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Courbures et singularités réelles

Nicolas Dutertre

Résumé. Soit f : R™ — R un polyndéme tel que f(0) = 0 et tel que 0 soit un point critique
isolé de f. Etant donnée f; une déformation lisse & un parametre de f, on relie la limite :

lim lim kduyg,
£—0t—0 lef4

ou Cf = f;l(O) N BZ est la fibre de Milnor et k la courbure, & des degrés topologiques associés
a f et a sa déformation.

Abstract. Let f : R — R be a polynomial such that f(0) = 0 and such that O is an isolated
critical point of f. Given f; a one-parameter smooth deformation of f, we relate the limit :

lim lim kduvyg,
e—0¢t—0 Cf

where Cf = ft_1 (0)NBY is the Milnor fiber and k the curvature, to topological degrees associated
with f and its deformation.

Mathematics Subject Classification (2000). 14P05.

Mots clés. Fibre de Milnor réelle, courbure, degré topologique.

1. Introduction

Soit f : C* — C un polynome tel que f(0) = 0 et tel que 0 soit une singularité
isolée de f~1(0). Soit C5 = f~1(A\) N B2" la fibre de Milnor de cette singularité.
Langevin [La] étudie le comportement asymptotique de la courbure de Lipschitz—
Killing K de Cf, définie a 1'aide de la métrique induite par celle de C"* ~ R,
quand € et A tendent vers 0. Plus précisément, il obtient la formule suivante :

lim lim [ (=1)" 'Kdv = l\701(52”*2)@(’0 + 1,
e—0A—0 os 2
ot (™ est le nombre de Milnor de f en 0 et x{"~ le nombre de Milnor de la
singularité obtenue en coupant f~!(0) par un hyperplan générique. Il montre ainsi
que cette limite est finie et qu’elle est liée a des invariants locaux de la singularité.
Nous nous proposons dans cet article de donner une version réelle du résultat
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de Langevin. La situation réelle présente deux différences majeures par rapport
a la situation complexe. Tout d’abord, nous avons la possibilité d’étudier deux
intégrales de courbure : l'intégrale de la courbure de Gauss et l'intégrale de sa
valeur absolue. Cette distinction n’existe pas dans le cas complexe car la courbure
de Lipschitz—Killing est de signe constant. D’autre part, il est plus intéressant de
travailler sur des fibres du type C2 = £, 1(0) N B” o1 f; est une déformation &
un parametre du polynéme f. En effet, contrairement au cas complexe ou toutes
les fibres f,1(0) N B?" sont homéomorphes & la fibre f~'(\) N B?" et ont I’ho-
motopie d’un bouquet de ;(™ spheres, le type topologique de la fibre C7 dépend
de la déformation. Par exemple, quand f(z,y) = 2? — 3, la fibre C% a une seule
composante connexe, qui est homéomorphe a une droite, tandis que la fibre C},
ot fy(z,y) = y?> — 2% —tx et t < 0, a deux composantes, I'une homéomorphe 2
une droite et 'autre a un cercle. On voit ainsi que la fibre C§ n’est pas “maxi-
male”, dans le sens ol des topologies plus riches que la sienne peuvent apparaitre
parmi les fibres C7, et qu’elle ne donne donc que des informations partielles sur la
singularité. Nous sommes amenés & considérer les limites d’intégrales :

lim lim kdvy et lim lim |k|dvy,
e—0t—0 fre e—0t—0 fe
t

ol k désigne la courbure de Gauss et dv; la forme volume de f, '(0). La deuxieme
de ces limites a été étudiée par Risler [Ri]. Il montre qu’elle est finie et qu’elle peut
se majorer de la maniere suivante :

n—1
lir% }ir% |k|dvy < % lim lim | K |dvy,
—06=0 /e ol( ) e=0=0 J ¢=1(0) p2n

ol fic est le complexifié de f; et K la courbure de Lipschitz—Killing. Ceci en-
traine bien str que la premiere des limites existe et est finie. Une question se pose
alors : est-il possible d’avoir des informations plus précises sur ces limites et, en
particulier, de les relier & des invariants de la singularité 7 Dans cette optique, la
formule de Gauss—Bonnet, qui exprime la caractéristique d’Euler—Poincaré dune
variété lisse en fonction de l'intégrale de sa courbure, incite plutét a regarder
limg_,0 lim;_,q fcg kdvy. C’est ce que nous allons faire dans ce papier.

Soit done f : R™ — R un polynéme tel que f(0) = 0 et tel que 0 soit un
point critique isolé de f. Soit (¢,z1,...,x,) un systéme de coordonnées de R'*"
et soit I : R1™ — R un polynéme tel que pour tout = € R", f(z) = F(0,z).
La déformation f; est donnée par fi(z) = F(¢,z). On associe & F' application
H :R'Y" — R définie par H = (F, 3—517 o ngl) et on suppose que H admet
un zéro isolé en 0. On en déduit immédiatement que VF, le vecteur gradient de
F, admet également un zéro isolé en 0 car, par le lemme du chemin, (VF)~1(0) C
F~1(0) au voisinage de Porigine. Pour ¢ # 0 suffisamment petit, la fibre f, 1 (0) =
{z € R" | F(t,z) = 0} est lisse au voisinage de 0 (Lemme 3.1). La fibre de Milnor
correspondant est la variété lisse a bord, éventuellement vide, C§ = f[l(O) N BZ

définie pour 0 < |t| < & <« 1. On la munit de la métrique induite par le plongement
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f[l(O) C R” et on l'oriente par Vf;, le vecteur gradient de f;. On montre alors
(Théoreme 5.3) :

1 1
lim lim kdv, = —iVol(S"*I)[degOVF + dego H] + 5/

&0 {0+ o

N degOV(f‘ pvzo)d’l)7

Sn

1 1
lim lim kdv, = —=Vol(S™ 1)[deg,VF — deg H] + 5/

_— deg,V —o)d
e—0¢t—0— o 2 1 ego (f‘ PviO) Y

ot pour tout v € S"~!, {P, = 0} est 'hyperplan {x € R™ | (v,z) = 0} ({, )
désigne le produit scalaire usuel de R") et degoH (resp. degoVIE, degoV(fip,—0))

est le degré topologique de H_g\l (resp. Hgﬁ\\? Hgg;:?j;“) autour d’une petite

sphere. On relie ainsi des données géométriques a des données topologiques as-
sociées a la singularité et a la déformation. De plus, quand f admet une singularité
algébriquement isolée, ces égalités nous permettent de majorer

lim lim kdv;
e—=0t—0% foe
t

en fonction de degoVF, degoH et "D (fc), ol fe est le complexifié de f (Corol-
laire 5.5). On termine notre étude en expliquant comment, pour le cas des courbes
planes, le terme fS"71 degyV(fip,—0)dv s’exprime simplement en fonction de f
(Théoréme 6.1).

Pour prouver son résultat, Langevin utilise une formule d’échange qui permet
de calculer I'intégrale de la courbure de Lipschitz—Killing en fonction du nombre
de points critiques de la projection orthogonale de la fibre C§ sur une droite
complexe générique. Ce nombre est le nombre de points d’intersection d’une courbe
polaire générique avec la fibre et il tend vers p(™ 4 (1 d’aprés Teissier [Te].
Risler reprend cette démarche en majorant le nombre de points critiques de la
projection orthogonale de C} sur une droite réelle générique par le nombre de
points critiques de la projection de la fibre complexifiée sur la droite complexifiée
et en appliquant des formules d’échange. Notre démonstration repose également
sur 1’étude de ces points critiques et sur une formule d’échange. Cependant nous
n’évaluons pas le nombre de ces points critiques mais la somme, prise sur I’ensemble
de ces points, des indices de 'application de Gauss. Cette somme est ensuite reliée
via la théorie de Morse a la caractéristique d’Euler—Poincaré de la fibre, puis a des
degrés topologiques par une formule due a Fukui. On applique alors une formule
d’échange pour conclure.

Le papier est organisé comme suit : la Section 2 est un calcul préliminaire
d’indice. On rappelle la formule de Fukui dans la Section 3. La Section 4 est
consacrée aux courbes polaires. Le résultat principal est prouvé dans la Section 5.
Finalement on étudie le cas des courbes planes dans la Section 6.

Des exemples explicites sont donnés dans les Sections 5 et 6. Pour le calcul
des degrés topologiques, nous utilisons un programme da & Lecki et basé sur la
formule d’Eisenbud-Levine [EL]. [’algorithme employé est détaillé dans [LS]. Le
programme est disponible aupres de 7. Szafraniec.
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2. Un calcul d’indice

On exprime le degré de ’application de Gauss en un point d'une hypersurface
lisse en fonction de l'indice de Morse d’une fonction hauteur.

Soit f : R® — R une fonction de classe C? telle que W = f~1(0) soit une
hypersurface lisse, orientée par V f. Soit

v W — st
Vi(z)
[V ()]

Tr
l'application de Gauss et, pour tout v € S" 1, soit P, la fonction hauteur définie
par P,(z) = (v, z).

Lemme 2.1. Un point p de W est un point critique de P,y si et seulement s
1p) = £v.

Preuve. Clair. O

Dans la suite, on fixe v = (1,0,...,0) et on considére un point critique p
de 1. Dans ce cas g—zfl(p) # 0 et 'on peut paramétrer W au voisinage de
p en fonction de z9,...,z,. Il existe une bijection 8 : R*1 — W, de classe
C?, d’un voisinage de p’ = (22(p), ..., 2z, (p)) sur un voisinage de p, de la forme
0(z") = (p(z'),2'), ot 2’ = (z2, ..., zp).

Soit deg(f, p’) le degré de 6 en p’; il vaut +1 si 6 conserve lorientation et —1
sinon.

Lemme 2.2. deg(0, p’) = signe %(p).

Preuve. Soit (es,...,e,) la base canonique directe de R™!. Une base de
Pespace tangent & W en p est donnée par (dp0(ez),...,dp0(ey)), dp0 étant la
différentielle de € en p’, et 6 conserve l'orientation en p’ si et seulement si
(Vf(p),dpb(ea),...,dp0(e,)) est une base directe de R™. Notons B cette base
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et soit M la matrice de B dans la base canonique (eq,...,e,) de R™. On a
a 2l a
3{;@‘%(13) @) - ()
ar_ W1‘2.(]9) 1 . 0
. : ’ :
%(p) 0 . 1

Comme f(p(z’),z’) =0, pour tout i € {2,...,n}

Of ne vy 82, OF oo sy _
S (0@) - G () + 5 (0() 0. W)
Appliquée en p/, cette égalité permet de montrer que
signe det(M ) = signe a—f(p) O
Bml

Soit deg(y,p) le degré de v en p.

Lemme 2.3. Le point critique p de 1y est non-dégénéré si et seulement si p
est un point régulier de vv. Dans ce cas,

n—1
dexly,p) = [~ -signe (j—i) ) - (-1,

ot A est Uindice de Morse de x1)y en p.

Preuve. Soit 3: R"~! — §7~! une paramétrisation de S”~! au voisinage de v(p).
Le lemme précédent pour le cas de la fonction 27 + - -- + 22 — 1 donne

deg(B, 87" (v(p)) = signe z1(~(p)) = Signeg—i(m

On considere ensuite 7 : (R*~1,p’) — (R"~1,0) définie par (z') = f~Loyof(a').
On voit que p est un point régulier de -« si et seulement si p’ est un point régulier
de 7 et que deg(y,p) = deg(7, p’) puisque deg(8~1,v(p)) = deg(3, 3 (7(p))). Soit
pour tout i € {2,...,n}, ¥ la i-éme coordonnée de 7. Si p’ est un point régulier
de ¥ alors

deg (%, p) = signe det ( O% ) ().
Dz 2<i,j<n

En dérivant 1'égalité

N (Co)
' IV£@E)I
et en utilisant le fait que g—zfi(p) = 0, on trouve que pour tout (7,5) € {2,...,n}?:
8:72 1 L < 82]0 850 / 82]0 )
L) = =)+ =——(p) ).
52, ") = TGN \Geider a2, ") Gmeoz, @
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D’apres (1), %(p/) est nul si bien que
7

% 1 >’f
det < (p/)> = - det < (p) .
Iz 2<i,j<n IVfp)ln—1 dz;0z; 2<i,5<n
Il faut ensuite dériver (1) par rapport & x; et utiliser 'annulation en p’ des dérivées
partielles de ¢ pour obtenir
of . of 9%p

Bsciaxj P) = _8—111 Py szaxj P

et pouvoir ainsi conclure. O

/

3. Fibre de Milnor et degrés topologiques

On rappelle que H est donnée par H = (F) 3—517 cee 8871:) et que H et VF
admettent un zéro isolé en 0.

Dans cette partie, on montre que la fibre de Milnor est lisse puis on rappelle
la formule de Fukui [Ful], ingrédient essentiel de notre preuve, qui relie x(Cf) et
x{f: 20} N BY) — x({f: <0} N B aux degrés topologiques en 0 de H, VF et
Vf.

Lemme 3.1. Pour t # 0 suffisamment petit, la fibre f;1(0) n'admet pas de sin-
gularités au voisinage de 0.

Preuve. Un point p de f, 1(0) est un point singulier de ft71(0) si et seulement si
(t,p) est un point singulier de {t = #'} N F~1(0). Comme (0,0) est isolé dans
H~1(0), il n’existe pas de tel point autre que (0,0) au voisinage de l'origine. [

Théoréme 3.2. Soit t tel que 0 < |t| € e K 1, si n est pair alors

® X(CF) =1—deg,V,

o x({ft 20} N B.) —x({f: <0} N B.) =deg,VF + signe(t) - degy H.
Sin est impair alors

e x(C5) =1—degyVF —signe(t) - degy H,

o x({ft 20} N Be) — x({f: <0} N B,) =deg, V.

Preuve. On montre le cas n pair. Fukui ([Ful], p52-53) prouve que
1/,
X({fe 2 0} 1 B.) = 1+ 5 (signe(t) - degoH + degoVF — degoV ),

1
xH{ft <0tNB)=1- 5(signe(t) ~degoH + deg VF + degOVf>.

On en déduit la formule pour x({f; > 0} N B.) — x({f: < 0} N B.). La suite de
Mayer—Vietoris donne

x(Be) = x({fr 2 0} N Be) +x({fe <0} N Be) — x({fe =0} N B).
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Comme B, est contractile, on obtient aisément la formule pour x(Cf). O

Remarque 3.3. Quand F(t,z) = f(z) —t, dego VF = 0 et degy H = —deg, V.
On retrouve la formule de Khimshiashvili [Kh] (voir aussi [Ar], [Fu2], [Wa]) :

x(f YA N B™) = 1 —deg,Vf si n est pair,
X(F7H ) N B™) = 1 + signe()\) - degyV f si n est impair.
De plus,
X({F 2 X0 BL) = x({F < A} B.) = signe(A) - deg,V £ si n est pair,
X(F 2 A} B.) = X({f £ A} B.) = degyV i m st impai.

4. Fonctions hauteurs et courbes polaires

Pour tout v € "1, soit P, la fonction hauteur définie par P,(z) = (v,z). On
montre que génériquement 0 est un point critique isolé de f1p,—o et Py|cs est une
fonction de Morse pour ¢ et & suffisamment petits. Ce dernier point s’établit en
étudiant les propriétés des courbes polaires génériques.

Proposition 4.1. Il existe un ouwvert dense semi-algébrique O de S™ 1 tel que
pour tout v € Oy, f:{P, =0} — R admette un point critique isolé & lorigine.

Preuve. Soit g : R" x R" — R définie par g(z,y) = (z,y) et soit
M ={(z,y) eR* xR" | f(z) =0 et g(z,y) = 0}.

Pour tout (z,y) € X = M\ ({0} x R"), =z proche de Dorigine, on voit que
rang(Vf,Vg) =2 en (z,y) car = ¢ Vf1(0). On en déduit que X est une variété
de Nash de dimension 2n — 2. Soit

I, X —-R®
(z,y) — v

Le théoréme de Bertini—Sard pour les variétés de Nash (voir [BCR], 9.5.2) entraine
que I'ensemble 3 des valeurs critiques de II, est un semi-algébrique de dimension
strictement inférieure & n. Pour tout v € ¥ et pour tout = € I, '(v), « # 0 proche
de Porigine, on a rang(Vf,v) = 2. On prend alors O; = S"~1\ 3. O

Remarque 4.2. Lorsque f admet une singularité algébriquement isolée a 1'ori-
gine, la méme démonstration appliquée au complexifié fr de f montre que I'on
peut choisir Oy de sorte que pour tout v € Oy, f : {P, = 0} — R admette une
singularité algébriquement isolée & l'origine. Dans ce cas, le nombre de Milnor
du complexifié de f : {P, = 0} — R est égal au nombre de Milnor d’une coupe
hyperplane générique de fz L0).
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Dans ce qui suit, on désignera aussi par P, la fonction R**™1 — R, (¢,z)
(v, ).

Proposition 4.3. Il existe un ouvert semi-algébrique dense Oy de S™ ' tel que
pour toutv € Oy, F~H0)N{P, = 0}\ {0} soit vide ou bien lisse de codimension 2.

Preuve. Soit h: R1™™ x R® — R définie par h(t,z,y) = (z,y) et soit
N={({t,z,y) eR"™ xR" | F(t,z) =0 et h(t,z,y) =0} .

Pour tout (¢,z,y) € N\{z1 =... ==z, =0}, (¢,z) proche de (0,0), rang(VF, Vh)
=2 car (t,2) ¢ (VF)~1(0). Comme pour la Proposition 4.1, on peut choisir un
ouvert semi-algébrique O’ de S™~! tel que pour tout v € O, rang(VF,v) = 2 sur
{F=0}n{P,=0}\{z1=...=2, =0}.

On a montré que génériquement F~1(0) N {P, = 0} \ {0} est vide ou lisse de
codimension 2 en dehors de {z; = ... = z,, = 0}. Il reste & étudier la situation
quand z1 = ... = z, = 0. On va voir qu’en fait on peut choisir génériquement v
de sorte que {F = 0} N {P, = 0} n’intersecte pas {z; = ... = z, = 0} en dehors
de l'origine.

OF OF

Yi Yy
N/:{(t7x7y)€R1+"xR|$1:0,...,xn:0, F(t,z)=0
et pour tout (4,5) € {1,...,n}*, my; =0} .

Soit, pour tout (4,5) € {1,...,n}%, my; = et soit

L’ensemble Y = N\ ({(0,0)} x R™) est une variété analytique lisse de dimension 1
au voisinage de (0, 0,0). Pour voir cela, considérons un point (¢, z,y) de Y. On peut
supposer qu’en ce point g—i(t,x) #£ 0, ce qui entraine qu’autour de (¢,z,y) Y est
défini par 'annulation des fonctions x4, ..., z,, F, mq9, ..., m,. Un simple calcul
de déterminant montre que les vecteurs gradients de ces fonctions sont linéairement
indépendants.

En utilisant la projection 7y, : ¥ — R”™, (¢, @, y) — y, on trouve alors un ouvert

semi-algébrique O” de S"~ ! tel que pour tout v € O”, F1(0)N{z; =... =2, =
0} N {rang(VF,v) < 2} soit de dimension au plus zéro au voisinage de (0,0). Il
suffit de prendre Oy = O0'NO”. O

Proposition 4.4. [l existe un ouvert dense semi-algébrigue O3 C Oy C S 1 tel
que pour tout v € O3, t : {P, = 0}N{F = 0} — R nadmette pas de points eritiques
en dehors de 0.

Preuve. Soit

Q={tz,y) eR" xR |t =0,F(t,z) =0 et h(t,z,y) =0} .

L’ensemble @\ {(0,0) x R™} est une variété analytique lisse de codimension 3 et,
comme dans les propositions précédentes, on peut trouver V tel que pour tout
v eV, {t =0}, {F =0} et {P, = 0} s’intersectent transversalement en dehors
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de (0,0). On pose O3 = Oy N V. Pour tout v € O3, {I' = 0} N {P, = 0} est soit
lisse de codimension 2 soit vide en dehors de (0,0) et une application du lemme
du chemin montre que les points critiques de ¢;p,—p,—0}\ {0} Ne peuvent se situer
que sur le niveau {t = 0}. O

Pour tout v € S*~1, on définit la courbe polaire :
L,={(t z) e R""™ | F(t,z) =0 et rang(Vt, VF,v) < 3}.
Il est clair que 0 € L,.

Proposition 4.5. Il existe un ouwvert semi-algébrique Oy de S~ ' tel que pour
tout v € Oy, Ly \ {(0,0)} est soit vide, soit une courbe au voisinage de (0,0).

Preuve. Soit
M ={(t,z,y) e R""" xR" | F(t,z) = 0 et my;(z) =0} .

Siun point (¢, z,y) € M\ {(0,0) x R} est tel que 8851 (t,z) # 0 alors M\ {(0,0) x
R™} est définie dans un voisinage de (¢, z,y) par 'annulation de F, mqq, ..., miy,
dont les vecteurs gradients respectifs sont indépendants. Ainsi M \ {(0,0) x R*}
est une variété analytique lisse de dimension n + 1. On conclut en utilisant la
projection 7. O

On pose U =01 NO3NOy.
Lemme 4.6. Pour tout v € U, L, N {t = 0} = {0} et L, N {P, =0} = {0} au

voisinage de 0.

Preuve. On écrit v = (vy,. .., v, ). Supposons qu'il existe un arc I' de L,, inclus dans
{t = 0} et considérons une paramétrisation analytique « : [0, v[— T", @(0) =0, de
cet arc. Les dérivées des fonctions £ o oo et F' o o étant identiquement nulles, on
trouve que

S 2 (s 202y g

oz; Jds
i=1
Le long de T, les vecteurs (3—57...7 aaz—li) et (v1,...,v,) sont dépendants et le

premier ne s’annule pas. Ceci entraine que
n
dzio0a), |
E v ———(8) =0,
: Os
=1

et que P,(a(s)) = 0. Cette derniere relation contredit la Proposition 4.4. La se-
conde égalité du lemme est une conséquence immédiate de la Proposition 4.4. [

Lemme 4.7. Pour tout v € U, L, est définie par Uannulation de n polynomes
dont les vecteurs gradients forment un systéme libre.
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Preuve. On suppose que vy # 0. La courbe L, est alors définie par ’annulation de
F' et des mineurs mq;, i € {2,...,n}. Soit (¢, z) un point de L, \ {(0,0)}. On voit

facilement que gTF(t, z) #£ 0, sinon H(¢,z) = 0. D’apreés la Proposition 4.5, ceci
entraine que rang(VR Vmyg,...,Vimy,) =n. O

Lemme 4.8. Pour toutv € U, il existe 0’ tel que 0 < ' K ¢ et tel que pour tout &
avee 0 < |8| < &', les points critiques de PU‘F,l(O)m{t:(;}mB;H situés a lintérieur
de F10)N{t = 6} N B™*! soient de Morse. De plus, ils ne sont pas sur le niveau
{P, =0}.

Preuve. On suppose que vy # 0. Soit I un arc de L, paramétré analytiquement
par o : [0,v[— T, «(0) = 0. D’aprés le Lemme 4.6, on peut choisir v de sorte
que t(a(0)) = 0 et t(als)) # 0 sur |0,v[. La fonction ¢ o a étant analytique
est strictement monotone au voisinage de (0,0), ce qui implique que pour tout
s €]0,v], (Vi(a(s)),a/(s)) # 0. Les vecteurs Vi(a(s)), VF(a(s)), Vmis(a(s)),
.y Vmip(a(s)) sont donc linéairement indépendants puisque VF(a(s)) et les
Vmq;(a(s)) sont orthogonaux & «'(s). D’apres [Sz|, Lemma 3.2, ceci équivaut a
ce que P, : t71(t(a(s))) N F~1(0) — R admette un point critique non-dégénéré
en «(s). On choisit alors ¢’ > 0 tel que ¢’ soit inférieur au minimum, pris sur
l’ensemble des arcs de L, des |t(a(v))]. O

Corollaire 4.9. Pour tout v € U, il existe t', 0 < t/ & &, tel que pour tout t
avec 0 < [t| <, les points critiques de Py|cs situés a Uintérieur de Cf soient de
Morse. De plus, ils ne sont pas sur le niveau {P, = 0}.

Preuve. 11 suffit de voir que p est un point critique de Morse de P;U‘fé—l(o) si et
seulement si (4, p) est un point critique de Morse de Py |r¢—syn{r—o}-

5. Résultat principal

Soit v, . I'application de Gauss définie par :

Ve  Cf — sn—t
V fe(x)

T " INA@T

On choisit v € U et on appelle I(t,e,v) = >, deg(y1,q5) ot {g;} = 7;51(71) et
deg(7z,q;) est le degré de ;. en g;. Notre premier objectif (Théoreme 5.2) est
de lier

lim lim I(¢,2,v) 4+ I(¢, £, —v)

e—0t—0
aux degrés topologiques de H, VI et V(f|p,—o). Pour alléger I’écriture, on pose
{pi} = v 2 (+v) Uy, H(—v). D’apres le Lemme 2.1, les points p; sont exactement
les points7 critiques de Pyc=. De plus, le Corollaire 4.9 implique que, pour 0 <
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[t] < & < 1, ces points critiques sont non-dégénérés et qu’ainsi ils sont en nombre
fini. On appelle \; 'indice de Morse de p;.

Lemme 5.1. Pour 0 < [t| € & € 1, si n est impair
It e,0) + 1(t,e, —v) = x (CF) — x (C; N {P, =0}).
Sin est pair,
I(t,e,v) + I(t,e,—v) = —{x ({fe 20} N B,) —x ({f <0} N B.) }
Hx{fi 203N B.N{P, =0}) —x({fr <O} NB.N{P, =0}) }.

Preuve. On donne la preuve pour v = (1,0...,0). D’aprés la Corollaire 4.9, pour
t et e suffisamment petits, les points critiques de x1)c: ne sont pas sur le niveau
{z1 = 0} et donc Cf N {z1 = 0} est une variété a bord de dimension n — 2. Si n
est impair, par la théorie de Morse, on a

X(CEn{ey >0}, Cin{z =0} = > (1), (1)
xz1(p;)>0

X(Cin{e <0} n{z =0 = > (1) 2)
x1(ps)<0

Le Lemme 2.3 appliqué a «; . et au point p; donne

degtrn) = (-1 (00 ) 0, 3)

En additionnant (1) et (2), en utilisant la suite de Mayer—Vietoris et la relation
(3), on obtient

X(Cta) _X(Ctgm{xl :O}) :I(t7£,1})+1(t7£, _7})'

Pour le cas n pair, il faut appliquer la théorie de Morse pour les variétés a bord.
Un point critique p; de z1)¢: est & vecteur gradient rentrant pour {f; > 0} (resp.
{f: < 0}) si et seulement si g—zi(pi) > 0 (resp. g—ﬁ(pi) < 0). Dans [Du], Théoréme
2.5, on considere une variété a bord M, une fonction de Morse f : M — R et
on exprime les caractéristiques d’Euler relatives x(M N {f > 0}, M N {f = 0}) et
x(Mn{f <0}, Mn{f=0}) en fonction des indices des points critiques de f.
En appliquant ce théoreme et en ayant remarqué au préalable que z1|(f,>03nB.
n’admet pas de points critiques & l'intérieur de {f; > 0} N B., on trouve :

X{frz0hn{z1 200N B, {f; 20}n{e; =0} NB) = > ()% (4

z1(p;)>0
2
3%(}7@')>0

X{fez0hn{zs <OINB,{f; 20} n{z1 =0} NB.)=— Y (=) (5)

21 (p3)<0
i)
3%(P7;)<0
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De méme,

X{fe <0y {er 200N B, {fi 0} n{e1=0}nB.)= > (-D)*, (6)
X

X({fr <0hn{e <OINB, {fi <0}N{m =0}NB)=— > (-D)*. (7)
A

Il convient d’étre prudent car {f; > 0} N B et {f; < 0} N B, sont des variétés
3 coins. Il peut apparaitre des points critiques sur f; 1(0) N S,, {f; > 0} N S, et
{ft <0} N S.. 1l est facile de voir que le point critique de zq sur {zq > 0} N S.
(resp. {z1 < 0} N S.) est & gradient sortant (resp. rentrant). De plus, le méme
argument que [Du] Lemma 4.1 montre que les gradients des points critiques de
Ty|p-1(0yns, VOt pointer vers lextérieur (resp. lintérieur) sur {z; > 0} (resp.
{z1 < 0}) et donc n’interviennent pas dans les formules ci-dessus. La combinaison
(4) + (5) — (6) — (7) donne

x{fe 201N {z1 20N B.) +x({fr 2 0}n{z1 <0}N B,)
=2x ({fe 20} n{z1 =0} N B:) = x({fr <0} N {z1 >0} N B.)
—x({fe £0}Nn{zy <0} N Be) +2x ({f: <0} N {z1 =0} N B;)

2]
= Z: signea—ij(pi)(—l)’\i.
La suite de Mayer—Vietoris et la relation (3) permettent de conclure. 0

Théoréme 5.2. Pour tout v € U,
lim lim [I(t,e,v) + I(t, e, —v)] = —dego VI — degoH + degoV(fip,—0),

e—0t—0t
lilT(l) li%l U(t,e,v) +I(t,e,—v)] = —dego VI +degoH + degyV(fip,—0)-
e—Ut—-0—

Preuve. C’est une combinaison du théoréme précédent et du Théoréeme 3.2. O

Par le Théoreme de Bezout, |I(t,e,v) + I(t, e, —v)| < (deg F)- (deg F —1)""1.
Le complémentaire de U dans S”~! étant de mesure nulle, on peut appliquer
le théoreme de convergence dominée de Lebesgue a la fonction dépendant de ¢,
v I(t,e,v)+1(t &, —v), puis & la fonction dépendant de =, v +— lim;_o[I (¢, ¢, v)+
1(t, =, —v)]. On obtient

lim i I(t I(t,e,—v)|dv =
lim lim SH[(@@H (t, €, —v)|dv

/ Jirg, Tivgy i, -, — e,
S

n—1 €—0¢t—0+
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et

lim lim [[(t,e,v)+ I(t,e, —v)]dv

e—=0¢—0- Jgn-1

= / lim lim [I(t,g,v)+ I(t, &, —v)]dv.

1 £€—0¢—0—

D’apres le Théoreme 5.2 :

ili% tlirgl+ - [I(t,2,v) +1(t,e, —v)]dv

= —Vol(8™ 1) [deg, VF + deg, H| +/

Sn

. degOV(f‘pU:O)dv,
et

lim lim [[(t,e,v)+1(t,e,—v)]dv

e—0¢t—0— Ssn—1

= —Vol(S" 1) [deg, VF — deg, H| + /

Sn—

) degOV(f‘pU:O)dv.
Théoréme 5.3.

lim lim kdv, = —%VOI(S"*I)[degOVF + dego H] + %/ degV(fip,—0)dv,

e—0t—0+ cs gn—1

1 1
lim lim kdvy = —iVol(S"*I)[degOVF —degyH] + 5/

e—0 % 50— cs

. degOV(f‘ pvzo)dv.

Sn

Preuve. Soit A = ~; .({z|k(z) = 0}) l'ensemble des valeurs critiques de ;..
D’apres le théoréme de Sard, A est de mesure nulle et done AU—A Dest également
(—A désigne le symétrique de A par rapport a I'origine). L’ensemble ;| HAU-A)\
{z|k(z) = 0} est aussi de mesure nulle car ¢’est un ensemble de points réguliers de
vt,e dont I'image est contenue dans un ensemble de mesure nulle. On peut écrire
alors :

/ ,Cd’Ut :/ Jac(’yt’g)dvt :/ Jac(’}/t75)d’l)t7
ci C\{a|k(a)=0} C\v; 2(AU—-A)

ou Jac désigne le jacobien. Pour tout 7 € Z, on définit A; par

Ay ={ve S\ {AU-A} | It e,v) =i}

kdv, = / Jac(v; o )dvy = z/ dv.
/05 =2 [, e =35 |

%

et on a

En décomposant A; en ses composantes connexes, A; = LA,

kdv; = 3 dv.
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Si A;, = —Aj alors pour tout v € Ay, I(t,e,v) = [(t,e,—v) = i et 1 =
LIt e, 0)+ I(t,e,—v)]. Si Ay # —Ay alors il existe un couple (5,1) tel que
Ajy=—Ay. Ona fA‘k dv = fA'z dv. Dans ce cas

1 1
z/ dv+j/ dv:—(iJrj)/ dv+—(i+j)/ dv
A A 2 A 2 A
1

1
= 5/;% [I(t,e,v)+ I(t, &, —v)|dv + §/A [I(t,e,v) + I(t e, —v)]dv.

il

5l

On en déduit la formule d’échange :

/ h(2)do, — / (t,e,0) 1+ I(t, e, —o)]do —
s Sn—1\(AU—A)

% /sn—l [I(t,e,v) + I(t, €, —v)]dv.

Un passage a la limite permet de conclure. Il
Corollaire 5.4.

lim lim kdv, — lim lim kdv; = —Vol(S™ )deg, H.

e—0 0+t cs e—0¢t—0— o

Corollaire 5.5. Si f admet une singularité algébriqguement isolée en 0 :

lim lim kduv;
e—=0t—0t foe
t

< %vol(s"*)M%

ot
M, = Max (|degoVF + degoH -+ (1"~ (fc))' ™77,
[degoVE + dego H — (s ()1 ),
et
lim lim o kdv,| < %Vol(S”‘l)M,7
ou

1

M- = Max (|—degoVF +degoH + ("~ (o)) "7,

| ~degoVF -+ degy H — (u* ! (Je))! -

).

" fe) étant le nombre de Milnor de la singularité obtenue en coupant fa'(0)
par un hyperplan générique.
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Preuve. D’apres la Remarque 4.2, on peut choisir U tel que pour tout v € U, le
complexifié de f : {P, = 0} — R ait pour nombre de Milnor p"~!(fc). D’apres le
Théoreme 2.1 de [EL], pour tout v € U,

1

|degoV(fip,—0)| < (" H(fe))' .

Appliqué a la déformation F(t,z) = f(x) — ¢, le Théoreme 5.3 s’écrit :

Théoréme 5.6. Soit f : R” — R un polynéme tel que f(0) = 0 et tel que 0 soit
un point critique isolé de f. Alors

lim lim kdvy = %Vol(S’"il)degOVf + %/ degoV(fip,—0)dv,

e—0 X x—0+ cg gn—1

1 1
lim lim kdvy = —=Vol(S" 1)deg,Vf + —/ degy V(£ p,—0)dv,
e=02—-0- J s 2 2 Jgn— v

ou C% est la fibre f~1(\) N B2,

Nous présentons ici un premier exemple. Soit f(z,v,2) = 2% + 4> — zz et
soit F(t,z,y,2) = 2 + > — 2z + t(x +y + z). A laide du programme de Lecki
mentionné dans l'introduction, on trouve deggVF' = 1 et degoH = —1. Il nous faut
calculer [, degoV(fp,—o)dv. Soit v = (a,b,c) € S?, alors (z,y,2) € {P, = 0} si
et seulement si az + by + cz = 0. Si ¢ # 0 alors

a b a\?2 b
f\Pv:0($7y7Z) = f <$7 Y, _Zx - Zy> = (1 EE 2) ZEQ -+ Zfﬂy‘f'yg = g($7y)'

On a %(w, y) =2(1+ L)z + by et S—Z(x7y) = 3y” + 2. 1l est facile de voir que
(0,0) est un zéro isolé de Vg. De plus

2 2
720,0) 70,0 ¥
2y (0,0) 220,00 |

et done, pour b et ¢ différents de 0, (0,0) est un zéro non-dégénéré de Vg et
degpVg = —1. On trouve que

/2 degoV(fp,=0)dv = —4m
s

et que

lim lim kdv, = =27
e—0¢t—0t+ ot

et hmEHO hthO* fcz—: kd'Ut = —6m.
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6. Le cas des courbes planes

Soit f : R? — R un polynéme tel que f(0) =0 et Vf~1(0)N B, C {0} pour
0 < e <« 1. Soit e la multiplicité de f, c’est-a-dire que f s’écrit :

f(x7y) - fE(x7y) + f6+1(x7y) +ee fd(xv y)7

ol d est le degré de f et ot pour tout 7 € {e, ..., d}, f; est la composante homogeéne
de degré i de f. Le Théoreme 5.3 devient alors :

Théoreme 6.1. Si e est impair,

lim lim kdvy = —7 - (degoVE 4 degyH ),

0 +
e—0¢t—0 ce

lim lim kdv, = —7 - (degy VE — degy H ).

e—0t—0— ce
t

Si e est pair,

2
lim lim kdvy = —7 - (degg VI + degy H) +/ signe f.(—tan@,1)do,

e—0¢—0t Cf

2

lim lim kdv, = —m - (degy VI — degy H) +/2 signe f.(—tan®,1)do.

e—0¢t 50— ce

2

Preuve. On remarque d’abord que si g : (R,0) — (R,0) est un germe analytique
de multiplicité ¢, alors degyg = 0 si € est pair et deggg = signe g.(1) si € est impair.

Soit v € S, il existe § € [—, 7| tel que v = (cos#,sinf). Dans ce cas, (z,y) €
{P, = 0} si et seulement si zcosf + ysinf = 0. Si § # £%, on a alors

d
fip,—o(®,y) = f(—tanby,y) = > " y* fi(—tan0, 1),

et donc
d

V(fip,—o)(@,y) =Y _iy* ' fi(—tan6, 1).

i=e

Si e est impair, degoV (f| p,—0) =0. Si e est pair, degoV(f| p—o) = signe fo(—tand,1).
On trouve pour ce dernier cas :

/ degOV(f‘Hv:O)dv:/ signe f.(—tan@,1)dd
Sl

-

NE]

= 2/ signe f.(—tan@,1)de. O

x
2
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Exemple. Soit f(z,y) = y> — 2% et soit F(t,z,y) = y> — 2> — tz. A l'aide du
programme, on trouve deggVIE = —1 et degoH = 1. La multiplicité de f est 2 et
folx,y) = 22, On a donc

/2 signe fo(—tan@,1)df = .

x,
2

Finalement, on obtient

lim lim kdv; = et lim lim kdv; = 3m.
e—0¢t—0+ cs e—0t—0— GE

Cette différence entre les deux limites est due au fait que la fibre £, 1(0), t <0, a
un ovale de plus que la fibre f;l(O)7 t>0.
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