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c° 2002 BirkhÄauser Verlag Basel

Commentarii Mathematici Helvetici

Courbures et singularit¶es r¶eelles

Nicolas Dutertre

R¶esum¶e Soit f : Rn R un polynôme tel que f 0 0 et tel que 0 soit un point critique

isol¶e de f Etant donn¶ee ft une d¶eformation lisse µa un paramµetre de f on relie la limite :

lim" 0
limt 0

Z
C"t

kdvt;

oµu C"t f¡1
t 0 \ Bn" est la ¯bre de Milnor et k la courbure µa des degr¶es topologiques associ¶es

µa f et µa sa d¶eformation

Abstract Let f : Rn R be a polynomial such that f 0 0 and such that 0 is an isolated
critical point of f Given ft a one-parameter smooth deformation of f we relate the limit :

lim" 0
limt 0

Z
C"t

kdvt;

where C"t f¡1
t 0 \Bn" is the Milnor ¯ber and k the curvature to topological degrees associated

with f and its deformation

Mathematics Subject Classi¯cation 2000 14P05

Mots cl¶es Fibre de Milnor r¶eelle courbure degr¶e topologique

1 Introduction

Soit f : Cn C un polynôme tel que f 0 0 et tel que 0 soit une singularit¶e
isol¶ee de f¡1 0 Soit C"¸ f¡1 ¸ \ B2n

" la ¯bre de Milnor de cette singularit¶e
Langevin [La] ¶etudie le comportement asymptotique de la courbure de Lipschitz{
Killing K de C"¸

d¶e¯nie µa l'aide de la m¶etrique induite par celle de Cn ' R2n

quand " et ¸ tendent vers 0 Plus pr¶ecis¶ement il obtient la formule suivante :

lim
" 0

lim
¸ 0

Z
C"¸

¡1 n¡1Kdv
1

2
Vol S2n¡2 ¹ n + ¹ n¡1 ;

oµu ¹ n est le nombre de Milnor de f en 0 et ¹ n¡1 le nombre de Milnor de la
singularit¶e obtenue en coupant f¡1 0 par un hyperplan g¶en¶erique Il montre ainsi
que cette limite est ¯nie et qu'elle est li¶ee µa des invariants locaux de la singularit¶e

Nous nous proposons dans cet article de donner une version r¶eelle du r¶esultat
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de Langevin La situation r¶eelle pr¶esente deux di®¶erences majeures par rapport
µa la situation complexe Tout d'abord nous avons la possibilit¶e d'¶etudier deux
int¶egrales de courbure : l'int¶egrale de la courbure de Gauss et l'int¶egrale de sa

valeur absolue Cette distinction n'existe pas dans le cas complexe car la courbure

de Lipschitz{Killing est de signe constant D'autre part il est plus int¶eressant de

travailler sur des ¯bres du type C"t f¡1
t 0 \ Bn

" oµu ft est une d¶eformation µa
un paramµetre du polynôme f En e®et contrairement au cas complexe oµu toutes

les ¯bres f¡1
t 0 \ B2n

" sont hom¶eomorphes µa la ¯bre f¡1 ¸ \ B2n
" et ont l'ho-

motopie d'un bouquet de ¹ n sphµeres le type topologique de la ¯bre C"t d¶epend
de la d¶eformation Par exemple quand f x; y x2 ¡ y3 la ¯bre C"¸

a une seule
composante connexe qui est hom¶eomorphe µa une droite tandis que la ¯bre C"

t
oµu ft x; y y2 ¡ x3 ¡ tx et t < 0 a deux composantes l'une hom¶eomorphe µa
une droite et l'autre µa un cercle On voit ainsi que la ¯bre C"¸

n'est pas \maxi-
male" dans le sens oµu des topologies plus riches que la sienne peuvent apparâ³tre

parmi les ¯bres C"t et qu'elle ne donne donc que des informations partielles sur la
singularit¶e Nous sommes amen¶es µa consid¶erer les limites d'int¶egrales :

lim
" 0

lim
t 0

Z
C"t

kdvt et lim
" 0

lim
t 0

Z
C"t

jkjdvt;

oµu k d¶esigne la courbure de Gauss et dvt la forme volume de f¡1
t 0 La deuxiµeme

de ces limites a ¶et¶e ¶etudi¶ee par Risler [Ri] Il montre qu'elle est ¯nie et qu'elle peut
se majorer de la maniµere suivante :

lim
" 0

lim
t 0

Z
C"t

jkjdvt ·
Vol Sn¡1

Vol S2n¡2
lim
" 0

lim
t 0

Z
f¡1
t;C 0 \B2n"

jKjdvt;

oµu ft;C est le complexi¯¶e de ft et K la courbure de Lipschitz{Killing Ceci en-
trâ³ne bien sûr que la premiµere des limites existe et est ¯nie Une question se pose

alors : est-il possible d'avoir des informations plus pr¶ecises sur ces limites et en
particulier de les relier µa des invariants de la singularit¶e Dans cette optique la
formule de Gauss{Bonnet qui exprime la caract¶eristique d'Euler{Poincar¶e d'une

vari¶et¶e lisse en fonction de l'int¶egrale de sa courbure incite plutôt µa regarder
lim" 0 limt 0 RC"t

kdvt C'est ce que nous allons faire dans ce papier
Soit donc f : Rn R un polynôme tel que f 0 0 et tel que 0 soit un

point critique isol¶e de f Soit t; x1; : : : ; xn un systµeme de coordonn¶ees de R1+n

et soit F : R1+n R un polynôme tel que pour tout x 2 Rn f x F 0;x
La d¶eformation ft est donn¶ee par ft x F t; x On associe µa F l'application
H : R1+n R1+n d¶e¯nie par H F; @F

@x1
; : : : ; @F

@x1
et on suppose que H admet

un z¶ero isol¶e en 0 On en d¶eduit imm¶ediatement que rF le vecteur gradient de

F admet ¶egalement un z¶ero isol¶e en 0 car par le lemme du chemin rF ¡1 0 ½
F¡1 0 au voisinage de l'origine Pour t 6 0 su±samment petit la ¯bre f¡1

t 0

fx 2 Rn
j F t; x 0g est lisse au voisinage de 0 Lemme 3 1 La ¯bre de Milnor

correspondant est la vari¶et¶e lisse µa bord ¶eventuellement vide C"
t f¡1

t 0 \Bn
"

d¶e¯nie pour 0 < jtj ¿ " ¿ 1 On la munit de la m¶etrique induite par le plongement
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f¡1
t 0 ½ Rn et on l'oriente par rft le vecteur gradient de ft On montre alors

Th¶eorµeme 5 3 :

lim
" 0

lim
t 0+

Z
C"t

kdvt ¡
1

2
Vol Sn¡1 [deg0rF + deg0H] +

1

2
Z

Sn¡1
deg0r fjPv 0 dv;

lim
" 0

lim
t 0¡

Z
C"t

kdvt ¡
1

2
Vol Sn¡1 [deg0rF ¡ deg0H] +

1

2
Z

Sn¡1
deg0r fjPv 0 dv;

oµu pour tout v 2 Sn¡1 fPv 0g est l'hyperplan fx 2 Rn
j hv; xi 0g h ; id¶esigne le produit scalaire usuel de Rn et deg0H resp deg0rF deg0r fjPv 0

est le degr¶e topologique de H
kHk

resp rF
krFk

r fjPv 0

kr fjPv 0 k
autour d'une petite

sphµere On relie ainsi des donn¶ees g¶eom¶etriques µa des donn¶ees topologiques as-
soci¶ees µa la singularit¶e et µa la d¶eformation De plus quand f admet une singularit¶e
alg¶ebriquement isol¶ee ces ¶egalit¶es nous permettent de majorer

¯
¯
¯
¯

lim
" 0

lim
t 0§

Z
C"t

kdvt
¯̄
¯̄en fonction de deg0rF deg0H et ¹ n¡1 fC oµu fC est le complexi¯¶e de f Corol-

laire 5 5 On termine notre ¶etude en expliquant comment pour le cas des courbes

planes le terme
RSn¡1 deg0r fjPv 0 dv s'exprime simplement en fonction de f

Th¶eorµeme 6 1
Pour prouver son r¶esultat Langevin utilise une formule d'¶echange qui permet

de calculer l'int¶egrale de la courbure de Lipschitz{Killing en fonction du nombre

de points critiques de la projection orthogonale de la ¯bre C"¸
sur une droite

complexe g¶en¶erique Ce nombre est le nombre de points d'intersection d'une courbe

polaire g¶en¶erique avec la ¯bre et il tend vers ¹ n + ¹ n¡1 d'aprµes Teissier [Te]
Risler reprend cette d¶emarche en majorant le nombre de points critiques de la
projection orthogonale de C"t sur une droite r¶eelle g¶en¶erique par le nombre de

points critiques de la projection de la ¯bre complexi¯¶ee sur la droite complexi¯¶ee

et en appliquant des formules d'¶echange Notre d¶emonstration repose ¶egalement
sur l'¶etude de ces points critiques et sur une formule d'¶echange Cependant nous

n'¶evaluons pas le nombre de ces points critiques mais la somme prise sur l'ensemble
de ces points des indices de l'application de Gauss Cette somme est ensuite reli¶ee

via la th¶eorie de Morse µa la caract¶eristique d'Euler{Poincar¶e de la ¯bre puis µa des

degr¶es topologiques par une formule due µa Fukui On applique alors une formule
d'¶echange pour conclure

Le papier est organis¶e comme suit : la Section 2 est un calcul pr¶eliminaire

d'indice On rappelle la formule de Fukui dans la Section 3 La Section 4 est
consacr¶ee aux courbes polaires Le r¶esultat principal est prouv¶e dans la Section 5

Finalement on ¶etudie le cas des courbes planes dans la Section 6
Des exemples explicites sont donn¶es dans les Sections 5 et 6 Pour le calcul

des degr¶es topologiques nous utilisons un programme dû µa Lecki et bas¶e sur la
formule d'Eisenbud{Levine [EL] L'algorithme employ¶e est d¶etaill¶e dans [LS] Le

programme est disponible auprµes de Z Szafraniec
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L'auteur remercie vivement M Nicolau et J -J Risler de lui avoir sugg¶er¶e ce

travail
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2 Un calcul d'indice

On exprime le degr¶e de l'application de Gauss en un point d'une hypersurface

lisse en fonction de l'indice de Morse d'une fonction hauteur
Soit f : Rn R une fonction de classe C2 telle que W f¡1 0 soit une

hypersurface lisse orient¶ee par rf Soit

° : W Sn¡1

x 7 rf x
krf x k

l'application de Gauss et pour tout v 2 Sn¡1 soit Pv la fonction hauteur d¶e¯nie
par Pv x hv; xi

Lemme 2 1 Un point p de W est un point critique de Pv jW
si et seulement si

° p §v

Preuve Clair ¤

Dans la suite on ¯xe v 1; 0; : : : ; 0 et on considµere un point critique p
de x1jW

Dans ce cas @f
@x1

p
6

0 et l'on peut param¶etrer W au voisinage de

p en fonction de x2; : : : ; xn Il existe une bijection µ : Rn¡1 W de classe

C2 d'un voisinage de p0 x2 p ; : : : ; xn p sur un voisinage de p de la forme

µ x0 ' x0 ; x0 oµu x0 x2; : : : ; xn
Soit deg µ; p0 le degr¶e de µ en p0 ; il vaut +1 si µ conserve l'orientation et ¡1

sinon

Lemme 2 2 deg µ; p0 signe @f
@x1

p

Preuve Soit e2; : : : ; en la base canonique directe de Rn¡1 Une base de

l'espace tangent µa W en p est donn¶ee par dp0 µ e2 ; : : : ; dp0 µ en dp0µ ¶etant la
di®¶erentielle de µ en p0 et µ conserve l'orientation en p0 si et seulement si

rf p ; dp0 µ e2 ; : : : ; dp0 µ en est une base directe de Rn Notons B cette base
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et soit M la matrice de B dans la base canonique e1; : : : ; en de Rn On a

M 0
BBBB@

@f
@x1

p
@'@x2

p0
¢ ¢ ¢

@'@xn
p0

@f
@x2

p 1
¢ ¢ ¢

0

@f
@xn

p 0
¢ ¢ ¢

1

1
CCCCA

:

Comme f ' x0 ;x0 ´ 0 pour tout i 2 f2; : : : ; ng
@f

@x1
µ x0

¢

@'
@xi

x0 +
@f

@xi
µ x0 0: 1

Appliqu¶ee en p0 cette ¶egalit¶e permet de montrer que

signe det M signe
@f

@x1
p : ¤

Soit deg °; p le degr¶e de ° en p

Lemme 2 3 Le point critique p de x1jW
est non-d¶eg¶en¶er¶e si et seulement si p

est un point r¶egulier de ° Dans ce cas

deg °; p ¡1 n¡1
¢

signeµ
@f

@x1
¶

n¡1

p ¢ ¡1 ¸;

oµu ¸ est l'indice de Morse de x1jW
en p

Preuve Soit ¯ : Rn¡1 Sn¡1 une param¶etrisation de Sn¡1 au voisinage de ° p
Le lemme pr¶ec¶edent pour le cas de la fonction x2

1
+ ¢ ¢ ¢ + x2

n ¡ 1 donne

deg ¯; ¯¡1 ° p signe x1 ° p signe
@f

@x1
p :

On considµere ensuite ~° : Rn¡1; p0 Rn¡1; 0 d¶e¯nie par ~° x0 ¯¡1
±° ± µ x0 :

On voit que p est un point r¶egulier de ° si et seulement si p0 est un point r¶egulier
de ~° et que deg °; p deg ~°; p0 puisque deg ¯¡1;° p deg ¯; ¯¡1 ° p Soit
pour tout i 2 f2; : : : ; ng ~°i la i-µeme coordonn¶ee de ~° Si p0 est un point r¶egulier
de ~° alors

deg ~°; p0 signe detµ
@ ~°i
@xj

¶
2·i;j·n

p0 :

En d¶erivant l'¶egalit¶e

~°i x0

@f
@xi µ x0

krf µ x0 k
et en utilisant le fait que @f

@xi p 0 on trouve que pour tout i; j 2 f2; : : : ; ng
2 :

@~°i
@xj

p0
1

kr f p k
µ

@2f
@xi@x1

p :
@'

@xj
p0 +

@2f
@xi@xj

p ¶ :
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D'aprµes 1 @'@xj p0 est nul si bien que

detµ
@~°i
@xj

p0 ¶
2·i;j·n

1

krf p k
n¡1 ¢ detµ

@2f
@xi@xj

p ¶
2·i;j·n

:

Il faut ensuite d¶eriver 1 par rapport µa xj et utiliser l'annulation en p0 des d¶eriv¶ees

partielles de ' pour obtenir
@2f

@xi@xj
p ¡

@f
@x1

p ¢

@2'
@xi@xj

p0

et pouvoir ainsi conclure ¤

3 Fibre de Milnor et degr¶es topologiques

On rappelle que H est donn¶ee par H F; @F
@x1

; : : : ; @F
@xn

et que H et rF
admettent un z¶ero isol¶e en 0

Dans cette partie on montre que la ¯bre de Milnor est lisse puis on rappelle
la formule de Fukui [Fu1] ingr¶edient essentiel de notre preuve qui relie Â C"t et
Â fft ¸ 0g \Bn

" ¡ Â fft · 0g \ Bn
" aux degr¶es topologiques en 0 de H rF et

rf
Lemme 3 1 Pour t 6 0 su±samment petit la ¯bre f¡1

t 0 n'admet pas de sin-
gularit¶es au voisinage de 0

Preuve Un point p de f¡1
t0

0 est un point singulier de f¡1
t0

0 si et seulement si
t0; p est un point singulier de ft t0

g \ F¡1 0 Comme 0; 0 est isol¶e dans

H¡1 0 il n'existe pas de tel point autre que 0; 0 au voisinage de l'origine ¤

Th¶eorµeme 3 2 Soit t tel que 0 < jtj ¿ " ¿ 1 si n est pair alors

² Â C"t 1 ¡ deg0rf;

² Â fft ¸ 0g \B" ¡ Â fft · 0g \B" deg0rF + signe t ¢
deg0H:

Si n est impair alors

² Â C"t 1 ¡ deg0rF ¡ signe t ¢ deg0H;

² Â fft ¸ 0g \B" ¡ Â fft · 0g \B" deg0rf:

Preuve On montre le cas n pair Fukui [Fu1] p52-53 prouve que

Â fft ¸ 0g\ B" 1 +
1

2³signe t ¢ deg0H + deg0rF ¡ deg0rf´;

Â fft · 0g\ B" 1 ¡
1

2³signe t ¢ deg0H + deg0rF + deg0rf´:

On en d¶eduit la formule pour Â fft ¸ 0g \ B" ¡ Â fft · 0g \ B" La suite de

Mayer{Vietoris donne

Â B" Â fft ¸ 0g \B" + Â fft · 0g \B" ¡ Â fft 0g \ B" :
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Comme B" est contractile on obtient ais¶ement la formule pour Â C"t ¤

Remarque 3 3 Quand F t; x f x ¡ t deg0rF 0 et deg0H ¡deg0rf
On retrouve la formule de Khimshiashvili [Kh] voir aussi [Ar] [Fu2] [Wa] :

Â f¡1 ¸ \Bn
" 1 ¡ deg0rf si n est pair;

Â f¡1 ¸ \Bn
" 1 + signe ¸ ¢

deg0rf si n est impair:
De plus

Â ff ¸ ¸g \B" ¡ Â ff · ¸g \ B" signe ¸ ¢ deg0rf si n est pair;

Â ff ¸ ¸g \B" ¡ Â ff · ¸g \ B" deg0rf si n est impair:

4 Fonctions hauteurs et courbes polaires

Pour tout v 2 Sn¡1 soit Pv la fonction hauteur d¶e¯nie par Pv x hv; xi On
montre que g¶en¶eriquement 0 est un point critique isol¶e de fjPv 0 et Pv jC"t

est une

fonction de Morse pour t et " su±samment petits Ce dernier point s'¶etablit en
¶etudiant les propri¶et¶es des courbes polaires g¶en¶eriques

Proposition 4 1 Il existe un ouvert dense semi-alg¶ebrique O1 de Sn¡1 tel que

pour tout v 2 O1 f : fPv 0g R admette un point critique isol¶e µa l'origine

Preuve Soit g : Rn £ Rn R d¶e¯nie par g x; y hx; yi et soit

M f x; y 2 Rn
£ Rn

j f x 0 et g x; y 0g :

Pour tout x; y 2 X M n f0g £ Rn x proche de l'origine on voit que

rang rf;rg 2 en x; y car x 2 rf¡1 0 On en d¶eduit que X est une vari¶et¶e
de Nash de dimension 2n¡ 2 Soit

¦y : X Rn

x; y
7

y:

Le th¶eorµeme de Bertini{Sard pour les vari¶et¶es de Nash voir [BCR] 9 5 2 entrâ³ne

que l'ensemble § des valeurs critiques de ¦y est un semi-alg¶ebrique de dimension
strictement inf¶erieure µa n Pour tout v 2 § et pour tout x 2 ¦¡1

y v x 6 0 proche

de l'origine on a rang rf; v 2 On prend alors O1 Sn¡1
n § ¤

Remarque 4 2 Lorsque f admet une singularit¶e alg¶ebriquement isol¶ee µa l'ori-
gine la même d¶emonstration appliqu¶ee au complexi¯¶e fC de f montre que l'on
peut choisir O1 de sorte que pour tout v 2 O1 f : fPv 0g R admette une

singularit¶e alg¶ebriquement isol¶ee µa l'origine Dans ce cas le nombre de Milnor
du complexi¯¶e de f : fPv 0g R est ¶egal au nombre de Milnor d'une coupe

hyperplane g¶en¶erique de f¡1
C

0
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Dans ce qui suit on d¶esignera aussi par Pv la fonction Rn+1 R t;x 7
hv; xi
Proposition 4 3 Il existe un ouvert semi-alg¶ebrique dense O2 de Sn¡1 tel que

pour tout v 2 O2 F¡1 0 \fPv 0gnf0g soit vide ou bien lisse de codimension 2

Preuve Soit h : R1+n £ Rn R d¶e¯nie par h t; x; y hx; yi et soit
N

© t;x; y 2 R1+n
£ Rn

j F t;x 0 et h t; x; y 0
ª :

Pour tout t; x; y 2 N nfx1 : : : xn 0g t; x proche de 0; 0 rang rF;rh
2 car t;x 2 rF ¡1 0 Comme pour la Proposition 4 1 on peut choisir un

ouvert semi-alg¶ebrique O0 de Sn¡1 tel que pour tout v 2 O0 rang rF; v 2 sur

fF 0g \ fPv 0g n fx1 : : : xn 0g
On a montr¶e que g¶en¶eriquement F¡1 0 \ fPv 0g n f0g est vide ou lisse de

codimension 2 en dehors de fx1 : : : xn 0g Il reste µa ¶etudier la situation
quand x1 : : : xn 0 On va voir qu'en fait on peut choisir g¶en¶eriquement v
de sorte que fF 0g \ fPv 0g n'intersecte pas fx1 : : : xn 0g en dehors

de l'origine

Soit pour tout i; j 2 f1; : : : ; ng
2 mij

¯
¯
¯
¯

@F
@xi

@F
@xj

yi yj ¯̄
¯̄

et soit

N 0

© t; x; y 2 R1+n
£ R j x1 0; : : : ; xn 0; F t; x 0

et pour tout i; j 2 f1; : : : ; ng
2; mij 0

ª :

L'ensemble Y N 0
n f 0; 0 g£Rn est une vari¶et¶e analytique lisse de dimension 1

au voisinage de 0; 0; 0 Pour voir cela consid¶erons un point t; x; y de Y On peut
supposer qu'en ce point @F

@x1 t; x 6 0 ce qui entrâ³ne qu'autour de t;x; y Y est
d¶e¯ni par l'annulation des fonctions x1; : : : ; xn; F; m12; : : : ; m1n Un simple calcul
de d¶eterminant montre que les vecteurs gradients de ces fonctions sont lin¶eairement
ind¶ependants

En utilisant la projection ¼y : Y Rn; t; x; y
7

y on trouve alors un ouvert
semi-alg¶ebrique O" de Sn¡1 tel que pour tout v 2 O" F¡1 0 \ fx1 : : : xn
0g \ frang rF; v < 2g soit de dimension au plus z¶ero au voisinage de 0; 0 Il
su±t de prendre O2 O0 \O" ¤

Proposition 4 4 Il existe un ouvert dense semi-alg¶ebrique O3 ½ O2 ½ Sn¡1 tel
que pour tout v 2 O3 t : fPv 0g\fF 0g R n'admette pas de points critiques

en dehors de 0

Preuve Soit
Q

© t;x; y 2 R1+n
£ R j t 0; F t; x 0 et h t; x; y 0

ª :

L'ensemble Q n f 0; 0 £ Rn
g est une vari¶et¶e analytique lisse de codimension 3 et

comme dans les propositions pr¶ec¶edentes on peut trouver V tel que pour tout
v 2 V ft 0g fF 0g et fPv 0g s'intersectent transversalement en dehors
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de 0; 0 On pose O3 O2 \ V Pour tout v 2 O3 fF 0g \ fPv 0g est soit
lisse de codimension 2 soit vide en dehors de 0; 0 et une application du lemme

du chemin montre que les points critiques de tjfPv Fv 0gnf0g
ne peuvent se situer

que sur le niveau ft 0g ¤

Pour tout v 2 Sn¡1 on d¶e¯nit la courbe polaire :

Lv © t;x 2 R1+n
j F t; x 0 et rang rt;rF; v < 3

ª :

Il est clair que 0 2 Lv

Proposition 4 5 Il existe un ouvert semi-alg¶ebrique O4 de Sn¡1 tel que pour
tout v 2 O4 Lv n f 0; 0 g est soit vide soit une courbe au voisinage de 0; 0

Preuve Soit
M

© t; x; y 2 R1+n
£ Rn

j F t; x 0 et mij x 0
ª :

Si un point t; x; y 2 M nf 0; 0 £Rn
g est tel que @F

@x1 t; x 6 0 alors M nf 0; 0 £
Rn

g est d¶e¯nie dans un voisinage de t; x; y par l'annulation de F; m12; : : : ; m1n
dont les vecteurs gradients respectifs sont ind¶ependants Ainsi M n f 0; 0 £ Rn

g
est une vari¶et¶e analytique lisse de dimension n + 1 On conclut en utilisant la
projection ¼y ¤

On pose U O1 \O3 \O4

Lemme 4 6 Pour tout v 2 U Lv \ ft 0g f0g et Lv \ fPv 0g f0g au
voisinage de 0

Preuve On ¶ecrit v v1; : : : ; vn Supposons qu'il existe un arc ¡ de Lv inclus dans

ft 0g et consid¶erons une param¶etrisation analytique ® : [0; º[ ¡ ® 0 0 de

cet arc Les d¶eriv¶ees des fonctions t ± ® et F ± ® ¶etant identiquement nulles on
trouve que

n

Xi 1

@F
@xi

® s ¢

@ xi ± ®

@s
s ´ 0:

Le long de ¡ les vecteurs @F
@x1

; : : : ; @F
@xn

et v1; : : : ; vn sont d¶ependants et le
premier ne s'annule pas Ceci entrâ³ne que

n

Xi 1

vi ¢

@ xi ± ®

@s
s ´ 0;

et que Pv ® s ´ 0 Cette derniµere relation contredit la Proposition 4 4 La se-
conde ¶egalit¶e du lemme est une cons¶equence imm¶ediate de la Proposition 4 4 ¤

Lemme 4 7 Pour tout v 2 U Lv est d¶e¯nie par l'annulation de n polynômes

dont les vecteurs gradients forment un systµeme libre
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Preuve On suppose que v1 6 0 La courbe Lv est alors d¶e¯nie par l'annulation de

F et des mineurs m1i i 2 f2; : : : ; ng Soit t; x un point de Lv n f 0; 0 g On voit
facilement que @F

@x1 t; x 6 0 sinon H t; x 0 D'aprµes la Proposition 4 5 ceci
entrâ³ne que rang rF;rm12; : : : ;rm1n n ¤

Lemme 4 8 Pour tout v 2 U il existe ±0 tel que 0 < ±0 ¿ " et tel que pour tout ±

avec 0 < j±j · ±0 les points critiques de PvjF¡1 0 \ft ±g\Bn+1
"

situ¶es µa l'int¶erieur
de F¡1 0 \ft ±g\Bn+1

" soient de Morse De plus ils ne sont pas sur le niveau

fPv 0g

Preuve On suppose que v1 6 0 Soit ¡ un arc de Lv param¶etr¶e analytiquement
par ® : [0; º[ ¡ ® 0 0 D'aprµes le Lemme 4 6 on peut choisir º de sorte
que t ® 0 0 et t ® s

6

0 sur ]0;º[ La fonction t ± ® ¶etant analytique

est strictement monotone au voisinage de 0; 0 ce qui implique que pour tout
s 2]0; º[ hrt ® s ; ®0 s i 6 0 Les vecteurs rt ® s ;rF ® s ;rm12 ® s
: : : rm1n ® s sont donc lin¶eairement ind¶ependants puisque rF ® s et les

rm1i ® s sont orthogonaux µa ®0 s D'aprµes [Sz] Lemma 3 2 ceci ¶equivaut µa
ce que Pv : t¡1 t ® s \ F¡1 0 R admette un point critique non-d¶eg¶en¶er¶e
en ® s On choisit alors ±0 > 0 tel que ±0 soit inf¶erieur au minimum pris sur
l'ensemble des arcs de Lv des jt ® º j ¤

Corollaire 4 9 Pour tout v 2 U il existe t0 0 < t0 ¿ " tel que pour tout t
avec 0 < jtj · t0 les points critiques de Pv jC"t

situ¶es µa l'int¶erieur de C"t soient de

Morse De plus ils ne sont pas sur le niveau fPv 0g

Preuve Il su±t de voir que p est un point critique de Morse de Pv jf¡1
± 0

si et
seulement si ±; p est un point critique de Morse de Pv jft ±g\fF 0g ¤

5 R¶esultat principal
Soit °t;" l'application de Gauss d¶e¯nie par :

°t;" : C"t Sn¡1

x 7 rft x
krft x k

:

On choisit v 2 U et on appelle I t; "; v Pj deg °t;"; qj oµu fqjg °¡1
t;" v et

deg °t;"; qj est le degr¶e de °t;" en qj Notre premier objectif Th¶eorµeme 5 2 est
de lier

lim
" 0

lim
t 0

I t; "; v + I t; ";¡v

aux degr¶es topologiques de H rF et r fjPv 0 Pour all¶eger l'¶ecriture on pose

fpig °¡1
t;" +v [ °¡1

t;" ¡v D'aprµes le Lemme 2 1 les points pi sont exactement
les points critiques de Pv jC"t

De plus le Corollaire 4 9 implique que pour 0 <
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jtj ¿ " ¿ 1 ces points critiques sont non-d¶eg¶en¶er¶es et qu'ainsi ils sont en nombre

¯ni On appelle ¸i l'indice de Morse de pi
Lemme 5 1 Pour 0 < jtj ¿ " ¿ 1 si n est impair

I t; "; v + I t;";¡v Â C"
t ¡ Â C"

t \ fPv 0g :

Si n est pair

I t; "; v + I t; ";¡v ¡©
Â fft ¸ 0g \B" ¡ Â fft · 0g \B" ª

+
©

Â fft ¸ 0g \B" \ fPv 0g ¡ Â fft · 0g \ B" \ fPv 0g ª:

Preuve On donne la preuve pour v 1; 0 : : : ; 0 D'aprµes la Corollaire 4 9 pour
t et " su±samment petits les points critiques de x1jC"t

ne sont pas sur le niveau

fx1 0g et donc C"t \ fx1 0g est une vari¶et¶e µa bord de dimension n¡ 2 Si n
est impair par la th¶eorie de Morse on a

Â C"
t \ fx1 ¸ 0g; C"

t \ fx1 0g Xx1 pi >0
¡1 ¸i ; 1

Â C"
t \ fx1 · 0g; C"

t \ fx1 0g Xx1 pi <0
¡1 ¸i : 2

Le Lemme 2 3 appliqu¶e µa °t;" et au point pi donne

deg °t;" ¡1 n¡1
¢ µ

@ft
@x1

pi ¶
n¡1

¢ ¡1 ¸i : 3

En additionnant 1 et 2 en utilisant la suite de Mayer{Vietoris et la relation
3 on obtient

Â C"
t ¡ Â C"

t \ fx1 0g I t; "; v + I t; ";¡v :

Pour le cas n pair il faut appliquer la th¶eorie de Morse pour les vari¶et¶es µa bord
Un point critique pi de x1jC"t

est µa vecteur gradient rentrant pour fft ¸ 0g resp

fft · 0g si et seulement si @ft
@x1

pi > 0 resp @ft
@x1

pi < 0 Dans [Du] Th¶eorµeme

2 5 on considµere une vari¶et¶e µa bord M une fonction de Morse f : M R et
on exprime les caract¶eristiques d'Euler relatives Â M \ ff ¸ 0g; M \ ff 0g et
Â M \ ff · 0g;M \ ff 0g en fonction des indices des points critiques de f
En appliquant ce th¶eorµeme et en ayant remarqu¶e au pr¶ealable que x1jfft¸0g\B"
n'admet pas de points critiques µa l'int¶erieur de fft ¸ 0g \B" on trouve :

Â fft ¸ 0g\ fx1 ¸ 0g \B";fft ¸ 0g\ fx1 0g \B" Xx1 pi >0
@ft
@x1 pi >0

¡1 ¸i 4

Â fft ¸ 0g \ fx1 · 0g\ B"; fft ¸ 0g \ fx1 0g\ B" ¡ Xx1 pi <0
@ft@x1 pi <0

¡1 ¸i : 5
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De même

Â fft · 0g \ fx1 ¸ 0g \B"; fft · 0g \ fx1 0g \B" Xx1 pi >0
@ft
@x1 pi <0

¡1 ¸i ; 6

Â fft · 0g \ fx1 · 0g\ B"; fft · 0g \ fx1 0g\ B" ¡ Xx1 pi <0
@ft@x1 pi >0

¡1 ¸i : 7

Il convient d'être prudent car fft ¸ 0g \ B" et fft · 0g \ B" sont des vari¶et¶es

µa coins Il peut apparâ³tre des points critiques sur f¡1
t 0 \ S" fft > 0g \ S" et

fft < 0g \ S" Il est facile de voir que le point critique de x1 sur fx1 ¸ 0g \ S"
resp fx1 · 0g \ S" est µa gradient sortant resp rentrant De plus le même

argument que [Du] Lemma 4 1 montre que les gradients des points critiques de

x1jf¡1
t 0 \S"

vont pointer vers l'ext¶erieur resp l'int¶erieur sur fx1 ¸ 0g resp

fx1 · 0g et donc n'interviennent pas dans les formules ci-dessus La combinaison
4 + 5 ¡ 6 ¡ 7 donne

Â fft ¸ 0g\ fx1 ¸ 0g \B" + Â fft ¸ 0g \ fx1 · 0g\ B"

¡2Â fft ¸ 0g \ fx1 0g\ B" ¡ Â fft · 0g\ fx1 ¸ 0g \B"

¡Â fft · 0g \ fx1 · 0g \B" + 2Â fft · 0g\ fx1 0g \B"

Xi
signe

@ft
@x1

pi ¡1 ¸i :

La suite de Mayer{Vietoris et la relation 3 permettent de conclure ¤

Th¶eorµeme 5 2 Pour tout v 2 U

lim
" 0

lim
t 0+

[I t; "; v + I t;";¡v ] ¡deg0rF ¡ deg0H + deg0r fjPv 0 ;

lim
" 0

lim
t 0¡

[I t; "; v + I t; ";¡v ] ¡deg0rF + deg0H + deg0r fjPv 0 :

Preuve C'est une combinaison du th¶eorµeme pr¶ec¶edent et du Th¶eorµeme 3 2 ¤

Par le Th¶eorµeme de Bezout jI t;"; v + I t; ";¡v j · deg F ¢ deg F ¡ 1 n¡1

Le compl¶ementaire de U dans Sn¡1 ¶etant de mesure nulle on peut appliquer
le th¶eorµeme de convergence domin¶ee de Lebesgue µa la fonction d¶ependant de t
v

7 I t; "; v +I t; ";¡v puis µa la fonction d¶ependant de " v
7

limt 0[I t; "; v +
I t; ";¡v ] On obtient

lim
" 0

lim
t 0+

Z
Sn¡1

[I t; "; v + I t; ";¡v ]dv

Z
Sn¡1

lim
" 0

lim
t 0+

[I t; "; v + I t; ";¡v ]dv;
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et

lim
" 0

lim
t 0¡

Z
Sn¡1

[I t; "; v + I t; ";¡v ]dv

Z
Sn¡1

lim
" 0

lim
t 0¡

[I t; "; v + I t; ";¡v ]dv:

D'aprµes le Th¶eorµeme 5 2 :

lim
" 0

lim
t 0+

Z
Sn¡1

[I t; "; v + I t; ";¡v ]dv

¡Vol Sn¡1 [deg0rF + deg0H ] + Z
Sn¡1

deg0r fjPv 0 dv;

et

lim
" 0

lim
t 0¡

Z
Sn¡1

[I t; "; v + I t; ";¡v ]dv

¡Vol Sn¡1 [deg0rF ¡ deg0H ] + Z
Sn¡1

deg0r fjPv 0 dv:

Th¶eorµeme 5 3

lim
" 0

lim
t 0+

Z
C"t

kdvt ¡
1

2
Vol Sn¡1 [deg0rF + deg0H] +

1

2
Z

Sn¡1
deg0r fjPv 0 dv;

lim
" 0

lim
t 0¡

Z
C"t

kdvt ¡
1

2
Vol Sn¡1 [deg0rF ¡ deg0H] +

1

2
Z

Sn¡1
deg0r fjPv 0 dv:

Preuve Soit ¢ °t;" fxjk x 0g l'ensemble des valeurs critiques de °t;"
D'aprµes le th¶eorµeme de Sard ¢ est de mesure nulle et donc ¢[¡¢ l'est ¶egalement
¡¢ d¶esigne le sym¶etrique de ¢ par rapport µa l'origine L'ensemble °¡1

t;" ¢[¡¢ n

fxjk x 0g est aussi de mesure nulle car c'est un ensemble de points r¶eguliers de

°t;" dont l'image est contenue dans un ensemble de mesure nulle On peut ¶ecrire

alors :

Z
C"t

kdvt Z
C"t nfxjk x 0g

Jac °t;" dvt Z
C"t n°¡1

t;" ¢[¡¢
Jac °t;" dvt;

oµu Jac d¶esigne le jacobien Pour tout i 2 Z on d¶e¯nit Ai par

Ai ©
v 2 Sn¡1

n f¢[¡¢g j I t; "; v iª
et on a

Z
C"t

kdvt Xi
Z
°¡1
t;" Ai

Jac °t;" dvt Xi
i Z

Ai
dv:

En d¶ecomposant Ai en ses composantes connexes Ai tAik

Z
C"t

kdvt Xi Xk
i Z

Aik
dv:
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Si Aik ¡Aik alors pour tout v 2 Aik I t; "; v I t; ";¡v i et i
1
2
[I t;"; v + I t; ";¡v ] Si Aik 6 ¡Aik alors il existe un couple j; l tel que

Ajl ¡Aik On a
RAik dv

RAjl dv Dans ce cas

i Z
Aik

dv + j Z
Ajl

dv
1

2 i+ j Z
Aik

dv +
1

2 i + j Z
Ajl

dv

1

2
Z

Aik
[I t; "; v + I t; ";¡v ]dv +

1

2
Z

Ajl
[I t;"; v + I t; ";¡v ]dv:

On en d¶eduit la formule d'¶echange :

Z
C"t

k x dvt
1

2
Z

Sn¡1
n ¢[¡¢

[I t; "; v + I t; ";¡v ]dv

1

2 Z
Sn¡1

[I t; "; v + I t; ";¡v ]dv:

Un passage µa la limite permet de conclure ¤

Corollaire 5 4

lim
" 0

lim
t 0+

Z
C"t

kdvt ¡ lim
" 0

lim
t 0¡

Z
C"t

kdvt ¡Vol Sn¡1 deg0H:

Corollaire 5 5 Si f admet une singularit¶e alg¶ebriquement isol¶ee en 0 :

¯
¯
¯
¯
¯

lim
" 0

lim
t 0+

Z
C"t

kdvt
¯̄
¯̄
¯

·
1

2
Vol Sn¡1 M+;

oµu

M+ Max³
¯
¯
¯

deg0rF + deg0H + ¹n¡1 fC
1¡ 1

n¡1

¯
¯
¯

;

¯
¯
¯

deg0rF + deg0H ¡ ¹n¡1 fC
1¡ 1

n¡1

¯
¯
¯

´ ;

et

¯
¯
¯
¯
¯

lim
" 0

lim
t 0¡

Z
C"t

kdvt¯̄
¯̄
¯

·
1

2
Vol Sn¡1 M¡;

oµu

M¡ Max³
¯
¯
¯

¡deg0rF + deg0H + ¹n¡1 fC
1¡ 1

n¡1

¯
¯
¯

;

¯
¯
¯

¡deg0rF + deg0H ¡ ¹n¡1 fC
1¡ 1

n¡1

¯
¯
¯

´ ;

¹n¡1 fC ¶etant le nombre de Milnor de la singularit¶e obtenue en coupant f¡1
C

0
par un hyperplan g¶en¶erique
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Preuve D'aprµes la Remarque 4 2 on peut choisir U tel que pour tout v 2 U le
complexi¯¶e de f : fPv 0g R ait pour nombre de Milnor ¹n¡1 fC D'aprµes le
Th¶eorµeme 2 1 de [EL] pour tout v 2 U

¯
¯

deg0r fjPv 0

¯
¯
· ¹n¡1 fC

1¡ 1
n¡1 :

¤

Appliqu¶e µa la d¶eformation F t;x f x ¡ t le Th¶eorµeme 5 3 s'¶ecrit :

Th¶eorµeme 5 6 Soit f : Rn R un polynôme tel que f 0 0 et tel que 0 soit
un point critique isol¶e de f Alors

lim
" 0

lim
¸ 0+

Z
C"¸

kdv¸
1

2
Vol Sn¡1 deg0rf +

1

2
Z

Sn¡1
deg0r fjPv 0 dv;

lim
" 0

lim
¸ 0¡

Z
C"¸

kdv¸ ¡
1

2
Vol Sn¡1 deg0rf +

1

2
Z

Sn¡1
deg0r fjPv 0 dv;

oµu C"¸
est la ¯bre f¡1 ¸ \Bn

"
Nous pr¶esentons ici un premier exemple Soit f x; y; z x2 + y3 ¡ zx et

soit F t; x; y; z x2 + y3 ¡ zx + t x + y + z A l'aide du programme de Lecki
mentionn¶e dans l'introduction on trouve deg0rF 1 et deg0H ¡1 Il nous faut
calculer

RS2 deg0r fjPv 0 dv Soit v a; b; c 2 S2 alors x; y; z 2 fPv 0g si
et seulement si ax + by + cz 0 Si c

6

0 alors

fjPv 0 x; y; z f µx; y;¡
a

c
x¡

b

c
y¶ ³1 + a

c´
2
x2 + b

c
xy + y3 : g x; y :

On a @g
@x x; y 2 1 + a

c x + b
c y et @g

@y x; y 3y2 + b
cx Il est facile de voir que

0; 0 est un z¶ero isol¶e de rg De plus

¯
¯
¯
¯
¯

@
2g

@2x
0; 0 @

2g
@x@y

0; 0
@2g

@x@y
0; 0 @2g

@2y
0; 0 ¯

¯
¯
¯
¯

¡
b2

c2 ;

et donc pour b et c di®¶erents de 0 0; 0 est un z¶ero non-d¶eg¶en¶er¶e de rg et
deg0rg ¡1 On trouve que

Z
S2

deg0r fjPv 0 dv ¡4¼

et que

lim
" 0

lim
t 0+

Z
C"t

kdvt ¡2¼

et lim" 0 limt 0¡ RC"t
kdvt ¡6¼
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6 Le cas des courbes planes

Soit f : R2 R un polynôme tel que f 0 0 et rf¡1 0 \ B" ½ f0g pour
0 < " ¿ 1 Soit e la multiplicit¶e de f c'est-µa-dire que f s'¶ecrit :

f x; y fe x; y + fe+1 x; y + ¢ ¢ ¢ + fd x; y ;

oµu d est le degr¶e de f et oµu pour tout i 2 fe; : : : ; dg fi est la composante homogµene

de degr¶e i de f Le Th¶eorµeme 5 3 devient alors :

Th¶eorµeme 6 1 Si e est impair

lim
" 0

lim
t 0+

Z
C"t

kdvt ¡¼
¢

deg0rF + deg0H ;

lim
" 0

lim
t 0¡

Z
C"t

kdvt ¡¼ ¢ deg0rF ¡ deg0H :

Si e est pair

lim
" 0

lim
t 0+

Z
C"t

kdvt ¡¼
¢

deg0rF + deg0H + Z
¼
2

¡¼
2

signe fe ¡ tan µ; 1 dµ;

lim
" 0

lim
t 0¡

Z
C"t

kdvt ¡¼ ¢ deg0rF ¡ deg0H + Z
¼
2

¡¼
2

signe fe ¡ tan µ; 1 dµ:

Preuve On remarque d'abord que si g : R; 0 R; 0 est un germe analytique

de multiplicit¶e ² alors deg0g 0 si ² est pair et deg0g signe g² 1 si ² est impair
Soit v 2 S1 il existe µ 2 [¡¼; ¼] tel que v cos µ; sin µ Dans ce cas x; y 2

fPv 0g si et seulement si x cos µ + y sin µ 0 Si µ
6 §

¼
2

on a alors

fjPv 0 x; y f ¡ tan µy; y
d

Xi e

yifi ¡ tan µ; 1 ;

et donc

r fjPv 0 x; y
d

Xi e
iyi¡1fi ¡ tan µ; 1 :

Si e est impair deg0r fjPv 0 0 Si e est pair deg0r fjPv 0 signe fe ¡ tan µ; 1
On trouve pour ce dernier cas :

Z
S1

deg0r fjHv 0 dv Z
¼

¡¼

signe fe ¡ tan µ; 1 dµ

2 Z
¼
2

¡¼
2

signe fe ¡ tan µ; 1 dµ: ¤
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Exemple Soit f x; y y2 ¡ x3 et soit F t; x; y y2 ¡ x3 ¡ tx A l'aide du
programme on trouve deg0rF ¡1 et deg0H 1 La multiplicit¶e de f est 2 et
f2 x; y x2 On a donc

Z
¼
2

¡¼
2

signe f2 ¡ tan µ; 1 dµ ¼:

Finalement on obtient

lim
" 0

lim
t 0+

Z
C"t

kdvt ¼ et lim
" 0

lim
t 0¡

Z
C"t

kdvt 3¼:

Cette di®¶erence entre les deux limites est due au fait que la ¯bre f¡1
t 0 t < 0 a

un ovale de plus que la ¯bre f¡1
t 0 t > 0

R¶ef¶erences

[Ar] V I Arnold Index of a singular point of a vector ¯eld the Petrovski{Oleinik inequality
and mixed Hodge structures Funct Anal and its Appli 12 1978 1{14

[BCR] J Bochnak M Coste and M F Roy G¶eom¶etrie alg¶ebrique r¶eelle Ergebnisse der Ma-
thematik 12 Springer-Verlag 1987

[Du] N Dutertre Degree formulas for a topological invariant of bifurcations of function-germs

Kodai Math Journal 23 No 3 2000 442{461

[EL] D Eisenbud and H I Levine An algebraic formula for the degree of a C1 map-germ
Annals of Mathematics 106 1977 19{44

[Fu1] T Fukui An algebraic formula for a topological invariant of bifurcation of 1-parameter
family of function-germs in : Strati¯cations singularities and di®erential equations II
Marseille 1990 ; Honolulu HI 1990 45{54 Travaux en cours 55 Hermann Paris

1997

[Fu2] T Fukui Mapping degree formula for 2-parameter bifurcation of function-germs Topo-
logy 32 1993 567{571

[Kh] G M Khimshiashvili On the local degree of a smooth map Soobshch Akad Nauk Gruz

SSR 85 1977 309{311

[La] R Langevin Courbure et singularit¶es complexes Comment Math Helvetici 54 1979
6{16

[LS] A Lecki and Z Szafraniec Applications of the Eisenbud{Levine's theorem to real alge-
braic geometry Computational Algebraic Geometry 177{184 Progress in Mathematics

109 BirkhÄauser 1993

[Ri] J -J Risler On the curvature of the Milnor ¯ber Pr¶eprint
[Sz] Z Szafraniec A formula for the Euler characteristic of a real algebraic manifold manu-

scripta mathematica 85 1994 345{360

[Te] B Teissier Introduction to equisingularity problems Proc Symp in Pure Math 29
Arcata 1974 Amer Math Soc 1975 593{632

[Wa] C T C Wall Topological invariance of the Milnor number mod 2 Topology 22 1983
345{350



Vol 77 2002 Courbures et singularit¶es r¶eelles 863

Nicolas Dutertre

Centre de Recerca Matemµatica

Institut d'Estudis Catalans

Apartat 50
E{08193 Bellaterra
Espa~na
e-mail : dutertre@crm es

Received: January 26 2001

To access this journal online:
http://www.birkhauser.ch


	Courbures et singularités réelles

