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Harmonic forms and near-minimal singular foliations

Gabriel Katz

Abstract For a closed 1-form with Morse singularities Calabi discovered a simple global
criterion for the existence of a Riemannian metric in which is harmonic For a codimension
1 foliation F Sullivan gave a condition for the existence of a Riemannian metric in which all
the leaves of F are minimal hypersurfaces The conditions of Calabi and Sullivan are strikingly
similar If a closed form has no singularities then both criteria are satis¯ed and for an
appropriate choice of metric is harmonic and the associated foliation F is comprised of
minimal leaves However when has singularities the foliation F is not necessarily minimal

We show that the Calabi condition enables one to ¯nd a metric in which is harmonic and
the leaves of the foliation are minimal outside a neighborhood U of the -singular set In fact we

prove the best possible result of this type: we construct families of metrics in which as U shrinks

to the singular set the taut geometry of the foliation F outside U remains stable Furthermore
all compact leaves missing U are volume minimizing cycles in their homology classes Their
volumes are controlled explicitly

Mathematics Subject Classi¯cation 2000 51 Geometry 58 Global Analysis Analysis
on Manifolds

Keywords Closed 1-forms intrinsic harmonicity minimal foliations volume-minimizing cycles

Morse-type singularities

Introduction

Probably it has been observed for a long time that a single simple geometric prop-
erty implies two quite di®erent phenomena: the ¯rst is the intrinsic harmonicity
of a given closed 1-form and the second { the intrinsic minimality of the foli-
ation F determined by this form The ¯rst implication of this global geometric
property we call it the Calabi Property was discovered by Calabi [Ca] and the

second for non-singular foliations { by Sullivan [S2] It is easy to see that if
has no singularities then the Calabi property is satis¯ed and as a result

is intrinsically harmonic and F is intrinsically minimal However 1-forms typi-
cally do have singularities and so do the corresponding foliations In general the

-singularities obstruct both the harmonicity of and the minimality of F

The research has been supported by US{Israel Binational Science Foundation Grant 9400073
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Therefore it is natural to ask whether in the presence of the Calabi property
there exists a Riemannian metric with respect to which is harmonic and the

leaves of F are volume-minimizing hypersurfaces In this paper we show that one

can ¯nd such a metric which harmonizes and \almost" minimizes the leaves of

F thus bringing Calabi's and Sullivan's theories under a single roof

Let us clarify and expand upon this claim Let M be a smooth compact n-
manifold and { a closed 1-form on M We say that is of Morse type if locally
it is the di®erential of a Morse function We assume that has no singularities on
the boundary @M and that its restriction on @M also is a form of the Morse type

Let S denote the singular set of { it is a ¯nite collection of points Similarly
let S@ denote the singular set of restricted to @M Put

S S t S@

and
M± M n S ; @M± @M n S@; M M nS: 0:1

De¯nition 0 1 We say that a smooth path ° : [0; 1] M is -positive if for
any t 2 [0; 1] _° t > 0 Here _° t denotes the velocity vector tangent to ° at
° t

The following is a modi¯cation of an important global property of studied
in [Ca]

De¯nition 0 2 We say that satis¯es the relative Calabi property if
i for each point x 2 M± there exists through x a closed -positive path;
ii for each point x 2 @M± there exists in @M through x a closed -positive

path

Calabi was investigating the following problem: Given a closed 1-form on a
closed smooth n-manifold M when does there exist a Riemannian metric g such
that is harmonic with respect to the g

If such a metric exists we will say that is intrinsically harmonic
In this paper the harmonicity of a closed di®erential form for manifolds with

boundary is interpreted as the property d ¤ 0 where \¤" stands for the Hodge

star-operator and not as a general solution of the Laplace's equation
Calabi proved that for a closed M condition i is equivalent to the intrinsic

harmonicity of [Ca]

Remark Locally df f being a Morse function Property i prevents f from
having local maxima and minima in the interior of M and ii { on its boundary

A closed Morse-type 1-form which possesses properties i and ii will be called
a Calabi form
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Since is closed it de¯nes a n ¡ 1 -dimensional foliation F on M This
foliation may have singular leaves with the Morse-type singularities: locally in the

leaf topology the F -leaves are the hypersurfaces of constant level for a function

f whose di®erential is Hence in a neighborhood of a singularity the singular
leaves are homeomorphic to cones over products of two spheres

It is possible to verify that Calabi's properties i ii have the following nice

interpretation in terms of the foliation F :

Each compact leaf component is pierced by a loop transversal to F
and a similar property holds for F j@M : 0 2

The veri¯cation depends on two observations:
1 if there exists an -positive loop through a nonsingular point x of a leaf

component L then such a loop exits through any other nonsingular point y 2 L;
2 any non-compact leaf component L is pierced by an -positive loop cf

[FKL]

For foliations without singularities on closed manifolds Sullivan showed [S2]
that property 0 2 is equivalent to the existence of a metric in which all the leaves

are minimal hypersurfaces In other words 0 2 equivalent to the Calabi property
of De¯nition 0 2 implies the intrinsic minimality of the leaves Such intrinsically
minimal foliations are also called taut They have been extensively studied by a
number of authors: [S1] [S2] [KT] [HL] [HT]

In general the foliation F fails to be intrinsically minimal in the vicinity of
its singularity For example consider the 1-dimensional foliation on the plane in
a neighborhood of a hyperbolic singularity; clearly there is no metric in which all
the hyperbolas are geodesic curves Therefore in general even for Calabi forms

one can not expect F to be minimal However the next best to the minimality
property can be achieved: the deviation of the leaves from minimality numerically
can be made arbitrary small and arbitrary localized in the vicinity of the singular
set S Such foliations will be called near-minimal

Our goal is to merge the Sullivan's and Calabi's results within a more general
context of singular foliations In particular we going to prove the following fact:

Given a Calabi form there exists a metric with respect to which the form is
harmonic and all the leaves of F are near-minimal cf Theorem A

Furthermore we show that the orthogonal to F 1-foliation F¤ tangent to
the kernels of the form ¤ also is near-minimal: it consists of leaves that deviate

from geodesic lines only in the vicinity of the -singular points Again by the

choice of metric the length deviation can be made arbitrary small
This gives a beautiful geometric structure: an intrinsically harmonic 1-form

produces a pair of mutually orthogonal singular foliations both of which are near-
minimal and actually minimal away of the singularities
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In small dimensions these foliations de¯nitely fail to be minimal with respect
to any metric Nevertheless we suspect that if the dimension of M exceeds 7
sometimes the word \near" can be be dropped from the statement about the leaves

of F cf Conjecture 4 1

Many results of this paper on the volume-minimizing cycles built of compact
F -leaves have somewhat more general classical analogs formulated in terms

the mass-minimizing foliation cycles and currents These classical results were

established for generic non-singular foliations on compact closed manifolds cf
[HL] [S] [S1] and stated in terms of the Geometric Measure Theory In this
context our contribution can be described as reproducing these results for the

non-compact manifolds fM g in a fashion that permits an extension of the metric
in question across the singularities In particular we prove cf Proposition 2 5 a

\taut" version of the rational Poincar¶e duality in dimensions 1 and n¡ 1

We also extend the setting for manifolds with boundary and investigate the

impact of boundary e®ects on the intrinsic harmonicity and minimality of the

leaves When the form j@M is non-singular and satis¯es 0 2 then it is
possible to \synchronize" the harmonicity and minimality on M and @M ; for
j@M with singularities it is very much an open problem

The introduction of foliations with singularities induced by closed 1-forms

drastically changes the landscape of the classical foliation theory On the one hand
one avoids some of the pathologies think about the Reeb foliation characteristic
for the most general non-singular foliations on the other hand the presence of
singularities generates new diverse possibilities and complications For example
Novikov's Theorem [N2] states that if a foliation F is produced by a closed
non-singular form then all the leaves are either compact or non-compact This
is not the case for foliations generated by closed forms with singularities { such
foliations often are mixed bags

The objects and constructions that facilitate our proofs are so to speak hand-
made As a result we are able to avoid a great deal of Functional Analysis and
Geometric Measure Theory Our only generic tool is Stokes' Theorem

1 Statements of the main results

Most of our results are organized in eight big blocks: Theorems A B A B
from Section 1 and Theorems C D C D from Section 3 Theorems A B
A B deal with more restrictive boundary conditions imposed on the 1-form

cf De¯nition 0 2 while Theorems C D C D { with more relaxed ones

cf De¯nition 3 1 Theorems A B C D are concerned mostly with the n¡ 1 -
dimensional foliation F while Theorems A B C D { with an auxiliary
1-dimensional foliation F­ transversal to F and generated by the gradient °ow
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of Otherwise the theorems share many similar and dual claims that we have

chosen to repeat in order to avoid confusing multiple cross-references

Prior to formulating a number of propositions we shall introduce a few nota-
tions and make a few comments

For each -singular point Aj 2 S there exists a system of Morse coordinates

fxi xi j g1·i·n centered on Aj so that locally

n

Xi 1

aixi dxi ai 2 R: 1:1

Since Calabi's property prevents the ai's from all being of the same sign it is
possible to stretch the coordinates fxig in such a way that

n

Xi 1

ai 0: 1:2

This calibration of fxig insures that is harmonic with respect to the euclidean
metric dgE

2

P
n
i 1 dx2

iA similar choice of Morse coordinates is available at the singularities of j@M
In a neighborhood of a singularity A@

k 2 S@

a1 dx1 +
n

Xi 2

aixi dxi ; 1:3

where x1 is a coordinate in a transversal to the boundary direction so that x1 is
positive in M and j@M P

n
i 2 aixi dxi Due to property ii in De¯nition 0 2

we may assume that P
n
i 2 ai 0 to insure the harmonicity of j@M in the

euclidean metric dgE j@M
2

P
n
i 2 dx2

iIn fact the singularities of j@M come in two °avors: positive with a positive

a1's and negative with a negative a1's Thus S@ S@

;+tS@

;¡ where S@

;+ stands

for the set of the positive singularities

Notice that for odd n's the condition
P

n
i 1 ai 0 prevents us from calibrat-

ing Morse coordinates so that jaij 1 for all i's Nevertheless without loss of
generality one can assume that the modules of all ai's are equal 1 or 2 The same

applies to the singularities from S@ For those we can assume that ja1j 1 and
the rest of the jaij's are equal 1 or 2 Unless stated di®erently these assumptions

will hold in what follows

Of course the topology of M imposes restrictions on the list of singularities

from S and S@ for example see [N] [N1] On the other hand the Calabi
property itself does not restrict the types of -singularities in M besides the

obvious exclusion of the singular points of indices 0 and n In fact given a closed
1-form on a closed manifold with no singularities of indices 0 and n it is possible
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to deform it to a new closed form 0 with the same list of singular points and
satisfying Calabi's condition [FKL] [Ho]

For any ² > 0 consider the ²-ellipsoids

B²;j nfxig :
n

Xi 1

a2
i x

2
i < ²2

o

in the calibrated Morse coordinates fxig around each of the singularities Aj 2 S
Similarly for any ² > 0 and each singularity A@

k 2 S@ consider the half-ellipsoid

B+
²;k nfxig : a2

1
x2

1
+

n

Xi 2

a2
i x

2
i < ²2; x1 ¸ 0o

The ellipsoids fB²;jgj and fB+
²;kgk will serve as elements of a special -subordinate

cover of M
In what follows we always assume that ² is su±ciently small so that all the

2²-ellipsoids fB2²;jgj and fB+
2²;kgk are disjoint

We denote by M±;² the complement in M to the ²-ellipsoids centered on the

points from S Similarly let M ;² denote the complement to the ²-ellipsoids

centered on the points from S

We say that a di®erential i-form ­ vanishes on the boundary @M if it gets

zero values on any i-tuple of vectors tangent to @M
Consider the natural pairing

: H i M; @M ; R ­Hi M; @M ; R ¡ R:

For a closed i-form ­ which vanishes on @M and a relative i-cycle § realized by
an embedding §; @§ M; @M of a pseudo-manifold1 § the pairing is given
by integration:

[­] [§] Z
§
­:

Furthermore if the restriction of ­ on @M is exact i e if ­j@M dª for an

i ¡ 1 -form ª and ª is supported on a set A ½ @M which retracts on a

n¡ i ¡ 1 -dimensional CW-complex then the integration of ­ produces a well-
de¯ned functional on Hi M; @M ; Z and thus on Hi M; @M ; R

Let ¤g denote the Hodge star-operator in a Riemannian metric g

1 a CW-complex with a singular set of codimension 2
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Finally we are in position to formulate

Theorem A Let M be an oriented smooth and compact n-manifold equipped with
a Calabi 1-form [cf Def 0 2 or 0 2 ] Given positive numbers ¸;¹ ¸ ¸ 1 2 there
exists a smooth ¸¹-family of Riemannian metrics g¸;¹ on M so that the following

holds:
1 All the metrics g¸;¹ are conformally equivalent For any ¹0 · ¹ the met-

rics g¸;¹ and g¸;¹0 coincide on the complement to the ¹-ellipsoids centered on the

singularities of
2 The form is harmonic with respect to g¸;¹
3 The closed n¡ 1 -form ­ ¤g¸;¹ is ¸;¹-independent It gives rise to

a non-trivial class [­] 2 Hn¡1 M; @M ; R
4 All the leaves of the foliation F outside of the ¹-ellipsoids are minimal

hypersurfaces3 in the metric g¸;¹
5 If the restriction j@M has no singularities in @M then j@M has analogous

properties 1 { 4 with respect to the g¸;¹-induced metric on the boundary

Statement 2 above is a slight reenforcement of the main result in [Ca]; 4
should be compared with [S2] Corollary 3 which deals with non-singular folia-
tions The fact that there exists a metric for which both statements 2 and 4
are valid is a new observation even for a non-singular

Theorem B Let M; ;­ and g¸;¹ be as in Theorem A
1 Let F be any ¯nite union of compact leaves of the foliation F which does

not intersect the ¹-ellipsoids around the singularities of Then F minimizes the

g¸;¹-induced n ¡ 1 -volume V F among all relative cycles pseudo-manifolds

§; @§ M; @M subject to the homological constraint [­] [§] [­] [F ] In
particular F minimizes the volume in its relative homology class This minimal
volume V F ¸¡1[­] [F ]

2 Any relative cycle §; @§ M; @M of the volume V F and such that
[­] [§] [­] [F ] outside of the ¹-ellipsoids is comprised of compact leaves of
the foliation F being restricted to the exterior of the ellipsoids

The volume of the portion §S¹
of § lying inside of the ¹-ellipsoids is given by

the integral ¸¡1
R§S¹

­ When ¸ +1 it declines as » ¸¡1; when ¹ 0 it
declines as » ¹n¡1

3 For any union ~F of compact leaf components homologous to F the vol-
ume variation jV

~F ¡ V F j · K ¢ ¹n¡1 where K is a positive ¸¹-independent
2 The role of parameter ¸ will be reveled in Theorem B In fact all the claims are valid for

any ¸ > maxk ja1 k j:

3 i e any compactly supported leaf perturbation in M ;¹ ¯xed on the boundary of the
ellipsoids increases the volume of the leaf
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constant and ¸ ¸ 2¹
4 If the restriction j@M has no singularities in @M then j@M has analogous

properties 1 { 3 with respect to the g¸;¹-induced metric on the boundary

These claims should be compared with [HL] Theorem 2 3 Theorem 3 3 and
Theorem 7 7 where geometric and homological tautness are shown to be equiva-
lent

It is interesting to observe that the cycle F not only realizes the minimal
volume in its relative homology class but does it for the whole a±ne hyperplane

[­] [§] [­] [F ] of relative cycles in Hn¡1 M; @M ; R

Example Figure 1a below shows a map f from a surface M with boundary
onto an oriented circle S1 The map has two Morse-type hyperbolic singularities

located on the handle that joins the upper torus with the circular cut with the

lower torus The ¯bers of f form a 1-foliation with two singularities in the interior
of M The closed 1-form is de¯ned to be the pull-back f¤ dµ of the standard 1-
form dµ on the circle It satis¯es properties i and ii from De¯nition 0 2 Claims

2 and 5 from Theorem A imply that and its restriction to the boundary @M
are intrinsically harmonic equivalently the map f is intrinsically harmonic

In contrast the map f and the form f¤ dµ in Figure 1c are not intrinsically
harmonic Note that any -positive path through any point on the gorge of the

slanted handle will be trapped in the upper torus Thus i from De¯nition 0 2
does not hold although ii is valid As in [Ca] one can show that this failure

prevents from being harmonic
Figure 1b depicts the case when De¯nition 0 2 is also violated but a weaker

De¯nition 3 1 is satis¯ed It follows from Theorem C Section 3 that the appro-
priate form is intrinsically harmonic although its restriction on the boundary
@M is not

As shown in [FKL] and [Ho] property i from De¯nition 0 2 can be reformu-
lated in terms of an oriented ¯nite graph ¡ M de¯ned in terms of M; We

call it the Calabi graph of When all the leaves of F are compact the points of
¡ M are just the connected components of the leaves It turns out that prop-
erty i from De¯nition 0 2 holds if and only if a similar property is valid for the

oriented graph ¡ M : in other words through any point of the graph there exists

an -positive loop Figure 2 below shows the Calabi graphs ¡ M ¡ @M of
the 's produced with the help of Figures 1a 1b and 1c ¤

Note that claims 1 { 5 from Theorem A are valid regardless of the existence

in F of a non-singular compact leaf F while claims 1 { 4 from Theorem B
depend on its existence We do not know under what most general conditions

on the foliation F has a compact leaf and when such a leaf is non-singular
However in a few special cases its existence can be guaranteed For example if the

rank of is one i e the form has all its periods R-proportional to some rational
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fw
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˜

M

S1
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F F̃M

S1

w

M M

a b

c fwFF
˜

M

S1w
M

Figure 1

numbers then all the F -leaves are compact This case is depicted in Figure 1
On the other end of the spectrum if is completely irrational4 and Calabi

then on a closed M no leaf components are compact [FKL] In fact a generic
cf [FKL] with all non-compact leaves satis¯es the Calabi property [FKL]

Here a form is called generic if each leaf has at most one singular point
It also follows from [FKL] that with no singularities of indices 1 and n¡1

is a Calabi form Hence

Corollary 1 1 Statements 1 { 5 of Theorem A are valid for any generic closed
1-form provided that all the leaves of the foliation F on M and the ones of

F j@M on @M are non-compact Also these statements hold if a closed Morse-type

form on an n-manifold M has no singularities of indices 0; 1;n ¡ 1; n and its

4 i e the ¯rst Betti number equals to the rank of the subgroup in R generated over Q by
the -periods
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G M)w

GM)w

S1

G M)w
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a b

c

Figure 2

restriction @M { no singularities of indices 0; 1; n¡ 2; n¡ 1 ¤

For a Calabi form there are pure homological obstructions to the existence of
a compact leaf of F For instance if such a leaf exists there is a non-zero integral
element µ 2 H1 M ;Z such that µ[ [ ] 0 in H2 M ; R [FKL] Prop 3 Here

M is assumed to be closed
Therefore statements 1 { 4 of Theorem B rely on a quite delicate non-

generic phenomenon

We say that is homologically S-generic if there is a neighborhood U of the

singular set S such that for any compact leaf component of F which intersects

with U there exists a homologous compact leaf which misses U For example all
forms in Figure 1 are S-generic Of course if all the leaves of F are compact
is homologically S-generic

Corollary 1 2 Under the hypothesis of Theorem A for any homologically S-
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generic there exists a metric g on M with the following property:
Any union F of compact F -leaves which minimizes the n¡1 -volume among

all the unions ~F of compact leaf components homologous to F relative @M is the

volume-minimizing cycle in its relative homology class [F ] Moreover for a given
F by a choice of g the volume variation among such ~F 's can be made arbitrary
small

Proof Consider one of the metrics g¸;¹ whose existence is claimed in Theorem A
Let F be a union of compact leaves minimizing the g¸;¹-induced n¡ 1 -volume

among all such unions homologous to F If F misses the ¹-ellipsoids by 1 and
3 from Theorem B we are done

Since is homologically S-generic there exists ¹ so that any ¯nite collection
of compact leaf components is homologous to a collection of compact leaves which
miss the ¹-ellipsoids Pick this particular ¹ to complete the argument ¤

Remark Figure 1 does not suggest that the length variation of all leaves f¡1 µ

in a given relative homology class is very small By picking the two tori symmetric
with respect to rotations around a vertical axis and the tube that joins them {
tiny one can get a more accurate illustration of Corollary 1 2

Corollary 1 3 Let M; be as in Theorem A Given any ¯nite union F of com-
pact non-singular leaves of F there exists a metric g so that is harmonic and

F is the volume-minimizing cycle in its rel ¡ @M-homology class

Proof Choose ¹ so that F ½ M ;¹ and apply statements 2 from Theorem A and
1 { 3 from Theorem B ¤

Remark In the case depicted in Figure 1a Corollary 1 3 says that one can

\shrink" to the minimum the volume of any preferred non-singular ¯ber F and
still keep the harmonicity of the map f
Corollary 1 4 In the appropriate metric g on M any non-trivial element
[F ] 2 Hn¡1 M; @M ;Z can be realized as the volume-minimizing ¯ber of a har-
monic Morse-type map f : M S1 into the circle By choice of g the volume

variation among the f -¯bers can be made arbitrary small Moreover if n ¸ 6
and ¼1 M Z one can pick the map f with the minimal in its homotopy class

equivalently minimal in the homology class [F ] numbers of singularities of each

index

Proof Remind that there is a nice correspondence between closed 1-forms with
rational periods and smooth maps f into the circle [Ti] The correspondence

is produced via integration: f x
R°x

mod ¿ ¢ R where ¿ is the least com-
mon denominator of the -periods and °x denotes a path in M connecting the
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base point with a generic point x Furthermore cohomologous forms give rise to
homotopic maps; harmonic forms produce harmonic maps for a comprehensive

discussion of harmonic maps see [EL]
First it is possible to realize the Poincar¶e-dual of [F ] by a closed rational 1-

form with no singularities of indices 0 and n Then if n ¸ 6 by [F] one can ¯nd
a cohomologous form 0 with the minimal number of singular points of each of
the indices 1 · i · n¡ 1 In any case by [FKL] and [Ho] one can deform 0 to a
Calabi form 00 with the same distribution of singularities as 0 has Now apply
Theorems A and B to the Calabi form 00 ¤

Remark Intrinsically harmonic map in Figure 1a has the minimal number of
singularities in its homotopy class

Any closed n¡ 1 -form ­ on the complement to its singular set gives rise to a
1-dimensional foliation F­ The foliation is tangent to the 1-dimensional kernels
of the form ­ see 2 6 In many cases it is possible to extend F­ across the ­-
singular set The extension also denoted by F­ is a 1-foliation with singularities

In this paper the singularities of F­ will be modeled after the singularities of the

gradient °ows of Morse functions

Let V Vg denote the g-induced volume form on M For a 1-form its

gradient vector ¯eld X is de¯ned by the formula: X c V ¤g Here \c"
denotes the contraction of a di®erential form by a vector ¯eld

The following proposition is very similar to Theorem A Although most of
the statements of Theorem A below are so to speak the Poincar¶e-duals of the

corresponding statements in Theorem A due to initial setting cf De¯nition 0 2

there is a subtle break in the duality: the roles of and ­ are not quite equivalent
{ is given while ­ is produced in a way that is far from being canonic For
example in Theorem A is not X -invariant

Theorem A Let the manifold M the 1-form the 2-parametric family of
Riemannian metrics g¸;¹ and the n¡ 1 -form ­ ¤g¸;¹ be as in Theorem A
Then the following is valid:

1 The integral curves of the gradient vector ¯eld X X ¸;¹ give rise

to a singular ¸¹-independent 1-foliation F­ Foliations F­ and F are g¸;¹-
orthogonal

2 The X -generated °ow is the g¸;¹¡ volume-preserving The form ­ is
invariant under the °ow Hence ­ de¯nes an n¡1 -dimensional smooth invariant
measure transversal to the foliation F­ { in terms of [S] a foliation 1-cycle
which is not homologous to zero

3 The leaves of F­ outside of the ¹-ellipsoids are geodesics in the metric
g¸;¹
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4 If j@M is non-singular then with respect to the g¸;¹-induced metric the

analogous statements hold the pair @M; j@M

Theorem B Under the assumptions and notations of Theorem A the following

statements are valid:
1 Let L be any ¯nite collection of compact and closed F­-leaves equivalently

of closed trajectories of X that does not intersect the ¹-ellipsoids around the

-singularities Then L minimizes the g¸;¹-induced length l L among all the 1-
cycles ¡ in M subject to the homological condition

R¡ RL In particular the

closed geodesic L is of minimal length in its homology class This minimal length
l L ¸¡1

RL
2 Any 1-cycle ¡ of the length l L and such that

R¡ RL outside of
the ¹-ellipsoids is comprised of a number of compact leaves of F­ restricted to
the exterior of the ellipsoids i e ¡ is comprised of geodesic loops and arcs The

length of the portion ¡S¹
of ¡ lying inside of the ¹-ellipsoids is given by the

integral ¸¡1
R¡S¹

When ¸ +1 it declines as » ¸¡1; when ¹ 0 it declines

as » ¹
3 For any ¯nite union ~L

of F­-leaves comprised of closed loops and homol-
ogous to L the length variation jl ~L ¡ l L j · K ¢ ¹ where K is a positive

¸¹-independent constant and ¸ ¸ 2¹
4 If j@M is non-singular then with respect to the g¸;¹-induced metric the

analogous statements hold for the pair @M; j@M

Statement 2 above should be compared with [S] Th II 20 Th I 13 and with
Th from [S1]

Corollary 1 5 Let M; ; be as in Theorem A and let n > 2 Given any ¯nite col-
lection of -positive loops f°rg there exists a metric g so that is harmonic and
the °r's are closed length-minimizing geodesics in their homology classes Further-
more their lengths l °r are given by

R°r
and thus are integral combinations

of the -periods

Proof The proof of this corollary will be embedded in the proofs of Theorems A
B and A B presented in Section 2 ¤

The proposition below describes some of the asymptotic behavior of the metric
spaces M; g¸;¹ as ¸ +1 or as ¹ 0 or in general as ¸;¹ approach the

virtual boundary of the domain f¸ > maxk ja1 k j > 0; ¸ ¸ ¹ > 0g Notice

that for a given ¸ when ¹ 0 the metric g¸;¹ develops in¯nite singularities

around the points of S More speci¯cally in narrow 2¹-shells surrounding the

singularities an accumulation of curvature takes place; as ¹ 0 the curvature in
the shells tends to in¯nity
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Proposition 1 6 Under assumptions and notations of Theorem A the following

statements are valid:
1 The n-volume of M ;¹ { the complement to the ¹-ellipsoids around S { is

given by the formula ¸¡2
RM ;¹ ^ ­ and declines as » ¸¡2 when ¸ +1 At

the same time the combined volume V¹ of the ¹-ellipsoids exceeds c ¢ ¹n c being

a positive ¸¹-independent constant As a result for a ¯xed ¹ as ¸ +1 the

volume of the ¹-ellipsoids approaches the volume of M at the rate » ¸¡2

2 The n¡ 1 -volume V F of any F as in 1 Theorem B is given by the

formula ¸¡1
RF ­ and tends to zero as » ¸¡1 when ¸ +1 Thus the ratio

V M V F declines as » ¸¡1 when ¸ +13 As ¹ 0 at the complement to the -singular set the point-wise g¸;¹-
norms of and ­ both converge to the constant function ¸ Alternatively one can
interpret ¸ as lim¹ 0fk k V M g where k k denotes the integral norm

Also for any ¯nite union of leaf components ~F as in 3 Theorem B

lim
¹ 0

V M ¸¡2 Z
M ^ ­

and

lim
¹ 0

V ~F ¸¡1 Z
F
­:

It seems likely that for a ¯xed ¹ as ¸ +1 the spaces M; g¸;¹ converge

in the Gromov's sense to a bouquet of a few n-spheres and hemispheres equipped
with a non-standard metric The spheres are indexed by the -singular points

and the hemispheres { by the j@M -singular points

2 Proofs of the main results

We start proving Theorems A B A B as well as Corollary 1 5 and Proposi-
tion 1 6

Constructing a candidate for ¤g

Our immediate goal is to construct a closed n ¡ 1 -form ­ on M serving as a
candidate for the form ¤g where g is the Riemannian metric to be de¯ned In
building ­ we follow closely Calabi's approach [Ca] modi¯ed for the manifolds

with boundary and re¯ned for the purposes of this proof

We say that an n-dimensional di®erential form £ on an oriented n-manifold N
is positive and write \£ > 0" if it de¯nes a non-vanishing section of the canonical
bundle ^n T ¤N and induces the preferred orientation of the tangent bundle T N
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We seek to insure the positivity condition ^ ­ > 0 everywhere in M±

Let Di denote the open i-dimensional unit disk and Di+ { its half Let S1 be

the unit circle
According to the relative Calabi property of for each x 2 M M nS there

exists an -positive loop ° moreover when x 2 @M± ° lies in @M If x is not on
the boundary such a ° has an open tubular neighborhood U° parameterized by
a di®eomorphism

h° : S1
£ Dn¡1 ¡ U° ½ M ; 2:1

so that each t-path °a t h° t; a with a 2 Dn¡1 and t 2 S1 is -positive

For this we need M to be orientable The non-orientable M 's can be treated
in a similar way for the appropriate modi¯cations see [Ca] Similarly any -
positive path ° in @M has an open tubular neighborhood in M parameterized
by a di®eomorphism

h° : S1
£ Dn¡1

+ ; S1
£ Dn¡2 ¡ U° ; U @

° ½ M; @M ; 2:2

so that for each a 2 Dn¡1
+ °a t h° t; a is an -positive path

We call such parameterized neighborhoods U° of ° \ -positive tubes"

Lemma 2 1 Let N be a compact n-manifold and { a 1-form satisfying the

relative Calabi condition cf Def 0 2 Let ° be an -positive loop in the interior
of N Then for n > 2 there exists an open regular neighborhood V of ° such
that jNnV also possess the relative Calabi property

Proof By de¯nition through each x 2 N there exists an -positive loop °x For
n > 2 and any point x 2 N n ° the loop °x can be perturbed so that it misses

the loop ° and and still is -positive Moreover one can ¯nd an open -positive

tube U °x around °x which does not intersect ° Take U to be an -positive tube

around ° Then U together with the tubes fU °x gx2N n ° form an open cover
U

0 of N Let U be the union of elements from U
0 and the open ellipsoids that are

centered on the -singular points and do not intersect with U Since N is compact
one can ¯nd a ¯nite subcover of U consisting of U the ellipsoids and ¯nitely many
U °x 's Denote them by U °j Pick an -positive tube V around ° compactly
contained in U which does non intersect the tubes fU °j gj Clearly on N n V

enjoys the relative Calabi property ¤

Let us ¯x ² > 0 such that all the 2²-ellipsoids fB2²;jgj fB+
2²;kgk are disjoint

Consider the compliment M ;² to the open ²-ellipsoids For each point x 2 M ;²
pick an -positive loop °x surrounded by an -positive tube U°x Clearly as x
ranges in M ;² fU°xgx form an open cover of M ;² Since M is compact this cover
has a ¯nite subcover fUlgl In fact fUlgl together with fB2²;jgj and fB+

2²;kgk form
a ¯nite cover of M This -subordinate cover U U ² comprised of -positive
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tubes the 2²-ellipsoids and the half-ellipsoids centered on the singularities will be

¯xed in the considerations to follow

We start assembling a closed n ¡ 1 -form ­ from special closed forms with
supports in the elements of U

Since there are only ¯nitely many open sets Ul with their compact closures

being contained in M there exists a positive ± ± ² such that each -positive

tube Ul from U has an empty intersection with the ±-ellipsoids surrounding S
Figure 3 illustrates a choice of ± at a typical singularity; the -positive tubes

surrounding the singularity are shaded

Bde
eB

w

Figure 3

Let 'j : M [0; 1] be a smooth bell-shaped function with the support in B2²;j
which is identically 1 in B²;j ¾ B±;j We may assume that in the calibrated Morse

coordinates 'j ' P
n
i 1 a2

ix
2
i

where ' is a smooth bell-shaped function in one

variable with the derivative '0 < 2 ² see Figure 4

1

d e 2e

f

Figure 4

Functions '+
k : M [0; 1] with support in B+

2²;k and of the form ' P
n
i 1 a2

i x2
ican be de¯ned in a similar way
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Let gE;j and gE;k respectively denote the Euclidean metric in the Morse co-
ordinates around the singularities Aj and A@

kIn the ellipsoid B2²;j put ­0j ¤gE;j and in B+
2²;k put ­0

k ¤gE;k
Since due to the calibration of the coordinates is harmonic with respect to gE;j
and gE;k the forms ­0j and ­0

k are closed By the Poincar¶e Lemma ­0j dªj for
a n ¡ 2 -form ªj in B2²;j In fact in the Morse coordinates fxig the form ªj
has coe±cients that are quadratic monomials in the xi's Analogously in B+

2²;k­0
k dªk The coe±cients of ªk are linear in the x1 and quadratic in the rest of

the coordinates

Now let ­j d 'j ¢ ªj and ­+
k d '+

k ¢ ªk Notice that in B±;j ­j ­0j
and in B+

±;k ­+
k ­0

k Evidently ­j and ­+
k are well-de¯ned globally and are

closed

We proceed to construct a closed n ¡ 1 -form ­l supported in the -positive

tube Ul 2 U Its construction employs the Dn¡1- or Dn¡1
+ -bundle structure of the

tube Ul over the loop °l induced by the di®eomorphism hl in 2 1 or 2 2
Let t denote the S1-coordinate in S1

£ Dn¡1 and in S1
£ Dn¡1

+ Let u1; u2

: : : un¡1 stand for the disk-directed coordinates In the case of Dn¡1
+ let u2 : : :

un¡1 be the coordinates along the equator Dn¡2
½ Dn¡1

+ see Figure 5

g

l

u2

u1

t

M

M

Ul

Figure 5

Put £ du1 ^ du2 ^ ¢ ¢ ¢ ^ dun¡1 and use the di®eomorphism h¡1
l to pull-back

the form £ to a form ­0

l in the Ul This form has the following properties:

1 d­0

l 0

2 ^ ­0

l > 0
3 If the core °l of Ul lies in @M then ­0

l being restricted to @M vanishes

1 is valid because d£ 0; 2 follows from the fundamental positivity prop-
erty hl¤ @t > 0 of the di®eomorphism hl; and 3 { from the observation that
£ evaluated at the poly-vector @t ^ @2 ^ ¢ ¢ ¢ ^ @n¡1 vanishes
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Note that we do not insist that either dt h
¤l

or that the hl-images of
the n ¡ 1 -disks would lie in the leaves of the foliation F Actually the latter
property is achievable and useful

Let ~D
n¡1

½ Dn¡1
~D

n¡1
+ ½ Dn¡1

+ be the concentric subdisks of say radius

1/2 Denote by ~'l a smooth function on Rn¡1 supported in Dn¡1 and being

identically 1 in ~D
n¡1 Let 'l : M [0; 1] be a smooth function with the support

in the tube Ul and such that its pull-back h
¤l 'l is t-independent Being restricted

at each of the disk ¯bers in S1
£ Dn¡1 or in S1

£ Dn¡1
+ it coincides with the

function ~'l
Now consider the globally-de¯ned form ­l ~'l ¢ ­0

l supported in Ul Because

h
¤l 'l is t-independent ­l is a closed form on M By property 2 above and

the choice of 'l ^ ­l > 0 in Ul By property 3 ­lj@M 0 Hence the sum

­y
Pl ­l satis¯es the following list of properties:

i Support of ­y is contained in the interior of M ;±
ii ^ ­y > 0 in M ;²
iii d­y 0
iv ­yj@M 0 2 3

For some of the applications cf Corollary 1 5 it will be useful to choose some

of the -positive tubes Ul with extra-care In fact given any ¯nite number of -
positive loops f°lg by Lemma 2 1 it is possible to surround them with -positive

tubes Vl so that each Vl is compactly contained in the appropriate Ul from the

¯nite cover U and Vl \ Ul0 Á for any l0 distinct from l Moreover for a given
collection f°lg one can pick ² > 0 and the Vl's in such a way that they have empty
intersections with all the 2²-ellipsoids As a result the Vl's do not interact with
the rest of elements of the cover U

Let us form a linear combination of closed n¡ 1 -forms

­ Xj ­j + Xk
­+

k + q ¢ ­y; 2:4

where the value of positive constant q will be chosen later The ¯rst two sums are

comprised of exact n¡1 -forms supported in the 2²-ellipsoids around the singular
set S

Although for each singularity Aj ^ ¤gE;j > 0 everywhere except at the

origin Aj a modi¯cation of ¤gE;j { the form ­j d 'j ¢ ªj { retains this
property inside of the ellipsoid B²;j 'j is constant there and ^ d 'j ¢ªj fails
to be positive somewhere in the shell B2²;j n B²;j In a similar way ^ d '+

k ¢ªk
fails to be positive in the the shell B+

2²;k n B+
²;k By choosing the constant q in 2 4

large enough one can compensate for these failures of positivity and ensure that
^ ­ > 0 everywhere in M The choice of q in each of the shells is prescribed

by the requirements

^ [d 'j ¢ ªj + q ¢ ­y] > 0;
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^ [d '+
k ¢ ªk + q ¢ ­y] > 0: 2:5

Due to the choice of -positive tubes fUlg which cover the shells the existence of
an appropriate q is clear With this choice of q the construction of the form ­ is
complete

Let B@

²;k B+
²;k \ @M: In the following lemma we list a few properties of ­

Lemma 2 2 Given a Calabi form and ² > 0 there exists an n¡ 1 -form ­
and a positive ± ± ² so that:

1 d­ 0
2 ^­ > 0 in M±

3 For each -singularity Aj there exists an euclidean metric gE;j such that
in the ±-ellipsoid B±;j ­ ¤gE;j

4 For each j@M -singularity A+
k there exists an euclidean metric gE;k such

that in the ±-half-ellipsoid B+
±;k ­ ¤gE;k

5 ­j@M±;2²
0 In the Morse coordinates where a1dx1 +P

n
i 2 aixi dxi

and '+
k '+

k 0; x2; : : : ; xn one has: ­jB@

2²;k
a1 ¢

d '+k ¢ x2 dx3 ^ ¢ ¢ ¢ ^dxn and

­jB@

±;k
a1 ¢ dx2 ^ ¢ ¢ ¢ ^ dxn

6 For any given ¯nite set of -positive loops f°lg one can ¯nd -positive

tubes Vl ¾ °l in which ­ h¡1
l ¤ du1 ^ ¢ ¢ ¢^dun¡1 the di®eomorphism hl being

de¯ned as in 2 1

Proof All the statements of the lemma except 5 have been established in the

preceding arguments Property 5 is a direct implication of property 4 ¤

Proposition 2 3 For a form which satis¯es the relative Calabi property any
compact leaf component F of the foliation F de¯nes a non-trivial element in the

homology Hn¡1 M; @M ; R

Proof Suppose that the cycle F; @F actually is homologous cobordant to zero

in M; @M Let W; @W be the appropriate null-cobordism with @W F [@F G
Here G ½ @W is the portion of the boundary contained in @M and @F @G

Without loss of generality we may assume that @F ½ @M±
;2²: indeed if

@F ½ @M± then one can ¯nd ² small enough so that @F does not intersect the

2²-ellipsoids centered at points of S@ For this choice of ² construct ­ as in Lemma
2 2

If a non-singular F is such that @F \ S@
6

Á then there exists a near-by
homologous leaf F 0 which does not intersect S@ and the following argument applies

to F F 0

Since d­ 0 by the Stokes' Theorem we get
RF ­ RG ­ Because

^ ­ > 0 in M± ­jF > 0 and the left-hand side of the previous equality is
strictly positive At the same time since ­j@M d ' ¢ ª for an n¡ 2 -form ª
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and since the function ' is supported in the 2²-ellipsoids
RG ­ R@G ' ¢ ª 0

The contradiction proves the proposition ¤

Now for a given Calabi 1-form we would like to make a few observations

concerning the freedom to choose a closed n¡ 1 -form ­ with the properties de-
scribed in Theorem A and Lemma 2 2 In particular we are concerned with the

degrees of freedom to choose the periods of ­ An interesting related question is:

\For a given form is it possible to construct ­ with rational integral periods "
We do not know how to tackle this problem in a sense a problem of \quantiza-

tion" of the appropriate ¤g-operator However once ­ has been constructed it
is possible to change its periods in a controlled and discrete way Of course it is
always possible to replace ­ with ­0 r­ where r is a positive real number

Consider the cone of cycles in H1 M ; Z represented by ¯nite unions of -
positive loops Denote this set by H+ The set H+ is closed under the Z+-
linear combinations of its elements: disjoint unions of -positive loops realize the

appropriate operations in H1 M ; Z
If has a positive period along a loop ° then there exists a function f on M

with support in a small neighborhood of ° and such that ° is + df -positive

Hence given a disjoint union of loops °r subject to the condition
R°r > 0 there

is a representative 0 in the cohomology class of so that all the °r 's become 0-
positive Consider elements [°] of H1 M ; Z which satisfy the positivity condition
[ ] [°] > 0 They form a cone a semi-group H

+
[ ]

containing H+ One can pick a

basis of H1 M ;Z lying in H
+
[ ]

and represented by a few loops °r r ranges from 1

to the ¯rst Betti number of M Using the previous remarks there exists a closed
form 0 cohomologous to for which H+

0
contains the Z+-cone spanned by the

basic elements f°rg Therefore as ranges in its cohomology class the cones H+
change and include positive cones as large as the \half-space" H

+
[ ]

spanned by a

bases of H1 M ; Z Of course for some 's H+ can be very small even empty
this can not happen for Calabi forms

The natural intersection pairing ± : H1 M ; Z ­Z Hn¡1 M; @M ; Z Z re-
stricts to the pairing

± : H+ ­Z+ Hn¡1 M; @M ; Z Z:

Let us ¯x a basis f§1; : : : ; §rg in the torsion-free group Hn¡1 M; @M ; Z One

can realize §k 's by embedded smooth hypersurfaces

Proposition 2 4 Given a positive number s and a closed n¡1 -form ­ with the

properties 1 2 and 5 of Lemma 2 2 equivalently with the properties described

in Theorem A and an element ° 2 H+ one can change ­ to a new form ­0 still
possessing the same properties and such that

Z
§k

­0 Z
§k

­ + s ° ± §k ; 1 · k · r:
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Also one can replace ­ with q ¢ ­ q > 0 while preserving its desired properties

Proof By general position argument one can assume that all the -positive loops

f°lg comprising ° are transversal to all the hypersurfaces f§kg Moreover the

°l's can be surrounded by -positive tubes hl : S1
£Dn¡1 Ul ½ M so that each

t-loop hl »; a a 2 Dn¡1; is also transversal to the §k's In fact the trivialization
h¡1
l of the tube Ul can be chosen so that Ul\§k Shl tkj £Dn¡1 for all the k's

and some tkj 2 S1 Furthermore the tubes fUlg can be constructed thin enough

in order for the disks Ul \ §k j hl tkj £ Dn¡1 to be disjoint
With this choice of the trivializations one can construct a t-independent and

thus closed n ¡ 1 -form ­l which is supported in Ul and such that for each
intersection point i e for each triple l; k; j

Z
Ul\§k j

­l Z
Dn¡1

h¤l ­l §s:

The sign here equals to the orientations-induced sign of the intersection of °l with
§k at the appropriate point Clearly replacing the original ­ with ­ + ­l only
reinforces the positivity property ^ ­ > 0 in M± Of course this modi¯cation
of ­ calls for a change of the related metrics g¸;¹ in Theorem A ¤

Example Consider the map and the form shown in Figure 1a The free abelian
group H1 M ; Z of rank 3 is generated by the meridian a and the longitude b of the

lower \torus" together with the longitude c of the upper \torus" As the picture

suggests b and c can be chosen to be -positive Moreover one can see that for
any integer n the class b + na is also realizable by an -positive loop In order
to construct such a representative one follows b in the positive direction until it
reaches the intersection point with a Just before the intersection one adds a short

-positive spiral na to b as in the Dehn's twist Thus any integral combination
pb + qc + na with p ¸ 0; q ¸ 0 and such that n 6 0 implies p > 0 belongs to the

cone H+ In fact with a bit more e®ort one can check that H+ is comprised of
such elements The set H

+
[ ] is de¯ned by the inequality fpb + qc + naj p + q > 0g

with p; q not necessarily positive and evidently contains H+
The group H1 M; @M ; Z of rank 3 is generated by the loops a; b and an arc d

Poincar¶e-dual to the loop c The intersections of these generators with a typical
-positive loop ° pb + qc + na are: ° ± a p ° ± b ¡n ° ± a q

According to Proposition 2 4 the vector of the a; b; d -periods of ­ can be

changed by adding to it any vector of the form s p;¡n; q s being a positive real
number Recall that here p 0 calls for n 0 ¤

Borrowing arguments from the proof of Proposition 2 4 one can establish the

following proposition whose proof we postpone until the end of the next subsec-
tion One can think of this proposition as a \taut" version of the rational Poincar¶e
duality in dimensions 1 and n¡ 1



60 G Katz CMH

Proposition 2 5 Let M and be as in Theorem A and f°lg { any ¯nite col-
lection of -positive loops Assume that n dimM > 2 Then there exists a
Riemannian metric on M such that:

1 is harmonic
2 f°lg are geodesics; furthermore each °l is a core of an -positive tube Ul

which itself consists of geodesic loops °0

l of a ¯xed length equal to
R°l

3 any hypersurface §; @§ ½ M:@M which minimizes the volume in its
relative integral homology class has only positive intersections with some of actu-
ally a big majority of the geodesic loops °0

l As a result the cardinality of §\ °0

l
equals j§ ± °0l j

In fact for any non-zero element [ ] 2 Hn¡1 M ; R there exists a repre-
sentative closed 1-form a set of -positive loops f°lg which form a basis in
H1 M ; Z Tor and a metric on M so that statements 1 { 3 above are valid
In particular there exists a metric in which a basis of Hn¡1 M; @M ; Z is real-
ized by volume minimizing relative cycles hypersurfaces with singularities f§kg
a basis in H1 M ; Z T or { by geodesic loops and their mutual intersections have

the minimal cardinality prescribed by the homology intersection [§k] ± [°l]

Constructing the family of metrics g¸;¹
Our next goal is to produce a Riemannian metric g on M or rather a two-
parametric family of metrics g¸;¹ see Theorem A so that ­ ¤g

An 1-form in the complement to its singular set S de¯nes an n ¡ 1 -
dimensional distribution K :

K ;x fv 2 TxM j v 0g:

If is closed K is integrable and formed by hyperplanes tangent to the foliation

F
An n ¡ 1 -form ­ in the complement to its singular set S­ de¯nes a 1-

dimensional distribution K­:

K­;x fv 2 TxM j ­ v ^ w 0 for all w 2 ^
n¡2 TxM g 2:6

Being 1-dimensional K­ is integrable as well
If at x 2 M the form ^ ­ x > 0 the subspaces K ;x and K­;x are

transversal
Let us consider the restrictions ­ ­jK and ­ jK­ If ^ ­ x > 0

then ­ ;x 6 0 and ­;x 6 0

Given a Riemannian metric g on an n-dimensional M denote by V
n

V
n g

its volume form by V
n¡1

V
n¡1 g { the g-induced n¡ 1 -volume form on the

bundle K and by V1­ V1­
g { the g-induced 1-volume form on the bundle K­

We shall compare ­ with V
n¡1 and ­ with V1­

This comparison will depend
on a function h : M R+ which will be constructed prior to the construction of
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the desired metric g In turn the choice of h will depend essentially on two real
positive parameters ¸ ¹ In what follows we assume that 2¹ < ± ² where ²; ± ²
have been chosen in the process of constructing the -subordinate cover U

Here is a list of properties that characterize h and are illustrated in Figure 6:

1 h is smooth in M± and its square h2 { in M
2 On the set M ;2¹ the function h is identically ¸
3 In each of the ellipsoids B¹;j h coincides with the norm-function

k kE;j ³
n

Xi 1

a2
ix

2
i ´

1 2

in the euclidean metric gE;j
4 In each of the half-ellipsoids B+

¹;k h coincides with the norm-function

k kE;k ³a2
1
+

n

Xi 2

a2
i x2

i ´
1 2

in the euclidean metric gE;k 2 7

ml 2mBmB

h

M
M

l

h

B
+

2
B

+
a1| |

x

1

m
m

Figure 6

Lemma 2 5 Let h : M R+ be as in 2 7 For any 1-form and an n¡ 1 -
form ­ so that
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1 ^­ > 0 in M± and
2 ­ ¤gE in the ¹-ellipsoids around S there exists a Riemannian met-

ric g on M with the following properties:
a g being restricted to the ¹-ellipsoids coincides there with the locally de-

¯ned euclidean metric gE
b everywhere in M± the distributions K and K­ are orthogonal
c ­ h ¢ V1­d ­ h ¢ V

n¡1

e if K­ is tangent to the boundary @M then K is orthogonal to @M

Proof Since ^ ­ > 0 in M± K and K­ are transversal Furthermore ­
jK­ and ­ jK­ pick up the orientations of the corresponding subbundles

The same is true for the forms V1
­

h¡1
¢ ­ and V

n¡1 h¡1
¢ ­ These

orientations taken together agree with the preferred orientation of TM
It is a crucial observation that in B¹;j the volume forms V

1 gE;j jK­ and

V
n¡1 gE;j jK ; induced by the euclidean metric coincide respectively with the

forms h¡1
¢ ­ and h¡1

¢ ­ A similar conclusion is valid for the metrics gE;k in
the half-ellipsoids B+

k;¹
In constructing an appropriate g we use the following simple extension prin-

ciple Given an oriented k-bundle E N over a manifold N with boundary @N
a k-form £ > 0 in the ¯bers of E and a Riemannian metric g@ in the bundle
Ej @N whose volume form V g@ coincides with the £ over @N there exists a
metric g in E which extends g@ and whose volume form V g £ everywhere

Indeed one can extend g@ to a metric ~g on E N The corresponding volume

form V ~g is proportional to £ with a functional coe±cient of proportionally ° :
N R+ Evidently metric g °1 k

¢
~g does the job

Hence there exists a metric g in the bundle K over M±;¹ with the volume

n¡ 1 -form V g h¡1
¢ ­ Similarly there exists a metric g­ in the bundle

K­ over M±;¹ with the volume 1-form V g­ h¡1
¢ ­ Moreover by the

extension principle one can assume that along the boundaries of the ¹-ellipsoids

V g V
n¡1 gE;j jK and V g­ V

1 gE;j jK­ A similar property holds

along the the boundaries of the half-ellipsoids

De¯ne ~g on M ;¹ to be the orthogonal sum of g and g­ Notice that K and
K­ are orthogonal in the euclidean metrics around S Since g © g­ coincides

with the euclidean metrics over the boundaries of the ¹-ellipsoids one can extend
it across the ellipsoids to a metric g well-de¯ned on M

Let n be a vector ¯eld g-orthonormal to the boundary @M The star operator
¤@

g
in @M is the contraction with n of the Star operator ¤g in M being restricted

to @M Therefore ­@

¤@

g fn c ¤g gj@M fn c­gj@M
If K­ is tangent to @M then K is g-orthogonal to the boundary @M and

n must be in K Recall that when the form j@M is non-singular then we are

able to construct ­ with its kernel tangent to the boundary In this case we have
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orthogonal decompositions: 1 K K@ © fng where K@ K \ T @M ; 2
along the boundary K­@ K­; and 3 T @M K@© K­@

By the very construction of ­ and n 2 K the form ­@

¤@

g fn c­gj@M
is closed This fact together with the orthogonal decompositions above establishes

the complete similarity between the settings in M and in its boundary Therefore

if j@M is non-singular any argument about and ­ carried before or after will
apply to j@M and ­@ in @M ¤

Now we would like to clarify the meaning of the auxiliary function h { an
important ingredient in the construction of g

Using the splitting K © K­ of the tangent bundle the n ¡ 1 -form V g
extends from the subbundle K over M± to the form ~

V g h¡1
¢­ de¯ned on

TM± Analogously the 1-form V g­ extends from the subbundle K­ over M±

to the form ~
V g­ h¡1

¢ ­ de¯ned on TM± Notice that K~V g K and

K~V g­ K­ which uniquely characterize the extensions

By the de¯nition of the Hodge star-operator ¤g and the orthogonality of K
and K­ we have ¤g [ ~

V g ] ~
V g­ Therefore in M±

¤g ¤g h ¢
~
V g­ h ¢ ¤g

~
V g­ h ¢

~
V g ­:

On the other hand ¤g ­ in the ¹-ellipsoids Consequently ¤g ­
everywhere in M

Since by Lemma 2 2 1 d­ 0 this proves the harmonicity of and ­ in
the metric g g¸¹ and hence statement 2 from Theorem A

The point-wise norm k kg : M± R+ satis¯es the identity

k k2
g ¢ V

n
^ ¤g h ¢

~
V g­ ^ h ¢

~
V g h2

¢
~
V g­ ^

~
V g h2

¢ V
n:

Hence h k kg k­kg everywhere in M This retroactively motivates properties

1 { 4 in the de¯nition 2 7 of h
Let X denote the gradient vector ¯eld on M g-dual to It is characterized

by the two properties:
1 In M±; X 2 K­
2 In M; X h2:
Note that X along @M±;2² is tangent to the boundary For a positive sin-

gularity x 2 S@

;+ i e a1 being positive along B@

2²;k the vector ¯eld is directed
inwards M and for a negative singularity { outward If j@M is non-singular then
X is tangent to the boundary everywhere

The harmonicity of implies that the divergence of X is zero:

div X dfX c V
n g g dfX c h¡2

¢ ^­ g
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and since X c­ 0

div X dfh¡2
¢ X c ¢ ­g d­ 0:

Hence the °ow generated by X is the g-volume-preserving

Let L denote the Lie derivative along the ¯eld X Then

L X c d + d X c d h2 :

Therefore outside of the 2¹-ellipsoids is invariant under the X -°ow In fact
h2 can serve as a Lyapunov function for the X -°ow Note that inside of the

ellipsoids is not X -invariant On the other hand since d­ 0 and X 2 K­
L ­ X c d­+ d X c­ 0;

which implies the X -invariance of ­ In other words ­ can serve as a smooth
invariant transversal measure for the singular 1-foliation F­ This proves claim
2 from Theorem A

Now we are going to establish the near-minimality of the singular foliations

F F­ and to derive a few implications of this fact
Let F be a ¯nite union of compact non-singular F -leaves which do not intersect

the 2¹-ellipsoids around S In general F is a compact manifold with a boundary
@F ½ @M±;2¹We shall compare its g g¸;¹-induced n ¡ 1 -volume V F with the volume

of any other n¡ 1 -dimensional pseudo-manifold §; @§ M; @M subject to
condition

Z
§
­ Z

F
­: 2:8

We are interested in situations where condition 2 8 is of a homological nature

Since d­ 0 in particular this happens when

@§ @F and § F are homologous modulo @F; or when

S@ Á which implies ­j@M 0 and §; F are homologous modulo @M: 2:9

In any case we notice that the form

~­ ­¡Xk
­+

k Xj ­j + q ¢ ­y

see 2 4 as well as the form ~­y q ¢ ­y are cohomologous to ­ thus re-
alizing the same class [­] 2 Hn¡1 M ; R recall that the forms ­j 's and ­+

k 's
are exact At the same time ~­j@M 0 Therefore ~­ gives rise to an element
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[~­] 2 Hn¡1 M ; @M ; R Note that the di®erence between ­ and ~­ diminishes as

² 0 Furthermore not only the di®erence ­¡ ~­ is exact but there exists an
n¡2 -form ª such that ­¡ ~­ dª and ª being restricted to @M is supported

in the disjoint union of the ellipsoids B@

2²;k 's Therefore for a relative cycle §

Z
§
­ Z

§
~­+ Z

@§
ª:

Hence if @§ \ tk B@

2²;k Á then
R§ ­ R§

~­ Since one can isotope § so

that @§ will miss the ellipsoids B@

2²;k 's any § can be isotoped to a §0 for which

R§0 ­ R§0

~­ Using that ~­j@M 0 the correspondence §
R§ ­ is a well-

de¯ned functional on Hn¡1 M ; @M ;Z and thus on Hn¡1 M ; @M ; R Therefore

R§ ­ RF ­ is a well-de¯ned homological condition imposed on a relative cycle
§ despite the fact that ­j@M is not identically zero

Recall that F is comprised of F -leaves; hence

V F Z
F

~
V g Z

F
h¡1

¢ ­:

Since h ¸ identically in M ;2¹ and F ½ M ;2¹ we get V F ¸¡1
RF ­ By

2 8

V F ¸¡1 Z
§
­:

We divide § into two parts: §¹ § \M ;2¹ belonging to the exterior of the 2¹-
ellipsoids and its complement §S¹ lying in their interiors In the new notations

V F ¸¡1 Z
§¹

­ + ¸¡1 Z
§S¹

­: 2:10

We shall estimate separately the two terms in the right-hand side of 2 10 First

¸¡1 Z
§¹

­ Z
§¹

h¡1­ Z
§¹

~
V g :

If the hyperplane Tx§ tangent to § at x is distinct from K ;x then the g-induced
volume of an in¯nitesimal n ¡ 1 -parallelepiped in Tx§ is strictly smaller than
the volume of its orthogonal projection on K ;x The volume of the projection

is captured by evaluating ~
V g on the parallelepiped Therefore

R§¹
~
V g ·

V §¹ implying

¸¡1 Z
§¹

­ · V §¹ : 2:11
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Now we estimate the contribution of the second term in 2 8 :

¯
¯
¯
¯

¸¡1 Z
§S¹

­
¯
¯
¯
¯

· ¸¡1 Z
§S¹

k­k§ dm§;

where dm§ denotes the g-induced measure on § and k­k§ { the point-wise norm
of ­ restricted to § in the metric gj§ Recall that k­k k k h · ¸ Since

k­k§ · k­k we get:

¯
¯
¯
¯

¸¡1 Z
§S¹

­
¯
¯
¯
¯

· Z
§S¹

dm§ V §S
¹ :

Therefore

V F · V §¹ + V §S
¹

V § :

This proves statement 1 from Theorem B

The proof of statement 4 from Theorem A consists of practically the same

argument: for a given compactly supported in M ;2¹ perturbation L0 of an F -leaf

L one compares the volumes of compact domains L0
n L and L n L0 which share

the same boundary and are cobordant modulo this boundary

In order to prove 2 and 3 from Theorem B we need to make a more careful
comparison of the volumes of the cycle F built of leaf components and a generic
cycle § subject to the homological constraint

R§ ­ RF ­ :

V F Z
§¹

¸¡1­ + Z
§S¹

¸¡1­ Z
§¹

cos µ dm§ + Z
§S¹

¸¡1­;

where µ denotes the angle in the metric g between the oriented line K­ and the

normal to § Now if V § V F from the formula above we get:

V §¹ ¡ Z
§¹

cos µ d m§ Z
§S¹

¸¡1­ ¡ V §S
¹

2:12

Since h · ¸ it follows that k¸¡1­k§ · k¸¡1­k ¸¡1h · 1 Therefore the right-
hand side of 2 12 is non-positive On the other hand the left-hand side clearly
is non-negative Furthermore if somewhere in §¹ a portion of § is transversal
to the foliation F the left-hand side of 2 12 must be positive Hence 2 12
implies that such a minimal § has to \follow" the leaves in §¹ and can diverge

from them only in the 2¹-ellipsoids In particular if a connected § as above has a

non-empty intersection with a leaf L which misses the closed 2¹-ellipsoids around
S then § L and L must be closed in M
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It also follows from the vanishing of the two sides of 2 12 that for a volume-
minimizing § we must have V §S¹ ¸¡1

R§S¹ ­
and V §¹ ¸¡1

R§¹ ­ This
proves claim 2 from Theorem B

With F as in Theorem B being ¯xed our next task is to estimate the variation
of the volume for any ¯nite union ~F of compact leaf components such that

R ~F ­
RF ­ Such an ~F can penetrate inside the 2¹-ellipsoids where it could fail to be a

volume-minimizing hypersurface Therefore we shall concentrate on the behavior
of the volume V ~F S

¹ R ~F S¹
h¡1­ as function of ¹ and ¸

Recall that among a variety of choices the construction of ­ depended on a
choice of a parameter ² > 0 For ¹ < ± ² 2 in the ellipsoid B¹;j ­ ¤gE;j
where is described by 1 1 Similarly in B+

¹;k ­ ¤gE;k where is
given by 1 3 Everywhere in fB2¹;jg and fB+

2¹;kg the metric g¸;¹ is conformly
equivalent to the euclidean metric gE In fB¹;jg and fB+

¹;kg the two metrics

coincide while in the shells fB2¹;j n B¹;jg fB+
2¹;k n B+

¹;kg the conformal factor
g¸;¹ gE h¡1

k kE · 1 provided ¸ ¸ 2¹ cf 2 7 and Figure 6

Therefore when ¸ ¸ 2¹

V ~F S
¹ Z

~F S¹
h¡1­ · VE

~FS
¹ ;

where VE » stands for the euclidean volume

For a given F there exists a universal and ¸¹-independent constant ·F such
that for any ~F homologous to F the intersection of ~F with each of the 2¹-ellipsoids

consists not more than of ·F components of the foliation To see it let us install
a measuring device at each of the singularities The device is an arc °j or two

transversal to the foliation in the ellipsoid if the Morse index of the singularity
is 1 or n ¡ 1 then one needs two arcs The arc s starts and terminates at the

boundary of the ellipsoid and pierces every leaf component lying in the ellipsoid
For example one can take an arc entering the singularity along the stable disk
and exiting it through the unstable one By the Calabi property one can complete

°j to an -positive loop °j This loop is the measuring device we need On one

hand the intersection number of ~F with °j is positive and exceeds the number
of components of the ~F in the ellipsoid On the other hand since ~F and F are

homologous ~F ± °j F ± °j Hence pick ·F maxj fF ± °jg
With this choice of ·F VE

~F S
¹ · ~K ¢ ¹n¡1 where ~K > ·F ¢ A and A denotes

the maximal euclidean volume of F -leaf components in the ¹-ellipsoid divided
by ¹n¡1

Now since

V F Z
F
¸¡1­ Z

~F
¸¡1­ Z

~F¹
¸¡1­ + Z

~F S¹
¸¡1­
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and

V ~F Z
~F

h¡1­ Z
~F¹

¸¡1­ + Z
~F S¹

h¡1­;

for a constant ~K depending on F not on ~F we get:

jV
~F ¡ V F j

¯
¯
¯
¯

Z
~F S¹

h¡1 ¡ ¸¡1 ­
¯
¯
¯
¯

· ¯
¯
¯
¯

Z
~F S¹

h¡1­
¯
¯
¯
¯

V ~F S
¹ · ~K ¢ ¹n¡1:

This proves claim 3 of Theorem B and ¯nally completes the proof of the

Theorem B as a whole ¤

At the same time these calculations and estimates imply statements 1 { 3 of
Proposition 1 6 Indeed by the very construction of the metrics g¸;¹ V M ;2¹
¸¡2

RM ;2¹ ^ ­ and since

V M n M ;2¹ ¸ VE³aj
B¹;j [ ak B+

¹;k´ c ¢ ¹n;

c being a universal constant as ¸ 1 the volume of the 2¹-ellipsoids ap-
proaches the volume V M as » ¸¡2 Moreover as ¸ grows the Riemannian
metric g¸;¹ uniformly declines in M ;2¹ and stabilizes in the ¹-ellipsoids There-
fore when ¸ 1 the spaces fM; g¸;¹g converge in the Gromov's sense to a
compact metric space which topologically is a bouquet of a few spheres and hemi-
spheres The spheres are indexed by the singularities of and the hemispheres {
by the singularities of j@M The limit metric on the spheres depends only on the

Morse types of the singularities and on the choice of the auxiliary function h

On the other hand for a ¯xed ¸ as ¹ 0 the volume of the 2¹-ellipsoids

declines at the rate » ¹n { the coe±cients of h¡2
¢ ^ ­ are bounded in the

ellipsoids At the same time V F ¸¡1
RF ­ Therefore

lim
¹ 0

V M ¸¡2 Z
M ^­

and for any ~F as above

lim
¹ 0

V ~F ¸¡1 Z
F
­:

This ends the proof of Proposition 1 6 ¤

Now we are in the position to prove Theorems A B and Corollary 1 5

The arguments are very similar to the ones used in proving Theorems A B and
Proposition 1 6 The only crucial di®erence is that prior to dealing with the 1-
foliation F­ we can be more °exible with the choice of ­ { unlike it is not a
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given but rather handmade contraption In particular if n > 2 given any ¯nite

collection of -positive loops f°rg by Lemma 2 1 it is possible to construct an
-subordinate cover U fUlg so that each loop °r is surrounded by an -positive

tube Vr ½ Ur which does not intersect the rest of the elements from U Moreover
the trivialization of Vr can be chosen to agree with the foliation F { the n¡ 1 -
disks normal to °r are contained in the leaves of F In such a trivialization of
Vr the F­-leaves are the longitudes of the solid torus hr : S1

£ Dn¡1
¼ Vr the

form h¡1
r ¤ dt and ­ h¡1

r ¤ du1 ^ ¢ ¢ ¢ ^ dun¡1 where ft; u1; : : : ; un¡1g
are the standard coordinates in S1

£ Dn¡1 With this choice of and ­ the

corresponding metric g g © g­ is the standard °at metric in the °at solid torus

S1
£ Dn¡1 and all the longitudes are geodesics

Consider a leaf L of F­ and its ¯nite arc L0 The arc length of L0 is given by
integrating h¡1 along the arc If the arc L0 is missing the 2¹-ellipsoids its length
l L0 ¸¡1

RL0
Let ° be any arc close to L0 and having the same ends Since

is closed ¸¡1
RL0 ¸¡1

R° By an argument similar to the one we have

used to prove the intrinsic minimality of the foliation F jM±;2¹ the latter integral
does not exceed the length l ° Thus L0 is a geodesic arc In a similar way one

can prove that if L is a closed leaf a loop in M±;2¹ and ° { any loop such that
R° RL then l ° ¸ l L The proof of statement 4 of Theorem A is very
similar to the one connecting formula 2 10 with the conclusion of the proof of
Theorem A

The arguments that prove 2 and 3 from Theorem B are an 1-dimensional
version of the arguments that led to formula 2 12 and its implications This
completes the proof of Theorems A B ¤

The considerations above demonstrate that given a ¯nite collection of -
positive loops f°rg there exists metric g¸;¹ with the properties described in Theo-
rems A B and such that the °r's are geodesics and closed leaves of F­ Jointly
with ¸ 1 the two arguments prove Corollary 1 5 ¤

Now we are in position to sketch the proof of Proposition 2 5 The idea is to
build large bumps of metric supported in the -positive tubes Ul surrounding the

given loops °l The bumps will be constructed along the directions transversal to
the loops to make it very costly for a minimal hypersurface to cut through the

loops This will minimize the average number of cuts among the geodesic loops

comprising Ul to the absolute homological necessity
By Corollary 1 5 we can assume the existence of a metric g0 in which is

harmonic and the non-intersecting tubes Ul being comprised of -positive geodesic
loops °0l of the ¯xed length

R°lTo simplify the notations we drop the index l enumerating the tubes and
concentrate on a particular tube U with the core °

Denote by ­U a closed n ¡ 1 -form supported in U and whose kernels are

tangent to the -positive longitudes of the tube By adding the forms q ¢ ­U to
the previously built form ­ { the central ingredient in constructing g0 { we will
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create a q-parameterized family of closed n ¡ 1 -forms ­q ­ + q­U and the

corresponding family of metrics gq For large q all the normal to ° disks D the

¯bers of the tube U over ° will be uniformly large in gq At the same time

in the metric gq the longitudes of the solid torus U ¼ D £ S1 remain to be

geodesics and their lengths do not change

Let an oriented hypersurface §q be the volume-minimizing cycle in its relative

homology class [§] By [Fe] such a cycle can be realized by a pseudo-manifold
with the singular set at least of codimension 7 Some of the components of such
minimal hypersurface §q might occur with multiplicity greater than one

Clearly each geodesic loop °0 from U which hits §q transversally must hit it at
least d [§] ± ° times however some loops might have more than jdj transversal
intersections with §q The algebraic intersection numbers can be interpreted as

local degrees of an obvious map ¼ from the portion §q \ U into the n ¡ 1 -disk
D { a typical ¯ber of U over ° Let us exclude the ¼-critical value set from D
this set of measure zero contains the ¼-image of the singular set of §q The

rest of D can be divided in two complementary sets: A formed by regular values

with exactly jdj preimages and B formed by regular values with more than jdj
preimages Proving that A is non-empty will be a signi¯cant step in the proof of
the proposition In fact using the minimality of §q we will show that as q 1the ratio of the gq-induced measure m B of B to the measure m A of A tends

to zero
Indeed since ¼ is an orthogonal projection the volume of §U

q
: §q \ U has

to exceed jdj ¢ m A + jdj + 1
¢ m B We shall compare this volume with the

volume of another cycle ¢q homologous to §q It will be assembled of three parts

the ¯rst of which is the portion §
±q

of §q outside of the tube U The second part
consists of properly oriented jdj disjoint ¯bers fDig of the disk bundle U °
The third { of the singular cobordism Wq in @U between §q \ @U and the union
of jdj spheres Si : Di \ @U

The volume of ¢q is the sum of the corresponding three volumes: V §
±q

V Wq and jdj ¢ V D Since V §q · V ¢q one must have

jdj ¢ m A + jdj + 1
¢ m B · V Wq + jdj ¢ V D :

Note that the volume V Wq is bounded from above by the jdj-multiple of the

volume of @U and therefore is q-independent Since m A +m B V D we can
rewrite the inequality above as m B · V Wq which provides a q-independent
upper bound for m B

Since limq 1 V D 1 we conclude that limq 1 m B V D must be zero

Therefore as q 1 the vast majority of the geodesic loops from U will hit A and
will have the minimal possible number of intersections with the volume minimizing
cycles in the homology class [§] The same conclusion is valid for any ¯nite set of
homology classes f[§k] 2 Hn¡1 M; @M ;Z gk

In the argument leading to Proposition 2 4 we noticed that for any non-
trivial class [ ] 2 H1 M ; R there exists a representative intrinsically harmonic
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form such that one can ¯nd a basis in H1 M ;Z T or represented by -positive

loops Applying previous arguments to such loops and a generating set of elements

[§k] 2 Hn¡1 M; @M ;Z shows the existence of a metric in which both bases are

realized by the volume-minimizing cycles of dimensions 1 and n¡ 1 and their
mutual intersections have the minimal cardinalities consistent with the homology
intersection pairings This proves the proposition ¤

3 Absolute case

De¯nition 3 1 We say that a 1-form on M satis¯es the absolute Calabi con-
dition if through each point x 2 M± there exists an -positive path which is
closed or alternatively which starts and terminates at points of the boundary
@M Moreover at the start and the end points the path is transversal to the

boundary

For example the form created with the help of Figure 1b satis¯es this def-
inition: just take a look at the Calabi graph ¡ M in Figure 2b For closed
manifolds the relative and absolute Calabi properties coincide; however in gen-
eral the relative condition implies the absolute one

The natural pairing : Hn¡1 M ; Z ­ Hn¡1 M ; R R can be induced by
integrating a closed n¡ 1 -form ­ over a closed pseudo-manifold § M

Here are the absolute versions of Theorems A and B

Theorem C Let M; ¸;¹ be as in Theorem A and let be a closed Morse-type

1-form satisfying the absolute Calabi condition Then there exists a ¸¹-family of
Riemannian metrics g¸;¹ so that the following claims hold:

1 All the metrics g¸;¹ are conformally equivalent For any ¹0 · ¹ the metrics

g¸;¹ and g¸;¹0 coincide on the complement to the ¹-ellipsoids centered on the

singularities of
2 The form is harmonic with respect to g¸;¹:
3 The closed n¡1 -form ­ ¤g¸;¹ is ¸;¹-independent The form ­ gives

rise to a non-trivial class [­] 2 Hn¡1 M ; R
4 All the leaves of the foliation F outside of the ¹-ellipsoids are minimal

hypersurfaces in the metric g¸;¹
Theorem D Under assumptions and notations of Theorem C the following

claims are valid:
1 Let F be any ¯nite union of compact leaf components of the foliation F

represented by closed manifolds not intersecting the ¹-ellipsoids around the singu-
larities Then F minimizes the g¸;¹-induced n¡1 -volume V F among all closed
pseudo-manifolds § M subject to the homological constraint [­] [§] [­] [F ]
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In particular F minimizes the volume in its homology class This minimal volume

V F ¸¡1[­] [F ]
2 Any closed pseudo-manifold § M; of the volume V F and such that

[­] [§] [­] [F ] outside of the ¹-ellipsoids is comprised of compact leaves

of the foliation F being restricted to the exterior of the ellipsoids The volume

of the portion §S
¹

of § lying inside of the ¹-ellipsoids is given by the integral
¸¡1

R§S¹ ­ When ¸ +1 it declines as » ¸¡1; when ¹ 0 it declines as

» ¹n¡1

3 For any union ~F of compact leaf components represented by closed mani-
folds possibly with the Morse-type singularities and homologous to F the volume

variation jV
~F ¡ V F j · K ¢ ¹n¡1 where K is a positive ¸¹-independent con-

stant and ¸ ¸ ¹
Remark Here the requirement on F; ~F ;§ to be closed is essential For example
take the form created in Figure 1b Consider the leaf component of F repre-
sented by a short chord F of the boundary curve where @M is shaped as letter
Z Clearly it de¯nes a trivial relative cycle and is not a length-minimizing arc

Theorems C and D like Theorems A and B have their \Poincar¶e-dual" analogs:

Theorem C Under the assumptions and notations of Theorem C claims 1 {
3 of Theorem A are valid

Theorem D Under the assumptions and notations of Theorem C the following

statements hold:
1 Let L be any ¯nite collection of compact closed F­-leaves that does not

intersect the ¹-ellipsoids around the -singularities Then L minimizes the g¸;¹-
induced length l L among all the 1-cycles ¡ in M subject to the homological
condition

R¡ RL In particular L minimizes the length in its homology
class The minimal length l L ¸¡1

RL
2 Any 1-cycle ¡ of the length l L and such that

R¡ RL outside of
the ¹-ellipsoids is comprised of a number of compact leaf components of F­restricted to the exterior of the ellipsoids outside of the ellipsoids ¡ consists of
geodesic arcs

The length of the portion ¡S¹
of ¡ lying inside of the ¹-ellipsoids is given by

the integral ¸¡1
R¡S¹

When ¸ +1 it declines as » ¸¡1; when ¹ 0 it
declines as » ¹

3 For any union ~L
of compact F­-leaf components represented by closed

loops and homologous to L the length variation jl ~L ¡ l L j · K ¢ ¹ where K is
a positive ¸¹-independent constant and ¸ ¸ ¹

4 If j@M 0 then the same conclusions apply to any relative 1-cycles L;¡
subject to

R¡ RL
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Proof Proofs of Theorems C D and C D are slight modi¯cations of the argu-
ments used in proving Theorems A B and C D The only di®erence is that
instead of using toroidal and half-toroidal -positive tubes as in 2 1 and 2 2 one

uses toroidal tubes together with cylindrical -positive tubes hl : [0; 1] £ Dn¡1

Ul ½ M that start and terminate at points of @M± As a cylindrical tube transver-
sally approaches the boundary @M it is cut by @M in a \slanted" fashion with
respect to the F -leaves as shown in Figure 7

M

M

leaf

w- positive

tube

Figure 7

The singularities of j@M are treated as before: they contribute the half-
ellipsoids to the -subordinate cover U ¤

Corollary 3 1 Fix ² > 0 Let f : Mn R be a Morse function with no local
maxima and minima inside M and no critical points on the boundary @M
@M+` @M¡ Assume that f @M+ > f @M¡ Let a be any f -regular value in-
between f @M+ and f @M¡ Let F be a closed n¡ 1 -submanifold of f¡1 a

Then there exists a Riemannian metric g g² on M such that:
1 f is harmonic with respect to g
2 The n ¡ 1 -form ­ ¤g df is harmonic and represents a non-trivial

element [­] 2 Hn¡1 M ;R
3 F minimizes the g-induced volume among all absolute n¡ 1 -cycles §

M subject to the constraint [­] [§] [­] [F ] Thus F is the volume-minimizing

cycle in its homology class In particular if F f¡1 a then it realizes the

minimal volume among all constant level hypersurfaces ~F f¡1 b where b ranges

in-between f @M+ and f @M¡ The volume variation among such ~F 's is smaller
than ²

4 For any c the hypersurface f¡1 c is minimal outside of the ²-ellipsoids

centered on the critical points of f and the ²-half-ellipsoids centered on the critical
points of f : @M R

5 The f -gradient °ow preserves both the g-induced volume and the form ­
Its trajectories outside of the ellipsoids are geodesics
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Proof Condition \f @M+ > f @M¡ " coupled with the fact that f has no local
maxima and minima inside M implies the existence of an df -positive path °x
through any given point x 2 M±

df such that °x starts and terminates at a point
in @M Indeed the ban on the critical points of indices 0 and n make it possible
to redirect °x as it approaches a singularity y from the set f¡1 < f y to the

ground higher than f y
Now we can apply Theorems C D and C D to df For a given F

we choose ¹ to satisfy three conditions: 1 2¹ < ± ² < ²; 2 K ¢ ¹n¡1 < ² cf
Theorems C D ; 3 F ½ M±

;2¹ ¤

4 Generalizations questions and conjectures

Let C i;j denote the cone in the euclidean space Ri+1
£ Rj+1 given by jkxk

2

ikyk
2; where x 2 Ri+1; y 2 Rj+1 Put f x; y jkxk

2 ¡ ikyk
2 so that f is a

Morse function of index j + 1 and f¡1 0 Ci;j is a linear cone over the product
S i £ Sj of two spheres It has been shown in [Si] that this cone is a minimal
hypersurface in the euclidean metric dg2

E kxk
2 + kyk

2 provided i + j > 5 and

i ¢ j > 5 Furthermore Hardt and Simon proved [HS] that any area minimizing
hypercone in the euclidean space smooth near in¯nity gives rise to a family of
minimal hypersurfaces forming a foliation with the cone as the only singular leaf

However the Morse function f above is harmonic only when i j We do
not know whether there are other pairs i; j for which the Morse function f :
Ri+j+2 R of index j+1 at the origin is harmonic and de¯nes a minimal foliation
with respect to some Riemannian metric If such a function exists we shall call a
pair n; j + 1 i + j + 2; j + 1 harmonic For example by [Si] any pair 2k; k
is harmonic for k ¸ 4

Even when for a Calabi form all the dimension-index pairs are harmonic we

do not know how to prove the analogs of Theorems A B C D: our constructions

seem to fail the minimality of the foliation F in the 2¹-shells surrounding the

-singularities

Conjecture 4 1 If all the dimension-index pairs of -critical points are har-
monic then the results of this paper dealing with the foliation F are valid \for
¹ 0" in other words all the leaves of the foliation F in the appropriate met-
ric become \true" minimal hypersurfaces in contrast with the ¹-controlled failure
of their minimality studied in the paper In particular under these assumptions

the Calabi property insures both the harmonicity of the form and the minimality
of the F -leaves

We suspect that the pairs n; 1 and n; n¡1 can not be harmonic Recall cf
Corollary 1 1 that forms with no critical points of indices 0; 1; n¡ 1; n are auto-
matically Calabi Thus any form with harmonic indices is probably automatically
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intrinsically harmonic
The Morse-type nature of the -singularities does not seem to be important

for the validity of our arguments

Conjecture 4 2 All the results of this paper are valid for closed 1-forms of
the Bott{Morse type subject to the Calabi conditions described in De¯nition 0 2
or in 0 2 or in De¯nition 3 1

Note that the Calabi positive loop properties prevent the singular k-manifolds

of from carrying normal bundles of indices 0 or n¡ k

Another line of questions that seem to require a detailed study is related to
more general boundary conditions Recall that in the presence of the relative

Calabi property cf De¯nition 0 2 and assuming that j@M is non-singular we

were able to synchronize the harmonicity of the forms and the near-minimality of
the foliations in M and in @M cf Theorem A 5 and Theorem B 4

Question 4 3 Are the analogs of Theorems A and B valid for a generic j@M
with the Morse-type singularities In particular is the property 0 2 su±cient to
insure the harmonicity of and j@M with respect to some metric on M

The question seems to be of a delicate nature It is possible that the positive

answer will require some new geometric property imposed on @M a sort of -
convexity

It is natural to ask to what extend Calabi's characterization of intrinsically
harmonic 1-forms and the results of this paper on the -generated intrinsically
near-minimal foliations extend to closed forms of any degree k In particu-
lar one might search for appropriate k-dimensional analogs of Calabi's positive

loop condition in other words for a geometric characterization of the intrinsic
harmonicity

Recall that the rank of an exterior k-form : ¤kV R is de¯ned to be the

dimension of the space fw c ; w 2 ¤k¡1V g Denote by K ½ V the subspace

de¯ned by the equations fv c 0gv2V in ¤k¡1V ¤ It is easy to verify that
dimK + rk dim V Also if rk k then is a product of 1-forms

For a closed k-form of a constant rank by a theorem of Cartan the kernels
K form an integrable distribution As before the appropriate foliation is denoted
by F If at some point the rank drops the foliation F develops singularities

De¯nition 4 4 We say that a closed k-form of a rank · k on a compact
oriented n-manifold M has an -positive cycle property if for each leaf component
L of the n¡k -dimensional singular foliation F there exists a compact orientable
k-submanifold N such that:
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1 N intersects L transversally at a non-singular point of F
2 N is closed or along its boundary @N ½ @M N is transversal to @M
3 The restriction of on N is strictly positive equivalently N is transversal

to F

It can be shown that if such a cycle N can be conducted through one non-
singular point in L then there exists an -positive cycle with properties 1 { 3

through any other non-singular point of L
Unlike the harmonic 1-forms which do satisfy the positive 1-cycle property

we do not expect any harmonic k-form of rank k to satisfy the positive cycle
property automatically To establish such a property could be challenging The

¯rst interesting case is provided by a harmonic 2-form of rank · 2 i e locally a
product of two exact 1-forms on a 4-manifold

It is very likely that the methods of this paper can establish the validity of

Conjecture 4 5 Let a closed k-form satisfy the following list of properties:
1 has rank k on an open set M± ½ M ; the rank of drops on the singular

set S M n M±

2 is exact in a neighborhood of S
3 is intrinsically harmonic in a neighborhood of S
4 possess the -positive cycle property

Then is intrinsically harmonic everywhere and the foliation F is near-
minimal away from S
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