagram

T rel
P£KX ½; idX ¤ E £K TX

²

/ E £K TX

²

C ¹u
/ P £K X

½;idX
/ E £K X:

we can see that the homology class ¹B depends only on the K-equivariant class B
and also that cK

1
X ¢ B c1 T rel

¹X ¢ ¹B
iii Consider now U : P X and g 2 G c

0 P g R ¢ ' with ' : C S1 r
and R : C Rr According to 5 5 gA A + '¡1d'¡ i ¤ d log R so

h gA¡ A0 h A¡ A0 + h '¡1d' :

Notice that ®' : h '¡1d' is actually an integral Rr-valued harmonic form and
according to lemma 5 2 1 there is a unique Ã' 2 G0 P such that Ã¡1' dÃ' ®' I
claim that fgA Ã'fAg¡1 i e that Ã'fAg¡1 gA A0 + h gA¡A0 Indeed

Ã'fAg¡1 gA Ã' fAA Ã' A0 + h A¡A0

A0 + h A¡ A0 + Ã¡1' dÃ'A0 + h A¡ A0 + ®' A0 + h gA¡A0 :

We are going to check now that U and gU induce the same holomorphic map
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C ¹X Using formula 6 6 gU reads

³ 7¡ £
[h A¡A0 + ®'; p³ ]; Ã¡1' p³ ¢ fAU p³ ¤

£
[h A¡A0 + ®';RÃ'p³ ]; fAU p³ ¤

£
[h A¡A0 ; p³ ]; fAU p³ ¤:

6 7

This ¯nishes the proof of the lemma ¤

The next proposition gives the algebro-geometric interpretation of the space

6 2

Proposition 6 2 There is a one-to-one map

¡XB £ P c k
o ¢±¡G c

0 P £ Gk
¢ Ã

1:1¡¡¡ MC;k ¹X ; ¹B ;

where MC;k ¹X ; ¹B denotes the space of stable maps C; x ¹X with k marked
points x 2 Ck

o and representing the 2-homology class ¹B As usual Ck
o denotes

the complement in Ck of the diagonals

Proof Consider an A-holomorphic K-equivariant map U : P X together with
k marked points p 2 P c k

o
and let x : ¼C p 2 Ck

o Lemma 6 1 says that
this data induces a morphism C ¹X and moreover it does not depend on the

G c
0 P -orbit of U; A So we get a map

F : ¡XB £ P c k
o ¢

G c
0 P ¡ MC;k ¹X; ¹B :

This map is clearly Gk-invariant and therefore descends to the quotient
F : ¡XB £ P c k

o¢±¡G c
0 P £ Gk

¢ ¡ MC;k ¹X ; ¹B :

Because the composition ¼¹u f¿ g £ idC for some ¿ 2 P ic0C r the map ¹u is in
fact a representative for the corresponding stable map see de¯nition 1 1

The map F is clearly surjective: given a point ¹u; x 2 MC;k ¹X ; ¹B consider
the diagram

¹u¤ Pr A0 £ X P

²

¹U / Pr A0 £ X

²

prX
/ X

C ¹u
/

¹X
The composed map U : prX ± ¹U will be a K-equivariant A-holomorphic map
for A : ¹u¤A see 5 2 3 for the de¯nition of A As marked points in P one may
take any p lying over x

We have to prove that F is injective Consider U : P; A; p X and U 0 :
P; A0; p0 X which induce the same morphism ¹u : C ¹X It follows from

de¯nition 6 5 that necessarily h fAA¡ A0 ´ h fA0 A0 ¡A0 mod H1 C ;Zr so

that h fAA ¡ fA0 A0 ´ 0 mod H1 C ; Zr Remark 5 1 4 implies that fAA and
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fA0 A0 are in the same G c
0 P -orbit and consequently A and A0 are also in the same

G c
0 P -orbit Since ¹u is gauge invariant we may assume that A A0 and even

that A¡A0 is a harmonic form
The problem is reduced to the following: two maps U : P;A; p X and

U 0 : P; A; p0 X which de¯ne the same ¹u; ¹x must be equal Formula 6 6
says that

£
[A¡ A0; p³ ]; U p³ ; [p]

¤ £
[A¡ A0; p³ ]; U 0 p³ ; [p0]

¤ 8p³ 2 P:

A moment's thought shows that this imply U U 0 and [p] [p0] ¤

Remark 6 3 An advantage of working with MC;k ¹X ; ¹B is that it has a natural
quasi-projective scheme structure This was proved in lemma 3 1 where is also
described the construction of its compacti¯cation MC;k ¹X ; ¹B in terms of stable
maps Certainly working within this algebraic frame has its own disadvantages:
the space of stable maps may be badly behaved or it may have wrong dimension;
an instance of a very unpleasant situation is when MC;k ¹X; ¹B ½ MC;k ¹X ; ¹B is
not dense

When MC;k ¹X ; ¹B has larger dimension than the expected one it seems pos-
sible to introduce a virtual class on MC;k ¹X; ¹B using obstruction theory relative

to ¼ : ¹X P ic0C r
£ C This should correspond to the limit of the funda-

mental cycles of the moduli spaces of pseudo-holomorphic curves to ¹X; ¹J :

Pr A0 £K X; J with J a K-invariant generic almost complex structure on X
Unfortunately for the moment I can not make this statement more precise

There is a natural G-action on ¹X :

g £ £
[A; p];x¤

:
£
[A; p]; gx¤

for
£
[A; p]; x¤ 2 ¹X P

c
r A0 £G X

which is well-de¯ned precisely because G is commutative The G-action can be

linearized in the line bundle

L : P
c
r A0 £G OX 1 ¡ ¹X ;

which is ¼-ample For ` P ic0C r
£ C su±ciently ample line bundle

¹L : ¼¤`­ L ¡ ¹X
is ample and the G-action linearizes again In is rather clear that the set of G-
semi-stable points of ¹X for this action is ¹X

ss
P

c
r A0 £G Xss In particular if

G acts freely on Xss it will does the same on ¹X
ss The invariant quotient is in

any case
¹X G P ic0C r

£ C £ X̂ where
X̂ : X G:

The next lemma is useful to \visualize" better MC;k ¹X ; ¹B
Lemma 6 4 Assume that G acts freely on Xss and let Á : Xss

X̂
be the

quotient map Consider ¹u 2 MC;k ¹X ; ¹B with Image ¹u ½ P
c
r A0 ¿ £G Xss Then

Á ± ¹u ¤Xss C represents the point ¿ 2 P ic0C r
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Proof Notice that in the diagram

P
c
r A0 ¿ £ Xss

²

Xss

²

C ¹u
/

P
c
r A0 ¿ £G Xss Á

/ X̂ ;

P
c
r A0 ¿ £ Xss Á¤Xss Indeed for ¡[p; x];x0

¢ 2 Á¤Xss there is a unique

p0 such that [p0; x0] [p; x] so we may identify ¡[p;x]; x0

¢
p0; x0 Conse-

quently Á ± ¹u ¤Xss ¹u¤ P
c
r A0 ¿ £ Xss and we obtain a G-equivariant map

Á ± ¹u ¤Xss
P

c
r A0 ¿

which covers the identity of C This one must be an
isomorphism ¤

We should recall that for obtaining the moduli space SC;k X ; B we still need to
divide out the remaining G-action on MC;k ¹X ; ¹B For comparing the two points

of view the real-analytic and the algebraic one we shall use the results obtained
in section 3: the moment map corresponding to the G-action on ¹X is the function
¹m de¯ned by

P
c
r A0 £ X

²

prX
/ X m

/ Rr

¹X
¹m

5

kkkkkkkkkkkkkkkkkkk

It follows from remark 3 6 that the limit moment map on MC;k ¹X; ¹B is

¹u 7¡ Z
C

¹m ± ¹u 2 Rr

and the invariant quotient is constructed dividing the zero level set by K S1 r
On the other hand the zero level f¤FA +m±U 0g modulo gauge appearing

in the de¯nition 6 1 can be written also as

U
7¡ Z

C
m ± U ¡Z

C
FA ± 2 Rr ;

where ± represents the multi-degree of the S1 r-bundle P which is a topologi-
cal invariant We deduce that SC;k X ; B de¯ned by 6 2 and MC;k ¹X; ¹B G
should be birational because both of them are Marsden{Weinstein quotients of
MC;k ¹X; ¹B However unless MC;k ¹X ; ¹B is irreducible this issue can be quite

tricky
In the particular case when ± 0 that is we consider bundles with multi-degree

0; : : : ; 0 the real-analytic and the algebro-geometric constructions coincide
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7 Hamiltonian invariants

Before stating the main result of this section we need some notations We de¯ne

the evaluation maps

f
evk : XB £ P c k

o G c
0 P ¡ Xk;

£
U; A ; p1; : : : ; pk ¤

7¡ ¡U p1 ; : : : ; U pk ¢

7 1

and

evk : Xs
B £ P c k

o G c P ¡ Xk;

£
U; A ; p1; : : : ; pk ¤

7¡ ¡U p1 ; : : : ; U pk ¢

7 2

and

evk : XB £ P c k
o G c

0 P ¡ P
c
r A0 £ X k;

£
U; A ; p

¤
7¡ ¡[h A¡ A0 ; RfAp]; U p

¢
:

7 3

Computation 6 7 shows that the last evaluation is well-de¯ned All of them are

Gk-equivariant and the last map induces on MC;k ¹X; ¹B the usual evaluation

evk : MC;k ¹X; ¹B XB £ P c k
o G c

0 P £ Gk ¡ ¹X
k: 7 4

The key for understanding the relationship between the analytic point of view and
the algebraic one developed in the present paper is the diagram

Xs
B £ P c k

o G c
0 P

quot out the free
G-action for k ¸ 1

²

½ XB £ P c k
o G c

0 P

quot out the free
Gk-action

²

Xs
B £ P c k

o G c P

quot out the not neces-
sarily free Gk-action

²

XB £ P c k
o G c

0 P £ Gk

proposition 6 2

SC;k X; B L K MC;k ¹X ; ¹B G L MC;k ¹X ; ¹B :
7 5

Since G K Rr>0 is contractible K and G-equivariant cohomologies of X coin-
cide; we shall prefer G-equivariant classes Recall that 2D denotes the expected
dimension of SC;k X ; B and its formula is given by 6 3

De¯nition 7 1 The Hamiltonian invariant introduced in [6 14] is de¯ned in
the following way: consider an equivariant cohomology class ® 2 H¤G

X ­k with
deg ® 2D Under the assumption that Gk acts freely on Xs

B £ P
c k

o G c P
the pull-back de¯nes a cohomology class on SC;k X ;B denoted the same The

invariant is

©C;k
X;B ® : Z

SC;k X;B
evk ¤®: 7 6
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I have to say that © is de¯ned this way only when SC;k X; B has the correct
dimension For this reason the authors in [6 14] work with perturbations of
SC;k X ; B In algebraic context one should integrate over a ¼-relative virtual
cycle as mentioned in remark 6 3

It is conjectured in [6] that for special choices of ® and B the invariant © should
coincide with a Gromov{Witten invariant of X̂ X G More precisely

Conjecture Take ® 2 H¤G
X ­k and

B̂ 2 H2 X̂ ;Z with X̂
: X G and let

®̂ 2 H¤
¡X̂

k
¢

and B 2 HG
2 X ; Z be respectively the classes de¯ned by

X̂
»Ã¡ E £G Xss ¡ E £G X:

Then ©X;B
C;k ® GW X̂;B̂C;k ®̂

Our goal is to prove this conjecture under the same transversality assumptions

as in theorem 4 2 when the invariant homology class B 2 HG
2 X ; Z is induced

from Xss; the reason for this restriction was discussed in the end of the last section
So we will deal with topologically trivial C¤ r-bundles over a smooth curve C
For P

c
r P ic0C r

£C the universal C¤ r-bundle trivialized at a point ³0 2 C
we de¯ne ¹X : P

c
r £ C¤ r X

Theorem 7 2 Let the torus G » C¤ r act on the irreducible projective variety X
and consider a linearization of this action in the very ample line bundle OX 1

X Denote B 2 H2 X ; Z a class which can be represented by a morphism C
Xss where C is a smooth projective curve with Aut C fidCg and let B̂ 2
H2 X̂

; Z be the class induced by the projection Á : Xss Xss G X̂
Suppose

that
a1 G acts freely on the G-semi-stable locus of X so that Xss

X̂ is a
principal G-bundle and denote ¹B 2 H2 ¹X ;Z the class induced as in lemma 6 1;

a2 MC;k ¹X; ¹B is generically smooth and has the expected dimension;
a3 every irreducible component of MC;k ¹X; ¹B contains a point represented

by a morphism C ¹X
ss

P
c
r £ C¤ r Xss;

a4 MC;k X̂
;
B̂ ½ MC;k X̂

;
B̂ is dense

Then for any ® 2 H¤G
X ­k

GW C;k
X̂;B̂

®̂ ©C;k
X;B ® ;

where ®̂ 2 H¤
X̂ ­k is the class induced by ®

Proof I start by explaining the guiding idea: we have learned in section 4 that
we should transfer the integrals on MC;k X̂; B̂ used for de¯ning Gromov{Witten

invariants of X̂ to integrals on MC;k ¹X ; ¹B G because ¹X G P ic0C r
£C£X̂All the evaluation maps involved for making these computations live on the right-

hand-side of 7 5 On the other hand the invariant © is de¯ned using equivariant
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cohomology classes which are pulled-back to SC;k X ; B by maps which live on
the left-hand-side of 7 5 So loosely speaking what we have to do is to pass

from the left to the right in 7 5

For making this passage we need to understand the relationship between the

various group actions and evaluation maps which appear in the context On XB £
P c k

o G c
0 P there are two commuting actions First G ½ G c P acts by constant

complex gauges

g £ £
U; A ; p

¤ £
gU;A ; Rgp

¤
:

The map

f
evk is G-invariant for this action while evk is G-equivariant for the

diagonal right action of G on the P
c
r -factor of P

c
r £ X k

Secondly Gk acts on XB £ P c k
o G c

0 P with quotient MC;k ¹X ; ¹B :

g1; : : : ; gk £ £
U; A ; p1; : : : ; pk ¤ £

U; A ; Rg1p1; : : : ; Rgkpk ¤
:

The evaluation map evk is Gk-equivariant for the G-action on P
c
r £ X on both

terms

Convention In what follows the symbol \»" will denote homotopy equivalence

and the letter \|" obvious inclusions For understanding better the forthcom-
ing calculations we should keep in mind that for integration purposes homotopy
equivalent spaces are equal

SC;k X ; B » Ek
£Gk ³Xs

B £ P c k
o G c P ´

» Ek £Gk ³E £G ³Xs
B £ P c k

o G c
0 P ´´

E £G ³Ek £Gk ³Xs
B £ P c k

o G c
0 P ´´ :

7 7

The map
evk : XB £ P c k

o G c
0 P ¡ P

c
r £ X k

being Gk-equivariant and G-invariant induces

E £G ³Ek £Gk ³XB £ P c k
o G c

0 P ´´
evk

²

» / E £G MC;k ¹X; ¹B
evk

²

E £G ³Ek
£Gk P

c
r £ X k´ » / E £G ¹X

k:

7 8

On the other hand

E £G ³Ek
£Gk P

c
r £ X k´

²
²

» / E £G ¹X
k

E £G Ek
£Gk Xk BG £ Ek

£Gk Xk :

7 9
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The reason for the last equality is that G acts on P
c
r only and therefore the G-action

on Ek
£Gk Xk is trivial The class ® we start with lives in H

¤G
X ­k; pulling it back

using ² we get the class ¹® 2 H
¤G ¹X

k Relation 7 7 implies that evk ²±evk and
we deduce from diagrams 7 8 and 7 9 that ev¤k® ev¤k ¹® 2 H¤G

MC;k ¹X ; ¹B
The invariant © can therefore be de¯ned as

© ® Z
MC;k ¹X; ¹B G

|¤M ss ev¤k ¹®; 7 10

where the relevant maps ¯t in the diagram

E £G MC;k ¹X ; ¹B
evk¡¡¡¡¡ E £G ¹X

k

E £G MC;k ¹X ; ¹B
ss

|Mss

O

»
²

E £G ¹X
k ss

| ¹Xk ss

O

²

SC;k X ; B MC;k ¹X ; ¹B G c
evk K ¹X

k G:

7 11

From the diagram

Ek
£Gk Xk

E £G ³Ek
£Gk P

c
r £ Xss k´

»
²

²
/ Ek

£Gk Xss k

|Xss

O

»
²

E £G ¹X
ss k » / ¹X

ss k G
q

/

X̂
k

we see that |¤
¹Xss ¹® |¤¹Xss²¤|¤Xss ® q¤®̂ where ®̂ is by de¯nition the cohomology

class on X̂
k determined by ®

The assumption a3 says that the subset MC;k ¹X ; ¹B
o

½ MC;k ¹X ; ¹B
ss of

morphisms with image contained in ¹X
ss is dense We deduce going the other way

round in 7 11 that

© ® Z
MC;k ¹X; ¹B G b

evk ¤q¤®̂: 7 12

At this point we have ¯nally moved from the left-hand-side to the right-hand-side

of 7 5 as we wished Notice that since the maps involved in the computations

are rational the pull-backs are de¯ned as in 4 1

The composition of morphisms ¹u : C ¹X representing the class ¹B with the

projection ¹X P ic0C r
£C is of the form f¿ g£ idC because ¹B induces the class
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0 © [C ] Consequently a map ¹u : C ¹X
ss de¯nes a map C C £ X̂ which is the

identity on the ¯rst component

Lemma 7 3 The map

T : MC;k ¹X ; ¹B G K MC;k C £ X̂; [C] + B̂
is birational

Proof Assumption a4 implies that T is dominant if every morphism û : C X̂representing
B̂ is in its image From the diagram

û¤Xss

²

/ C £ Xss

²

/ Xss

Á
²

C
idC£û

/ C £ X̂
/

X̂
we deduce that the pull-back û¤Xss C is a topologically trivial holomorphic
principal bundle this follows from the assumption that B̂ is induced by a class

B 2 H2 Xss; Z ; it is therefore isomorphic to P¿ : P
c
r jf¿g£C for a certain ¿ 2

P ic0C r This data induces the map ¹u : C P¿ £G Xss
½ P

c
r £G X ¹Xwhich

represents the class ¹B and also T ¹u û
Now let us prove that T is generically injective Using assumption a3 we may

restrict ourselves to the dense open subset MC;k ¹X; ¹B
o representing morphisms

whose image is contained in ¹X
ss Let us assume that

C ¹u¡ P¿ £G Xss

&
Á

C £ X̂
%Á

C ¹u0

¡ P¿ 0 £G Xss

are such that Á ± ¹u Á ± ¹u0 Then Á ± ¹u ¤ Xss

X̂ Á ± ¹u0 ¤ Xss

X̂
and

lemma 6 4 implies that ¿ ¿ 0 Then C ¹u;¹u0

¡¡ P¿ £G Xss induce the same map to
X̂ and consequently for any ³ 2 C ¹u0 ³ g ³ u ³ for a unique g ³ 2 G The

morphism C G must be constant so ¹u0 g¹u and they de¯ne the same point in
MC;k ¹X; ¹B G ¤

Since C has trivial automorphism group

MC;k C £ X̂; [C ] + B̂
1:1

L K MC;k X̂ ;
B̂ :

Finally from the diagram

MC;k ¹X ; ¹B G c
evk K ¹X

k G
q

KX̂
k

1:1

y
MC;k C £ X̂ ; [C ] + B̂

evX̂k¡¡ C £ ^X
k pr

X̂¡¡ X̂
k
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we conclude that the invariant © does coincide with a Gromov{Witten invariant
of X Indeed

©C;k
X;B ® Z

MC;k ¹X; ¹B Gb
ev¤

kq¤®̂ Z
MC;k C£X̂;[C]+B̂

evX̂
k

¤pr¤
X̂

®̂

Z
MC;k X̂;B̂

evX̂
k

¤
®̂: GW C;k

X̂;B̂
®̂ :

¤

I would like to conclude with the remark
Why should the Hamiltonian invariants be interesting I have mentioned in the

introduction that the starting point of this study was the problem of comparing

the GW-invariants of a quotient with the invariants of the variety we start with
Simple dimensional counting shows that {except in genus zero{ the question is not
well-posed in this form: the dimension of the space of morphisms from curves to
a quotient variety is larger than the dimension of the space of morphisms into the

starting variety The di®erence between these dimensions is exactly the dimension
of the moduli space of principal G-bundles over a curve; this can be explained
noticing that for morphisms v : C X̂ which represent an a priori given homol-
ogy class the holomorphic type of the the pull-backs v¤Xss C changes within
a ¯xed topological type In this way the space of principal bundles over curves

with ¯xed topological type naturally enters into the scene

Equality 7 12 brings our attention to another aspect of the problem: GW-
invariants of X̂

can be computed under suitable transversality conditions in the

following way

GW C;k
X̂;B̂

®̂ Z
MC;k ¹X; ¹B G

q ±
b
evk ¤®̂;

for q : ¹Xss k G X̂
k The interesting part is that there is a natural projection

¼ : MC;k ¹X; ¹B G P ic0C r;
so that one can further write

GW C;k
X̂;B̂

®̂ Z
P ic0C r

¼
¤ q ±

b
evk ¤®̂

and now the integration takes place on the Picard torus of the curve One may
hope that enumerative invariants of suitably chosen X̂'s can be expressed in terms

of interesting intersection numbers of the Picard variety

References

[1] K Behrend and B Fantechi The intrinsic normal cone Invent Math 128 1997 45{88
[2] K Behrend and Yu Manin Stacks of stable maps and Gromov{Witten invariants Duke

Math J 85 1996 1{60



Vol 77 2002 GW invariants and invariant quotients 191

[3] J -M Bismut and D S Freed The analysis of elliptic families metrics and connections on
determinant bundles Commun Math Phys 106 1986 159{176

[4] J -M Bismut and D S Freed The analysis of elliptic families Dirac operators Êta invari-
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