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On the Haefliger—Hirsch—Wu invariants for embeddings
and immersions

Arkadi Skopenkov*

Abstract. We prove beyond the metastable dimension the PL cases of the classical theorems
due to Haefliger, Harris, Hirsch and Weber) on the deleted product criteria for embeddings and
immersions. The isotopy and regular homotopy versions of the above theorems are also improved.
We show by examples that they cannot be improved further. These results have many interesting
corollaries, e.g.

1) Any closed homologically 2-connected smooth 7-manifold smoothly embeds in R,

2)Ifp<gand m > % +p + 2 then the set of PL embeddings S? x S — R™ up to PL
isotopy is in 1-1 correspondence with 74 (Vin—g,p+1) & Tp (Vin—p,q+1).

Mathematics Subject Classification (2000). Primary: 57Q35, 57Q37; Secondary: 54C25,
55315, 57Q30, 57Q60, 57Q65, 57R40.

Keywords. Embedding, deleted product, engulfing, singular set, metastable case, isotopy, im-
mersion, smoothing, knotted tori.

1. Introduction and main results

Denote CAT = DIFF or PL (we omit CAT if a statement holds in both categories).
For m > n + 3 let Emb{i 41 (N) be the set of CAT embeddings N — R™ up to
CAT isotopy. Let B

N=A{(z,y) e NxN |z #y}

be the deleted product of N. Let Zo act on N and on §™—! by exchanging factors

and antipodes, respectively. For an embedding f : N — R™ define a map

T - g Jr—fy

f:N—o>s™t by  flay)=——"_L.

(#%) |fz — fyl

The equivariant homotopy class a(f) of fin the set wg’}fl (Zv ) of equivariant maps

N — sm1js clearly an isotopy invariant. Thus is defined the Haefliger—Wu

*Supported in part by the Russian Foundation for Basic Research, Grant No. 99-01-00009.
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(deleted product) invariant

o= aap(N) : Bmb g p(N) — g H(N)
[Wu59, Hae61, Gro86, 2.1.E]. The main purpose of this paper is to obtain new
results on surjectivity and injectivity of c, i.e. on the classical problems on em-
beddability and isotopy in R™. The set w%*l(N ) can be effectively calculated
[CoF160, beginning of §2, Hae62B, Hae63, 1.7.1, Bau75, Ada93, 7.1], see also §§5,6
below. Our starting point was the following classical result.

Theorem 1.1« [Hae63, Th. 1’, Web67, Th. 1 and 1’]. If N is either a polyhedron
or a closed smooth n-manifold, then

o™ (N) is bijective for 2m > 3n+ 4 and surjective for 2m > 3n + 3.

The ‘metastable’ dimension restrictions as in Theorem 1.1« were present also
in the PL cases of the classical theorems on embeddings of highly-connected (gen-
eralized) manifolds and of Poincaré complexes [PWZ61, Irw65, Hud67, Hud69,
§11, BoHa70, 1.6, Wal70, §11, Boe71, 4.2, BrMi99, BrMi00]. In these results the
dimension restrictions can be weakened to m > n+ 3. As for Theorem 1.1a, these
restrictions were known to be sharp not only in the smooth case, but also for
polyhedra.

Example 1.2. i) The maps o (S?~115%=1) and o, . »(S?' 1) are not injective
[Hae62A, Hae62T, Zee62).

ii) The map o/, (N) is not injective for n+2 < m < 3"—2+3 and N = (S"V
Sn) L S2m72n73'

s) The map o™ (S™S™) is not surjective, if m > n+3 and ¥°° : «r, (S™"—1) —
T34 1_m 1S DOt epimorphic [Hae62T, Zee62].

ss) The map a%kfglF(SQk x §2k) is not surjective [follows from BoHa70, BoeT71].

e) The map o558 L(N) is not surjective for n € {8,9,10,16} and some homo-
topy n-sphere N [HLS65, Lev65, cf. Ree90, §2, MaTh95, pp. 407-408].

ee) The map a8, (N) is not surjective for max{4,n} < m < 32 and some
n-polyhedron N [MaSe67, SeSp92, FKT94, SSS98].

Example 1.2 (and Examples 1.4 and 1.10 below) are true for each set of the
parameters m, n, k, [ satisfying to the conditions in the statement. Examples 1.2.ii
and 1.2.ss are proved in §7. Examples 1.2.e and 1.2.ee have a stronger property:

(%) there exists an equivariant map N — §™=L but N does not embed into R™.

Links and knots give many other examples of non-injectivity and non-surjectivity
of a, e.g. any CAT non-trivial knot S™ — R™ demonstrates non-injectivity of
o ,r(8™) (note that from a link example by gluing an arc joining connected com-
ponents we can obtain highly connected polyhedral example). The more surprising
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is our first main result, which asserts that the metastable dimension restrictions
can be weakened to m > n + 3 for the PL case of Theorem 1.1a and closed
highly-connected PL n-manifolds:

Theorem 1.3a. If N is a closed d-connected (for d = 1, just homologically 1-
connected) PL n-manifold and m > n+ 3, then

a’p (N) 4s bijective for 2m > 3n+ 3 — d and surjective for 2m > 3n+ 2 — d.

(Let us made some remarks not used in the sequel. In Theorem 1.3 the
surjectivity is not interesting for m < 5"4—4'6. Indeed, 5”4—+6 > W implies
that d > 5 — 1 and » > 6, hence N is a homotopy sphere, so N = S", and
the surjectivity in Theorem 1.3« is trivial. But our proof is not simplified for
m > 5”41" 6 and it can also be considered as a step towards the analogue of Theorem
1.3a for embeddings into manifolds. Analogous remark should be made for the
injectivity in Theorem 1.3a. Note that our proof of Theorem 1.3a: does not give
relative and approximative versions, which are true for Theorem 1.1 [Hae63,
1.7.2, Web67, Theorems 3 and 7, ReSk98].)

For d < 2 Theorem 1.3« was proved in [Sko97]. Although we use some ideas
of [Sko97], the proof of Theorem 1.3a: in the present paper follows a distinct route
via immersions. Our second main result is an extension beyond the metastable
range of the Harris PL version of the Haefliger—Hirsch classification of immersions
(the precise statements are given below).

By [Hae68, Hud70T], the same (3n — 2m + 2)-connectedness assumption as in
the surjectivity part of Theorem 1.3 (2m >3n+2—-d< d > 3n—2m+2) is
unnecessary in [Hud67] (where, roughly speaking, it was proved that a homotopy
equivalence between PL manifolds is homotopic to a PL embedding). So it was
natural to expect that the connectedness assumption is unnecessary in Theorem
1.3a.. However, our third main result is that this connectedness assumption is
essential.

Example 1.4. i) o%%(5P x S*~1) is not injective for p < k.
s) a”(S1x 5™ 1) is not surjective, if m—n is odd > 3 and ¥°° : 7, _1(S™ ") —
w5, 1 is not epimorphic, e.g.

n 7 10 13 14 15 22

_ 3n—1 _ 3n—4 _ 3n—3 _ 3n—4 _ 3n—1 _ 3n-5
m 10=3n-l j3—3n4 jg_3n-8 jg_3n-d 95 Sl gy 3nb

Examples 1.4.1 and 1.4.s show that o8, (N) can fail to be injective for 2m =
3n — 3d and to be surjective for d = 0, 2m < 3n — 1. They are constructed in §7
using linking coefficient (in fact, stronger results are proved there). Using more
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advanced the Hudson—Habegger invariant we prove in [Sko| that the dimension
restriction in Theorem 1.3« is even sharp: a6k+](51 X 54’“‘1) is not injective,
which shows that o}, can fail to be injective for 2m = 3n —d + 2.

Now we list some new corollaries of Theorem 1.3c«. Throughout this paper the
equality between sets denotes a 1-1 correspondence.

Corollary 1.5. Ifp<qandm >3 +p+2 (m > 220 49 for CAT=DIFF),
then
Emb™(S? x §7) = mg(Vin—qp+1) ® 7p(Vin—p,g+1)-

If s>23, n=p1+--+ps, p1<--<ps and m>2n—p;—py+3 (for
s =3 and CAT=DIFF assume also that m > 37" +2), then

Emb™ (8% x - x §P*) = @71 Tn—p, (Vi —n-tpi,pit1)-

Note that m,(Vi—pgt1) = 0 for m > 2p + g + 2 (which is automatic for
m > w + 2). Also note that in Corollary 1.5 m > 37" + 2 is automatic for
s > 4. For calculations of m,(V,s) see [Paeb4]. Corollary 7.2 gives the following
table of values of | Emb™(S! x S2)| for m > 2480 (m > 22T for CAT=DIFF).

m :22¢9+3:2¢g+2:29+1:2q9:29g—-1:29g-2:2¢g—-3
|Emb |, g even : 1 o0 o 2 404 024 1
|Emb|, g odd : 1 2 o0 4048 2 1

Corollary 1.5 is known for either p = 0 or p; = 0 [Hae62T, Zee62] and for
either m > 2¢ +p+ 1 or m > 2n —py + 1 (in particular, for po < 2) [Hud63,
HaHi63, Hud69, §11]. Otherwise it is new even for either m > w + 2 or
m > 37" + 2. See also [Zee63, Kat69, Lev69, BoHa70, Boe71, MiRe71]. Corollary
1.5 follows from Torus Lemmas 6.1 and 6.2 (because if s > 3 and p; < -+ < pq,
then m > 2n — p; — po + 3 implies that m > 3"+§7 )

From Theorem 1.3« and the smoothing theory [Hae67, 1.6, Hae, 11.1] it follows:

Corollary 1.6. Let N be a closed d-connected (for d = 1, just homologically
1-connected) smooth n-manifold and m > n + 3.

s) If m > 3"+—227d, then for each ® € ﬂ;’gfl(ﬁ) there is a PL embedding f :
N — R™ smooth outside a point and such that o(f) = ®. A complete obstruction
to smoothing of f lies in C7" ™.

i) If m > W, then each two smooth embeddings f,g : N — R™ such that
a(f) = a(g) can be joined by a PL isotopy, which is smooth outside a point. A
complete obstruction to smoothing of such a PL isotopy lies in C7*7 ™.
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Corollary 1.7. If N is a homologically 1-connected closed smooth n-manifold,
then o'y pp (IN) is injective for (m,n) = (12q—2,8¢—2) and surjective for (m,n) =
(12¢ — 1,8¢ —1).

Recall that a closed manifold N (or a pair (N, 9N)) is called homologically d-
connected, if N is connected and H;(N) =0 foreach i =1,...,d (or H;(N,9ON) =
0 for each ¢ = 0,...,k). Throughout this paper we omit Z-coefficients from the
notation of (co)homology groups. We use the agreement that 0-connectedness is
equivalent to homological 0-connectedness and to connectedness, and that (ho-
mological) k-connectedness for k < 0 is an empty condition. Recall that C* =
Embyrb)ﬂ?F(Sn)

Corollary 1.7 follows from Corollary 1.6 and C§;172 = 0 [Hae66A, 8.15] (there
is a misprint in [Hae66A, 8.15]: C3F , =0 should be CgF , = 0).

The case d = 1 of Theorem 1.3 can be applied to replace ‘connectedness’ by
‘homological connectedness’ in [BoHa70, 1.6, Boe71, 4.2, Hud69, §11, Sko97, 1.3
and 1.4]:

The results [Sko97, Corollaries 1.5 and 1.6] were proved in the paper J. Vrabec,
Knotting a k-connected closed PL m-manifold in R2™* Trans. Amer. Math.
Soc., 233 (1977), 137-165.

Corollary 1.8. s) A homologically (I — 2)-connected closed PL (for | = 4q, also
smooth) (21 — 1)-manifold N embeds PL (for | = 4q, also smoothly) in R3~1 if
and only if W;(N) = 0.

i) Emb?jglz'l(N) = Hi(N,Zy) for I > 1 and a homologically (I — 1)-connected
closed PL 2l-manifold N.

Note that | Emb5, (N)| = 1 for a homology n-sphere N and m > n+ 3 [Sch77].

Corollary 1.9. 1) FEwvery closed homologically 2-connected smooth T-manifold
smoothly embeds in R,

2) Every closed non-orientable PL 6-manifold N such that wa(N) = w3(N) =0
PL embeds into R'C.

Corollary 1.9.1 follows from Corollary 1.8.s and [Mas62, Sko97, discussion after
Theorem 1.1]. Corollary 1.9.2 follows from Theorem 1.3a and [Bau75, Theorem
45, case m = T7].

Now we state main results on immersions and embeddings of compact manifolds
with (non-empty) boundary. Recall some definitions from [LiSi69, §3]. A PL map
h: N — R™ from a polyhedron N is called a PL immersion, if it is locally injective,
i.e. there is an £ > 0 such that hz # hy when dist(z,y) < . For m > n + 3,
every embedding D™ — R™ is flat, so this definition coincides with the usual one
for PL manifolds [HaPo64]. Two immersions hg, hy : N — R™ are called regular
concordant, if there is an immersion H : N x I — R™ x [ such that H(z,0) = ho(z)
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and H(z,1) = hy(z). Denote by Imm{; 4 -( V) the set of CAT immersions N — R™
up to CAT regular concordance. Two immersions hg, b1 : N — R™ are reqular
homotopic, if there is an homotopy H : N x I — R™ x I between hg(z) and hq(x)
which is an immersion itself. For m > n + 3 regular concordance implies regular
homotopy [Hae66A, 4.1, Hae, 9.2, Hud70A, cf. Mel] (this remark is not used in this
paper). Two embeddings fo, f1 : N — R™ are concordant, if there is an embedding
F:Nx1I—R™xI such that F'(z,0) = fo(z) and F(z,1) = fi(x). Denote by
Emb7 47 (V) the set of CAT embeddings N — R™ up to CAT concordance. For
m > n + 3 concordance implies isotopy [Lic65, Hud70A], so this new definition
agrees with the previous one.

For a sufficiently small neighborhood OA of the diagonal A in N x N, let
SN = OA —A. The reason for using such a notation is that for a smooth manifold
N, the space SN has the same equivariant homotopy type as the space of unit
tangent vectors. When N is a polyhedron, the equivariant homotopy type of SN
does not depend on OA, provided that it is sufficiently small. For an immersion
h : N — R™, the map h is well-defined on SN. Define the Haefliger—Hirsch

tnvariant
B = BZar(N) : InmFap(N) — 77 (SN) by (k)= [b] € nfg ' (SN).
By Theorem 5.2, o and 3 are indeed concordance invariants for m > n + 2.

Theorem 1.1 (continuation). () [HaHi62, 4] If N is a closed smooth n-
manifold, then

BB rrr(N) is bijective for 2m > 3n+ 2 and surjective for 2m > 3n + 1.

(30) [HaHi62, Rem. in §5] If N is a compact smooth n-manifold with boundary
and the pair (N, dN) is homologically d-connected, then

B rrr(N) is bijective for 2m > 3n+ 1 —d and surjective for 2m > 3n — d.

ad) [Hae63, 6.4] If N is a compact smooth n-manifold with boundary and an
(n —d — 1)-dimensional spine, then

afrpp(IN) is bijective for 2m > 3n+ 1 — d and surjective for 2m > 3n — d.

For a compact connected n-manifold with boundary, the property of having an
(n — d — 1)-dimensional spine is close to d-connectedness. Indeed, such a manifold
with this property has boundary and is homologically d-connected. On the other
hand, every such manifold N for which (N,dN) is d-connected, m1(ON) = 0,
d+3 <mnand (n,d) € {(5,2),(4,1)}, has an (n—d — 1)-dimensional spine [Wal64,
Theorem 5.5, Hor69, LLemma 5.1 and Remark 5.2].

The following is our second main result.
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Theorem 1.3 (continuation). 3) If N is an n-polyhedron, then
B (N) is bijective for 2m > 3n+ 3 and surjective for 2m > 3n+ 2.

B3) If m > n+ 2 and N is a compact PL n-manifold with boundary and an
(n —d — 1)-dimensional spine, then

BoL(N) is bijective for 2m > 3n+ 2 — d and surjective for 2m > 3n+1 —d.
ad) The same as (0) with 3 replaced by o.

Example 1.10. i) The map ,BELIFF(S‘””*l) is not injective for 4k+2 < m < 6k—1.
ii) The map 5%31(521) is not injective.
s) The map 8%, (N) is not surjective for max{5,n} < m < % and some
n-polyhedron N.

The dimension restrictions are sharp in the injectivity of Theorem 1.1/, in the
injectivity of Theorem 1.33 and in the surjectivity of Theorem 1.35 by Example
1.10 (which is deduced from known examples in §4). Theorems 1.339 and 1.3a:0
were conjectured in [Har69, discussion after Corollary 5]. Theorem 1.35 under a
bit stronger dimension restrictions was proved in [Har69, Corollary 1, Theorem
2, footnote on p. 3] and essentially proved in [Web67, §6]. But Theorem 1.3
is interesting not only because it improves known results, but also for its proof
(§4). This proof, in contrast to that of Theorem 1.3c;, does give the approximative
relative version: if N is an n-polyhedron, 2m > 3n+1, g: N — R™ is a PL map,
A C N a subpolyhedron such that g|a is a PL immersion and ® : SN — sm=1 gp
equivariant extension of § : SA — 8™~ 1 then there is a PL immersion h : N —
R™, arbitrarily close to g and such that h = g on A and h ~.q, ® on SN rel SA.
See also Corollary 5.3 and 5.4.

A possible candidate to an obstruction for embeddability and isotopy in the
case when the deleted product obstruction fails to be complete is the deleted G-
product obstruction. For a subgroup G C S, let

NG:{(ZIJL...,ZZ'T)ENT |xi7éasg(i) foreacho € G, i=1,...,7}

be the deleted G-product of N. The group G 0bV1ously acts on NG For an em-
bedding f : N — R™ the map fG : No — R™ is defined by fG(xL.. Ty ) =
(fzx1,...,fz,). Clearly, the map fG is G-equivariant. Thus the existence of a
G-equivariant map ® : Na — R™g is the deleted G- product necessary condition
for embeddability N — R™. Similarly one can define the deleted G-product neces-
sary condition for immersability, the G-Haefliger—Wu and the G-Haefliger—Hirsch
isotopy invariants a¢ and [q.

This approach worked well in the link theory (the simplest example is classifi-
cation of ‘higher-dimensional Borromean rings’ [Hae62T, §3, Mas90, Proposition
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8.3] demonstrating non-injectivity of o™ by means of a?g). In contrast to that,
Examples 1.2.i, 1.2.i, 1.10.i and 1.10.ii (and the example of [Sko]) demonstrate
non-injectivity of ag and Bg (for each G): in their formulations o or 8 can be
replaced by aq or B¢ (for each G). This follows by the construction of these exam-
ples (§4, §7). Clearly, if & or 3 is not surjective, then so is a.z or (g, respectively
(for each G). Under the conditions of Examples 1.2.e and 1.2.ee, (x) is true even
if we replace Zg-equivariant map N — gm-1 by G-equivariant map Ng — I@ZG.

These results were announced in [Sko98’, Sko98”, ReSk99, §4, ReSk99’.54,
Sko99]. Previous versions of the present paper were entitled as [Sko98’]. T would
like to acknowledge A. Haefliger for sending me a copy of [Hae], S. Melikhov and
I. Izmestiev for many remarks, A. Melnichenko for a nice surprise, M. M. Postnikov
for useful discussions, the referee for his comments and A. Kuligin for preparing
computer versions of most figures.

2. Plan of the proof and related results

The proof of Theorems 1.3a: and 1.3a:d consists of two steps: construction of an
immersion (Theorem 1.339) and modification of the immersion to an embedding
[see also ReSk99, §11]. The first step could be replaced by reference to Theorem
1.180 for the case when N is smooth outside a point (and, in the injectivity part,
when given embeddings fp and f1 such that a(fy) = «(f1) are smooth outside a
point). This section is devoted to the plan of the second step. We also present the
plan of the whole paper and notation which is used throughout the paper.

We state several classical results and their generalizations, which are of inde-
pendent interest and which imply Theorems 1.3a and 1.3a:d. These results also
imply Theorems 1.1 and 1.1a@ in the PL case, thus providing new short proofs.
First let us introduce some definitions. We say that o/ 8™ (N) 4s surjective, if for
each immersion h : N — R™ and an equivariant map & : N — 5™ 1 such that

® ~., h on SN there is a regular homotopy from s to an embedding f : N — R™
such that f ~gq ®. We say that a/p™(N) is injective, if for each embeddings
fo, f1 : N = R™, an equivariant homotopy ¢ : N x I — 8™ 1 from ]?0 to ]71 and
a regular homotopy

H: NxI— R™ from fy to f1 such that f[|SNxdiagI ~eq Planxr rel SNx{0,1},

there is a regular homotopy from H to a concordance between fy and fi. Note
that neither the surjectivity of «/3 nor the injectivity of «/3 are properties of
maps « or 3, but no confusion would arise.

Theorem 2.1. «/f3) [Hae63, Th. 2’, Web67, Th. 8] If N is either an n-polyhedron

or a smooth n-manifold, then

af T (N) is injective for 2m > 3n+ 4 and is surjective for 2m > 3n + 3.
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a/B0) [Hae63, 6.4, Har69, Cor. 5.(ii) and Rem. after Cor. 5]. If N is a
non-closed n-manifold, possessing an (n — d — 1)-dimensional spine, then

a/B™(N) is injective for 2m > 3n+ 1 — 3d and is surjective for 2m > 3n — 3d.

Clearly, the surjectivity of a;/3 and the surjectivity of £ imply the surjectivity
of a. Thus Theorem 1.1 (Theorem 1.3ad) essentially follows from Theorems
1.18 and 2.1.a/8 (from Theorems 1.359 and 2.1.«/39). Some extra remarks are
required for the injectivity [Hae63, cf. Web67, Sko97], but we omit details.

Note that /8%, (N) is not surjective for 2m = 3n+ 2 and some n-polyhedron
N. Indeed, o, (IV) is not surjective by Example 1.2.ee, but 8%, (V) is by Theorem
1.33. Note that the ‘almost-embedding’ g : N — R™ from [SSS98] is an immersion,
but it does not necessarily have the property g ~., ® on SN.

Let us introduce some more definitions, which would allow us to give formal
proof of Theorem 1.3cc. We identify B™ and R™. For a map f: N — B™ denote

Y(f)=Clz e N: |ftfz] > 1}.

A map f : N — B™ of a PL. manifold (a polyhedron) N is a quasi-embedding,
if 3(f) is contained in a n-ball B* C N (in a regular neighborhood of a point,
respectively) and f¥(f) C B™. Two embeddings fo, f1 : N — B™ are PL quasi-
concordant, if there is a PL quasi-embedding F' : N x I — B™ x I = B! such
that F'(z,0) = fo(z) and F(z,1) = fi(z).

For a triangulation 7" of a polyhedron N let

T=UloxTeTxT|onr=0}

be the sz’mplz’cml deleted product of T'. By [Hu60] T is an equivariant deformation
retract of N (but we will not confuse N and T, because e.g. for B C N, the
space T — B is not necessarily an equivariant deformation retract of N — B)
Therefore if f : N — B™ is a quasi-embedding, then there exists an equivariant
map N — sm1, Analogous result holds for Ng and ag (for each G). See also
Theorem 5.2.

We say that the map o™ (N) is quasi-surjective, if for each equwarlant map
®: N — 5™ ! there is a quasi-embedding f : N — R™ such that f ~eq ® on
N — B™. We say that the map o ™(N) is quasi-injective, if each embeddings fo, f1 :
N — R"™ such that ]70 ey ]71 are quasi-concordant. Note that neither quasi-
surjectivity nor quasi-injectivity is a property of «, but no confusion could arise.
The definition of quasi-surjectivity (quasi-injectivity) of o,/ ™ (N ) is obtained from
the definition of surjectivity (mJecthlty) of oo/ ﬁm( ) by replacing ‘embedding’ by
‘quasi-embedding’ and ‘ f e Py f >~ Pon N-Bn’ (by replacing ‘concordant’
by ‘quasi-concordant’). Note that neither the quasi-surjectivity of & («r/3) nor the
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quasi-injectivity of « (a/3) are properties of maps « or 3, but no confusion would
arise.

Theorem 2.2. Let N be a closed PL n-manifold and d > 0.
q) If N is d-connected and m > n+ 2, then

a'Br(N) s quasi-injective for 2m > 3n+2 —d

and quasi-surjective for 2m > 3n+1 —d.

q/B) If N s d-connected, then

a/Bpr(N) is quasi-injective for 2m > 3n+ 2 — 2d
and quasi-surjective for 2m > 3n + 1 — 2d.

aq) Suppose that N is homologically d-connected and m > n+ 3. If 2m >
3n+3 —d and o/, (N) is quasi-injective, then it is injective. If 2m > 3n+2 —d
and o'f; (N) is quasi-surjective, then it is surjective.

Theorem 1.3« follows from Theorems 2.2.q and 2.2.a.q. Note that Theorem
1.3 does not follow merely from Theorems 1.3a0 and 2.2.aq: the given embedding
f N — B™ — R™ can be extended over N, but the extension is not necessarily a
quasi-embedding. Note that Theorems 2.2.q and 2.2.aq give an improvement of the
PL case of Theorem 2.1.a;/3 beyond the metastable range, but only in a weaker
form, i.e. the homotopy from f to h is not regular (this homotopy is through
immersions, but is an immersion itself only outside a point). For 2m > 3n+2—d
(2m > 3n + 3 — d) the quasi-surjectivity (quasi-injectivity) in Theorem 2.2.q is
covered by the surjectivity (injectivity) in Theorem 1.3cu.

Theorem 2.3. Let N be a closed PL n-manifold, smooth outside a point.

q) If N is d-connected, m > n+2 and d > 1, then o5, (N) is quasi-surjective
for 2m > 3n — d and is quasi-injective on the subset of smooth quasi-embeddings
for2m >3n+1—d.

a) If N is homologically 2-connected and m > n+3, then o'f; (N) is surjective
for 2m > 3n and is injective on the subset of smooth embeddings for 2m > 3n+1.

Theorem 2.3.q is proved analogously to Theorem 2.2.q (see §3), using Theorem
1.130 on smooth immersions instead of Theorem 1.330 on PL immersions, which
for d > 1 allows to relax the dimension assumption. Theorem 2.3.« follows from
Theorems 2.3.q and 2.2.aq.

Theorem 2.2.aq follows from Theorem 2.4 below, which was essentially proved
in [Hir65, cf. Sko97, Theorem 2.1.2] (in order to prove the surjectivity of Theorem
2.2.aq, before applying Theorem 2.4 we take a triangulation 7" of N such that B"



88 A. Skopenkov CMH

is contained in an only simplex of T" and recall that Tisan equivariant deformation
retract of N).

Theorem 2.4. Let N be a homologically d-connected PL n-manifold (either closed
or non-closed) and m > max(W,rmL 3). If g: N — B™ is a proper quasi-
embedding, then there is an embedding f : N — B™ such that f =g on N — B~

For polyhedra N O Z O Y the notation R(Z,Y) means ‘a sufficiently small
regular neighborhood of Z rel Y in N’, when first appears, and ‘the regular neigh-
borhood of Z rel Y in N, after the first appearance. Also, R(Z) = R(Z,0). The
notation Ry (Z,Y), Ry (Z) has the same meaning, only N is replaced to M.

Proof of Theorem 2./. We may assume that N is connected, because we shall
apply Theorem 2.4 only for d > 0 or because we can take a connected component
of N, containing %(g). Let M = B™ — Int Rgm(g(N — B"), gdB™). Since N
is homologically (3n — 2m + 2)-connected, by Alexander and Poincaré duality
theorems we have

Hy(M) = H™1={(B™—M, dB"—M)= H™ '"{(N—B" ON) = H, _p,+1+:(N)=0

for i < 2n—m + 1. Since m —n > 3, it follows that M is simply connected.
Therefore by the Hurewicz Isomorphism Theorem we have that M is (2n—m+1)-
connected. Hence by [Irw65], the embedding g : dB™ — 9M extends to an
embedding f : B — M. Extending f as g outside B™ we complete the proof. [

The plan of the paper is as follows. In §3 we prove the surjectivity of Theorems
2.2.q,2.2.q/8,2.1.a/ 8 and 2.1.at/ 30 for PL case using Theorem 1.339 (or Theorem
1.180, if N is smooth outside a point) and Disjunction Theorem 3.1. We also
prove there Disjunction Theorem 3.1, which is one of our main tools. In §4 we
prove Immersion Theorem 4.1 (using Disjunction Theorem 3.1) and deduce from
it Theorems 1.35 and 1.330. We also deduce there from known results Example
1.10. In §5 we prove Cylinder Lemma 5.1 and use it to prove the injectivity in
Theorems 2.2.q, 2.2.q/f3, 2.1.a./3 and 2.1.a;/ 3. We also deduce there Corollaries
5.2, 5.3, 5.4 and Pseudo-Isotopy Theorem 5.5, which are of independent interest.
In §6 we prove Torus Lemmas 6.1 and 6.2, which imply Corollary 1.5 and are
used in construction of Example 1.4. In §7 we prove Decomposition Lemma 7.1,
Example 1.4 and Example 7.4, and deduce from known results Examples 1.2.ii and
1.2.ss.

Let us introduce some definitions (Figure 1). Throughout this paper we work
in the PL category and follow the notation of [RoSa72], unless the contrary is
explicitly stated. For A C N denote A* = AXxNUN x A. Foramap f: N — B™
let

A(f) =Clyxn{(z,y) e Nx N |z £y, fz= fy}.
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Clearly, the map ]7: N - &(f) — §m~1 g well-defined by the formula f(x, y) =
%. Suppose that N is an n-polyhedron with a fixed triangulation 7' (or
with a fixed cell subdivision 7" in the sence of [RoSa72]). We denote by small
Greek letters simplices of T, unless otherwise indicated. We fix the product cell
subdivision of T x T and T' x I. Denote TN = U{o x 7 | o,7 € T, o N1 # (}.
Clearly, for each immersion & : N — R™ there is a triangulation T' of N such that

A(R)NTN = 0.

L diag N
& SN
TN
K 2
« T
=~
<\> K*
K
N NxN
Figure 1

We often use the same notation for an element and its equivalence class, but
no confusion should arise. By |z,y| we denote the distance between points = and
y. We consider the antipodal involution a4 on 7 (unless the opposite is explicitly
stated). Two maps ¢, ¢ : X — S 1 are close, if p(x) # —(z) for each z € X.
Clearly, close equivariant maps are equivariantly homotopic. The phrase ¢ o, 1,
and hence by the equivariant Borsuk Homotopy Extension Theorem we can modify
1 by a homotopy and assume further that ¢ = ¢’ is abbreviated to ‘p ~.4 ¢, even
@ = 1p’. We shall use the following essentially known result.

Theorem 2.5. For a polyhedral pair (Y, ©) with an involution and an equivariant
map P 1 © — S™ denote by W;Z(K O, ) the set of equivariant extensions Y — S™
of ¥, up to equivariant homotopy rel ©. Then

% :mgy (Y, 0,9) — 1 (SY, 26, B¢)
is a bijection for dimY < 2m — 4 and a surjection for dimY < 2m — 3.

Ifp: X — Y is an equivariant onto map and the union of non-trivial preimages
of p is homotopy equivalent to an l-polyhedron, then

Pt T(Y,0,4) = 1 (X,p 10,9 op)
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s a bijection for | < m — 2 and a surjection for [ < m — 1.

The proof of the first part (relative equivariant Suspension Theorem) is anal-
ogous to [CoF160, Theorem 2.5, cf. Spa66, Chapter 8, §5, Theorem 11]. The
second part is proved using general position and the Borsuk Homotopy Extension
Theorem.

3. Modification of the immersion to a (quasi-)embedding

Disjunction Theorem 3.1. Let N be a polyhedron with fized triangulation T,

A a subcompler of T,

A* C Eg C Ey equivariant subcomplezes of T x T such that E1 — Ey C T,

P:FEN T — 8™ an equivariant map,

ho : N — B™ a PL map such that halaBm =A, &(ho) NEy=0 and Ea =&
on Eg N .

Suppose that for each simplices o?, 74, v"™ € T such thatp < q, o x7 C Cl(E1 —
Ep) and v x 7 C By we have p+q+n <2m —3 and g < m — 2.

Then there is a PL homotopy hy - N — B™ rel A such that h,(N — A) C B™
for each t, _ ~

(3.1.1) A(h) N Ey =0 for each t and A(h1) N Ep =0,

(3.1.2) the homotopy hy from ® = % to EI on EgNT extends to a homotopy
from ® toa onElﬂT,

Disjunction Theorem 3.1 generalizes the surjectivity of the PL case of Theorem
2.1.a/ 3, [Sko97, Theorems 2.1.1 and 3.1] and the pre-limit version of [ReSk98,
Theorem 1.1, see also Mel]. Our proof of Disjunction Theorem 3.1 (below) extends
the method of [Web67, §5] as it was exposed in [ReSk99, §9] (the extension of
[SpTo91, Sko00] is in a different direction).

For many results of this paper we need the following simpler particular cases
of Disjunction Theorem 3.1. In the proof of the injectivity (the surjectivity, re-
spectively) in Theorems 2.1.cc/3 and 2.1.c./ 39 of the properties 3.1.1 and 3.1.2 we
need only that A(hl) N Ey = 0 (that A(hy) N Ep = 0 and hi~®on E4NT,
respectively). However, in the proof of Theorems 2.2.q, 2.2.q/3, 1.35 and 1.330
we use the complete strength of 3.1.2 (in the proof of Theorem 1.330 we apply
Disjunction Theorem 3.1 for N = §™ and F; = §7L7 then a ~ & on S™ for any em-
bedding hy : 8™ — R™). Note that in Disjunction Theorem 3.1 we cannot enlarge
Ejy to contain T'N, even if E(ho) NTN = 0, because the dimension restrictions
need not be preserved under this enlargement.

In this paragraph assume that |J 7 x 7 C Ep. This case of Theorem 3.1 is
TeT
sufficient to prove the surjectivity (the injectivity) in Theorem 2.2.q for 2m >

3n+2—d (2m > 3n+ 3 —d) and m > n + 3, which in turn is sufficient to prove
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Theorem 1.3« without the improvement for d = 1. The condition FE; — Ey C T
can be dropped from Theorem 3.1 [Web67, §6, Sko98] (a minor mistake in [Sko98]
is corrected in [ReSk99, §10]). In Theorem 3.1 we may assume that h; is a C - -
homotopy, where ¢ = max{diam(fo U f7) | o0 x 7 C Cl(E] — Ep)} and C depends
only on dim N. This is proved analogously to [ReSk98, §3] (since the required
inequality 2(p 4+ ¢q) < 3m — 5 holds).

Proof of the quasi-surjectivity in Theorem 2.2.q. Take a map & : N — 8™ 1 Let
K be the (n — d — 1)-skeleton of the dual cell-subdivision to a triangulation 17 of
N. Apply Theorem 1.339 (or Theorem 1.159, if N is smooth outside a point) to
get a PL immersion hg : R(K) — R™ such that ho ~eq ® on S(R(K)). Extend hg
over N to obtain a map hg : N — R™. Take a new triangulation T of N in which
K is a subcomplex and such that for Eyg = TN N K* we have

E(hg)ﬁE@:@ and Eg:eq@? even %:@ on EygNN.

Since n+2(n—1—d) < 2m—3, we can apply Disjunction Theorem 3.1 to A = 0),
Eog=TNnNK* and F1 = K*. Since ﬁ(hl) is closed, by 3.1.1 it follows that there
exists a new regular neighborhood R(K) C N—Tl(d> such that A(hy)NR(K)* = 0.
Hence

CIN — R(K)) = R(T\Y) and S(hy) N R(K) = 0.

Since N is d-connected, by the Engulfing Lemma [Irw65, Theorems 2.1 and 2.3] it
follows that de) is contained in some PL n-ball in N. Therefore by the Uniqueness
of Regular Neighborhood Theorem, N — R(K) is also contained in some (possibly,
another) PL n-ball B® C N. We have ¥(h1) C N — R(K) C B"™, hence hj is a
quasi-embedding. _ ~

By 3.1.1 there is U = Ryxn(K*,T) C R(K)* such that A(h,) NUNTN =0
for each t (Figure 1). Since CI(E) — Ep) N U C Ep, by 3.1.2 it follows that the
homotopy h: on (UNTN) — diag N extends to a homotopy from & to 7{; on
U — diag N. By the equivariant version of [Coh69, Theorem 3.1 and Addendum
3.4], U — diag N is a strong equivariant deformation retract of R(K)* — diag N.
Therefore

hi~y® on R(K)*—diagN >N —N—R(K)>N - Bn. O

Proof of the (quasi-)surjectivity in Theorems 2.2.q/53, 2.1.a/ 3 and 2.1.at/ 30 for the
PL case. TAake an immersion hg : N — R™ and an equivariant map & : N — §71
such that hg ~¢4 ® on SN. Fix a triangulation T' of N such that

K(ho)ﬂTN:(Z) and %zqu even %:'1) on TN —diag N.
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The quasi-surjectivity in Theorem 2.2.q/ is proved as in Theorem 2.2.q (K =
T(n=1=d) and T} is the cell-subdivision dual to T).

The surjectivity in Theorem 2.1.«¢/3 for the PL case follows by applying Dis-
junction Theorem 3.1 to A =0, By =TN and B4 = N x N.

In order to prove the surjectivity in Theorem 2.1.a/ 39 for the PL case, assume
that the (n—d—1)-spine K is a subcomplex of T'. Since 3(n—1—d) < 2m—3, we can
apply Disjunction Theorem 3.1 for A = 0, By = TK and E; = Kx K. Since ﬁ(hl)
is closed, it follows that there exists R(K) such that A(hy) N (R(K) x R(K)) = 0.
Hence hq| R(K) 15 an embedding. Analogously to the proof of Theorem 2.2.q,

replacing U by Ryxn(K x K,T) ¢ R(K) x R(K), we have that U — diag N

o —

is an equivariant deformation retract of R(K), hence hy ~., ® on R(K). By
[Coh69, Theorem 3.1] there exists an isotopy g; : N — N between gg = id and a
homeomorphism g; : N — R(K). Therefore hy o g1 : N — R™ is an embedding
and

——

hiogr=h1o(g1 X g1) ~eq @0 (g1 X g1) eq Do (g0 X g0) = ®. O

Although Theorem 2.2.q does not follow from Theorem 1.3309, the former can
hardly be improved without improving the latter. Indeed, even if there are no
f-intersections of distant simplices, the intersections of close simplices are just as
bad and may form a (d + 1)-cycle.

Proof of Disjunction Theorem 3.1. Consider the case A = @ (the general case is
proved analogously). We may assume that hg is in general position. It suffices to
prove Theorem 3.1 for CI(E} — Eg) = 0 x U7 x o C T. Denote p = dimo <
dim 7 = ¢. By the dimension hypothesis it follows that 2p + ¢ < 2m — 3.

Construction of a homotopy hy satisfying to 3.1.1. We may assume that p+qg > m
(otherwise 3.1.1 holds for h; = hg by general position). Therefore 2p+¢q < 2m—3
implies that p <m — 3. Let h=hg and z =2m —p — ¢ — 3.

We begin with construction of certain balls D™, DP and D9. Since ho N hoT =
hdo N hr = 0, it follows that o N h~1hr ¢ & and 7 N h~1ho C #. By general
position, dim(ho N h7) < p+ q— m. Let C, C & be a general position trace
of o N h~1h7 under a sequence of collapses o\, (a point in ¢). Define similarly
C, C 7. The polyhedra C,, C, are collapsible,

ho Nhr C hC, UhC,. and dimC,,dmC,. <p+qg—m-+1.

Since (p+g—m+1)+(2p—m) <p, by general position it follows that C;N¥(h|,) =0.

Let C C B™ be a general position trace of hC, U hC; under a sequence of
collapses B™ *\ (a point in Bm) The polyhedron C' is collapsible, ho N hr C C
and dimC' < p + ¢ — m + 2. Hence by general position

CNhN@ = hC, URC, for z>q and CNAN® =hC, for z<gq.
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Therefore we can take PL balls D™ = R
such that
(a) DP = o h~1D™ and h|pe is a proper unknotted embedding into D™,
(b) N&® N h=1D™ = Ry (DP,dDP) U R (o) (D9, 3D?). Note that

ém(C)7 DP = R&(Cg—) and Dq — R;_(CT)

Ry (D1,0D%) = for z < q.

(¢)onhthr c DP, 7N h tho C D4 and hD? C D™

Now we construct a map kbt : DI — D™ — hDP which is ‘the first approxima-
tion’ to hq|pe. By (a), D™ —hDP ~ S ?~1 By (c), hAD?NhDI = hdDINhD? =
0, so h is well-defined on 8(DP x D). We have

3P [hlope : ODT— D™ —hDP] = [Bly(prsx payl = [Blo(prx pay =0 € Tpiq—1(S™ 7).

Here the first equality holds by [Web67, Proposition 1]. The second equality
holds since d(c x 7) C Ep N T. The third equality holds since ® is defined over
E1nT > DP x D4. Since g—1<2(m—p—1)—2, by the Freudenthal Suspension
Theorem it follows that h|gpe is null-homotopic in D™ — hDP?, i.e. the embedding
h|ape extends to a map ht : D — D™ — hDP.

Now we construct the homotopy h; in the case 7 x 7 ¢ Fy. Take U =
R(D1,0D%)  h~1D™. Set hy to be hT on D? and h outside U. Then ex-
tend hy over U to an arbitrary map whose image is in D™. Join kg and hy by a
homotopy h; fixed outside U and mapping U to D™.

Now we construct the homotopy h; in the case 7x7 C Ey. Then p+2¢q < 2m—3
and (since p+q > m) ¢ < m—3. Hence (a) holds also for D?. Therefore by [PWZ
61, Irw65] from the map AT we can obtain an embedding hy : D9 — D™ — hDP
such that h1 = h on dD4. Since ¢ < m — 3, by [Zee63-6, Corollary 1 to Theorem
9] it follows that there is an ambient isotopy g; : D™ — D™ rel dD™ carrying
h|pa to hy. If N(*) — N (this case suffices to prove Theorem 1.3¢), then by (b)
we can define the homotopy h; : N — B™ by setting

hy=gioh on V=U:=Ry. (D?0D?) and h,=h outside U.

In general (i.e. without the assumption N @ =N , when DP and DY can lie in the
same connected component of h~1D™) take

V = R(Ry)(D%,8DY))Nnh~ D™ and U= R(V,h"Y(B™ - D™))

(Figure 2). Then CI({U — V)N N®) = . Set h, = g, o h on V and hy = h outside
U. Since g; = id on d D™, the map h; is thus well-defined and could be extended
over U —V so that hy(h~1D™) c D™.

Now we check 3.1.1. By (c),

hioc Nhit ChiDPNh1DT=0, so Z(hl) Noxt=0.
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If, to the contrary, A(h:) N Ey # O for some ¢, then there is a pair v x u C Ey
such that v x M (A(hy) — A(hg)) # 0. Recall that in both cases 7 x 7 C Eo and
T x 7 ¢ Eg above hy is fixed outside U and h,U C D™. Therefore we may assume
that uNU # @ and v N A1 D™ £ . Since uNU # 0, it follows that O 7, hence
v x 7 C Ey, therefore v ¢ N(®) by our dimension assumption. Then by (b) and
v h~ D™ £ (it follows that either v D o or v D 7. Since u D 7, v x p C Ey
but o x 7 ¢ Ep , it follows that in fact ¥ O 7. Hence 7 x 7 C Fp (in the first
case this is already a contradiction) and p C N (@) Since h; moves V isotopically
and CI(V —U)n N@) = ¢ it follows that h; moves R(v U ) isotopically. So
A(hy) N v x = 0. This contradiction shows that A(h,) N Eg = 0.
Let

E=(EgnT)U(ox7—DP x DY U (T xo —D?x DP).

By the Borsuk Homotopy Extension Theorem, there is an extension . B —
gL of h|g such that the homotopy h; from ® = hg to hy on F extends to a

homotopy from ® to ' on £ N T. Therefore now it suffices to prove the Theorem
assuming that A(hg) N Ep = 0.

Nx)
/RN(") (D9,6D7%)

r-1(B™ — D™)
" R(Ryw(D?,8D%))

\
Z\l/
\
\
+
|

Figure 2

Proof of Theorem 3.1 assuming that A(hg) N E1 = . We use the notation and
assumptions from the first paragraph of the proof. Let h = hg and z = m — 2.
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We begin with a construction of certain balls D™, DP and D4?. By general
position, we can take points C, € ¢ and C; € 7 so that the restrictions of h to
R,(C,) and R,(C,) are flat embeddings. Join points hC, and hC, by an arc
C C B™ such that C N AN = {hC,, hC;}. We have p < ¢ < m — 2, and the
balls D™, DP and DY are constructed as above and have the properties (a) and
(b), whereas (a) holds even for D? replaced by DY (note that z > ¢).

Now we construct the homotopy h; as in the first part depending on some
element y € Wq(Smfpfl). Suppose that AT : DP U DY — D™ is a map such that
ht =hon DP UADYI and hTDP N ht D= (). Define a map

dypr :ST=D7 | ] D% — D™ —hDP by dyy+|pe = h and dpp+|pr = nt.
8D4:8Di

By (a), D™ — hDP =~ S™P~1 hence [d,,+] € 7m,(S™P1). For each y €
Wq(Sm_P_l) we can construct a map ht such that d,,+ = y. Then analogously
to the first part we can construct a homotopy h; such that hi|pe is homotopic to
ht|pe in D™ — hy DP and 3.1.1 holds. (The only difference is construction of h;
in the case 7 x 7 C Ey and ¢ = m — 2, which is though not used in the proof of
Theorem 1.3c. In this case we may assume that p + ¢ > m — 1, otherwise 3.1.2
holds by general position. Since p + 2g < 2m — 3, it follows that p = 1. Then
analogously to [MaRo86, Proposition 7.1] we may assume that A1 is an embedding,
ambiently isotopic to the standard one, so the required isotopy g; is constructed
without use of [PWZ61, Irw65].)

Now we choose y so that 3.1.2 holds. For any maps ¢q, @1 : DP x D7 — §™—1
and a homotopy

pr: O(DP x DI) — S™ 1 from  @ola(prxpe) 10 ©1la(pexe)

define a map Hyp,p, 0 O(DP x DI x ) — S™ 1 by

Hcpocptcp1|DT-’><Dq><0 = ¥0, Htpoéptcp1|8<DP><DQ>><t = ¢; and HcpocptcpllDT-’Xqul = ¥1-

Then

(Herr i) = [Hpg 71+ [Hii 1 = [Hyg 51 + X ldnn, | € Tptg(S™h).

Here by &, h and H are denoted the restrictions of these maps onto DP x D%;
by ®; = ® and h; are denoted the restrictions of these maps to 9(DP x D?).
The second equality holds by [Web67, lemme 1] (the hypothesis m —p > 3 in
[Web67] can clearly be replaced to (a)). Since ¢ < 2(m —p — 1) — 1, by the
Freudenthal Suspension Theorem it follows that we can take y € Wq(Sm*p‘l) S0

that [chcbﬁ] + 3Py =0. Then [Hfbh:h:] =0, i.e the homotopy h: on 9(DP x D?)

extends to a homotopy from ® to a on DP x D, Then 3.1.1 and 3.1.2 hold. O
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4. Construction of an immersion

A possible approach to the proof of Theorem 1.339 is to mimick the proof of the
smooth case [HaHi62], see [ReSk99, §11] for the details. But this idea does not
work because the PL Stiefel manifold V,E'F (which is the space of PL embeddings
571 5 §m=1)isnot asubset of the equivariant Stiefel manifold V24, (which is the
space of equivariant maps S" 1 — Smfl). Neither it is obvious (and is possibly
false) that V.EL N V<24 is a deformation retract of V,EL. Even if this problem can
be fixed, the proof of Theorem 1.339 in the present paper (based on a different
idea) is shorter even than the proof of the results on homotopy groups of V'L
[Hae67, Hae, Mil75], necessary to carry out the above approach.

Immersion Theorem 4.1. Let N be an n-polyhedron with a triangulation T,
m>n+2 and ®: TN —diag N — S™ 1 an equivariant map. Then there ezist a
PL map h: N — R™ and a collection {v = R(v,0v)},cr such that
h is nondegenerate (i.e. h|, is an embedding for each o € T'),
hl,+ is an embedding whenever dimv > 3n —2m + 2 and
h ~eq D o U vt.
dimv>3n—2m+2

Proof of Theorems 1.33 and 1.330. In order to prove the surjectivity, take & €
w;’};l (SN) and a triangulation T" of N. First we prove the surjectivity in Theorem
1.373. Since 2m > 3n+2, we have m > n+ 2, so we can apply Immersion Theorem
4.1 to get a map h and a collection {vT}. Since h|,+ is an embedding for each v,

it follows that h is an immersion. Since SN ~., |J vT, it follows that 5(h) = ®.

veT
Now we prove the surjectivity in Theorem 1.330. Take a triangulation T of
N. We may assume that the (n — d — 1)-spine K is contained in the dual skeleton
of T(4). Apply Immersion Theorem 4.1 to get a map h and a collection {v1}.
Since 3n —2m +2 < d + 1, it follows that R(K) C |J v, hence h|g(k) is an
dimv>d
immersion. Since S(R(K)) c |J v, it follows that & ~.g ® on S(R(K)). If
dimv>d
g: - N — N is an isotopy between gg = id and a homeomorphism gy : N — R(K),

then hogy : N — R™ is an immersion and

e —

hogr="ho(g1Xg1) e ®o(g1 X g1) ey o (g0 X go) =P on SN.

The injectivity is reduced to the boundary version of the surjectivity (which is
proved analogously) in the same way as in §5 (using Cylinder Lemma 5.1.3). O

Our proof of Immersion Theorem 4.1 uses Disjunction Theorem 3.1 and induc-
tion on simplices. Our idea is in a sense similar both to [Hir59] and to [Web67, §6,
Har69, proof of Theorem 2]. The method of [Web67, Har69] was actually designed
for the proof of Theorem 1.1ax and thus is not optimal: the result of [Web67,
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Har69] concerning the existence of an immersion has the dimension restriction
2m > 3n + 3 instead of 2m > 3n + 2 as in Theorem 1.35. The proofs [Web67,
Har69] can be perhaps modified to work for 2m > 3n+ 2 (at least to obtain some
immersion h, i.e. without the property h ~gq ® on SN).

Beginning of the proof of Immersion Theorem 4.1. Order simplices of T' with
respect to increasing of dimension. By ‘<’ we denote the corresponding order
relation and by ‘C’ a proper face (thus v D n = dimv > dimyp = v > 5). By
downward induction on n we may assume that for an r-simplex n € T such that
r > 3n—2m+2 there exists a nondegenerate PL map H : N — R and a collection
{vt = R(v,dv)},cr such that

(a) H|,+ is an embedding for each v > #;

(b) Hpy ®on E:= |J vt.

v>n

The induction base = {the last simplex of T’} is proved by taking H to
be a map, linear on simplices of T, and v+ = sty v for each v. Thus we may
additionally assume by induction that

(c) for each k-simplex v < 7 there exist homeomorphisms (compatible with
each other for distinct v)

kvsv>=vt and S™ %!y Hy = Rpm(Hy, Hiv)

such that H(lkv) € S™ %1 and H|y v = Hli, * H|,.

The above make sense because H is nondegenerate and so H |, is an embedding.
In this proof we identify X and Y with the subsets X * @ and @ * Y of X Y.
We also identify lk 7 with the image of 1k under the above homeomorphism. We
recommend the reader to read this proof for the particular case when N a PL
manifold (this case is sufficient for the proof of Theorem 1.33 and hence of 1.3«).
For this case lk 7 below is homeomorphic to S™ 1.

By (¢) we can take a PL ball B "~ < §™~7~1 containing H lk# and denote
ho = Hli,, : lkn — B™ "1 (Figure 3). We have dimlkn <n —r — 1. Denote

L,=v"nlky and Ey=|]J L, x Ly
von

By (a) and (b)

Alhg)NEy =0 and &~ H even ®=H on E.

Cone Lemma 4.2. Let X be a polyhedron. Denote ¢cX = % and identify

X =X x0C cX. Fiz a triangulation T of X and let T be the cone triangulation
of ¢X.
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Figure 3

(4.2.1) There is an equivariant surjective map p : T — YT whose only non-
trivial preimages are those of the wvertices of the suspension and are ¢ X X and
X x ¢. This map is natural on the inclusion, i.e. for a subcomplexr T of T we
have pr, = pT|£ﬁ'

(4.2.2) If h: X — B™ 1 is an embedding and ch : ¢X — ¢B™ 1 C B™ is the
cone map, then the map ch il — Sm1 s well-defined and close to (ETL) op.

(4.2.3) Héq(cf)v(,gf U8) = 0 for each i, where L, are subcomplezes of T and

0=U,cL,.

Proof of 4.2.1 and 4.2.2. For each ([z,s],[y,t]) € T either s = 0 or t = 0
(Figure 4). Let p([z, s], [y,t]) = [(z,v), s — t]. It is easy to check that p is well-
defined, surjective, equivariant and natural on the inclusion. The p-preimage of a
point [(z,y), s] € ¥ T is not a unique point if and only if s = #1. Such non-trivial
preimages p— [T x 1] and p LT x {—1}] are ¢ x X and X X ¢, respectively.

If ([z, 3], [y,t]) € ET? then (z,y) € i hence hx # hy, so chlz,s] # chly,t].

Therefore ch is well-defined on p~'%T|;,. Let @, o = “=%.. We have

o et

Shop(le, sl ly, ) = Zhl(z,y), s —t] = (bl y), s — ] = [ha, hy, s — 1]

and ZE([L s, [y, t]) = [hz, s], [hy, t]. For s >t (s < t) these two points both lie in
the open northern (southern) hemisphere, for s = ¢ they even coincide. So they
are indeed not antipodal. Il

The proof of 4.2.2 shows that in 4.2.2 we can replace the map ch by any map
H :cX — ¢B™ ! such that Hc =c and HX ¢ B™ 1.
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Figure 4

Proof of 4.2.3. We tacitly consider equivariant cohomology groups. Consider two
restriction homomorphisms H®(cX) = Hi(¢T'U 6) 25 Hi(cT). From the exact
sequence of the pair (J( , TuU #) we obtain that it suffices to prove that r is an
isomorphism. Since T is an equivariant deformation retract of cX , it follows that
r1 or = id. Thus it suffices to prove that rq is an isomorphism. Consider the

Mayer—Vietoris sequence

802 gl ne) S Hi(eTue) "2 Hi(eT)o HY(0) "2 Hi(cTNn) — ...

———

Since cLN,, equivariantly deformationally retracts to ¢T'|p, and these retractions
are natural on the inclusion, they agree on the intersections, so 6 equivariantly
deformationally retracts to ¢T'M @. Therefore sy is an isomorphism. Hence § =0
and the projection ker(sy @ sg) = im(ry @ r9) — H'(cT) is an isomorphism. Thus
r1 is an epimorphism. Since § = 0, it follows that r{ @ ro is a monomorphism, so
71 is an isomorphism. |

Continuation of the proof of Immersion Theorem 4.1: construction of Hy and
{Vfr} We recommend the reader to read the proof first for the particular case
r = 0. Take a triangulation 7}, of Ik y in which all vNlk 7 and L,, are subcomplexes.
Denote by Tn+ the join triangulation of n*. By an isotopy of R™ we can modify
B! to a standard ball. Since the join nt = % lkn is homeomorphic to the
iteration of r + 1 cones, by (c¢) we can apply Cone Lemma 4.2.1 r + 1 times to
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obtain an equivariant surjective map p : TJL — E’"Jrlﬂ. By applying 4.2.2 r + 1
times we have that
H g p*Er+1% on ©:=p iyl U Ty, -

von
For » = 0 we have

©= | J(ehln, Uex L,uL, x )= | Ty, =T N E
vom von

because U, L, = lk7. Analogously © = TnJr N F for arbitrary r.

By the equivariant Borsuk Homotopy Extension Theorem & is homotopic to
an equivariant extension

:TH =51 of pryrtlhg:0@ - 571

Since n < m — 2, by applying r + 1 times Theorem 2.5 we obtain that the map

P*ETJA g W;ZJ&(%;? Eyn T:;j;a) — ”zil(ﬂﬁ 0,%|o)

is surjective. The preimage of &’ under this map is an equivariant extension
@: Ty, — 8™ "2 of hy:EonT, — 8™ "2

Since r > 3n —2m + 2, we have 3(n —r — 1) < 2(m —r — 1) — 3, hence we can
apply Disjunction Theorem 3.1 to lkn, T,,, A= 0, Ey, F1 =lkn xlknand ® = .

We obtain a homotopy h; : 1k — B™ "1 from hg to an embedding h such that
A(hy) N Ey = 0 for each ¢.

By (¢) we can identify
(0" m,0n)  with  (clkn dn, e dn, In)
and  (Rpm(Hn, Hon), Hy, Hon) with (cS™ "'« Hon, ¢+ Hon, Hony).

1
Let v =vt for v#n and nf:{[x,t]Ccllwﬂ§§t§1}*8n.
Define a map

S

O

(Figure 5). Extend H; to clkn* dn as a join with H|, and then to the rest of N
by H to obtain a map H; : N — R™.

Nl O
IAIA
IA A

t
2
s<1
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clknzdn

Figure 5

Completion of the proof of Immersion Theorem 4.1: verification of the properties
of Hy and {yfr} The map H1|n+ is an embedding as a join with an embedding
1

hi. If v > nand v B n, then Hy = H on v, hence Hil,+ is an embedding. Since
1

A(hy)NEg = 0, it follows that H1|uf is an embedding for each v O 7. Thus H1|V;r
is an embedding for each v > 5.

If v < 7, then either v C n or v N /AT = ), so Hy|, is an embedding. Thus H
is nondegenerate.

If v < 5, then Hyl,+ is a join both in the intersection with T by the construc-
tion of Hy, and outside this interection by the inductive hypothesis, and these join
structures are compatible. Thus (c¢) holds for H and v1 replaced by Hy and z/i" .

It remains to prove that IA{JI ~eq ®on FU nf. The triangulation Tj induces
a join triangulation 77 of 77;“. By Cone Lemma 4.3.3 it suffices to prove that
E g $on LU TI Clearly, E is well-defined on FE. We shall construct a
homotopy P, : TI — 8™ L from dp = P to by = HE and then sew E with &,
to obtain the required homotopy ¥; between ¥o = ® and ¥; = H;. Note that
Ho = H and Hy = chy|,pc % H oy = helien*H |, onny . Denote by p: Ty — ¥ H1T,
the new map given by application of Cone Lemma 4.2.1 » 4+ 1 times and define
the new © as above. It is easy to check that the properties of p and © used below
(analogous to and using the properties of old p and ©).

By the construction of ¢ we have p*¥"tlp ~ @' rel ©. Therefore the linear
homotopy between close maps & = I% and ® = p*¥t1hy on O extends to a
homotopy @, t € [0, %]7 between ®g = ® and 1,3 = p* ¥ty on T7.

By the construction of h; using 3.1.2 we obtain that there exists a homotopy
T T; — §™m~"=2 hetween pg = ¢ and 1 = H extending the homotopy he
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Egn i — §m—7=2 Fort e [%7 %] let &, = p*ETJrlcpgt,l. Then by Cone Lemma
4.2.2 &,(x) is close to I;T:o;_/l(x) for t € [3, %] and z € ©.

Finally, for ¢ € [%7 1] let ®; be the linear homotopy between close (by Cone
Lemma 4.2.2) maps $3/3 :p*E’"JFIE and ®; = ffl

In order to sew ]f-E and ®; take an £ > 0 such that E is defined on the &-
neighborhood O.F of E (or just extend H; to O.F). By compactness we may
assume that ¢ is so small that the maps ﬁB and &, for ¢ € [0, %]7 ]T.T;,;_/l and P,
for t € [%7 %], Hy and @, for t € [%, 1] are close on Ty N O.E. Let 7(z) = %
Define a map

37'4)%4—(1—37')[’170 t< 1
¥, TiNO.E—»R™—{0} by ¥, =3 37&,+(1—-3r)Hs,_; 7<t<l—r,

3r®, 1. +(1-37)H; t>1-7
3T

?{(tt:;):) (Figure 6). Note that in the above formula 7 < % and we

use the agreement that ¥}, = H,for 7 =0andt e {0,1}. We omit = which is
the argument of ¥}, ®;, H, and 7. It is easy to check that W} is continuous (even
at points z € E, for all of which 7(z) = 0). Then we can define the required
homotopy ¥, by

where ¢ =

/

T s g s
v, = |\Ii—f| onT'NOFE, ¥,=H,onFE and VY,=d,onT)-0OF. 01O
t

For the approximative relative version of Theorems 1.33 and 1.330 stated in
§1, in the above proof we take sufficiently fine T" and use the corresponding approx-
imative relative version of Immersion Theorem 4.1, which is proved analogously
(we start with taking H very close to g and v so small that (c) holds).

Proof of Example 1.10. Example 1.10.i follows because there exists a smooth em-
bedding §4~1 — R™ which is not smoothly regular homotopic to the standard
inclusion [Hae66A, Remark 6.8].

Example 1.10.ii follows because ﬁ%frI}F(SQl) is surjective (by Theorem 1.13) but
there exists a piecewise-smooth immersion $% — R3*1 which is not piecewise-
smoothly regularly homotopic to a smooth immersion [Hae67, 5.4, Theorem 5.6].

In order to construct Example 1.10.s take an (n — 1)-polyhedron K from Ex-
ample 1.2.ee with the property (x) of §1. Then N = cK does not PL immerse in
R™, but Wg(;_l(SN) % (, even Wm_l(ﬁ) # 0, by Cone Lemma 4.2.1. Example

eq
1.10.s is true also for m = n = 4, which follows from [MaSe67, Theorem 2]. O

3n
We conjecture that a/ﬁgfzﬂ (S™) is not surjective. An evidence for this conjec-
ture is as follows. By Example 1.10.ii, the restriction 2m > 3n + 3 is sharp in the
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(0,15

Figure 6

injectivity part of Theorem 1.33 even for closed PL manifolds. The only point in
the proof of the injectivity in Theorem 1.373 for closed PL manifolds, which would
not go for 2m = 3n+ 2, is the application of a partial case of the Disjunction The-
orem 3.1. Therefore this gartial case is false, and this partial case is very similar
to the surjectivity of a/ﬁ1;272+1(5").

We conjecture that if NV is an n-polyhedron and m > n, then the map f— Af
defines a 1-1 correspondence between the set of PL. immersions N — R” up to PL
regular homotopy and the set of PL. bundle monomorphisms ® : T'N — R™ up to
homotopy through PL bundle monomorphisms, cf. [Lee69]. Here T'N is sufficiently
small neighborhood of the diagonal in N x N (not to be confused with the previous
notation for T'N). For a map f : N — R™ the map Af : N x N — R™ can be
defined by the formula Af(z,y) = fx — fy. The reason for using such a notation
is that Af is a ‘finite difference, approximating df’. The map ® : TN — R™ is a
PL bundle monomorphism, if the restriction of ® onto each fiber (of the projection
onto the first factor) is a PL embedding. A similar conjecture can be stated for
the classification of TOP immersions of locally contractible compacta.

We conjecture that in the proof of Immersion Theorem 4.1 we may require
that (c) holds for each v, not only for v < 5. To check this improved property
(¢’) for Hy and {Vfr}7 constructed in the proof, observe that (¢’) for m > n+ 3
follows from (c¢) and (a) by the Unknotting Cones Theorem [Lic65, Corollary on
p. 71]. For m = n+ 2 we have 3n —2m + 2 = n — 2. So for dimv = n (¢’) holds
since v+ = v, for dimy = n — 2 (¢’) is not violated during the constructions of
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H; for distinet (n — 2)-simplices v (since the corresponding vt may be chosen to
have disjoint interiors), and for dimv = 1 (¢’) could follow from a version of the
Unknotting Cones Theorem. Or else for m = n + 2 preservation of (¢’) for v > 5
could follow from corresponding improvement of Disjunction Theorem 3.1.

5. Deleted product of cylinder and applications

Denote XX = #}1(1}1) Embed X as X x 0 into ¥X.

Cylinder Lemma 5.1. (5.1.«) For a polyhedron N there is an equivariant sur-

jective map p : N x I — E(]v x 1) whose only non-trivial preimages are those of
the vertices of the suspension and are homotopy equivalent to N x N.

Moreover, if H: N x I — R™ x I ¢ R™H is a level-preserving map, E Ceq
NxIxN X/I\a/nd @ N x diag I — S™ 1 is an equivariant homotopy between

H|nxo and H|nyx1 such that A(HYNE =0 and o = H on EN (N x diagI), then

@::ELpOpzeqﬁ on ENN x 1.
(5.1.8) The same as above replacing N by SN, N x I by S(N x I) and N x N
by N.

Proof of 5.1.c [ef. Web67, 7.1, Sko97, 3.3, Sko00, 3.1]. Take a metric on N such
that diam N < 1. Define the map p by

( g [( s+t) s—1
p ZE7 S7y7 - $7y7 2 7max{|x,y|7 |S —t|} .

See [Sko97, Figure 1 and idea of proof of Lemma 3.3], cf. Figure 7.a. It is easy to see
that p is well-defined, equivariant and surjective. Clearly, the non-trivial preimages
of p are those of the vertices of the suspension. They retract deformationally to
Nx0x N x1landto N x1x N x0, sothey are homotopy equivalent to N x N.
Observe that ®(z,t,y,t) = p(z,y,t), hence & = Hon EN (]v x diag I). Since H
preserves levels, it follows that for s < ¢ (s > t) and (=, s,y,t) € E, both &(z, s, y,t)
and H (z, s,y,t) are in the northern (southern) open hemisphere. Therefore ® and

ﬁarecloseonEﬂ]m. Hence@:eqﬁonEﬂ]m. O
Proof of 5.1.3. Take a small £ > 0 such that
S(N xI) g {(z,5,0,8) € N X I : |z, 9| +|s —t| = £}

Define the map

p:S(NxI)—%(SNxI) by pz,syt)= [<x7y,s—H)7 S_t]

2 I
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a)

[SK x I,1]
\
AN 7R
VAN N 2, N7 SRS AR
- S(N x1I) (SN x I)
b)

(Figure 7.b). It is easy to see that p well-defined and to verify the properties of p
(the non-trivial preimages are N* = {(z,s,z,s +e) € S(N xI)} 2 N x I ~ N).
O

Proof of the quasi-injectivity in Theorem 2.2.q. Take PL embeddings foy, f1 : N —
R™ and an equivariant homotopy ¢ : N x I — S™ 1 from fq to fi. Take the
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linear homotopy G : N x I — R™ x [ between fy and f; and a triangulation T}
of N x 1. Let F= (N x{0,1})*. Since

G=¢ on EﬁﬁxdiagI:NXOXOUZVXIXL

we can apply Cylinder Lemma 5.1.«c to obtain an equivariant map & : NxI—

S™ such that & =~ G on ENNxI. Let K be the union of N x {0,1} and
the (n — d)-skeleton of the dual cell-subdivision to 7. We may assume that

Kn (Tl(d> NN x0)x % = (. Apply boundary version of the surjectivity in Theorem
1.3530 [cf. Sko97, Theorems 1.1.b and 3.1] (or Theorem 1.139, if N, fp and f are
smooth outside a point) to obtain a PL immersion hg : R(K) — R™ x I such that

ho(z,0) = fo(x), ho(x,1) = fi(z) and hg ~ey ® on Nx0x0UNx1x1US(R(K)).
Extend hg to a map N x I — R™ x I. Take a new triangulation T" of N x I such
that K is a subcomplex of T" and such that for Ey = (N x {0, 1})*U[K*NT(N x 1)]
we have

&(ho)ﬁEO:@ and %:EqQ even %z@ on EynT.

Since n+ 1+ 2(n —d) <2(m+ 1) — 3, we can apply Disjunction Theorem 3.1
for

N=NxI, A=Nx{0,1}, Ey=(Nx{0,1})*U[K*NT(N xI)| and E; = K*.

Since E(hl) is closed, by 3.1.1 it follows that there exists

Ruxi(K) CNxIT— (T AN x0) x = such that A(h1) N R (K)* = 0.

M| =

Hence V :i= N x I — Ryxr(K) = RNX,((de> AN x0) %) and X(hy) C V.

Since N x [ is d-connected, by the Engulfing Lemma [[rw65, Theorems 2.1 and 2.3]

it follows that (de) NN x0) x % is contained in some PL n-ball in N x I. Therefore
by the Uniqueness of Regular Neighborhood Theorem, V' is also contained in some
(possibly, another) PL n-ball B" C N x I. We have Y(h;) C V C B™, hence hy is
a quasi-concordance. [l

Proof of the (quasi-)injectivity in Theorems 2.2.q/3, 2.1.a/3 and 2.1.a/ 30 for
the PL case. Take PL embeddings fo, f1 : N — R™ and an equivariant homotopy
w:NxI—S8™1from fyto fi. Take a PL regular homotopy hg : N x I — R™
from fp to f1 such that

ho ~eq ¢ on SN xdiagl = SN x I rel SN x {0,1}.
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Fix a triangulation T of N x I such that A(ho) N T(N x I) = . Extend the
map ¢ : SN x diagl — 5™ 1 to N x0x0as fopand to N x 1 x 1 as f1. Let
E=(Nx{0,1})* UT(N x I). Then

% Mg P, €ven % =¢ on Eﬁ(ﬁxdiag[) — SN xdiag IUN x0x0UN x1x1.
Therefore we can apply Cylinder Lemma 5.1.« to obtain an equivariant map & :
N x I — 8™ such that hg ~., ®, even hg =P on ENT.

The quasi-injectivity in Theorem 2.2.q/3 is now proved as in the proof of
Theorem 2.2.q (K =T % U N x {0,1} and T} is the cell-subdivision dual to T
such that K N (T\¥ AN x 0) x 1 = ).

The injectivity in Theorem 2.1.at/3 follows by applying Disjunction Theorem
3.1 to

NxI, A=Nx{0,1}, Ey=F and E;=NxIxNxI.

In order to prove the injectivity in Theorem 2.1.c;/ 39, assume that the union
K of N x {0,1} and the product of the (n — d — 1)-spine with the interval I is
a subcomplex of T'. Since 3(n —d) < 2(m + 1) — 3, we can apply Disjunction
Theorem 3.1 for

NxI, A= Nx{0,1}, Ey=(Nx{0,1})*UTK C F and Fj = (Nx{0,1})*"UK XK.

Then the theorem follows because hy|p 1 (k) is an embedding for some Ry« 1(K)
such that
(Rnxr(K),N x0,Nx1)2(NxI,Nx0,N x1). O

Theorem 5.2 (5.2.a). If PL embeddings fo, f1 : N — R™ of an n-polyhedron N
are TOP quasi-concordant and m > n+ 2, then a(fy) = a(f1).

(5.2.8) If PL immersions ho,h1 : N — R™ of an n-polyhedron N are TOP
reqular concordant and m > n+ 2, then [3(hg) = B(hy).

Proof [cf. Sko00, Lemma 1.0]. We prove only 5.2.« (the proof of 5.2.3 is analogous).
Take a TOP quasi-concordance F' : N x I — R™ x I between fp and f;. Take a
triangulation T' of NV such that Y(F') is contained in a star of some point of N.
Let T x I be the product cell-subdivision of N x I. Since F(N x N x 0 x 1) and

F(N x N x1x0) lie in the northern and in the southern open hemispheres of S™,
it follows that the map F:TxI— 8mis homotopic rel Tx0x0UTx1x1

tosomemap@:méSm such that ®(N x N x 0x 1) and (N x N x 1 x 0)
are the northern and in the southern poles of S™, respectively.
Now we need a simplicial version of Cylinder Lemma 5.1.c.. For each (z, s,9,t) €

T x I we have either = #yor {s,t} = {0,1}. Define a map

. t
p:TxI—=XTxI) by p(z,syt)= [(my%)s—t}
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(Figure 7.a). It is easy to check that p is equivariant surjective, that its only
non-trivial preimages are those of the vertices of the suspension and they are
NxNx0x1and N x N x1x0. Hence there is a map &' : X(T x I) — 5™ such
that ® = &’ o p. Analogously to Cylinder Lemma 5.1.cc we have

S(foUfi)opmeg F on X :=(Nx{0,1})*nT x1I.

Moreover, we can check that X = p~13(T x {0,1}). By the construction of the
homotopy Y(fo U f1) 0 p oeq I xeq  op on X we can see that

S(foUf1) e ®, even N(foUf1) =& on pX = N(T x {0,1}.
Since 2n+ 1 < 2(m — 1) — 1, by Theorem 2.5 the map
Sl N T x LT x {0,1}, fo U f1) = 72(2(T x I),pX, ¥ |px)

is surjective. Therefore there exists an equivariant homotopy ¢ : TxI— &gm1
between fo and fi (such that ¢ ~., ®’, but this property is unnecessary). [l

Note that the proof of Theorem 5.2.5 works under the weaker assumption that
there is an immersion F' : NxI — R™H1 (not — R x I) such that F(z,0) = ho(z)
and F(z, 1) = hy(z). Therefore the restriction n < m — 2 is sharp. Indeed, for the
two embeddings hg, by : St — R? with different orientation, % oz h~1 on S5,
but the immersion F' as above do exist.

Another motivation for Theorems 1.13, 1.33 and 1.330 is the following simple
corollary of 5.2.

Corollary 5.3. If N is TOP immersible in R™ and B, (N) is surjective, then
N is PL immersible in R™. Particularly, PL immersability of N into R™ does
not depend on the PL structure on N. If m > n+ 2, 5 (N) is injective and two
PL immersions N — R™ are TOP reqular concordant, then they are PL regular
concordant.

Theorem 1.3 can analogously be applied to obtain smooth immersion from a
PL or TOP one (as well as to the corresponding results on regular homotopies,
embeddings and isotopies), but these applications (in contrast to Corollary 5.3)
are covered by known results.

Corollary 5.4 [cf. Hir66, Ros93, RSS95]. Suppose that N is either an n-polyhedron
or a smooth n-manifold, m > n+2 and o™ (N) is surjective (see Theorems 1.1,
1.1ad and 1.3a). If either cN TOP embeds into R or (N x I TOP embeds in
R™ and HY(N) =0 for i > m —n), then N embeds into R™.
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Proof. Suppose that N x I TOP embeds in R™*1 and H*(N) =0 for i > m —n.
Let T' be a triangulation of N. Consider the maps

Emb™(N) 2 72 YT B 2T x 1) 2 2 W(T x 1) B an(T x 1),

€q eq

where pr : Tx I — T is the projection and p is the map from the simplicial version
of Cylinder Lemma 5.1.« (formulated in the proof of Theorem 5.2). Clearly, pr*
is an equivariant homotopy equivalence. Since dimT < 2n, by the equivariant
Suspension Theorem . is surjective for m > n + 2. By the Kiinneth formula the
condition H*(N) = 0 for i > m —n implies that H*(N x N) = 0 for i > m. Hence
any map N x N — §™ is null-homotopic. Therefore by the equivariant Borsuk
Homotopy Extension Theorem, any equivariant map NxI — S™is homotopic
to the one which factors through the compression of non-trivial preimages of p. So

p* is surjective. Since N x I embeds into Rt it follows that w;’}l(m) £ 0.
Since « is surjective, this implies that Emb™ (N) £ .

The case when ¢N TOP embeds into R™1! is proved analogously using Cone
Lemma 4.2 instead of Cylinder Lemma 5.1.c. (Il

The assumption on TOP embeddability in Corollary 5.4 can be relaxed to
quasi-embeddability, cf. [MaSe67].

Note that if N is a polyhedron, ¢cN TOP embeds into R™1 and (eN, ¢) does
not contain topologically (Bm+1, 0), then there is an equivariant map YN — S™,
For dim N < m — 1 this is proved analogously to Corollary 5.4. The below proof
works without dimension restrictions. By Cone Lemma 4.2 and the equivariant
Borsuk Homotopy Extension Theorem, it suffices to prove that for an embedding
f:eN — R™FL the map f|(c><N)u(N><c) is null-homotopic. There is an m-sphere
in R™*! such that the vertex fe and the base fN of the embedded cone are
contained in different connected components of the complement to this sphere.
Since (¢N,¢) does not contain topologically (B™11 0), it follows that feN does
not contain any neighborhood of fc¢ in R™tL, Therefore we may assume that
fee R™ x (0,4+00) and fN € R™ x (—00,0). Then f(ex N) and f(N x ¢) are in
the northern and in the southern hemisphere of the unit sphere S™, respectively,
and we are done.

The following Pseudo-Isotopy Theorem 5.5 confirms [ReSk98, Conjecture 1.9.¢],
generalizes [Web67, Theorem 1], improves [ReSk98, Theorem 1.2] and also pro-
vides a shorter proof of [ReSk98, Theorem 1.2] for 2m > 3n+4. The introduction
and motivations can be found in [ReSk96, §9, CRS98, £4, ReSk98, §1]. For a map
g: N — R™ denote

N x1T
{94137 X l}zEQ(N).

N9 = {(z,y) € NxN | gz # gy} = N—A(g) and Mapg=

Pseudo-Isotopy Theorem 5.5. Let N be an n-polyhedron, g : N — R™ a PL
map and 2m > 3n+ 4.
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a) If f : N — R™ is a PL embedding such that § ~., f on Kw, then f is PL
pseudo-isotopic to g (i.e. there is a PL homotopy fi : N — R™ from fo = f to
f1 = g such that f; is an embedding for each 0 <t < 1).

b) [ef. Mel] The following conditions are equivalent:

(I) g is isotopically approzimable by embeddings (i.e. there exists a pseudo-
isotopy, arbitrary close to g, from an embedding f to g);

(A) g is approzimable by embeddings;

(®) there exists an equivariant map & : N — S™ 1 such that D5, eg 9-

Proof. In Theorem 5.5.b (I) = (A) is clear, (A) = (®) is simple [ReSk98, Theorem
1.2, necessity] and (®) = (I) follows from [Web67, Theorem 1] and Theorem 5.5.a.
So let us prove Theorem 5.5.a. Apply Mapping Cylinder Lemma 5.6 to the linear
homotopy G between f and g. Then by [Sko97, Theorem 1.1.¢c] — the boundary
version of [Web67, Theorem 1] — it follows that there exists a PL. embedding
F : Mapg — R™ x I (a ‘pseudo-concordance’ from f to g) such that

F(z,0) = f(z) x0, F(g(z),1)=g(z)x1 and F(N x (0,1)) CR™ x (0,1)

[cf. Sko94, §4]. Since F' is PL, we can find a small £ > 0 and modify F' to achieve
F(z,t) C R™ x t for each ¢t < ¢. Therefore by the Concordance Implies Isotopy
Theorem [Lic65, Hud70] we can modify F' to achieve F'(z,t) C R™ x t for each
e <t < 1. So F become a pseudo-isotopy from f to g. [l

Mapping Cylinder Lemma 5.6. Let N be an n-polyhedron, g, f : N — R™ a
PL map and a PL embedding such that f ~., g on N9 and G : Mapg — R™ x I
a map such that

G(z,0) = f(z) x0, G(N x (0,1)) C R™ x (0, 1)

and G|y(ny s a composition g(N) C R™ = R™ x 1. Then G is defined over
E = l\m N(p xp)(N x N x 3 x1I)) and there erists an equivariant map
¥ : Mapg — 5™ such that ¥ ~, G onE.

Proof. Take a triangulation T of N in which g is simplicial, and the corresponding
triangulation of Mapg. It suffices to prove the same result with the simplicial

deleted product of Map g, which we denote by m. Let
M =Tx0xIT UTxIx0UT'xIxI UNxNx0x1UNxNx1x0,

where T9 = U ox7. Let m: N x I — Mapg be the projection. Since 7
gaﬂgT:Q)

~——

is a surjection, it follows that # x 7 : M — Mapg is a surjection. Therefore in
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order to construct the required map ¥ it suffices to construct an equivariant map
¥’ : M — S™ which assume constant value on each fiber of 7 x 7 and is such that

Wy Go(mxm) on MN(NxNxIxI)).

Let ¢ : T9 x I — §m—1 he an equivariant homotopy between fand g on T9.
Extend ¢ to Y =T x0x 0UTY x diagl by f. Take a metric on N such that
diam N < 1. Define a map
(w9, T2, 2(s — )] 20s—t] <1
Y. =7l 2s—t| 21

p:M—=N(NxI) by plz,sy,t) —{

Then pM C 3Y, hence the map ¥ = Yy o p is well-defined. Since
ql/|fgxlxl - § and \Iﬂ($7 17 y7t) - E‘P[(% Y, 1)7 2(3 - t)] - [5(377 y)? 2(8 - t)]?

it follows that ¥’ assume constant value on each fiber of 7 x 7. Analogously to
Cylinder Lemma 5.1.cc and Cone Lemma 4.2.2 we prove that

W =Go(rxm) on Tx0x0UTIx1x1

and these maps are close on the rest of M N (N x N x d(I x I)). Hence they are
indeed equivariantly homotopic. (Il

6. Knotted tori

Torus Lemma 6.1. For p < q and m > p+q-+2 there are homomorphisms o, -,
p and maps T, w such that the diagram below (anti)commute, the homomorphisms
o, 7, p and pry are isomorphisms under the dimension restrictions m > A, where
A is shown near the notation of a map:

Tqg(Vin—q pt1) po Emb™(SP x S1) = w;’éfl(SP x 59)
lp 394 p42 lw lv r+qt+3
eq m—1 Pry g 2pt2 o g m—1
Wq(vmfcmﬂrl) T 1, I, @ g,
P PEY
2

Here the equivariant Stiefel manifold V71 is the space of equivariant maps
Sn=1 5 §m=1 Define Hgfl’l = 7r;’}1’1(51’ x 524), where the involution on S? x 524
is a, xty and ¢, : 524 — §24 ig the symmetry with respect to S7 ¢ §2¢. The group
structure on H;’;_l is defined as follows. For equivariant maps ¢, : SP x 524 —
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5m=1 define the map ¢ + ¢ : S? x S2¢ — 5™~ (the unity and the inverse of )
on z x 5% to be the ordinary sum of the restrictions of @ and ¥ to = x 524 (the
ordinary unity and the ordinary inverse of the |, g24).

Torus Lemma 6.1 generalizes, in particular, the following observation [MaRo86,

§3]. We have qu e STX 51159 x S1157159, where the involution on the
right-hand term exchanges antipodes on each copy of S¢ and also the corresponding
points from the two copies of S7 x S9. Therefore

i~

amL(Sa S0y & L5 x §0) 2 am NSy 2 af
for m > g+ 2. Here the map v, : S9x 57 — g%ﬁ: =~ 524 ig the quotient map. We
can prove that the map v is an isomorphism for m > ¢+ 3 using general position
and for m = ¢+ 2 using the cofibration exact sequence of the pair (S7x 59, S1v.57)
and the existence of a retraction ry : 3(S? x §7) — ¥(S7V §9).

Proof of Torus Lemma 6.1. In order to define the map 7, recall that 74(V,—q p41)
is isomorphic to a group of CAT maps S? — V,,_, .11 up to CAT homotopy. The
latter maps can be considered as CAT maps ¢ : ST x SP — dD™ 1. Define a CAT
embedding Tcar(p) as the composition

5P x 51 B2 gpm—a o g1 = pm—a » §7 - R™,

Figure 8

There is an equivariant deformation retraction

SP x S4 — adiag SP x S9 x §9 U SP x SP x adiag S9
adiag Sr xadiag S9
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(Figure 8). Consider the involution (s,z,y) — (—s,y,z) on SP x S9x 5%. For m >
p+ g+ 2 the map ids» Xv, induces an isomorphism szl(Sp x 81 x 5% = Hg};l.
For m > p+ ¢ + 3 this is proved using general position and for m = p+ g+ 2
using the cofibration exact sequence of the pair (S? x S x 5%, 5P x (S1V S7)) and
a retraction L(SP x S x S§1) — Y(SP x (87V S1)) obtained from the retraction
idge X7q 1 5P x 3(57x 57) — 5P x ¥(S7V S57) by shrinking to a point the product
of SP with the vertex of the suspension. We also need to check that the involution
on 89 x S? exchanging factors corresponds to t,.

Consider restrictions of an equivariant map S? x §7 — S™ 1 to adiag SP x
5% x S? and to SP x SP x adiag S? (where adiag is antidiagonal). Define the map
~ to be a direct sum of compositions of such restrictions and the isomorphisms
(idsr xvg)* and (idge xw,)*. If dim(adiag SP x adiagS?) =p+qg < (m—1) — 2,
then « is an isomorphism by general position and the Borsuk Homotopy Extension
Theorem.

By general position, for 2p 4+ ¢ < m — 2 we have H;’;’l = 0, hence pry is an
isomorphism. Let w be the map corresponding under (ids» xv4)* to the map

5P x S x §1— §™ 1 defined by (s, z,9) — f((s,2), (—s,7)).

Clearly, the right-hand square of the diagram commutes.

Recall that p is the inclusion homomorphism. By [HaHi62], p is an isomor-
phisms for m > % +p+2.

Define o as a composition

TVl o o) = oy T H(SP x §9) Zamol(39(8P x §9)) Bl -t

Here the involution on S? x S7 is a, x idgs, the involutions on »457 and on
Y4(SP x S7) are the ‘suspension’ involutions over idge and a, x idge; the map
57 x D1 SP x ST x D1

L 5P x 345 — GP — (5P x 5
L= X Sixy yedDi S xSixg yedDi =& x5

is a quotient map. The ‘SP-fiberwise’ group structures on W;’}I*qfl(Sp x 59) and
on ﬂg(;‘l(Eq(Sp x S1)) are defined analogously to that on Hg@‘l. It is easy to see
that o is an isomorphism. Analogously to [Ker59] it is proved that the left-hand
square of the diagram (anti)commutes.

By the Equivariant Suspension Theorem, it follows that >4 is an isomorphism
for p+q < 2(m—g—1)—2. The non-trivial preimages of pr are SPx[Sxy|, y € dD1.
Their union is homeomorphic to S? x dD?. Since dim(S? x dD?) = p + g — 1,
by general position it follows that pr* is an isomorphism for p +qg —1 < m — 3.
Therefore ¢ is an isomorphism for m > i%rﬂ +2>2p+qg+2. O

By Theorems 1.1 and 1.3a, the maps aprrppr and apy, are bijective for m >
M + 2 and m > % + p + 2, respectively. From the existence of 7 and Torus
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Lemma 6.1 it follows that aprpp is surjective for m > max(% +p+2,g+2p+2)
[cf. Boe71, BoHa70]. Note that some maps of Torus Lemma 6.1 are epimorphisms
under the weaker by one dimension restrictions than stated there.

The PL Stiefel manifold V,EL is the space of PL embeddings 5™~ — §71,
Replacing V' — V7%, we can define analogously a map 77" : (V)" 1) —
Emb’p, (S? x S9).

It would be interesting to apply smoothing theory to prove the following con-
jectures:

Emb By o (SP%S) =74 (Vinqp41) @ Cpry P % for m>max (3 +p+2, q-+2p+2),

where O F™? = Embpp(SP19) (note that Cp' F~? =0 for m > M + 2);
and

Emb?bkﬁﬂlF(Sk xS =X C’S,jl for k > 2, where X is ZV Z for k even and is
either Zy V Zy or Zy @ Zy for k odd (for a group G we define GV G = {(z,y) €
G @ G | either z =0 or y = 0}).

The classification of knotted tori, i.e. description of isotopy classes of embed-
dings S? x S7 — R™ seems to be an interesting problem because it generalizes
an important classical theory of 2-componented links (of the same dimension)
[Hae66C], and just as the link theory, provides interesting examples and connec-
tions between geometric topology and homotopy theory. In particular, this classifi-
cation is a natural next step (after the link theory) towards understanding isotopy
classes of an arbitrary manifold in R™ (by the Handle Decomposition Theorem).

Torus Lemma 6.2. [fs > 3, p1 < - <ps, n=p1+-+ps and N =
SPL x ... x SP< then the same assertion as in Torus Lemma 6.1 holds for the
following diagram:

m —1/a7
Tn—p1 (Vm—n+p1,p1+1) 7) Emb™(N) ;’ Wgé (V)
J/p SnoPlyo lw lv 2n-—p1—pot3
eq m—1 pry 2n—py+2 ym—1
Tn—p1 (Vi ntpy pr+1) i om Wy ®illp nyp,

o F-p1+2

Proof. Analogous to Torus Lemma 6.1. We shall only give definitions of 7 and
o and omit the details. The map 7 is defined as follows. An element ¢ €
Tn—p1 (Vin—n4py py+1) 1 represented by a map 5™ P1 x SP1 — gm—ntpi—1 Con-
sider the projections

pri: N — &PL x gpatHps — gP1 5 67 P1 and  pro: N — SP2 x -+ x SP=.

Analogously to the case s = 2, define an embedding 7(¢) as the composition

SP1 % §P2 % ... % SPs (Wml))xm? ADTPL 5 GP2 ... §Ps — R™.
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The map o is defined analogously to the case s = 2 as a composition

Tn—p (V:iner 7p1+1)

= mp el (ge x gnoe) B ol (gen x groe) B e
Here the maps »""P1 and pr* are isomorphisms for 2m > 3n — 2p; + 4 and

m > n+ 2, respectively. Il

We conjecture that o', (N) is surjective for a closed 2-manifold (e.g. a torus)
N. Note that this is true for non-closed connected 2-manifolds. Since wgq(ﬁ )&
H{(N,Zy), this conjecture for orientable surfaces is implied by the following one:
If N is a closed orientable 2-surface, v+ C N is a circle representing an element
[v] € Hi(N,Z3), e : N2 — R* is the standard embedding, h, : N = N is the
Dehn twist along v, and d(e, e o hy) is the difference element [Hud69, §11], then
d(e,e o hy) = [v]. Indeed, the latter conjecture implies that every element of
H{(N,Zy) is representable by a difference element d(e, f) for some embedding
f: N — R* Similar conjecture can be stated for non-orientable 2-surfaces, using
local coefficients.

7. Construction of examples

Proof of Ezample 1.2.ss. Example 1.2.ss follows because o551 (52% x §2F) is hijec-
tive by Theorem 1.3 (or by [Boe71, Hae62B]) but there exists a PL. embedding
52k % 52k _ ROk +1 non-isotopic to a smooth embedding [Hae62A, BoHa70, p. 165,
BoeT1, 6.2]. O

Proof of Example 1.2.4i. Take a standard embedding f : S™ vV §" — S§™. Then
St — FLGT W ) =2 St Ly gt~ Tike n map 7520208 5 SR FLSHY
S™) representing the Whitehead product of generators. If n =1 and m = 3, then
@ is homotopic to an embedding by general position. If n > 1, then

22m—-2n-3)—-m+1<m-n—2 and m—(2m —2n—-3) >3,

s0 ¢ is homotopic to an embedding by the Irwin Embedding Theorem. Define f on
52m=2n=3 t4 be such an embedding. Since the homotopy class of ¢ is non-trivial,
it follows that f is not isotopic to the standard embedding g. Using ‘finger moves’
analogously to [SSS98] we construct a map F': N x I — R™ x I such that

F(z,0)=(f(2),0), F(z,1)=(g(z),1) and F((S"V8") x NF(8?™~2"=3 x ) =0.

Analogously to the proof of Theorem 5.2.cc we obtain that o (N)f = oZ(N)
(for each G). So a(N) is not injective. O

@
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We conjecture that the non-trivial embedding f of Example 1.2.ii can be ob-
tained from the Borromean rings S" U S" U §2m—2n—3 <« R™ [Hae62T, Mas90,
Proposition 8.3] by ‘wedging’ S™ US™. We also conjecture that by joining S™ L S™
with a tube we obtain analogous example §" J §2m—2n-3 _, pm (this is though
harder to prove: either we need to check that the linking coefficient of such a link
i [tm-n_1,tm-n_1] # 0 for m —n & {2,4, 8}, or we need to apply the Hudson—
Habegger invariant [cf. Hae62T, §3, Sko]). Note that for 2m = 3n +3 > 12 by
joining all the three components of the Borromean rings by two tubes the cele-
brated DIFF non-trivial but PL trivial knots are obtained [Hae62A, Hae66A].

In this section we assume that m > max{2p + ¢ + 2,p + ¢ + 3} (unless the

opposite is stated). So by Torus Lemma 6.1 we can identify w;’(;*l(qu) with
Hgffl and « with w.

Decomposition Lemma 7.1. For m > 2p+ g+ 2 and p > 1 there is the fol-
lowing (anti)commutative diagram, in which the first and the third lines are exact
sequences of homomorphisms.

7q(Vin—q-1) 7 Tq(Vin—q.pt1) o 7q(Vin—q,1)

[ | |-
Emb;’;L—l(Spﬂ x §1) — EmbF; (SP x §9) — Wq(Sm_qkl)
y,/ v’ .

o - I

m—2 m—1
11 — Hpq —

S
s
p—1,q ll« y 2q+1-m

Proof. Let v/ and p”” be the homomorphisms induced by the mappings of the well-
known bundle V,,, ;1 , = Vg pt+1 = Vin_g,1. For an embedding f : 57 x S9 —
R™ let v/(f) be the linking coefficient of f(x x S7) and f(—z x S9) in R™. Define
the map v : H;’f;l — Hg;f = 7T25q7m+1 as ‘the restriction over x x $24’. Clearly,
the right-upper square of the diagram commutes. The right-bottom square of the
diagram (anti)commutes by [Ker59, Lemma 5.1].

By S = D} U DP? we denote the standard decomposition of SP.

dDE =sp—1=oDF

Analogously are defined R and R™~ ! By the Irwin—Zeeman Embedding and
Isotopy Theorem [Zee62, Irw65], for m > 2p+¢+2 any embedding f : SP~1x 59 —
5™~1 can be uniquely up to isotopy extended to an embedding fy : DE x 89—
R7. Two embeddings fy and f_ define an embedding p/(f) : S x S7 — R™ [cf.
Hud63]. Clearly, the left-upper square of the diagram commutes.

Let us define the map p first for the case p = 1. For a map ¢ : 524 — §m—2

define the map g to be the equivariant extension of the composition D1 x $24 =
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».524 ZE S™=1 In order to define the map y for arbitrary p, replace

2 and Ty~ by aZ 2(B9(SP71x §9) and xlH(BI(SP x §9)),

respectively (see the proof of Torus Lemma 6.1). For an equivariant map ¢ :
»a(SP~1 x §1) — S™2 let g be the composition
S(SP x §9) = NI(RSPL x §9) ZLPT syt (gp—1 o gay Z¢ yygm—2

where pr is the map from the proof of Torus Lemma 6.1. Clearly, the definition
for arbitrary p agrees with that for p = 1. It is easy to check that both v and
are homomorphisms.

Let us prove the commutativity of the left-bottom square. We prove this for
p = 1, for general case the proof is analogous. Take an embedding f : S x §7 —
R™1. We have p/f(DL x S7) € R?’. In this paragraph denote by Hgfl_l the
space of equivariant maps S? x S x §9 — S™~1 with respect to the involution
(s,z,9) = (—s,y, ) on SPx S1x ST, modify accordingly the definition of w; denote
by i/, w and wg the maps of spaces (not of equivalence classes), corresponding to
', wand wg. See the proof/o_f\zorus Lemma 6.1; recall that we identify o = w and

m—2
eq
definition of p for the case p = 1. Observe that wyu'f = wof on S x 5% x S¢. For
each y € S x 9 x 59 the points (wp'f)y and (Swg f o pr)y are either both in the
upper or both in the lower open hemisphere of S”~1. Hence wy'f ~eq Ywo fopr,
ie. wyp' = puwg.

Let us prove the exactness at H;’f;l. Clearly, vir = 0. On the other hand, if
5P x §20 — §m 1 jg an equivariant map such that ®D|, . g2 is null-homotopic,
then by the Borsuk Homotopy Extension Theorem, & is equivariantly homotopic
to a map which maps * x $2¢ and ap(*) X 524 to antipodal points of S™ 1. By
the equivariant Suspension Theorem, the latter map is in im y, since p — 1+ 2g <
2(m —2) — 1. So kerv =im p. O

isomorphic groups 7 (S0 x §9) =~ qufm 4o Let pr be the projection from the

Note that all the maps of Decomposition Lemma 7.1 except i/ are defined for
m2>p+q+3.

Proof of Example 1.4. Set ¢q=n—1 < m—4. Now Example 1.4.s is proved looking
at the right-bottom square of the diagram from Decomposition Lemma 7.1 and
using the surjectivity of v’/ from Corollary 7.2 below. The specific examples can
be found using [Tod64, §14] (set l=m —n=m —qg—1and k =2¢+1—m).
Since p < k, we have m > 2p + g+ 2. Now Example 1.4.i is proved looking
at the right squares of the diagram from Decomposition Lemma 7.1 and using
Lemma 7.3 below. O

For a group G let G,y = G|y} = G for k even, let G,y = G/2G for k odd and
let G[k] be the subgroup of G formed by elements of order 2 for k£ odd. If G is

finite abelian, then Gy = Gy = G ® Z,). Denote 7y =0 for [ <0.
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Corollary 7.2. Suppose that p =1 and m > g+ 4. For the diagram of Decom-
position Lemma 7.1 we have

* . : __
MY = Tyt dfmog] 904 OB =Ty 42 ()

(recall that we identify Hg;72 = 7T2Sq7m+2). So HTqﬁl is adjoint to (W§q7m+2 ®
W§q7m+1) ® Z(m_q), unless m = 2q+ 1 and q is even, when Hm71 > 75 If m—q
is even and 2m > 3q + 4, then Hm 1 e 7T2q 2 @7‘(2q mi1- I m—q is even,
then both v" and V' are epimorph@c

Proof. Clearly, imv consists of homotopy classes ¢ € Hgf;l extendable to a map

D' x 524 — §m~1 These ¢, considered as maps ¢ : $?¢7 — S™~ ! are exactly such

that a,,—1 0@ oty = ¢. The latter condition is equivalent to (—1)"¢ = (—1)%p

(for m odd this follows by [Pos85, complement to lecture 6, (10), p. 264], since

ho @ Tag(S™ 1) — 72, (S?73) and 2¢ < 2m —3). So imv = ker(1 — (—1)"79).
In order to calculate ker ix denote by M the composition

ST x 2959 B 30051 x 59) 2 09(050 x §9) P 50+ (50 59,

where pr and pr are maps from the proof of Torus Lemma 6.1 (we use the same
notation pr for two distinct maps). Each map 4 : 521 — §™=2 can be identified
with an equivariant map ¢ : %9(S° x S9) — S™~2. For each map ¢ : $?¢ — ™2
we can construct an equivariant map b : 9I% x S2¢ — S such that by, 75 524
‘represents’ M o x, h|;.gxg2. ‘Tepresents’ ¥.¢p o M and

h(s,1,2,y) = —h(—s,0,y,2) for (s,1,z,y) €l x1xS%.

Then h|;y 15520 ‘Tepresents’ ((—1)"FT4T1¥y) o M. Hence

h=%(1~= (D" 9)oM, so u((l— (=173, _n42) =0

It is easy to see that the above construction describes the entire ker p.

Recall that V,,_, o = TS 17 L For m — ¢ even we even have a section s :
gm—a—1 _ m—q,2 Such that v s, = id (note that the map 7s, is a generalization of
[Zee62, Example] for g—r = 1). Therefore v is epimorphic, hence ¢/ is epimorphic.
If 2m > 3¢ + 4, then X*>° : wq(Sm*‘Fl) — 7r‘29q+17m is an isomorphism. Hence
there is a section

ooyn—1 . 8 m—1 m—1 ~
aT 8, (%) CMag1-m — 0, so I 7T2q m+2@72q mt1- O

Lemma 7.3. (7.3.a) Hgﬁ;l is finite if eitherp+q+2<m <2q orp>1, q odd
>3and m=2q+p+1.
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(7.3.b) The image of the restriction homomorphism v,/ map_1(Vag+1,p4+1) —
Tap_1(S?F) is infinite for p < 2k.

Proof. Let us prove (a) by induction on p. For the case p+ ¢+ 2 < m < 2¢q
the induction base is p = 0, when Hgf;l =~ 79,(5™71) is indeed finite. For the
case m = 2q+p+ 1, g odd > 3 and p > 1 the induction base is p = 1, when
l'[%ZJrl = Z(q t2) is indeed finite by Corollary 7.2. The inductive step of (a) follows
by the induction hypothesis and Decomposition Lemma 7.1.

In order to prove (b) for p = 0 observe that the map v is an isomorphism
and 74;_1(S%*) is infinite. Suppose that p > 1 and there is an infinite set {z;} €
7ak—1(Var41,p) with distinet y]/g’il-images. Consider the Serre fibration S2¢ -7 _

Vor41,p11 k.t Var+1,p and the following segment of its exact sequence:

a1 (Varr1p41) 55 Tar 1 (Vai1,p) = mano(SH7P).

Since 7r4k_2(S2"“’p ) is finite, by exactness it follows that the number of congruence
classes of m4;_1(Vag41,p) modulo im4, is finite. Therefore an infinite number of
z; (we may assume that all z;) lie in the same congruence class. By passing from
{z;} to {z; —x1 } we may assume that this congruence class is the subgroup im ,
itself. Hence the inductive step follows from v}/ = 1’)’71%. O

For k even mp (Vi y22) = 7P @ 7le11 because the tangent bundle Vi 99 —
Sk has a section. Corollary 7.2 and Torus Lemma 6.1 imply that for k odd and
2 < I < k the group mp4(Vi12,2) is adjoint to (77 @y )®Zg and myq1(Vi2,2) =
Zy. Note that mo,41(Viq2,2) is not adjoint to (warl @Y )®Zs for k odd by Lemma
7.3.b. Note that 7g(V,, ,41) is finite if either n < % +1orp+ % <n<gqor
n > g+ p+ 3 (by induction on p using the exact sequence of the above Serre
fibration). This yields another proof of Lemma 7.3.b. F. Cohen kindly informed
me that these remarks are known, although not in this explicit form.

Example 7.4. 1f [ # 3,7 is odd and 2 : wy; 1(S'~!) — 77 is epimorphic, then
o2 (81 x §2-1Y is not injective.

mu-1(Vin) —  mami(Vi2)  — w8
“w v

- | -

mo-1(S'1) — EmbF (81 x §271) — my 1(SY),

7—“//
[ | [»
s 31—1 s
M 7 H1,21—1 - Ti+1
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Proof. The case [ = 1 is obvious, so suppose that [ > 1. By Decomposition Lemma
7.1 there exists (anti)commutative diagram as above. Since 3/ > 2+ (2l — 1) + 2,
it suffices to construct embeddings f,g : S x 52~1 — R¥ such that v/(f) # v/(g)
but wg = wf. Let ¢ = [, u] € mo_1(S"). Recall that ¢ # 0 for [ # 1,3,7 but
Yo = 0. Since [ is odd, it follows that there is a section s : S' — Vi41,2 such that
v"s, = id. Let f = Ts.p. We have wf € ker v = im p, hence there is y € 7 such
that py = wf. Since ¥ is epimorphic, it follows that there is 3’ € mg_1(S" 1)
such that Xy’ = y. Let g = 7u”’y’. Now the example follows from

wf= /ngy/ =wrp'y =wg and Vf=pA£0=1ru"y =1'g. O

We conjecture that %2 : Wgn_l(S’“l) — 7r2n+2(5"+2) — 72 is epimorphic
for each integer n & {1,2,3,7} (Triple Suspension Conjecture, cf. [Jamb54] and
Example 7.4). This conjecture is true for n = 4s and for each n < 30 by [Tod62,
§14 and addition to the Russian edition]. Indeed, for n > 4, the EHP sequence
Jamb4] is man_1(5" 1) 55 75 T (Viy.s) 22 mon_o(57 1) B a5 (the last
homomorphism is ¥ but it equals to %2 by stability). Recall that T (Vi 3) is
0, Zo, Zo ® Zy and Zy according to n = 4s, 4s + 2, 4s + 1 and 4s — 1 [Paeb4].
Since %2 above is an epimorphism for n # 2, 4, 8, it follows that Triple Suspension
Conjecture is equivalent to ‘P : m,(V,,423) — Ton_2(S™ 1) is monomorphic for
n >4, n#7 and to ‘|75 || = vy|m2,_2(S" )| for n = 5,6 or n > 9 (or to the
same assertions for the 2-components). Here v, = 1,2,4 according to n = 4s + 1,
4s — 1 and 2s, respectively.

Note that im»' =imv" = 7y, 41 (g for 2m > 3g+4. For m > ¢+ 4 and
m — q odd we have ker 2 C imv” C imv’ C ker 2X°°, where by 2 is denoted the
multiplication by 2. Indeed, from the exact sequence of the bundle S 42 —
Vinegq2 — Sm—a—1 it follows that

ker(1 — (=1)""%) Cimv” C ker[(1 — (—=1)""9)%>].

Since v’ = /7, it follows that im»” C ims/. If f : S! x §9 — R™ is an
embedding, then the linking f(z x S? U —z x S?) is PL isotopic to the linking
fl—zx 890z x S?). Therefore X°(—1)""9/'(f) = X°>°V/'(f) i.e. V'(f) € ker[(1 —
(—=1)™9)3>°]. Hence the above assertions on imy’ and imv” follow. By Lemma
7.3 b imy” # my (S ), for 2m < 3q+ 3.

Analogously to the proof of Example 1.4.s the results of the previous paragraph
show that

a™(SY x 89 is not surjective if m — q is odd > 3 and Emﬂq(Sm*qfl)[l] —
7T§q+17m7[1] is not epimorphic.

Specific examples can be found using [Tod64, §14]. Note that if im Ef;t—q] )

quim g’ then by the Freudenthal Suspension Theorem either (gq,1) =
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(6,3),(14,Yorg>2l+1land m=q+1+1< # (from the [l — 1]-version of
Triple Suspension Conjecture it follows that even ¢ # 20+ 1 and m # %)

We conjecture that o™ (SP x S7) is not surjective for (at least some) integers
a>0,b>0,c€{0,1,2,3}, 1 <p<2°48—1,k=(2a+1)2%+e & {2 4 8} and
m = q+k+1 such that 3> : Wq(Sm’q’l) — 7r§q+17m is not epimorphic. Perhaps
this can be proved analogously to Example 1.4.s (note that dD™~¢ would admit
p linearly independent vector fields and there would be a section s : §7~4-1 —
Vim—qp+1 such that v”7s, = id).
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