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Espaces d’arcs et invariants d’Alexander

Gil Guibert

Résumé. Nous calculons la fonction zeta d’Igusa motivique de Denef-Loeser associée a une série
irréductible de deux variables et retrouvons & I'aide de ce résultat la formule donnant le spectre
de Hodge—Steenbrink d’une courbe plane irréductible en termes des données de Puiseux. Nous
étudions ensuite une généralisation de la fonction d’Igusa & une famille de fonctions et montrons
que cette fonction d’Igusa permet de retrouver les invariants d’Alexander de la famille. Nous
appliquons ce résultat en dimension deux pour obtenir une expression du polynéme d’Alexander
d’une courbe plane.

Abstract. We compute the motivic Igusa zeta function of Denef—Loeser associated with a two
variables irreducible serie and use this result to give a new proof of the formula expressing the
Hodge-Steenbrink spectrum in terms of the Puiseux data. We study a generalisation of the
motivic Igusa function to a family of functions and show that this Igusa function is related with
the Alexander invariants of the family. Using this result, we obtain a formula for the Alexander
plolynomial of a plane curve.

Mathematics Subject Classification (2000). 14B05, 14H20, 13D40.

Mots clés. Espaces d’arcs, fonction d’Igusa motivique, fibre de Milnor, singularités de courbe
plane, invariants d’Alexander.

Keywords. Arcs spaces, motivic Igusa function, plane curve singularity, Alexander invariants.

1. Introduction

Le point de départ de ce travail est la fonction zéta d’Tgusa motivique intro-
duite par Denef et Loeser dans [11]. Sa définition utilise la théorie de I'intégration
motivique, introduite par Kontsevitch [18] et développée par Batyrev et Denef-
Loeser, qui est un analogue sur k((¢)) (k désigne un corps de caractéristique nulle)
de l'intégration p-adique. Dans cette théorie, Q,, est remplacé par k((t)) et I’an-
neau Z, par k[[t]]. L’espace d’intégration n’est plus l’espace des points entiers
d’une variété définie sur un corps p-adique mais l’espace des arcs tracés sur la
variété : c’est un schéma noté £(X) dont les points k-rationnels sont les points
k[[t]]-rationnels de X. Plus précisemment, on peut, pour tout entier naturel n
définir le schéma des arcs tronqués a l'ordre n tracés dans X, noté £, (X) dont
les points k-rationnels sont les points k[[t]]/(¢"1!)-rationnels de X ; si m > n, on
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dispose d’un morphisme naturel de troncation @, , : £, (X) — £, (X); on définit
alors £(X) comme la limite projective des £,,(X) dans la catégorie des schémas.
Notons que L£o(X) ~= X, ce qui permet de voir £,,(X) comme variété au-dessus de
X via le morphisme 7, o. Les intégrales considérées sont a valeurs dans un anneau
M, défini de la facon suivante :

On considere le groupe de Grothendieck Ko(Vary) des variétés : c’est le groupe
engendré par les classes d’isomorphisme de variétés sur & et les relations [X]| =
[V]+[X\Y]siY est un fermé de Zariski de X. On note L := [Al] et on définit
M, comme le localisé en L de Ky(Vary); Mk est défini comme le complété de
M, pour la filtration par la dimension (voir par exemple [15] et [20]). La fonction
zéta d’Igusa motivique est un analogue dans le contexte de l'intégration motivique
de la fonction zéta d’Igusa locale associée & un polynéme (voir 7] & ce sujet).

Cette fonction est définie comme suit :

Soit X une variété algébrique complexe de dimension d, z un point de X ; on
définit X,, comme le sous-espace de w;é({x}) sur lequel f est d’ordre n. On dispose
d’un morphisme naturel de X,, vers le groupe multiplicatif qui a un arc ¢ associe
le coefficient de ¢ dans la série f(¢); on le note ac(f). La fibre X, 1 au-dessus de
1 de la restriction de ac(f) & X,, est naturellement munie d’une action du groupe
des racines n-iemes de 'unité induite par multiplication sur le parametre ¢, ce qui
permet de définir la classe de X, ; dans I'anneau M’,j (qui est une version de M,
pour les variétés munies d’une action du pro-groupe fi des racines de I'unité). On
pose alors

Zto(T) = [Xn 1, fIL74T™.
n>1

Inspirés par des travaux de Denef dans le cadre p-adique, Denef et Loeser ont
exploré les rapports entre la fonction d’Igusa motivique et les invariants classiques
associés au faisceau des cycles évanescents de f tels que la fonction zéta de la
monodromie et le spectre de Hodge. Ils ont montré que la fibre de Milnor motivique,
qui est une limite en 400 de la fonction d’Igusa motivique, et la fibre de Milnor
usuelle ont méme réalisation de Hodge [11].

Il devient alors naturel de tenter de décrire les espaces d’arcs afin d’obtenir
des formules explicites pour certains invariants locaux des singularités de fonction.
C’est la motivation de ce travail.

L’objet du premier paragraphe est d’introduire les outils nécessaires a la défini-
tion de la fonction d’Igusa motivique et de rappeler un résultat fondamental de
Denef-Loeser sur le lien entre cette fonction et la théorie des cycles évanescents.
Nous terminons par le calcul de la fibre de Milnor motivique dans le cas d’une
fonction non dégénérée par rapport a son polygone de Newton.

Le paragraphe suivant est consacrée a 1’étude des espaces d’arcs associés a une
série irréductible de deux variables. Nous décrivons ces espaces a l'aide de deux
parametres : la valuation en ¢ d’une coordonnée transverse et le contact de I’arc avec
les développements de Puiseux de la courbe. Cette description aboutit au calcul de
la fibre de Milnor motivique de f & l’aide des paires de Puiseux (Théoreéme 3.3.1).
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En utilisant le théoreme de Denef-Loeser mentionné plus haut, nous retrouvons
a partir de cet énoncé la formule exprimant le spectre de Hodge en termes des
données de Puiseux (cf. corollaire 3.4.1).

Nous nous intéressons au troisieme paragraphe a une généralisation naturelle de
la fonction d’Igusa motivique a plusieurs fonctions fi, ... f,. Si Xg := ﬂleffl(OL
cette fonction est définie comme une série a coeflicients dans un anneau de variétés
relatives M WoRGE Dans 'article [21], Sabbah généralise & une famille de fone-
tions f1,..., fpla construction du complexe des cycles proches associé a une fonc-
tion analytique. Ainsi, pour tout point = de Xy, il associe & cette famille de fonc-
tions sa fonction zéta d’Alerander en x notée ACI’Z ; ¢’est une fraction rationnelle a
p variables qui coincide avec I'inverse de la fonction zéta de la monodromie lorsque
p = 1 et avec le polynéme d’Alexander de ’entrelac algébrique associé & la courbe
d’équation fi ... f, lorsque 'espace ambiant est de dimension deux et les f; sont
des séries irréductibles deux a deux distinctes.

Une question naturelle est 1’étude du lien entre cette fonction d’Alexander et
la fonction d’Igusa motivique définie précédemment. Nous donnons un énoncé qui
montre que la premiere se déduit de la seconde (Théoreme 4.4.1).

Nous nous intéressons ensuite au calcul de la fonction d’Igusa motivique as-
sociée a une famille de p séries irréductibles de deux variables. Nous représentons
les différents développements de Puiseux de ces fonctions sur un arbre qui reflete
les contacts mutuels de ces développements. La fonction d’Igusa motivique as-
sociée s’exprime comme une combinaison linéaires a coefficients dans M XoxG?,
de fractions rationnelles a p variables, indexée par les sommets, branches et feuilles
de I'arbre des contacts. En utilisant le théoréeme 4.4.1, on en déduit une formule
exprimant la fonction zéta d’Alexander des p fonctions en termes de 'arbre des
contacts (proposition 5.3.1).

Nous terminons en appliquant les résultats précédents au calcul de la fibre de
Milnor motivique dans le cas d'une fonction de deux variables non nécessairement
irréductible (proposition 5.4.1).

Remerciements. L’auteur tient a remercier M. Merle sans les conseils et les en-
couragements duquel ce travail n’aurait pas vu le jour, N. A’Campo et F. Loeser
pour d’intéressantes discussions, ainsi que M. Brion dont les remarques et sugges-
tions ont contribué a améliorer ce texte.

2. Fonction zéta d’Igusa motivique associée a une fonction régu-
liére et fibre de Milnor

Les deux références principales pour cette section sont [15] et [20].
Dans ce paragraphe k désignera un corps algébriquement clos de caractéristique
nulle.
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Espaces d’arcs associés a une variété algébrique. Soit X une variété
algébrique de dimension d sur k. Pour tout entier n, on peut définir le schéma
L,(X) des germes d’arcs tronqués & l’ordre n sur X, dont les points K-rationnels
sont les points K|[[t]]/t"T1K|[t]] rationnels de X (pour tout corps K contenant
k). Sin > m, on dispose d’un morphisme naturel de troncation 7, , : £,(X) —
L(X). Les £,(X) forment un systéme projectif pour les morphismes 7, ,,. On
note £(X) la limite projective de ce systeme dans la catégorie des schémas. C’est
un schéma dont les points K-rationnels sont les points K{[¢]] -rationnels de X
(pour tout corps K contenant k). Notons que Lo(X) = X et qu’on dispose donc
d’un morphisme naturel 7y : £{X) — X qui & un arc associe son origine. Si X est
lisse, pour tout entier naturel n, £,,(X) est un fibré en espaces affines de dimension
nd au-dessus de X. Notons que les définitions précédentes s’étendent au cas ou X
est un schéma formel.

Groupes de Grothendieck de variétés. Soit S une variété algébrique sur
k. On appelle S-variété une variété algébrique X sur & munie d’un morphisme
X — S et on note Varg la catégorie dont les objets sont des S-variétés et les
morphismes sont les morphismes de k-variété commutant aux morphismes vers
S. On notera X/S une S-variété ou seulement X lorsque le contexte sera clair.
On définit le groupe de Grothendieck relatif Ky(Varg) des S-variétés comme le
groupe engendré par les classes d’isomorphismes de S-variétés [X] (pour X une
S-variété) et quotienté par les relations [X]| = [Y] + [X \ Y] si ¥ est un fermé
de Zariski de X. Le produit fibré au-dessus de S munit Ky(Varg) d’une structure
d’anneau. Par ailleurs, on peut associer a tout ensemble constructible, c’est-a-dire
a toute réunion finie de variétés au-dessus de S localement fermées, sa classe dans
Ko(Varg) :si X = U X, ol les X; désignent des variétés localement fermées, on
note [X] = 30 1 [Xi] = 21 cicjanl X N X514 4 (=1)" N, XG] (cet élément
de Ky(Varg) est indépendant du choix des X;).

On note L la classe de A} x S (vue comme S-variété via la projection naturelle
sur S) dans Ko(Varg) et on définit Mg comme anneau obtenu par localisation
de Ko(Varg) en L.

Si S = Spec(k), on adoptera la notation Vary, pour Varg. [’application naturelle
X — [X] de Var, dans Ko(Vary) s’interpreéte comme la caractéristique d’Euler
universelle. Notons que si s est un point de S on dispose d’une application naturelle
Fibres, de Ko(Varg) dans Ko(Vary) définie par [X] — [X;], X, désignant la fibre
de X — S au-dessus de s.

Ces définitions peuvent s’étendre au cas de variétés munies de 'action d’'un
groupe de racines de 'unité de la maniere suivante : pour tout n € N on note
1 le groupe des racines n-iemes de 1'unité ; les p,, forment un systeme projectif
pour les applications = — z? de pi,q dans p, ; on note i la limite projective de ce
systeme. Une action de p,, sur une S-variété X est dite bonne si toute orbite est
contenue dans une sous-variété affine de X. On définit le groupe de Grothendieck
monodromique K% (Varg) comme I'analogue de Ko(Varg) pour les variétés munies
d’une bonne action de fi. Si X est une variété munie d’une bonne action de [, on
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notera parfois [X, 4] la classe de X dans K% (Varg).

Mesure motivique. Un sous-ensemble S de L£(X) est dit stable si il existe
un entier naturel n et un sous-espace constructible C de la variété £,,(X) tel que
S = w7 1(C) et tel que pour tout m supérieur & n, la restriction de T, &5 soit une
fibration triviale par morceaux en espaces affines. La deuxieme condition est au-
tomatiquement vérifiée si X est lisse. Si S est stable, la quantité [m,, (S)JL—(m+1)d
est indépendante de m pour m assez grand. On la note w(S). L’application
définit une mesure, appelée mesure motivique, sur la sous-algebre booléenne des
espaces stables de £(X). Notons que cette mesure peut s’étendre en une mesure g
définie sur une algebre de sous-ensembles de £(X) (qui est par définition ’algebre
des parties mesurables) et a valeurs dans le complété de Mg pour une filtration
convenable. Nous n’utiliserons pas cette généralisation dans cet article.

Caractéristique de Hodge monodromique et spectre de Hodge. Dans
la suite, on travaillera sur le corps des complexes. On appelle structure de Hodge la
donnée d'un Q-espace vectoriel de dimension finie H muni d’une bigraduation H ®
C =@, ez HP telle que HP? = HOP et que pour tout m, lespace @, g HP
homogene de poids m, soit défini sur Q ; en considérant les morphismes d’espaces
vectoriels respectant la bigraduation, on obtient une catégorie abélienne notée HS
munie d’un produit tensoriel. On peut alors définir le groupe de Grothendieck
associé Kg(HS) qui est naturellement muni d’une structure d’anneau.

Une structure de Hodge mixte est la donnée d’'un Q-espace vectoriel de di-
mension finie V muni d’une filtration croissante finie W,V (appelée filtration par
le poids) telle que G7lY (V) soit munie d’une structure de Hodge dont la com-
posante homogene de degré m est GrYY (V). Le groupe de Crothendieck de la
catégorie ainsi obtenue est aussi égal & Ko(HS) et la classe de V' dans Ky(HS)
vaut [V] =Y, [GriY (V).

Pour toute variété algébrique X sur C, les groupes de cohomologie a support
compact H:(X, Q) admettent une structure de Hodge mixte. On peut donc as-
socier & toute variété X sa caractéristique de Hodge dans Ko(HS) : xn(X) =
Yo (—1)IHIX, Q)] ot [HI(X,Q)] est la classe de H:(X, Q) dans Ko(HS). Si YV
est une sous-variété de X, la suite exacte longue induite en cohomologie est com-
patible avec les structures de Hodge correspondantes, si bien que la caractéristique
de Hodge x;, s’étend en un morphisme d’anneaux de Ky(Vare) dans Ko(HS) que
P’on note encore yp,. L’image de la droite affine étant inversible dans Kq(HS), on
en déduit que yj s’étend & Mc.

Notons HS™" la catégorie abélienne des structures de Hodges mixtes munies
de I'action d'un endomorphisme quasi-unipotent. Si X est une variété algébrique
munie d’une bonne action de i, ses groupes de cohomologie sont munies de ’action
d’un endomorphisme quasi-unipotent ; ceci permet de définir la caractéristique de
Hodge monodromique de X

XRM(X) = Y (-1)[HiX, Q)] € Ko(HS™™).

i
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Par ailleurs, on sait associer & un élément de HS™°" son spectre de Hodge ; pour
o € Q, on note HE? l'espace caractéristique de HP'? associé & la valeur propre
exp(2mia). Le spectre de Hodge de H est le polynome de Laurent en t%, (o
m désigne I'ordre de quasi-unipotence de ’automorphisme correspondant), défini
par :

hsp(H) == > t* thdim(]{g’q))

e Qno,1] p.qcd

On note Sp la composée de hsp : Ko(HS™™) — U, Z[tY/", ¢~/ et de la

mon

caractéristique de Hodge monodromique x}

Fonction zeta d’Igusa motivique. Dans cette section, on désigne par f :
X — A} une fonction réguliere et on pose Xo = f~1(0).

Dans cette situation, si z est un point de Xy, on dispose d’un certain nombre
d’invariants classiques liés a la la fibration de Milnor associée a f et a ’action
de la monodromie sur la cohomologie de la fibre, comme la fonction zéta de la
monodromie ou le spectre de Hodge ([23] et [24]). L’objet de cette section est
d’énoncer un résultat de Denef-Loeser sur le lien entre ces invariants et la fonction
d’Igusa motivique associée a f. On notera ord, la valuation #-adique d’une série
de la variable t.

Pour tout entier n, on définit suivant Denef-Loeser

Xn ={p € L,(X), ordif o =n}.

Notons que ce sous-espace constructible de £, (X) est naturellement muni d'une
action de G, ¢ définie par (c.p)(t) := @(ct); cette action induit clairement une
bonne action de p, sur la fibre X,, 1 := {¢ € X,, | ac(f)(¢) = 1}.

Ceci permet de définir la fonction zéta motivique associée & f comme la série
formelle a coefficients dans M%O ;

Zy(T) = 3 X1/ Xo, AILT)™.

n>1

Un résultat de Denef-Loeser (voir par exemple [15] Théoréme 3.3.1) exprimant
Z(T) a laide d'une résolution des singularités montre que Z;(1') est un élément
de la sous M -algebre de M’ [[T]] engendrée par les fractions rationnelles du

type ]L]]:%Tfil (pour a et b entiers naturels).
Notons qu’on peut définir un morphisme limy_,., de cette sous-algebre dans

MﬂXO en posant limTHw(%) = 1,

Ceci permet de définir un élément Sy := —limp_ Z;(1') dans M%O. On pose
Sy o = Fibre,(S;) pour z € Xy; cette variété virtuelle est par définition la fibre
de Milnor motivique de f en x.

On note par ailleurs S7 := (=1)"1(Sy — [Xo]).

Indiquons un résultat de Denef et Loeser qui montre que S}{’ est lié au complexe
de faisceaux des cycles évanescents de f sur Xp.
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Les groupes de cohomologie a support compact de la fibre de Milnor I, d™une
fonction f en z € f1(0) sont munis d’une structure de Hodge mixte naturelle
compatible avec 'action de I’endomorphisme quasi-unipotent de monodromie M,
(voir [23]).

On définit alors le spectre de Hodge—Steenbrink de f en = par :

hsp(f,x) = (=1)%hsp(xp" (F) — 1).

Nous pouvons alors énoncer le théoreme suivant :

Theorem 2.0.1 ([11]). La caractéristique de Hodge de la fibre de Milnor motivique
et celle de la fibre de Milnor usuelle sont égales :

X1 (St,z) = xn(Fi).

En particulier, hsp(f,z) = Sp(Sﬁz). La fonction d’Igusa motivique associée a
f détermine donc le spectre de Hodge—Steenbrink de f au point x.

Remarque 2.0.2. Dans le cas ou f : X, — C,0 est un germe d’application
analytique complexe, il est possible de définir de la méme maniere que ci-dessus
une fonction d’Igusa motivique associée a f en z. Les espaces X,, utilisés dans la
définition de Z; sont des variétés algébriques au-dessus de X (pour tout z € X,
X, N7y ({z}) ne dépend que du jet & I'ordre n de f en x). On peut vérifier que
le théoreme précédent reste vrai dans ce contexte.

2.1. Un exemple : fonctions non dégénérées par rapport a leur polyéedre
de Newton

On s’intéresse dans cette section au calcul de la fonction zéta associée a une
fonction non dégénérée par rapport a son polyedre de Newton. On se donne donc
un polynéme nul & Porigine f : C? — C et des coordonnées z1, . .., z4. On note
M le réseau correspondant aux monémes (pour ces coordonnées) et N son dual;
on note I' C M le polyedre de Newton de f pour zy,...,z4 et mp sa fonction
d’appui, c’est-a-dire la fonction qui & un élément de N associe le minimum de sa
restriction a T".

A chaque face v de codimension 1 de I' correspond un vecteur de N qu’on
nommera normale & v : ¢’est 'unique vecteur primitif (¢’est-a-dire & coordonnées
premieres entre elles) de NV dont la restriction a I" atteint son minimum sur v ; on
le notera e(7). Si a € N%, on note v(a) la face de I' sur la quelle la restriction de
a & T atteint son minimum. L’ensemble {a € N¢ | v(a) = v} est un céne convexe
relativement ouvert du réseau N ; si v est l'intersection des faces vq,...,~, de
codimension un, ce céne est engendré par les normales e(7#) correspondantes: on
le notera o(v). La collection de cones ainsi définie s’organise en un éventail, qui
est par définition [’éventail normalde I'. On note f(z) 1= 3=, s ya fua”. Siy est
une face de I, on notera f, le polynéme quasi-homogene ZV@ Tz
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On introduit les notations suivantes : Si  est une face de I', on note X, (1) la
variété {z € G;ln,c | fy(xz) = 1} munie de I'action naturelle de fi,,,.(o) induite par
la quasi-homogénéité de f, et X,(0) = {z € G o | f(z) =0}

On suppose dorénavant que f est non dégénérée par rapport & I' (au sens de
[18]) et on cherche & calculer Z(T') € M4[[T]]. On identifiera dans tout ce qui suit
L(AL) a C[[t]]? via le systeme de coordonnées z, ...,z,4. Pour tout ¢ € L(AZ),
on note ord,z(yp) = (ord,(z1(p)), .. .,ord,(z4(¢)). Pour tout a € N% et n € N on
pose : X, := {¢ € L(A?) | ordsz(¢p) = a} et X, = X, N X, 1. Notons que pour
tout @ € N9, et p € X,, on a ord; f(p) > mr(a). Pour caleuler u(Z,), on peut
se contenter de calculer -, .ya 1(Xq,n) car le complémentaire de Uye(n+ya Xan
dans X, est de mesure motivique nulle. En utilisant le fait que les cones de >
forment une partition de (N*)¢ on en déduit que la fonction zéta motivique
associée a f s’écrit

LY WX ) =Y Y Y

n>1 Y y(a)=yn>mr(a)
= L0 37wl Xame@)T™ L7 T (X )T
v y(a)=y n2mr(a)+1

(ZZ )+ Z2( ))

On peut évaluer la mesure de l’espace Z, ,, pour n > mr(a) + 1 par la formule
suivante :

Lemme 2.1.1. Pour tout a € N% etk >1, on a :
#Xaimego 1) = L@ )L — 1),

Preuve. Par additivité de p, il nous suffit d’évaluer la mesure de X3 2mr(e)thtl

Soit ¢(t) := (z1(t),...,z4(t)) un arc tronqué vérifiant
ordiz(p) = a et ordify(q)(p) > mpe) + k.
On peut donc poser @ := (=% zy(t),...,t7%z4(t)) olt pour tout 4, Z; 1=t~ z; est
de valuation nulle. Nous pouvons écrire f(p)(t ) = 1" f oy (@,t). Nous sommes
ainsi ramenés & évaluer la mesure de {¢ | ord; fv(a (@) > k+ 1}
Notons que la fonction fv(a) est lisse en ¢(0) : cela résulte de 'identité
a]?v(a) 9f+(a)
——(¢(0),0) = ——=((0
) (5(0),0) = 522 5(0),
de I'hypothese de non-dégénérescence et du fait que $(0) € Gﬁz,c

On en déduit que l'espace des solutions de f7(a) = 0[tFT1] est un fibré au-
dessus de A, (0) de fibre isomorphe & un espace affine de codimension k dans
szl tC[t]/ (tmr@ts(@)—aitktly,
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L’espace XZnr(@+kHL oot done isomorphe & X (4(0) R ATrgEyta(E B (e -k

sa mesure vaut donc [Xw(a)(O)]L’k’s(a). En calculant de maniere analogue la me-
>mr(a)+k

sure de X , on aboutit au résultat annoncé.
Si on pose Sy (L, T) :=3" .,y L—s@7mr(®) on en déduit que
LT
Z7(T) = (L - 1)@[)(7(0)]57@7 T)
d’onl
. LT
27(T) = 3L - DI, Ol =75 L ).

Y

Par ailleurs, on a la formule suivante :

Lemme 2.1.2. (X, np(0)) = [XW(G)(1)>MMF(Q)]L75(G)‘

Preuve. On fixe une forme linéaire a qui atteint son minimum sur ~. L’espace
me(a)(Xa,mp(a)) est paramétré par le produit du tore de dimension d par un
espace affine. On note ¢ = (¢;)1<;<q des coordonnées sur le premier facteur; par
définition de Zg ymy(,,, on a ac(f)x = fy(c), donc Xy mp,, est de mesure

[X5 (1)) oy JL 0.

@ m0(a)

La contribution de ces termes & la série vaut donc > [X+ (1), g, |5 (T, L). On
en déduit la somme totale :

Proposition 2.1.3. Si f est non-dégénérée par rapport a son polyédre de Newton,
on a :

—1
Z(1) =L Y (X 0o |+ (6, O~ D

—  _)s,(T,L).
1—IL1T) wielela]

Remarque 2.1.4. On peut trouver dans [10] un résultat analogue pour la fonction
zéta topologique et dans [9] un énoncé similaire concernant la fonction d’lgusa p-
adique.

Pour évaluer la limite de cette série, nous utiliserons le lemme suivant.

Lemme 2.1.5. Soit C un céne conveze rationnel polyhédral, | et ! deuz formes
linéaires a valeurs strictement positives sur C.

Notons Pgy = Zkeé‘ LY (R idk) ; alors la limite de la fraction rationnelle
Pe, quand T — 0o vaut (—1)3m(C),
Preuve. Si C est un simplexe dimension j régulier, c¢’est-a-dire engendré par une

; . ] o s Y14z 3 Ties)
partie d'une base £1,...¢;, la série considérée vaut [];_, T-7ey done tend vers
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—1)7; le cas général s’en déduit en décomposan en une réunion de simplexes
1)7:1 | s’en déduit d t C d |
réguliers relativement ouverts disjoints.

On déduit de la proposition 2.1.3 et du lemme 2.1.5 :

Proposition 2.1.6. Si f est non dégénérée par rapport a son polyédre de Newton
on a

Sro =LY ()" CON (X, (1), pom, ] = X4 (L - 1)) -

3. Espaces d’arcs associés 4 une courbe plane irréductible

Notations et conventions. On considere un polynéme f distingué irréductible
dans Cl[z]][y] et on suppose que dans le systéme de coordonnées choisi, la branche
de courbe plane a ’origine C définie par f admet une paramétrisation de la forme :

m

Z azu’ = h(u)

i>m

avec la condition pged(m, {i | a; # 0}) = 1. Autrement dit, on a dans Cl[[u]][y] la
factorisation suivante :

F@m™y) = T (v = hl(Cu)).

¢m=1

On pose B = min{i | a; # 0 et m t i} et e = (B, m); on définit p; et ny
par les relations 51 = pie; et m = nie;. On définit de méme par récurrence :
Vg > 2,8, =min{i | a; # 0 et ;1 {i},eq = (By,eq—1) et enfin p, et n, par les
relations : B, = pgeq et eg_1 = ngeq. On pose Ny = [[;c,mi et g =min{q | e; =
1} ; remarquons qu’on a la relation N, = %

Les couples (nq,pq)1<q<g sont les paires de Puiseux de C. On conviendra
également que 3y = 0, eg = m, Ng = 1 ainsi que 3,1 = oo.

L’ensemble I'c = {ord,g(h(u)), g € Oc} est un semi-groupe ([25]). Il admet
un systeme minimal de générateurs noté usuellement {3, .. .Eg}. Ces générateurs
satisfont les relations

30 - 607 Bl = ﬂth > 2a Bq - anlgqfl +5q _qul

Rappelons qu’on désigne par L£(A%) le schéma des arcs tracés dans A% ; on
note ord; la valuation ¢-adique.

Le but de ce qui suit est de décrire les G, c-variétés X, 1 (et laction de py,)
a I'aide du semi-groupe de f; pour cela, nous commencons par identifier £(AZ)

a C|[[t]]? via le choix des coordonnées (z,y) puis nous paramétrons les éléments
de C[[t]]*> sous une forme normalisée (du type Puiseux). Ceci permet de définir
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une notion de contact (fractionnaire) d’un arc avec f; nous classons ensuite ces
arcs selon deux parametres, la valuation en ¢ de leur coordonnée = et leur contact
avec f.

3.1. Ecriture normalisée d’un arc et contact avec f

Considérons un arc ¢(t) := (z(t),y(t)) avec z(t) # 0. Nous pouvons travailler
avec une écriture normalisée de ¢ comme le montre le :

Lemme et définition 3.1.1. Il existe w € C[[t]] et (X,Y) € C[w]]? tels que :
o) = (X (w(t),Y (w(t)) avec X (w) = w™ etY(w) = > 51 bjw? avec la condition
pged(m’,{j [ b; #0}) = 1.

On appellera une écriture de ce type écriture normalisée de ¢.

Preuwve. Désignons par d le pged des puissances de ¢ qui figurent dans z(t) et
y(t), et posons z(t) = /(1) et y(t) = ¢/ (t%) (2’ et ¥’ € C[[u]] oit u désigne une
indéterminée) ; alors, si m’ désigne la valuation de z’, posons z(u) := v ™ z/(u)
et désignons par Z(u) une racine m’-ieme de Z(u).

L’application v — uz(u) =: w'(u) est un automorphisme de C[[u]]; on peut
donc écrire y'(u) == 3" 5 byjw'(u)’.

Si on pose w(t) = w'(t%), il est clair que le paramétrage (w™ 7Zj21bjwj)
satisfait aux conditions requises. On peut alors poser la définition suivante :

Définition 3.1.2. Considérons une écriture normalisée de ¢ comme ci-dessus ; on
appelle ordre de contact de ¢ avec f le maximum des valuations en z des séries

fractionnaires (3,5 bj&7zm" — 3 s, a;Cam) (pour ¢ € tim, et § € finy).
Nous avons alors le résultat élémentaire suivant :

Lemme 3.1.3. Soit r un ordre de contact et q Uunique entier tel que %" <r<

% (on a posé Bgy1 = o0 et By = 0); alors, pour tout arc ¢ dont le contact avec
f vaut r, Ny divise ords(z(¢)).

Preuve. Soit ¢ un arc dont le contact avec f est r; puisque le développement
fractionnaire normalisé de ¢ coincide avec I'un des développements de f au moins
jusqu’a I’ ordre % et que cette fraction s'écrit sous forme irréductible p,/N,, on
a la relation de divisibilité Ny|m’ et donc également N,|ord:(z(p)).

Ceci nous autorise pour tout entier [ & définir Z, ; comme le sous-espace con-
structible de £(AZ%) des ares ayant le contact r avec f et tels que ord;(z(t)) = (N,.
Remarquons que tout arc ¢ de Z, ; vérifie la relation

ord(f o @) =IN, <req + %(eq_l —eg) o+ %(60 —eq) + %%) = In(r)
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si bien que chaque espace d’arcs Z, = {¢ € L(A%),ord;(f o p) = n} est une
réunion de Z, ;.

On pose alors X, ; = Ty (Z,1) ; ¢’est un sous-ensemble constructible de X\,
naturellement muni d’une structure de G, c-variété via la restriction du mor-
phisme ac(f); on notera X, ;1 pour {¢ € X, ; | ac(f)(¢) = 1}.

Les résultats suivants décrivent les G, c-variétés X, ; selon les valeurs de r et
de [.

3.2. Description des espaces d’arcs associés a f

Dans tout ce qui suité pour tout contact r € Q et [ € N, on désigne par ¢
I'unique entier vérifiant ~ < r < ﬁ‘;% ; on pose v(r) = rNy; par définition de g,
le rationnel {v(r) est un entier, sauf si r = %

Nous commengons par décrire le cas ott ¢ = 0. On notera |s| le plus grand

entier strictement inférieur a un rationnel s.

Lemme 3.2.1. Soit r un ordre de contact vérifiant 0 < r < %1 On a alors n(r) =
rm et v(r)=r.

i) Si mr < 1, alors X, ; est isomorphe comme Gy, c-variété d G, c X Alg”uh’
munie du morphisme c — ™ ; Paction de [i sur X, ;1 se factorise par Uaction de
Lo, donnée par .c := (c.

ii) Sé mr > 1, alors X, est isomorphe comme Gy, c-variété a (Gm,c)2 X
Aglm*l*rl munie du morphisme (c,wi,a) — ¢ ; Uaction de i sur X, ;1 se fac-
torise par Uaction de ji,, donnée par .c := (ec.

Preuwve. Tout arc de Z,; admet une paramétrisation du type :

z(t) = w(t)
y(t) = Zajw(t)j +eatmt 4 Z byt?
i<r ri<j<rim

avec ¢ # 0.

Dans le cas ol mr < 1, on a z(t) = 0 [{""™T1] et lespace X,y est donc
paramétré par G, x Alcn(r)_l"(r)7 ce qui prouve i).

Siomr > 1, z(t) # 0 [t""™F1] et Xyn(,) est donc paramétré par (Gp,)? x

AZImT e qui démontre i)

Traitons maintenant le cas ¢ > 1.

\

Lemme 3.2.2. Sir £ ﬂ‘:;l , X, estisomorphe comme Gy, c-variété a (G, c)? X
Aéln(r)—lu(r)—qu

: . Bat1—Bqa+1
munie du morphisme (c,wy,a) — c®aw, T T

Siv(r) = p/n avecp et n premiers entre euzx, action de i sur X, 1 se factorise
par Uaction de fiyp(ry définie par C.(c,w;) == ((Pec, ("wy).
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Preuve. Notons £;,(A%) le sous-espace constructible de Lin(ry—in, (AZ) des arcs
tronqués de valuation [ ; on notera w; le coefficient de t' dans la série tronquée w.

Posons W, := L, T(A ) X G, ¢ X Aln(r)fl'/(r) et définissons un morphisme
Yrl - Wr,l - Xr,l par

w(t)Na [tln(r)+1]
’Y'r’,l(w7 C, b) = Z ajeqw(t)j + ctll’(r) ot Z blt’b [tl’n(T)+1]
j%gr tv(r)<i<in(r)
ot on a noté b = (byy(r)4+1, - - > bingry)-

Cette application a bien un sens; en effet, si y(¢) désigne le second terme de
I’expression précédente,

VC € e, ordu(y(t) — h(Ca(t)™)) = ordu(y(t) — h(Cw(t)™)) = l(r).

Ceci prouve que le contact d'un arc de ce type avec f vaut l"(r

Quant aux termes correspondant & des racines m-iemes de l unité non contenues
dans g, ils sont de valuation strictement inférieure, ce qui prouve bien que I'image
de ~y, ; est contenue dans X, ;.

Montrons que -y, est surjective. Pour cela considérons @ € X, ; et ¢ € Z, ; tel
que ) (P) = ¢

Comme on |’a vu précédemment, ¢ peut se réécrire sous la forme :

z(t) = w)™

= bjw(t)y

jz1
avec la condition m’ = kN, pour un k € N.
L’ordre de contact du développement fractionnaire 2321 bjx# avec f étant r,

on en déduit que pour tout j tel que % <r,bj=0sik{jetb; = Gieq sinon.
k

On a done, en notant w’ := w®, une écriture du type :
z(t) = W'(t)Ns

y(t):Zajew wa

Jeq o, ji>rm/

m =

avec arp, 7 bym . Ceci montre que @ s’écrit v, (W', ¢, b'), avec (0 # ¢ = by —an,,)
et donc la surjectivité de v, ;.

Considérons désormais la fibre au-dessus de ¥ := (Z,7y) et conservons les no-
tations précédentes ; w est solution de Péquation w’(t)Ne = z(t)[t"™(")] et est donc
défini a une racine Ng-iéme de 'unité pres.

Pour une telle racine ¢, la condition p € X, ; impose le développement de Pui-
seux de tout relevement de ¢ jusqu’a l'ordre 7, done si (w’ est la premiére compo-
sante d'un autre point de la fibre au-dessus de 3, la condition (7 = 1 est satisfaite
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pour tout 7 tel que % < r, mais il résulte de la définition de 3441 que pged(Ng, {7 |
j% < r}) = 1. Ceci impose ( = 1 et w est unique ; on obtient ensuite les compo-
santes c et b de tout point (w, ¢,b) de la fibre de % en considérant le développement
en puissances de ¢ de | expression (y(t) = icq ., @je,w’(t)7) [t +1] ce qui fournit
une unique solution. Il s’ensuit que v, ; est un isomorphisme.

Examinons maintenant ac(f) oy, :

En raison des propriétés des développements de Puiseux, le terme de valuation
Bq.
€q

minimale dans Pexpression du (y(¢) — h(Cw(t)é)) est (") si ¢ € pe,, (wit)

. 754171 . e .
S1 C (= /’I’Eq—l \/’Leq7 (wlt) € 8l C < /’Leq~2 \/'Leqfu R (wlt) “a 81 C < Hom, \ Hey 5 le

coefficient de (") dans f(Z(t),7(t)) vaut donc cEleﬂq“—ﬂq“.

L’action de @i sur X, est induite par I'action de () par homothétie sur
le parametre ¢; dans les coordonnées choisies, cette action s’écrit : (.(c,w;) =
(e ¢twy), ce qui termine la preuve du lemme.

Lemme 3.2.3. Si r = Batt oy (Bart _ jPast ¢ N, X, est isomorphe comme
m €q Ng+1 ’

21 —|4 —IN. : 3
X Acn(r) Upar/mata]=tNe \inie du morphisme (w, a) +—

G c-variété a Gy,
B
wl q+1

Cwl.

. L’action de fi sur X, 1 se factorise par Uaction de Hg, ., définie par (.w; =
q

Preuve. Définissons cette fois W, ; == £, ,(A%) x Al(;(r)fl'/(r) et Yyt Wrt — Xy
par

() e
Pra(w; 6, b) = Z ajw(t)? + Z bit! [gn(mO+L,
j%<r lv(r)<i<ln(r)

On montre de méme que précédemment que «,; est un isomorphisme en te-

Byt
nant compte du fait que 18 2t n’étant pas entier, le coefficient de z o dans
q

le développement fractionnaire normalisé de tout relevement d’un arc tronqué de
X, est nécessairement nul.

Enfin, il est clair que le coefficient de ¢"(") = ¢/a+1 dans f(Z(t),7(t)) est wlﬂq“7

ce qui prouve bien le lemme.

Enfin, on a le résultat suivant :

Lemme 3.2.4. Si r = ﬂjn—“ et l% = lﬁ"—fl € N, X, est isomorphe comme
q q
Go-variété 6 Voo x ARTD700 o

Vi1 = {(c,w1) € AL X Gpc | ot — aZZLlwfq“ #£0}

s 5 n 3 —
est munie du morphisme (¢, wy, a) — (et — aﬂqiiwlpq“)eﬁlwlﬁwl Pat1,
q



Vol. 77 (2002) Espaces d’arcs et invariants d’Alexander 797

La variété X, ;1 est isomorphe a

Bg
{(@,9) € AL X G | (@™ —y= ) =1},
Liaction de fi sur X, .1 se factorise par Uaction de p, 5 définie par C.(z,y) =
v q+1ﬁq+1

EQJrl

(Coatrz, (Matiy).
Preuve. On pose

Wy = {(w,c,b) € L1 (A%) x Gy X Avé(r’l)fv(l’r) | ¢Matt — aZZLlwf"“ #£0}

et on définit v, ; : W, ; — X, ; par
ot 050 4 1

Pra(w; ¢,b) = aw(t) +at 3 bt [0 1],
<r lv(r)<i<ln(r)

jeq
m

Rappelons que pged(By+1,€4) = €41 done lapplication ¢ +— ¢Pe+1 induit un

isomorphisme de groupes entre {¢Pa+1|¢ Eﬁ Me,} €t le quotient pe 't ... En
q+1

conséquence le produit HC€ueq (¢ —ap,,,w; “* ) vaut (c"att — ag;’illwfq“)@qﬂ?

non nul par hypothese; ceci prouve d'une part que la valuation de chaque fac-
1

teur (y(t) — h(Cw(t)<a)) avec ( € pe, est exactement [v(r) et que la contri-

bution du produit de tels facteurs au coefficient de t™) dans f(Z(t),7(t)) est
(qu+1 _ an4+1wp9+1)6q+1
Bat1 1 '

La contribution des autres termes (qui ne font pas intervenir c) se calcule

. Bat1—Bqa+1
comme dans la preuve du premier lemme et vaut w, *** LA

Finalement le coefficient de #'2(") vaut

(qu+1 _ a"q+1wpq+1)6q+1 wﬁtr#l*ﬂq*l
Bg+171 !

comme annonce.

On termine la preuve de ce lemme en remarquant que la variété {(c,w) €
AL) x Go | (¢t — ag;’ﬂwpqﬂ)54+1wﬁq+1*54+1 = 1)} munie de I'action de
Py By définie par (.(c,w;) := ((Pec,(™w;) est isomorphe & la variété {(z,y) €

Bq —
AL x G, c| (" —y<)% = 1} munie de I’action {.(z,y) = (¢%/%az,("ay) (on
le vérifie en effectuant le changement de coordonnées sur Aé x Gy, donné par :
c = ;py*(gqfﬁq)/nq@q7 w = y)
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3.3. Calcul de la fibre de Milnor motivique

Notations. Pour tout ¢ € [1..g], notons Y, la variété :
. Bq
{(z.y) € AT | (@™ —y=a)® =1}
B,
munie de I'action de 4, 5 donnée par : C(z,y) == (C7§17 (May) et [V,] sa classe
aPq

dans K% (Varc).
Rappelons que pour tout entier naturel n, on note p, = specClz]/(z™ — 1).
C’est une variété munie d'une action de u,, par translation. On notera , sa classe

dans K (Varg).
On a alors le résultat :

Proposition 3.3.1. L’égalité suivante est satisfaite dans M’é 3

Spo= D Wil =L > [pe,] + 1.

1<q<yg 1<g<g

Preuve. Rappelons que pour tout entier ¢ € [1..g] et pour tout ordre de contact r,
et [ € N, tout arc de Z,; admet pour valuation

In(r) := ord,(f o @) = [N, (req + %(6(1,1 —eq)+ -+ %(eo —e1)+ %eo>

qui vaut lrm + l(anq — f34). Notons que pour g < g, nqﬁq — By = Bqﬂ — Bt
Il résulte des lemmes 3.2.2, 3.2.3 et 3.2.4 que

Zp(T) = Zo(T)+ Y. Zo(T)+ D ZU(T)+ Y. 274(T) avec :

1<q<yg 1<q<yg 1<q<yg

Zo(T) = > [Xpua (L72T)0)
0<r<ﬁ;1

Zy ) = > [X%M](L*ZT)%H
arigN "

ZyT) = > [X@M](L*QT)W(;H
PN "

BT = > (X, 1] (L7270,

8 Bg41
L= i>1

Calculons les limites de ces sommes :
On utilisera le lemme élémentaire suivant, en notant toujours |s] le plus grand
entier strictement inférieur & un rationnel s.
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Lemme 3.3.2. Soient p et n deux entiers, alors on a

pl pb
21 UV = s 7 32 vt

en particulier cette série tend vers 0 si V. — 00 et si U — 00 ou reste constant.

Preuve. La premiere partie résulte d'un calcul ; la seconde du fait que b > n et
15 <p.

Lemme 3.3.3. On a limy_,o0 Zo(T) = —[pm].

Preuwve. La somme Zo(T') se décompose en deux termes (correspondant respecti-
vement au ii) et au i) du lemme 3.2.1) ; plus précisément :

=[x Y (L

121 1<k< b
+[AG] (L —1) ZL* Z (T™L"H*,  soit encore :
lz1 L<p<ify
¢ P e l
Zo(T) = [pm 1 — (7L (D)L
7Lt 1\ ] 181
m m — LTJ
o) (L = VT ;L (@@L Hlsd = @mLh).

On déduit du lemme 3.3.2 que limy_,oo Zo(T) = —[pom].

Evaluons maintenant la limite de Z; (7).

Lemme 3.3.4. On a limy—,oc Zy(T) = 0.

Preuve. Rappelons que dans le cas ou [ vérifie l%’ﬁ ¢ N, on a d’apres le lemme
q

2B, —IN,—|12at1 N 5 Py
ar1 N U5 , 0l X, est la classe de la variété Gy, ¢

323 Xr,l,l = /J,E - X A
munie de l'action de ug,_, donnée par (.w = (w.
3 —IN, gl
]Zl>1lﬁq+1$NTtﬂQ+l]L a L“+1J
21,1t

H(T)=0.

En particulier Z{(T") = [uz Cette som-

q+1
me tend vers zéro par le lemme 3.3.2 et donc limp_, o Z

o Nous devons maintenant calculer la limite de Z, (7).

Lemme 3.3.5. On a limp_o Zy = —[pte, |-

= Pg+1
2B 41 —INy—170H

Preuve. Rappelons que si lﬁ:’l e N,ona X,;1 = Xyt x A
d’aprés le lemme 3.2.4, done Z,(T) = [Xgi1] > psy Tret Pt L Nat1 e —
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A Trat1Pat1~Nat1-Pot1 .
U prg 1Bt Nt 1—Pat1
On a done limy_,o0 Z4(1") = —[Xg+1].
o Il nous reste enfin a évaluer la limite de Z7,(1").

Lemme 3.3.6. On a limp o, 27§ = (L — 1)[pe,] si g # g et (L. —1) sinon.

Preuve. A I'aide du lemme 3.2.2 on montre que dans le cas oul ¢ # g, on a

qu(T) — [M5q+1] (L-1) Z(anﬁq*BquNq)l Z (Teq]]_fl)k

1 il
>1 keN,el:<k<—ﬁgq+1

ot le coefficient de [, | (L —1) vaut

TeqL—I { _ H(Bg+1—Bq)
- = naBol,~(Natpa N [ 1 _ (pee, g
T #(1- .
1 —"TeL =

La somme entre accolades tend vers 1 d’apres le lemme 3.3.2. 1l résulte de ce qui
précede que limp .o 27 ,(T) = (L — 1)[pe,,,] pour ¢ # g. Dans le cas ¢ = g, on
remplace la condition k& < Z'BZ;’J par k < 00, et la limite reste la méme c’est-a-dire 1.

Ceci termine la démonstration de la proposition 3.3.1 en notant que [Xy41] =

Vara] = [pe,].
o Ezemple : Dans le cas d’une fonction & une seule paire de Puiseux f(z,vy) =
yPr — 2™ le résultat s'écrit

Sro=l(z,y) € AL [2™ -y =1}] - (L - 1).

3.4. Application au calcul du spectre

Nous allons appliquer la proposition 3.3.1 au calcul du spectre de Hodge de f.
Si 'on écrit
cq
ﬁq

t

1
—t tra —1
3 Wllaland. — :ZZCata
1—tfa 1—tra
et qu’on pose o (t) (resp. o (1)) := 3., 4 cal™ (Tesp. 3, cal®), on a le résultat
suivant :

Corollaire 3.4.1. Le spectre de Hodge de f vaut :

hsp(f,0) = > s {a;(ti)ﬂlféa;(ta)},

1<q<g 1 — 1<

Preuve. On rappelle qu’on peut associer a une variété X', munie d’une bonne action
de fi, son spectre noté Sp(X). C’est la composée de I'application linéaire hsp et
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de la caractéristique de Hodge monodromique " (cf. paragraphe 2). Rappelons

que dans notre situation, si on pose S;?o =8¢0 —1, on a la relation

hsp(f,0) = —Sp(SFo).

On utilisera le lemme élémentaire suivant :

Lemme 3.4.2. Soient a et b deux entiers positifs premiers entre eux. On a :

. 1—t
i) Sp(fe € AL | 2 = 1)) = ——
i 1
) . te —t b —1¢
i) Sp({(z,y) € AL | 2* —y* =1}) =t — T T
1—ta 1 —1t%

Preuve. Le 1) résulte d'un calcul direct.

Posons Y, 3, == {(z,y) € ng,c | 2¢ —y® = 1} et remarquons que si ¢ désigne
une racine b-ieme de —1, I’application (u,v) — (u®, (v®) est un isomorphisme entre
le quotient de la courbe de Fermat Jup, := {(u,v) € G2, | u®® 4+ v = 1} (munie de
I'action naturelle de p2,) par le sous-groupe pp X fiq et Y, 5 ; cet isomorphisme est
équivariant pour ’action induite par Paction diagonale de i,y sur Jyp. Si (o, 3)
est un caractere, on note I, g le sous-espace propre de l’action de sz sur H(Jqp)
associé a (a, ).

Les sous-espaces propres de H}(Jap/pn X pq) sont les I, 5 tels que («, ) soit
trivial sur pp X 1, donc le groupe des caracteres de H1(Jup/pp X o) s'identifie
A fi X fi. Si = & de 2Z/Z dans [0, 1] désigne la section usuelle, il résulte de
[20] lemme 7.1 que le degré pour la filtration de Hodge de I, g ne dépend que de
&+ B sauf dans le cas ou & + B = 1; ce cas ne se produit pas ici compte-tenu de
la condition pged(a,b) = 1.

Tous les I, 5 sont de dimension 1 excepté Ipo dont la dimension est 2; par
ailleurs, H?(J,) est de dimension 1, de type de Hodge (1,1) et est associé au
caractere trivial. On en déduit que

Sp(ya,b):t—{1+<1+t%+...t%)<1+t%+,”tb—Tl>}

ta —t\ [th —t
Sp({(z,y) e A? | z2® +yP =1 t—(—)( )
p({(z,y) | Yy } o)\

comme annoncé.
Pour finir la preuve du corollaire, nous avons besoin du lemme suivant :
Lemme 3.4.3. Soit g un polyndme en n variables quasi-homogéne de degré d (de

sorte que pour ¢ € Gy, o, la variété Y = {x € AL | glz) = 1} est munie
d'une bonne action de pg). Soit e un entier positif; alors le spectre de la variété
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X d’équation g¢ = 1 (munie de Uaction naturelle de pg.) s’exprime d Uaide du
spectre de la variété Y par la formule :

iy 1 —1 1
Su(X) = p(1—2) Sp(®) &
p(X) =)t T gE B ]

il
B
P

ot on a noté Sp(Y) == cat® et SpP(Y)(t) = > p<a<ptl Cat™

Preuve. La variété X est la réunion disjointe de e copies de )} dont chacune est
laissée stable par D'action de T°¢; I'action de T sur une composante s’identifie
a l'action de la monodromie naturelle provenant de la quasi-homogénéité de g.
La décomposition précédente induit une décomposition en somme directe sur les
groupes de cohomologie qui est compatible avec la filtration par le poids. Soit donc
H une composante de Hodge de poids p de I'un des groupes de cohomologie de X.
On a une décomposition de H en sous-espaces propres sous ’action de pge de la
forme H = @, Hx ol A décrit {exp( 23]‘;”)}0§k§d5. En regroupant & A\® constant,
on obtient

k. 1 ..
Sp(X)y=" Y tde{ > tEdlmHeXp(%r)eXp(ziéﬂ-)}.
1

k=0,...,d— 1=0,...,e—1

—

L'espace B, Heyp 2ibn ) oxp(2iz) €St stable par laction de T et s’écrit donc
comme somme directe d’espaces propres de cet endomorphisme pour la valeur
propre exp( 2;’“@” ). Or chaque espace de ce type s’identifie au sous-espace propre de
la composante de Hodge correspondante d’une composante connexe {z € G¢ |
g(z) = ¢} ; en particulier tous ces espaces ont méme dimension et cette dimension

égale dimH () oy 2ikz . On en déduit que

k 1— »
Sp(X) = Z tde dim H(J))exp( 2ikn ( tl ) = t_eSp(p)(y)7

de i
k=0,...,d—1 1—1

ce qui prouve le lemme.

On déduit de 3.3.1 que Sp(S7) = D1 <<, —SP(Vy) + Sp(pte,)
D’apres les lemmes 3.4.2 et 3.4.3 i), on a
- -2 -4 -
59(0%) = = (o7 () + 070+ e Spl) ¢ (L5 )
1—tca 1-tca

ce qui prouve la formule annoncée.

Donnons deux exemples pour illustrer la formule 3.4.1 :

o Bremple 1 : Si f ne posséde qu’une paire de Puiseux (m, 31), on retrouve la
formule classique (qui est un cas particulier du calcul du spectre d’une singularité
isolée d’hypersurface quasi-homogene)

1 oL

tm —1 tP —¢
hsp(f,0) = (1 ti) (1 tﬁL) :

—tm — P
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o Ezemple 2 : Considérons la courbes & deux paires de Puiseux d’¢quation
flz,y) =@ —2®)? +yz®;onam=4,9g=2 e =2 ny =2et By =13.
15424

On obtient alors hsp(f,0) =3 c;<iit 2 {12 4 ¢15 4 {13 415, On pourra
comparer avec la formule donnée dans [22].

3.5. Fonction zéta de la monodromie

On peut déduire de la formule donnée précédemment pour le spectre de Hodge
une formule pour la fonction zéta de la monodromie. Remarquons que 'on peut
également obtenir cette formule en appliquant le théoréme principal de [14].

Corollaire 3.5.1. Soit (;(t) la fonction zéta de la monodromie Ty agissant sur
la cohomologie de la fibre de Milnor de f et Pr,(t) la série de Poincaré du semi-
groupe U'c. On a la relation : (Cp(t)) ™1 = Pry(t).

Preuve. St A(T}) est le n-ieme nombre de Lefschetz, on a :

SRS @t)

n>1

or d’apres [14], A(T}') est égal & la caractéristique d’Euler x(X, 1).
Calculons ces caractéristiques d’Euler :
Pour tout n > 1, on a une partition X,, 1 = H1n(,~):n Xoi1-
Notons x,; pour x(X,; 1) et définissons g par I’encadrement % <r< %;

dans le cas ol la deuxiéme inégalité est stricte, on a x,; = 0 d’apres le lemme
/3q+1
m

3.2.2. Lorsque r = on distingue deux cas :
esil ﬁZ—:l ¢ N (remarquons que _ceci équivaut a ng,4 1), nous sommes dans la
situation du lemme 3.2.3 et x,; = By 1.

esil % € N, nous sommes dans la situation du lemme 3.2.4.
q

Xrg = x({(e, @) | (" — ag, WP )eerigl e TP 11 =B (1 —ngy)

En effet, Papplication Vg1 — G2, définie par (c,w;) — ((c"ot1 —ag,,, wj "), w)
est un revétement de degré ng 1 ramifié au-dessus de la courbe {u + ag,,, vPett =
0} C G2,.

Finalement, il vient :

tlm

_ tlgq _
Gy =ep [ S+ &(Zlﬁ)—ﬁq(nq—l)zm

>1 1<q<g nqfl
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soit B -
¢s(t) = exp(Log(1 = ™)+ > [Log(1 —tPs) — Log(1 — ¢"s)])
1<q<g

1—¢P
-t I %
n

1<q<yg (1 ")

Enfin, remarquons que tout élément n de I'c admet une décomposition unique sous

la forme n = Zgzg Ay, avec Ay entiers satisfaisant la condition : Vg € [1..g],0 <
Ag <ng —1 (voir [25]).

g my—1 (I*tnqﬁq)

La fonction (1 —¢™)"" [[,<,<, Py

de ', ce qui termine la preuve du corollaire.

est donc égale a la série génératrice

4. Fonction d’Igusa motivique associée a plusieurs fonctions

4.1. Définition

Soit X une variété algébrique complexe de dimension d et p fonctions régulieres
fi + X — AL (i € {1,...,p}); on pose Xo = Ni<i<p(fi = 0). On notera f
Papplication (f1,..., fp)-

Chaque fonction f; induit un morphisme f; : £(X) — L(AL) = C[t]] au
niveau des espaces d’arcs.

Pour n € (N*)?, il est naturel de considérer le sous-espace d’arcs de £(X) :
Xn, = A{p € LX) | ¥Vi € {1,...,p}, ordefi(¢) = m;}; c’est un sous-espace
constructible de £(X) naturellement muni d'une structure de (G}, o x Xo)-variété
via le morphisme (ac(f),m) : X,, — GE o x X ol ac(f) est I'application qui
aun arc ¢ € L(X) associe le p-uplet des ‘coefficients de ™ dans Ji(e)(t) (pour
i € {1,...p}). Notons que cet espace est stable & l'ordre |n| := Y7 n; (voir la sec-
tion 2 ) ; ceci permet de considérer sa mesure M(Xn/Gfmc x Xo) dans Mqr. XX,
On pose alors ’

0"

Définition 4.1.1. La fonction zéta motivique associée a f est l’élément suivant
de Mgz, _xx,|IT]] -

Zi(T) = Y w(Xn/GE, o x Xo)T™.
ne(Nx)p

On dispose suivant [20] d’une formule exprimant Z;(7") dans une résolution des
singularités des fonctions fi, ..., f,. On se donne une telle résolution, c’est-a-dire
un morphisme propre birationnel »: Y — X, un diviseur a croisements normaux
E C Y tel que pour tout k, (fih) 1(0) soit supporté par E; on note (E;);c s les
composantes de E et pour tout I C J, on définit E} := MerE; \ Ujg ;. On note
A le p-uplet des ordres de f le long du diviseur Fj; et par »; — 1 l'ordre le long
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de I/; de la forme différentielle h*dx ou dz est une forme volume sur X. On note
U; le complémentaire de la section nulle dans le fibré normal & F; et (pour i € I),
on définit Uy comme le produit fibré au-dessus de E7 des restrictions Uy By c'est
un fibré en tores |/|-dimensionnels dont ’espace total est de dimension dimY ; on
note 7y la projection.

L’application hry fait de Uy une variété au dessus de Xy et ’application fh :
Y — Gﬁl,c induit de maniere naturelle une application de Uy dans Gﬁ%c que l'on

note fh. Il en résulte une structure de (G, ¢ x Xo)-variété pour Uy via (}7@ hrr).

Pour tout p-uplet v = (v1,...,1,), on posera T = T¥1 ... T,”. A 'aide de la
formule de changement de variables pour les morphismes birationnels (voir [15]
Théoreme 4.1.1) et d'un calcul explicite dans la résolution, on montre ([14] pour
le cas p =1 et [20]) que :

Théoréme 4.1.2.
qu,vT)\i
_ P
24T ) = S 0/ Xl T pomrse
PAICT el

4.2. Invariants d’Alexander associés a une famille de fonctions

Ce paragraphe est dévolu au rappel de certaines définitions et propriétés des
complexes d’Alexander proches. Nous renvoyons pour toute cette partie a ar-
ticle [21]. Dans toute cette section, X désignera une variété complexe lisse de
dimension d, et fi,..., f, désigneront des fonctions analytiques; on pose Xg :=
Ni<i<p(fi = 0) et on note z un point de Xy. On notera f pour (fi,...,fp); On
se donne une résolution des singularités de f pour laquelle on conserve les nota-
tions de la section précédente. Sabbah définit dans [21] un foncteur de la catégorie
dérivée des faisceaux a cohomologie C-constructible sur X dans la catégorie des
complexes & cohomologie C[ZP]-constructible sur X, qui peut étre vu comme une
généralisation & plusieurs variables du foncteur cycles proches défini par Deligne
(voir la proposition 4.2.1 pour un énoncé précis).

On notera A anneau C[Z?]. On considere une boule B (suffisamment petite)

centrée & l'origine contenue dans CF, on pose B* = B\ (Ui<p<pHy)) (ol Hy
désigne le k-ieme hyperplan de coordonnée) et on note B* son revétement uni-
versel. On pose également X* = X \ (Ui<i<p(fi = 0)) et on considere alors le
diagramme :

X* XB*E;Z) X*( ! X 7 )Xo

P

B* B*C B<—>0

On définit alors, suivant Sabbah, pour tout complexe F a cohomologie C-
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constructible sur X le complexe d’Alexander proche
Apg(F) =i 'Ry Rpyp 1j 1 F.
C’est un objet de la catégorie D8(Xo, A).
On dispose du résultat suivant démontré dans [3] concernant les propriétés de

ces complexes et le lien avec la théorie des cycles proches associés a une fonction
analytique :

Proposition 4.2.1. Sip =1 et si ¢(F) désigne le complexe des cycles proches
associé a f, on a un quasi-isomorphisme (non canonique) :

App(F) = ¢p(F) [-1].

Cycle et fonction zéta d’Alexander. Ce paragraphe est basée sur [21] §2.
Si Y est une variété algébrique complexe ou plus généralement un espace analy-
tique complexe réduit, on dispose pour tout compact K de la notion de fonction
(définie au voisinage de K') analytiquement constructible : une fonction « est ana-
lytiquement constructible au voisinage de K si elle est définie sur un voisinage U de
K et localement constante sur les strates d’une stratification analytique de U. Les
exemples typiques sont ceux ol K est un point ou bien une composante d’un divi-
seur exceptionnel dans une résolution des singularités. On note Fx le groupe additif
engendré par ces fonctions. Si A est un anneau commutatif noethérien unitaire,
on note Zx(A) le groupe des cycles sur A & coefficients dans F ; un élément de
Zk (A) est donc une somme formelle finie > 7~ 4 apV}, ot V;, est la variété associée
a l'idéal p et o, € F'x. On dispose de la notion d’image directe pour les fonctions
constructibles et donc également pour les cycles : soit g : X — Y un morphisme
propre, et K un compact de Y, I'image directe g« : Zy-1(x)(A)(X) = Zg(A)(Y)
est définie par

VyeY, gila)(y) =x(g '(y),®)
ou x( ,a) désigne la caractéristique d’Euler (pour le faisceau constant) pondérée
par «, c'est-a-dire la fonction constructible z — ofz)x(z).

On note toujours g, l'image directe étendue de maniere naturelle aux cycles
sur ’anneau A.

Si F est un faisceau A-constructible, on appelle support de F au voisinage
de K (ce qu’on note Suppy (F)) lensemble des idéaux premiers p de A tels que
F @ Ay # 0 au voisinage de K ; plus généralement, si F est un objet de D2(A),
on appelle support de F la réunion des SuppiH!(F). Si le support de F est
de dimension d, on note SuppKd(}") I’ensemble des idéaux du support de F de
cohauteur d dans A.

On définit la fonction zéta de F au voisinage de K comme suit :

Définition 4.2.2. Soit d la dimension du support de F au voisinage de K, alors
Cr,a(F) = ZpESuppK’d(}") X(Fp)Ve € Zk (A).

On pose également (i 4(F) =0 si dim Suppg (F) < d.
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Notons le résultat suivant dii & Sabbah, sur le comportement de la fonction
zéta par image directe.

Proposition 4.2.3 ([21]). Soit h : Y — X propre, lisse et birationnel et F un
complexe a cohomologie A-constructible sur'Y . Soit K un compact de X tel que
Supp F soit de dimension d au voisinage de h~'(K), alors :

Cr,a(Rhu(F)) = bl Cp-10k),a(F))

Nous pouvons définir la fonction zéta d’Alexander associée au morphisme [ :

Définition 4.2.4. La fonction zéta d’Alexander associée a f au voisinage d’un
compact K est le cycle de codimension 1 du complexe 44 7(F) au voisinage de K.

Dans le cas ot F est le faisceau constant sur X et K = {z}, on notera (s ,
ce cycle. Aprés avoir fixé des coordonnées sur Spec A, on peut le voir comme une
fraction rationnelle en les variables T, ..., T, (définie & un monéme prés); nous
utiliserons indifféremment les deur notations (additive ou multiplicative) dans la
suste pour désigner les fonctions d’Alexander .

Dans [21], Sabbah donne ’expression de la fonction zéta (cf. proposition 4.2.3)
en termes dune résolution des singularités de f qui généralise la formule d’A’Campo
[1] sur la fonction zéta de la monodromie :

Proposition 4.2.5 ([21]).

H (TX —1)~x(E),

{ied | h(Bs)=a}

At o(Th, ..., Tp)

Lorsque n = 2, et les f; sont des polynomes irréductibles, cette formule exprime
le polynome d’Alexander de I’entrelac algébrique associé a la singularité de f1 ... f;
(voir [16]).

4.3. Réalisation d’Alexander

Nous nous intéressons dans ce paragraphe a des réalisations de Mg dans le cas
particulier ou S est un tore Gp clp=21).

Si on se donne une GP o-variété X L G? on dispose d’une notion de
m,C?

cycle d’Alexander sur l’anneau A des polyndémes de Laurent a p indéterminées ; en
effet, considérons le diagramme :
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- px 5o . . 2 .
o GF c—— Gﬁl’c désigne le revétement universel et X désigne le produit

fibré X xgr Gﬁl,c ; pour simplifier les notations, on note p pour pyx. On définit

alors un objet de la catégorie dérivée D%(X, A-mod) des complexes bornés & co-
homologie constructible sur A en posant 1% (X) := Rpp 1C,.
Notons que dans cette situation, pour une variété Xo et une G x Xo-variété

(f,m): X — G xXj, on peut définir un faisceau constructible sur X; en posant
Pa(X) = Rmyi(X); on a le résultat suivant :

Lemme 4.3.1. Llapplication X — 1 4(X) s’étend en un morphisme de groupes
de Ko(VaI'an CXXO) dans KQ(DS(X(LA))

Premie. Soit Y un fe{mé de Zariski de X et U := X — Y. On définit py : X X,
py 1Y — Y, et py : U — U comme en début de paragraphe; on notera p pour py.
Onnotei:Y <— X (resp. i : Y > X)et j: U — X (resp. 7 : U — X) les
inclusions naturelles. En appliquant le foncteur Rpp~! au triangle
i 1Cxy = Cx — i 'Cy
on obtient un triangle dans D4(X, A)
Rpip 51" Cx — ¢a(X) = Rpip~ i 'Chy.

D’apres le théoreme de changement de base, on a

Rpp 1515 'Cy = Rpiipy, "5 'Cy
= Rpupy ' Cy ;

en raisonnant de maniere analogue pour ) et en appliquant le foncteur Rmg;, on
en déduit le triangle

R(moj)1a(U) — R(m0)1¢4 (X) — Rimoi)rb4 (V)
et donc la relation souhaitée dans le groupe de Grothendieck Ko(D%(Xo, A)).

Si K est un compact de Xy, on note pour tout [ € N par Ko(D%(Xo, A))
le sous-groupe de Ko(D% Xy, A)) engendré par les complexes de faisceaux sup-
portés en dimension inférieure a ! au voisinage de K. On dispose du morphisme
Crpo1 : Ko(D5(Xo,A)k p—1 — Zk(A). En composant, lorsque cela a du sens
ce morphisme avec celui défini dans le lemme 4.3.1, on obtient un morphisme de
groupes dans Z(A) que nous noterons 4(x et nommerons réalisation d’Alexan-
der.
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4.4. Fonction d’Igusa associée a une famille de fonctions et invariants
d’Alexander

Nous donnons dans cette section un résultat qui montre que la fonction zéta
d’Alexander de la famille f = (fi,..., fp) peut se déduire de la fonction d’Igusa
motivique & plusieurs variables associée a f :

Théoréme 4.4.1. Pour tout o € (N*)P et tout compact K de Xo, les complezes
Yallimy_,eo Z§(T®)) et A4py sont supportés en codimension strictement positive
au voisinage de K et on a l’égalité suivante :

A (Jim Zy(T*)) =~k s

Preuve. On déduit du théoreme 4.1.2 que pour tout o € (N*)?
Jlim Z,(T*) = 37 (-1)1U/@E, o)
bAICT
Par additivité de la fonction zéta d’Alexander (lemme 4.3.1), on en déduit que que
pour tout o € (N>*)? : A¢(limg_, o Zy(T™) = Z@;&ch(_l)‘l‘ ACK(UI/anp).
En utilisant la proposition 4.2.5, ceci prouve le théoreme 4.4.1 modulo le lemme
suivant :

Lemme 4.4.2. La relation suivante est vérifiée :

> (DIAC(U/GE, o) =D x(B; nh™H(K)) T

DAICT ied
ot 'on note Ty, = [Spec(A/(T* —1))] pour A € (NX)P.

Preuwve. En appliquant la proposition 4.2.3, nous sommes amenés a calculer le cycle
d’Alexander de la G, - x Eg-variété (fh,n;): Ur — GP o x ES.

Par additivité de la fonction zéta d’Alexander (lemme 47.3.1) Nous pouvons nous
contenter de travailler sur un ouvert affine V de Y tel que Uy est trivial au-dessus
de V N E}. Nous sommes donc ramenés a calculer la fonction zéta d’Alexander
dans le cas ol fh est un morphisme de (E$ NV) x G} ¢ (k= |I|) dans Gl o

% ¢
donné par (z,y1,...,yx) — (w1 Hle yjﬂ...?up Hle y;©), les u; désignant des
unités.
On note 7 le rang du sous-module de ZP engendré par A!, ... 2.

Sir < k, 'application (K5 NV) x an,c — GP  se factorise par la projection
sur un sous-tore Gy, o donc ¢4 ((EpNV)xGE o) = ¢4 ((EpnV)x G;%C)@AGI@—(E.
Comme k > r, pour tout idéal p de A on a x((¢v5((E7 NV) x Gfmc))p) =0et

donc le cycle d’Alexander de ce complexe est nul.
Par ailleurs, il résulte de [21] que si f : X — ng,c est un morphisme et

v:Ge o — Gb o un morphisme de groupes qui fait de X une variété au-dessus
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de Glr)n,C7 alors on a

Va(X/G), o) = Pa(X/G, o) ®cize) CIZ°] (+)
ot C[Z?] est vu comme C[Z?]-module via le morphisme induit par + sur les groupes
fondamentaux.

Lorsque k& = r, on peut par des isomorphismes de tores convenables a la source
et au but se ramener au cas du morphisme

(@91, 9r) = (ua(@)yf?, e (@)y7 urga (@), up()

(ou les u; sont des unités).

On en déduit que annulateur du faisceau d’Alexander correspondant est S7* —
1,...,8% —1 (o les S; sont des coordonnées convenablement choisies sur A); en
particulier, son support est de codimension r donc son cycle de codimension un
est nul des que r > 2.

Il reste & traiter le cas r = 1. En appliquant () pour le morphisme de groupes
Gyc — G}, o donné par y = (y*,...,y% ), on obtient Y4 ((E7 NV) x Gy c) =
O TH, .. .Tpl7 Tpfl]/(Tla1 st —1) ®aA(gerv) ; la fonction zéta d’Alexander
est donc égale & x(E£; N V)T, comme annoncé.

5. Application aux courbes planes réductibles

Arbre des contacts ; notations. On se donne dans cette section p polynémes
de Weierstrass irréductibles dans C[[z]][y] notés f1, ..., fp et on cherche & exprimer
la fonction zéta d’Alexander de lentrelac défini par fi,..., f, en fonction des
données de Puiseux de chaque branche et des contacts entre ces branches. On
choisit des coordonnées z et y telles que la fonction z soit transverse a chacune des
fi, ce qui est toujours possible. Pour chaque f;, on définit comme au paragraphe 3

des suites d’entiers m(?), ﬁéi), el(;), n((;)7 Néi) et 35;) (pour ¢ € {1,...,9%}); notons

qu’avec notre choix de coordonnées on a nécessairement Vi € {1,...p} 59 > m(d);
on pose par ailleurs Bq(z) = Bé:)_l — [30(121 et on note C; ; la multiplicité d’'intersection
a l'origine des branches f; et f;. On note également r; ; le contact de f; et de fj,
c’est-a-dire le contact d'une paramétrisation de f; '({0}) avec la fonction f; au
sens de la section 2 de sorte qu’on a la relation

, g , @ g
) i) (0 @ g P oy B

m m

Cij = ry i+ ——— —e g
L igt m q(rs,5)—1 a(ri,j) 0

Pour tout ¢ € {1,...,p}, on note ZSEQ aﬁ%s I'un des développements frac-
tionnaires associé a f;. On représente chaque développement fractionnaire corres-
pondant aux différentes branches f; par un arbre ou l'on indique les exposants
(rationnels) et les coefficients correspondants. Pour tout rationnel r, I’ensemble
des tronqués a l'ordre r des développements de Puiseux associés & ces arbres
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est muni de l’action d’'un groupe de racines de 'unité (correspondant au pgcd
des dénominateurs des exposants fractionnaires des développements tronqués en-
visagés). On identifie dans la réunion disjointe de tous les arbres considérés les
sous-arbres correspondant a des développements tronqués contenus dans la méme
orbite pour cette action ; on appelle arbre des contacts le diagramme ainsi obtenu.

Sur cet arbre sont donc indiqués tous les points correspondant a un exposant
fractionnaire qui apparait dans au moins I’'un des développements de Puiseux, ainsi
que, pour chaque exposant r, le coefficient de " dans le développement envisagé.
On appellera sommet la classe d’un point de ramification du diagramme, branche
tout segment joignant deux sommets, et feuille toute demi-droite dont un sommet
est un point d’altitude maximale de 'arbre. On notera B l’ensemble des branches
et des feuilles. Chaque sommet S de ’arbre des contacts correspond de maniere
naturelle & l'orbite d’un développement tronqué >° ;) a2 (h(S) € Q); on
note Is ’ensemble des i € {1, ..., p} tels que le tronqué & l'ordre h(S) de I'un des
développements de Puiseux associé a f; coincide avec ce développement fraction-
naire, et Jg son complémentaire. On appellera une expression h(S) ag”xs (qui
est indépendante de 7 € Is) développement fractionnaire associé au point S.

@

Notons que ’entier ¢(S) := min{q’ | Zq(;) < h(S)} est indépendant de i € Ig
(nous le noterons simplement q lorsque le contexte sera clair). Si j € Jg, on note
Cs(7) le nombre % (qui ne dépend pas de i € Ig); par ailleurs, on divise Ig
en deux sous-ensembles I et I”g; le premier désigne {i € I, | h(S) n’est pas un
exposant de Puiseux de f;} et 1”5 est son complémentaire dans Is.

On pose k'(S) = |I§| et k”(S) :== [I"g|.

On distingue dans ce diagramme deux types de sommets : les sommets du type
1 sont ceux pour lesquels I = ; on note I; 'ensemble de ces sommets les autres
sommets étant appelés sommets du type 2 (on notera I ’ensemble des sommets
du type 2).

5.1. Description des espaces d’arcs associés a plusieurs fonctions

(2) (2)
Rappelons que si un rationnel r vérifie ’encadrement % &7 & L onpess -

i i 5, B a i B o B
n()(r):—N§)<reg)+%(eé)l—6((1))4—'“-1—#(66)—6(1))—1—%6(()) .

On rappelle que 'ordre de f; le long d’un arc ayant le contact r avec f; et dont
la coordonnée z a pour valuation lNé” est égal & In® (7).
Nous nous donnons désormais ¢ € £(AZ) et nous posons la

Définition 5.1.1. On appelle contact de ¢ avec f:= (fi1,..., fp) le maximum des
contacts de ¢ avec les f; (au sens du lemme 3.1.2).

A tout arc de contact r correspond a la classe d’un développement tronqué qui
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aboutit en un sommet ou en un point d’une branche noté S et vérifiant h(S) = r.

Pour chaque sommet S, on définit Zs; comme le sous-espace constructible des
arcs dont le contact avec f est réalisé pour un développement tronqué aboutissant
en S et dont la valuation en = vaut [Ny gy.

On pose n(r) := 38 nl9(r) et on considére Xg, := () (Zs,) muni de sa
structure naturelle de Gﬁl,c—variété via le morphisme ac(f). Le but de ce para-
graphe est de décrire les GP -variétés Xg; en fonction de I'arbre des contacts.

e Soit Sy le sommet d’altitude minimale h(Sp) (qui est strictement positive
sauf si p = 1 et f lisse, auquel cas nous conviendrons que h(Sp) = oo. Notons
o 5= Nq(So)'

Nous commencons par étudier le cas des arcs dont le contact avec f est stric-
tement inférieur & h(Sp). On a le résultat suivant :

Lemme 5.1.2. Soit r un ordre de contact vérifiant 0 < r < h(Sy) -
i) Simr < 1, alors Xg; est isomorphe comme Gf;hc—vam'été a Gy, c XAI(IS(T)_”
) ) G
munie du morphisme ¢ — (™ ))151519.
ii) 8¢ mr > 1, alors Xg,; est isomorphe comme GY -variété a (Grmp)2 X
A2 In(r)—l—rl m(®

o munie du morphisme (¢, w;, a) — (€™ )i<i<p-

o e d (1) (»)
On notera Xy pour Gy, c vu comme Gﬁz,c —variété via c— (™, ™).

Preuve. On peut paramétrer un arc de Zg; sous la forme :
z(t) = w(t)
y(t) = > aw(t) +a” + Dt
s<r ri<j<rim
Dans le cas ol mr < 1, on a z(t) = 0[] et I'espace X, est done

paramétré par (G, c) X Alé(r)*l7 ce qui prouve i).

Sir > 1, w(t) #0[t""T] et X, est paramétré par (G, c)? x Aéln(r)_l_rl,
ce qui démontre ii).

e Etudions ensuite le cas o S est un sommet du type 1 ou bien une branche
de Darbre des contacts, définissons Xs comme la G -variété

AL\ {a)icrs x G 15 G,
ol fg(c,w) est défini par les identités :
tio fsle,w) = (c— ag()s))egi)w/ééi) pour : € Ig
{tj ofslc,w) = wsW) pour j € Jg

(on a noté ty,...,t, les coordonnées dans (G, c)¥ et c et w les coordonnées a la
source).
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Dans le cas ou S est une branche B, on notera Xp cette méme classe (Ig est
réduit & un point dans ce cas).
On a alors ’énoncé suivant :

Lemme 5.1.3. Si S est un sommet du type 1 ou bien une branche du diagramme
des contacts, Xg est isomorphe comme Gf;hc—vam'été 4 Xg x A2In(r)—lv(r)=INg

Preuve. Remarquons que puisque les développements des f; (pour j € Ig) coin-
cident jusqu’a l'ordre r (non inclus), il existe un entier g tel que r satisfait ’enca-
B

)
drement ﬂ"T <r < -2 Les conditions de coincidence imposent que le terme de

gauche de cet encadrement est indépendant de j € Is. Nous le noterons simplement
%. On notera de méme N, pour N(gj) et a, pour a’.
Il résulte de I'étude effectuée pour les courbes irréductibles que ¢ admet une

paramétrisation de la forme :
a(t) = w(t)™

y(t) = Z asw(t)*Ne 4 etV + stts
s<r s>v

ot c € AL\ {a®W}ier,.

Autrement dit, pour tout [ € N, X, ; s’identifie au produit d'un espace affine
par A%J \ {a(i)}iEIs X Gm,C~

On déduit des résultats obtenus pour une fonction que le p-uplet des exposants
de f le long de ¢ vaut n = (n4,...,n,) avec n; = ln(i)(r) pour i € Ig, et
n; = [Cg(7) : il résulte en effet de la définition de Jg que l'ordre de la fonction
f; (4 € Jg) d’'un arc aboutissant en S s’obtient en évaluant l'ordre de f; sur I'un
des développements de Puiseux dune fonction f; (pour ¢ quelconque dans Ig). On
déduit également du cas d’une seule fonction I'égalité : ac(f)(p) = fg(c,w).

()
o Lorsque S est un sommet du type 2, nous avons I§ = {j | r = fj(t;} # 0.
Nous devons alors envisager deux cas :

(@)
- Soit la condition | i“gj)l ¢ N est vérifiée (notons que compte-tenu des hy-
potheses, cette condition est indépendante de j € I). On notera dans ce cas X'g

g f - o .
la G -variété Gy, c —> GP o ou ff est défini par les relations :

{ tio flglc,w) = WP’ pour ielg

tjo flglc,w) = w0 pour j € Js.

)
Lemme 5.1.4. S: S est du type 2 et liqg; ¢ N, Xg,; est isomorphe comme Gﬁ%c—

(2) 0
variété a X'g x Aéln(r)iuﬂq‘“/e‘(’wil]vq.
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Preuve. 1l résulte de I’étude effectuée pour une seule fonction que ¢ admet une
paramétrisation du type suivant :

z(t) = w(t)Ne

) = Zasw(t)SNq + Z bst®

s<r w>v

oll ¥ := lrN, (c’est un entier sous nos hypotheses).
En effet, dans tous les termes correspondant a des valeurs de j contenues dans
)
Jg,onar < i‘;g;, donc la contribution du terme en z” au développement frac-
tionnaire de f;(z,g(x)) (g(x) désigne un développement fractionnaire associé & ¢

normalisé comme dans le lemme 3.1.1) est apportée par le terme en t¥; comme
5@
ce terme (qui vaut [ —%— n’est pas entier par hypothese, son coefficient ¢ est

nécessairement nul, ce qul justifie le paramétrage précédent.
Dans cette situation, le p uplet des exposants de f le long de ¢ vaut n =

(n1,...,np) avec n; = lﬁqH sii e lgetn; = 9 (r) si j € Jg et Despace

X, sidentifie au produit d’un espace affine par C* sur lequel on note w; une
7 7 3 rdd

coordonnée. On a alors I’égalité ac(f)(¢) = fs(c, w).

(J)
— Soit la condition q(j)l € N est vérifiée. On notera X7 g la GI -variété :

F's. p
Vg —= e ol S(c w) est défini par les relations suivantes :

_ 5 ;
tio fglc,w) = ("ot — ap LwPatt)eatiwfs” pour i€ g

s (3) (3) .
tio f7g(c,w) = % wha pour i€ l§

t; o Fgle,w) = w @) pour j € Jg
I’ensemble [ g étant éventuellement vide.

(%)
Lemme 5.1.5. 5 S est du type 2 et q Lt e N, Xg; estisomorphe comme Gp
q

21In(r)—lv(r)—IN,

variété a X"g x Ag

Preuve. Dans cette situation, ¢ admet un paramétrage de la forme :

z(t) = w(t)Ne

y(t) = Z asw(t)*Ne 4 ct’ + stts
s<r s>V
(3) (2) (%)
avec Vi € I7g, ("at1 — (a (() ))"q+lwpq+1) £0.
Le p-uplet des valuations de f le long de ¢ admet alors la méme valeur que
dans le cas précédent et ’espace Xg; s’identifie alors au produit d’un espace affine



Vol. 77 (2002) Espaces d’arcs et invariants d’Alexander 815

0 ; @) )
par {(c,w) € AL X G, | Tl (@ = (allg )" h1wPin) £ 0} ; on a de plus

ac(p) = 7 g(c,w), ce qui termine la preuve du lemme.

5.2. Expression combinatoire de la fonction zéta d’Igusa motivique

On a le résultat suivant :

Théoréme 5.2.1. Pour tout oo € (N*)P on a :

i 2, = 1]+ { 3]+ el - 3 (sl

Sel BeB Sels

Preuve. Chaque espace d’arcs X,, (pour n € (N*)P) étant une réunion disjointe
de constructibles du type Xg, la série Z;(T") se décompose de maniere naturelle
sous la forme :

[AX0]Zo(T) + Z Xs)|Zs(T
Sely

+ DX ZG(T) + (X751 27 5(D) + D [Xe]Zp(T)
Sel BeB
Le calcul de la limite de ces séries est analogue a celui mené dans la preuve
de la proposition 3.3.1 pour le cas d’une seule fonction; il montre que Zo(7T),
Zs(T), 27 s(T), Zp(T?) et Z(T™) ont pour limites respectives —1, 1, —1, et
1 quand 17" — oo et que Z5(T*) tend vers 0.

5.3. Application au calcul de la fonction zéta d’Alexander

On déduit de ce résultat une formule exprimant la fonction d’Alexander de f
en termes de ’arbre des contacts.

Nous allons associer a chacun de ces sommets un A-cycle (s de la manieére
suivante :

e Si S est un sommet du type 1, alors on pose (s = (7% — 1)((9)=1) ayec
a;(S) =p,siiels et a;(S) = C;(S) sinon.

e Si S est un sommet du type 2, on distingue deux cas :

% Soit Iy = 0, alors on pose 4¢g = (TA5) — N)F (S)(Tw(5) _ 1)

Ar(8) = 0SB s 7 € g et A(S) = L C5(S) sinon

pin(S) = By sii € g et puy(S) = C5(S) s j € Js.

% Soit I5 # 0, alors (s = (T — 1)7F"(5) avec les mémes valeurs que ci-

m)

dessus pour Ay (g si i ¢ Iy et la condition Ay (S) = TR 5(n q+15q+1) pour ¢ € I§
(la valeur précédente étant indépendante du choix de i’ € I).
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On peut alors énoncer le résultat sous la forme suivante :

Proposition 5.3.1. La fonction zéta d’Alexander de f vérifie :

Atits =C I ¢ 1 ¢s

Sel Scls

Remarque 5.3.2. Cette formule est implicite dans [16] (cf. Appendice au Cha-
pitre 1 et Chapitre 3 section 12).

En appliquant le théoréeme 5.2.1 et la proposition 4.4.1, on obtient ’expression
suivante de la fonction zéta d’Alexander de f :

Aoty = 2D+ D 2B + D ACX) + Y A(x7s)).-

BeB &l sels

On en déduit alors la formule annoncée grace au lemme suivant :

Lemme 5.3.3. i) 4¢([)) = (17 ... 17" — 1)~
i) Si S est un sommet de type 1, alors A¢([Xs]) = Cs.
iii) Si B est une branche ou une feuille, alors A¢([Xg]) = 0.
iv) Si S est un sommet de type 2, alors A¢([X's]) = 0 et A¢([X75]) = (s.

Prewve du lemme. Le 1) est un cas particulier de la situation & croisements normaux.
Considérons le cas de la variété associée a un sommet S de type 1, au point B
d’une branche, ou d'une feuille. Il s’agit d’évaluer le cycle d’Alexander de la G -

variété Xs ; nous pouvons plonger Xs dans A% et prolonger f g en un morphisme de
A% dans AT ; nous sommes alors ramenés a la situation d’un diviseur & croisements
normaux de AZ de composantes {w = 0} et {¢c = a®},c;.; la caractéristique
d’Euler de la strate {w = 0} \ Ujer.{c = a®} vaut 1 — k(S) et les autres sont
nulles, ce qui démontre le ii) en appliquant la proposition 4.2.3.

Le cas d’une branche est similaire a celui d’'un sommet de type 1 pour lequel
k(S) =1, dott A¢([XB]) = 0.

Envisageons maintenant le cas d’'un sommet du type 2. Nous pouvons nous ra-
mener a la situation d’un diviseur a croisements normaux en effectuant 1’éclatement
torique associé a un raffinement régulier de I’éventail du premier cadrant d’arétes
{(1,0), (pg+1, ng+1), (0,1)}. Nous devons distinguer deux cas :

e Soit I, = (), la transformée totale de f75 = 0 est la réunion des composantes
du diviseur exceptionnel associées aux arétes de coordonnées strictement positives
et de la transformée stricte de w = 0 (qui correspond a D’aréte (1,0)). Chaque
composante en intersecte deux autres excepté le premier “bout”, qui en intersecte
un seul, le diviseur de rupture qui en intersecte deux outre les transformées strictes
des fonctions (c"ett — (aﬁiﬁl)"qﬂwli”qﬂ)ieps et la transformée stricte de w = 0
qui en intersecte un seul (le deuxieme “bout”). Le nombre de transformées strictes
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ci-dessus est aussi égal au nombre de branches du diagramme des contacts qui se
séparent au niveau du sommet S, c’est-a -dire a k().

Les multiplicités de c"at+1 — (agqll)"ﬁl wPatl pour ¢ € [7g, (resp. w) le long
du diviseur de rupture valent ng41pg+1 (resp. ng+1) et les multiplicités le long du
bout valent ngiy (resp. 1); le premier cas du v) s’en déduit puisque

Ng+1Pg+1€q+1 + Ng18q = ng18441-

e Dans le cas ou I # 0, la transformée totale de fs = 0 contient une com-
posante supplémentaire (la transformée totale de ¢ = 0) qui intersecte le premier
“bout”. Le seul diviseur dont la contribution a la fonction zéta d’Alexander est
éventuellement non nulle est donc le diviseur de rupture ; la multiplicité de ¢ le long

. ) . [COR-(CH!
de ce diviseur vaut pq+1 , pour tout ¢/ € I§, lordre de la fonction c% wP" vaut

p((;_:)legz q+1(6q+1 ﬁq+1) (pour 7 quelconque dans I” g et i’ € I) c’est-a-dire

m(’/) (lw

T AR = 2(S)

comme annoncé. Ceci acheéve le calcul et la démonstration de la proposition 5.3.1.

o Eremple 1 : Dans le cas d’une seule fonction, chaque paire de Puiseux donne
lieu & I'apparition d’un sommet S qui est de type 2 et pour lequel I = (. La
formule 5.3.1 s’écrit donc

g
ACf — H anﬂ
g=1 Tﬂq = 1
qui est bien 'inverse de la fonction zéta de la monodromie de f (voir corollaire
3.5.1).
o Exemple 2 : Considérons le cas ol

filzy)=y" =2 et folz,y) = (y° —2°)° —dya® — 2"

Nous avons pour la premiere fonction : m =2, g1 =3, e1 =1, p1 =3, ny = 2.

Pour la deuxieme, on a : m =4, B4 =6,¢1 =2, p1 =3, n1 =2; 1 =7,
ea=1; 8, =13.

Les deux develog)pements fractlonnalres assomes a jl sont x5 et —z3 ; ceux
associés a fo sont z2 + x1, x2 —x4 —z3 +zx4 et —22 — iz,

Le diagramme des contacts de f; et f2 admet deux sommets Sy et S, le premier
est d’altitude % et le second d’altitude %.

Le sommet Sp est de type 2 et on a I5 = 0 et k”(So) = 2, d’ou (s, (T1,12) =
(T1713% = 1)*(T715 - 1)~

Le sommet S; est de type 2; on a Ig = {1}, k'(S1) =1 et k”(Sp) = 1, d’'o
(s (T, Tn) = (T7°13° — 1).

Il vient finalement

Ap (T, To) = (TPT = (T — DA(TETS - 1) (1273 — 1),
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5.4. Application au calcul de la fibre de Milnor motivique d’une série
de deux variables éventuellement réductible

On s’intéresse au calcul de la fibre de Milnor motivique du produit F' := f; x

. X fp. On dispose d'une application naturelle m : G;:;L,c — Gy, ¢ définie par
(t1, ... tp) > b1 .. . tp.

Cette application induit de maniere naturelle une application m, entre

K 0<G1:n,c) et Ko(Gy,, c) qui s"étend de maniere naturelle en une application qu’on
note encore m, entre

MG&,C[[Th e TPH et MGm,c[[TH
définie par
my (XTI .. Tp7) = ma (XTI ... T

pour toute G -variété X.
Il résulte dlrectement des définitions qu’on a la relation Zp = m.(Z;) et on
déduit alors du théoréme 5.2.1 la proposition suivante :

Proposition 5.4.1. La fibre de Milnor motivique de la série F' s’exprime a l'aide
de Uarbre des contacts par la relation suivante :

Sro = Vo] + { > sl JrZyB]}wLZ[y”S]
sen BeB Sely
ot les notations sont les suivantes :
Yy :={z€ Gyc | 2™ =1} (avec m := 3, m) munie de I'action de g,

définie par .z := (x.
e Pour tout S sommet du type 1, branche de I’arbre des contacts, ou feuille

(7',) . 3(%)
ys B {(ZL'7 ) X Gm C | H xr — ah()S) yZzGIsﬁ (S) — 1}
i€lg
ol 'on a noté S (S) = [3((3) sii € Is et Cs(i) sinon. Si Nygyh(S) = p/n avec p
et n premiers entre eux, 'action de fi sur Vs se factorise par Iaction de pi,n(n(s)

définie par ¢.(z,vy) := ((Pc, (My).
e Pour tout S sommet du type 2,

Ve {(:c,y) € AL x G|

Tq+1

H (ahatt — ald) yPeti)eats gliicll e yrehe — 1}
icly

ol /E’éi) a la méme signification que ci-dessus. L’action de i sur )" g se factorise
par l'action de p,, oy définie par {.(c,wy) 1= ((Patre, (Matiwy).
q q
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