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Commentarii Mathematici Helvetici

Espaces d'arcs et invariants d'Alexander
Gil Guibert

R¶esum¶e Nous calculons la fonction zeta d'Igusa motivique de Denef{Loeser associ¶ee µa une s¶erie
irr¶eductible de deux variables et retrouvons µa l'aide de ce r¶esultat la formule donnant le spectre

de Hodge{Steenbrink d'une courbe plane irr¶eductible en termes des donn¶ees de Puiseux Nous

¶etudions ensuite une g¶en¶eralisation de la fonction d'Igusa µa une famille de fonctions et montrons

que cette fonction d'Igusa permet de retrouver les invariants d'Alexander de la famille Nous

appliquons ce r¶esultat en dimension deux pour obtenir une expression du polynôme d'Alexander
d'une courbe plane

Abstract We compute the motivic Igusa zeta function of Denef{Loeser associated with a two
variables irreducible serie and use this result to give a new proof of the formula expressing the

Hodge{Steenbrink spectrum in terms of the Puiseux data We study a generalisation of the

motivic Igusa function to a family of functions and show that this Igusa function is related with
the Alexander invariants of the family Using this result we obtain a formula for the Alexander
plolynomial of a plane curve

Mathematics Subject Classi¯cation 2000 14B05 14H20 13D40

Mots cl¶es Espaces d'arcs fonction d'Igusa motivique ¯bre de Milnor singularit¶es de courbe

plane invariants d'Alexander

Keywords Arcs spaces motivic Igusa function plane curve singularity Alexander invariants

1 Introduction

Le point de d¶epart de ce travail est la fonction zêta d'Igusa motivique intro-
duite par Denef et Loeser dans [11] Sa d¶e¯nition utilise la th¶eorie de l'int¶egration
motivique introduite par Kontsevitch [18] et d¶evelopp¶ee par Batyrev et Denef{
Loeser qui est un analogue sur k t k d¶esigne un corps de caract¶eristique nulle
de l'int¶egration p-adique Dans cette th¶eorie Qp est remplac¶e par k t et l'an-
neau Zp par k[[t]] L'espace d'int¶egration n'est plus l'espace des points entiers

d'une vari¶et¶e d¶e¯nie sur un corps p-adique mais l'espace des arcs trac¶es sur la
vari¶et¶e : c'est un sch¶ema not¶e L X dont les points k-rationnels sont les points

k[[t]]-rationnels de X Plus pr¶ecisemment on peut pour tout entier naturel n
d¶e¯nir le sch¶ema des arcs tronqu¶es µa l'ordre n trac¶es dans X not¶e Ln X dont
les points k-rationnels sont les points k[[t]] tn+1 -rationnels de X ; si m ¸ n on
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dispose d'un morphisme naturel de troncation ¼m;n : Lm X Ln X ; on d¶e¯nit
alors L X comme la limite projective des Ln X dans la cat¶egorie des sch¶emas

Notons que L0 X ' X ce qui permet de voir Ln X comme vari¶et¶e au-dessus de

X via le morphisme ¼n;0 Les int¶egrales consid¶er¶ees sont µa valeurs dans un anneau

^
M

k d¶e¯ni de la fa»con suivante :
On considµere le groupe de Grothendieck K0 Vark des vari¶et¶es : c'est le groupe

engendr¶e par les classes d'isomorphisme de vari¶et¶es sur k et les relations [X ]
[Y ] + [X n Y ] si Y est un ferm¶e de Zariski de X On note L : [A1

k ] et on d¶e¯nit
Mk comme le localis¶e en L de K0 Vark ; M̂k est d¶e¯ni comme le compl¶et¶e de

Mk pour la ¯ltration par la dimension voir par exemple [15] et [20] La fonction
zêta d'Igusa motivique est un analogue dans le contexte de l'int¶egration motivique

de la fonction zêta d'Igusa locale associ¶ee µa un polynôme voir [7] µa ce sujet
Cette fonction est d¶e¯nie comme suit :
Soit X une vari¶et¶e alg¶ebrique complexe de dimension d x un point de X ; on

d¶e¯nit Xn comme le sous-espace de ¼¡1
n;0 fxg sur lequel f est d'ordre n On dispose

d'un morphisme naturel de Xn vers le groupe multiplicatif qui µa un arc ' associe
le coe±cient de tn dans la s¶erie f ' ; on le note ac f La ¯bre Xn;1 au-dessus de

1 de la restriction de ac f µa Xn est naturellement munie d'une action du groupe

des racines n-iµemes de l'unit¶e induite par multiplication sur le paramµetre t ce qui
permet de d¶e¯nir la classe de Xn;1 dans l'anneau M¹̂

k qui est une version de Mk
pour les vari¶et¶es munies d'une action du pro-groupe ¹̂ des racines de l'unit¶e On
pose alors

Zf;x T : Xn¸1

[Xn;1; ¹̂]L¡ndT n:

Inspir¶es par des travaux de Denef dans le cadre p-adique Denef et Loeser ont
explor¶e les rapports entre la fonction d'Igusa motivique et les invariants classiques

associ¶es au faisceau des cycles ¶evanescents de f tels que la fonction zêta de la
monodromie et le spectre de Hodge Ils ont montr¶e que la ¯bre de Milnor motivique

qui est une limite en +1 de la fonction d'Igusa motivique et la ¯bre de Milnor
usuelle ont même r¶ealisation de Hodge [11]

Il devient alors naturel de tenter de d¶ecrire les espaces d'arcs a¯n d'obtenir
des formules explicites pour certains invariants locaux des singularit¶es de fonction
C'est la motivation de ce travail

L'objet du premier paragraphe est d'introduire les outils n¶ecessaires µa la d¶e¯ni-
tion de la fonction d'Igusa motivique et de rappeler un r¶esultat fondamental de

Denef{Loeser sur le lien entre cette fonction et la th¶eorie des cycles ¶evanescents

Nous terminons par le calcul de la ¯bre de Milnor motivique dans le cas d'une

fonction non d¶eg¶en¶er¶ee par rapport µa son polygone de Newton
Le paragraphe suivant est consacr¶ee µa l'¶etude des espaces d'arcs associ¶es µa une

s¶erie irr¶eductible de deux variables Nous d¶ecrivons ces espaces µa l'aide de deux
paramµetres : la valuation en t d'une coordonn¶ee transverse et le contact de l'arc avec

les d¶eveloppements de Puiseux de la courbe Cette description aboutit au calcul de

la ¯bre de Milnor motivique de f µa l'aide des paires de Puiseux Th¶eorµeme 3 3 1
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En utilisant le th¶eorµeme de Denef{Loeser mentionn¶e plus haut nous retrouvons

µa partir de cet ¶enonc¶e la formule exprimant le spectre de Hodge en termes des

donn¶ees de Puiseux cf corollaire 3 4 1

Nous nous int¶eressons au troisiµeme paragraphe µa une g¶en¶eralisation naturelle de

la fonction d'Igusa motivique µa plusieurs fonctions f1; : : : fp Si X0 : \p
i 1f¡1

i 0
cette fonction est d¶e¯nie comme une s¶erie µa coe±cients dans un anneau de vari¶et¶es

relatives MX0£Gp
m;C

Dans l'article [21] Sabbah g¶en¶eralise µa une famille de fonc-

tions f1; : : : ; fp la construction du complexe des cycles proches associ¶e µa une fonc-
tion analytique Ainsi pour tout point x de X0 il associe µa cette famille de fonc-
tions sa fonction zêta d'Alexander en x not¶ee A³f;x ; c'est une fraction rationnelle µa
p variables qui coÄ³ncide avec l'inverse de la fonction zêta de la monodromie lorsque

p 1 et avec le polynôme d'Alexander de l'entrelac alg¶ebrique associ¶e µa la courbe

d'¶equation f1 : : :fp lorsque l'espace ambiant est de dimension deux et les fi sont
des s¶eries irr¶eductibles deux µa deux distinctes

Une question naturelle est l'¶etude du lien entre cette fonction d'Alexander et
la fonction d'Igusa motivique d¶e¯nie pr¶ec¶edemment Nous donnons un ¶enonc¶e qui
montre que la premiµere se d¶eduit de la seconde Th¶eorµeme 4 4 1

Nous nous int¶eressons ensuite au calcul de la fonction d'Igusa motivique as-
soci¶ee µa une famille de p s¶eries irr¶eductibles de deux variables Nous repr¶esentons

les di®¶erents d¶eveloppements de Puiseux de ces fonctions sur un arbre qui re°µete
les contacts mutuels de ces d¶eveloppements La fonction d'Igusa motivique as-
soci¶ee s'exprime comme une combinaison lin¶eaires µa coe±cients dans MX0£Gp

m;C
de fractions rationnelles µa p variables index¶ee par les sommets branches et feuilles

de l'arbre des contacts En utilisant le th¶eorµeme 4 4 1 on en d¶eduit une formule
exprimant la fonction zêta d'Alexander des p fonctions en termes de l'arbre des

contacts proposition 5 3 1

Nous terminons en appliquant les r¶esultats pr¶ec¶edents au calcul de la ¯bre de

Milnor motivique dans le cas d'une fonction de deux variables non n¶ecessairement
irr¶eductible proposition 5 4 1

Remerciements L'auteur tient µa remercier M Merle sans les conseils et les en-
couragements duquel ce travail n'aurait pas vu le jour N A'Campo et F Loeser
pour d'int¶eressantes discussions ainsi que M Brion dont les remarques et sugges-
tions ont contribu¶e µa am¶eliorer ce texte

2 Fonction zêta d'Igusa motivique associ¶ee µa une fonction r¶egu-
liµere et ¯bre de Milnor

Les deux r¶ef¶erences principales pour cette section sont [15] et [20]
Dans ce paragraphe k d¶esignera un corps alg¶ebriquement clos de caract¶eristique

nulle
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Espaces d'arcs associ¶es µa une vari¶et¶e alg¶ebrique Soit X une vari¶et¶e
alg¶ebrique de dimension d sur k Pour tout entier n on peut d¶e¯nir le sch¶ema

Ln X des germes d'arcs tronqu¶es µa l'ordre n sur X dont les points K-rationnels
sont les points K [[t]] tn+1K [[t]] rationnels de X pour tout corps K contenant
k Si n ¸ m on dispose d'un morphisme naturel de troncation ¼n;m : Ln X
Lm X Les Ln X forment un systµeme projectif pour les morphismes ¼n;m On
note L X la limite projective de ce systµeme dans la cat¶egorie des sch¶emas C'est
un sch¶ema dont les points K-rationnels sont les points K [[t]] -rationnels de X
pour tout corps K contenant k Notons que L0 X X et qu'on dispose donc

d'un morphisme naturel ¼0 : L X X qui µa un arc associe son origine Si X est
lisse pour tout entier naturel n Ln X est un ¯br¶e en espaces a±nes de dimension
nd au-dessus de X Notons que les d¶e¯nitions pr¶ec¶edentes s'¶etendent au cas oµu X
est un sch¶ema formel

Groupes de Grothendieck de vari¶et¶es Soit S une vari¶et¶e alg¶ebrique sur
k On appelle S-vari¶et¶e une vari¶et¶e alg¶ebrique X sur k munie d'un morphisme

X S et on note VarS la cat¶egorie dont les objets sont des S-vari¶et¶es et les

morphismes sont les morphismes de k-vari¶et¶e commutant aux morphismes vers

S On notera X S une S-vari¶et¶e ou seulement X lorsque le contexte sera clair
On d¶e¯nit le groupe de Grothendieck relatif K0 VarS des S-vari¶et¶es comme le
groupe engendr¶e par les classes d'isomorphismes de S-vari¶et¶es [X ] pour X une

S-vari¶et¶e et quotient¶e par les relations [X ] [Y ] + [X n Y ] si Y est un ferm¶e
de Zariski de X Le produit ¯br¶e au-dessus de S munit K0 VarS d'une structure

d'anneau Par ailleurs on peut associer µa tout ensemble constructible c'est-µa-dire

µa toute r¶eunion ¯nie de vari¶et¶es au-dessus de S localement ferm¶ees sa classe dans

K0 VarS : si X [ni 1Xi oµu les Xi d¶esignent des vari¶et¶es localement ferm¶ees on
note [X ] P

n
i 1[Xi]¡P1·i<j·n[Xi \Xj ] + : : : + ¡1 n¡1[\ni 1Xi] cet ¶el¶ement

de K0 VarS est ind¶ependant du choix des Xi
On note L la classe de A1

k £S vue comme S-vari¶et¶e via la projection naturelle
sur S dans K0 VarS et on d¶e¯nit MS comme l'anneau obtenu par localisation
de K0 VarS en L

Si S Spec k on adoptera la notation Vark pour VarS L'application naturelle
X [X ] de Vark dans K0 Vark s'interprµete comme la caract¶eristique d'Euler
universelle Notons que si s est un point de S on dispose d'une application naturelle
Fibres de K0 VarS dans K0 Vark d¶e¯nie par [X]

7

[Xs] Xs d¶esignant la ¯bre

de X S au-dessus de s
Ces d¶e¯nitions peuvent s'¶etendre au cas de vari¶et¶es munies de l'action d'un

groupe de racines de l'unit¶e de la maniµere suivante : pour tout n 2 N on note
¹n le groupe des racines n-iµemes de l'unit¶e ; les ¹n forment un systµeme projectif
pour les applications x 7 xd de ¹nd dans ¹n ; on note ¹̂ la limite projective de ce

systµeme Une action de ¹n sur une S-vari¶et¶e X est dite bonne si toute orbite est
contenue dans une sous-vari¶et¶e a±ne de X On d¶e¯nit le groupe de Grothendieck
monodromique K ¹̂

0 VarS comme l'analogue de K0 VarS pour les vari¶et¶es munies

d'une bonne action de ¹̂ Si X est une vari¶et¶e munie d'une bonne action de ¹̂ on
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notera parfois [X; ¹̂] la classe de X dans K¹̂
0 VarS

Mesure motivique Un sous-ensemble S de L X est dit stable si il existe
un entier naturel n et un sous-espace constructible C de la vari¶et¶e Ln X tel que

S ¼¡1
n C et tel que pour tout m sup¶erieur µa n la restriction de ¼m;n µa S soit une

¯bration triviale par morceaux en espaces a±nes La deuxiµeme condition est au-
tomatiquement v¶eri¯¶ee si X est lisse Si S est stable la quantit¶e [¼m S ]L¡ m+1 d

est ind¶ependante de m pour m assez grand On la note ¹ S L'application ¹
d¶e¯nit une mesure appel¶ee mesure motivique sur la sous-algµebre bool¶eenne des

espaces stables de L X Notons que cette mesure peut s'¶etendre en une mesure ~¹
d¶e¯nie sur une algµebre de sous-ensembles de L X qui est par d¶e¯nition l'algµebre

des parties mesurables et µa valeurs dans le compl¶et¶e de MS pour une ¯ltration
convenable Nous n'utiliserons pas cette g¶en¶eralisation dans cet article

Caract¶eristique de Hodge monodromique et spectre de Hodge Dans

la suite on travaillera sur le corps des complexes On appelle structure de Hodge la
donn¶ee d'un Q-espace vectoriel de dimension ¯nie H muni d'une bigraduation H­C ©p;q2ZHp;q telle que Hp;q Hq;p et que pour tout m l'espace ©p+q mHp;q

homogµene de poids m soit d¶e¯ni sur Q ; en consid¶erant les morphismes d'espaces

vectoriels respectant la bigraduation on obtient une cat¶egorie ab¶elienne not¶ee HS

munie d'un produit tensoriel On peut alors d¶e¯nir le groupe de Grothendieck
associ¶e K0 HS qui est naturellement muni d'une structure d'anneau

Une structure de Hodge mixte est la donn¶ee d'un Q-espace vectoriel de di-
mension ¯nie V muni d'une ¯ltration croissante ¯nie W²V appel¶ee ¯ltration par
le poids telle que GrW

² V soit munie d'une structure de Hodge dont la com-
posante homogµene de degr¶e m est GrW

m V Le groupe de Grothendieck de la
cat¶egorie ainsi obtenue est aussi ¶egal µa K0 HS et la classe de V dans K0 HS

vaut [V ] Pm[GrW
m V ]

Pour toute vari¶et¶e alg¶ebrique X sur C les groupes de cohomologie µa support
compact Hi

c X; Q admettent une structure de Hodge mixte On peut donc as-
socier µa toute vari¶et¶e X sa caract¶eristique de Hodge dans K0 HS : Âh X :

Pi ¡1 i[H i
c X;Q ] oµu [H i

c X; Q ] est la classe de Hi
c X; Q dans K0 HS Si Y

est une sous-vari¶et¶e de X la suite exacte longue induite en cohomologie est com-
patible avec les structures de Hodge correspondantes si bien que la caract¶eristique

de Hodge Âh s'¶etend en un morphisme d'anneaux de K0 VarC dans K0 HS que

l'on note encore Âh L'image de la droite a±ne ¶etant inversible dans K0 HS on
en d¶eduit que Âh s'¶etend µa MC

Notons HSmon la cat¶egorie ab¶elienne des structures de Hodges mixtes munies

de l'action d'un endomorphisme quasi-unipotent Si X est une vari¶et¶e alg¶ebrique

munie d'une bonne action de ¹̂ ses groupes de cohomologie sont munies de l'action
d'un endomorphisme quasi-unipotent ; ceci permet de d¶e¯nir la caract¶eristique de

Hodge monodromique de X

Âmon
h X Xi ¡1 i[H i

c X; Q ] 2 K0 HSmon :
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Par ailleurs on sait associer µa un ¶el¶ement de HSmon son spectre de Hodge ; pour
® 2 Q on note Hp;q

® l'espace caract¶eristique de Hp;q associ¶e µa la valeur propre

exp 2¼i® Le spectre de Hodge de H est le polynôme de Laurent en t
1
m oµu

m d¶esigne l'ordre de quasi-unipotence de l'automorphisme correspondant d¶e¯ni
par :

hsp H : X
®2Q\[0;1[

t®µ X
p;q2Z

tpdim Hp;q
® ¶:

On note Sp la compos¶ee de hsp : K0 HSmon [n¸1Z[t1 n; t¡1 n] et de la
caract¶eristique de Hodge monodromique Âmon

h

Fonction zeta d'Igusa motivique Dans cette section on d¶esigne par f :
X A1

k une fonction r¶eguliµere et on pose X0 f¡1 0
Dans cette situation si x est un point de X0 on dispose d'un certain nombre

d'invariants classiques li¶es µa la la ¯bration de Milnor associ¶ee µa f et µa l'action
de la monodromie sur la cohomologie de la ¯bre comme la fonction zêta de la
monodromie ou le spectre de Hodge [23] et [24] L'objet de cette section est
d'¶enoncer un r¶esultat de Denef{Loeser sur le lien entre ces invariants et la fonction
d'Igusa motivique associ¶ee µa f On notera ord t la valuation t-adique d'une s¶erie
de la variable t

Pour tout entier n on d¶e¯nit suivant Denef{Loeser

Xn : f' 2 Ln X ; ordtf ± ' ng:

Notons que ce sous-espace constructible de Ln X est naturellement muni d'une

action de Gm;C d¶e¯nie par c:' t : ' ct ; cette action induit clairement une

bonne action de ¹n sur la ¯bre Xn;1 : f' 2 Xn j ac f ' 1g
Ceci permet de d¶e¯nir la fonction zêta motivique associ¶ee µa f comme la s¶erie

formelle µa coe±cients dans M¹̂
X0

:

Zf T : Xn¸1

[Xn;1 X0; ¹̂] L¡dT n:

Un r¶esultat de Denef{Loeser voir par exemple [15] Th¶eorµeme 3 3 1 exprimant
Zf T µa l'aide d'une r¶esolution des singularit¶es montre que Zf T est un ¶el¶ement
de la sous M¹̂

X0
-algµebre de M¹̂

X0
[[T ]] engendr¶ee par les fractions rationnelles du

type L¡aTb

L¡aTb¡1
pour a et b entiers naturels

Notons qu'on peut d¶e¯nir un morphisme limT 1 de cette sous-algµebre dans

M¹̂
X0

en posant limT 1
L¡aT b

1¡L¡aT b ¡1

Ceci permet de d¶e¯nir un ¶el¶ement Sf : ¡ limT 1 Zf T dans M¹̂
X0

On pose

Sf;x : Fibrex Sf pour x 2 X0 ; cette vari¶et¶e virtuelle est par d¶e¯nition la ¯bre
de Milnor motivique de f en x

On note par ailleurs S
©
f : ¡1 d¡1

Sf ¡ [X0]
Indiquons un r¶esultat de Denef et Loeser qui montre que S

©
f est li¶e au complexe

de faisceaux des cycles ¶evanescents de f sur X0
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Les groupes de cohomologie µa support compact de la ¯bre de Milnor Fx d'une

fonction f en x 2 f¡1 0 sont munis d'une structure de Hodge mixte naturelle
compatible avec l'action de l'endomorphisme quasi-unipotent de monodromie Mx
voir [23]

On d¶e¯nit alors le spectre de Hodge{Steenbrink de f en x par :

hsp f; x : ¡1 dhsp Âmon
h Fx ¡ 1 :

Nous pouvons alors ¶enoncer le th¶eorµeme suivant :

Theorem 2 0 1 [11] La caract¶eristique de Hodge de la ¯bre de Milnor motivique

et celle de la ¯bre de Milnor usuelle sont ¶egales :
Âh Sf;x Âh Fx

En particulier hsp f; x Sp S
©
f;x La fonction d'Igusa motivique associ¶ee µa

f d¶etermine donc le spectre de Hodge{Steenbrink de f au point x

Remarque 2 0 2 Dans le cas oµu f : Xx C; 0 est un germe d'application
analytique complexe il est possible de d¶e¯nir de la même maniµere que ci-dessus

une fonction d'Igusa motivique associ¶ee µa f en x Les espaces Xn utilis¶es dans la
d¶e¯nition de Zf sont des vari¶et¶es alg¶ebriques au-dessus de X0 pour tout x 2 X
Xn \ ¼¡1

0 fxg ne d¶epend que du jet µa l'ordre n de f en x On peut v¶eri¯er que

le th¶eorµeme pr¶ec¶edent reste vrai dans ce contexte

2 1 Un exemple : fonctions non d¶eg¶en¶er¶ees par rapport µa leur polyµedre
de Newton

On s'int¶eresse dans cette section au calcul de la fonction zêta associ¶ee µa une

fonction non d¶eg¶en¶er¶ee par rapport µa son polyµedre de Newton On se donne donc

un polynôme nul µa l'origine f : Cd C et des coordonn¶ees x1; : : : ; xd On note
M le r¶eseau correspondant aux monômes pour ces coordonn¶ees et N son dual ;
on note ¡ ½ M le polyµedre de Newton de f pour x1; : : : ; xd et m¡ sa fonction
d'appui c'est-µa-dire la fonction qui µa un ¶el¶ement de N associe le minimum de sa
restriction µa ¡

A chaque face ° de codimension 1 de ¡ correspond un vecteur de N qu'on
nommera normale µa ° : c'est l'unique vecteur primitif c'est-µa-dire µa coordonn¶ees

premiµeres entre elles de N dont la restriction µa ¡ atteint son minimum sur ° ; on
le notera e ° Si a 2 Nd on note ° a la face de ¡ sur la quelle la restriction de

a µa ¡ atteint son minimum L'ensemble fa 2 Nd
j ° a °g est un cône convexe

relativement ouvert du r¶eseau N ; si ° est l'intersection des faces °1; : : : ; °r de

codimension un ce cône est engendr¶e par les normales e °i correspondantes ; on
le notera ¾ ° La collection de cônes ainsi d¶e¯nie s'organise en un ¶eventail qui
est par d¶e¯nition l'¶eventail normal de ¡ On note f x : Pº2 N£ d fºxº Si ° est
une face de ¡ on notera f° le polynôme quasi-homogµene

Pº2° fºxº
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On introduit les notations suivantes : Si ° est une face de ¡ on note X° 1 la
vari¶et¶e fx 2 Gd

m;C j f° x 1g munie de l'action naturelle de ¹m¡ a induite par
la quasi-homog¶en¶eit¶e de f° et X° 0 : fx 2 Gd

m;C j f° x 0g
On suppose dor¶enavant que f est non d¶eg¶en¶er¶ee par rapport µa ¡ au sens de

[18] et on cherche µa calculer Zf T 2 M¹̂
C[[T ]] On identi¯era dans tout ce qui suit

L Ad
C µa C[[t]]d via le systµeme de coordonn¶ees x1; : : : ; xd Pour tout ' 2 L Ad

C
on note ordtx ' : ordt x1 ' ; : : : ; ordt xd ' Pour tout a 2 Nd et n 2 N on
pose : Xa : f' 2 L Ad

j ordtx ' ag et Xa;n : Xa \Xn;1 Notons que pour
tout a 2 Nd et ' 2 Xa on a ordtf ' ¸ m¡ a Pour calculer ¹ Zn on peut
se contenter de calculer Pa2 N¤ d ¹ Xa;n car le compl¶ementaire de [a2 N¤ dXa;n
dans Xn est de mesure motivique nulle En utilisant le fait que les cônes de §
forment une partition de N£ d on en d¶eduit que la fonction zêta motivique

associ¶ee µa f s'¶ecrit

Zf T L¡d Xn¸1
¹ Xn;1 T n U¡d X° X° a ° Xn¸m¡ a

¹ Xa;n T n

L¡d X° X° a °
¹ Xa;m¡ a T m¡ a + L¡d Xn¸m¡ a +1

¹ Xa;n T n

: L¡d³X° Z° T + Z>
° T ´:

On peut ¶evaluer la mesure de l'espace Za;n pour n ¸ m¡ a + 1 par la formule
suivante :

Lemme 2 1 1 Pour tout a 2 Nd et k ¸ 1 on a :

¹ Xa;m¡ a +k L¡k¡s a [X° 0 ] L¡ 1 :

Preuve Par additivit¶e de ¹ il nous su±t d'¶evaluer la mesure de X¸m¡ a +k+1
a

Soit ' t : x1 t ; : : : ; xd t un arc tronqu¶e v¶eri¯ant
ordtx ' a et ordtf° a ' ¸ m¡ a + k:

On peut donc poser ~' : t¡a1x1 t ; : : : ; t¡adxd t oµu pour tout i ~xi : t¡aixi est
de valuation nulle Nous pouvons ¶ecrire f ' t tm¡ a ~f° a ~'; t Nous sommes

ainsi ramen¶es µa ¶evaluer la mesure de f~' j ordt
~f° a ~' ¸ k + 1g

Notons que la fonction ~f° a est lisse en ~' 0 : cela r¶esulte de l'identit¶e
@ ~f° a

@ ~xi
~' 0 ; 0

@f° a
@xi

~' 0 ;

de l'hypothµese de non-d¶eg¶en¶erescence et du fait que ~' 0 2 Gd
m;C

On en d¶eduit que l'espace des solutions de ~f° a 0[tk+1] est un ¯br¶e au-
dessus de X° 0 de ¯bre isomorphe µa un espace a±ne de codimension k dans

Q
d
i 1 tC[t] tm¡ a +s a ¡ai+k+1
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L'espace X¸m¡ a +k+1
a est donc isomorphe µa X° a 0 £Am¡ a +s a + k+1 d¡s a¡k;

sa mesure vaut donc [X° a 0 ]L¡k¡s a En calculant de maniµere analogue la me-
sure de X¸m¡ a +k

a on aboutit au r¶esultat annonc¶e
Si on pose S° L; T : Pa2¾ ° L¡s a Tm¡ a on en d¶eduit que

Z>
° T L¡ 1 L¡1T

1 ¡ L¡1T
[X° 0 ]S° L; T

d'oµu

Z> T X° L¡ 1 [X° 0 ] L¡1T
1 ¡ L¡1T

S° L; T :

Par ailleurs on a la formule suivante :

Lemme 2 1 2 ¹ Xa;m¡ a [X° a 1 ;¹m¡ a ]L¡s a

Preuve On ¯xe une forme lin¶eaire a qui atteint son minimum sur ° L'espace

¼m¡ a Xa;m¡ a est param¶etr¶e par le produit du tore de dimension d par un
espace a±ne On note c ci 1·i·d des coordonn¶ees sur le premier facteur ; par
d¶e¯nition de Za;m¡ a

on a ac f jXa;m¡ a f° c donc Xa;m¡ a
est de mesure

[X° 1 ;¹m¡ a
]L¡s a

La contribution de ces termes µa la s¶erie vaut donc
P°[X° 1 ;¹m° ]S° T ; L On

en d¶eduit la somme totale :

Proposition 2 1 3 Si f est non-d¶eg¶en¶er¶ee par rapport µa son polyµedre de Newton
on a :

Zf T L¡d X° µ[X° 1 ;¹m° ] + [X° 0 ] L¡ 1 L¡1T
1 ¡ L¡1T

¶ S° T ; L :

Remarque 2 1 4 On peut trouver dans [10] un r¶esultat analogue pour la fonction
zêta topologique et dans [9] un ¶enonc¶e similaire concernant la fonction d'Igusa p-
adique

Pour ¶evaluer la limite de cette s¶erie nous utiliserons le lemme suivant
Lemme 2 1 5 Soit C un cône convexe rationnel polyh¶edral l et l0 deux formes

lin¶eaires µa valeurs strictement positives sur C
Notons PC;l : Pk2 ±C

L¡l0 k T l k ; alors la limite de la fraction rationnelle

PC;l quand T 1 vaut ¡1 dim C

Preuve Si C est un simplexe dimension j r¶egulier c'est-µa-dire engendr¶e par une

partie d'une base "1; : : : "j la s¶erie consid¶er¶ee vaut Q
j
i 1

T l "i
1¡T l "i donc tend vers
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¡1 j ; le cas g¶en¶eral s'en d¶eduit en d¶ecomposant C en une r¶eunion de simplexes

r¶eguliers relativement ouverts disjoints

On d¶eduit de la proposition 2 1 3 et du lemme 2 1 5 :

Proposition 2 1 6 Si f est non d¶eg¶en¶er¶ee par rapport µa son polyµedre de Newton
on a

Sf;0 L¡d X° ¡1 dim ¾ ° ¡1

¡[X° 1 ;¹m° ]¡ [X° 0 ] L¡ 1
¢

:

3 Espaces d'arcs associ¶es µa une courbe plane irr¶eductible

Notations et conventions On considµere un polynôme f distingu¶e irr¶eductible
dans C[[x]][y] et on suppose que dans le systµeme de coordonn¶ees choisi la branche

de courbe plane µa l'origine C d¶e¯nie par f admet une param¶etrisation de la forme :

8
<

:

um

Xi¸m
aiui : h u

avec la condition pgcd m;fi j ai 6 0g 1 Autrement dit on a dans C[[u]][y] la
factorisation suivante :

f um; y Y³m 1

y ¡ h ³u :

On pose ¯1 minfi j ai 6 0 et m - ig et e1 ¯1;m ; on d¶e¯nit p1 et n1
par les relations ¯1 p1e1 et m n1e1 On d¶e¯nit de même par r¶ecurrence :

8q ¸ 2; ¯q minfi j ai 6 0 et ei¡1 - ig; eq ¯q ; eq¡1 et en¯n pq et nq par les

relations : ¯q pqeq et eq¡1 nqeq On pose Nq Qi·q ni et g minfq j eq
1g ; remarquons qu'on a la relation Nq

m
eq

Les couples nq ; pq 1·q·g sont les paires de Puiseux de C On conviendra
¶egalement que ¯0 0 e0 m N0 1 ainsi que ¯g+1 1L'ensemble ¡C fordug h u ; g 2 OCg est un semi-groupe [25] Il admet
un systµeme minimal de g¶en¶erateurs not¶e usuellement f¯0; : : : ¯gg Ces g¶en¶erateurs

satisfont les relations

¯0 ¯0; ¯1 ¯1; 8q ¸ 2; ¯q nq¡1¯q¡1 + ¯q ¡ ¯q¡1:

Rappelons qu'on d¶esigne par L A2
C le sch¶ema des arcs trac¶es dans A2

C ; on
note ordt la valuation t-adique

Le but de ce qui suit est de d¶ecrire les Gm;C-vari¶et¶es Xn;1 et l'action de ¹n
µa l'aide du semi-groupe de f ; pour cela nous commen»cons par identi¯er L A2

C
µa C[[t]]2 via le choix des coordonn¶ees x; y puis nous param¶etrons les ¶el¶ements

de C[[t]]2 sous une forme normalis¶ee du type Puiseux Ceci permet de d¶e¯nir
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une notion de contact fractionnaire d'un arc avec f ; nous classons ensuite ces

arcs selon deux paramµetres la valuation en t de leur coordonn¶ee x et leur contact
avec f

3 1 Ecriture normalis¶ee d'un arc et contact avec f
Consid¶erons un arc ' t : x t ; y t avec x t

6

0 Nous pouvons travailler
avec une ¶ecriture normalis¶ee de ' comme le montre le :

Lemme et d¶e¯nition 3 1 1 Il existe 2 C[[t]] et X; Y 2 C[[ ]]2 tels que :

' t X t ; Y t avec X m0 et Y Pj¸1 bj j avec la condition
pgcd m0; fj j bj 6 0g 1

On appellera une ¶ecriture de ce type ¶ecriture normalis¶ee de '
Preuve D¶esignons par d le pgcd des puissances de t qui ¯gurent dans x t et
y t et posons x t x0 td et y t y0 td x0 et y0 2 C[[u]] oµu u d¶esigne une

ind¶etermin¶ee ; alors si m0 d¶esigne la valuation de x0 posons ~x u : u¡m0 x0 u
et d¶esignons par x̂ u une racine m0-iµeme de ~x u

L'application u 7 ux̂ u : 0 u est un automorphisme de C[[u]] ; on peut
donc ¶ecrire y0 u : Pj¸1 bj 0 u j

Si on pose t : 0 td il est clair que le param¶etrage m0 ;Pj¸1 bj j
satisfait aux conditions requises On peut alors poser la d¶e¯nition suivante :

D¶e¯nition 3 1 2 Consid¶erons une ¶ecriture normalis¶ee de ' comme ci-dessus ; on
appelle ordre de contact de ' avec f le maximum des valuations en x des s¶eries

fractionnaires
Pj¸1 bj»jx jm0 ¡Pi¸m ai³ix im pour ³ 2 ¹m et » 2 ¹m0

Nous avons alors le r¶esultat ¶el¶ementaire suivant :

Lemme 3 1 3 Soit r un ordre de contact et q l'unique entier tel que ¯q
m < r ·¯q+1

m
on a pos¶e ¯g+1 1 et ¯0 0 ; alors pour tout arc ' dont le contact avec

f vaut r Nq divise ordt x '
Preuve Soit ' un arc dont le contact avec f est r ; puisque le d¶eveloppement
fractionnaire normalis¶e de ' coÄ³ncide avec l'un des d¶eveloppements de f au moins

jusqu'µa l' ordre ¯q
m

et que cette fraction s'¶ecrit sous forme irr¶eductible pq Nq on
a la relation de divisibilit¶e Nq jm0 et donc ¶egalement Nq jordt x '

Ceci nous autorise pour tout entier l µa d¶e¯nir Zr;l comme le sous-espace con-
structible de L A2

C des arcs ayant le contact r avec f et tels que ordt x t lNq

Remarquons que tout arc ' de Zr;l v¶eri¯e la relation

ordt f ± ' lNqµreq + ¯q

m
eq¡1 ¡ eq + ¢ ¢ ¢ + ¯1

m
e0 ¡ e1 + ¯0

m
e0¶ : ln r



794 G Guibert CMH

si bien que chaque espace d'arcs Zn f' 2 L A2
C ; ordt f ± ' ng est une

r¶eunion de Zr;l
On pose alors Xr;l ¼ln r Zr;l ; c'est un sous-ensemble constructible de Xln r

naturellement muni d'une structure de Gm;C-vari¶et¶e via la restriction du mor-
phisme ac f ; on notera Xr;l;1 pour f' 2 Xr;l j ac f ' 1g

Les r¶esultats suivants d¶ecrivent les Gm;C-vari¶et¶es Xr;l; selon les valeurs de r et
de l

3 2 Description des espaces d'arcs associ¶es µa f
Dans tout ce qui suit pour tout contact r 2 Q et l 2 N on d¶esigne par q

l'unique entier v¶eri¯ant ¯q
m < r · ¯q+1

m
; on pose º r rNq ; par d¶e¯nition de q

le rationnel lº r est un entier sauf si r ¯q+1
m

Nous commen»cons par d¶ecrire le cas oµu q 0 On notera bsc le plus grand
entier strictement inf¶erieur µa un rationnel s

Lemme 3 2 1 Soit r un ordre de contact v¶eri¯ant 0 < r < ¯1
m On a alors n r

rm et º r r
i Si mr < 1 alors Xr;l est isomorphe comme Gm;C-vari¶et¶e µa Gm;C £Almr¡lr

C
munie du morphisme c

7

cm ; l'action de ¹̂ sur Xr;l;1 se factorise par l'action de

¹m donn¶ee par ³:c : ³c

ii Si mr ¸ 1 alors Xr;l est isomorphe comme Gm;C-vari¶et¶e µa Gm;C
2

£A2rlm¡l¡rl
C munie du morphisme c; l; a

7

cm ; l'action de ¹̂ sur Xr;l;1 se fac-
torise par l'action de ¹m donn¶ee par ³ :c : ³c

Preuve Tout arc de Zr;l admet une param¶etrisation du type :

8
><
>
:

x t t
y t Xj·r

aj t j + ctrl + Xrl<j·rlm
bjtj

avec c
6

0
Dans le cas oµu mr < 1 on a x t 0 [trlm+1] et l'espace Xln r est donc

param¶etr¶e par Gm £ Aln r ¡lº r
C ce qui prouve i

Si mr ¸ 1 x t 6 0 [trlm+1] et Xln r est donc param¶etr¶e par Gm
2

£
A2rlm¡l¡rl

C ce qui d¶emontre ii

Traitons maintenant le cas q ¸ 1

Lemme 3 2 2 Si r 6 ¯q+1
m Xr;l est isomorphe comme Gm;C-vari¶et¶e µa Gm;C

2
£

A2 ln r ¡lº r ¡lNq
C munie du morphisme c; l; a

7

ceq ¯q+1¡¯q+1

l
Si º r p n avec p et n premiers entre eux l'action de ¹̂ sur Xr;l;1 se factorise

par l'action de ¹nn r d¶e¯nie par ³ : c; l : ³pc; ³n l
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Preuve Notons Ll;r A2
C le sous-espace constructible de Lln r ¡lNq A2

C des arcs

tronqu¶es de valuation l ; on notera l le coe±cient de tl dans la s¶erie tronqu¶ee

Posons Wr;l : Ll;r A2
C £ Gm;C £ Aln r ¡lº r

C
et d¶e¯nissons un morphisme

°r;l : Wr;l Xr;l par

°r;l ; c; b : 8>
>

<
>
>:

t Nq [tln r +1]

Xjeq
m ·r

ajeq t j + ctlº r + Xlº r <i·ln r
biti [tln r +1]

oµu on a not¶e b blº r +1; : : : ; bln r
Cette application a bien un sens ; en e®et si y t d¶esigne le second terme de

l'expression pr¶ec¶edente

8³ 2 ¹eq ; ordt y t ¡ h ³x t
1
m ordt y t ¡ h ³ t

1
eq lº r :

Ceci prouve que le contact d'un arc de ce type avec f vaut lº r
Nq r

Quant aux termes correspondant µa des racines m-iµemes de l'unit¶e non contenues

dans ¹eq ils sont de valuation strictement inf¶erieure ce qui prouve bien que l'image

de °r;l est contenue dans Xr;l
Montrons que °r;l est surjective Pour cela consid¶erons ' 2 Xr;l et ' 2 Zr;l tel

que ¼ln r ' 'Comme on l'a vu pr¶ec¶edemment ' peut se r¶e¶ecrire sous la forme :

8><
>
:

x t t m0

y t Xj¸1

bj t j

avec la condition m0 kNq pour un k 2 N
L'ordre de contact du d¶eveloppement fractionnaire

Pj¸1 bjx
j

m0 avec f ¶etant r
on en d¶eduit que pour tout j tel que jeq

km < r bj 0 si k - j et bj a jeq
k

sinon

On a donc en notant 0 : k une ¶ecriture du type :

8
><
>
:

x t 0 t Nq

y t Xjeq
m ·r

ajeq
0 t j + Xj¸rm0

bj t j

avec arm 6 brm0 Ceci montre que ' s'¶ecrit °r;l 0; c; b0 avec 0
6

c bm0r¡aNqr
et donc la surjectivit¶e de °r;l

Consid¶erons d¶esormais la ¯bre au-dessus de ' : x; y et conservons les no-
tations pr¶ec¶edentes ; est solution de l'¶equation 0 t Nq ´ x t [tln r ] et est donc
d¶e¯ni µa une racine Nq-iµeme de l'unit¶e prµes

Pour une telle racine ³ la condition ' 2 Xr;l impose le d¶eveloppement de Pui-
seux de tout relµevement de ' jusqu'µa l'ordre r donc si ³ 0 est la premiµere compo-
sante d'un autre point de la ¯bre au-dessus de ' la condition ³j 1 est satisfaite
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pour tout j tel que jeq
m < r mais il r¶esulte de la d¶e¯nition de ¯q+1 que pgcd Nq ;fj jjeq

m · rg 1 Ceci impose ³ 1 et est unique ; on obtient ensuite les compo-
santes c et b de tout point ; c; b de la ¯bre de ' en consid¶erant le d¶eveloppement
en puissances de t de l' expression y t ¡P jeq

m ·r ajeq
0 t j [tln r +1] ce qui fournit

une unique solution Il s'ensuit que °r;l est un isomorphisme

Examinons maintenant ac f ± °r;l :
En raison des propri¶et¶es des d¶eveloppements de Puiseux le terme de valuation

minimale dans l'expression du y t ¡ h ³ t
1

eq est ctlº r si ³ 2 ¹eq lt
¯q
eq

si ³ 2 ¹eq¡1 n ¹eq lt
¯q¡1

eq si ³ 2 ¹eq¡2 n ¹eq¡1 : : : lt
m
eq si ³ 2 ¹m n ¹e1 ; le

coe±cient de tln r dans f x t ; y t vaut donc ceq ¯q+1¡¯q+1

l
L'action de ¹̂ sur Xr;l;1 est induite par l'action de ¹ln r par homoth¶etie sur

le paramµetre t ; dans les coordonn¶ees choisies cette action s'¶ecrit : ³: c; l :
³ lº r c; ³ l l ce qui termine la preuve du lemme

Lemme 3 2 3 Si r ¯q+1
m

et l ¯q+1
eq

l pq+1
nq+1 2 N Xr;l est isomorphe comme

Gm;C-vari¶et¶e µa Gm £ A2 ln r ¡blpq+1 nq+1c¡lNq
C munie du morphisme l; a

7

¯q+1

l L'action de ¹̂ sur Xr;l;1 se factorise par l'action de ¹¯q+1
d¶e¯nie par ³ : l :

³ l

Preuve D¶e¯nissons cette fois Wr;l : Ll;r A2
C £ Aln r ¡lº r

C
et °r;l : Wr;l Xr;l

par

°r;l ; c; b : 8>
>

<
>
>:

t Nq [tn r;l +1]

Xjeq
m <r

aj t j + Xlº r <i·ln r
biti [tn r;l +1]:

On montre de même que pr¶ec¶edemment que °r;l est un isomorphisme en te-

nant compte du fait que l ¯q+1
eq

n'¶etant pas entier le coe±cient de x
¯q+1

m dans

le d¶eveloppement fractionnaire normalis¶e de tout relµevement d'un arc tronqu¶e de

Xr;l est n¶ecessairement nul
En¯n il est clair que le coe±cient de tln r tl¯q+1 dans f x t ; y t est ¯q+1

l
ce qui prouve bien le lemme

En¯n on a le r¶esultat suivant :

Lemme 3 2 4 Si r ¯q+1
m

et l ¯q+1
eq l pq+1

nq+1 2 N Xr;l est isomorphe comme

Gm-vari¶et¶e µa Vq+1 £ An r;l ¡º r;l
C oµu

Vq+1 :
©

c; l 2 A1
C £ Gm;C j cnq+1 ¡ anq+1

¯q+1

pq+1

l 6 0ª
est munie du morphisme c; l; a

7

cnq+1 ¡ anq+1

¯q+1 lpq+1 eq+1 l¯q+1¡¯q+1



Vol 77 2002 Espaces d'arcs et invariants d'Alexander 797

La vari¶et¶e Xr;l;1 est isomorphe µa

© x; y 2 A1
C £ Gm;C j xnq ¡ y

¯q
eq eq 1ª:

L'action de ¹̂ sur Xr;l;1 se factorise par l'action de ¹nq+1¯q+1
d¶e¯nie par ³ : x; y :

³
¯q+1
eq+1 x; ³nq+1y

Preuve On pose

Wr;l :
©

; c; b 2 Ll;r A2
C £ Gm £ An r;l ¡° l;r

C j cnq+1 ¡ anq+1

¯q+1

pq+1

l 6 0ª
et on d¶e¯nit °r;l : Wr;l Xr;l par

°r;l ; c; b : 8>
>

<
>
>:

t Nq [tln r + 1]

Xjeq
m ·r

aj t j + ctlº r + Xlº r <i·ln r
biti [tln r + 1]:

Rappelons que pgcd ¯q+1; eq eq+1 donc l'application ³ 7 ³¯q+1 induit un
isomorphisme de groupes entre f³¯q+1

j³ 2 ¹eq g et le quotient ¹eqÁ¹eq+1 En

cons¶equence le produit Q³2¹eq
c ¡ a¯q+1

¯q+1
eq

l vaut cnq+1 ¡ anq+1

¯q+1

pq+1

l
eq+1

non nul par hypothµese ; ceci prouve d'une part que la valuation de chaque fac-

teur y t ¡ h ³ t
1

eq avec ³ 2 ¹eq
est exactement lº r et que la contri-

bution du produit de tels facteurs au coe±cient de tln r dans f x t ; y t est
cnq+1 ¡ anq+1

¯q+1

pq+1

l
eq+1

La contribution des autres termes qui ne font pas intervenir c se calcule
comme dans la preuve du premier lemme et vaut ¯q+1¡¯q+1

l
Finalement le coe±cient de tln r vaut

cnq+1 ¡ anq+1

¯q+1

pq+1

l
eq+1 ¯q+1¡¯q+1

l

comme annonc¶e
On termine la preuve de ce lemme en remarquant que la vari¶et¶e f c; 2

A1
C £ Gm;C j cnq+1 ¡ anq+1

¯q+1
pq+1 eq+1 ¯q+1¡¯q+1 1 g munie de l'action de

¹nq+1¯q+1
d¶e¯nie par ³ : c; l : ³pq c; ³nq l est isomorphe µa la vari¶et¶e f x; y 2

A1
C £ Gm;C j xnq ¡ y

¯q
eq eq 1g munie de l'action ³ : x; y ³¯q eqx; ³nq y on

le v¶eri¯e en e®ectuant le changement de coordonn¶ees sur A1
C £ Gm;C donn¶e par :

c xy¡ ¯q¡¯q nqeq y



798 G Guibert CMH

3 3 Calcul de la ¯bre de Milnor motivique

Notations Pour tout q 2 [1::g] notons Yq la vari¶et¶e :

© x; y 2 A2
C j xnq ¡ y

¯q
eq eq 1ª

munie de l'action de ¹nq¯q
donn¶ee par : ³: x; y : ³

¯q
eq x; ³nq y et [Yq ] sa classe

dans K ¹̂
0 VarC

Rappelons que pour tout entier naturel n on note ¹n specC[x] xn ¡ 1
C'est une vari¶et¶e munie d'une action de ¹n par translation On notera ¹n sa classe

dans K ¹̂
0 VarC

On a alors le r¶esultat :

Proposition 3 3 1 L'¶egalit¶e suivante est satisfaite dans M¹̂
C :

Sf;0 X1·q·g

[Yq ]¡ L X1·q·g

[¹eq
] + 1:

Preuve Rappelons que pour tout entier q 2 [1::g] et pour tout ordre de contact r
et l 2 N tout arc de Zr;l admet pour valuation

ln r : ordt f ± ' lNqµreq + ¯q

m
eq¡1 ¡ eq + ¢ ¢ ¢ + ¯1

m
e0 ¡ e1 + ¯0

m
e0¶

qui vaut lrm + l nq¯q ¡ ¯q Notons que pour q < g nq¯q ¡ ¯q ¯q+1 ¡ ¯q+1

Il r¶esulte des lemmes 3 2 2 3 2 3 et 3 2 4 que

Zf T Z0 T + X1·q·g

Zq T + X1·q·g

Z0q
T + X1·q·g

Z"q T avec :

Z0 T : X
0<r<¯1

m

[Xr;l;1] L¡2T ln r

Z
0q

T : X
l ¯q+1

eq 2N
[X¯q+1

m ;l;1
] L¡2T l¯q+1

Zq T : X
l ¯q+1

eq 2N
[X¯q+1

m ;l;1
] L¡2T l¯q+1

Z"q T : X¯q
m <r< ¯q+1

m ;l¸1

[Xr;l;1] L¡2T ln r :

Calculons les limites de ces sommes :
On utilisera le lemme ¶el¶ementaire suivant en notant toujours bsc le plus grand

entier strictement inf¶erieur µa un rationnel s
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Lemme 3 3 2 Soient p et n deux entiers alors on a

Pl¸1 U lV b
pl
n c 1

1¡UnV p P1·b·n U bV b
pb
n c

en particulier cette s¶erie tend vers 0 si V 1 et si U 1 ou reste constant

Preuve La premiµere partie r¶esulte d'un calcul ; la seconde du fait que b ¸ n et
b

pb
n c < p

Lemme 3 3 3 On a limT 1 Z0 T ¡[¹m]

Preuve La somme Z0 T se d¶ecompose en deux termes correspondant respecti-
vement au ii et au i du lemme 3 2 1 ; plus pr¶ecis¶ement :

Z0 T [X0]Xl¸1 X
1·k< lm

T mL¡ m+1 k

+[X0] L¡ 1 Xl¸1

L¡l Xlm·k<l¯1
m

T mL¡1 k ; soit encore :

Z0 T [¹m] T mL¡ m+1

1 ¡ T mL¡ m+1 Xl¸1

1 ¡ T mL¡ m+1 b lm c

+[¹m] L¡ 1
T mL¡1

1 ¡ T mL¡1 Xl¸1

L¡l TmL¡1 b lm c ¡ T mL¡1 b
l¯1
m c :

On d¶eduit du lemme 3 3 2 que limT 1 Z0 T ¡[¹m]

Evaluons maintenant la limite de Z
0q

T

Lemme 3 3 4 On a limT 1 Z
0q

T 0

Preuve Rappelons que dans le cas oµu l v¶eri¯e l ¯q+1
eq 2 N on a d'aprµes le lemme

3 2 3 Xr;l;1 ¹¯q+1 £A2l¯q+1¡lNq¡bl
pq+1
nq+1 c oµu X

0
q+1 est la classe de la vari¶et¶e Gm;C

munie de l'action de ¹¯q+1 donn¶ee par ³: ³
En particulier Z

0q
T [¹¯q+1

]Pl¸1;l ¯q+1
eq 2N T l¯q+1L¡lNq¡bl

pq+1
nq+1 c Cette som-

me tend vers z¶ero par le lemme 3 3 2 et donc limT 1 Z
0q

T 0

² Nous devons maintenant calculer la limite de Zq T

Lemme 3 3 5 On a limT 1 Zq ¡[¹eq+1 ]

Preuve Rappelons que si l ¯q+1
eq 2 N on a Xr;l;1 Xq+1 £ A2l¯q+1¡lNq¡l pq+1

nq+1

d'aprµes le lemme 3 2 4 donc Zq T [Xq+1]Pl0¸1 T nq+1¯q+1L¡lNq+1¡lpq+1
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[Xq+1] Tnq+1¯q+1L¡Nq+1¡pq+1

1¡T nq+1¯q+1L¡Nq+1¡pq+1

On a donc limT 1 Zq T ¡[Xq+1]

² Il nous reste en¯n µa ¶evaluer la limite de Z"q T

Lemme 3 3 6 On a limT 1 Z"q L¡ 1 [¹eq ] si q
6

g et L¡ 1 sinon

Preuve A l'aide du lemme 3 2 2 on montre que dans le cas oµu q
6

g on a

Z"q T [¹eq+1 ] L¡ 1 Xl¸1

T nq¯q¡¯qL¡Nq l X
k2N; l¯q

eq <k< l¯q+1
eq

T eqL¡1 k

oµu le coe±cient de [¹eq+1 ] L¡ 1 vaut
T eqL¡1

1¡ T eqL¡1
½Xl¸1

Tnq¯qL¡ Nq+pq lµ1 ¡ T eqL¡1 b
l ¯q+1¡¯q

eq c¶¾:

La somme entre accolades tend vers 1 d'aprµes le lemme 3 3 2 Il r¶esulte de ce qui
pr¶ecµede que limT 1 Z"q T L¡ 1 [¹eq+1 ] pour q

6

g Dans le cas q g on

remplace la condition k < l¯q+1
eq

par k < 1 et la limite reste la même c'est-µa-dire 1

Ceci termine la d¶emonstration de la proposition 3 3 1 en notant que [Xq+1]
[Yq+1]¡ [¹eq

]

¦ Exemple : Dans le cas d'une fonction µa une seule paire de Puiseux f x; y
y¯1 ¡ xm le r¶esultat s'¶ecrit

Sf;0 [f x; y 2 A2
C j xm ¡ y¯1 1g]¡ L¡ 1 :

3 4 Application au calcul du spectre

Nous allons appliquer la proposition 3 3 1 au calcul du spectre de Hodge de f
Si l'on ¶ecrit

t
eq

¯q ¡ t
1¡ t

eq

¯q
¢

t
1

nq ¡ t
1¡ t

1
nq

: X c®t®

et qu'on pose ¾<
q t resp ¾>

q t : P®<1 c®t® resp P®>1 c®t® on a le r¶esultat
suivant :

Corollaire 3 4 1 Le spectre de Hodge de f vaut :

hsp f; 0 X1·q·g

1 ¡ t
1 ¡ t

1
eq

n¾<
q t

1
eq + t1¡ 1

eq ¾>
q t

1
eq o :

Preuve On rappelle qu'on peut associer µa une vari¶et¶e X munie d'une bonne action
de ¹̂ son spectre not¶e Sp X C'est la compos¶ee de l'application lin¶eaire hsp et
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de la caract¶eristique de Hodge monodromique Âmon
h cf paragraphe 2 Rappelons

que dans notre situation si on pose S
©
f;0 : Sf;0 ¡ 1 on a la relation

hsp f; 0 ¡Sp S
©
f;0 :

On utilisera le lemme ¶el¶ementaire suivant :

Lemme 3 4 2 Soient a et b deux entiers positifs premiers entre eux On a :

i Sp fx 2 A1
C j xa 1g

1 ¡ t
1 ¡ t

1
a

ii Sp f x; y 2 A2
C j xa ¡ yb 1g t¡

t
1
a ¡ t

1¡ t
1
a

¢

t
1
b ¡ t

1 ¡ t
1
b

Preuve Le i r¶esulte d'un calcul direct
Posons Ya;b : f x; y 2 G2

m;C j xa ¡ yb 1g et remarquons que si ³ d¶esigne

une racine b-iµeme de ¡1 l'application u; v
7 ub; ³va est un isomorphisme entre

le quotient de la courbe de Fermat Jab : f u; v 2 G2
m j uab +vab 1g munie de

l'action naturelle de ¹2
ab par le sous-groupe ¹b £ ¹a et Ya;b ; cet isomorphisme est

¶equivariant pour l'action induite par l'action diagonale de ¹ab sur Jab Si ®; ¯
est un caractµere on note I®;¯ le sous-espace propre de l'action de ¹2

ab
sur H1

c Jab
associ¶e µa ®; ¯

Les sous-espaces propres de H1
c Jab ¹b £ ¹a sont les I®;¯ tels que ®; ¯ soit

trivial sur ¹b £ ¹a donc le groupe des caractµeres de H1
c Jab ¹b £ ¹a s'identi¯e

µa ¹̂b £ ¹̂a Si ®
7

~® de 1
aZ Z dans [0; 1[ d¶esigne la section usuelle il r¶esulte de

[20] lemme 7 1 que le degr¶e pour la ¯ltration de Hodge de I®;¯ ne d¶epend que de

~® + ~¯ sauf dans le cas oµu ~® + ~¯ 1 ; ce cas ne se produit pas ici compte-tenu de

la condition pgcd a; b 1
Tous les I®;¯ sont de dimension 1 except¶e I0;0 dont la dimension est 2 ; par

ailleurs H2
c Jab est de dimension 1 de type de Hodge 1; 1 et est associ¶e au

caractµere trivial On en d¶eduit que

Sp Ya;b t¡ n1 + ³1 + t
1
a + : : : t

a¡1
a ´³1 + t

1
b + : : : t

b¡1
b ´o

d'oµu

Sp f x; y 2 A2
j xa + yb 1g t¡µ t

1
a ¡ t

1 ¡ t
1
a
¶µ t

1
b ¡ t

1 ¡ t
1
b
¶

comme annonc¶e

Pour ¯nir la preuve du corollaire nous avons besoin du lemme suivant :

Lemme 3 4 3 Soit g un polynôme en n variables quasi-homogµene de degr¶e d de

sorte que pour c 2 Gm;C la vari¶et¶e Y : fx 2 An
C j g x 1g est munie

d'une bonne action de ¹d Soit e un entier positif ; alors le spectre de la vari¶et¶e
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X d'¶equation ge 1 munie de l'action naturelle de ¹de s'exprime µa l'aide du
spectre de la vari¶et¶e Y par la formule :

Sp X Xp
tp 1¡ 1

e
1 ¡ t

1 ¡ t
1
e

Sp p
Y t

1
e

oµu on a not¶e Sp Y : P c®t® et Sp p
Y t Pp·®<p+1 c®t®

Preuve La vari¶et¶e X est la r¶eunion disjointe de e copies de Y dont chacune est
laiss¶ee stable par l'action de T e ; l'action de T e sur une composante s'identi¯e

µa l'action de la monodromie naturelle provenant de la quasi-homog¶en¶eit¶e de g
La d¶ecomposition pr¶ec¶edente induit une d¶ecomposition en somme directe sur les

groupes de cohomologie qui est compatible avec la ¯ltration par le poids Soit donc

H une composante de Hodge de poids p de l'un des groupes de cohomologie de X
On a une d¶ecomposition de H en sous-espaces propres sous l'action de ¹de de la
forme H L¸ H¸ oµu ¸ d¶ecrit fexp 2ik¼

de g0·k·de En regroupant µa ¸e constant
on obtient

Sp X Xk 0;:::;d¡1

t k
de ½ Xl 0;:::;e¡1

t l
e dim Hexp 2ik¼

de exp 2il¼e
¾:

L'espace Ll Hexp 2ik¼
de exp 2il¼e

est stable par l'action de T e et s'¶ecrit donc
comme somme directe d'espaces propres de cet endomorphisme pour la valeur
propre exp 2ik¼

de
Or chaque espace de ce type s'identi¯e au sous-espace propre de

la composante de Hodge correspondante d'une composante connexe fx 2 Gd
m;C j

g x cg ; en particulier tous ces espaces ont même dimension et cette dimension
¶egale dimH Y exp 2ik¼

de
On en d¶eduit que

Sp X Xk 0;:::;d¡1

t k
de dimH Y exp 2ik¼

de
µ

1 ¡ t
1 ¡ t

1
e
¶ t¡ p

e Sp p
Y ;

ce qui prouve le lemme

On d¶eduit de 3 3 1 que Sp S
©
f;0 P1·q·g ¡Sp Yq + Sp ¹eq

D'aprµes les lemmes 3 4 2 et 3 4 3 ii on a

Sp Yq ¡µ 1¡t
1¡t

1
eq

¾<
q t + t1¡ 1

eq ¾>
q t ¶ + t 1¡t

1¡t
1

eq
et Sp ¹eq tµ 1¡t

1¡t
1

eq
¶

ce qui prouve la formule annonc¶ee

Donnons deux exemples pour illustrer la formule 3 4 1 :

¦ Exemple 1 : Si f ne possµede qu'une paire de Puiseux m; ¯1 on retrouve la
formule classique qui est un cas particulier du calcul du spectre d'une singularit¶e
isol¶ee d'hypersurface quasi-homogµene

hsp f; 0 Ã t
1
m ¡ t

1 ¡ t
1
m

Ã t
1
¯1 ¡ t

1 ¡ t
1
¯1

:



Vol 77 2002 Espaces d'arcs et invariants d'Alexander 803

¦ Exemple 2 : Consid¶erons la courbes µa deux paires de Puiseux d'¶equation

f x; y : y2 ¡ x3 2 + yx5 ; on a m 4 g 2 e1 2 n2 2 et ¯2 13

On obtient alors hsp f; 0
P0·i·11 t

15+2i26 + t
5

12 + t
11
12 + t

13
12 + t

19
12 On pourra

comparer avec la formule donn¶ee dans [22]

3 5 Fonction zêta de la monodromie

On peut d¶eduire de la formule donn¶ee pr¶ec¶edemment pour le spectre de Hodge

une formule pour la fonction zêta de la monodromie Remarquons que l'on peut
¶egalement obtenir cette formule en appliquant le th¶eorµeme principal de [14]

Corollaire 3 5 1 Soit ³f t la fonction zêta de la monodromie Tf agissant sur
la cohomologie de la ¯bre de Milnor de f et P¡C t la s¶erie de Poincar¶e du semi-
groupe ¡C On a la relation : ³f t ¡1 P¡C t

Preuve Si ¤ T n
f est le n-iµeme nombre de Lefschetz on a :

³f t exp µXn¸1

¤ T n
f

n tn¶

or d'aprµes [14] ¤ T nf est ¶egal µa la caract¶eristique d'Euler Â Xn;1
Calculons ces caract¶eristiques d'Euler :
Pour tout n ¸ 1 on a une partition Xn;1 `ln r n Xr;l;1
Notons Âr;l pour Â Xr;l;1 et d¶e¯nissons q par l'encadrement ¯q

m < r · ¯q+1
m ;

dans le cas oµu la deuxiµeme in¶egalit¶e est stricte on a Âr;l 0 d'aprµes le lemme

3 2 2 Lorsque r ¯q+1
m

on distingue deux cas :

² si l ¯q+1
eq 2 N remarquons que ceci ¶equivaut µa nq+1 - l nous sommes dans la

situation du lemme 3 2 3 et Âr;l ¯q+1

² si l ¯q+1
eq 2 N nous sommes dans la situation du lemme 3 2 4

Âr;l Â f c; l j cnq+1 ¡ a¯q+1
pq+1
l

eq+1 ¯q+1¡¯q+1

l 1g ¯q+1 1 ¡ nq+1

En e®et l'application Vq+1 G2
m d¶e¯nie par c; l 7 cnq+1¡a¯q+1

pq+1

l ; l
est un revêtement de degr¶e nq+1 rami¯¶e au-dessus de la courbe fu + a¯q+1vpq+1

0g ½ G2
m

Finalement il vient :

³f t exp

0
@

Xl¸1

tlm
lm

+ X1·q·g
¯qµXnqjl

tl¯q

l¯q
¶¡ ¯q nq ¡ 1 Xnq-l

tl¯q

l¯q 1
A
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soit
³f t exp Log 1 ¡ tm + X1·q·g

[Log 1 ¡ t¯q ¡ Log 1 ¡ tnq¯q ]

1¡ tm Y
1·q·g

1 ¡ t¯q

1 ¡ tnq¯q
:

En¯n remarquons que tout ¶el¶ement n de ¡C admet une d¶ecomposition unique sous

la forme n P
q g
q 0 ¸q¯q avec ¸q entiers satisfaisant la condition : 8q 2 [1::g]; 0 ·¸q · nq ¡ 1 voir [25]

La fonction 1 ¡ tm ¡1

Q1·q·g
1¡tnq¯q

1¡t¯q
est donc ¶egale µa la s¶erie g¶en¶eratrice

de ¡C ce qui termine la preuve du corollaire

4 Fonction d'Igusa motivique associ¶ee µa plusieurs fonctions

4 1 D¶e¯nition

Soit X une vari¶et¶e alg¶ebrique complexe de dimension d et p fonctions r¶eguliµeres

fi : X A1
C i 2 f1; : : : ; pg ; on pose X0 : \1·i·p fi 0 On notera f

l'application f1; : : : ; fp
Chaque fonction fi induit un morphisme fi : L X L A1

C » C[[t]] au
niveau des espaces d'arcs

Pour n 2 N£ p il est naturel de consid¶erer le sous-espace d'arcs de L X :
Xn : f' 2 L X j 8i 2 f1; : : : ; pg; ordtfi ' nig ; c'est un sous-espace

constructible de L X naturellement muni d'une structure de Gp
m;C£X0 -vari¶et¶e

via le morphisme ac f ; ¼0 : Xn Gp
m;C £ X0 oµu ac f est l'application qui

µa un arc ' 2 L X associe le p-uplet des coe±cients de tni dans fi ' t pour
i 2 f1; : : : pg Notons que cet espace est stable µa l'ordre jnj : P

p
i 1 ni voir la sec-

tion 2 ; ceci permet de consid¶erer sa mesure ¹ Xn Gp
m;C£X0 dans MGp

m;C£X0

On pose alors

D¶e¯nition 4 1 1 La fonction zêta motivique associ¶ee µa f est l'¶el¶ement suivant
de MGp

m;C£X0
[[T ]] :

Zf T : Xn2 N£ p
¹ Xn Gp

m;C £ X0 T n:

On dispose suivant [20] d'une formule exprimant Zf T dans une r¶esolution des

singularit¶es des fonctions f1; : : : ; fp On se donne une telle r¶esolution c'est-µa-dire

un morphisme propre birationnel h : Y X un diviseur µa croisements normaux
E ½ Y tel que pour tout k fkh ¡1 0 soit support¶e par E ; on note Ei i2J les

composantes de E et pour tout I ½ J on d¶e¯nit E±I : \i2IEi n[j2IEj On note
¸ i le p-uplet des ordres de f le long du diviseur Ei et par ºi ¡ 1 l'ordre le long
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de Ei de la forme di®¶erentielle h¤dx oµu dx est une forme volume sur X On note
Ui le compl¶ementaire de la section nulle dans le ¯br¶e normal µa Ei et pour i 2 I
on d¶e¯nit UI comme le produit ¯br¶e au-dessus de E±I des restrictions UijE±I

; c'est
un ¯br¶e en tores jIj-dimensionnels dont l'espace total est de dimension dim Y ; on
note ¼I la projection

L'application h¼I fait de UI une vari¶et¶e au dessus de X0 et l'application fh :
Y Gp

m;C induit de maniµere naturelle une application de UI dans Gp
m;C que l'on

note

ffh Il en r¶esulte une structure de Gp
m;C £X0 -vari¶et¶e pour UI via ffh; h¼I

Pour tout p-uplet º º1; : : : ; ºp on posera T º T º1
1 : : : T ºp

p A l'aide de la
formule de changement de variables pour les morphismes birationnels voir [15]
Th¶eorµeme 4 1 1 et d'un calcul explicite dans la r¶esolution on montre [14] pour
le cas p 1 et [20] que :

Th¶eorµeme 4 1 2

Zf T1; : : : ; Tp X
;6 I½J

[UI Gp
m;C £ X0]Yi2I

L¡ºiT¸i
1 ¡L¡ºiT¸i :

4 2 Invariants d'Alexander associ¶es µa une famille de fonctions

Ce paragraphe est d¶evolu au rappel de certaines d¶e¯nitions et propri¶et¶es des

complexes d'Alexander proches Nous renvoyons pour toute cette partie µa l'ar-
ticle [21] Dans toute cette section X d¶esignera une vari¶et¶e complexe lisse de

dimension d et f1; : : : ;fp d¶esigneront des fonctions analytiques ; on pose X0 :

\1·i·p fi 0 et on note x un point de X0 On notera f pour f1; : : : ; fp ; On
se donne une r¶esolution des singularit¶es de f pour laquelle on conserve les nota-
tions de la section pr¶ec¶edente Sabbah d¶e¯nit dans [21] un foncteur de la cat¶egorie
d¶eriv¶ee des faisceaux µa cohomologie C-constructible sur X dans la cat¶egorie des

complexes µa cohomologie C[Zp]-constructible sur X qui peut être vu comme une

g¶en¶eralisation µa plusieurs variables du foncteur cycles proches d¶e¯ni par Deligne

voir la proposition 4 2 1 pour un ¶enonc¶e pr¶ecis
On notera A l'anneau C[Zp] On considµere une boule B su±samment petite

centr¶ee µa l'origine contenue dans Cp on pose B¤ : B n [1·k·pHk oµu Hk
d¶esigne le k-iµeme hyperplan de coordonn¶ee et on note

fB¤ son revêtement uni-
versel On pose ¶egalement X¤ : X n [1·i·p fi 0 et on considµere alors le
diagramme :

X¤ £B¤ fB¤

f
²

p
/ X¤

Â

Ä j
/

f
²

X

²

X0
_i

o

²

fB¤
p

/ B¤
Â

Ä j
/ B 0

_i
o

On d¶e¯nit alors suivant Sabbah pour tout complexe F µa cohomologie C-
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constructible sur X le complexe d'Alexander proche

AÃf F : i¡1Rj¤Rp p¡1j¡1
F

C'est un objet de la cat¶egorie Db
c X0;A

On dispose du r¶esultat suivant d¶emontr¶e dans [3] concernant les propr¶i¶et¶es de

ces complexes et le lien avec la th¶eorie des cycles proches associ¶es µa une fonction
analytique :

Proposition 4 2 1 Si p 1 et si Ãf F d¶esigne le complexe des cycles proches

associ¶e µa f on a un quasi-isomorphisme non canonique :
AÃf F » Ãf F [¡1]

Cycle et fonction zêta d'Alexander Ce paragraphe est bas¶ee sur [21] x2
Si Y est une vari¶et¶e alg¶ebrique complexe ou plus g¶en¶eralement un espace analy-
tique complexe r¶eduit on dispose pour tout compact K de la notion de fonction
d¶e¯nie au voisinage de K analytiquement constructible : une fonction ® est ana-

lytiquement constructible au voisinage de K si elle est d¶e¯nie sur un voisinage U de

K et localement constante sur les strates d'une strati¯cation analytique de U Les

exemples typiques sont ceux oµu K est un point ou bien une composante d'un divi-
seur exceptionnel dans une r¶esolution des singularit¶es On note FK le groupe additif
engendr¶e par ces fonctions Si A est un anneau commutatif noeth¶erien unitaire

on note ZK A le groupe des cycles sur A µa coe±cients dans FK ; un ¶el¶ement de

ZK A est donc une somme formelle ¯nie Pp½A ®pVp oµu Vp est la vari¶et¶e associ¶ee

µa l'id¶eal p et ®p 2 FK On dispose de la notion d'image directe pour les fonctions

constructibles et donc ¶egalement pour les cycles : soit g : X Y un morphisme

propre et K un compact de Y l'image directe g¤
: Zg¡1 K A X ZK A Y

est d¶e¯nie par

8y 2 Y; g¤ ® y : Â g¡1 y ; ®

oµu Â ; ® d¶esigne la caract¶eristique d'Euler pour le faisceau constant pond¶er¶ee

par ® c'est-µa-dire la fonction constructible x 7 ® x Â x
On note toujours g

¤ l'image directe ¶etendue de maniµere naturelle aux cycles

sur l'anneau A
Si F est un faisceau A-constructible on appelle support de F au voisinage

de K ce qu'on note SuppK F l'ensemble des id¶eaux premiers p de A tels que

F ­ Ap 6 0 au voisinage de K ; plus g¶en¶eralement si F est un objet de Db
c A

on appelle support de F la r¶eunion des SuppKHi F Si le support de F est
de dimension d on note SuppK;d F l'ensemble des id¶eaux du support de F de

cohauteur d dans A
On d¶e¯nit la fonction zêta de F au voisinage de K comme suit :

D¶e¯nition 4 2 2 Soit d la dimension du support de F au voisinage de K alors

³K;d F Pp2SuppK;d F
Â Fp Vp 2 ZK A

On pose ¶egalement ³K;d F 0 si dim SuppK F < d
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Notons le r¶esultat suivant dû µa Sabbah sur le comportement de la fonction
zêta par image directe

Proposition 4 2 3 [21] Soit h : Y X propre lisse et birationnel et F un
complexe µa cohomologie A-constructible sur Y Soit K un compact de X tel que

Supp F soit de dimension d au voisinage de h¡1 K alors :

³K;d Rh¤ F h¤ ³f¡1 K ;d F :

Nous pouvons d¶e¯nir la fonction zêta d'Alexander associ¶ee au morphisme f :

D¶e¯nition 4 2 4 La fonction zêta d'Alexander associ¶ee µa f au voisinage d'un
compact K est le cycle de codimension 1 du complexe AÃf F au voisinage de K

Dans le cas oµu F est le faisceau constant sur X et K fxg on notera A³f;x
ce cycle Aprµes avoir ¯x¶e des coordonn¶ees sur Spec A on peut le voir comme une

fraction rationnelle en les variables T1; : : : ; Tp d¶e¯nie µa un monôme prµes ; nous

utiliserons indi®¶eremment les deux notations additive ou multiplicative dans la
suite pour d¶esigner les fonctions d'Alexander

Dans [21] Sabbah donne l'expression de la fonction zêta cf proposition 4 2 3
en termes d'une r¶esolution des singularit¶es de f qui g¶en¶eralise la formule d'A'Campo
[1] sur la fonction zêta de la monodromie :

Proposition 4 2 5 [21]

A³f;x T1; : : : ; Tp Y
fi2J j h Ei xg

T ¸i ¡ 1 ¡Â E±i :

Lorsque n 2 et les fi sont des polynômes irr¶eductibles cette formule exprime

le polynôme d'Alexander de l'entrelac alg¶ebrique associ¶e µa la singularit¶e de f1 : : : fp
voir [16]

4 3 R¶ealisation d'Alexander

Nous nous int¶eressons dans ce paragraphe µa des r¶ealisations de MS dans le cas

particulier oµu S est un tore Gp
m;C p ¸ 1

Si on se donne une Gp
m;C-vari¶et¶e X

f¡ Gp
m;C on dispose d'une notion de

cycle d'Alexander sur l'anneau A des polynômes de Laurent µa p ind¶etermin¶ees ; en
e®et consid¶erons le diagramme :
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e
X

f
²

pX
/

X

f
²

e
Gp

m;C
pX

/ Gp
m;C

oµu
e
Gp

m;C
pX

/ Gp
m;C d¶esigne le revêtement universel et

e
X d¶esigne le produit

¯br¶e X £Gp
m;C ~G

p
m;C ; pour simpli¯er les notations on note p pour pX

On d¶e¯nit
alors un objet de la cat¶egorie d¶eriv¶ee Db

c X ; A-mod des complexes born¶es µa co-
homologie constructible sur A en posant Ã

¤A X : Rp p¡1C
XNotons que dans cette situation pour une vari¶et¶e X0 et une Gp

m;C £X0-vari¶et¶e
f ; ¼ : X Gp

m;C£X0 on peut d¶e¯nir un faisceau constructible sur X0 en posant
ÃA X : R¼ Ã¤A X ; on a le r¶esultat suivant :

Lemme 4 3 1 L'application X 7 ÃA X s'¶etend en un morphisme de groupes

de K0 VarGp
m;C£X0

dans K0 Db
c X0; A

Preuve Soit Y un ferm¶e de Zariski de X et U : X ¡ Y On d¶e¯nit pX
: ~
X X

pY
: ~

Y Y et p
U

: ~
U U comme en d¶ebut de paragraphe ; on notera p pour pX

On note i : Y X resp ~i : ~
Y

~
X et j : U X resp ~j : ~

U
~

X les

inclusions naturelles En appliquant le foncteur Rp p¡1 au triangle

j j¡1C
X

C
X i i¡1C

X
on obtient un triangle dans Db

c X ; A
Rp p¡1j j¡1C

X
ÃA X Rp p¡1i i¡1C

X
D'aprµes le th¶eorµeme de changement de base on a

Rp p¡1j j¡1C
X

Rp ~j p¡1
U j¡1C

X
RpU p¡1

U
C

U
;

en raisonnant de maniµere analogue pour Y et en appliquant le foncteur R¼0 on
en d¶eduit le triangle

R ¼0j Ã
¤A U R ¼0 Ã

¤A X R ¼0i Ã
¤A Y

et donc la relation souhait¶ee dans le groupe de Grothendieck K0 Db
c X0; A

Si K est un compact de X0 on note pour tout l 2 N par K0 Db
c X0; A K;l

le sous-groupe de K0 Db
c X0; A engendr¶e par les complexes de faisceaux sup-

port¶es en dimension inf¶erieure µa l au voisinage de K On dispose du morphisme

³K;p¡1 : K0 Db
c X0; A K;p¡1 ZK A En composant lorsque celµa a du sens

ce morphisme avec celui d¶e¯ni dans le lemme 4 3 1 on obtient un morphisme de

groupes dans ZK A que nous noterons A³K et nommerons r¶ealisation d'Alexan-
der
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4 4 Fonction d'Igusa associ¶ee µa une famille de fonctions et invariants
d'Alexander

Nous donnons dans cette section un r¶esultat qui montre que la fonction zêta
d'Alexander de la famille f f1; : : : ; fp peut se d¶eduire de la fonction d'Igusa
motivique µa plusieurs variables associ¶ee µa f :

Th¶eorµeme 4 4 1 Pour tout ® 2 N£ p et tout compact K de X0 les complexes

ÃA limT 1 Zf T ® et AÃf sont support¶es en codimension strictement positive

au voisinage de K et on a l'¶egalit¶e suivante :
A³K lim

T 1
Zf T ® ¡A³K;f

Preuve On d¶eduit du th¶eorµeme 4 1 2 que pour tout ® 2 N£ p

lim
T 1

Zf T ® X
; 6 I½J

¡1 jIj[UI Gp
m;C]:

Par additivit¶e de la fonction zêta d'Alexander lemme 4 3 1 on en d¶eduit que que

pour tout ® 2 N£ p : A³ limT 1 Zf T ®

P; 6 I½J ¡1 jIj A³K UI Gp
m;C

En utilisant la proposition 4 2 5 ceci prouve le th¶eorµeme 4 4 1 modulo le lemme

suivant :

Lemme 4 4 2 La relation suivante est v¶eri¯¶ee :

X
; 6 I½J

¡1 jIjA³K UI Gp
m;C Xi2J

Â E±i \ h¡1 K T¸i

oµu l'on note T¸ : [Spec A T ¸ ¡ 1 ] pour ¸ 2 N£ p

Preuve En appliquant la proposition 4 2 3 nous sommes amen¶es µa calculer le cycle
d'Alexander de la Gp

m;C £ E±I -vari¶et¶e ~fh; ¼I : UI Gp
m;C £ E±I

Par additivit¶e de la fonction zêta d'Alexander lemme 4 3 1 nous pouvons nous

contenter de travailler sur un ouvert a±ne V de Y tel que UI est trivial au-dessus

de V \ E±I Nous sommes donc ramen¶es µa calculer la fonction zêta d'Alexander
dans le cas oµu ~fh est un morphisme de E±I \ V £ Gk

m;C k : jI j dans Gp
m;C

donn¶e par x; y1; : : : ; yk 7 u1 Q
k
i 1 y¸i1i ; : : : ; up Q

k
i 1 y¸ipi les uj d¶esignant des

unit¶es

On note r le rang du sous-module de Zp engendr¶e par ¸1; : : : ; ¸p

Si r < k l'application E±I \V £Gk
m;C Gp

m;C se factorise par la projection
sur un sous-tore Gr

m;C donc Ã
¤A

E±I \V £Gk
m;C » Ã

¤A
E±I \V £Gr

m;C ­AGk¡r
m;C

Comme k > r pour tout id¶eal p de A on a Â Ã
¤A

E±I \ V £ Gk
m;C p 0 et

donc le cycle d'Alexander de ce complexe est nul
Par ailleurs il r¶esulte de [21] que si f : X Ga

m;C est un morphisme et
° : Ga

m;C Gb
m;C un morphisme de groupes qui fait de X une vari¶et¶e au-dessus
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de Gb
m;C alors on a

Ã
¤A X Gb

m;C » Ã
¤A X Ga

m;C ­C[Za] C[Zb] ¤
oµu C[Zb] est vu comme C[Za]-module via le morphisme induit par ° sur les groupes

fondamentaux
Lorsque k r on peut par des isomorphismes de tores convenables µa la source

et au but se ramener au cas du morphisme

x; y1; : : : ; yr 7 u1 x ya1
1 ; : : : ; ur x yarr ; ur+1 x ; : : : ; up x

oµu les uj sont des unit¶es

On en d¶eduit que l'annulateur du faisceau d'Alexander correspondant est Sa1
1 ¡1; : : : ; Sarr ¡ 1 oµu les Si sont des coordonn¶ees convenablement choisies sur A ; en

particulier son support est de codimension r donc son cycle de codimension un
est nul dµes que r ¸ 2

Il reste µa traiter le cas r 1 En appliquant ¤ pour le morphisme de groupes

Gm;C Gp
m;C donn¶e par y 7 ya1 ; : : : ; yar on obtient ÃA E±I \ V £ Gm;C »

C[T 1
1 ; T¡1

1 ; : : : T 1
p ; T¡1

p ] T a1
1 : : : T ap

p ¡1 ­AA E±I\V ; la fonction zêta d'Alexander
est donc ¶egale µa Â E±I \ V Ta comme annonc¶e

5 Application aux courbes planes r¶eductibles

Arbre des contacts ; notations On se donne dans cette section p polynômes

de Weierstrass irr¶eductibles dans C[[x]][y] not¶es f1; : : : ; fp et on cherche µa exprimer
la fonction zêta d'Alexander de l'entrelac d¶e¯ni par f1; : : : ; fp en fonction des

donn¶ees de Puiseux de chaque branche et des contacts entre ces branches On
choisit des coordonn¶ees x et y telles que la fonction x soit transverse µa chacune des

fi ce qui est toujours possible Pour chaque fi on d¶e¯nit comme au paragraphe 3

des suites d'entiers m i ; ¯ i
q ; e i

q ; n i
q ;N i

q et ¯ i
q pour q 2 f1; : : : ; g i

g ; notons

qu'avec notre choix de coordonn¶ees on a n¶ecessairement 8i 2 f1; : : : pg ¯ i
1 ¸ m i ;

on pose par ailleurs ~¯q
i : ¯ i

q+1¡¯ i
q+1

et on note Ci;j la multiplicit¶e d'intersection
µa l'origine des branches fi et fj On note ¶egalement ri;j le contact de fi et de fj
c'est-µa-dire le contact d'une param¶etrisation de f¡1

i f0g avec la fonction fj au
sens de la section 2 de sorte qu'on a la relation

Ci;j m j
0@
ri;j+

¯ i
q ri;j
m

e i
q ri;j ¡1 ¡ e i

q ri;j +¢ ¢ ¢+ ¯ i
1

m
e i

0 ¡ e i
1 + ¯ i

0

m
e i

0

1
A

:

Pour tout i 2 f1; : : : ; pg on note Ps2Q a i
s xs l'un des d¶eveloppements frac-

tionnaires associ¶e µa fi On repr¶esente chaque d¶eveloppement fractionnaire corres-
pondant aux di®¶erentes branches fi par un arbre oµu l'on indique les exposants

rationnels et les coe±cients correspondants Pour tout rationnel r l'ensemble
des tronqu¶es µa l'ordre r des d¶eveloppements de Puiseux associ¶es µa ces arbres
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est muni de l'action d'un groupe de racines de l'unit¶e correspondant au pgcd
des d¶enominateurs des exposants fractionnaires des d¶eveloppements tronqu¶es en-
visag¶es On identi¯e dans la r¶eunion disjointe de tous les arbres consid¶er¶es les

sous-arbres correspondant µa des d¶eveloppements tronqu¶es contenus dans la même

orbite pour cette action ; on appelle arbre des contacts le diagramme ainsi obtenu
Sur cet arbre sont donc indiqu¶es tous les points correspondant µa un exposant

fractionnaire qui apparait dans au moins l'un des d¶eveloppements de Puiseux ainsi
que pour chaque exposant r le coe±cient de xr dans le d¶eveloppement envisag¶e
On appellera sommet la classe d'un point de rami¯cation du diagramme branche

tout segment joignant deux sommets et feuille toute demi-droite dont un sommet
est un point d'altitude maximale de l'arbre On notera B l'ensemble des branches

et des feuilles Chaque sommet S de l'arbre des contacts correspond de maniµere

naturelle µa l'orbite d'un d¶eveloppement tronqu¶e Ps<h S a i
s xs h S 2 Q ; on

note IS l'ensemble des i 2 f1; : : : ; pg tels que le tronqu¶e µa l'ordre h S de l'un des

d¶eveloppements de Puiseux associ¶e µa fi coÄ³ncide avec ce d¶eveloppement fraction-
naire et JS son compl¶ementaire On appellera une expression Ps<h S a i

s xs qui
est ind¶ependante de i 2 IS d¶eveloppement fractionnaire associ¶e au point S

Notons que l'entier q S : minfq0 j
¯ i

q0

m i · h S g est ind¶ependant de i 2 IS
nous le noterons simplement q lorsque le contexte sera clair Si j 2 JS on note

CS j le nombre Ci;j
m i qui ne d¶epend pas de i 2 IS ; par ailleurs on divise IS

en deux sous-ensembles I 0S
et I"S ; le premier d¶esigne fi 2 Is j h S n'est pas un

exposant de Puiseux de fig et I"S est son compl¶ementaire dans IS
On pose k0 S : jI0Sj et k00 S : jI"S j
On distingue dans ce diagramme deux types de sommets : les sommets du type

1 sont ceux pour lesquels I 00
S ; ; on note I1 l'ensemble de ces sommets les autres

sommets ¶etant appel¶es sommets du type 2 on notera I2 l'ensemble des sommets

du type 2

5 1 Description des espaces d'arcs associ¶es µa plusieurs fonctions

Rappelons que si un rationnel r v¶eri¯e l'encadrement ¯ iq
m < r · ¯ i

q+1
m

on pose :

n i r : N i
q µre i

q + ¯ i
q

m
e i

q¡1 ¡ e i
q + ¢ ¢ ¢ + ¯ i

1

m
e i

0 ¡ e i
1 + ¯ i

0

m
e i

0 ¶:

On rappelle que l'ordre de fi le long d'un arc ayant le contact r avec fi et dont
la coordonn¶ee x a pour valuation lN i

q est ¶egal µa ln i r
Nous nous donnons d¶esormais ' 2 L A2

C et nous posons la

D¶e¯nition 5 1 1 On appelle contact de ' avec f : f1; : : : ; fp le maximum des

contacts de ' avec les fi au sens du lemme 3 1 2

A tout arc de contact r correspond µa la classe d'un d¶eveloppement tronqu¶e qui
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aboutit en un sommet ou en un point d'une branche not¶e S et v¶eri¯ant h S r
Pour chaque sommet S on d¶e¯nit ZS;l comme le sous-espace constructible des

arcs dont le contact avec f est r¶ealis¶e pour un d¶eveloppement tronqu¶e aboutissant
en S et dont la valuation en x vaut lNq S

On pose n r : P
p
i 1 n i r et on considµere XS;l : ¼ln r ZS;l muni de sa

structure naturelle de Gp
m;C-vari¶et¶e via le morphisme ac f Le but de ce para-

graphe est de d¶ecrire les Gp
m;C-vari¶et¶es XS;l en fonction de l'arbre des contacts

² Soit S0 le sommet d'altitude minimale h S0 qui est strictement positive

sauf si p 1 et f lisse auquel cas nous conviendrons que h S0 1 Notons

m : Nq S0
Nous commen»cons par ¶etudier le cas des arcs dont le contact avec f est stric-

tement inf¶erieur µa h S0 On a le r¶esultat suivant :

Lemme 5 1 2 Soit r un ordre de contact v¶eri¯ant 0 < r < h S0 :
i Si mr < 1 alors XS;l est isomorphe comme Gp

m;C-vari¶et¶e µa Gm;C£Aln r ¡lr
C

munie du morphisme c
7

cm i
1·i·p

ii Si mr ¸ 1 alors XS;l est isomorphe comme Gp
m;C-vari¶et¶e µa Gm;C

2
£

A2 ln r ¡l¡rl
C munie du morphisme c; l; a

7

cm i
1·i·p

On notera X0 pour Gm;C vu comme Gp
m;C-vari¶et¶e via c

7

cm 1
; : : : ; cm p

Preuve On peut param¶etrer un arc de ZS;l sous la forme :

8
><
>
:

x t t
y t Xs<r

as t s + ctrl + Xrl<j·rlm
tj :

Dans le cas oµu mr < 1 on a x t 0 [tln r +1] et l'espace Xln r est donc

param¶etr¶e par Gm;C £ Aln r ¡l
C ce qui prouve i

Si r ¸ 1 t 6 0 [tln r +1] et Xln r est param¶etr¶e par Gm;C
2
£A2 ln r ¡l¡rl

C
ce qui d¶emontre ii

² Etudions ensuite le cas oµu S est un sommet du type 1 ou bien une branche

de l'arbre des contacts d¶e¯nissons XS comme la Gp
m;C-vari¶et¶e

A1
C n fa i

gi2IS £ Gm;C
fS¡ Gp

m;C

oµu fS c; est d¶e¯ni par les identit¶es :

ti ± fS c; c ¡ a i
h S

e iq ~¯ iq pour i 2 IS

tj ± fS c; CS j pour j 2 JS

on a not¶e t1; : : : ; tp les coordonn¶ees µdans Gm;C
p et c et les coordonn¶ees µa la

source
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Dans le cas oµu S est une branche B on notera XB cette même classe IS est
r¶eduit µa un point dans ce cas

On a alors l'¶enonc¶e suivant :

Lemme 5 1 3 Si S est un sommet du type 1 ou bien une branche du diagramme

des contacts XS;l est isomorphe comme Gp
m;C-vari¶et¶e µa XS £ A2 ln r ¡lº r ¡lNq

Preuve Remarquons que puisque les d¶eveloppements des fj pour j 2 IS coÄ³n-
cident jusqu'µa l'ordre r non inclus il existe un entier q tel que r satisfait l'enca-

drement ¯ jq
m < r · ¯ jq+1

m Les conditions de coÄ³ncidence imposent que le terme de

gauche de cet encadrement est ind¶ependant de j 2 IS Nous le noterons simplement
¯q
m On notera de même Nq pour N j

q et as pour a js
Il r¶esulte de l'¶etude e®ectu¶ee pour les courbes irr¶eductibles que ' admet une

param¶etrisation de la forme :

8
><
>
:

x t t Nq

y t Xs<r
as t sNq + ctº +Xs>º

bsts

oµu c 2 A1
C n fa i

gi2IS
Autrement dit pour tout l 2 N Xr;l s'identi¯e au produit d'un espace a±ne

par A1
C n fa i gi2IS £ Gm;C

On d¶eduit des r¶esultats obtenus pour une fonction que le p-uplet des exposants

de f le long de ' vaut n : n1; : : : ; np avec ni ln i r pour i 2 IS et
nj lCS j : il r¶esulte en e®et de la d¶e¯nition de JS que l'ordre de la fonction

fj j 2 JS d'un arc aboutissant en S s'obtient en ¶evaluant l'ordre de fj sur l'un
des d¶eveloppements de Puiseux d'une fonction fi pour i quelconque dans IS On
d¶eduit ¶egalement du cas d'une seule fonction l'¶egalit¶e : ac f ' fS c;

² Lorsque S est un sommet du type 2 nous avons I 00
S fj j r ¯ jq+1

m j g 6 ;Nous devons alors envisager deux cas :

{ Soit la condition l¯
i

q+1

e iq 2 N est v¶eri¯¶ee notons que compte-tenu des hy-

pothµeses cette condition est ind¶ependante de j 2 I On notera dans ce cas X 0S

la Gp
m;C-vari¶et¶e Gm;C

¹f0S¡ Gp
m;C oµu ¹f 0S

est d¶e¯ni par les relations :

ti ± f 0S c;
~¯ iq pour i 2 IS

tj ± f 0S c; CS j pour j 2 JS :

Lemme 5 1 4 Si S est du type 2 et l ¯
i

q+1

e iq 2 N XS;l est isomorphe comme Gp
m;C-

vari¶et¶e µa X 0S £ A2 ln r ¡bl¯ i
q+1 e iq c¡lNq

C
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Preuve Il r¶esulte de l'¶etude e®ectu¶ee pour une seule fonction que ' admet une

param¶etrisation du type suivant :

8><
>
:

x t t Nq

y t Xs<r
as t sNq + X¹>º

bsts

oµu º : lrNq c'est un entier sous nos hypothµeses

En e®et dans tous les termes correspondant µa des valeurs de j contenues dans

JS on a r < ¯ j
q+1

m j donc la contribution du terme en xr au d¶eveloppement frac-
tionnaire de fj x; y x y x d¶esigne un d¶eveloppement fractionnaire associ¶e µa 'normalis¶e comme dans le lemme 3 1 1 est apport¶ee par le terme en tº ; comme

ce terme qui vaut l ¯
i

q+1

e iq
n'est pas entier par hypothµese son coe±cient c est

n¶ecessairement nul ce qui justi¯e le param¶etrage pr¶ec¶edent
Dans cette situation le p-uplet des exposants de f le long de ' vaut n :

n1; : : : ; np avec ni l ¹̄ i
q+1

si i 2 IS et nj ln j r si j 2 JS et l'espace

Xr;l s'identi¯e au produit d'un espace a±ne par C¤ sur lequel on note l une

coordonn¶ee On a alors l'¶egalit¶e ac f ' f 0

S c;

{ Soit la condition l ¯
j

q+1

e jq 2 N est v¶eri¯¶ee On notera X"S la Gp
m;C-vari¶et¶e :

VS
f 0S¡ Gp

m;C oµu f 00
S c; est d¶e¯ni par les relations suivantes :

8>
>

<
>
>:

ti ± f"S c; cnq+1 ¡ a irq+1 lpq+1 eq+1 ~¯ iq pour i 2 I"S

ti ± f"S c; ce iq ~¯ iq pour i 2 I 0S

tj ± f"S c; CS j pour j 2 JS

l'ensemble I0S
¶etant ¶eventuellement vide

Lemme 5 1 5 Si S est du type 2 et l ¯
i

q+1

e iq 2 N XS;l est isomorphe comme Gp
m;C-

vari¶et¶e µa X"S £ A2 ln r ¡lº r ¡lNq
C

Preuve Dans cette situation ' admet un param¶etrage de la forme :

8
><
>
:

x t t Nq

y t Xs<r
as t sNq + ctº +Xs>º

bsts

avec 8i 2 I"S cn i
q+1 ¡ a i

h S
n i

q+1 p i
q+1

6

0

Le p-uplet des valuations de f le long de ' admet alors la même valeur que

dans le cas pr¶ec¶edent et l'espace XS;l s'identi¯e alors au produit d'un espace a±ne
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par f c; 2 A1
C £ Gm;C j Qi2I"S

cn i
q+1 ¡ a i

h S
n i

q+1 p i
q+1

6

0g ; on a de plus

ac ' f"S c; ce qui termine la preuve du lemme

5 2 Expression combinatoire de la fonction zêta d'Igusa motivique

On a le r¶esultat suivant :

Th¶eorµeme 5 2 1 Pour tout ® 2 N¤ p on a :

lim
T 1

Zf T ® ¡[X0] + ½ XS2I1

[XS ] + XB2B

[XB ]¾ ¡ XS2I2

[X"S ]:

Preuve Chaque espace d'arcs Xn pour n 2 N£ p ¶etant une r¶eunion disjointe

de constructibles du type XS;l la s¶erie Zf T se d¶ecompose de maniµere naturelle
sous la forme :

[X0]Z0 T + XS2I1

[XS ]ZS T

+ XS2I2

[X 0S
]Z0S

T + [X"S ]Z"S T + XB2B

[XB ]ZB T :

Le calcul de la limite de ces s¶eries est analogue µa celui men¶e dans la preuve

de la proposition 3 3 1 pour le cas d'une seule fonction ; il montre que Z0 T ®

ZS T® Z"S T® ZB T ® et Z1 T ® ont pour limites respectives ¡1 1 ¡1 et
1 quand T 1 et que Z

0S
T® tend vers 0

5 3 Application au calcul de la fonction zêta d'Alexander

On d¶eduit de ce r¶esultat une formule exprimant la fonction d'Alexander de f
en termes de l'arbre des contacts

Nous allons associer µa chacun de ces sommets un A-cycle ³S de la maniµere

suivante :

² Si S est un sommet du type 1 alors on pose ³S T ® S ¡ 1 k S ¡1 avec
®i S ~¯q si i 2 IS et ®j S Cj S sinon

² Si S est un sommet du type 2 on distingue deux cas :

¤ Soit I 0S ; alors on pose A³S T¸ S ¡ 1 k" S T¹ S ¡ 1

8<

:

¸i" S n i"
q+1¯ i"

q+1 si i" 2 I"S et ¸j S n i"
q+1Cj S sinon

¹i" S ¯ i"
q+1

si i 2 I"S et ¹j S Cj S si j 2 JS :

¤ Soit I0S
6 ; alors ³S T¸ S ¡ 1 ¡k" S avec les mêmes valeurs que ci-

dessus pour ¸i0 S si i 2 I0S
et la condition ¸i0 S m i0

m i" n i"
q+1¯ i"

q+1 pour i0 2 I0Sla valeur pr¶ec¶edente ¶etant ind¶ependante du choix de i00 2 I00
S
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On peut alors ¶enoncer le r¶esultat sous la forme suivante :

Proposition 5 3 1 La fonction zêta d'Alexander de f v¶eri¯e :

A³f1;:::;fp ³0 Y
S2I1

³S Y
S2I2

³S :

Remarque 5 3 2 Cette formule est implicite dans [16] cf Appendice au Cha-
pitre 1 et Chapitre 3 section 12

En appliquant le th¶eorµeme 5 2 1 et la proposition 4 4 1 on obtient l'expression
suivante de la fonction zêta d'Alexander de f :

A³f1;:::;fp
A³ [X0] + XB2B

A³ [XB ] + XS2I1

A³ [XS ] + XS2I2

A³ [X"S ] :

On en d¶eduit alors la formule annonc¶ee grâce au lemme suivant :

Lemme 5 3 3 i A³ [X0] T m 1

1 : : : T m p
p ¡ 1 ¡1

ii Si S est un sommet de type 1 alors A³ [XS ] ³S

iii Si B est une branche ou une feuille alors A³ [XB ] 0

iv Si S est un sommet de type 2 alors A³ [X 0S ] 0 et A³ [X"S ] ³S

Preuve du lemme Le i est un cas particulier de la situation µa croisements normaux
Consid¶erons le cas de la vari¶et¶e associ¶ee µa un sommet S de type 1 au point B

d'une branche ou d'une feuille Il s'agit d'¶evaluer le cycle d'Alexander de la Gp
m;C-

vari¶et¶e XS ; nous pouvons plonger XS dans A2
C et prolonger fS en un morphisme de

A2
C dans Ap

C ; nous sommes alors ramen¶es µa la situation d'un diviseur µa croisements

normaux de A2
C de composantes f 0g et fc a i gi2IS

; la caract¶eristique

d'Euler de la strate f 0g n [i2ISfc a i g vaut 1 ¡ k S et les autres sont
nulles ce qui d¶emontre le ii en appliquant la proposition 4 2 3

Le cas d'une branche est similaire µa celui d'un sommet de type 1 pour lequel
k S 1 d'oµu A³ [XB ] 0

Envisageons maintenant le cas d'un sommet du type 2 Nous pouvons nous ra-
mener µa la situation d'un diviseur µa croisements normaux en e®ectuant l'¶eclatement
torique associ¶e µa un ra±nement r¶egulier de l'¶eventail du premier cadrant d'arêtes

f 1; 0 ; pq+1;nq+1 ; 0; 1 g Nous devons distinguer deux cas :

² Soit I 0S ; la transform¶ee totale de f"S 0 est la r¶eunion des composantes

du diviseur exceptionnel associ¶ees aux arêtes de coordonn¶ees strictement positives

et de la transform¶ee stricte de 0 qui correspond µa l'arête 1; 0 Chaque

composante en intersecte deux autres except¶e le premier \bout" qui en intersecte

un seul le diviseur de rupture qui en intersecte deux outre les transform¶ees strictes

des fonctions cnq+1 ¡ a irq+1
nq+1 l

pq+1 i2I"S
et la transform¶ee stricte de 0

qui en intersecte un seul le deuxiµeme \bout" Le nombre de transform¶ees strictes
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ci-dessus est aussi ¶egal au nombre de branches du diagramme des contacts qui se

s¶eparent au niveau du sommet S c'est-µa -dire µa k" S
Les multiplicit¶es de cnq+1 ¡ a irq+1

nq+1 l
pq+1 pour i 2 I"S resp le long

du diviseur de rupture valent nq+1pq+1 resp nq+1 et les multiplicit¶es le long du
bout valent nq+1 resp 1 ; le premier cas du iv s'en d¶eduit puisque

nq+1pq+1eq+1 + nq+1
~¯q nq+1¯q+1:

² Dans le cas oµu I 0S
6 ; la transform¶ee totale de fS 0 contient une com-

posante suppl¶ementaire la transform¶ee totale de c 0 qui intersecte le premier
\bout" Le seul diviseur dont la contribution µa la fonction zêta d'Alexander est
¶eventuellement non nulle est donc le diviseur de rupture ; la multiplicit¶e de c le long

de ce diviseur vaut pq+1 ; pour tout i0 2 I 0S
l'ordre de la fonction ce i0

q
~¯ i0

q vaut
p i"

q+1e i0

q +n i"
q+1

¹̄ i0

q+1¡¯ i0

q+1 pour i" quelconque dans I"S et i0 2 I 0S
c'est-µa-dire

m i0

m i00
n i"

q+1
¹̄ i"

q+1 : ¸i0 S

comme annonc¶e Ceci achµeve le calcul et la d¶emonstration de la proposition 5 3 1

¦ Exemple 1 : Dans le cas d'une seule fonction chaque paire de Puiseux donne

lieu µa l'apparition d'un sommet S qui est de type 2 et pour lequel I 0S ; La
formule 5 3 1 s'¶ecrit donc

A³f Tm ¡ 1 ¡1
g

Y
q 1

T nq¯q ¡ 1

T ¯q ¡ 1

qui est bien l'inverse de la fonction zêta de la monodromie de f voir corollaire

3 5 1

¦ Exemple 2 : Consid¶erons le cas oµu

f1 x; y y2 ¡ x3 et f2 x; y y2 ¡ x3 2 ¡ 4yx5 ¡ x7:

Nous avons pour la premiµere fonction : m 2 ¯1 3 e1 1 p1 3 n1 2
Pour la deuxiµeme on a : m 4 ¯1 6 e1 2 p1 3 n1 2 ; ¯1 7

e2 1 ; ¯2 13

Les deux d¶eveloppements fractionnaires associ¶es µa f1 sont x 3
2 et ¡x 3

2 ; ceux
associ¶es µa f2 sont x 3

2 + x 7
4 x 3

2 ¡ x
7
4 ¡x 3

2 + ix 7
4 et ¡x

3
2 ¡ ix 7

4

Le diagramme des contacts de f1 et f2 admet deux sommets S0 et S1 le premier
est d'altitude 3

2
et le second d'altitude 7

4
Le sommet S0 est de type 2 et on a I 0S0 ; et k00 S0 2 d'oµu ³S0 T1; T2

T 12
1 T 12

2 ¡ 1 2 T 6
1 T 6

2 ¡ 1 ¡1

Le sommet S1 est de type 2 ; on a I 0S1 f1g k0 S1 1 et k" S0 1 d'oµu
³S1 T1; T2 T 26

1 T 26
2 ¡ 1

Il vient ¯nalement
A³f1;f2 T1; T2 T 2

1 T 4
2 ¡ 1 T 12

1 T 12
2 ¡ 1 2 T 6

1 T 6
2 ¡ 1 ¡1 T 26

1 T 26
2 ¡ 1 :
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5 4 Application au calcul de la ¯bre de Milnor motivique d'une s¶erie
de deux variables ¶eventuellement r¶eductible

On s'int¶eresse au calcul de la ¯bre de Milnor motivique du produit F : f1 £
: : : £ fp On dispose d'une application naturelle m : Gp

m;C Gm;C d¶e¯nie par
t1; : : : ; tp 7 t1 : : : tp

Cette application induit de maniµere naturelle une application m¤
entre

K0 Gp
m;C et K0 Gm;C qui s'¶etend de maniµere naturelle en une application qu'on

note encore m¤
entre

MGp
m;C

[[T1; : : : ; Tp]] et MGm;C [[T ]]

d¶e¯nie par
m¤

[X ]T º1
1 : : : Tºp

p : m¤
[X ] T º1 : : : T ºp

pour toute Gp
m;C-vari¶et¶e X

Il r¶esulte directement des d¶e¯nitions qu'on a la relation ZF m¤ Zf et on
d¶eduit alors du th¶eorµeme 5 2 1 la proposition suivante :

Proposition 5 4 1 La ¯bre de Milnor motivique de la s¶erie F s'exprime µa l'aide

de l'arbre des contacts par la relation suivante :

SF;0 [Y0] + ½ XS2I1

[YS ] + XB2B

[YB ]¾ + XS2I2

[Y"S ]

oµu les notations sont les suivantes :

² Y0 : fx 2 Gm;C j xm 1g avec m : Pi m i munie de l'action de ¹m
d¶e¯nie par ³ :x : ³x

² Pour tout S sommet du type 1 branche de l'arbre des contacts ou feuille

YS : ½ x; y 2 A1
C £ Gm;C j Yi2IS

x¡ a i
h S

e iq yP i2IS
~¯ i S 1¾

oµu l'on a not¶e ~¯ i S ~¯ i
q S

si i 2 IS et CS i sinon Si Nq S h S p n avec p
et n premiers entre eux l'action de ¹̂ sur YS se factorise par l'action de ¹nn h S
d¶e¯nie par ³ : x; y : ³pc; ³ny

² Pour tout S sommet du type 2

Y"S : ½ x; y 2 A1
C £ Gm;C j

Yi2I00
S

xnq+1 ¡ a irq+1ypq+1 eq+1xP i2I0S
e iq yP i ~¯ iq 1¾

oµu ~¯ i
q a la même signi¯cation que ci-dessus L'action de ¹̂ sur Y"S se factorise

par l'action de ¹nq+1¯q+1
d¶e¯nie par ³: c; l : ³pq+1 c; ³nq+1 l
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