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Commentarii Mathematici Helvetici

The topology at in¯nity of Coxeter groups and buildings

Michael W Davis and John Meier

Abstract The connectivity at in¯nity of a ¯nitely generated Coxeter group W is completely
determined by topological properties of its nerve L a ¯nite simplicial complex For example W
is simply connected at in¯nity if and only if L and the subcomplexes L¡¾ where ¾ ranges over
all simplices in L are simply connected This characterization extends to locally ¯nite buildings

Mathematics Subject Classi¯cation 2000 20F55 20J05 51E24 57M07

Keywords Coxeter groups buildings topology at in¯nity duality

1 Introduction

The study of end invariants has been important in many topological applications

of in¯nite Coxeter groups as well as buildings associated to a±ne Coxeter groups

For example the ¯rst examples of compact closed aspherical manifolds whose

universal covers are not homeomorphic to Rn were constructed using Coxeter
groups that are not simply connected at in¯nity [9] Borel and Serre computed
the cohomology with ZG coe±cients of S-arithmetic groups by studying the end
topology cohomology with compact supports of Bruhat{Tits buildings [3] In
this paper we study the end topology of all Coxeter groups not necessarily those

associated to manifolds as well as the end topology of all locally ¯nite buildings In
particular we give an explicit formula for the cohomology with compact supports

that holds for any locally ¯nite building Theorem 5 8

Topology at in¯nity is essentially the study of topological properties that per-
sistently occur in complements of compact sets For example a connected locally
¯nite CW complex E is 1-ended if given any compact set C ½ E there is a com-
pact set D ¾ C such that E¡D is connected The higher homology and homotopy
conditions at in¯nity take a bit more care to state It su±ces for this paper to
let E be the universal cover of a ¯nite aspherical CW complex We say E is
m-connected at in¯nity if given any compact C ½ E there is a compact D ¾ C
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such that any map Á : Sn E ¡D extends to a map
b
Á : Bn+1 E ¡ C for all

¡1 · n · m Similarly E is m-acyclic at in¯nity if any n-cycle whose support is
outside of D is the boundary of an n + 1 -chain with support outside of C for all

¡1 · n · m In particular since ¡1 -acyclic means \non-empty " ¡1 -acyclic
at in¯nity means \non-compact" and 0-acyclic at in¯nity is equivalent to being
1-ended We note that we are using integral coe±cients but one can work over
any ring R with an identity element We use the phrase simply connected at
in¯nity to mean exactly the same thing as 1-connected at in¯nity i e if E is
simply connected at in¯nity it is 1-ended

One can de¯ne homology and homotopy groups at in¯nity For convenience

we assume E is a contractible locally ¯nite complex and let fXng be a nested
exhaustive sequence of compact subsets of E This exhaustive sequence induces

an inverse sequence of homology groups

Hn E ¡X0 Ã Hn E ¡X1 Ã Hn E ¡X2 Ã ¢ ¢ ¢

and the related sequence of reduced homology groups There are also inverse

sequences of homotopy groups where in order to keep track of basepoints one

chooses a proper ray ° : [0;1 E such that ° [i;1 ½ E¡Xi for all i 2 N[f0g
Given such a ray there is an induced sequence of homotopy groups

¼n E ¡X0; ° 0 Ã ¼n E ¡X1; ° 1 Ã ¼n E ¡X2; ° 2 Ã ¢ ¢ ¢

where the morphism ¼n E ¡ Xi; ° i Ã ¼n E ¡ Xi+1;° i + 1 is de¯ned via
inclusion and the isomorphism ¼n E¡Xi; ° i ' ¼n E¡Xi; ° i+1 induced by
the path ° [i; i + 1] If E is not 1-ended then this system is a±liated with the

end determined by the ray ° Further the inverse limit can depend on the proper
homotopy class of the ray ° although there are no examples known where this
dependence occurs in the context of an in¯nite ¯nitely presented group

An inverse sequence of groups f¢ ¢ ¢ Ã Gi Ã Gi+1 Ã ¢ ¢ ¢ g is semistable or
Mittag{Le²er if there is a function f : N N such that the image of Gk in Gn
is the same for all k ¸ f n We show that the inverse sequences of homology and
homotopy groups for the spaces associated to Coxeter groups are all semistable
this is part of Lemma 3 4 This implies that \lim1" of these inverse systems is

trivial A further consequence is that the homotopy groups at in¯nity are indepen-
dent of the choice of proper ray used to determine basepoints assuming the space

is 1-ended The inverse limits do not depend on the choice of exhaustive sequence

of subsets fXig All this is to say that for the purposes of this paper we may de-

¯ne the end-homology and end-homotopy groups to be He
n

E lim
Ã

Hn E¡Xi
and ¼e

n
E lim

Ã
¼n E ¡Xi for 1-ended spaces Although we don't take this

approach here even more can be claimed: Because these inverse sequences are

semistable information is not lost in passing to the inverse limits when thought
of as topological groups see x2 in [2]

One can also de¯ne cohomology at in¯nity using the direct sequence

Hn E ¡X0 Hn E ¡X1 Hn E ¡X2 ¢ ¢ ¢



748 M W Davis and J Meier CMH

and take Hn
e E to be the direct limit of this sequence Note that Hn

e E
Hn+1

c E
If a virtually torsion free group G acts cellularly properly i e ¯nite isotropy

groups and cocompactly on a locally ¯nite contractible CW complex E then
the pro-homotopy type of fE ¡ Xig is an invariant of G For example if E is
simply connected at in¯nity then any other such space will be simply connected
at in¯nity and therefore we can speak of the group being simply connected at
in¯nity For background on the end topology of in¯nite groups see [15] or the

more succinct introduction and appendix to [16]

In this paper we will always assume that our Coxeter groups are ¯nitely gen-
erated Given any ¯nitely generated Coxeter group W there is a contractible cell
complex which we are denoting jW j that W acts on cellularly properly and with
¯nite quotient [9] The W -space jW j may be cellulated so that the links of vertices

of jW j are all isomorphic to a ¯xed ¯nite simplicial complex L where L can be

described purely combinatorially in terms of subsets of the generating set of W
The fundamental domain for the action of W on jW j is the cone on L Details of
the construction are sketched in x3

We show that the topology at in¯nity of jW j is completely determined by the

\punctured topology" of the ¯nite complex L At the homological level this was

done in [11] where explicit formulas for H¤c jW j and H lf
¤ jW j are given in terms

of the cohomology and homology of L relative to the subcomplexes L¡ ¾ for ¾ a
simplex in L We give an independent argument for such formulas in x4 where in
particular we show:

e
He

¤ jW j Y
w2W e

H¤ L¡ ­ w

where ­ w is a simplex of L de¯ned in terms of the group element w 2 W The

approach in this paper generalizes to all locally ¯nite buildings and we state the

corresponding formulas in x5 These formulas allow us to characterize which Cox-
eter groups are virtual duality groups and which buildings are duality complexes

Theorem 6 3
In addition to extending these end-homology results to buildings we also es-

tablish the related results on homotopy at in¯nity and in Theorem 4 3 we prove

the result predicted by the homology computation: The space jW j is simply con-
nected at in¯nity if and only if L as well as each L¡ ¾ is simply connected In
certain cases we can give fairly precise descriptions of the fundamental group at
in¯nity In particular given any recursively presented group G there is a ¯nitely
generated Coxeter group W such that G < ¼e

1 W Proposition 4 5
Combining the results on homology at in¯nity with the results on ¼e

1 and using

the pro-Hurewicz Theorem or in our case simply applying the standard Hurewicz

Theorem to complements of certain compact sets we get the following result

Theorem Let W be a Coxeter group jW j the usual complex on which W acts
and L the link of any vertex in jW j Then W is m-connected at in¯nity if and
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only if L and all subcomplexes of the form L¡ ¾ are m-connected

As in the homological setting we extend these results to locally ¯nite buildings

in x5 where we show that the connectivity at in¯nity of a locally ¯nite building
is completely determined by the connectivity at in¯nity of its associated Cox-
eter group Thus even for buildings the topology at in¯nity is prescribed by the

punctured topology of a single ¯nite complex

2 Coxeter groups

Let I be a ¯nite index set A Coxeter matrix on I is a symmetric I £ I matrix
M mij with entries in N [ f1g such that mij 1 if i j and mij ¸ 2 if
i 6 j For each i 2 I introduce a symbol si and let S fsigi2I The Coxeter
group W associated to a Coxeter matrix M is the group with generating set S and
de¯ning relations:

sisj mij 1

for all i; j 2 I £ I where mij 6 1 The natural map S W is an injection and
we identify S with its image in W Further each element of S has order 2 in W
and for all i 6 j the order of the product sisj is mij for background on Coxeter
groups see [4] or [7] The pair W; S is the Coxeter system associated to M

Given a subset J ½ I let MJ denote the restriction of M to J £ J let SJ

fsjgj2J and let WJ ; SJ be the Coxeter system associated to MJ The natural
map WJ W takes WJ isomorphically onto the subgroup generated by SJ

A subset ¾ ½ I is spherical if W¾ is ¯nite We use Greek letters to represent
spherical subsets Let S denote the poset of all spherical subsets of I including

the empty set The subposet S>; of nonempty spherical subsets of I is a simplicial
complex called the nerve of W; S and is denoted L The vertex set of L is I and
a subset of I spans a simplex if and only if it is spherical Often we will ignore the

distinction between a simplex and its vertex set
Given w 2 W denote its word length with respect to the generating set S by

l w Let I¤ denote the free monoid on I Given a word i i1 ¢ ¢ ¢ in 2 I¤ set
w i si1 ¢ ¢ ¢ sin The word i is M -reduced if l w i n i e if the word w i is
a minimum length representative of the group element w i

For each w 2 W let ­ w be the subset of I consisting of the possible letters

with which an M -reduced word representing w can end This subset is always

spherical see [9]
Two elements are said to be adjacent if they are connected by an edge in the

Cayley graph of W; S More explicitly v and w are i-adjacent if w vsi A
gallery in W is a path in the Cayley graph so a gallery of length n is a sequence

w w0; : : : ; wn where wk is adjacent to wk¡1 for 1 · k · n If wk is ik-adjacent
to wk¡1 then the gallery is of type i i1 ¢ ¢ ¢ in Thus wn w0w i The gallery
is reduced if its type is M -reduced In other words if it is a path of minimum



750 M W Davis and J Meier CMH

length from w0 to wn

Given a subset J ½ I each left coset WJw contains a unique element of mini-
mum length Let BJ denote the set of such coset representatives Then

BJ fw 2 W j l sjw > l w for all j 2 Jg :

See Ex 3 page 37 in [4] If J is a single element then BJ is called a half space

and in general BJ is called a J -sector Let PJ : W BJ be the set theoretic
retraction that sends w to the shortest element in WJw

The sectors BJ can be thought of as being based at the identity element and
in general given a subset J ½ I and an element w 2 W the J-sector at w is the

subset B w;J de¯ned by B w;J wBJ The retraction onto B w;J is the map
P w;J : W B w;J de¯ned by P w;J Lw ± PJ ± Lw¡1 where Lw : W W
denotes left translation by w

A subset X ½ W is convex if given any two elements u; v 2 X and a reduced
gallery w w0; : : : ; wn from u to v i e w0 u and wn v we have that each
element wk of the sequence lies in X

Suppose that X is a subset of W and that w0 2 X is a basepoint Then
X; w0 is starlike with respect to w0 if given any x 2 X and any reduced gallery

w w0; : : : ; wn x the entire gallery lies in X

Example 2 1 There are a number of convex subsets of a Coxeter group W The

ones below are important in the discussions that follow

1 For any subset J ½ I WJ and BJ are convex subsets of W
2 If X is a convex subset of W then it is starlike with respect to each of its

elements

3 Suppose we order the elements of W W f1 w0; w1; w2; : : :g in such a
fashion that l wk+1 ¸ l wk for all k If we set Xn fw0; w1; w2; : : : ; wng
then Xn; 1 is starlike

4 The previous example generalizes to sectors BJ If we order the elements

of BJ BJ f1 w0; w1; w2; : : :g so that l wk+1 ¸ l wk for all k and if
we de¯ne Xn fw0; w1; w2; : : : ; wng then Xn; 1 is starlike

Item 3 is critical in our arguments and was used in [9] to show that the space

jW j constructed in the next section is contractible

If X; w0 is starlike then an element x 2 X ¡ fw0g is an extreme element
of X; w0 if no reduced gallery from w0 to x can be continued past x and still
remain in X In other words x is an extreme element if for any reduced gallery
w w0; : : : ; wn in X starting at w0 if wk x then k n

Given an arbitrary subset X ½ W and an element x 2 W de¯ne the inward
and outward subsets of I with respect to the pair X; x by

I# X; x fi 2 I j xsi 2 Xg
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and

I" X; x fi 2 I j xsi 2 Xg :

For any pair X; x I is the disjoint union of I" X; x and I# X;x and I" X; x
I#

·X ; x where ·X W ¡X is the complement in W of X

Lemma 2 2 Suppose X; w0 is a starlike subset of W and that x 2 X is an
extreme element Then I# X; x ­ w¡1

0 x

Proof The inclusion ­ w¡1
0 x ½ I# X; w0 follows from the fact that X; w0 is

starlike while the inclusion ­ w¡1
0 x ¾ I# X; w0 follows because x is an extreme

element ¤

Lemma 2 3 Suppose X; w0 is a starlike subset of W that x 2 X is an extreme

element and set ­ w¡1
0 x and ·X W ¡ X Let B B x; be the -

sector at x and let ½ p x; : W B be the retraction de¯ned above Then
½ ·X B ¡ fxg

Proof We have ½¡1 x xW Moreover xW ½ X and B ¡ fxg ½ ·X since

X; w0 is starlike The lemma follows ¤

3 The geometric realization jW j
As in the previous section M is a Coxeter matrix on I W is the associated Coxeter
group S is the poset of spherical subsets of I and L is the nerve of W; S We

brie°y recall the standard construction of the W -complex which we are denoting

jW j and then explore the topology of the complements of starlike sets in jW j
The geometric realization of the poset S is denoted K and is called the funda-

mental chamber The geometric realization of S>; is the barycentric subdivision
L0 of L Thus K is the cone on L0 the empty set provides the cone point

For each i 2 I let Ki denote the geometric realization of S¸fig We call Ki
the mirror of K associated to i For each ¾ 2 S>; let v¾ denote the barycenter
of ¾ in L0 Then Ki can be identi¯ed with the closed star of vfig in L0

For each nonempty subset J ½ I set

KJ [j2J
Kj :

Thus KI L0 For each ¾ 2 S set
L¡ ¾ KI¡¾ :

In other words L¡ ¾ is the complement of a regular neighborhood of ¾ in L0 It
is homotopy equivalent to L with the closed simplex ¾ removed and also to the

full subcomplex of L spanned by I ¡ ¾
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Set
WS a¾2S

W W¾ :

W S is the poset of spherical cosets with the partial order being given by inclusion
We denote its geometric realization by jW j The inclusion S W S de¯ned by
¾

7

W¾ induces an inclusion K jW j and we identify K with its image in jW j
Similarly the orbit projection W S ³ S de¯ned by wW¾ 7 ¾ induces a projection

jW j ³ K which factors through a homeomorphism W njW j K Thus K is a
fundamental domain for the W -action on jW j and the orbit projection jW j K
restricts to the identity on K Because of this we let j1j denote the canonical image

of K in jW j and let jwj wK ½ jW j In addition for any J ½ I jwj
J wKJ

The complex jW j is often referred to as \§" in the literature

For any subset X ½ W let

jX j [x2X
jxj :

Next we prove some lemmas necessary for calculating the algebraic topology at
in¯nity of Coxeter groups

Lemma 3 1 For any ¾ 2 S>; K deformation retracts onto K¾

Proof K¾ is a subcomplex of K and K¾ and K are both contractible ¤

Lemma 3 2 For any subset J ½ I the geometric realization jBJ¡1j deformation
retracts onto j1jI¡J ' KI¡J

Proof Let X1; 1 be the starlike subset de¯ned by

X1 f1g [ fsi j i 2 I ¡ Jg :

Extend this as in Example 2 1 4 to an increasing sequence of ¯nite starlike

subsets X1 ½ X2 ½ X3 ½ ¢ ¢ ¢ that exhaust BJ and so that each Xm ¡Xm¡1

fxmg is a single extreme element It follows that jxm+1j \ jXmj jxm+1j where

2 S is ­ xm+1 By Lemma 3 1 jXm+1j deformation retracts onto jXmj for any
m ¸ 1 hence jBJ j deformation retracts onto jX1j implying jBJ ¡ 1j deformation
retracts onto jX1 ¡ 1j which deformation retracts onto j1jI¡J

This argument even works when J ; in which case jBJ j jW j The

conclusion is that jW ¡ 1j retracts onto j1jI ' L ¤

In many of the arguments that follow we will begin by letting fXig be an
exhaustive sequence of starlike subsets of W as in Example 2 1 3 We then
consider the subcomplexes j ·X j ½ jW j It should be noted that while ·X W ¡X
it is not that case that j ·X j jW j¡ jX j as j ·X j \ jX j 6 ; However this is only a
minor technical annoyance since given any ¯nite starlike set X there is a compact
subset of jXj whose complement is homotopy equivalent to j ·X j
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Lemma 3 3 Let fXig be a nested exhaustive sequence of ¯nite starlike subsets
of W Then there is a nested exhaustive sequence of ¯nite compact subsets of jW j
such that the complements are homotopy equivalent to fj ·Xijg

Proof Let X be any subset of W and de¯ne i jX j to be the complement of an
open regular neighborhood j ·Xj e g i jX j could be the complement of the open
simplicial neighborhood of j ·X j in the barycentric subdivision of jW j We call i jXjthe closed interior of X and the complement of i jX j is homotopy equivalent to
j ·Xj ¤

Lemma 3 4 Suppose that X; w0 is a starlike subset of W that x is an extreme

element of X and that Y X ¡ x Set ­ w¡1
0 x Then

1 j·Y j is homotopy equivalent to j ·X j with jxjI¡ coned o® jxjI¡ ' L¡2 j ·Xj retracts onto jxjI¡
3 H¤ j ·Xj ' e

H¤ j·Y j © H¤ L¡Suppose further that W is in¯nite so that L is not a simplex Then
4 ¼0 j ·X j ¼0 j·Y j is surjective

5 If we choose basepoints fpig1·i·k in each path component of jxjI¡ then
the pi's lie in distinct components of j ·X j and ¼1 j ·Y j; p1 is a quotient of
the free product ¼1 j ·X j; p1 ¤ ¢ ¢ ¢ ¤ ¼1 j ·Xj; pk

Proof We have j ·Y j j ·X j[ jxj and j ·X j\ jxj jxjI¡ ' L¡ Since jxj ' K is
contractible statement 1 follows As in Lemma 2 3 let B be the -sector at x
and let ½ : W B be the set theoretic retraction Then ½ induces a topological
retraction denoted by the same letter ½ : jW j jBj of geometric realizations

By Lemma 2 3 ½ j ·Xj jB¡ xj and by Lemma 3 2 jB¡ xj deformation retracts

onto jxjI¡ This proves 2 To prove 3 consider the exact sequence of the pair
j ·Xj; jxjI¡ By excision H¤ j ·Xj; jxjI¡ ' H¤ j ·Y j; jxj Since jxj is contractible

H¤ j·Y j; jxj is the reduced homology of j·Y j So the exact sequence of the pair gives

H¤ L¡ H¤ j ·X j
e
H¤ j·Y j ;

and by statement 2 the ¯rst map is a split monomorphism Hence H¤ j ·X j '
e
H¤ j·Y j © H¤ L¡Assuming that W is in¯nite 4 follows from 1 and the fact that L ¡ is
nonempty

To establish 5 enumerate the path components of j ·X j as fj ·X jig so that
pi 2 j ·Xji Since j ·Y j is homotopy equivalent to j ·Xj with a copy of L¡ coned o®

it follows that
L¡

k

[i 1

L¡ i

for a set of disjoint subcomplexes L¡ i where L¡ i ½ j ·Xji Hence ¼1 j ·Y j
is the free product of the fundamental groups of the j ·X ji with the ¼1 L ¡ i
killed o® ¤
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As was mentioned in the introduction it follows immediately from 3 4 3 that
the induced inverse systems of homology groups are all semistable Statement 5
in the above lemma can be phrased as saying \Coxeter groups are ¼1-semistable
at each end " a result ¯rst proved by Mihalik using a very di®erent argument
Theorem 1 1 in [19]

4 The topology at in¯nity of Coxeter groups

Formulas for H lf
¤ jW j and H¤c jW j are given in [11] from which one can deduce

the formula given in Theorem 4 1 below However we can establish this formula
quite quickly using the results of x3 The proof of 4 1 then applies with only minor
modi¯cations to locally ¯nite buildings

Theorem 4 1 Let W be an in¯nite ¯nitely generated Coxeter group Then

e
He

¤ jW j Y
w2W e

H¤ L¡ ­ w :

Proof We can exhaust the group W by a sequence of ¯nite starlike subsets fXig
where as in Example 2 1 3 Xi+1 Xi [ fwi+1g By Lemma 3 3 there is an
associated ¯ltration by the closed interiors of the jXij such that the complements

are homotopy equivalent to j ·Xij The induced inverse system of homology groups

fH¤ j ·Xmj g is by Lemma 3 4 3 equivalent to

¢ ¢ ¢ Ã H¤ j ·Xmj Ã
e
H¤ j ·Xmj © H¤ L¡ Ã ¢ ¢ ¢

with the bond being given by killing the H¤ L¡ factor By induction the ith
term is ' e

H¤ L ©
e
H¤ L¡ 1 © ¢ ¢ ¢ © H¤ L¡ i and the formula follows ¤

Corollary 4 2 A ¯nitely generated Coxeter group W with associated nerve L
is m-acyclic at in¯nity if and only if for each ¾ 2 S L ¡ ¾ is m-acyclic In
particular W is 1-ended if and only if each L¡ ¾ is connected

Theorem 4 3 Let W be a Coxeter group with L the associated nerve Then W is
simply connected at in¯nity if and only if for each ¾ 2 S L¡¾ is simply connected

Proof Let f1g X0 ½ X1 ½ X2 ½ ¢ ¢ ¢ be an exhaustive sequence of ¯nite

starlike subsets of W as in Example 2 1 3 Filter jW j by the closed interi-
ors i jXnj By Lemma 3 4 1 the complement j ·Xmj is homotopy equivalent to
j ·Xm+1j with a copy of L ¡ coned o® for some 2 S Since L ¡ is sim-
ply connected ¼1 ·Xm ' ¼1 ·Xm+1 Thus ¼1 j ·Xmj ' ¼1 j·1j for all m but
j·1j jW ¡ 1j deformation retracts onto L by Lemma 3 2 and L is assumed to be

simply connected take ¾ ; It follows that all of the complements j ·Xmj are

simply connected
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Since jW j is 1-ended each L ¡ ¾ is path connected by Corollary 4 2

Because jW j is assumed to be simply connected at in¯nity and it can be ¯ltered
by ¯nite starlike subsets it follows from Lemma 3 4 5 that for any ¯nite starlike

subset X ½ W j ·X j must be simply connected Hence by Lemma 3 4 2 if x is
any extreme element then jxjI¡ ' L¡ is simply connected Since the value of

ranges over all ¾ 2 S L¡ ¾ is simply connected for any ¾ ¤

Remark 4 4 Let W be a Coxeter group with more than one end The argument
above shows that W is simply connected at each end if and only if for each ¾ 2 S
the components of L¡ ¾ are simply connected

We can now outline the proof of the theorem stated in the introduction One

could simply appeal to the pro-Hurewicz Theorem combining the statements of
Theorem 4 3 and Corollary 4 2 to produce a proof However one can also do this
directly using the standard Hurewicz theorem applied to complements of starlike

sets In particular if L and each L ¡ ¾ is m-acyclic and 1-connected it follows

by Corollary 4 2 and Theorem 4 3 that the complements of starlike subsets of

jW j are both m-acyclic and 1-connected hence they are m-connected Since jW j
can be exhausted by a sequence of ¯nite starlike subsets it follows that jW j is
m-connected at in¯nity Conversely if jW j is m-connected at in¯nity then as

in the proof of 4 3 for any ¯nite starlike set X; 1 j ·X j is m-connected Taking

X W¾ for ¾ 2 S we see by Lemmas 2 3 and 3 2 that L¡ ¾ is m-connected for
any ¾ 2 S

Our argument in this section leads to a reasonably clear description of the fun-
damental group at in¯nity for any 1-ended Coxeter group In studying the topology
at in¯nity of in¯nite groups one expects to ¯nd analogs of the Freudenthal-Hopf
Theorem: An in¯nite ¯nitely generated group has one two or in¯nitely many
ends For example Farrell showed that if G is an in¯nite ¯nitely presented group
containing an element of in¯nite order then H2 G; ZG is 0; Z or in¯nitely gen-
erated; if G is semistable at each end then H2 G;ZG is always free abelian see

[16]
In their work establishing a \Freudenthal-Hopf-Farrell Theorem" for the funda-

mental group at in¯nity Geoghegan and Mihalik point out that for in¯nite ¯nitely
presented semistable groups G the plausible trichotomy | ¼e

1 G is 0; Z or free

in a certain topological sense of in¯nite rank| doesn't hold Their example is a
right angled Coxeter group whose nerve L is a homology sphere Its fundamental
group at in¯nity then includes ¼1 L see 4 7 in [16] We quickly review right
angled Coxeter groups and then show in Proposition 4 5 that this situation can
be made fairly generic

Right angled Coxeter groups A Coxeter group W is right angled if each of
the o® diagonal entries in its Coxeter matrix M is either 2 or 1 If W is right
angled and ¾ 2 S then W¾ ' Z2

k where k is the number of vertices of ¾ For
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a right angled Coxeter group one can make jW j into a CAT 0 space by giving
each cell the metric structure of a unit Euclidean cube Further the nerve L is a

°ag complex simplicial complex such that any complete graph in L 1 is the 1-
skeleton of a simplex in L One can also run this construction backwards namely
given a °ag complex L with I L 0 one gets a right angled Coxeter matrix M
de¯ned by

mij 8><
>
:

1 if i j
2 if fi; jg spans an edge

1 otherwise

:

That this piecewise Euclidean metric on jW j is CAT 0 was proved by Gromov [17]
Showing that jW j admits a piecewise Euclidean CAT 0 metric when W is an

arbitrary Coxeter group is more subtle and was done by Moussong [20] Gromov
showed more generally that any simply connected cubical complex is CAT 0 if
and only if the link of each vertex is a °ag complex

Proposition 4 5 Given any recursively presented group G there is a 1-ended
Coxeter group W such that G < ¼e

1 W

Proof Since any recursively presented group embeds in a ¯nitely presented group
Higman's Embedding Theorem we can establish the proposition by showing

that given any ¯nitely presented group G we can construct a Coxeter group W
such that G < ¼e

1 W To do this take L to be a simplicial 4-manifold whose

fundamental group is G Since L is a manifold we can give L a su±ciently ¯ne

simplicial subdivision so that L is a °ag complex where the boundary of the ¯rst
simplicial neighborhood of any simplex ¾ 2 L is a sphere or a disk Let W be

the corresponding right angled Coxeter group and ¯lter jW j as in the proof of
Theorem 4 1 Since j·1j deformation retracts onto L ¼1 j·1j ' G Moreover
¼1 L ¡ ¾ ' G since the fundamental group of a 4-manifold is not changed by
removing an open ball It follows by van Kampen's Theorem that ¼1 j ·Xmj is
a free product of m copies of G with no amalgamation since the boundary of a
simplicial neighborhood of any simplex in L is a sphere or a disk ¤

Example 4 6 Consider in particular Thompson's group V the group of dyadic
homeomorphisms of the Cantor set This group is ¯nitely presented and contains

a copy of every ¯nite group see [8] ; hence by Proposition 4 5 there is a Coxeter
group W whose fundamental group at in¯nity contains V and therefore a copy of
every ¯nite group

Remark 4 7 The correspondence between the topology of links in jW j and the

end topology of jW j is rare There are various local-to-asymptotic arguments

see [5] [6] and the references cited there but the asymptotic-to-local direction
is much harder to establish in general Extending techniques developed in [1]
we can construct W -complexes EW that are highly connected at in¯nity but
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whose vertex links are not highly connected [13] Other examples illustrating the

di±culty in the asymptotic-to-local direction are included in [6]

5 Buildings

A \building" as originally de¯ned by Tits is a certain combinatorial object Asso-
ciated to any building there is a Coxeter matrix M and a Coxeter system W; S
In the classical examples of buildings W is either ¯nite and the building is \spher-
ical" or W is a Euclidean re°ection group and the building is \a±ne" The ge-
ometric realization of a spherical or irreducible a±ne building is de¯ned to be a
certain simplicial complex each top dimensional simplex being called a \chamber"
Embedded in this geometric realization are many copies of the Coxeter complex
of W; S ; each copy is an \apartment " and the building can be expressed as a
union of apartments In the case of spherical buildings each apartment is a sphere

and in the irreducible a±ne case each apartment is a copy of Euclidean space

See [7] for background on the classical buildings

Buildings associated to more general Coxeter groups arise in the theory of
Kac-Moody groups as well as in the theory of graph products of groups and are

most easily de¯ned in terms of chamber systems see [21] As shown in [10] in
the general setting it is more appropriate to de¯ne the geometric realization of
building in such a fashion that the geometric realization of each chamber is a copy
of K rather than a simplex and so that each apartment is isomorphic to jW j We

recall this construction below Because of the close connection between Coxeter
groups and buildings we can extend our results on the topology at in¯nity for
Coxeter groups to locally ¯nite buildings

A chamber system over a set I is a set C of chambers together with a family
of equivalence relations indexed by I Two chambers are i-adjacent if they are

related by the equivalence relation with index i A gallery in C is a ¯nite sequence

of chambers c c0; : : : ; cn such that ck is adjacent but not equal to ck¡1 If ck
is ik-adjacent to ck¡1 then the type of c is the word i i1 ¢ ¢ ¢ in 2 I¤ Given a
subset J ½ I the gallery c is a J-gallery if each ik is in J The chamber system
C is connected resp J-connected if any two elements of C can be connected by
a gallery resp a J -gallery A J -residue of C is a J-connected component and
J is the type of the residue

One passes from arbitrary chamber systems to buildings via Coxeter group
valued distance functions Let M be a Coxeter matrix with index set I and let
W; S be the associated Coxeter system Let C be a chamber system over the

same index set I A W -valued distance function on C is a function ± : C£C W
such that if i 2 I¤ is an M -reduced word and c; c0 2 C then there exists a gallery
of type i from c to c0 if and only if ± c; c0 w i Such a gallery is called reduced

De¯nition 5 1 A chamber system C is a building of type M if
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1 there exists a W -valued distance function on C and
2 for each c 2 C and i 2 I there exists at least one chamber

6

c that is
i-adjacent to c

As in x2 let S denote the poset of spherical subsets of I A residue is spherical
if it is of type ¾ for some ¾ 2 S A building C is locally ¯nite if each of its spherical
residues is ¯nite

An apartment in C is a subset A that is isometric with respect to the W -
valued distance function to W If A is an apartment in C and c0 2 A then there

is a retraction ½ : C; c0 A; c0 de¯ned by ¯rst mapping C; c0 to W; 1 via
c

7

± c0; c and then identifying W; 1 with A; c0
The de¯nitions in x2 can be generalized in a straightforward manner A convex

subset of chambers X ½ C is one that is closed under taking reduced galleries

between any pair of chambers in X A subset X ½ C is starlike with respect to
a base chamber c0 2 X if given c 2 X and any reduced gallery c c0; : : : ; cn
c we have ck 2 X for 0 · k · n Given that X; c0 is starlike a chamber
x 2 X ¡ fc0g is an extreme chamber if no reduced gallery from c0 to c can be

continued past c and still remain in X
Given a subset X ½ C and an element c 2 C let I# X; c denote the set

of all i 2 I such that there is a chamber in X that is i-adjacent to c De¯ne

I" X; c to be I#
·X ; c that is I" X; c consists of all i such that some chamber

in ·X is i-adjacent to x As in the Coxeter group case for any set of chambers X
and any c 2 C I I" X; c [ I# X; c However it will often be the case that
I" X; c \ I# X; c

6 ; as the following example indicates

Example 5 2 Let C consist of the edges in a bipartite uniformly trivalent tree

This is a building whose associated Coxeter group is the in¯nite dihedral group
D1; the bipartite structure indicates the two types of adjacencies Let X be the

convex set consisting of the darkened edges in Figure 1 and let c be the central
edge Then I" X; c f±; ²g and I# X; c f²g The di®erence between the

Coxeter case where these sets are disjoint and the buildings case occurs because

buildings are usually \thick " meaning that any chamber c has more than one

chamber i-adjacent to it

Given any two chambers c0 and c of C the subset of I consisting of all i such
that some reduced gallery from c0 to c has last adjacency type i is ­ ± c0; c
Using this fact we get the following analog of Lemma 2 2

Lemma 5 3 Suppose X; c0 is a starlike subset of a building C and that c 2 C
is an extreme chamber Then

1 I# X; c ­ ± c0; c
2 ¾ I ¡ I" X; c is a subset of ­ ± c0; c

In particular ¾ is a spherical subset of I
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Fig 1 The building of Example 5 2

Lemma 5 4 If X; c0 is a starlike subset of C then the image under the retrac-
tion to an apartment A containing c0 ½ X ; c0 is a starlike subset of A

The following lemma is established in the same manner as Lemma 2 3

Lemma 5 5 Suppose X; c0 is a starlike subset of C that c 2 X is an extreme

chamber that ¾ I ¡ I" X; c that A is an apartment containing c0 and c and
that B ½ A is the ¾-sector at c B is de¯ned as in x 2 Let ½C A : C A
be the retraction centered at c let ½A B : A B be the retraction de¯ned in
Lemma 2 3 and let % ½A B ± ½C A Then % ·X ½ B¡ c and every chamber in
B which is i-adjacent to c for some i 2 I" X; c is in the image

Proof Clearly %¡1 c is the ¾-residue containing c for ¾ I ¡ I" X; c By
de¯nition no element of ·X is i-adjacent to c for any i 2 ¾ and hence no element
of ·X is in %¡1 c i e % ·X ½ B¡ c Also by de¯nition for each i 2 I" X; c there

is at least one x 2 ·X that is i-adjacent to c and so % ·X contains each chamber of
B that is i-adjacent to c ¤

Given a building C let C be the poset of its spherical residues By de¯nition the

geometric realization jCj of C is the geometric realization of the poset C Note that
for each c 2 C fcg is a residue of type ; and the map type : C S restricts to an
isomorphism C¸fcg ' S It follows that the geometric realization of the subposet
C¸fcg

is a subcomplex of jC j isomorphic to K We denote this subcomplex by jcj
and call it a chamber Given i 2 I if ® is the fig-residue containing c then let jcji
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denote the geometric realization of C¸® so jcji ' Ki Similarly for any J ½ I
jcj

J is the union of the jcjj ; j 2 J so jcj
J ' KJ For any subset X of C put

jX j [c2X
jcj :

Example 5 6 The easiest non-classical class of examples to visualize this ge-
ometrization are the right angled buildings i e those buildings whose associated
Coxeter groups are right angled Coxeter groups Locally ¯nite right angled build-
ings can be constructed via graph products of ¯nite groups Given a ¯nite simpli-
cial graph G with groups Gv associated to the vertices of G the graph product GG
is the quotient of the free product of the vertex groups modulo relations implying

that [Gv; Gw] 1 when fv; wg is an edge of G
The chambers of the building associated to GG

correspond to the elements of
GG

and two chambers are v-adjacent if they di®er by right multiplication by an
element of Gv The chambers in the geometric realization are cones on LG

where

LG is the °ag complex induced by the graph G For example if G is a 4-cycle and
each Gv ' Z3 then the building jGG j is a CAT 0 square complex where each edge

is a face of three squares and the link of any vertex is a copy of the utilities graph
K3;3 This complex is simply the product of two trivalent trees More generally
if G is an n-cycle for n ¸ 4 then jGG j is a CAT 0 2-complex built out of regular
n-gons where the links of vertices are complete bipartite graphs If n ¸ 5 then

jGG j can be given a CAT ¡1 metric with each n-gon isometric to the hyperbolic
right-angled n-gon

The Coxeter group W associated to the building jGG j is the graph product of
Z2's based on the same simplicial graph G or equivalently it is the right angled
Coxeter group associated to the °ag complex LG

For details on this construction
see [10] and [18]

The proof of Lemma 3 4 can be copied with only minor revisions such as sub-
stituting Lemma 5 5 for Lemma 2 3 to give the following extension to buildings

Lemma 5 7 Suppose X; c0 is a starlike subset of a building C that c is an
extreme chamber of X and that Y X ¡ c Set ¾ I ¡ I" X; c Then

1 j ·Y j is homotopy equivalent to j ·X j with jcjI¡¾ coned o® jcjI¡¾ ' L¡ ¾

2 j ·Xj retracts onto jcjI¡¾

3 H¤ j ·Xj ' e
H¤ j·Y j © H¤ L¡ ¾

If we suppose further that the associated Coxeter group W is in¯nite then

4 ¼0 j ·X j ¼0 j·Y j is surjective

5 If we choose basepoints fpig1·i·k in each path component of jcjI¡¾ then
the pi's lie in distinct components of j ·X j and ¼1 j ·Y j; p1 is a quotient of
the free product ¼1 j ·X j; p1 ¤ ¢ ¢ ¢ ¤ ¼1 j ·Xj; pk
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As in the Coxeter case statements 3 and 5 of Lemma 5 7 imply that the

inverse systems of homology and homotopy groups are all semistable for locally
¯nite buildings

Let C be a locally ¯nite building As in the case of a Coxeter group we can
order its elements C fc0; c1; c2; : : :g so that l ± c0; ck+1 ¸ l ± c0; ck If
Xm fc0; c1; c2; : : : ; cmg then Xm; c0 is starlike and cm is an extreme chamber

Theorem 5 8 Order the elements of a locally ¯nite building C as above Let
¾ ck be the spherical subset de¯ned by ¾ ck I ¡ I" Xk ; ck Then

e
He

¤ jCj ' 1
Y
k 0 e

H¤ L¡ ¾ ck

and

e
H¤e jCj H¤+1

c jC j
1
M
k 0 e

H¤ L¡ ¾ ck :

Proof As in the case of Coxeter groups one can start with the ¯ltration by starlike

subsets fXig take the closed interiors of their geometric realizations and then
work with the complements fj ·Xijg An argument as in Lemma 3 2 shows that
j ·X0j deformation retracts onto jc0jI ' L hence

e
H¤ j ·X0j ' e

H¤ L The homology
formula follows since Lemma 5 7 3 implies

e
H¤ j ·Xmj ' e

H¤ j ·Xm¡1j ©
e
H¤ L¡ ¾ cm

and the induced morphism
e
H¤ j ·Xm¡1j Ã

e
H¤ j ·Xmj is the surjection given by

killing the

e
H¤ L¡ ¾ cm factor

The proof of the cohomology formula is similar; since we did not discuss coho-
mology in the Coxeter case we include the details here First one uses the fact that

e
H¤ j ·X0j ' e

H¤ L Then just as in the homology case one uses Lemma 5 7 1

to note that j ·Xk¡1j is homotopy equivalent to j ·Xk j with a copy of jckjI¡¾ ck 'L¡ ¾ ck coned o® By excision H¤ j ·Xk j; jckjI¡¾ ck ' H¤ j ·Xk¡1j; jckj which
is just

e
H¤ j ·Xk¡1j The cohomology sequence of the pair j ·Xkj; jck jI¡¾ ck along

with Lemma 5 7 2 implies that

e
H¤ j ·Xkj ' e

H¤ j ·Xk¡1j ©
e
H¤ L¡ ¾ ck

and the formula follows ¤

We note that there is a striking similarity between our formulas and the for-
mulas found for l2-cohomology of certain thick buildings in [14]

Remark 5 9 The main distinction between Lemmas 5 7 and 3 4 and Theorems 4 1
and 5 8 is that while ¾ ½ ­ ± c0; c in general ¾

6 ­ ± c0; c This situation
doesn't occur in the geometric realization jW j of a Coxeter group W As in Exam-
ple 5 2 this situation will occur in any building which is not a single apartment
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For example if we take c to be the central edge of the subset X in Example 5 2
and c0 to be the other edge of X then because I" X; c f±; ²g ¾ c ; In
particular it should be noted that while

e
H¤ L occurs only once in the formula for

e
He

¤ jW j it occurs in¯nitely often in the formula for
e
He

¤ jCj where C is a thick
building

Remark 5 10 Notice that the formula for
e
He

¤ jW j in Theorem 4 1 depends only
on the choice of basepoint which we chose to be 1 In Theorem 5 8 ¾ ck depends

not only on the basepoint but also on the ordering Thus the contribution of ck
to the formula depends on the ordering of the chambers fc0; c1; c2; : : :g

Let C be a locally ¯nite building with associated Coxeter group W whose

nerve is L Since the formulas for
e
He

¤ jW j and
e
He

¤ jC j are products with factors

e
H¤ L¡ ¾ the connectivity at in¯nity of both jW j and jCj is determined by the

connectivity of the complexes L¡ ¾

Corollary 5 11 Let jCj be geometric realization of a locally ¯nite building with
associated Coxeter group W whose nerve is L Then the following are equivalent:

1 jCj is m-acyclic at in¯nity
2 jW j is m-acyclic at in¯nity
3 L¡ ¾ is m-acyclic for each ¾ 2 S

In particular jC j is 1-ended if and only if L¡ ¾ is connected for each ¾ 2 S

The proof of Theorem 4 3 can be applied with only minor modi¯cations to give

Theorem 5 12 Let jC j be geometric realization of a locally ¯nite building with
associated Coxeter group W whose nerve is L Then the following are equivalent:

1 jC j is simply connected at in¯nity
2 jW j is simply connected at in¯nity
3 L¡ ¾ is simply connected for each ¾ 2 S

Combining 5 11 and 5 12 we deduce

Theorem 5 13 Let jC j be geometric realization of a locally ¯nite building with
associated Coxeter group W whose nerve is L Then the following are equivalent:

1 jC j is m-connected at in¯nity
2 jW j is m-connected at in¯nity
3 L¡ ¾ is m-connected for each ¾ 2 S

One gets a concrete class of examples by considering right angled buildings

corresponding to graph products of groups Example 5 6
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Corollary 5 14 Let GG
be a graph product of ¯nite groups based on a ¯nite

simplicial graph G let W be the associated right angled Coxeter group with nerve

LG
Then the graph product GG is m-connected resp m-acyclic at in¯nity if and

only if each LG ¡ ¾ is m-connected resp m-acyclic for ¾ 2 S

6 Punctured links duality and the Cohen{Macaulay property
If G is a group of type F P then G is an n-dimensional duality group if H¤ G; ZG
is torsion free and concentrated in dimension n The use of the term \duality"
stems from the fact that for such groups there is a natural isomorphism between the

homology and cohomology of G of the form H i G; M ' Hn¡i G; Hn G; ZG ­M
for all i and G-modules M

Duality properties of groups are often closely connected to the Cohen{Macaulay
property for simplicial complexes For example in [5] it is shown that a right
angled Artin group is a duality group if and only if its de¯ning complex is Cohen{
Macaulay In this section we isolate our punctured link condition and consider it
as a property of independent interest and explore its connection with the Cohen{
Macaulay property In particular we give necessary and su±cient conditions for
Coxeter groups and graph products of ¯nite groups to be virtual duality groups

in terms of punctured link conditions

Given a simplicial complex L let S L denote the poset of simplices of L to-
gether with the empty set As in x3 for each ¾ 2 S L let L ¡ ¾ denote the

complement of the ¯rst cellular neighborhood of ¾ in the barycentric subdivision
of L

De¯nition 6 1 A ¯nite simplicial complex L has punctured homology concen-
trated in dimension n if for each ¾ 2 S L

e
Hi L¡ ¾ is torsion free and concen-

trated in dimension n Equivalently using the Universal Coe±cient Theorems

one has

e
H i L¡ ¾ is torsion free and concentrated in dimension n We write \L

is PHn" as a shorthand for this condition

The following theorem is an immediate corollary of the cohomology formula in
Theorem 5 8

Theorem 6 2 Let C be a locally ¯nite building and let L be the nerve of the

associated Coxeter system W; S Then H¤c jC j is torsion free and concentrated

in dimension n + 1 if and only if L is PHn

If G acts freely and cocompactly on a locally ¯nite contractible complex E
then Hn G; ZG ' Hn

c E Thus one can use Theorem 6 2 to establish duality
properties of groups acting on locally ¯nite buildings

Theorem 6 3 Let C be a locally ¯nite building with associated Coxeter group W
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whose nerve is L and let G be a group acting freely and cocompactly on C Then
the following are equivalent

1 G is an n-dimensional duality group
2 W is an n-dimensional virtual duality group
3 L is PHn¡1

Many of the early examples of duality groups arose from actions on a±ne

buildings i e buildings whose associated Coxeter group W can be viewed as a
cocompact group of re°ections acting on Euclidean space Rn In this case the

nerve L is an n ¡ 1 -sphere which is PHn¡1 In addition to the classical cases

Theorem 6 3 also applies to graph products of ¯nite groups with their associated
right angled buildings

Corollary 6 4 A graph product of ¯nite groups based on a simplicial graph G is
a virtual duality group of dimension n if and only if the induced °ag complex LG
is PHn¡1

Given a simplicial complex L for each ¾ 2 S L let Lk ¾ denote the link of ¾

Lk ; L

De¯nition 6 5 An n-dimensional simplicial complex L is CM+ read \Cohen{
Macaulay plus" if for each ¾ 2 S L the following two conditions hold:

1
e
Hi Lk ¾ 0 for all i 6 n ¡ dim ¾ ¡ 1 and is torsion free for i
n¡ dim ¾ ¡ 1;

2

e
Hi L Hi L; L¡ ¾ is onto for all i

By convention dim ; ¡1 and
e
H¡1 ; Z

Condition 1 is the usual de¯nition of a Cohen{Macaulay complex The plus

condition condition 2 is inspired by [12]

Remark 6 6 A ¯nite tree is PH0 and it is a 1-dimensional Cohen{Macaulay
complex but it is not CM+ A connected graph is CM+ if and only if it is not a
simplex and if it has no cut vertex or cut edge

In [12] it is shown that if the nerve L of a Coxeter group W is CM+ then
W is a virtual duality group Note: The plus condition is misstated in [12]
Lemma 6 7 below can therefore be interpreted as showing that this implication is
subsumed by 3 2 in Theorem 6 3

Lemma 6 7 If L is CM+ then it is PHdim L

Proof Let n dim L The Cohen{Macaulay condition implies that
e
Hi L is

concentrated in dimension n; it follows from the plus condition that
e
Hi L¡ ¾ is
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also concentrated in dimension n ¤

The next lemma essentially says that PHn is a hereditary condition; when the

punctured homology occurs in top dimension then the PHn condition is inherited
by links similar to the fact that the Cohen{Macaulay property is inherited by links

Lemma 6 8 Let dim L n If L is PHn then Lk ¾ is PHn¡dim ¾ ¡1 for all
¾ 2 S L

Proof It su±ces to show that PHn¡1 holds for each vertex v Let ¿ be a simplex
in the link Lk v and ¾ ¿ ¤ v the corresponding simplex in L We also regard ¿

as a simplex in L By excision Hi L¡ ¿; L¡ ¾ ' Hi C Lk v ¡ ¿ ; Lk v ¡ ¿

so the sequence of the pair L¡ ¿; L¡ ¾ gives:

¢ ¢ ¢ Hi L¡ ¾ Hi L¡ ¿ Hi C Lk v ¡ ¿ ; Lk v ¡ ¿ ¢ ¢ ¢

where C Lk v ¡¿ denotes the cone on Lk v ¡¿ Since the homology of L¡¾ and
L¡ ¿ is concentrated in dimension n it follows that Hi C Lk v ¡ ¿ ;Lk v ¡ ¿

is concentrated in dimension n Note: we have used the fact that dim L n to
get that Hn+1 L¡ ¿; L¡ ¾ 0 Since

Hi C Lk v ¡ ¿ ; Lk v ¡ ¿ ' e
Hi¡1 Lk v ¡ ¿ ;

it follows that H¤ Lk v ¡¿ is concentrated in dimension n¡1 A similar compu-
tation in cohomology shows that H¤ Lk v ¡¿ is concentrated in dimension n¡1

It then follows from the Universal Coe±cient Theorem that Hn¡1 Lk v ¡ ¿ is
torsion free ¤

Corollary 6 9 Suppose dim L n Then L is CM+ if and only if it is PHn

In particular a simplicial complex whose punctured homology is concentrated
in top dimension is a Cohen{Macaulay complex
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