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Skew loops and quadric surfaces

Mohammad Ghomi* and Bruce Solomon

Abstract. A skew loop is a closed curve without parallel tangent lines. We prove: The only
complete surfaces in R3 with a point of positive curvature and no skew loops are the quadrics.
In particular: Ellipsoids are the only closed surfaces without skew loops. Our efforts also yield
results about skew loops on cylinders and positively curved surfaces.

Mathematics Subject Classification (2000). Primary 53A04, 53A05; Secondary 53C45,
52A15.
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1. Introduction

Here we study the relationship between surfaces in R3 and closed curves without
parallel tangent lines. Examples of such curves, which we call skew loops, were
first constructed by B. Segre in 1968 [19]' to disprove a conjecture of H. Steinhaus.
Quite recently, Wu constructed skew loops in every knot class [27], and the first
author has written down explicit examples on convex surfaces [10].? Despite this
general failure of Steinhaus’ conjecture, however, Segre noted that it does hold for
loops that lie on ellipsoids, paraboloids, and certain symmetric cylinders. Here we
add convex hyperboloids to Segre’s list, show that certain asymmetric cylinders do
admit skew loops, and use these facts to prove that the positively curved quadrics
are actually characterized by the absence of skew loops:

Theorem 1.1. Let M be a connected 2-manifold, and F: M — R? be a C? im-
mersion. Suppose that F' has positive Gauss curvature at a point of M. Then the
following are equivalent:

(1) F(M) lies on a quadric surface.

(2) F(M) contains no C? skew loops.

* The first author was partially supported by the NSF grant DMS-0204190.

1 Porter gave an apparently independent construction in 1970 [17].

2 In [10] skew loops were used to solve the “shadow problem” formulated by H. Wente,
which is related to the stability of constant mean curvature surfaces.
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In particular, if F is a complete immersion and admits no C? skew loops, it is an
embedding, and M is simply connected.

Any loop on a right cylinder over an open planar curve has a pair of vertical
tangent lines, and hence cannot be skew. So for purposes of the implication 2 = 1
in Theorem 1.1 the assumption of positive curvature at one point is not superfluous.
Moreover, since closed surfaces (compact 2-manifolds without boundary) always
have such a point, Theorem 1.1 yields:

Corollary 1.2. Ellipsoids are the only closed C* surfaces immersed in R> which
admit no C? skew loops. O

Characterizations of ellipsoids have a long and rich history [3, p. 151], [16], [13].
Most such theorems, however, are stated and proved within the class of convex
bodies, where the surfaces are a priori embedded, and topologically spherical. Ours
avoids both these restrictions.

We prove Theorem 1.1 by developing a sequence of intermediate results: In
Section 2 we use regular homotopy to show that positively curved surfaces admit no
skew figure-eights (Proposition 2.5). Applying this fact in Section 3, we then prove
that convex quadrics have no skew loops. This involves a Lorentzian generalization,
following [8] and [21], of Jacobi’s Theorem on indicatrices that bisect the sphere
[22, p. 407]. In Section 4 we prove our asymmetric “cylinder lemma” (Proposition
4.1): Any cylinder with a strictly conver asymmetric base contains a skew loop.
We then exploit this fact in Section 5, using a stretching argument, to show that
surfaces without skew loops have symmetric local cross sections. By a result of
W. Blaschke, this property characterizes quadrics, and thus gives Theorem 1.1.

We conclude with three appendices. The first proves a result first stated by
Segre, which gives a strong converse to the asymmetric cylinder lemma mentioned
above, but still leaves the existence of skew loops on certain cylinders undeter-
mined. We discuss this and other open problems in Appendix B, then conclude
with a few historical notes in Appendix C.

2. Preliminaries: skew loops and their tantrices

A C* immersed loop is a C* mapping v: S' ~ R/27 — R? with nowhere-vanishing
velocity v'. We say « is skew iff k > 1 and

Y(t) x+'(s) #0 (2.1)
for all distinct ¢, s € R/27. The tantriz of ~ is the mapping 7: S — S? given by

() ="/ IV @I

Note 2.1. We will frequently use the following observations: (i) affine bijections
of R® map skew loops to skew loops, and (ii) v is skew iff 7(S!) is embedded and
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disjoint from its antipodal reflection, i.e., 7(¢) # £7(s) for all distinct ¢, s € R/27.

The curvature of a C? immersed loop is the speed of its tantrix (||7/(¢)]|). In
Sections 3 and 5, we need to perturb skew loops while keeping them skew:

Lemma 2.2. C? skew loops with nonvanishing curvature form an open subset in
the space of all C? immersed loops in R2, relative to the C? topology.

Proof. Let v be a C? skew loop with tantrix 7 and nonvanishing curvature. Then
7 is C! immersed. Suppose 7 is a C? loop close to « in the sense of G? metric on
C? loop space. Then 7 has nonvanishing curvature as well, and therefore has a C!
immersed tantrix 7. Further, 7 is close to 7 in the C! metric. So 7 is embedded,
because 7 is embedded, and embeddings are open in C'* immersed loop space [14,
p. 37]. Finally, since 7 avoids its antipodal image, it avoids some neighborhood of
that image. So (by the triangle inequality) 7 avoids its antipodal image as well,
and 7 is skew. O

Deformations of loops through immersions—regular homotopies—arise natu-
rally for us since they continuously deform the tantrix of a loop as well. A basic
theorem of H. Whitney [26] states that in R? ~ C, every loop is regularly homo-
topic to either the figure-eight

vo(e™) := cost(1 + i sint),
or to one of the degree-k circle coverings given by
(€)= etht | F =41, £2, .. ..

On 8? ~ CU {cc}, however, S. Smale [20] showed that there are just two regular
homotopy classes: that of the figure-eight ~y, and of the equator v;. These facts
lead to the following lemmas, useful both here and in Section 3.

Lemma 2.3. Every C? loop on S? is reqularly homotopic in S? to its own tantriz.

Proof. The C! homotopy h : [0,7/2] x I — S? given by
h(0,t) :==o0(t) cos@ +7(t) sin@

deforms any immersed curve ¢ into its tantrix 7 := ¢’. To see that h is regular,
recall the spherical Frenet equation 7/ = —o + k4, v where r, is the geodesic
curvature of 7, and v := o x 7. Setting oy(t) := h(0,t), we compute

op(t) = o’'(t) cos@ + 7'(t) sin® = 7(t) cos + kg v(t) sinh —o(t) sind.
Since o, 7, and v are orthonormal, o), # 0. So oy is an immersion. (Il

Lemma 2.3 implies that the tantrix of any C*-immersed loop in 82 is immersed,
a well-known fact [11, 18] that generalizes to loops on any positively curved surface:
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Lemma 2.4. The tantriz 7 of any C*-immersed curve o on a positively curved
surface M is immersed in S2.

Proof. Parametrize o by arclength, so that 7 = ¢’/. The component of 7" along a
unit normal n on M is then given by (T’)L = (a”)L = k(¢’)n where k denotes
normal curvature. Since M is positively curved, k ## 0. Hence 7/ #£ 0. [l

A C* figure-eight o on a surface M is any C* loop regularly homotopic to a
loop /3 in an open coordinate disc ¢ : U — R?, with ¢ o 3 = v (the “standard”
figure-eight above). Lemmas 2.3 and 2.4 yield:

Proposition 2.5. Let f : M — R? be a C?-immersed, positively curved surface.
Then the tantriz of any figure-eight on M is again a figure-eight. In particular,
M admits no skew figure-eights.

Proof. By definition, any figure-eight o C M is regularly homotopic to a copy 3
of our “standard” figure-eight ¢ in a coordinate disc U. Lemma 2.4 then implies
that the tantrix 7, of « is regularly homotopic to that of 3: 7, ~ 75 . It therefore
suffices to show that 75 is a figure-eight on s?.

After a regular homotopy of 5 we may assume that U is so small that f(U) is
a graph over one of its tangent planes. Then, after an affine transformation, (3 lies
in a coordinate disc U C M with image f(U) contained in the graph of a convex
C? function hg : D?* — R, where D? C R? is the open unit disc. We may then
realize /3 as a graph, S, over a figure-eight v : 81 — D?:

Bo(t) = () + ho (v(t) k

where k := (0,0,1). We may also assume (dilate further if necessary) that the
eigenvalues of the Hessian D?hg lie between 0 and 1 throughout D. Now express
the southern hemisphere of S? similarly as the graph of a function hq : D> — R.
The eigenvalues of D?hq are everywhere at least 1, so the graphs of the functions

he(@) = ho(@) + ¢ (ha(x) — ho(x))

give a deformation of f(U) into S? through positively curved surfaces. By Lemma
2.4, the tantrices of the figure-eights 3.(t) := v(¢t) + he(y(¢)) k are all immersed.
In particular, 753 ~ 75,. By Lemma 2.3, 73, ~ ;. Thus 73 ~ 31, which is a
figure-eight on S2. O

3. Nonexistence of skew loops on quadrics

The tantrix of a C® loop on S?, if embedded, bisects the sphere ([8], [21]). Tt
follows that the tantrix of a C® loop on S? crosses either itself or its antipodal
image, and hence that S? contains no C® skew loops. Segre observed that, by
affine invariance, this fact extends to ellipsoids and elliptic paraboloids. Here we
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sharpen the argument in [21] to rule out C? skew loops on these same surfaces,?

and craft a Lorentzian version that includes the two-sheeted hyperboloids.

Note 3.1. Our methods in this section do not apply to curves that are only C1.
Further, we do not know whether S? admits a skew loop which is C* but not C2.

Let @ denote the symmetric bilinear form on R? characterized by
Q(X7 X) - xQ +y2 - 227

for all x := (z,y,2) € R?. The connected non-singular level sets of Q(x,x) are
hyperboloids of revolution, each homothetic to one of the following:

Ni=q{xe R®: Q(x,x)=—1, 2 > 0} (hyperboloid of two sheets)

~ 3.1
Y ={xeR Q(x,x)=+1} (hyperboloid of one sheet). 3.1)
Differentiating @ along an arc ¢ immersed in either ¥ or ¥ gives
Qo',0)=0. (3.2)
Thus:
Lemma 3.2. Fvery point p in ¥ or Y is @-normal to that surface at p. O

Next, parametrize 3 and 2 by X: R x (0,00) — R® and X: R x R — R3
respectively as follows:

X (u,v) := (cos(u) sinh(v), sin(u) sinh(v), cosh(v)),
X (u,v) == (cos(u) cosh(v), sin(u) cosh(v), sinh(v)).

Since Q( Xy, Xu), Q(Xy, Xy) > 0, and Q(X,, Xy) = 0, @ induces a Riemannian
metric on .4 So we may define the Q-tantriz of an immersed loop o on ¥ via

L)
N IGO0l

Note 3.3. Since Q(7q,7q) = +1, the Q-tantrix of a loop on ¥ lies on 3. Further,

T is the radial projection of the (standard) tantrix 7 into 5. Therefore, much like
7, the Q-tantrix of a skew loop on > is embedded, and avoids its antipodal image.

In contrast to 3, 3] inherits a Lorentzian structure from Q. Indeed, the vectors

= X e =X, (3.3)

c T cosh(v) ’

3 The absence of C? skew loops on spheres was also established in 1971 by White [25].
4 This is the well-known hyperbolic metric on 3.
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form a global frame on i with
Qet,e) =41, Qe e )=—1, and Q(et,e)=0.  (34)

If we project out the @-normal direction, the standard covariant derivative D on
R? becomes a torsion-free, Q-preserving connection V on ¥. Let w denote the
corresponding connection 1-form associated to our frame {e™, e~} by setting

w(z) = Q(V,et,e7), forall zeTY. (3.5)
One may verify that in the local coordinates associated with X ,
w = —sinh(v) du, (3.6)
and that in conjunction with Lemma 3.2, differentiation of (3.4) yields
Vet = —Q(Vyet, e7)e™ = —w(z)e,

3.7
V.em = +Q(Vee ,eT) et = —w(z)e™. Sl

Lemma 3.4. If a loop o in Y is the Q-tantriz of a C? loop on Y, then faw =0.

Proof. Suppose o = 7, the Q-tantrix of an arc o immersed in . Since 74 is a
multiple of o’, (3.2) implies that Q(7g,0) = 0. Lemma 3.2 then yields that o(¢)

is tangent to Y at To(t). So we may expand o relative to the frame field given
by (3.3). Since Q(o,0) = —1, and ¢ is C?, this uniquely determines a function
6 :S' — R such that

o(t) =sinh@(t) et + coshd(t) e .

Note that we evaluate the frame vectors here at 74(¢). Differentiating the above
with respect to ¢, using (3.7), yields

Vo= (0/ — w(rf)) (coshf et +sinhfe).
On the other hand, by Lemma 3.2, 75(¢) is @Q-normal to 3 at To(t). So

0= (vQ(", o)) = ()" = (Dryo) " =Vryo,

which yields that w(7,) = ¢’ along 7. But the integral of 6’ vanishes along 7q,
since ¢ is continuous and 74 is a loop. Hence fTQ w=0. [l

We now have the tools we need to prove that positively curved quadrics admit
no skew loops, and thereby establish half of our main theorem.

Proof of the implication 1 = 2 of Theorem 1.1. There are 3 cases:

Case 1: Hyperboloids. Each nappe of a hyperboloid of two sheets is affinely
isomorphic to the hyperboloid ¥ defined by (3.1). So it suffices to show that %
admits no C? skew loops. Suppose, toward a contradiction, that there exists a
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C? skew loop o: 8! — ¥, with Q-tantrix 7. Since 3 is diffeomorphic to a plane,
and o may not be a figure-eight (Proposition 2.5), Whitney’s theorem forces o
to be regularly homotopic to a k-fold tracing ¢; of some horizontal circle, k £ 0.
The @Q-tantrix of ¢ is then a k-fold tracing 7, of the circle z = 0 in i, and
since Y has positive curvature, the homotopy ¢ ~ ¢ induces a regular homotopy
7o ~ T (Lemma 2.4). By Note 3.3, 75 is embedded, and disjoint from its own
antipodal image. The embeddedness forces £k = 1, and along with the antipodal
disjointness, this means that —74(S') U7g(S') bounds an annular domain € C »
with C! boundary. Combining Stokes’ Theorem with Lemma 3.4, we then get
Jq dw = [,q w = 0. By (3.6), however, dw = cosh(v) du dv, a non-vanishing 2-
form. So the integral of dw cannot vanish, and we have our contradiction.

Case 2: Ellipsoids. All ellipsoids are affinely equivalent, so we need only check
the spherical case, which has been discussed by Segre [19] and White [25]. Alter-
natively, one can proceed as in Lemma 3.4, replacing sinh and cosh by sin and
cos respectively. After suitably restricting their domains, the parametrizations X
and X for ¥ and ¥ now become patches for S2. Arguing as in Lemma 3.4, one
then shows that the tantrix of a loop on S? must annihilate the integral of the
corresponding connection form (which is now —sinwv du). The final argument of
Case 1 then goes over almost verbatim, because d(sinv du) = cosv du dv gives the
area form on 82, except at the poles, which we can avoid with a slight rotation.

Case 3: Paraboloids. By affine equivalence, it suffices to rule out skew loops
on the graph z = 22 4 y?. One easily checks that this paraboloid, call it P, can
be C?-approximated arbitrarily well on any compact subset by an ellipsoid of the
form

x2+y2+<%—7")2:7"2~ (3.8)

Further note that, since P has positive curvature, any loop on P has nonvanishing
curvature. Thus it follows from Lemma 2.2 that for sufficiently large r, any skew
loop on P can be perturbed to form a skew loop on one of the ellipsoids defined
by 3.8 above. Such a loop would contradict the result of Case 2, so P contains no
skew loop. (Il

4. Asymmetric convex cylinders

When a C* loop v: S! — R? bounds a convex domain, we say I' := v(S!) is a C*
oval. We say T is (centrally) symmetric when reflection through a point leaves it
invariant. Otherwise, it is asymmetric. We say I is strictly convex if v is C? and
its curvature never vanishes. Our main aim in this section is to show:

Proposition 4.1 (Cylinder Lemma). The cylinder over any asymmetric, strictly
conver C? oval ' C R? contains a C? skew loop with nonvanishing curvature.
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This follows easily once we prove three preliminary results. Our strategy boils
down to the careful analysis of a classical parametrization: Recall that when T" is
strictly convex, its outward unit normal n: I' — S! is injective. We may therefore
employ the support parametrization v: R — R? of T', given by

y(t) = n"t(e"). (4.1)

Note that one loses a derivative in passing from I' to v. When T is merely C?, this
somewhat complicates the proof that ~ is an immersion:

Lemma 4.2. Let I' C R? be a strictly conver C? oval, with support parametriza-
tion v. Then v := ||¥/|| # 0. Moreover, T' is symmetric if and only if v is
w-periodic.

Proof. Define the support function of I" via
h(t) = (e",7(t)) (4.2)

(real inner product). Since {e, e} is a basis for R?, we then have a 2r-periodic
C" function p: R — R such that

y(t) = (h(t) +iu(t)) €. (4.3)
By (4.1), € is normal to T" at (t), so we also have
v (t) = v(t)iet (4.4)
Now differentiate (4.3) and compare with (4.4) to see that = h' and
v(t) = (h(t) +ih'(t))e". (4.5)

As vy is C!, this shows that h is C2. Further, differentiating (4.5) and using (4.4),
we get,
v=~h"+4h.

We now make indirect use of the curvature formula x := (v, iy} /||| to show
that v #£ 0. If v is C?, one can differentiate (4.4) to evaluate 4, and directly
calculate k = 1/v. Since T is strictly convex, we have x # 0, and hence v # 0, as
claimed. Here v is only C, so we first approximate I' in C2(S!, R?) by a sequence
of C? ovals T'y. The support parametrization of each I'y will then be C?, so that for
Iy, we do have k¢ = 1/v,. But the curvatures s, and speeds v, of the I'p’s converge
uniformly to s and v respectively. In the limit, we therefore obtain x = 1/v as
claimed.

To get our final conclusion, suppose that I' is symmetric about the origin. The
reflection p(z) = —z then sends the tangent line at v(¢) to some parallel line
tangent to I'. Given (4.1), the only such tangency occurs at v(¢ + 7). Thus

Yt 7)) =—(t)
for all ¢ € R. By (4.2) this forces both h and v = h” 4 h to be m-periodic.
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Conversely, suppose v is w-periodic. Then all its odd Fourier coefficients must
vanish. Since h” + h = v, the same must hold for h, modulo a solution (w, e**)
of the homogeneous equation " + h = 0. By (4.2), however, we eliminate this
anomaly if we translate I' by —w. Doing so makes h w-periodic, and by virtue of
(4.5), the oval parametrized by v is now p-invariant. The original (untranslated)
oval I' is then symmetric. [l

We shall define and denote the even and odd parts of a function f: S' — R by

f4(@) = w7 and  f_(t) = w7

respectively, identifying S! with R/27 via e’ «+ ¢. With this notation, we can
give a simple condition for the skewness of a “graphical” loop ¥ on the cylinder
over I':

Lemma 4.3. Suppose I' C R? is a strictly convex C? oval with support para-
metrization v. Let 2: 8! — R be C', and set v = |||, k := (0,0,1). Then
F(t) :=y(t) + 2(t)k is a skew loop if and only if for allt € R, we have

v (t) 2 () —v_(t) 2_(t) # 0.

Further, if z is C?, then ¥ has nonvanishing curvature.

Proof. Expressing v/ as in (4.4) above, and using the identity i e’ x k = €7, we
compute that

F (@) x 7' (s) = (¥'(t) x () + (') (1) = #' ()7 (s))
o(t)u(s)e™ x € +o(t)2(s) e —v(s)z/ ()

= v(t)o(s)sin(t — s) k + v(t)2'(s) " —v(s)2/(t) .

x k
e’LS

Note that ¥ fails to be skew whenever this quantity vanishes for some ¢, s € R,
with ¢ # s mod 2x. Since the k component vanishes only when s = ¢+ 7 mod 27,
v is thus skew if and only if

v(t)Z (t+ 7)) +ot+ ) (t) £0
for all ¢ € R. Now note that for any function f: R/2r — R, we have the identities
&) = f+@) + f-(), @ +m) = f1(8),
f+m)=fr6) - f-(0),  f-(t+m)=—f(0)

Applying these to v and 2’ in the preceding formula gives the first conclusion of
the lemma. Finally, note that, since v is strictly convex, ||v”(¢)|| # 0. Thus, if 2
is C2, then ||7(t)|| # 0 as well. So ¥ has nonvanishing curvature. O

The technical result below will provide the key constructive step in our proof
of the cylinder lemma.
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Lemma 4.4. Let e, 0: S — R be continuous functions which are even and odd
respectively, and suppose that e4+o0 > 0. Then either o = 0, or we have a continuous
function u: St — R, such that:

(1) S o =10, (2) pis even, and (3) ep > —o’.

Proof. Assume o # 0, and identify S* with R/27 as usual. To prove the lemma
we will construct a continuous function p: [0,7] — R with

(1) fo7r w(t) dt =0, (2) p(m) = p(0), and (3)ep> —0? on [0,7] .

The even extension of this function to all of S then clearly has the properties (1),
(2), and (3) that we seek.

To begin, observe that our hypotheses automatically imply e > 0 throughout
S!'. Otherwise, the evenness of e would imply ¢ < 0 at both points of some
antipodal pair t, —t € S!. Since we assume e+ o > 0 everywhere, this would force
o > 0 at both ¢t and —¢, contradicting the oddness of 0. We thus have positivity
of e, which allows us to define

L[ (Y a0

Next, note that the zero set of an odd function is both nonempty, and invariant
under reflection through the origin. After a rotation, we may therefore assume
0(0) = o(w) = 0, and define the function we seek:
2
R0
1+ e(t)
Clearly, p satisfies (1’). And we arranged that o(0) = o(w) = 0, so we have
w(0) = p(wx) = 7, which gives (2). Finally, we obtain (3') by combining our
definition of y with the positivity of e and 7:
e(t) 2 e(t) 2 2
t =e(t)T — t — t —o(t)”.
et = ()~ (g ) olt? > = (T ) ot > —oft)
This proves the Lemma. (Il

p(t) =

We now prove the main result of this section, our cylinder lemma;:

Proof of Proposition 4.1. By Lemma 4.3, it suffices to produce a height function
z: 8! — R such that, for all t € R,

vy ()2, (t) > v_ ()2 (¢), (4.6)

where v is the speed of the support parametrization of I'. First, note that our
asymmetry hypothesis on I' combines with Lemma 4.2 to guaranteed that v is not
even, and hence v_ # 0. Moreover, being odd, v_ has a well-defined antiderivative
on 8'. We form z_ by taking any such antiderivative and subtracting off its
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average on S'. Clearly, this makes z_ a (non-trivial) odd function, and because
v_ is continuous, z_ is C*. Since 2’ = —v_, (4.6) now becomes

v () 7 (8) > —(0- (1)) (4.7)

It remains to construct an even C* function z, : S — R whose derivative satisfies
(4.7). Lemma 4.4 does precisely that: Set e := vy, 0o := v_ Z 0 there, and let
2!, := p. Lemma 4.2 ensures us that e + o0 = v, +v_ = v > 0, so Lemma 4.4
indeed applies. Conclusions (1) and (2) of the latter now guarantee that 2/, has
an even antiderivative z, on S!, and conclusion (3) reduces to the key estimate
(4.7). O

5. Quadricity of surfaces without skew loops

Our first step in this section is to use the existence of skew loops on asymmetric
convex cylinders (Proposition 4.1) to restrict the symmetry of surfaces without
skew loops:

Lemma 5.1. Let S C R? be a C? embedded surface without skew loops. Suppose
that there exists a plane H C R® which meets the interior of S transversely along
a strictly conver oval I' :== SN H. Then I" is symmetric.

Proof. After a rigid motion we may assume that H coincides with the zy-plane.
Since S meets H transversely along I', we may choose € > 0 small enough to make

S i={(z,y,2) €S :|z| <e}

a topological annulus transversal to H with 98’ N H = (. Let C denote the
cylinder perpendicular to H with base I'. Then S’ may be represented as a graph
over C. That is, there exists an open neighborhood A of T" in C and a C? function
g: A — R such that 8’ = {a+ g(a)v(a) : a € A}, where v is the outward unit
normal vector field on S. Now use the dilatations j.: R® — R?, defined for each
¢>1by pc(z,y,2) = (z,y,c2), to define a 1-parameter family of C? functions

ge: A= R, ge =g O /e

Note that g. and its derivatives tend to zero uniformly on A as ¢ — oo. This
follows from the continuity of g and the chain rule, because g = 0 on I', while near
I, the derivatives of g are continuous because S’ intersects H transversally.

Suppose now that I is not symmetric. Then Proposition 4.1 gives a C? skew
loop v: S' — C with nonvanishing curvature. After a (shrinking) dilatation, we
may assume that v(S') C A. For every ¢ > 1, we may then define a loop +, on
the affinely stretched surface p.(S’) by setting

Ye(t) = (t) + go(v(¥)) v (7 (1))
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Since g, — 0 uniformly on v(S!) along with its derivatives as ¢ — 0o, we see that
ve — 7 in the C? sense. It then follows, by Lemma 2.2, that -, eventually becomes
skew. Thus, for sufficiently large ¢ > 0, the stretched surface p.(S”) admits a skew
loop. As an affine map, however, p, sends skew loops to skew loops. So S’ must
itself admit a skew loop—a contradiction. |

By a convez body K C R® we mean a compact convex subset with nonempty
interior. We say planes Py, P, are close if we can represent them by linear equa-
tions (ny,x) = hy and (ng,x) = ha, with |ng — na|® + |h1 — ha|> < € for some
e>0.

Theorem 5.2 (Blaschke [2]). Let K C R® be a conver body, whose boundary is
C? near a point p € OK. Suppose that whenever a plane sufficiently close to T,0K
intersects K , its intersection with 0K is centrally symmetric. Then a neighborhood
of p in OK lies on a quadric surface.

Blaschke’s result localizes a theorem of Brunn that characterizes ellipsoids as
convex bodies having only symmetric cross sections.® Coupling it to Lemma 5.1,
we quickly complete the proof our main theorem.

Proof of the implication 2 = 1 of Theorem 1.1. Let X C M be the largest open
subset whose image F'(X) lies on a quadric. Then X is also closed, and M is con-
nected, so we need only show that X =£ 0. To do so, let U be an open neighborhood
of a point p in M where the curvature is positive. We may choose U small enough
so that S := F'(U) is the graph of a function on the tangent plane Tr,,dK. Since
the curvature is positive at p, this function has positive definite Hessian and is
therefore convex. So S lies on the boundary of a convex body K C R3. Since
S has positive curvature at I'(p), the tangent plane Tp,)dK intersects K only
at F'(p). This gives an ¢ > 0 so that every plane H C R? within distance e of
TppOK satisfies H NS = 0. Then I' := H N 9K lies in S. Whenever the
intersection is transversal I' is a C? strictly convex oval, because S has positive
curvature. Lemma 5.1 now makes I' symmetric. But I" was an arbitrary transverse
cross-section of S near p, so Blaschke’s Theorem 5.2 forces a neighborhood of p to
lie on a quadric surface. This completes the proof. [l

Appendix A. Symmetric cylinders

Proposition A.2 below gives a strong converse to the existence of skew loops on
asymmetric cylinders (Proposition 4.1). This result was known to Segre [19], but
we recount a proof for completeness. Let us agree that an L-periodic unit-speed

5 Olovjanischnikoff (see [15] and [4, p. 346]) proves an even more general version requiring
no regularity at p.
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loop ¢ : R — R? has arclength symmetry with respect to a point p € R? if
c(t+ L/2) =p—c(t) for all t € R.

Note A.1. For embedded loops, one can show that arclength symmetry is equiv-
alent to central symmetry. In particular, Proposition A.2 holds for cylinders over
embedded centrally symmetric loops. For immersed loops, arclength symmetry
is slightly stronger than central symmetry, however; centrally symmetric figure-
eights, for instance, admit no arclength-symmetric parametrization. Indeed, one
can put a skew loop on the cylinder over a centrally symmetric figure-eight. Exam-

T

ple: 3(t) = (cost sin 2¢, % — (1)15). The arclength symmetry condition below
therefore seems essential.

Proposition A.2. If a C! loop T' C R? admits a parametrization with arclength
symmetry, then the cylinder S := T x R C R® admits no skew loops which are
transverse to the lines in S.

Proof. Suppose T has length L, and has an L-periodic parametrization ¢ : R — R?
which is arclength-symmetric about the origin. Let S := I" x R, and suppose
J: 8! — Sis a C! loop. We may then reparametrize 7 via

F(t) == et) + 2(t)k, (A1)

where z is C' and nL-periodic for some n € Z. By our symmetry assumption,
c(t+ L/2) = —c(t). Hence

dt+ L/2) = - (¥), (A.2)
and
nL il
/ (2'(t) + /(¢ + LJ2)) dt = (2(t) + 2(t + L/2)) ‘O —0.
0
The mean value theorem for integrals now gives a tg € [0, nL] for which
2 (tg+ L/2) = —2 (to). (A.3)
Equations (A.1), (A.2) and (A.3) therefore combine to yield ¥’ (t0+L/2) = —7'(t0).

This makes the tangent lines to 5 at ¢ and ¢ + L/2 parallel, a contradiction. O
Appendix B. Open problems

Which surfaces in R® admit skew loops? Theorem 1.1 settles this question for
surfaces with a point of positive curvature, so it remains to ask:

Problem B.1. Which nonpositively curved surfaces admit skew loops?

Could it be true that the only surfaces without skew loops and a point of
negative curvature are quadric, mirroring Theorem 1.17 If so, it would remain to
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study flat surfaces.® Complete flat surfaces are generalized cylinders [12]. When
embedded and symmetric, these admit no skew loops, which are transversal to the
generators of the cylinder, by Proposition A.2. The main open question about flat
surfaces is then:

Problem B.2. Which asymmetric cylinders admit skew loops?

Proposition 4.1, shows that strict convexity is sufficient, and one can show that
the tantrix of any loop on a cylinder whose base has winding number || > 1 must
self-intersect; these cylinders do not admit skew loops.

Our work raises some regularity questions too. We state one of them in Note
3.1: Does 8% contain a C' skew loop? The regularity of the underlying surface
raises another: Skew loops necessarily have one derivative, so a version of Theorem
1.1 in the C! category would be fairly optimal with regard to regularity. Our last
question highlights a simple relevant test case:

Problem B.3. Does a cylinder capped by hemispheres admit skew loops?

This surface is C* and piecewise quadric; if it admits a skew loop, Theorem 1.1
is already optimal.

Finally, we remark that when one regards R® as RP® minus a plane at in-
finity, all ellipsoids are projectively equivalent, not just to each other, but to the
elliptic paraboloids and 2-sheeted hyperboloids too. The referee has observed that
these are precisely the quadrics on which we have ruled out skewloops, and hence
our results may extend to RP2 in an interesting way. We hope to explore this
possibility in a future paper.

Appendix C. Historical notes

According to P. Du Val [7], H. Steinhaus conjectured the non-existence of skew
loops in 1966 during a lecture given at Sussex. B. Segre, present at this lecture,
responded by proposing a counterexample in a lecture of his own the next day.
Segre eventually published a corrected version of his counterexample in 1968 [19].
Porter’s version of the construction in 1970 [17] is somewhat more explicit, but
Segre’s paper contains many other results, including the non-existence of skew
loops on spheres. To prove the latter fact, he appeals to a “bel teorema” published
by W. Fenchel in 1934 [8]: The tantriz of a spherical curve, if embedded, bisects S*.
It seems that this result was absorbed by very few beside Segre. It immediately
implies a well-known theorem of Jacobi on the normal indicatrix of a space curve,

6 Serge Tabachnikov has recently ruled out skew loops on negatively curved quadrics, and on
simply-connected flat surfaces [23]. In fact, by extending the technique of White [25], he rules
out n-dimensional compact skew “branes” on all hyperquadrics in R?2 for all n.
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but the many subsequent references to Jacobi’s Theorem we know (e.g. [22], [5],
[6], and even Fenchel’s own 1951 survey [9]!) make no mention of it. It has since
been rediscovered at least twice: by Avakumovié [1], and by the second author
[21].

The non-existence of skew loops on spheres was also proved by J. H. White [25]
in 1971 using a Morse-theoretic argument. Unlike Segre, who notes that the result
extends to ellipsoids and elliptic paraboloids, White mentions only the sphere.
Neither author suggests that hyperboloids admit no skew loops, nor gives any hint
that they surmised our main result here.
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