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Pincement de polynomes

Peter Haissinsky

Abstract. Let fo : C — C be a semi-hyperbolic polynomial in the sense of Carleson—Jones—
Yoccoz with an attracting point. The goal of this paper is to show that one can define a semi-
hyperbolic deformation (ft);>0 such that the attracting cycle becomes parabolic for the limit
polynomial foo and that fy and Jfoo are semi-conjugate. This deformation is defined by pinching
curves in appropriate quotient spaces.

Mathematics Subject Classification (2000). Primaire 37F30; Secondaire 30C62.

Mots clés. Ensemble de Julia, déformation quasiconforme, point parabolique, polynéme semi-
hyperbolique.

Soient f : C — C un polynéme de degré d > 2 et J; son ensemble de Julia,
lieu des points pour lesquels la suite des itérés (f"),>; n’est normale dans au-
cun voisinage. Supposons que f est semi-hyperbolique [4], 7.e. f n’a aucun point
parabolique et tout point critique de I’ensemble de Julia est non récurrent. On
suppose aussi que f admet un cycle attractif «. On se propose de définir une
déformation par pincement de ce polynéme afin de rendre a parabolique (voir
aussi [12, 13, 14, 18, 5, 19]). Cette déformation admet une limite fo, polynomiale
qui est semi-conjuguée a f. Ce type de déformation a tout d’abord été introduit par
P. Makienko pour montrer, par I’absurde, que des composantes stables de fractions
rationnelles hyperboliques de degré fixé n’étaient pas relativement compactes.

A chaque point attractif, répulsif ou parabolique, on associe une surface de Rie-
mann : soient f une fraction rationnelle de degré d > 2, et o un point k-périodique ;
on note p = (f*) () son multiplicateur.

> Si0 < |p| < 1, alors « est attractif : pour tout voisinage assez petit U de «,
FHU) cc U, et T, = (U\ {a})/(f*) est un tore.

> Si |p| > 1, alors a est répulsif : pour tout voisinage assez petit U de «,
UcCC f¥U), et To = (U\ {a})/(fF) est un tore.

> Si p = €27/ alors o est parabolique; il existe un multiple de ¢ secteurs
U disjoints issus de a, tel que tout point de U soit attiré par «, et U/(f*) est un
cylindre isomorphe & C/Z. De méme avec f—F.

La déformation par pincement consiste 4 déformer un tore attractif et un tore
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répulsif pour qu’ils deviennent des cylindres C/Z. Pour faire cela, on pince une
courbe fermée simple non homotopiquement triviale sur les tores. En choisissant
convenablement une normalisation, on montre que ces points sont attirés 1’'un vers
I’autre et on finit par obtenir un point parabolique.

Le résultat principal de cet article peut s’énoncer comme suit (Théoreme 4.1
donne un énoncé plus précis) :

Théoréme. Soit f un polynéme semi-hyperbolique ayant un point fixe attractif
a € C. On suppose qu’il existe des arcsyy, - - -, contenus dans le bassin immédiat
du point o tels que f(Vi) = Yit1modq ; ces arcs sont disjoints des orbites critiques ;
ils relient o a un cycle q-répulsif et Uaction de f sur ces arcs a pour nombre de
rotation p/q.

Alors il existe une application continue ¢ : C — C de degré 1 qui semi-conjugue
f a un polynome g de méme degré tels que :

(a) les fibres de ¢ sont les réunions connezes des préimages de Uvy; et sinon
des points ;

(b) limage de Uv; est un point parabolique de g.

Dans la suite, il sera commode de considérer un polynéme avec un ensemble
de Julia connexe.

Le plan des prochaines sections est le suivant :

— on définit la déformation par pincement localement et on montre que notre
schéma fonctionne sur un modele;

— on définit la déformation par pincement dans un cadre général en s’inspirant
de celle de P. Makienko et en utilisant la construction d’étoiles dans un bassin
attractif due & C. Petersen [17];

— on montre que pour les polynémes semi-hyperboliques, les limites possibles
du pincement sont bien contrélées par le polynéome de départ; on utilise a cet
effet d’'une part, que les bords des composantes connexes bornées de I’ensemble
de Fatou sont des quasicercles, et d’autre part, un modele di a C.T. McMullen
qui estime le module de quadrilateéres indépendamment de certaines déformations
quasiconformes. On traite d’abord le cas des polynoémes a allure monomiale. Nous
avons choisi cette progression afin de traiter les difficultés techniques une a une.

Notes. — Cet article est une extension du Chap. 7 de ma these de doctorat [9].
— [6] et [15] contiennent les démonstrations des résultats classiques de dyna-
mique holomorphe utilisés ici.
— D’autre part, nous aurons recours a la notion de modules d’anneaux et de
longueur extrémale, ainsi que de la théorie des applications quasiconformes telles
qu’elles sont exposées e.g. dans [1, 2, 20].

Remerciements. Ce travail n’a pu étre effectué que grace aux nombreuses dis-
cussions que j’ai eu le plaisir d’avoir avec J. H. Hubbard et K. Pilgrim dans un
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premier temps, et A. Douady et M. Flexor ensuite. C. Petersen et M. Shishikura,
qui étaient les rapporteurs de ma these, m’ont fait des commentaires avisés qui ont
grandement clarifié I’exposition : je leur en suis trés reconnaissant. Je tiens aussi a
remercier Tan Lei pour avoir relu tres soigneusement des parties du manuscrit et
m’avoir signalé des erreurs. Enfin, je remercie le rapporteur pour ses suggestions
et ses remarques.

1. Pincement d’une paire attractif/répulsif

Dans ce paragraphe, on montre comment, a partir de deux points fixes attractif
et répulsif respectivement, on peut définir une déformation a 1’aide de formes de
Beltrami qui, a la limite, donne un germe parabolique.

On définit un modele de la maniére suivante.

Notons les bandes

B={z€eC, |Imz| <7}

By = {2 €C, lmz| <w/2};

By ={z€C, n/2 <Imz < n};
B_={z€C, —n <Imz < —7/2}.

On définit alors I’homéomorphisme

$: B —-C
r+iy€ By —x+ iy
z+iy e By —ax+i(n/24+tg(y —7/2))
zt+iyeB_ —ati(—nw/2+tg(y+7/2)).

Cette application est localement quasiconforme et

{ o (z +iy) = —tg*(y F7/2)/ (2 + tg’(y F 7/2))
Ko(z +iy) = 1+ tg*(y F 7/2)

sur By. Soit 0 > 0; on note 7: 2z +— z + 0.
On consideére alors exp : B — C et on conjugue 7 par exp afin d’obtenir
fw) = e“w (modele du pincement). Notons v = exp(R + in) =R _.

Définition du pincement. On définit d’abord sur B la famille de formes de
Beltrami (tronquées) (v4)¢>0 suivante (voir Fig. 1):

—si [Imz| < 2arctgt, on pose v (z) = pa(z);

—siw > [Imz| > 2arctgt, on pose vi(z) = pe(2iarctgt).

De fagcon équivalente, on définit un champ d’ellipses, constant sur les horizon-
tales, tel que le grand axe de chaque ellipse soit horizontal, le petit vertical, et leur
rapport soit Ko(2) sur {|Imz| < 2arctgt} et sinon, constant & Kg(2iarctgt).

Cette famille est invariante par translations réelles, et définit un chemin dans

I’espace de Teichmiiller réduit de anneau A = B/7 : soit &, : A — A, = O,(A)
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une famille continue de solutions de ’équation de Beltrami. Le module de A; tend
vers l'infini avec ¢, et A; tend vers C/oZ car une solution de v; est
P, : B—C
2z B(2) si [Imz| < 2arctgt,
z — Rez + ®(2iarctgt)
+ 1. Kg(2iarctgt).(|Imz| — 2arctgt)) si m > |[Imz| > 2arctgt,

et ces solutions commutent avec 7.

{
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Figure 1. Modele du pincement.

On définit (p)s>0 en transportant par exp la famille (24)¢>0. Soit ¢ la solution
de I’équation de Beltrami de u: qui fixe le triplet (o0, 1, €7) (théoréme d’intégration
des formes de Beltrami, [1]). Le conjugué f; de f par ¢, est aussi une homographie.
La famille (f;, ¢¢)s>0 représente un pincement du germe f.

Convergence du pincement. Le but de cette fin de paragraphe est de montrer
la proposition suivante :

Proposition 1.1. Les familles (ft)i>0 et (¢4)i>0 admettent des limites fo et Poo
pour la convergence uniforme dans la métrique sphérique, qui vérifient les pro-
priétés sutvantes :

(a) foo(z) =2+ €7 — 1 est une translation,

(b) ¢oo est localement quasiconforme de C\ v sur C, et ¢poo(y) = {00},

(C) fooo¢00 - ¢ooof
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On utilise le lemme suivant.
Lemme 1.2. Notons @ = [—1,1] x [-7/4,7/4] et considérons A= B\ Q. On a

lim mod,, A = .

t—o0

Démonstration du Lemme 1.2. En normalisant les ®,; par des homothéties h,
centrées a l'origine pour que h; o &, : B — B, il est clair que le diametre de
Qy = hy 0 ,(Q) tend vers zéro avec ¢, donc mod $,(A) — oo. O

Démonstration de la Prop. 1.1. Comme (¢;); est une famille localement uniformé-
ment quasiconforme et normalisée sur C\~, on peut extraire une suite t,, — oo telle
que (¢s, ) converge uniformément sur tout compact de C\  vers une application
injective localement quasiconforme ¢, : C\ v — C, car oo € 7 et ¢;(c0) = oo
(compacité des applications quasiconformes normalisées a distorsion uniformément
bornée, voir [1]).

D’apres le Lemme 1.2, on en déduit que ¢, est surjective sur C, car &, o
exp o, 11 ¢ (C\ (exp(Q)U~)) — B;(A) est conforme. En fait, la convergence est
uniforme sur C car ¢;(v) tend vers oo d’apres le Lemme 1.2 et le fait que ¢o, est
non constante. Donc (b) est satisfait.

On pose foo = ¢hoo © f 0 ¢t : C — C qui est bien définie, conforme et sans
point fixe; donc fo est une translation et la normalisation implique que foo(z) =
z+ €7 — 1. Par suite, (a) et (c) en découlent.

On a donc montré que de toute suite ¢,, — oo, on peut extraire une sous-suite
(ty,,) telle que :

- Jt,, a pour limite f;

— ¢tnk a une limite ¢ ;

— et Goo 0 f = foo © P .

Supposons que 'on ait deux limites (foo, Poo) €t (foo, @). Alors Papplication
qgo ¢zl : C — C est bien définie : c’est un automorphisme du plan qui fixe deux
points : du coup, on a unicité de la limite. |

2. Définition générale du pincement

Soit f : € — C une fraction rationnelle de degré d > 2. On suppose qu’il existe
un point périodique o attractif non critique. On se propose dans ce paragraphe
de définir une déformation par pincement f liée au point «. Grosso modo, le pin-
cement consiste a produire une collision entre points périodiques afin d’obtenir
un point parabolique (voir Fig. 2). Apres avoir donné la définition de la conver-
gence d’un pincement, on montrera un résultat partiel de convergence (Prop. 2.2).
Commencons par un modele.
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Figure 2. Un pincement ot f: U’ — U est conforme, et « et 3 sont des points fixes
attractif et répulsif respectivement.

Modzele floral p/q. Considérons notre translation 7 : B — B. On conjugue 7 par

62

e +1

Z = w =

afin d’obtenir une application de Moebius w — F(w) qui fixe 0 et 1. Pour tout
g > 1 (entier) et tout (p/q) € Q/Z, p A ¢ = 1, on peut relever de maniere unique
F au voisinage de D par I'application ¢ — w = (7 en F,/q de maniere & ce que
F, (1) = €¥m®/9), L'origine a pour multiplicateur e?/7 - ¢27(P/9) et 1 devient un
cycle g-périodique de nombre de rotation p/q et de multiplicateur e~27. Quitte &
renverser les roles de 00 C B, l'origine est attractive ou répulsive.

On peut alors définir la déformation par pincement de [}/, en transportant la
famille v; du premier paragraphe. L’analogue de la Proposition 1.1 est vraie, en
normalisant les solutions pour qu’elles fixent I'origine et qu’elles soient tangentes
a l'identité a I'infini.

Etoiles d’un bassin attractif. Soit € un domaine attractif d’une fraction ra-
tionnelle f. Nous donnons ici une description plutét sommaire de la construction
de ces étoiles. Pour des justifications, nous invitons le lecteur a se reporter a [17],
§3.

Soit k : & — C l'application linéarisante de Koenigs qui semi-conjugue f a
z +— Az. Les points critiques de x sont les points précritiques de f. Si L est
une détermination de log X, ’application exp est un revétement de C* et notre
application linéaire se reléeve en la translation de vecteur L. Les points critiques
de k différents de 'origine se relevent en un demi-réseau

A ={-—nL+ 2imm +wj, (n,m)e NxZ}
ol les w; (en nombre fini) sont des logarithmes des points critiques de f qui ont

une orbite infinie (dans Q).

Considérons les droites passant par A et paralleles & q.L — 2ipw. Par exp, elles
sont transformées en kq (< o0) spirales ou droites disjointes joignant 0 & infini et
formant k cycles par la multiplication par A. Ces courbes contiennent donc I'image
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de tous les points précritiques de f qui ne tombent pas sur le point attractif, ainsi
que leurs orbites. Notons U le complémentaire de ces courbes dans C* et U des
représentants dans le plan (pa,r exp). Ceux-ci sont des bandes invariantes par la
translation de vecteur gL—2ipm. On considére enfin 7; les droites “centrales” de Uj.
Posons 4; = exp ¥;. Ces kq courbes se regroupent en k cycles. Par construction,
ces cycles ont pour nombre de rotation p/q, i.e. 'action de z — \-z sur ces courbes
est une rotation d’angle 2iw(p/q).

Nous pouvons enfin définir I’étoile associée a (f, L). On note U Jf I'unique com-

posante connexe de n’l(ﬁj) qui contient le point attractif dans sa fermeture, et
'yjf les courbes leur correspondant.

Définitions. La (L, p/q) étoile £, /4, associée a f est P'intérieur de

U 7.
0<j<kq

L’ouvert Ujf est la j-éme bande et la courbe 'yjf sa wertébre. On notera enfin la
réunion des fermetures des vertebres ~.

Par construction, cette étoile est un voisinage du point v et f : £ — &£ est
univalente ; les verteébres sont disjointes des orbites critiques.

Par extension, on appellera aussi étoile tout cycle de U, jf extrait.

On définit le bout d’une vertébre par Uj \ ©. En ce qui nous concerne, on a le
lemme suivant :

Lemme 2.1. (C. Petersen). Si f9 est définie et holomorphe au voisinage d'un
point “z;” de chaque bout de l’étoile alors ces x; sont ces bouts, et forment des
cycles. La période de ces points est ou bien 1, ou bien q.

En particulier, si [ est une fraction rationnelle alors il s’agit de cycles g-
périodiques de nombre de rotation p/q.

Remarque. Si Q est simplement connexe, notons ¢ : @ — D sa représentation
conforme qui envoie le point attractif o (de multiplicateur A) sur lorigine et B le
produit de Blaschke conjugué & f. Si 3 € St est un point g-périodique de B, on dit
qu'il a pour nombre de rotation de Poincaré p/q si la restriction de B a ce cycle
peut étre prolongée en un homéomorphisme du cercle de nombre de rotation p/q
(ceci n’est pas toujours le cas : voir [3]). Pour chaque nombre de rotation rationnel,
il existe au moins un cycle répulsif ayant ce nombre de rotation (voir entre autres
[3, 8]). En degré deux, il n’existe qu’un seul cycle sur le cercle unité de nombre
de rotation de Poincaré donné; en revanche, des le degré trois, L. Goldberg [8]
montre qu’il y en a toujours plus. Il n’est de plus pas clair que ’on puisse définir
une étoile par cycle accessible.

Définition d’un pincement de f. Sans perte de généralité, supposons que «
est un point fixe attractif.
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Ap/q fixé, on considere une étoile & = &, /4 ¢. D’apres le Lemme 2.1, & chaque
cycle est associé un point 3 au bout, ¢g-répulsif ou parabolique au bord du bassin
immédiat de «. Il est de nombre de rotation p/q.

Par la suite, on suppose que 3 est répulsif.

Au niveau des tores quotients de ces deux cycles, la projection 7 dans le tore
T (associé & f2) de  est fermée, simple, située dans la trace de la composante de
a, et disjointe des grandes orbites critiques. Sur le tore T,, (associé & f), 7 devient
une courbe simple de nombre de rotation p/q, correspondant & ’ordre cyclique de
I’orbite de 3. Par suite, T,, \ 7 est un anneau.

On considéere un revétement universel = : B — T, \ 7 tel que 'équateur de
I’anneau se releve en R, et on pose @, = m.v;. Cette famille est ensuite relevée
dans le plan dynamique, puis prolongée par zéro sur le reste afin qu’elle soit f-
invariante sur toute la sphere.

Soient ¢, les solutions de 1’équation de Beltrami ayant une normalisation fixée,
et f; les conjuguées de f par ¢: : ce sont des fractions rationnelles. La famille
(ftso1)i>0 ainsi définie représente un pincement de f.

Remarque. Si 3 est parabolique, on construit un pincement en remplacgant le
tore répulsif par des cylindres C/Z associés aux pétales répulsifs qui intersectent
Iétoile.

Définitions. (i) On appelle support du pincement S = U,>0f (7).

(ii) On dit qu’un pincement (f:, @) est convergent si :

(a) (fs,:) convergent uniformément sur C vers (foo, Poo)

(b) chaque composante connexe du support du pincement est une fibre de o
dont I'image est un point préparabolique, et les autres fibres sont des points.

En particulier, si le pincement est convergent, alors ¢u, 0 f = foo © oo, Jp. =
Yoo(Jf) €t oo () est un point parabolique de bassin 'image de celui du point «.

Pincement dans un bassin. Soit f une fraction rationnelle ayant un point fixe
attractif o de bassin immédiat Q ; on considere le pincement (f, ¢ )i>0 associé a
une étoile &y, /4. Par construction, la restriction f : Q\ S — Q\ S est propre.
On considere Q) une composante connexe de \ S qui contient o dans son bord.
L’application de premier retour f? : Q — O est propre de degré d > 2. En effet,
si on note V' l'intérieur de Up<j<q fj(fl), alors f : V — V serait une isométrie
pour la métrique de Poincaré, mais f(a) = a et |f/(a)| < 1; done on a un point
critique de f qui ne peut étre sur S par construction. Soit donc ¢ un point critique
de f4 QO On note 7' la trace dans € du bord d’un disque linéarisable du point «;

par suite, {f7*(T)},>0 détermine le bout premier associé a a dans Q (voir [2]).

Sans hypothese de convergence du pincement, on a :
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Proposition 2.2. (Pincement dans un bassin). Avec les notations précédentes, si
on normalise ¢ par pi(c, fi(c), o) = (¢, fi(c), &) alors, pour toute suite t, — o0,
et quitte a en ertraire une sous-suite,

(i) ¢4, ¢ O-C convergent uniformément sur les compacts vers un homéomor-
phisme localement quasiconforme oo 1 £ — Qog = LPoo(Q) ;

(ii) les applications ftqn convergent uniformément sur les compacts de Qoo vers
une application g : Qoo — Qoo propre de degré d ;

(iii) Uapplication g est la restriction d’une fraction rationnelle et Qo est
une composante de Fatou parabolique de g dont le point est déterminé par
{oe (f1" (1)) }n-

La paire limite (oo, g) est unique a application conforme prés.

Remarque. La normalisation seule ne permet pas a priori de montrer la conver-
gence de tout le chemin, ni de montrer que le point parabolique est «. Mais si
a € Jf, alors la Proposition 2.2 montre que le point parabolique est bien a.

Démonstration. Soit (t,) une suite qui tend vers I'infini. Comme les ¢, : Q — C
sont localement uniformément quasiconformes et normalisés, on peut extraire par
un procédé diagonale une sous-suite (¢, ) telle que (@tnk) converge uniformément

sur les compacts de ) vers un homéomorphisme ¢, : Q — Q. Par suite, ( ftan)
converge vers une application g : Qo — Quo.

Soit 5 : Q) > C I’application linéarisante de «. Il existe une constante a € C*
et une détermination du logarithme telles que alog n(@) = B, et il existe o > 0 tel
que alog k(f1(z)) = alog k(2) + o. L’application h = ®,, calogrop ! : Qu — C
est holomorphe et surjective par définition, et h o g(z) = h(z) + 0. Ceci montre
I’existence de coordonnées de Fatou dans Q.., done €, est parabolique et 9Q., C
Jg. Si ce n’était pas le cas, h ne serait pas surjective sur tout C, car g est propre
sur Q.

Les limites des ¢, sont localement quasiconformes et satisfont la méme équation
de Beltrami, d’ou 1'unicité. (Il

3. Cas a allure monomiale

On considére maintenant un polynome f : z s 2% 4+ ¢(\), 0 < [A| < 1, ot1 ¢(\)
est une constante telle que f admette un point fixe de multiplicateur A.

L’ensemble de Julia de f est un quasicercle, et il existe une application quasi-
conforme qui conjugue f & z — 2¢ au voisinage de leurs ensembles de Julia, 4.e.
Jy est transformé en st

Soit & = &r, /4 une étoile qui joint a & un cycle 3 g-répulsif et de nombre
de rotation p/q. On considére le pincement (f:, ;) associé & cette étoile que ’on
normalise par les conditions suivantes : ¢;(0) = 0 et ¢,(2) = z+ O(1) au voisinage
de I'infini (voir Fig. 3).
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f(B) f*(B)

Figure 3. Support du pincement avec p/q = 1/3.

Le résultat principal de ce paragraphe est :
Théoréme 3.1. Le pincement (ft, 1) est convergent.

Comme dans la Proposition 2.2, pour tout z € C qui n’est pas dans la fermeture
du support, le pincement a une dilatation localement bornée, donc, par compacité,
on montre que le pincement est équicontinu en z.

Pour montrer que les ¢, sont équicontinues au voisinage de J¢, nous utiliserons
le critere suivant :

Lemme 3.2. (Critere d’équicontinuité). Soit (U, )n>0 un systéme fondamental de
voisinages-disques de Uorigine dans le disque unité tel que A, = D\ U, soit un
anneau ; soit F une famille d’applications continues et injectives f : D — C telle
que Uper f(D) soit bornée. S’il existe une suite (1) qui tend vers Uinfini telle que

VieF, Yn20, modf(An) > m,

alors F est équicontinue en zéro.

Figure 4. Pincement vers le lapin gras.

L’équicontinuité découle des deux propositions suivantes.
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Proposition 3.3. Pour tout z € Jy \ S, i existe deux domaines de Jordan
U, CC V, contenant z et disjoints de l’ensemble posteritique de f et du cycle
de 3, et il existe m, > 0 tels que, pour tout t > 0, mod p;(V, \ U,) > m,.

Proposition 3.4. Dans tout voisinage de -y, il existe deuxr domaines de Jordan
U, CCV, qui contiennent «y et il existe m, > 0 tels que

¥t >0, mod g, (Vy \U,) > m.,
lim; o mod ¢, (V,, \ ) = 0.

Montrons tout de suite comment déduire :

Corollaire 3.5. La famille d’homéomorphismes (p;) est équicontinue.

Démonstration du Cor. 3.5. On consideére le recouvrement de S obtenu en consi-
dérant pour chaque point z € J; \ S l'ouvert U, de la Proposition 3.3, et si z € S,
alors on considere la préimage de U, qui contient z. On extrait alors un sous-
recouvrement fini (U;) ; on note aussi V;, A; = V;\ U; les ouverts associés et m > 0
le minimum atteint par le module de ces anneaux dans les propositions ci-dessus.

L’équicontinuité aux points de S est une conséquence immédiate de la Propo-
sition 3.4 et du Lemme 3.2.

Pour tout z € 5, on construit une suite d’anneaux emboités comme suit : pour
tout n > 1, on considere l'indice 4, tel que f™(z) € U, et image réciproque
Al (2) = f™(A;,) qui entoure z. Comme f est hyperbolique, on peut extraire
une sous-suite (Ay) telle que les anneaux soient disjoints deux & deux. On définit
alors ’'anneau By (z) bordé par la composante intérieure de A} avec la composante
extérieur de Af. Par I'inégalité de Grotzsch, on en déduit que, pour tout ¢ > 0, on a
mod o1 (Bg) > k-m. Donc on obtient I’équicontinuité en z en vertu du Lemme 3.2.

O

Montrons maintenant comment déduire le Théoreme 3.1.

Démonstration du Théoréme 3.1. D’apres le Corollaire 3.5, la famille est équicon-
tinue en tout point relativement & la métrique sphérique et un voisinage de J; reste
borné par la déformation (par le théoreme de Koebe appliqué a ¢, : C\K; — C, qui
est une famille d’applications univalentes normalisées), donc d’apres le théoreme
d’Ascoli, on peut extraire une suite convergente (¢, ) vers une application ¢
continue.

On a vu que si deux points étaient dans la méme composante de S, alors le
module d’un anneau les entourant tendait vers I'infini avec ¢, 7.e. & la limite, ces
deux points ont méme image car leurs images restent a distance bornée par la
déformation. Maintenant, si deux points ne sont pas dans une méme composante
de S, alors on peut trouver un anneau les séparant de module uniformément minoré
par rapport au pincement. Il reste a vérifier que la limite n’est pas constante pour
avoir l'injectivité. Pour cela, il suffit de remarquer que la composante bornée du
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complémentaire de cet anneau, ayant une partie dans le bassin de l'infini, a une
aire strictement minorée.

Au voisinage de l'infini, ¢, est univalente, donc les polynémes f; convergent
uniformément vers un polynéme f., de méme degré.

Supposons que 1’on ait deux limites (foo, oo ) €t ( 1, ). Alors, pour des raisons
topologiques, I’application ¢ o @ est bien définie : ¢’est un homéomorphisme qui
conjugue foo a f , conforme sur ’ensemble de Fatou. Par le théoreme principal de
[10], cette application est en fait une application globalement conforme (parce que
ces polynémes sont critiquement non récurrents), tangente a 'identité a I’infini et
qui fixe D'origine : il s’agit de l'identité. On a donc unicité de la limite. O

Le reste de ce paragraphe est voué a la démonstration des Propositions 3.3 et
3.4. Les anneaux seront définis sur le modele z — 2%, et les estimations seront
obtenues par la méthode de longueur extrémale.

Longueur extrémale: définition et notations. D’apreés L. Ahlfors et A. Beur-
ling [2], on définit la longueur extrémale d'une famille de courbes rectifiables I" du
plan comme suit : considérons €2 un ouvert connexe contenant toutes les courbes de
I', ainsi que toutes les métriques conformes p(z)|dz| vivant sur Q, ot p: Q — Ry
est une application mesurable, telle que

0 < Aire(Q,p) = / P (2)dzdy < .
Q

Posons
pour y €T, L(v,p) = /pleI,
¥
et
L(T, p) = infyer L(v, p).
La longueur extrémale de I dans € est :
LA(T

N iyt I

Aire (Q, p)
ol le “sup” est pris sur toutes les métriques conformes pour lesquelles I'aire de
est finie et strictement positive.

Aq(T)

LT
Nous noterons aussi A(T", p) = M Si g est une forme de Beltrami, alors
Aire (€, p)
A, (T) désignera la longueur extrémale de I' par rapport aux métriques conformes

a |dz + pdz|.

Estimation sur un modéle. Notre démarche sera de se ramener au modele qui
suit, proposé par C. T. McMullen, pour montrer la connexité locale de I’ensemble
de Mandelbrot en certains points du bord (¢f [11]).
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Soit R = [0,1] x [0,3/2]. On définit une famille de sous-carrés (Q; ;) seN
1<5<2?
par récurrence :

~Qo = [0,1] x [1/2,3/2]; |

—si, &1 > 0 fixé, tous les Q; 5,1 < j < 2°, sont construits, on définit le rang
supérieur ;11 comme suit : on considere un carré Q); ;, dont on découpe le coté
horizontal le plus bas en trois. On recolle alors deux carrés Q; 1 24,1 et Q;11,25,,
de coté (1/3) celui de Q; ;, aux deux segments contenant un sommet de ce dernier.
Les Q; ; ainsi définis s’accumulent sur ’axe réel en I'ensemble triadique de Cantor
(voir Fig. 5). Notons Tj ; la composante connexe du complémentaire dont un coté
horizontal est contenu dans un c6té horizontal de @ ;.

R

Figure 5. Modele de McMullen.

Proposition 3.6. (C. T. McMullen). Soit T la famille de courbes joignant les
cotés verticaux de R. Pour toute forme de Beltrami dont le support est disjoint de
L ieN Qi’j’
1<5<2*
(3/2AT) = ALI) = A(T)/3.

Démonstration. Comme R est un rectangle, A(T') = 2/3.

Soit p une forme de Beltrami supportée dans le complémentaire des @ ;.

Comme Qo est un carré qui joint les deux c6tés verticaux et disjoint du support
de p, et d’apreés I'inégalité de Groetzsch, il vient A,(T') < A(Qo) = 1.

Notons {zy, },>1 I'ensemble dénombrable des points de [0, 1] qui sont au bord
d’un T; ;. On note I';, '’ensemble des courbes de I' qui passent par x,, sin > 1, et
Ty les courbes qui évitent {,}. Par la régle en parallele 1/A,,(T) < > 1/A,(T,,).
D’apres le paragraphe §7.9 de [20], on a 1/A,(I',) = 0 pour n > 1. Done, pour
obtenir une minoration indépendante de p, il suffit de trouver une métrique ad-
missible p|dz| telle que suppp C {p =0} et A(T'g,p) > 0.

e Sur le bord de R, on pose p = +00.

e Sur le complémentaire des @); ;, on pose p = 0.

e Sur Q; ;, on pose pldz| = (3/2)%|dz|.
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Evaluons A(T, p) : p est bien admissible car Aire (R, p) = Yoo l/2m =2

Soit v : [0,¢] — R une courbe rectifiable de T'y paramétrée par longueur d’arc
qui traverse R de gauche a droite. Quitte a réduire sa p-longueur, on peut supposer
que v est injective et ne passe au plus quune seule fois dans chaque trou Tj ; ; par
conséquent, v traverse les trous dans 'ordre induit par 1’axe réel. On peut aussi
supposer que chaque composante connexe de @; ; N~ ou de T; ; N~ est formée
d’un segment. Si Re () n’est pas croissante, on peut aussi transformer v afin que
ce soit vrai. Enfin, chaque «y qui traverse un Q); ; verticalement peut étre remplacé
par un segment horizontal qui joint «y au trou a droite le plus proche. On se ramene
donc & une courbe, affine par morceaux, telle que Re v(t) est strictement croissante
et Q; 5 N~ est un segment horizontal.

Soit £ > 0 fixé; comme p = oo sur [0,1], il existe n > 1 tel que
2y N (Ui<nQi5)) = € —e. La ol v est tronquée, on la remplace par un segment
horizontal reliant les extrémités. Du fait que v € I'g, chaque trou traversé force de
la longueur car la courbe ne peut ressortir par un point de [0, 1].

On constate que la plus petite p-longueur d'une courbe qui traverse un Q); ;
est (2/3) - (1/2%). Les courbes qui s’en approchent sont de deux types : celles qui
longent 0Q); ; par le bas en passant par 7} ;, et celles qui longent 9Q); ; dans le
Q;—1 4 correspondant. Comme -~ reste éloignée de [0, 1], on peut remonter la courbe
grace & la remarque ci-dessus afin d’obtenir que L(y N (Uj<nQsj),p) > 2/3 —¢.

On trouve alors L(I'g, p) = 2/3.

Au total, on obtient

Au(T) 2 A(To, p) = 2/9 = A(T)/3, 0

Partition du bassin associée a une étoile. Nous allons définir une partition
en “rectangles” au voisinage du bord du bassin, qui nous servira a appliquer la
Proposition 3.6 (¢f Fig. 6).

On note 2 I'intérieur de Ky et Q lintérieur de la composante connexe de {z €
Q, V>0, u(z) = O} qui contient l'origine. Enfin, on considere la composante
connexe Ro de Q \ O qui contient « dans son bord, R’ celles qui sont bordées
par f~ (aRo), et R, la réunion des composantes connexes de € \ Q telles que
MR, — ]:26 est un revétement de degré d" (¢f Proposition 2.2).

Redressement de la partition. On identifie (C*,0) & (C/Z, —ioo) et on définit
une conjugaison quasiconforme x : (C\{a},Q) — (C/Z,H/Z) entre f et z — d?-z
comme suit. Sur C\ K¢, on définit x par (—i)log de la coordonnée de Béttcher.
Le bord de [fin se transporte sur R/Z en une réunion finie d’intervalles I,,.

Si g = 1, alors I,, est une réunion de points, et on prolonge x de maniere a ce
que chaque R, soit envoyée dans une réunion de secteurs verticaux tronqués a la
hauteur h/d?", o h > 0 fixé. On s’arrange pour que ces secteurs soient contenus
dans des secteurs S,, d’ouverture plus importante et tels que deux secteurs de US,,
soient deux a deux disjoints.

Si g > 1, on érige des rectangles dans H/Z de base I,, : on se fixe h > 0, et on
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Figure 6. “Rectangles”.

associe R, la réunion des rectangles de hauteur h/d™?. On peut alors définir x en
transformant 9(RoU R})) sur Ry de manidre C! par morceaux. On relie les images
réciproques des sommets de Ry dans Q par des courbes lisses {a;}1<i<q afin de
former une chaine cyclique. On étend x a ces courbes de maniere & ce qu’elles
s’envoient sur I’horizontale de hauteur k. Ensuite, on prolonge x & f~%(Ua;) N O
pour que x o f¢ = d? - x. Puis, on considere une extension quasiconforme aux
quadrilatéres bordés par ces courbes dans Q. On prolonge alors y & € par un

argument de pull back. Enfin, on considere un prolongement quasiconforme a Rp
que l'on transporte sur R,, par images réciproques (voir Fig. 7).

L’application globale est bien quasiconforme car Jy est un quasicercle, donc
effacable.

1;),1 RO

/

— ol Io =

R,

Figure 7. Définition de I'application.
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Estimation sur un anneau type. Pour n assez grand, on numérote les com-
posantes connexes {Q;}; de Up<i<nR; dans l'ordre cyclique et on consideére deux
indices 4 < 7. Soit A C C/Z un anneau symétrique par rapport & R/Z, dont les
bords sont paralleles aux axes et tel que : les bords verticaux extérieurs contiennent
le coté droit de @; et le coté gauche de @Q;11; le bord intérieur contient le coté
gauche de Q;41 et le coté droit de Q; ; les bords horizontaux dans H/Z sont assez

N

hauts pour étre contenus dans x(£2) (voir Fig. 8).

Lemme 3.7. Il existe m > 0, tel que si p est une forme de Beltrami nulle sur
A\ (UpRy) alors
mod, A > m.

Démonstration. Si ¢ = 1, on considere la métrique euclidienne tronquée par 0 sur

Uisolz, w(z) #0}.

On vérifie sans mal que ’on obtient une borne sur le module de A indépendante
de ¢ (voir aussi le Lemme 4.5).

Si g > 1, ANH/Z se découpe en trois rectangles dont un seul est horizontal.
On définit une métrique p comme suit : sur les rectangles verticaux, on est dans
la situation de la Proposition 3.6, donc on considere la métrique qui borne la
longueur extrémale des courbes qui joignent les cotés verticaux ; sur le rectangle
horizontal, on considere la métrique euclidienne. On prolonge & A par réflexion.
Soit I' la famille des courbes rectifiables qui joignent les composantes connexes de
O A tout en évitant les points de R/Z qui sont au bord d'un R,,. Les métriques se
recollent bien au bord des rectangles par symétrie et car elles sont proportionnelles
a la métrique euclidienne. Donc on a

mod, A > A(T', p) > 0.

Montrons maintenant la Proposition 3.3.

Démonstration de la Proposition 3.3. Soient z € Jy¢ et U un voisinage de z. Quitte
a rétrécir U pour que f" : (U, z) — (f*U, f"z) soit propre de degré 1, on itere f
jusqu’a ce qu’il existe un cross-cut v de ©, v C QN f™(U), qui sépare f™(z) de
0. Dans la carte C/Z, on peut donc trouver un anneau du type du Lemme 3.7.
On retransporte cet anneau par y ', qui ne change le module que par un facteur
uniforme ; enfin, on le tire en arriere jusqu’a ce qu’il entoure z dans U. (Il

Démonstration de la Proposition 3.4. On définit un anneau A au voisinage de v
comme suit : le bord intérieur est constitué de . Le bord extérieur contient les
bords verticaux de Ry U l% les plus proches.

Le modele floral vient naturellement avec une étoile, qui est quasiconformément
équivalente a celle de f (et qui conjugue les dynamiques). Cette application peut
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] — |

Figure 8. Anneau autour de x.

étre prolongée de manieére a conjuguer les dynamiques sur un voisinage des points
périodiques. Il existe donc une application quasiréguliere qui transforme notre
anneau (ou un sous-anneau) en 'anneau A du modele — i.e. la bande B privé d’un
rectangle @ (cf le Lemme 1.2) — tel que les rectangles soient de hauteur inférieure
a celle de Q). Ces rectangles sont invariants par la translation 7. On considere une
exhaustion de A en anneaux P,, définis comme suit. Il existe ¢,, > 0 tel que, pour
tout ¢ > t,, le carré @J,, centré a l'origine qui contient exactement n périodes soit
contenu dans ®;(B) et &, 0 ®, !|g, = id*€. On pose alors P, = &, 1 (Qn \ Q).
Notons h,, la distance euclidienne de Q & 9Q),,.

A nett>t, fixés, on définit la métrique p, (t) provenant :

— d’une part, de la métrique |dz|/|z| définie sur ®;(B1) (avec les notations du
paragraphe précédent) ;

—d’autre part, de la métrique de la Proposition 3.6, normalisée de maniere avoir
méme aire. Soit v une courbe qui joint les deux bords de P,,. On a L(vy, p,(t)) >
C - log(h,/C).

Par suite,

log? hn, _

mod ®;(A) > mod &,(P,,) > C - Togh, log hy, .

Done

lim mod ®(A) = o0.

t—o00

Comme les anneaux sont homéomorphes par une application quasiconforme de
dilatation bornée,

lim mod p:(A) = .
t—o00
La borne m., provient de I’estimation sur un des P,. O

Remarque. Sile pincement se situe en un point fixe répulsif 3, alors J¢__ est une
courbe de Jordan et ¢, est un homéomorphisme restreint aux ensembles de Julia.
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Figure 9. Pincement vers le chou-fleur.

4. Pincement d’un polyndtme semi-hyperbolique

Soit f : C — C un polynéme monique centré semi-hyperbolique, i.e. sans point
parabolique et tel que tout point critique ¢ € J; n’est pas récurrent. Nous allons
démontrer dans ce paragraphe le résultat principal de cet article :

Théoréme 4.1. Soit f un polynome semi-hyperbolique. On suppose qu’il existe
un point attractif o et que Ky est connexe. Alors, pour tout p/q, le pincement
(fi: 1) associé & une étoile &y, 1 formé d’un seul cycle est convergent.

Comme au paragraphe précédent, la démonstration du Théoreme 4.1 se réduit
aux analogues des Propositions 3.3 et 3.4. Nous utiliserons le méme procédé pour
les démontrer. Les anneaux considérés seront obtenus en recollant ensemble 4 types
de quadrilatéres que 1’on va préalablement étudier.

4.1. Préliminaires

Pour de tels polynémes, on sait :

Théoréme 4.2. (L. Carleson, P. Jones & J.-C. Yoccoz, [4].) Si f est semi-hyper-
bolique,

(i) C\ K¢ est de John et toute composante conneze de Uintérieur de Ky est un
quasidisque ;

(ii) pour toute paire de points x,y dans la méme composante conneze de J¢, il
existe un quasiarc 6 C Jy (appelé aréte par la suite) qui les relie ;

(ili) # existee > 0, D < 00, ¢ > 0 et € (0,1) tels que, pour tout x € Jy et
pour toute composante connexe B, de f~"{|z — x| < e}, Uapplication f™ : B, —
{|z — z| < €} a un degré majoré par D et diam B, < c-n".

Domaines de John. On dit quun ouvert Q C C est un disque de John si Q
est simplement connexe, hyperbolique, contient le point a I'infini et s’il existe une
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constante ¢ = ¢(2) > 0 telle que, pour tout z € QN C, il existe une courbe
vz joignant z & l'infini telle que, pour tout w € ~v,, d(w) > ¢ |z — w|, ol §(w)
représente la distance euclidienne de w & 9. D’aprés [7], on peut choisir le segment
géodésique hyperbolique joignant z a l'infini pour ~,.

Lemme 4.3. Soient ¢ : C — C un homéomorphisme quasiconforme et Q0 un
disque de John. Alors o(Q) est aussi de John, et on peut choisir o(vy,) comme
courbe pour p(z).

Démonstration. Une application quasiconforme est aussi quasisymétrique, i.e. il
existe une application croissante i : R; — R, avec n(0) = 0 telle que, pour tous
z,w,w’ € Q deux a deux distinets, on ait

o

Onsefixe z€ Q, wey, et (€90 Ona |w—C|>c-|w—z|; par suite,

#(€) — p(w) g
o= a2 s

et |p(Q) — p(w)] = (1/n(1/e)) - [¢(2) — p(w)|. .

zZ—w
/

’ p(2) — p(w)
p(2) — p(w')

Z—w

Pour plus de propriétés des domaines de John, on peut se reporter a [16].

Membres et sillages. Si U est une composante connexe de l'intérieur de Ky,
un membre de U est la fermeture d’une composante connexe de K \ U, attaché
a OU par sa racine; son sillage est 'ouvert bordé par les rayons aboutissant a la
racine contenant tous les membres de méme racine. Etant donnée U , le support de
la déformation se situe dans U et dans ses membres. On réunit les membres et les
sillages qui ont méme racine. Ces racines sont ou bien des points prépériodiques, ou
bien des points précritiques. Si 6 C Jy est une aréte, on parlera aussi de membres
et de sillages.

Notons € le bassin immédiat du point « et d’ le degré de f|q).

Redressement de ). Notre objectif présent est d’obtenir un “bon” redressement
du bassin immédiat © du point «. On se fixe un potentiel A > 0;onnote cy,--- , ¢,
les points critiques de f sur 991, et S; les sillages associés tronqués au potentiel
h. Notons B : C\ Ky — C\ D la coordonnée de Béttcher de f, et 6, < 6 les
arguments des rayons qui définissent S;.

Soit @ > 0 une constante que I'on déterminera ultérieurement ; posons, pour
chaque i = 1,---,p, S; = {z € C, 0 < argB(z) — 0 < a-log|B(z)|, |B(2)| <
exphtUS;U{z€C, 0<0, —arg B(z) <a-log|B(z)|, |B(z)| < exph}.
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Proposition 4.4. [l existe une application quasiconforme x : C — C et un voisi-
nage U de Q telle que, pour tout z € U\ (US;), x o f(2) = (p(2))¢.

Démonstration. L’idée principale de la démonstration est de se débarasser des
points critiques de 9 par chirurgie. Nous traitons d’abord le cas de ¢;. Comme
il n’est pas récurrent, si a > 0 est assez petit, alors Sy et toutes ses préimages
dont les racines appartiennent a 9 sont disjointes deux a deux. L’application
flag, : 9S; — C est injective et borde un “secteur” S’ C C\ K issu de f(cy).

On considere une extension quasiconforme F' : S — 8 de cette restriction. On
construit une forme de Beltrami 4 comme suit :

—si z € 5, on pose p1(z) = 9:F(2)/0,F(2);

—si 2 est dans un secteur issu de 9Q qui s’envoie sur Sy par f", alors on pose

p1(2) = py o f7(z) - (f*) (2)/(F")'(2);

— sinon, on pose ui(z) = 0.

Comme les secteurs sont deux & deux disjoints, on a ||u1]|eo < 1, et le théoréme
d’intégration des formes de Beltrami nous construit un homéomorphisme quasicon-
forme x1 : C — C tel que x1(2) = z+0(1) & I'infini. Par construction, I’application
g1 définie par xy1 0 F o Xfl sur gl, et yiofo Xfl sur le complémentaire, est holo-

morphe au voisinage de x1(Q2). Le point critique ¢; a donc été “supprimé”.

Le méme procédé permet donc de supprimer les autres points critiques ca, -+ - , ¢,
en construisant une application quasiconforme x : C — C et une application ho-
lomorphe ¢ définie au voisinage de x(Q), qui est conjuguée & f sur un ensemble
comprenant ). Cette application g est maintenant un revétement de degré d’
strictement dilatar}t d’un voisinage de x(9€2). Par suite, g est quasiconformément

conjugué a z — 27 . O

4.2. Estimations d’anneaux

Dans un premier temps, nous donnerons des estimations de modules de qua-
drilateres qui nous serviront pour estimer les modules d’anneaux.

Quadrilatéres de type “aréte”. On se donne une aréte ¥ C J; d’extrémités
et y, qui n’intersecte la fermeture de chaque composante connexe du bassin A(«)
qu’en au plus un point.

On construit un quadrilatere @@ qui contient 4, tel que 4 coupe le quadrilatere
en deux quadrilateres et tel que Ky N Q est connexe et J; N IQ = {z,y} (voir
Fig. 10).

Lemme 4.5. [l existe une constante m > 0 telle que A,,I' > m pour tout t > 0.

Démonstration. Par une application quasiconforme du plan, on transforme @ en
{#, 0 <Rez <1, [Imz| <1} et 4 en [0,1]. D’apres le Lemme 4.3, on en déduit
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que l'image I des membres est encore de John. On sépare L en I'incluant dans la
réunion de ses sillages, i.e. bordés par 'image des géodésiques qui aboutissent sur

s

Il existe une constante ¢ > 0 telle que pour tout z € @ au bord d’un sillage,
la distance de z au membre de ce sillage est au moins ¢ fois la distance de z a la
racine. Par suite, si on considere p la métrique euclidienne de @ tronquée par 0
sur L, et que I'on consideére une courbe rectifiable v : [0,¢] — @ qui traverse Q
de gauche a droite, alors on peut supposer que « est injective et ne passe dans un
sillage au plus qu’une fois. Si «y traverse un membre M de sillage S et de racine r,

on note §(2) = d(z, M) et [t1,t2] =~ 1(S). On a

L(ylt1,ta], p) 2 6(v(81))+6(v(t2)) = c-(Iy(t1) —r[+]y(E2) —7]) = e [y(E1) =7 (E2)]-
Par suite, L(T', p) > c et il existe m > 0 telle que mod,, Q@ > m. O

Figure 10. Quadrilateres de type bassin et aréte.

Partition au voisinage de () associée 4 une étoile. On se fixe une constante
h > 0 et on redéfinit les domaines R; C Q du cas monomial. Puisque le cas ¢ = 1
se traite comme le cas précédent, on suppose ¢ > 1. A chaque composante connexe
Q de Rn, on construit un domaine symétrique Q* dans C\ € : on note z,y les
extrémités de Q N I ; Q* est bordé par équipotentielle de hauteur h/d?" et les
rayons qui aboutissent a = et y de telle maniere que Q* intersecte tous les autres
rayons qui aboutissent & ces points.

Par la Proposition 4.4, cette partition se transporte au voisinage de R/Z par une
application quasiconforme Yy, et les “rectangles” s’envoient les uns sur les autres par
z+ (d')%- z. Par suite, on peut définir une nouvelle application quasiconforme qui
redressera ces faux rectangles en véritables rectangles a l'instar du cas monomial.

Quadrilatére de type “bassin”. Il s’agit de rectangles verticaux @, symétriques
par rapport & R/Z, et construit comme a la page 16 (voir Fig. 10).

Lemme 4.6. Il existe m > 0 tel que, pour toutt > 0, mod,,Q > m.
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Démonstration. On définit une métrique p sur le demi-plan correspondant a €2
comme pour la Proposition 3.3. On la prolonge par réflexion a I’autre demi-plan.
On considere aussi la métrique p obtenue en tronquant p par 0 sur I'image L des
membres de ) par le redressement quasiconforme, afin que la métrique soit bien
définie pour tout ¢ > 0. Il reste a vérifier que la longueur des courbes qui joignent
les cotés verticaux est minorée. Pour cela, il suffit de montrer que p ne fait pas
trop chuter les p-longueurs des courbes.

La métrique p découpe le complémentaire des R; (et de leur symétrique) en
générations sur lesquelles p < (d’ )(qfl)". Soit v une courbe rectifiable qui traverse
un sillage S de z; & z9, avec z; dans la génération n;, n1 < ng. On note d(z) la
distance euclidienne de z au membre de S. On a

L(yN S, p) > Cste - (d) 97D (§(21) 4 6(25)) > Cste - (&)™ .|z — 2]
Mais, (d')@171 . |2y — 29| > Cste - d,(21, 29) done L(T, p) > Cste - L(T, p) > 0. O

Estimations d’anneaux. Pour tout point z € J; \ S, il existe un anneau A
qui 'entoure tel que son bord est constitué d’'un nombre fini de quadrilateres
de type aréte et bassin, et les autres sont contenus dans N;>of{z, w:(z) = 0}.
Les estimations précédentes (Lemmes 4.5 et 4.6) permettent de minorer mod,,, A
indépendamment de ¢.

Quant aux points de S, on obtient ’analogue de la Proposition 3.4 de la méme
maniere.

Démonstration du Théoréme 4.1. La condition (iii) du Théoréme 4.2 permet de
montrer I'analogue du Corollaire 3.5 grace aux estimations d’anneaux. Par suite,

les ¢ sont équicontinus. Le reste de la démonstration suit celle du Théoreme 3.1.
O
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