
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 77 (2002)

Artikel: Minorations des hauteurs normalisées des sous-variétés de variétés
abeliennes II

Autor: David, Sinnou / Philippon, Patrice

DOI: https://doi.org/10.5169/seals-57941

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-57941
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Comment Math Helv 77 2002 639{700
0010-2571/02/040639-62

c° 2002 BirkhÄauser Verlag Basel

Commentarii Mathematici Helvetici

Minorations des hauteurs normalis¶ees des sous-vari¶et¶es de
vari¶et¶es abeliennes II
Sinnou David et Patrice Philippon

R¶esum¶e E Ullmo and S Zhang ont montr¶e que les points de hauteur arbitrairement petite

sur une sous-vari¶et¶e alg¶ebrique non < d¶eg¶en¶er¶ee > d'une vari¶et¶e abelienne toutes deux d¶e¯nies

sur un corps de nombres ne peuvent être Zariski dense dans cette vari¶et¶e Nous avons donn¶e
une autre preuve quantitative de ce r¶esultat ; dans le cas des tores nous en avons ensuite donn¶e
une version totalement explicite Ce travail a trouv¶e des applications notamment en liaison avec

le th¶eorµeme du sous-espace Nous consacrons donc ce texte µa des minorations totalement expli-
cites pour la hauteur normalis¶ee ainsi que pour les minimums successifs de la hauteur norma-
lis¶ee des sous-vari¶et¶es de vari¶et¶es abeliennes d¶e¯nies sur un corps de nombres Ces minorations

ont d¶ejµa trouv¶e une application dans un travail r¶ecent de G R¶emond qui compte les vari¶et¶es

exceptionnelles dans les th¶eorµemes de P Vojta and G Faltings ex conjectures de Mordell
et S Lang respectivement
Abstract E Ullmo and S Zhang have shown that the points of arbitrarily small normalized
heights on an algebraic subvariety of an abelian variety de¯ned over a number ¯eld which is
not of a special type cannot be Zariski dense We gave an alternative quantitative proof of this
property that we made completely explicit in the analogous toric case This latter work has found
applications to diophantine geometry especially in connection with the subspace theorem The

present paper is devoted to establishing completely explicit lower bounds for normalized heights

and successive minima of the normalized height of algebraic subvarieties of abelian varieties

de¯ned over a number ¯eld The results presented and proved here have found an application in
the recent work of G R¶emond counting exceptional varieties in the theorems of P Vojta and
G Faltings ex Mordell's and Lang's conjectures respectively

Mathematics Subject Classi¯cation 2000 11G10 11J81 14G40

Mots cl¶es Hauteur vari¶et¶es abeliennes g¶eom¶etrie diophantienne e®ectivit¶e

1 Introduction et r¶esultats

Le problµeme maintenant classique dit de Bogomolov revient µa demander
si l'ensemble des points alg¶ebriques d'une sous-vari¶et¶e alg¶ebrique d'une vari¶et¶e
abelienne de hauteurs arbitrairement petites peut être Zariski dense dans la
vari¶et¶e Cette question qualitative a ¶et¶e r¶esolue n¶egativement sauf d¶eg¶en¶eres-
cences ¶evidentes par S Zhang confer [Zh2] en s'appuyant sur les propri¶et¶es
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d'¶equir¶epartition de L Szpiro E Ullmo et S Zhang confer [Sz{Ul{Zh] et le
travail d'E Ullmo confer [Ul] concernant le cas des courbes plong¶ees dans leur
jacobienne Nous avons aussi donn¶e une d¶emonstration alternative quantitative de

cette même propri¶et¶e dans [Da{Phi1] puis une version totalement explicite dans le
cas des sous-vari¶et¶es des tores multiplicatifs confer [Da{Phi2] L'int¶erêt pour les

applications de ces r¶esultats toriques ¶etant r¶eel nous reprenons ici la d¶emonstration
de [Da{Phi1] pour donner dans le cas abelien des minorations ¶egalement explicites

de la hauteur normalis¶ee et des minimums successifs de la hauteur normalis¶ee des

points d'une sous-vari¶et¶e alg¶ebrique d'une vari¶et¶e abelienne d¶e¯nies sur Q Les

r¶esultats pr¶esent¶es et ¶etablis ici trouvent une premiµere application dans le travail
r¶ecent de G R¶emond [R¶e]

On supposera dor¶enavant que A d¶esigne une vari¶et¶e abelienne d¶e¯nie sur un
corps de nombres k et munie d'un ¯br¶e ample et sym¶etrique M qui permet
de d¶e¯nir une notion de hauteur normalis¶ee

ĥ
: ĥM­16 sur les sous-vari¶et¶es

alg¶ebriques de A d¶e¯nies sur Q
Soit X une sous-vari¶et¶e alg¶ebrique de A d¶e¯nie sur Q on s'int¶eresse aux points

de petites hauteurs de X Q Introduisons comme dans [Da{Phi2] une s¶erie de

minimums successifs pour j 1; : : : ; dim X :

¹̂±j X : sup
Y

inf nĥ x ; x 2 X n Y Q o ; ±

oµu le supremum est pris sur les sous-ensembles alg¶ebriques Y de X d¶e¯nis sur Q
constitu¶es de sous-vari¶et¶es de X de codimension j dans X et de translat¶ees de sous-
vari¶et¶es abeliennes non n¶ecessairement par des points de torsion contenues dans

X de codimension < j dans X En particulier les ¹̂±j X minorent les minimums

successifs de la hauteur normalis¶ee sur le compl¶ementaire X± dans X de l'union des

translat¶ees mais non n¶ecessairement par des points de torsion de sous-vari¶et¶es

abeliennes de A contenues dans X de dimension > 1
On remarquera que ¹̂±1

X n'est autre que le minimum essentiel1 de
ĥ

sur X
aussi not¶e ¹̂ess X qui pour sa part est g¶en¶eralement d¶e¯ni par :

¹̂ess X : sup
Y

inf nĥ x ; x 2 X n Y Q o ; ess

oµu le supremum est cette fois pris sur les sous-ensembles alg¶ebriques Y de X de

codimension 1
Par ailleurs on a bien ¶evidemment par d¶e¯nition

¹̂±1
X ¸ ¢ ¢ ¢ ¸ ¹̂±

dim X X :

Nous pouvons maintenant d¶ecrire les r¶esultats que nous obtenons Nous sup-
poserons dans les ¶enonc¶es qui suivent que la vari¶et¶e A est principalement polaris¶ee

1 Sauf bien sûr dans le cas oµu X est un translat¶e d'une sous-vari¶et¶e abelienne de A
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par M et nous notons g sa dimension Nous d¶esignerons par h A la hauteur pro-
jective de l'origine de A dans le plongement associ¶e µa M­16 voir notation 3 2

Th¶eorµeme 1 1 Soit X ½ A une sous-vari¶et¶e alg¶ebrique d'une vari¶et¶e abelienne

toutes deux d¶e¯nies sur Q qui n'est pas translat¶ee d'une sous-vari¶et¶e abelienne

alors

dim X + 1 ¹̂ess X ¸ ĥ X
deg X ¸

min
©

1; Rinjª
2 b+1

29g3 deg X 2k b+1

oµu k d¶esigne le nombre minimal de copies de X ¡ X dont la somme est une

sous-vari¶et¶e abelienne de A b la dimension de cette sous-vari¶et¶e abelienne et Rinj
d¶esigne la plus petite norme de Riemann d'une p¶eriode d'une conjugu¶ee de A sur
Q voir la d¶e¯nition 4 4 pour plus de pr¶ecisions

On en d¶eduit les th¶eorµemes suivants sur le dernier des minimums successifs
introduits pr¶ec¶edemment On se donne une sous-vari¶et¶e alg¶ebrique X de A d¶e¯nie
sur Q et on pose avec les notations du th¶eorµeme 1 1 :

q X ³max f1; h A g : min
©

1; Rinjª¡
2 g+1

´
4 4g2 dim X ¡1

: ¡214g deg X ¢
4g2 dim X

:

Th¶eorµeme 1 2 Soit X ½ A une sous-vari¶et¶e alg¶ebrique d'une vari¶et¶e abelienne

toutes deux d¶e¯nies sur Q les points x 2 X± Q satisfaisant ĥ x < 1 q X sont
en nombre ¯ni major¶e par q X En particulier ¹̂±

dim X X > 1 q X
On dispose bien entendu ¶egalement d'estimations explicites pour les minimums

interm¶ediaires ¹̂0
j ¢

1 · j · dim X ¡ 1 ; le lecteur pourra se reporter au para-
graphe 5 th¶eorµeme 5 3 pour les trouver

On d¶eduit du th¶eorµeme 1 2 le r¶esultat de d¶ecompte suivant :

Th¶eorµeme 1 3 Soit X ½ A une sous-vari¶et¶e alg¶ebrique d'une vari¶et¶e abelienne

toutes deux d¶e¯nies sur Q et ¡ ½ A Q un sous-groupe de rang ¯ni r Pour
tout nombre r¶eel a > 1 il existe au plus q X 5aq X r 2 points x 2 ¡ \X± Q
satisfaisant ĥ x 6 a

On sait estimer voir lemme 6 8 le rayon d'injectivit¶e Rinj en termes de la
hauteur h A et du degr¶e d d'un corps k de d¶e¯nition de la vari¶et¶e abelienne

polaris¶ee A;M On obtient ainsi :

Th¶eorµeme 1 4 Soit X ½ A une sous-vari¶et¶e alg¶ebrique d'une vari¶et¶e abelienne

toutes deux d¶e¯nies sur Q avec les notations introduites dans les ¶enonc¶es pr¶ec¶e-
dents et en posant h0 A d max f1; h A g oµu d [k : Q] on a

q X · ³216g: h0 A 2 g : deg X ´
4g2 dim X

;

et si X n'est pas translat¶ee d'une sous-vari¶et¶e abelienne :

dim X + 1 ¹̂ess X ¸ ĥ X
deg X ¸ 2¡11g3

: deg X ¡2k b+1 : h0 A ¡g¡1 :
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Un des int¶erêts de ces r¶esultats r¶eside dans leur totale e®ectivit¶e et on notera
qu'en dehors de la dimension et du degr¶e de la vari¶et¶e alg¶ebrique consid¶er¶ee les

seuls paramµetres qui interviennent sont la dimension de la vari¶et¶e abelienne am-
biante sa hauteur relative µa un corps de d¶e¯nition pour les th¶eorµemes 1 2 et 1 3 et
son < rayon d'injectivit¶e absolu > au sens de J -B Bost confer [Bo] En appen-
dice on minore explicitement cette derniµere quantit¶e en fonction de la dimension
de la vari¶et¶e abelienne et de sa hauteur relative µa un corps de d¶e¯nition dans le
plongement consid¶er¶e ce qui conduit au th¶eorµeme 1 4 ci-dessus Les plongements

projectifs des vari¶et¶es abeliennes obtenus µa l'aide des coordonn¶ees de Mumford
confer [Mu] qui g¶en¶eralisent les plongements thêta classiques des vari¶et¶es abe-

liennes sont l'outil essentiel qui permet de mener tous les calculs de fa»con explicite

En particulier on ¶ecrit des formules de duplication et d'addition dans ces plonge-
ments et on en estime degr¶es hauteurs et croissances Ceci permet d'¶etendre les

r¶esultats de Y Manin et Y Zarhin confer [Ma{Za] sur la constante de compa-
raison entre hauteurs projectives et hauteurs normalis¶ees des points des vari¶et¶es

abeliennes aux sous-vari¶et¶es de dimensions sup¶erieures

Un mot en¯n sur les constantes num¶eriques obtenues Si nous n'avons pas

cherch¶e syst¶ematiquement µa les miminiser nous nous sommes toutefois e®orc¶es

de respecter les ordres de grandeurs naturellement fournis par nos arguments

Ainsi dans le th¶eorµeme 1 1 notre m¶ethode nous conduit µa une constante du
type exp cg2 log g oµu c est universelle voir la note de bas de page dans la
d¶emonstration du th¶eorµeme 1 1 µa la ¯n du paragraphe 4 3

Le th¶eorµeme 1 3 ci-dessus est un des ingr¶edients du travail r¶ecent de G R¶emond
confer [R¶e] sur le d¶enombrement des points rationnels des sous-vari¶et¶es de vari¶e-

t¶es abeliennes Il est remarquable que dans le cas des courbes les seuls paramµetres

intervenant dans la majoration sont comme pour les th¶eorµemes ci-dessus le genre

de la courbe le degr¶e d'un corps de d¶e¯nition et la hauteur de la jacobienne

de la courbe Un ¶enonc¶e conjectural de L Caporaso J Harris et B Mazur
confer [Ca{Ha{Ma] pr¶edit que la d¶ependance en la hauteur devrait même pouvoir

être supprim¶ee Rapport¶ee µa notre travail cette hypothµese semble indiquer que

l'intervention du rayon d'injectivit¶e dans la d¶emonstration du th¶eorµeme 1 1 ne

devrait être consid¶er¶ee que comme une d¶efaillance technique de notre m¶ethode et
qu'il existe un moyen de contourner la constante de comparaison entre hauteurs

projectives et normalis¶ees mentionn¶ees plus haut pour en d¶eduire les th¶eorµemes 1 2
et 1 3

Le pr¶esent travail est l'exact parallµele abelien de [Da{Phi2] qui lui-même ra±ne

les travaux ant¶erieurs de W M Schmidt confer [Schm] De même les travaux
de G R¶emond confer [R¶e] constituent le pendant abelien des ¶enonc¶es obte-
nus dans les tores multiplicatifs et dont on trouvera une pr¶esentation dans l'article
de synthµese de J -H Evertse confer [Ev] Citons la version explicite simpli¯¶ee
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du th¶eorµeme 2 1 de [R¶e] que nous a fourni G R¶emond en utilisant le th¶eorµeme 1 4
ci-dessus :

Th¶eorµeme G R¶emond Soient X ½ A une sous-vari¶et¶e alg¶ebrique d'une va-
ri¶et¶e abelienne toutes deux d¶e¯nies sur Q et ¡ ½ A Q un sous-groupe de rang

¯ni r Alors avec les notations du th¶eorµeme 1 4 il existe un entier naturel S
satisfaisant

S · ¡
234: h0 A : deg X ¢

r+1 g5 dim X +1 2

;

des ¶el¶ements x1; : : : ; xS 2 X Q \ ¡ et des sous-vari¶et¶es abeliennes B1; : : : ; BS de

A tels que xi + Bi ½ X pour i 1; : : : ; S et

X Q \ ¡
S

[i 1

xi + Bi Q \ ¡ :

Le paragraphe 2 introduit les coordonn¶ees de Mumford confer [Mu] et expli-
cite les relations qui les lient Si on les compare aux relations entre fonctions thêta
classiques on v¶eri¯e facilement que ce sont les mêmes µa des racines de l'unit¶e
prµes qui sont sans importance lorsqu'on traite des questions de degr¶e et de hau-
teur On utilise les formules obtenues pour majorer l'¶ecart entre hauteurs projec-
tive et normalis¶ee d'une sous-vari¶et¶e d'une vari¶et¶e abelienne de fa»con totalement
explicite Le paragraphe 3 d¶emontre le th¶eorµeme 1 1 on y reprend les arguments

de [Da{Phi1] mais on fait disparâ³tre beaucoup des paramµetres diophantiens en
construisant une fonction auxiliaire petite plutôt que nulle sur la ¯bre sp¶eciale et
en moyennant les in¶egalit¶es obtenues sur les translat¶es de la sous-vari¶et¶e consid¶er¶ee

par les points de torsion de la vari¶et¶e abelienne Le paragraphe 4 est consacr¶e µa la
descente qui permet de d¶eduire d'une minoration du minimum essentiel une esti-
mation des minimums suivants sur X± La d¶emarche fond¶ee sur une r¶ecurrence

est calqu¶ee sur celle de [Da{Phi2] qui introduit malheureusement un exposant
exponentiel en la dimension de la vari¶et¶e On en d¶eduit les th¶eorµemes 1 2 et 1 3
ci-dessus En¯n l'appendice donne des estimations explicites de croissance des

fonctions thêta et minore le rayon d'injectivit¶e en fonction du degr¶e d'un corps de

d¶e¯nition et de la hauteur de la vari¶et¶e abelienne sous-jacente

Nous remercions chaleureusement GaÄel R¶emond pour ses nombreux et perti-
nents commentaires sur une premiµere version de ce texte ainsi que l'arbitre de la
publication pour son consid¶erable travail ex¶eg¶etique qui nous permet de pr¶esenter
au lecteur un texte plus compr¶ehensible et notablement ¶epur¶e

2 Notations

Les questions de hauteurs ¶etant primordiales dans ce texte nous ¯xons une fois
pour toutes dans ce paragraphe les notions de hauteurs normes et mesures locales

qui pr¶evalent dans l'introduction et dans la suite de notre travail en indiquant
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les di®¶erences essentiellement de normalisation avec celles des r¶esultats que nous

utiliserons en r¶ef¶erences

La notion de hauteur projective des points et des vari¶et¶es dans les espaces

projectifs est celle de [Ph]-III On la notera h x ou h X si x et X d¶esignent
un point et une vari¶et¶e d¶e¯nis sur Q dans un espace projectif PN Elle di®µere

de celle apparaissant dans [Ph]-I par la contribution des places archim¶ediennes

Pr¶ecis¶ement si k est un corps de d¶e¯nition de X et fX une de ses formes ¶elimi-
nantes ou de Chow d¶e¯nie sur k la hauteur projective de X s'¶ecrit en termes

de mesures locales

h X : Xv

[kv : Qv]
[k : Q] ¢ log Mv fX ;

oµu v parcourt l'ensemble des places de k et kv respectivement Qv d¶esigne le
compl¶et¶e de k respectivement Q pour la place v respectivement la place induite
par v La mesure locale Mv d'une forme est le maximum des valeurs absolues

v-adiques des coe±cients de la forme pour les places ultram¶etriques et pour une

place archim¶edienne associ¶ee µa un plongement ¾v de k dans C

log Mv fX : Z
SrN+1

log j¾v fX j : ¾^r
N+1 + d±fX :

N

Xi 1

1

2i ;

oµu r dim X + 1 SN+1 d¶esignant pour sa part la sphµere unit¶e de CN+1 et
¾N+1 la mesure invariante de masse totale 1 sur SN+1 En particulier la hauteur
projective d'un point di®µere de la hauteur de Weil par la contribution des places

archim¶ediennes oµu la norme euclidienne remplace la norme du maximum d'un
systµeme de coordonn¶ees projectives du point De même la hauteur projective d'une

vari¶et¶e di®µere de celle de [Ph]-I par la contribution des places archim¶ediennes oµu
la mesure Mv ci-dessus remplace la classique mesure de Mahler

On rappelle que si l'on d¶esigne par ¾± le plongement de Veronese de l'espace

projectif PN dans l'espace projectif PN 0 avec N 0 + 1 : ¡
N+±
N ¢

d¶e¯ni par

¾± : PN ¡ PN0

¾ x 7¡ ¢ ¢ ¢ : µ
±

®
¶

1 2

x® : ¢ ¢ ¢ ®2NN+1

j®j ±
;

on a avec les notations pr¶ec¶edentes deg ¾± X ±r¡1: deg X et h ¾± X
±r :h X voir [Ph]-III page 347

Si x est un vecteur µa coordonn¶ees dans kv on notera kxkv la norme du maxi-
mum des coordonn¶ees de x si v est ultram¶etrique et la norme euclidienne de x si
v est archim¶edienne Si x d¶esigne un systµeme de coordonn¶ees d'un point projectif
x on a

h x : Xv

[kv : Qv ]

[k : Q] ¢ log kxkv :
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On utilisera µa l'occasion la hauteur de Weil d'un vecteur x : x1; : : : ; xM

hW x : Xv

[kv : Qv]
[k : Q] ¢ log max jx1jv; : : : ; jxM jv ;

pour des vecteurs dont les composantes seront les coe±cients d'un polynôme voire

d'une famille de polynômes < hauteur homogµene > mais aussi en adjoignant 1 µa
ces coe±cients < hauteur inhomogµene >

3 Plongements et hauteurs normalis¶ees

Nous allons ¶etablir ici des comparaisons e®ectives entre la hauteur projective

d'une sous-vari¶et¶e d'une vari¶et¶e abelienne et la hauteur normalis¶ee correspondante

Dans le cas des points il s'agit lµa d'estimations bien connues : en e®et ce problµeme

a ¶et¶e trait¶e par Y Manin et Y Zarhin voir [Ma{Za] ainsi que par J Tate
et H Zimmer dans le cas particulier des courbes elliptiques voir par exemple
[Zi] Dans le cas des vari¶et¶es de dimensions sup¶erieures ces questions ont ¶et¶e
trait¶ees dans [Ph]-III x 3 mais sans expliciter les constantes de comparaison
Nous suivrons les preuves de cette r¶ef¶erence et les compl¶eterons a¯n d'obtenir des

constantes num¶eriques Ce travail sera e®ectu¶e au paragraphe 3 3 mais dans un
premier temps nous donnons des estimations e®ectives des degr¶es et hauteurs des

formules de duplication addition et translations par des points de torsion sur les

vari¶et¶es abeliennes

Pour plus de g¶en¶eralit¶e et bien qu'µa partir du paragraphe 4 suivant nous nous

restreindrons au cas principalement polaris¶e et n'utiliserons que des estimations

archim¶ediennes on pourrait donc travailler exclusivement avec des fonctions thêta
classiques nous montrerons ces r¶esultats µa l'aide des plongements d¶ecrits par
Mumford voir [Mu] en termes de < coordonn¶ees de Mumford > qui ne sont
rien d'autre que des avatars alg¶ebriques des fonctions thêta Le paragraphe 3 1
sera donc consacr¶e µa une ¶etude pr¶eliminaire des coordonn¶ees de Mumford

En¯n comme la technique pour comparer les hauteurs projective et normalis¶ee

consiste µa ¶etudier la variation de la hauteur sous l'action d'it¶er¶es de la multiplica-
tion par 2 le paragraphe 3 2 sera consacr¶e µa une description explicite des formules

de duplication ainsi que de leurs inverses dans les coordonn¶ees de Mumford
Nous donnerons de surcrô³t une estimation e®ective de la hauteur des formules

d'addition ¶egalement obtenues µa partir de formules explicites

3 1 Coordonn¶ees de Mumford

Nous commencerons par rappeler le plus succintement possible les notations et
d¶e¯nitions de base relatives aux plongements associ¶es µa des structures thêta au
paragraphe 3 1 1 ; pour plus de d¶etails on pourra se reporter µa l'article original de

D Mumford confer [Mu] ou par exemple au chapitre 6 de [Bi{La] Nous modi-
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¯erons ensuite ces coordonn¶ees projectives µa l'aide d'une transformation lin¶eaire

trµes simple a¯n d'obtenir des estimations plus agr¶eables et nous expliciterons le
dictionnaire permettant de passer des bases canoniques de Mumford µa ces nou-
velles coordonn¶ees paragraphe 3 1 2 Au paragraphe suivant 3 1 3 nous pr¶ecisons

les transformations lin¶eaires induites par les translations par certains points de

torsion et en¯n nous conclurons au paragraphe 3 1 4 par une discussion sur le
parall¶elisme avec les fonctions thêta classiques

3 1 1 Notations et rappels
On supposera donn¶es : une vari¶et¶e abelienne A de dimension g d¶e¯nie sur

k Q un ¯br¶e trµes ample et totalement sym¶etrique L sur A au sens de la
d¶e¯nition2 page 305 de [Mu] voir aussi [Bi{La] exercice 12 page 180 On notera

H L le sous-groupe de A form¶e des points x 2 A tels que ¿xL ' L oµu ¿x d¶esigne

la translation par x et G L l'ensemble des couples x;' oµu x 2 H L et ' est
un isomorphisme ' : L »¡ ¿xL On v¶eri¯e alors que l'on a la suite exacte voir
[Mu] page 290 :

f1g ¡ k ¡ G L ¡ H L ¡ 0 ;

et que k est le centre de G L pour sa structure de groupe naturelle et l'on peut
d¶e¯nir une forme bilin¶eaire altern¶ee non d¶eg¶en¶er¶ee eL sur H L comme suit :

8<
:

soient x et y dans H L et ~x ~y dans
G L au-dessus de x y

on pose : eL x; y ~x ¢
~y ¢

~x¡1
¢

~y¡1
2 k :

On v¶eri¯e ¶egalement que l'on a une d¶ecomposition H L K L © K0 L en sous-
groupes isotropes et eL permet d'identifer K0 L au dual[K L de K L voir [Mu]
page 293

La th¶eorie des diviseurs ¶el¶ementaires appliqu¶ee µa K L nous donne maintenant
un g-uplet d d1; : : : ; dg d'entiers positifs di+1 j di i 1; : : : ; g¡1 et l'on pose

K d
g

M
i 1

Z diZ ;

[K d hom K d ; k
et en¯n :

H d K d ©[K d :

Le g-uplet d sera appel¶e le type de L
Avec ces donn¶ees on introduit le groupe G d qui est le produit :

k £ K d £[K d ;

2 D¶e¯nition que nous rappelons ci-dessous
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muni d'une loi de groupe via :

®; x; l ¢ ®0; x0; l0 ® ¢ ®0
¢ l0 x ; x + x0; l:l0

et l'on v¶eri¯e que l'on a une suite exacte :

f1g ¡ k ¡ G d ¡ H d ¡ 0 :

On d¶e¯nit de même que pour H L par les commutateurs une forme bilin¶eaire

altern¶ee non d¶eg¶en¶er¶ee sur H d qui admet pour sous-espaces isotropes les K d[K d ; on notera cette forme ed

Le groupe G L admet alors une repr¶esentation naturelle dans le k-espace vec-
toriel ¡ A;L

8
<

:

soit z x;' 2 G L et s 2 ¡ A; L

on d¶e¯nit Uz : ¡ A;L ¡ A;L en posant : Uz s ¿¡x ' s :

Cette repr¶esentation fait de ¡ A; L un G L -module irr¶eductible confer [Mu]
th¶eorµeme 2 page 297

Soit maintenant V d l'espace des fonctions sur K d µa valeurs dans k on
d¶e¯nit une repr¶esentation U de G d dans V d en posant :

8 y 2 K d ; U ®;x;l f y ® ¢ l y ¢ f x + y :

Cette repr¶esentation est ¶egalement irr¶eductible ibidem proposition 3 page 295
On peut alors r¶esumer les r¶esultats de la premiµere partie de l'article de D Mum-

ford [Mu] en l'¶enonc¶e suivant :

Proposition{D¶e¯nition 3 1 Il existe un isomorphisme de G L vers G d qui
agit trivialement sur le sous-groupe k De tels isomorphismes sont en nombre ¯ni
Supposons un tel isomorphisme choisi Il existe alors un unique µa multiplication
par un scalaire non nul prµes isomorphisme du G L -module ¡ A; L vers le G d -
module V d On appellera un tel choix d'isomorphisme une structure thêta pour
la paire A; L

Supposons donn¶ee une structure thêta pour A; L et soit f : V d ¡¡ A;L l'isomorphisme induit par cette structure ; on identi¯era tacitement les

donn¶ees V d G d µa ¡ A;L G L respectivement
Les fonctions caract¶eristiques fournissent alors une base naturelle de V d Soit

a 2 K d on d¶e¯nit ±d
a 2 V d ¡ A;L en posant :

½
±d

a x 1 si x a
±d

a x 0 si x 6 a x 2 K d :
1

La famille de sections globales ±L : f ±d f ±d
a a2K d nous fournit alors

un plongement projectif de A que nous noterons ~£L
On appelle cette base les

coordonn¶ees de Mumford On notera

~£L
0

¢ ¢ ¢ : qL a :
¢ ¢ ¢ a2K d ;
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oµu qL a est la < valeur en l'origine 0 de A > de la section ±a 2 ¡ A;L ; comme la
collection des qL a est d¶e¯nie µa un scalaire non nul prµes nous disposons bien de

coordonn¶ees projectives de l'origine dans le plongement ainsi ¯x¶e Nous suppose-
rons implicitement dans toute la suite que ce scalaire est choisi de telle sorte que

les ¶egalit¶es ¶ecrites ci-dessous soient correctes3

On note [¡1] la multiplication par ¡1 sur A et l'on suppose donn¶e un isomor-
phisme Ã entre L et [¡1] L dont la restriction Ã 0 µa la ¯bre de L au-dessus de

l'origine est l'identit¶e Si x est un point d'ordre 2 de A on note e
L x le scalaire

® tel que la restriction Ã x de Ã µa la ¯bre L x de L au dessus de x soit la
multiplication par ®

On dit alors qu'un ¯br¶e en droites M sur A est totalement sym¶etrique s'il est
sym¶etrique et si eM x 1 pour tout point d'ordre 2 de A

Nous allons maintenant rappeler la d¶e¯nition de structures thêta compatibles

pour la paire L; L­2 Pour ceci nous aurons besoin des faits suivants

Reprenons l'isomorphisme Ã ¯x¶e pr¶ec¶edemment et consid¶erons pour un point
z x;' 2 G L la composition :

L
Ã

¡ [¡1] L
[¡1] '¡ [¡1] ¿xL ¿¡x[¡1] L

¿

¡xÃ

Ã¡ ¿

¡
xL ;

on pose alors º¡1 z ³¡x; ¡¿¡xÃ
¢
¡1

± [¡1] ' ± Ã´
On d¶e¯nit ensuite pour tout entier n ¸ 2 un morphisme "n : G L ¡ G L­n

en posant
"n x;' x;'­n ;

oµu '­n est l'isomorphisme

L­n '­n

¡ ¿xL­n

induit par 'En¯n nous utiliserons un morphisme ´n : G L­n ¡ G L ; nous ne rappel-
lerons pas sa d¶e¯nition pr¶ecise voir [Mu] page 310 mais dirons simplement qu'il
s'agit d'un morphisme canonique rendant commutatif le diagramme :

f1g ¡ k ¡ G L­n ¡ H L­n ¡ 0
® ®n

# # ń # mult par n

f1g ¡ k ¡ G L ¡ H L ¡ 0:

Introduisons maintenant les pendants de ces morphismes sur les groupes G d
Soit d un g-uplet de diviseurs ¶el¶ementaires on note 2d le g-uplet 2d1; : : : ; 2dg
et l'on identi¯e K d µa un sous-groupe de K 2d via la °µeche

a1; : : : ; ag 7¡ 2a1; : : : ; 2ag :

3 Si A est une vari¶et¶e abelienne complexe plong¶ee dans un espace projectif via un plongement
thêta classique on dispose bien ¶evidemment d'une structure thêta pour le ¯br¶e trµes ample associ¶e
au plongement ainsi ¯x¶e ; nous reviendrons sur ce parall¶elisme ci-aprµes
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Le dual [K d est alors naturellement un quotient de \K 2d ; on notera alors l
l'image naturelle d'un ¶el¶ement l de\K 2d dans [K d ; on notera ¶egalement que si
l 2[K d il existe un unique ¶el¶ement l0 de\K 2d tel que

l0 x l 2x

pour tout ¶el¶ement x de K 2d On en d¶eduit une injection de [K d dans\K 2d
que nous noterons 2 On note alors E2 : G d ¡ G 2d le morphisme d¶e¯ni
par

E2 ®; x; l ®2;x; 2 l :

Pour n 2 Z Dn est le morphisme de G d ¡ G d donn¶e par

Dn ®;x; l ³®n2
; nx; ln´ ;

et H2 : G 2d ¡ G d d¶e¯ni par

H2 ®; x; l ®2; 2x; l :

Avec ces notations on peut d¶e¯nir : une structure thêta f : G L ¡ G d
est dite sym¶etrique si

f ± º¡1 D¡1 ± f ;

deux structures thêta f1 pour L et f2 pour L­2 sont dites compatibles si elles sont
toutes deux sym¶etriques et si

f2 ± "2 E2 ± f1; et f1 ± ´2 H2 ± f2 :

3 1 2 Petit formulaire

Nous supposerons pour commencer que le ¯br¶e L est totalement sym¶etrique

et muni d'une paire de structures thêta compatibles pour L; L­2 Notons »

l'isog¶enie :
» : A £ A ¡ A £ A

x; y
7¡ x + y;x¡ y :

2

Notons N le ¯br¶e ¼1L­ ¼2L ; l'isog¶enie » induit alors le morphisme :

¡ A; L ­¡ A;L
KÄunneth' ¡ A2; N

# »

¡ A2;» N ' ¡¡A
2;N­2

¢
KÄunneth' ¡¡A;L­2

¢­¡¡A; L­2
¢:

Les structures thêta induisent un morphisme V d 2 ¡ V 2d 2 dont la descrip-
tion en termes de bases canoniques permet de d¶ecrire entiµerement l'action de »
Plus pr¶ecis¶ement la < formule d'addition fondamentale > confer [Mu] page 324

une fois traduite confer ¶egalement [Bi{La] exercice 1 page 208 pour la traduc-
tion donne l'¶egalit¶e suivante pour tout a; b 2 K d 2 :

±La x + y ±Lb x¡ y X´2K 2

±L­2
a+b

2 +´ x ±L­2
a¡b

2 +´ y ; 3
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oµu pour plus de lisibilit¶e nous avons d¶esign¶e par x respectivement par y la
< premiµere > respectivement la < seconde > coordonn¶ee dans A2 En¯n dans

la relation ci-dessus K 2 d¶esigne l'ensemble des points de 2-torsion de K d
rappelons que puisque L est totalement sym¶etrique K 2 ' Z 2Z g en vertu

du corollaire 4 page 315 de [Mu] et a+b
2 respectivement a¡b

2 d¶esigne un point
de 2-division quelconque de a + b respectivement a¡ b sous la seule restriction
a+b

2 + a¡b
2 a

La multiplication naturelle

¡ A; L ­ ¡ A; L ¡ ¡ A; L­2

est ¶egalement convertie en une loi de composition :

² : V d ­ V d ²¡ V 2d :

Nous utiliserons les relations suivantes confer [Ma{Za] page 172 formules 1
et 2

±La ² ±Lb X´2K 2

qL­2 µa¡ b

2
+ ´¶ ±L­2

a+b
2 +´ ; 4

oµu lµa encore les ¶el¶ements a¡b
2

a+b
2

sont choisis de telle sorte que leur somme vaut
a tous les autres choix ¶etant arbitraires

En¯n si l'on suppose que l'on a de plus une structure thêta sur L­4 donnant
une paire de structures compatibles pour L­2; L­4 on dispose de la < formule
de duplication > :

±La ± [2] X´2K 2

±L­4

a
2
+´ : 5

On a ¶egalement
qL b ±La ± [2] X´2K 2

±L­2

a+b
2 +´ ² ±L­2

a¡b
2 +´ : 6

On d¶eduit facilement ces relations de la formule d'addition fondamentale for-
mule 3 rappel¶ee ci-dessus

Nous allons maintenant introduire des coordonn¶ees modi¯¶ees Ainsi pour toute
la suite on ¯xera un ¯br¶e ample et sym¶etrique M sur A et l'on posera4

L
M­4 de telle sorte que L est automatiquement totalement sym¶etrique voir [Mu]
page 307 On suppose de plus donn¶ees des paires de structures thêta compatibles

pour L; L­2
L­2; L­4

L­4; L­8 et L­8; L­16 on renvoie µa [Mu] pages 317

4 On pourrait bien sûr a®aiblir cette contrainte et prendre pour L un ¯br¶e trµes ample totalement
sym¶etrique quelconque mais cette restriction ne fait pas v¶eritablement perdre en g¶en¶eralit¶e pour
la suite de ce travail puisque la variation des hauteurs projectives est bien contrôl¶ee sous l'action
d'un Veronese et simpli¯e de surcrô³t l'expression des formules de duplication en assurant
l'existence de su±samment de points de 2n-torsion dans le groupe H L
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µa 320 pour l'existence de telles structures et en particulier µa la proposition 7
page 320

On notera Ki K 2id pour 0 · i · 4 nous identi¯erons ¡¡A; L­2i
¢

µa

V ¡2id¢
et nous ¯xerons des coordonn¶ees de Mumford que nous noterons ± i

¡± i
a ¢a2Ki ¡±

2id
a ¢a2Ki

pour ¡¡A; L­2i
¢

Nous noterons ¶egalement pour n entier Ki n i 0; : : : ; 4 le sous-groupe de

Ki form¶e des ¶el¶ements de n-torsion On notera que le choix L M­4 oµu M est
ample et sym¶etrique impose que le groupe H L contient l'ensemble A4 des points

de 4-torsion de A confer par exemple [Bi{La] chapitre 2 lemme 4 7 page 38
En particulier pour tout n divisant 4 on a K0 n ¢ ¢ ¢ K4 n ' Z nZ g et
nous noterons parfois K n ce sous-groupe

On introduit maintenant les coordonn¶ees modi¯¶ees suivantes : soient a; l 2
K0 £[K 2 On pose5

¢ 0
a;l X

c2K 2

l c ±
0

a+c 7

et de même pour a; l 2 K2 £\K2 4 ou a; l 2 K4 £\K4 8

8>
>

<
>
>:

¢ 2
a;l X

c2K2 4

l c ±
2

a+c ;

¢ 4
a;l X

c2K4 8

l c ±
4

a+c :
8

Pour i 0; 2 ou 4 on d¶esignera par Zi un systµeme de repr¶esentants du quotient
Ki Ki 2

¢
2i 2 Les systµemes de coordonn¶ees que nous choisissons6 sont alors :

¢ i ³¢ i
a;l ´a2Zi;l2 \Ki 2¢2i 2

:

Un tel systµeme de coordonn¶ees d¶e¯nit un plongement projectif que nous notons

£
L­2i toujours pour i 0; 2 ou 4 On posera ¶egalement pour tout a; l 2

Ki £ \Ki 2
¢

2i 2 alias des trµes classiques < thêta nullwerte >

µ
L­2i a; l X

c2Ki 2¢2i 2

l c q
L­2i a + c ;

un systµeme de coordonn¶ees projectives de l'origine dans ce plongement est alors :

£
L­2i 0

¡¢ ¢ ¢ : µ
L­2i a; l : ¢ ¢ ¢ ¢a2Zi;l2 \Ki 2¢2i 2

:

5 On e®ectue donc une transform¶ee de Fourier partielle ; d'autres choix sont possibles confer
[Mu] page 334
6 Qui d¶ependent donc d'un choix de Zi mais uniquement µa des multiplications par des racines
de l'unit¶e prµes : voir le fait 3 3 plus bas
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Notation 3 2 On d¶esignera par h A la hauteur projective du point £L­4 0A
£M­16 0A Pour all¶eger la notation on d¶esignera parfois indi®¶eremment par 0A
l'origine de A son image par le plongement projectif £L­4 et le systµeme de coor-
donn¶ees projectives

¢ ¢ ¢ : µL­4 a; l :
¢ ¢ ¢ a2Z2;l2\K2 4

de ce dernier point

Terminons ce sous-paragraphe en rappelant les propri¶et¶es de base des coor-
donn¶ees de Mumford une fois traduites dans les nouvelles coordonn¶ees ¢ que

nous venons d'introduire ci-dessus

Fait 3 3 Pour tous quintuplets de structures thêta deux µa deux compatibles com-
me ci-dessus on a les propri¶et¶es suivantes :

i Pour i 0; 2 ou 4 et pour tout a 2 Ki on a les formules d'inversion7:

± i
a

1

2 1+i 2 g X
l \2Ki 2¢2i 2

¢ i
a;l ;

ii pour i 0; 2 et pour tout a; l 2 Ki £ \Ki 2 ¢ 2i 2 les formules de dupli-
cation sont :

¢ i
a;l ± [2] ¢ i+2

a
2
;2 l ;

oµu a
2

est un point de 2-division quelconque de a comparer avec le

point iv ci-dessous Rappelons que 2 est l'injection de \Ki ¡
2

¢
2i 2

¢
vers\Ki ¡4

¢
2i 2

¢
d¶e¯nie au paragraphe 3 1 1 ;

iii pour i 0; 2 ou 4 et pour tout a; l 2 Ki £ \Ki 2
¢

2i 2 l'action de la
multiplication par ¡1 est donn¶ee par :

¢ i
¡a;l¡1 ± [¡1] ¢ i

a;l ;

iv soit a 2 Ki pour i 0; 2 ou 4 u 2 Ki 2
¢

2i 2 et l 2 \Ki 2
¢

2i 2 ; on a

alors variation du systµeme ³¢ i
a;l ´ avec Zi :

¢ i
a+u;l l ¡u ¢ i

a;l :

D¶emonstration Calculons

1

2 1+i 2 g X
l2 \Ki 2¢2i 2

¢ i
a;l

1

2 1+i 2 g X
l2 \Ki 2¢2i 2

X
c2Ki 2¢2i 2

l c ± i
a+c

1

2 1+i 2 g X
c2Ki 2¢2i 2

± i
a+c X

l2 \Ki 2¢2i 2

l c ;

7 On notera qu'il convient de corriger comme ci-dessous les formules au bas de la page 176 de
[Ma{Za] ainsi que les calculs subs¶equents de cette r¶ef¶erence
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la formule des caractµeres donne maintenant : Pl2 \Ki 2¢2i 2 l c 0 si c
6

0 et
2 1+i 2 g sinon ce qui montre i

Le point iii d¶ecoule de la formule d'inversion de Mumford d'oµu l'on d¶eduit :

±a ± [¡1] ±¡a

voir [Mu] page 331 voir aussi [Bi{La] exercice 13 page 181 ; il su±t ensuite de

reporter cette relation dans les d¶e¯nitions 7 et 8 des coordonn¶ees ¢
Passons maintenant au point ii On a par d¶e¯nition :

¢ i
a;l ± [2] X

c2Ki 2¢2i 2

l c ± i
a+c ± [2] ;

et par la formule 5

¢ i
a;l ± [2] X

c2Ki 2¢2i 2

l c X´2K 2

±
2+i

a
2
+ c

2
+´ X

c2Ki+2 4¢2i 2

l 2c ±
2+i

a
2
+c ;

et par d¶e¯nition même de l'injection 2 on a l 2c 2 l c d'oµu

¢ i
a;l ± [2] X

c2Ki+2 4¢2i 2

2 l c ±
2+i

a
2
+c ¢ 2+i

a
2

;2 l ;

d'oµu le point ii
Passons maintenant au point iv On a par d¶e¯nition

¢ i
a+u;l X

c2Ki 2¢2i 2

l c ± i
a+u+c X

c2Ki 2¢2i 2

l c ¡ u ± i
a+c l ¡u ¢ i

a;l ;

d'oµu le point iv et le fait 3 3 ¤

3 1 3 Action du groupe H L sur les coordonn¶ees de Mumford
Le groupe thêta G L et sa repr¶esentation U permettent d'¶etudier les propri¶et¶es

du plongement £L
Cette remarque nous sera utile au paragraphe 3 3 suivant pour

¶etudier la variation de la hauteur projective d'une sous-vari¶et¶e de A d¶e¯nie sur
Q par translation par des points de deux torsion voir lemme 3 10 En e®et si
z x;' 2 G L on a un automorphisme Uz de ¡ A; L et l'on v¶eri¯e µa l'aide

de la d¶e¯nition de U que l'automorphisme projectif associ¶e ne d¶epend que de

x 2 H L ce qui nous d¶e¯nit une repr¶esentation

½0 : H L ¡ PGlN k :

On a alors voir [Bi{La] page 163 proposition 6 1 : pour tout x 2 H L le
diagramme suivant commute :

A £L¡ PN
¿¡x # #½0x

A £L¡ PN :

9
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On peut bien ¶evidemment en faire autant pour les repr¶esentations Ui i 2 ou

4 associ¶ees µa G ³L­2i´ ; on notera ½i la repr¶esentation associ¶ee µa chacun de ces

plongements

On en d¶eduit la proposition :

Proposition 3 4 Soient x un ¶el¶ement de H ³L­2i´ et i 0; 2 ou 4 alors pour

tout a 2 Zi et tout k 2 \Ki ¡2
¢

2i 2
¢

on a :

½i x h¢ i
a;k i l a¡ u ¢ i

a¡u;¼ l ¢k ;

oµu x est identi¯¶e µa un ¶el¶ement u; l de H 2id Ki£c
Ki et oµu ¼ est la projection

c
Ki ¡ c

Ki±¡
21+ i2

c
Ki¢ ' \Ki ¡

2
¢

2i 2
¢

En particulier l'action de ½i x sur le systµeme de coordonn¶ees ¢ i est une

transformation lin¶eaire donn¶ee par la compos¶ee d'une action diagonale agissant
par multiplication par des racines de l'unit¶e avec une permutation des coordonn¶ees

D¶emonstration On v¶eri¯e voir par exemple [Bi{La] pages 168{169 que pour
tout a 2 Ki et tout y 2 Ki on a

½i u; l ± i
a y l y ± i

a u + y ;

ce qui se traduit par :

½i u; l ± i
a l a ¡ u ± i

a¡u ;

en reportant dans la d¶e¯nition de ¢ i on en d¶eduit que pour tout a 2 Ki et tout
k 2 \Ki ¡

2
¢

2i 2
¢

on a :

½i u; l ¢ i
a;k X

c2Ki 2¢2i 2

k c l a + c ¡ u ± i
a+c¡u

l a ¡ u ¢ i
a¡u;¼ l ¢k ;

ce qui montre bien la proposition 3 4 ¤

A¯n de pouvoir tirer parti du point ii de la proposition 3 8 ci-aprµes pour
obtenir des informations sur la hauteur des formules de duplication nous aurons

besoin du lemme :

Lemme 3 5 Soit a; l 2 K2 £\K2 4 il existe alors un ¶el¶ement b;k 2 K2 £\K2 4 tel que b a mod 2K2 k¡1
¢ l 2\K2 4

2
et :

µ
L­4 b; k 6 0 :

D¶emonstration Soit x 2 H ¡L­4
¢ tel que x ¡a; l0 avec ¼ l0 l oµu ¼ est

la projection de

c
K2 sur\K2 4 puisque L est trµes ample rappelons que c'est la
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puissance quatriµeme d'un ¯br¶e ample il existe un ¶el¶ement u; ® 2 K0 £\K0 2

tel que :

¢ 0
u;® ¡2x 6 0 ;

le fait 3 3 point ii nous assure que

¢ 2

u
2
;2 ®

¢ 0
u;® ± [2] :

La proposition 3 4 ci-dessus appliqu¶ee avec i 2 a; k remplac¶e par ¡
u
2 ; 2 ®

¢
et u; l remplac¶e par ¡a; l0 nous assure que :

½2 x ¢ 2

u
2
;2 ® l0 ³

u
2

+ a´¢ 2

u
2
+a;l¢2 ®

;

et l'on d¶eduit des deux relations pr¶ec¶edentes que

µL­4 ³
u
2

+ a; l ¢
2 ®´ l0 ³¡a ¡

u
2´¢ 2

u
2

;2 ® ¡x

l0 ³¡a ¡
u
2´¢ 0

u;® ¡2x 6 0 :

Par ailleurs on a bien 2 ® 2\K2 4
2

et u
2

est un ¶el¶ement de K1 donc de 2K2 ce

qui montre bien le lemme 3 5 ¤

3 1 4 Comparaison avec les thêta classiques

Supposons que la vari¶et¶e abelienne A est d¶e¯nie sur C Supposons ¶egalement
pour simpli¯er la pr¶esentation que M est un ¯br¶e sym¶etrique et ample associ¶e
µa une polarisation principale pour une discussion dans un cadre plus g¶en¶eral
on pourra par exemple se reporter µa [Ig] On peut alors identi¯er A µa un tore

complexe Cg ¤ oµu ¤ Zg + ¿Zg et ¿ est dans l'espace de Siegel de dimension
g voir appendice Soit n un entier ¸ 3 de telle sorte que M­n est trµes ample
on peut alors plonger A dans un espace projectif via l'application

~£M­n : Cg ¡ Png¡1

z
7¡ ¡µ a;0 n¿; nz

¢a2
1
n Zg ;

oµu si a; b sont des ¶el¶ements de Rg la fonction µ a;b est d¶e¯nie par :

µ a;b ¿; z : Xm2Zg

exp ¡i¼
t m + a ¿ m + a + 2i¼ t m + a ¢ z + b

¢
: 10

Si l'on suppose de surcrô³t que n est pair alors le ¯br¶e M­n est totalement
sym¶etrique et si l'on note n le g-uplet n; : : : ; n on peut v¶eri¯er facilement que

l'application V n ¡ ¡ A; M­n d¶e¯nie par ±a 7¡ µ a;0 n¿; nz pour tout
a 2 K n est une structure thêta sur M­n au sens de la proposition{d¶e¯nition 3 1

De plus ce même ¶enonc¶e nous assure qu'une telle identi¯cation est unique µa une

ambiguÄ³t¶e ¯nie prµes
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Les plongements ~£M­n fournissent aussi naturellement des paires de structures

thêta compatibles pour ¡M­n; M­2n
¢

De ce fait toutes les propri¶et¶es et formules

des paragraphes pr¶ec¶edents ont un avatar classique en particulier la formule d'ad-
dition fondamentale 3 correspond au th¶eorµeme 2 page 139 de [Ig] bien que pour
la retrouver µa partir de loc cit il faille une petite contorsion

Ainsi les coordonn¶ees ¢ ne sont qu'un avatar des plongements thêta < avec
caract¶eristique > Nous supposerons cela est su±sant pour nos besoins dor¶e-
navant que n est de la forme n 4k On introduit alors le plongement £M­n qui
est d¶e¯ni par la collection des

¡µ a;b ¿; 2kz
¢a;b2

1
2k Zg Zg

Comme les coordonn¶ees ¢ ces derniµeres sont obtenues µa partir des µ a;0 n¿; nz
µa l'aide d'une transform¶ee de Fourier partielle confer [Ig] page 171 :

µ a;b ¿; 2kz X
q2Zg 2kZg

exp ¡
2i¼ t q + a ¢ b

¢
µ q+a

2k ;0 4k¿; 4kz

exp ¡
2i¼ ta ¢ b

¢
: ¢ 2 k¡1

a
2k ;2kb

z ;

oµu a 2k est un point de 2k-division quelconque de a
Comme on le voit ci-dessus les coordonn¶ees ¢ ne coÄ³ncident pas vraiment

avec les coordonn¶ees induites par les fonctions thêta classiques En particulier
µ a;b ¿; : d¶epend du choix de b dans sa classe modulo Zg par une multiplication
par une racine de l'unit¶e alors que pour ¢ a;l c'est une fonction de l vu dans

le quotient
c
K0 4

c
K0 '[K 4 Il s'agit toutefois grosso modo de la même notion

µa ces petites ambiguÄ³t¶es prµes On verra d'ailleurs ci-dessous que les formules de

Riemann satisfaites par les coordonn¶ees ¢ sont exactement les mêmes que celles

satisfaites par les fonctions thêta classiques

On peut retrouver les fonctions thêta classiques de maniµere alg¶ebrique en modi-
¯ant l¶egµerement la d¶e¯nition des ¢ ; il su±t de poser pour x 2 H M­n identi¯¶e

µa un ¶el¶ement a; l de K n £\K n

~¢
2 k¡1

¡a;l ½k¡1 x h¢ 2 k¡1
0;0 i :

En tout ¶etat de cause on pourra par la suite et pour chaque place archim¶edienne

v du corps de nombres sur laquelle A sera suppos¶ee d¶e¯nie identi¯er A Cv µa la
vari¶et¶e abelienne complexe plong¶ee via £M­n On disposera alors de toutes les

estimations de comparaison de hauteur que nous allons ¶etablir au paragraphe 3 3
puisque les £M­n satisfont toutes les hypothµeses requises tours de structures

thêta compatibles pour ¶etablir ces comparaisons

3 2 Formules d'addition et de duplication

Pour d¶eduire des formules explicites pour les formules d'addition et de duplica-
tion il est agr¶eable de passer aux coordonn¶ees de Mumford modi¯¶ees que nous
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avons introduites Il est en fait pr¶ef¶erable d'¶etablir pr¶ealablement pour ces nou-
velles coordonn¶ees un analogue des < formules de Riemann > classiques confer par
exemple [Ig] theorem 1 page 137 dont nous pourrons d¶eduire par sp¶ecialisation
µa des cas particuliers les formules recherch¶ees Pour ceci nous allons introduire le
morphisme :

Â : A4 ¡ A4

x; y; z; t 7¡ s; u; v; w

oµu s : x + y + z + t u : x+ y¡ z ¡ t v : x¡ y + z¡ t et w : x¡ y ¡ z + t
Avec ces notations on a :

Proposition 3 6 Soient a1; : : : ; a4 des ¶el¶ements de K2 et l1; : : : ; l4 des ¶el¶ements
de\K2 4 Notons b1 a1+a2+a3+a4 b2 a1+a2¡a3¡a4 b3 a1¡a2+a3¡a4
b4 a1 ¡ a2 ¡ a3 + a4 ; on choisira ¶egalement un relev¶e quelconque ~li

de li dans\K4 8 pour chaque 1 · i · 4 En¯n on posera ~k1 ~l1 ¢~l2 ¢~l3 ¢~l4
~k2 ~l1 ¢~l2 ¢~l¡1

3 ¢ ~l¡1
4

~k3 ~l1 ¢ ~l¡1
2 ¢ ~l3 ¢ ~l¡1

4
et ~k4 ~l1 ¢ ~l¡1

2 ¢ ~l¡1
3 ¢ ~l4 Alors on a la relation :

2g¢ 2
a1;l1 s ¢ 2

a2;l2 u ¢ 2
a3;l3 v ¢ 2

a4;l4 w

Xd2K 4 K 2

u2\K2 2

l1 d ¢ 4
b1+d

4 ;~k1¢4 u
x ¢ 4

b2+d
4 ;~k2¢4 u

y ¢ 4
b3+d

4 ;~k3¢4 u
z ¢ 4

b4+d
4 ;~k4¢4 u t ;

oµu bi+d
4

pour i 1; 2; 3; 4 sont choisis de sorte que leur somme vaille a1 tous les

autres choix ¶etant arbitraires

Remarques On notera que dans la formule de Riemann classique on ne change

pas de ¯br¶e ; on pourrait penser µa utiliser le fait 3 3 point ii mais rien ne permet
d'assurer a priori que les bi 2 sont des ¶el¶ements de K2 d'oµu la formulation que

nous avons choisie

Plus g¶en¶eralement la formule de Riemann classique autorise des < coordonn¶ees

thêta avec caract¶eristiques r¶eelles quelconques > alors qu'ici nous ne disposons bien
¶evidemment que de coordonn¶ees dans K2 £\K2 4 Pour obtenir une telle variante

il su±t toutefois en notant P le ¯br¶e de Poincar¶e sur A £
b
A de remplacer le

¯br¶e N ­4i 1¼i L par un ¯br¶e de la forme N 0 : ­4i 1¼i Li oµu pour i 1; : : : ; 4

on choisit Li L­ PjA£fyig et oµu les yi sont quelconques dans

b
A Nous n'avons

toutefois pas jug¶e utile d'alourdir la pr¶esentation de cette proposition plus avant

D¶emonstration Fixons pour i 1; : : : ; 4 des ¶el¶ements ai; li de K2 £\K2 4 et
notons P le produit :

P : ¢ 2
a1;l1 s ¢ 2

a2;l2 u ¢ 2
a3;l3 v ¢ 2

a4;l4 w :
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En rempla»cant les ¢ 2
ai;li

par leur valeur formule 8 on a :

P X
c1;:::;c42K 4

4

Yi 1

li ci ±
2

a1+c1 s ±
2

a2+c2 u ±
2

a3+c3 v ± 2
a4+c4 w ;

en tenant compte de la formule 3 appliqu¶ee une fois avec X : x+y et Y : z+t
de sorte que s X + Y et u X ¡ Y et une deuxiµeme fois avec X : x¡ y et
Y : z ¡ t de sorte que v X + Y et w X ¡ Y on obtient :

P Xc1;:::;c42K 4

´1;´22K 2

4

Yi 1

li ci ±
3

a1+a2+c1+c2
2 +´1

x + y ±
3

a1¡a2+c1¡c2
2 +´1

z + t

£ ±
3

a3+a4+c3+c4
2 +´2

x¡ y ±
3

a3¡a4+c3¡c4
2 +´2

z ¡ t :

En appliquant une nouvelle fois la même formule 3 on en tire :

P Xc1;:::;c42K 4

´1;:::;´42K 2

4

Yi 1

li ci ±
4

a1+a2+a3+a4+c1+c2+c3+c4
4 +´1+´2

2 +´3
x

£ ±
4

a1+a2¡a3¡a4+c1+c2¡c3¡c4
4 + ´1¡´2

2 +´3
y

£ ±
4

a1¡a2+a3¡a4
4 +c1¡c2+c3¡c4

4 +´1+´2
2 +´4

z

£ ±
4

a1¡a2¡a3+a4
4 + c1¡c2¡c3+c4

4 + ´1¡´2
2 +´4

t :

En tenant compte du fait 3 3 point i on a :

± 4
´1+´2

2 +´3+P
4
i 1

ai+ci4
x

1

8g X
®12\K4 8

¢ 4
´1+´2

2 +´3+P
4
i 1

ai+ci4 ;®1
x ;

et de même pour les autres facteurs intervenant dans le produit ci-dessus

Posons maintenant d c1 + c2 + c3 + c4 et rempla»cons dans les expressions

ci-dessus c4 par d¡c1¡c2¡c3 ; on note que c1+c2
2

c1+c3
2

et c2+c3
2

sont des ¶el¶ements

de K4 8 et l'on applique le fait 3 3 point iv On obtient donc :

¢ 4
d+b1

4 + ´1+´2
2 +´3;®1

x ¢ 4
b1+d

4 ;®1
x ®¡1

1 ¡
´1+´2

2 + ´3¢
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et de même :

8
>
>>>

<
>
>>>:

¢ 4
b2+2c1+2c2¡d

4 + ´1¡´2
2 +´3;®2

y ¢ 4
b2¡d

4 ;®2
y ®¡1

2 ¡
c1+c2

2 + ´1¡´2
2 + ´3¢

;

¢ 4
b3+2c1+2c3¡d

4 + ´1+´2
2 +´4;®3

z ¢ 4
b3¡d

4 ;®3
z ®¡1

3 ¡
c1+c3

2 + ´1+´2
2 + ´4¢

;

¢ 4
b4¡2c2¡2c3+d

4 + ´1¡´2
2 +´4;®4

t ¢ 4
b4+d

4 ;®4
t ®¡1

4 ¡¡ c2+c3
2 + ´1¡´2

2 + ´4¢
:

Notons maintenant :

F ®1; : : : ; ®4 Xc1;c2;c32K 4

´1;:::;´42K 2

l1 ¢ l¡1
4 c1 l2 ¢ l¡1

4 c2 l3 ¢ l¡1
4 c3

£ ®¡1
1 ¡

´1+´2
2 + ´3¢

®¡1
2 ¡

c1+c2
2 + ´1¡´2

2 + ´3¢

£ ®¡1
3 ¡

c1+c3
2 + ´1+´2

2 + ´4¢
®¡1

4 ¡¡ c2+c3
2 + ´1¡´2

2 + ´4¢
;

nous allons simpli¯er la fonction F avant de la r¶einjecter dans l'expression trouv¶ee

pour P
Tout d'abord en isolant la somme

X´42K 2

®¡1
3 ¡

c1+c3
2 + ´1+´2

2 + ´4¢
®4 ¡

c2+c3
2 + ´2¡´1

2 + ´4¢ ;

la formule des caractµeres nous assure que cette somme ne peut être non nulle que

si ®4 ®3 mod [K 2 De même en isolant la somme portant sur ´3 on trouve

®2 ®1 mod [K 2 ; en isolant ensuite les sommes portant sur ´1; ´2 on trouve

¶egalement que ®3 ®1 mod [K 2 En d'autres termes les ®i sont tous ¶egaux
modulo des carr¶es et nous pouvons donc poser ®i ®1 ¢

2 ¯i pour i 2; 3 et
4 oµu les ¯i sont des ¶el¶ements de\K2 4

Isolons maintenant la somme portant sur c2 c'est-µa-dire :

X
c22K2 4

l2 ¢ l¡1
4 c2 ®¡1

1 ³
c2

2 ´ 2 ¯¡1
2 ³

c2

2 ´®1 ³
c2

2 ´ 2 ¯4 ³
c2

2 ´ ;

on v¶eri¯e alors µa l'aide de la formule des caractµeres que cette somme ne peut être

non nulle que si ¯2 l2 ¢ l¡1
4 ¢ ¯4

De même en isolant la somme portant sur c3 on trouve ¯3 ¯4 ¢ l3 ¢ l¡1
4

Sachant que l'expression F ne peut être non nulle que sous ces conditions
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celle-ci se simpli¯e alors en :

F ¡®1; ®1 ¢
2 l2 ¢

2 l¡1
4 ¢

2 ¯4; ®1 ¢
2 l3 ¢

2 l¡1
4 ¢

2 ¯4; ®1 ¢
2 ¯4¢

64g Xc12K 4

´1;´22K 2

¡l1 ¢ l4 ¢ l¡1
2 ¢ l¡1

3 ¢
c1 : l2 ¡´1 + ´2

£ l3 ¡´1 ¡ ´2 : ®1 ¡c1 : ¯4 ¡2c1 + ´1 + ´2 :

En isolant le terme en ´1 par exemple on obtient la somme :

X´12K 2

l2 ´1 l3 ´1 ¯4 ´1 ;

qui ne peut être non nulle que si ¯4 l2 ¢ l3 ¢
2 ® avec ® 2[K 2 et l'on obtient

notons que la somme portant sur ´2 se simpli¯e ¶egalement sous cette condition :

F ¡®1; ®1 ¢
2 ¡l

2
2 ¢l¡1

4 ¢l3 ¢
2 ®

¢
; ®1 ¢

2 ¡l
2
3 ¢l¡1

4 ¢l2 ¢
2 ®

¢
; ®1 ¢

2 l2 ¢ l3 ¢
2 ®

¢

256g X
c12K 4

l1 ¢ l4 ¢ l2 ¢ l3 c1 ®1 ¡c1 :

Notons pour i 1; : : : ; 4 ~li un relev¶e quelconque de li dans\K4 8 que nous

¯xerons une fois pour toutes La formule des caractµeres nous assure que cette
expression ne peut être non nulle que si ®1 ~l1 ¢ ~l2 ¢ ~l3 ¢ ~l4 ¢

4 °1
~k1 ¢

4 °1 oµu

°1 est un ¶el¶ement de[K 2 On pose :

4 °2 4 °3 4 °4 4 °1 ¢
2

¡l
2
2 ¢ l23 ¢

2 ®
¢

:

Calculons avec ces notations et en notant que pour tout i compris entre 1 et 4
on a par d¶e¯nition la relation 2 li ~l2i :

®1 ¢
2

¡l
2
2 ¢ l¡1

4 ¢ l3 ¢
2 ®

¢
4 °1 ¢

4 ® ¢~l1 ¢³~l2 ¢
2 l22´ ¢³~l3 ¢

2 l3´ ¢³~l4 ¢
2 l¡1

4 ´
4 °1 ¢

4 ® ¢~l1 ¢~l2 ¢~l¡
1

3 ¢~l¡
1

4 ¢
2 l22 ¢

2 l23
~k2 ¢

4 °2 :
On v¶eri¯e µa l'aide d'un calcul similaire :

8
>
>>>
<
>
>>>:

®1
~k1 ¢

4 °1 ;

®2 ®1 ¢
2 ¡l

2
2 ¢ l¡1

4 ¢ l3 ¢
2 ®

¢
~k2 ¢

4 °2 ;

®3 ®1 ¢
2 ¡l

2
3 ¢ l¡1

4 ¢ l2 ¢ 2 ®
¢

~k3 ¢
4 °3 ;

®4 ®1 ¢
2 l2 ¢ l3 ¢

2 ® ~k4¢
4 °4 :

On en d¶eduit pour ¯nir en reportant dans F :

F ³~k1 ¢
4 °1; ~k2 ¢

4 °2; ~k3 ¢
4 °3; ~k4 ¢

4 °4´ 1024g :
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Il su±t maintenant de reporter ce calcul dans la valeur de P que nous avions

trouv¶ee ci-dessus :

P
1

4g Xd2K 4

°1;®2[K 2

l4 d ¢ 4
b1+d

4 ;~k1¢4 °1
x ¢ 4

b2¡d
4 ;~k2¢4 °2

y

£ ¢ 4
b3¡d

4 ;~k3¢4 °3
z ¢ 4

b4+d
4 ;~k4¢4 °4

t :

En injectant le point iv du fait 3 3 i e on remplace les termes ¡d
4

par d
4

en
¶ecrivant ¡d

4
d
4 ¡ d

2
et en tenant compte du fait que tous les 4 °i sont triviaux

sur les points de K 4 ceci donne :

P
1

4g Xd2K 4

®;°12[K 2

l1 d ¢ 4
b1+d

4 ;~k1¢4 °1
x ¢ 4

b2+d
4 ;~k2¢4 °2

y

£ ¢ 4
b3+d

4 ;~k3¢4 °3
z ¢ 4

b4+d
4 ;~k4¢4 °4

t :

Notons maintenant Z un systµeme de repr¶esentants de K 4 K 2 On a donc

toujours en tenant compte du point iv du fait 3 3 :

P
1

4g Xd2Z;e2K 2

®;°12[K 2

l1 d + e ¢ 4
b1+d+e

4 ;~k1¢4 °1
x ¢ 4

b2+d+e
4 ;~k2¢4 °2

y

£ ¢ 4
b3+d+e

4 ;~k3¢4 °3
z ¢ 4

b4+d+e
4 ;~k4¢4 °4

t

1

4g Xd2Z
®;°12[K 2

l1 d ¢ 4
b1+d

4 ;~k1¢4 °1
x ¢ 4

b2+d
4 ;~k2¢4 °2

y

£ ¢ 4
b3+d

4 ;~k3¢4 °3
z ¢ 4

b4+d
4 ;~k4¢4 °4

t X
e2K 2

l1 e

4

Yi 1
³~ki ¢

4 °i´µ¡e

4 ¶ :

Comme d'une part Q
4
i 1

~ki ~l
4
1 et d'autre part

4

Yi 1

4 °i 4 °4
1 ¢ ¡2 ¡l

6
2 ¢ l63 ¢

2 ®3

¢ 2 l22 ¢
2 l23 ¢

4 ® ;

on a

X
e2K 2

l1 e
4

Yi 1

~ki¢
4 °i µ¡e

4 ¶ X
e2K 2

³l1 ¢ ~l1 ¢ ® ¢ l2 ¢ l3´ e X
e2K 2

®¢l2¢l3 e :

La formule des caractµeres nous donne donc que ¹l2 ¢ ¹l3 ® rappelons que ¹
¢d¶esigne ici la projection naturelle de\K2 4 vers\K2 2 En reportant la valeur de
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® que nous venons de calculer dans la d¶e¯nition des °i on en tire :

4 °1 4 °2 4 °3 4 °4 :

Cette simpli¯cation nous permet en¯n de r¶e¶ecrire l'expression P ci-dessus sous

la forme voulue :

P
1

2g Xd2K 4 K 2

u2[K 2

l1 d ¢ 4
b1+d

4 ;~k1¢4 u
x ¢ 4

b2+d
4 ;~k2¢4 u

y

£ ¢ 4
b3+d

4 ;~k3¢4 u
z ¢ 4

b4+d
4 ;~k4¢4 u

t

maintenant le membre de droite est invariant lorsque d est inchang¶e modulo K 2
ce qui justi¯e le fait de remplacer Z par K 4 K 2

Ceci montre bien la proposition 3 6 ¤

On peut maintenant ¶enoncer les formules d'addition :

Proposition 3 7 Soient a; l ; b; k des ¶el¶ements quelconques de K2 £[K 4

Choisissons des ¶el¶ements a0; l0 ; b0;k0 de K2 £[K 4 tels que µL­4 a0; l0 et
µL­4 b0; k0 soient non nuls et tels que a0 a mod 2K2 b0 b mod 2K2 et en¯n

l0 l¢·2 k0 k¢·0
2 pour certains ¶el¶ements ·; ·0 de[K 4 Posons c1 a+a0+b+b0

c2 a+b¡a0¡b0 c3 a¡b+a0¡b0 et c4 a¡b¡a0+b0 d'une part et l1 l¢k ¢·¢·0

l2 ·¡1
¢ ·0¡1 l3 l ¢ k¡1

¢ · ¢ ·0¡1 et l4 ·¡1
¢ ·0 d'autre part On a alors :

2gµL­4 a0; l0 µL­4 b0; k0 ¢ 2
a;l x + y ¢ 2

b;k x¡ y

Xd2K 4 K 2

u2[K 2

l d ¢ 2
c1+d

2 ;l1¢2 u
x ¢ 2

c2+d
2 ;l2¢2 u

x ¢ 2
c3+d

2 ;l3¢2 u
y ¢ 2

c4+d
2 ;l4¢2 u

y ;

oµu ci+d
2

pour i 1; 2; 3; 4 sont choisis de sorte que leur somme vaille 2a
En particulier le morphisme » d¶e¯ni µa la formule 2 peut être repr¶esent¶e dans

le plongement £L­4 par des formes bi-homogµenes8 de bi-degr¶e 2; 2 µa coe±cients
dans9 Q ¹4; £L­4 0 et la hauteur de Weil de la famille form¶ee de 1 et de leurs

coe±cients est major¶ee par 2 4g ¡ 1 h A :

D¶emonstration Tout d'abord l'existence des ¶el¶ements a0; l0 b0;k0 est assur¶ee

par le lemme 3 5 On choisit pour commencer des relev¶es ~l; ~k; ~l0 et ~k0 de l; k; l0 et k0

dans\K4 8 et l'on pose de même que ci-dessus ~m1 ~l ¢
~k ¢~l

0
¢
~k0 ~m2 ~l¢~k ¢

~l0¡1
¢

~k0¡1

~m3 ~l¢
~k¡1

¢~l0 ¢
~k0¡1

et ~m4 ~l ¢
~k¡1

¢
~l0¡1

¢
~k0 ; il su±t d'appliquer la proposition 3 6

8 Le fait que » puisse être repr¶esent¶e par des formes de bi-degr¶e 2; 2 est classique confer par
exemple [La{Ru] le point est plutôt dans le calcul de la hauteur
9 Suivant l'usage on note pour tout entier n ¸ 1 ¹n le groupe des racines niµemes de l'unit¶e
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en y rempla»cant le quadruplet x; y; z; t par x; x; y; y On trouve ainsi :

¢ 2
a;l 2 x + y ¢ 2

b;k
2 x¡ y µL­4 a0; l0 µL­4 b0; k0

1

2g Xd2K 4 K 2

u2[K 2

l d ¢ 4
c1+d

4 ; ~m1¢4 u
x

£ ¢ 4
c2+d

4 ; ~m2¢4 u
x ¢ 4

c3+d
4 ; ~m3¢4 u

y ¢ 4
c4+d

4 ; ~m4¢4 u
y :

Par hypothµese sur a0 et b0 les quantit¶es c1; : : : ; c4 sont des ¶el¶ements de 2K2 et
de même par hypothµese sur l0 et k0 les caractµeres ~mi 1 · i · 4 sont des carr¶es

dans\K4 8 On peut donc terminer la preuve en se ramenant de sections de L­16

µa des sections de L­4 par le point ii du fait 3 3 On obtient alors :

¢ 2
a;l [2] x + y ¢ 2

b;k [2] x¡ y µL­4 a0; l0 µL­4 b0; k0

1

2g Xd2K 4 K 2

u2[K 2

l d ¢ 2
c1+d

2 ;l¢k¢·¢·0 ¢2 u
[2]x ¢ 2

c2+d
2 ;·¡1

¢·0¡1
¢ 2 u

[2]x

£ ¢ 2
c3+d

2 ;l¢k¡1
¢·¢·0¡1

¢ 2 u
[2]y ¢ 2

c4+d
2 ;·¡1

¢·0 ¢ 2 u
[2]y :

La proposition 3 7 suit en remarquant que A est divisible ; en e®et le suppl¶ement
d¶ecoule imm¶ediatement de la formule que nous venons d'¶etablir par d¶e¯nition de

la hauteur de Weil une fois not¶e d'une part que pour toute famille de nombres

alg¶ebriques non nuls

hW ¡
1; x¡1

1 ; : : : ; x¡1
n ¢ · nhW 1; x1; : : : ; xn ;

et d'autre part qu'il y a au plus 4g ¶el¶ements a; k de K2 2K2 £µ\K2 4 \K2 4
2
¶

tels que µL­4 a; k 6 0 il est facile de v¶eri¯er directement sur les formules qu'il ne

peut-y avoir de regroupement de termes La proposition 3 7 est donc entiµerement
¶etablie ¤

Passons maintenant aux formules de duplication :

Proposition 3 8 Soit a; l 2 K2 £\K2 4 ; on a alors :
i

h¢ 2
a;l i

4 1

2g Xd2K 4 K 2

u2[K 2

l d µL­4µd
2

; 2 u¶
3

¢ 2
2a+ d

2
;l2¢2 u ± [2] ;

oµu d
2

est un point de 2-division quelconque de d ;
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ii pour tout couple b; k 2 K2 £\K2 4 tel que b a mod 2K2 et k l·2

pour un certain · 2\K2 4 on a :

¢ 2
a;l ± [2] µL­4 b; k 3 1

2g Xd2K 4 K 2

u2[K 2

l d ¢ 2
a+3b+d

2 ;l2¢·¡1
¢ 2 u ·¢ 2

a¡b+d
2 ;·¡1

¢ 2 u ¸
3

:

D¶emonstration Commen»cons par i ; appliquons pour ce faire la proposition 3 6
avec x; y; z; t x; 0; 0; 0 On obtient alors :

h¢ 2
a;l x i

4 1

2g Xd2K 4 K 2

u2[K 2

l d ¢ 4
a+ d

4
;~l

4
¢ 4 u x µL­16µd

4
; 4 u¶

3

:

Il su±t maintenant d'appliquer le fait 3 3 point ii
Passons maintenant au point ii Appliquons la proposition 3 6 avec cette fois

x; y; z; t x; x; x; x On obtient :

µL­4 b; k 3¢ 2
a;l ± [4]

1

2g Xd2K 4 K 2

u2[K 2

l d ¢ 4
a+3b+d

4 ;~l¢~k
3

¢4 u

£ ·¢ 4
a¡b+d

4 ;~l¢~k¡1
¢ 4 u ¸

3

:

Cette fois encore l'hypothµese nous permet d'appliquer le fait 3 3 point ii et l'on
en tire :

µL­4 b; k 3¢ 2
a;l ± [2]

1

2g Xd2K 4 K 2

u2[K 2

l d ¢ 2
a+3b+d

2 ;l2¢·¡1
¢ 2 u

£ ·¢ 2
a¡b+d

2 ;·¡1
¢ 2 u ¸

3

:

Ce qui montre bien la proposition 3 8 ¤

3 3 Hauteurs normalis¶ees sur les vari¶et¶es abeliennes

Soit k un corps de nombres contenant toutes les racines 4-iµemes de l'unit¶e que

l'on supposera plong¶e dans C et A une vari¶et¶e abelienne de dimension g munie
d'un ¯br¶e en droites ample et sym¶etrique M d¶e¯nie sur k Rappelons qu'il est
d¶e¯ni dans [Ph]-I une hauteur normalis¶ee

ĥ
des sous-vari¶et¶es alg¶ebriques de A

satisfaisant un certain nombre de propri¶et¶es voir proposition 9 de loc cit Nous

pr¶ecisons la constante dans la comparaison de
ĥ

et de la hauteur projective h dans

le plongement projectif £ £L­4 associ¶e µa la structure thêta d¶ecrite et ¯x¶ee au
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sous-paragraphe 3 1 pr¶ec¶edent pour le ¯br¶e L­4
M­16 On notera D le degr¶e

du ¯br¶e M
Plus pr¶ecis¶ement nous montrerons :

Proposition 3 9 Soit V une sous-vari¶et¶e alg¶ebrique de A d¶e¯nie sur Q Alors

¯
¯
¯

ĥ V ¡ h V

¯
¯
¯

· c0 £ : dim V + 1 : deg V ;

oµu c0 £ : 4g+1h A + 3g log 2

Remarque Cette constante est tout µa fait comparable µa celle obtenue pour les

points par Y Manin et Y Zarhin confer [Ma{Za] Elle est un peu plus faible
pour ce qui est de la d¶ependance en h A d'un facteur 4 Cette perte n'apparâ³t
que lorsque l'on travaille avec des vari¶et¶es de dimension ¸ 1 Pour les points le
calcul redonnerait naturellement une d¶ependance en 4g¡1 h A comme dans loc
cit Pour ce qui est de la constante num¶erique ¯nale par contre la comparaison
est plus lourde en raison des di®¶erences de normalisations hauteur de Weil dans

loc cit hauteur projective ici plongement associ¶e µa M­4 lµa bas et µa M­16 ici
Tous calculs faits notre estimation est trµes l¶egµerement plus ¯ne

Avant de passer µa la preuve de la proposition 3 9 nous donnons ci-dessous

des versions e®ectives des lemmes interm¶ediaires de [Ph]-I x 3 concernant les

comparaisons entre la hauteur projective et la hauteur normalis¶ee Nous nous

permettrons donc pour ¶eviter trop de redites ici ou lµa de reprendre des pans

de preuves de cette r¶ef¶erence ; que les lecteurs pr¶ef¶erant un texte plus < auto-
explicite > veuillent bien nous en excuser

Lemme 3 10 Soit » un point de 2-torsion de A et V une sous-vari¶et¶e alg¶ebrique

de A d¶e¯nie sur Q ; alors h V h » + V et d V + » d V

D¶emonstration Remplace le lemme 4 de [Ph]-I On remarque simplement que la
translation par un point de 2 torsion est donn¶ee par une transformation lin¶eaire

de PN de hauteur nulle Plus pr¶ecis¶ement on remarque que cette transformation
lin¶eaire est trµes particuliµere C'est une action diagonale qui agit par multiplication
par des racines de l'unit¶e : cela r¶esulte de la proposition 3 4 dans le cas classique

cela se voit facilement sur les s¶eries thêta confer [Ig] pages 49{50 ; une telle trans-
formation ne change donc pas les mesures locales de la hauteur projective confer
paragraphe 2 et laisse donc cette derniµere invariante ; il en est bien ¶evidemment
de même du degr¶e ¤

Pour tout ¶el¶ement a; l 2 K2 £[K 4 ¯xons un ¶el¶ement b;k 2 K2 £[K 4

tel que b a mod 2K2 et k l:·2 pour un certain · 2[K 4 on notera ® a; l
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un tel choix tel que µL­4 b; k 6 0 et notons G a;l la forme

1

2gµL­4 b; k 3 Xd2K 4 K 2

u2[K 2

l d ¢ 2
a+3b+d

2 ;l2¢·¡1
¢ 2 u

µ¢ 2
a¡b+d

2 ;·¡1
¢2 u ¶

3

;

l'existence d'un tel ¶el¶ement b; k est assur¶ee par le lemme 3 5 Notons ¶egalement
B le point projectif

B ¡¢ ¢ ¢
: µL­4 b; k ¡1 :

¢ ¢ ¢ ¢b2K2 2K2; k2\K2 4 \K2 4
2 :

On v¶eri¯e ais¶ement que B est d¶e¯ni sur le même corps de nombres que l'origine

0A £L­4 0A voir notation 3 2 de la vari¶et¶e abelienne A et que in¶egalit¶e
valable aussi bien pour la hauteur de Weil que pour la hauteur projective :

h B · 4g ¡ 1 h A :

Avec ces notations on dispose du lemme :

Lemme 3 11 Soit G ¡G a;l ¢ a;l 2K2£[K 4
le systµeme de formes introduit ci-

dessus ; G repr¶esente les formules de duplication sur A les formes G a;l sont
de degr¶e 4 leurs coe±cients sont dans Q ¹4; B ½ k et la hauteur de Weil de la
famille form¶ee de 1 et des coe±cients de toutes les formes

¡G a;l ¢ a;l 2K2£[K 4
est major¶ee par 3h B + g log 2 Pour toute place v de k et tout x 2 A kv on
dispose des in¶egalit¶es :

j2j
g
vexp ¡±vg log 4 ¡3 logk0Akv ·kG x kv

kxk
4
v ·

¯
¯
¯
¯

1

2
¯
¯
¯
¯

g

v

exp ±vg log 4 +3 logkBkv 11

oµu ±v 1 si v j 1 et ±v 0 si v est ¯nie Plus g¶en¶eralement pour tout entier
m¸1 et en notant G m les formules de multiplication par 2m la hauteur de Weil
de la famille form¶ee de 1 et des coe±cients de toutes les formes ³G m

a;b ´ a;l 2K2£[K 4
est major¶ee par 4m: h B + g log 2 et :

j2j
g 4m¡1

3
v Cv £ ¡4m · kG m x kv

kxk
4m
v ·

¯
¯
¯
¯

1

2
¯
¯
¯
¯

g 4m¡1
3

v
Cv £ 4m

; 12

oµu Cv £ exp³±v
g log 4

3 + log kBkv + log k0Akv´
D¶emonstration Les formes G a;l repr¶esentent bien les formules de duplication
c'est la proposition 3 8 point ii ; un calcul direct montre que la hauteur de la

famille form¶ee de 1 et des coe±cients des formes G a;l est major¶ee par 3h B +
g log 2 on v¶eri¯e lµa encore sur la formule qu'il ne peut-y avoir de simpli¯cation
On majore la hauteur de la famille form¶ee de 1 et des coe±cients des formes

³G m
a;b ´ a;l 2K2£[K 4

par r¶ecurrence µa partir de l'estimation pr¶ec¶edente ; toutefois
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µa ce stade vu la complexit¶e des formules il n'est pas clair qu'il n'y a pas de

regroupement de termes ; on tient donc compte de la longueur des formes pour
obtenir la majoration annonc¶ee

Comme la deuxiµeme s¶erie d'in¶egalit¶es 12 s'obtient par r¶ecurrence µa partir de

l'encadrement 11 il su±t de montrer ce dernier ; la majoration de 11 d¶ecoule
de la proposition 3 8 point ii ; la minoration est elle une cons¶equence de la
proposition 3 8 point i tout au moins pour les places ¯nies Pour les places

archim¶ediennes les deux calculs ¶etant tout µa fait similaires nous nous contenterons

d'expliquer la majoration Notons I : Z2£\K2 4 J : K2 2K2£\K2 4 \K2 4
2

Il s'agit d'estimer : Pi2I jGi x j
2 ; le lemme 3 8 point ii nous assure que

4g Xi2I
jGi x j

2 ·Xi2I

1

jµL­4 i j6
ÃXu;v

jxuj:jxvj
3

2

;

et donc :

4g Xi2I
jGi x j

2 ·Xi2I

1

jµL­4 i j
6

ÃXu
jxuj

2 ÃXv
jxvj

6 ;

ou encore

4g Xi2I
jGi x j

2·Xi2J

1

jµL­4 i j
6 XI J

ÃXu
jxuj

2 ÃXv
jxvj

6

·ÃXi2J

1

jµL­4 i j
12

1 2

0
B
@

XJ 0
@

XI J

ÃXu
jxuj

2 ÃXv
jxvj

6

1
A

2

1
C
A

1 2

·16g
kBk

6 ÃXI jxuj
2 ÃXI jxv j

6 ;

oµu l'on observe pour la derniµere in¶egalit¶e que chaque terme intervenant dans ces

sommes est r¶ep¶et¶e 4g fois Au total on a bien :

kG x k · 2g
kBk

3:kxk
4 :

Le lemme 3 11 est donc ¶etabli ¤

On notera que cet ¶enonc¶e n'est rien d'autre qu'une version quantitative du
fait 3 page 276 de [Ph]-I pour S f2g

Lemme 3 12 Pour toute sous-vari¶et¶e alg¶ebrique V de A de dimension r ¡ 1
d¶e¯nie sur Q et tout entier m ¸ 0 on a :

¯̄
¯̄
¯

h V ¡
h ¡[2m]¡1V

¢
4 g¡r m

¯
¯
¯
¯
¯

· c1r4m deg V ;

oµu c1 4gh A + 2
3 g log 2
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D¶emonstration On reprend la preuve du lemme 5 de [Ph]-I mais ici ¾m d¶esigne

le plongement de Veronese de degr¶e 4m de PN dans PN 0 oµu N 0 + 1
¡
N+4m

N ¢
et fm est une forme ¶eliminante de ¾m [2m]¡1V d'indice 4m; : : : ; 4m

2 Nr La
hauteur projective utilis¶ee dans le pr¶esent texte confer paragraphe 2 satisfait
h fm 4mrh [2m]¡1V et d±fm r4m r¡1 deg [2m]¡1V r4mg deg V Et si
¹¤ d¶esigne comme dans loc cit la sp¶ecialisation des variables de fm en les coe±-
cients de combinaisons g¶en¶eriques des formes G a;l a;l 2K2£[K 4

fournies par le
lemme 3 11 h ¹¤ fm 4mgh V Finalement on compare h fm et h ¹¤ fm
en d¶ecomposant les mesures locales Mv ¹¤ fm fm par la formule de Poisson
comme dans la preuve du lemme 5 de loc cit et en utilisant les estimations du
lemme 3 11 plutôt que le fait 3 de cette r¶ef¶erence On a ainsi

j2j
g 4m¡1

3 d±fm
v Cv £ ¡4md±fm ·Mv µ¹¤ fm

fm
¶ ·

¯
¯
¯
¯

1

2
¯
¯
¯
¯

g 4m¡1
3 d±fm

v
Cv £ 4md±fm :

En sommant le logarithme de Mv ¹¤ fm fm sur toutes les places d'un corps de

d¶e¯nition de fm

jh ¹¤ fm ¡ h fm j · 4m: d±fm Xv

[kv : Qv ]
[k : Q]

log Cv £ :

En combinant avec ce qui pr¶ecµede on obtient l'estimation annonc¶ee avec

c1 Xv

[kv : Qv ]
[k : Q]

log Cv £

·
g log 4

3
+ h B + h 0A

· 4gh A + g log 4

3 ¢

D'oµu le lemme 3 12 ¤

Lemme 3 13 Avec les hypothµeses du lemme 3 12 et en notant SV le stabilisateur
de V dans A on a pour tout entier m ¸ 1

¯
¯
¯
¯

h [2m]V ¡
4rmh V

jker [2m] \ SV j
¯
¯
¯
¯

· c1r
4rm+1 deg V

jker [2m] \ SV j
¢

D¶emonstration C'est celle des lemme 6 7 et 8 de loc cit On fait ici le calcul
car un remplacement brutal de C00

S par sa valeur nous ferait perdre un peu On
applique le lemme 3 12 µa W [2m]V L'expression

[2m]¡1W [»2ker[2m] ker[2m]\SV

» + V
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nous assure que :

¯
¯
¯
¯
¯
¯

h W ¡ X
»2ker[2m] ker[2m]\SV

h V + »

4m g¡r
¯
¯
¯
¯
¯
¯

· c1r
4rm deg V

jker [2m] \ SV j
¢ ¤

Le lemme 3 10 donne maintenant :

X
»2ker[2] ker[2]\SV

h V + »

4g¡r
4rh V

j ker[2] \ SV j
;

combinant avec ¤ on en d¶eduit le r¶esultat souhait¶e pour m 1 avec c1 remplac¶ee

par c1 4 Reprenant la preuve du lemme 7 de [Ph]-I on montre par r¶ecurrence sur
m0 ¸ 1 que pour tout point de 21-torsion on a :

jh V + » ¡ h V j · 3c1r deg V : 13

En¯n substituant ce dernier r¶esultat au lemme 3 10 dans ¤ on obtient la conclu-
sion recherch¶ee ¤

D¶emonstration de la proposition 3 9 Le lemme 3 13 donne

¯
¯
¯
¯

h [2m]V
4m deg [2m]V ¡

h V
deg V

¯
¯
¯
¯

· 4c1r :

Et comme

ĥ V

deg V
lim

m 1
h [2m]V

4m deg [2m]V
;

on en tire bien la proposition par passage µa la limite et en rempla»cant c1 par sa
valeur ¤

Passons au plongement < enroul¶e > de [Ph]-III Rappelons que ce dernier per-
met dans certaines situations par une technique de passage µa la limite de se

d¶ebarasser des constantes de comparaison entre les hauteurs projectives et hau-
teurs normalis¶ees Pour ra±ner les estimations nous utilisons ici le plongement
< ¶etir¶e > de [Da{Phi2] d¶e¯ni par :

©` : A A2 £2

¡ PN
2 Segre

¡ PN2+2N

x 7¡ x; [2`]x :

Nous noterons deg` h` respectivement ĥ` le degr¶e et la hauteur relative au plon-
gement ©` respectivement la hauteur normalis¶ee Nous reprenons ici les propo-
sitions 7 et 9 de loc cit pour ©` :

Proposition 3 14 Soit V une sous-vari¶et¶e alg¶ebrique de A d¶e¯nie sur Q de

dimension r¡ 1 Alors :

¯
¯
¯

ĥ` V ¡ h` V

¯
¯
¯

· 2c0 £ r deg` V :
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D¶emonstration On remarque que la d¶emonstration de la proposition 3 9 ne fait
intervenir le plongement £ que par les propri¶et¶es des lemmes 3 11 et 3 10 ; comme

ces derniµeres sont encore valables pour les plongements ©` quitte µa remplacer c1
par 2c1 le r¶esultat est ¶etabli ¤

Proposition 3 15 Soit V une sous-vari¶et¶e alg¶ebrique de A d¶e¯nie sur Q de

dimension r¡ 1 Alors avec les notations ci-dessus on a

deg` V 4` + 1 r¡1: deg V et ĥ` V 4` + 1 r :ĥV :

En particulier h` V
4`:d` V tend vers ĥ V

d V lorsque ` tend vers l'in¯ni

D¶emonstration Nous suivons la preuve de la proposition 7 de [Ph]-III On obtient
une forme de Chow de ©` V en sp¶ecialisant les formes g¶en¶eriques de degr¶es 4`+1

en des combinaisons lin¶eaires g¶en¶erales des XiG
`
j X dans une forme ¶eliminante

d'indice 4`+1; : : : ; 4`+1 de V Le r¶esultat s'en d¶eduit en estimant les mesures de

telles formes lin¶eaires µa l'aide du lemme 3 11 et en appliquant l'estimation obtenue

aux vari¶et¶es [2m]V lorsque m 1 ¤

4 Minoration de hauteurs normalis¶ees

Nous allons ¶etablir ici le th¶eorµeme 1 1 ; nous allons donc supposer donn¶ee dans

tout ce paragraphe une vari¶et¶e abelienne A de dimension g ¸ 1 d¶e¯nie sur un
corps de nombres k munie d'un ¯br¶e en droites ample et sym¶etrique M associ¶e µa
une polarisation principale Nous supposerons que A est plong¶ee dans un espace

projectif PN avec N 16g ¡ 1 via le plongement £ £L­4 avec L M­4

d¶ecrit dans le paragraphe x 3 1 ; on dispose donc d'une comparaison num¶erique

entre les hauteurs projectives et normalis¶ees

On munit A£ A du ¯br¶e fM : ¼1M­ ¼2M que l'on plonge dans PN0 avec

N 0 N + 1 2 ¡ 1 via les coordonn¶ees de Mumford associ¶ees µa

fM­16 ce qui
revient µa plonger A£A dans PN2+2N par le plongement de Segre P2

N PN2+2N
Nous noterons £2 ce plongement

µA toute place archim¶edienne v de k nous associons un plongement ¾v de k dans

C et nous identi¯erons ¾v A C µa un tore complexe Cg ¤v Nous disposons donc
du plongement projectif

£v : ¾v A C Pn C ;

oµu £v est le plongement projectif associ¶e µa M­16
Cv

d¶ecrit au paragraphe 3 1 et
que l'on peut ¶egalement sans perte de g¶en¶eralit¶e ni modi¯cation des constantes de

comparaisons entre hauteurs projectives et normalis¶ees d¶ecrire µa l'aide des fonc-
tions thêta classiques confer x 3 1 ; on a £v ± ¾v A ¾v ± £ A Nous noterons

£2
v le plongement d¶eduit de £v pour ¾v A £ ¾v A Nous d¶esignerons par Hv la
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forme de Riemann associ¶ee µa £v et par H2
v la forme de Riemann associ¶ee µa £2

v
Nous noterons T¾v A C l'espace tangent µa l'origine de ¾v A C

Pour tout entier ` ¸ 1 nous consid¶ererons ¶egalement le plongement ¶etir¶e :

©` : A A £ A PN 0

x 7¡ x; 2`x :

Nous noterons ©2
`

le plongement ¶etir¶e de A £ A
En¯n lorsqu'aucune ambiguÄ³t¶e sur la place archim¶edienne v consid¶er¶ee ne nous

semblera possible nous omettrons les indices v des objets introduits ci-dessus

4 1 Pr¶eliminaires

La structure g¶en¶erale de la preuve est la même que dans [Da{Phi1] ; nous la
rappelons briµevement et donnons les valeurs num¶eriques des diverses estimations

qui nous seront utiles

Soit X une sous-vari¶et¶e alg¶ebrique de A d¶e¯nie sur Q qui n'est pas translat¶ee

d'une sous-vari¶et¶e abelienne de A On note BX la sous-vari¶et¶e abelienne de A
engendr¶ee par X ¡X et kX d¶esigne le nombre minimal de copies de X ¡X dont
la somme vaut BX On supposera pour commencer que kX 1 une r¶ecurrence

permettra d'en d¶eduire le cas g¶en¶eral et nous noterons k0 une extension ¯nie de

k sur laquelle BX est d¶e¯nie
D¶ecrivons la situation que nous allons utiliser Introduisons l'isomorphisme :

s : A2 ¡ A2

x1; x2 7¡ x1; x1 ¡ x2 :

Rappelons que voir par exemple [Ph]-III proposition 1 :

deg X2 µ
2 dim X
dim X ¶: deg X 2 et ĥ X2 2µ

2 dim X + 1

dim X ¶: ĥ X deg X :

Comme le plongement de A dans PN est projectivement normal confer par
exemple [Bi{La] chapitre 7 th¶eorµeme 3 1 page 190 l'isomorphisme s ainsi que

son inverse peut être repr¶esent¶e par des formules bi-homogµenes de bi-degr¶e 2; 2
confer proposition 3 7 et l'on a :

8<

:

2¡2 dim X deg X2 6 deg s X2 6 22 dimX deg X2 ;

2¡2 dim X ¡1: ĥ X2 6 ĥ s X2 6 22 dim X +1: ĥ X2 :

Soit ¼2 la projection lin¶eaire de P2
N sur le second facteur PN on a alors ¼2 ± s X2

X ¡X et :

deg X ¡X deg ¼2 ± s X2 6 deg s X2 6 16dim X : deg X 2 ;

ĥ X ¡X ĥ¼2 ± s X2 6 ĥ s X2 6 8 :16dim X : ĥ X deg X :
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On notera B BX X ¡X W s X2 et ¼2 le morphisme surjectif
¼2 : W ¡ B

dont la ¯bre g¶en¶erique est de dimension 2 dim X ¡ dim B et la ¯bre sp¶eciale
W \ ¼¡1

2 0 est de dimension dim X > 2 dim X ¡ dim B On notera que cette
¯bre sp¶eciale s'identi¯e µa X £ f0g et est donc de degr¶e deg X

Nous donnons tout d'abord une version quantitative du < lemme du volume >
lemme 4 3 de [Da{Phi1] x 4 qui permet de minorer la hauteur normalis¶ee ; a¯n

de simpli¯er et d'am¶eliorer les estimations num¶eriques nous commen»cons par
¶etablir la proposition suivante qui permettra de < travailler en moyenne >

Proposition 4 1 Soit A Cg ¤ une vari¶et¶e abelienne complexe principalement
polaris¶ee plong¶ee dans PN comme ci-dessus et ­PN la forme de Fubini-Study sur
PN C ¿x la translation par x dans A et dºA la mesure de Haar normalis¶ee sur
A Alors pour d 1; : : : ; g on a en tout point z de A

Z
A

£ ± ¿x ­^d
PN z ^ dºA x ¼ddcH z; z ^d

et ¼ddcH z; z H dz;dz

¡2i

D¶emonstration On pose f : log k£k
2 ¡ ¼H oµu k ¢ k est la norme euclidienne ;

c'est une fonction p¶eriodique par rapport µa ¤ confer [Ig] lemma 4 page 69 et
l'int¶egrant du membre de gauche s'¶ecrit alors

dzdc
z log k£ z + x k

2 ^d ¼dzdc
zH z + x; z + x ^d +

d

Xk 1

µd

k
¶:dz k z; x

avec

k z; x : dc
zf z + x ^ dzdc

zf z + x ^ k¡1
^ ¼dzdc

zH z + x; z + x ^ d¡k

pour k 1; : : : ; d Comme dzdc
zH est invariante par translations

Z
A

¼dzdc
zH z + x; z + x ^ddºA x ¼ddcH z; z ^d :

Il su±t de montrer que pour k 1; : : : ; d les composantes de la d; d -forme

RA dz k z; x ^dºA x sont nulles Pour I ;J ½ f1; : : : ; gg de même cardinal m et or-
donn¶es de fa»con croissante notons ¹I;J z la m; m -forme dzi1^dzj1^¢¢¢^dzim^dzjm

¡2i m
on v¶eri¯e la relation dºA x det H :¹Ig ;Ig x oµu Ig f1; : : : ; gg et pour I ; J de

cardinal g ¡ d que la forme

dz k z; x ^ dºA x ^ ¹I;J z dx k x; z ^ ¹I;J x ^ dºA z

est ferm¶ee pour dx
Pour conclure on note que k x; z est p¶eriodique par rapport µa ¤ ; on d¶eduit

donc de la formule de Stokes que l'int¶egrale de dz k z;x ^ dºA x ^ ¹I;J z sur
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A est nulle Ceci ¶etabli pour tous I ; J de cardinal g ¡ d montre que les formes

RA dz k z; x ^ dºA x sont nulles pour k 1; : : : d d'oµu la proposition ¤

Lemme 4 2 Soit W une sous-vari¶et¶e de A2 ­P2
N0

la forme de Fubini-Study sur
P2

N0
expA l'application exponentielle de A et Br fz 2 TA C ; ¼H z; z 6 r2

g Si
r < min ½

p¼H ¸;¸
2

;¸ 2 ¤ n f0g¾ et ¼2 d¶esigne la projection de A2 sur le second

facteur alors

Z
A2

Z
W\¼¡1

2 expA Br
©2

` ± ¿x ­^ dim W
P2

N0 ^ dºA2 x

est minor¶e par :

4` + 1 dim W : deg W \ ¼¡1
2 0 : r2 dim W ¡dim W\¼¡1

2 0 :

D¶emonstration Notons D un domaine fondamental de Cg ¤ ; la proposition 4 1
qui pr¶ecµede permet d'¶ecrire l'int¶egrale consid¶er¶ee sous la forme

V Z
exp¡1

A2 W \ D£Br
¼ddcH2 z; z + ¼ddcH2 2`z; 2`z ^ dim W

4` + 1 dim W : Z
exp¡1

A2 W \ D£Br
¼ddcH2 z; z ^ dim W :

En e®et par hypothµese sur r la fonction expA est injective sur Br et par suite
le changement de domaine d'int¶egration est licite et la premiµere ligne s'obtient en
tenant compte de la d¶e¯nition des plongements ¶etir¶es ©2

`
Comme

¼ddcH2 z; z ^ dim W ¼ddcH z1; z1 + ¼ddcH z2; z2 ^ dim W

se d¶eveloppe en somme de formes positives on peut encore ¶ecrire

V > 4` + 1 dim W : Z
exp¡1

A [W\¼¡1
2 0 ]

V z1 : ¼ddcH z1; z1 ^ dim W\¼¡1
2 0

avec

V z1 : Z
exp¡1

A2 W \ fz1g£Br
¼ddcH z2; z2 ^ dim W ¡dim W\¼¡1

2 0 ;

et en identi¯ant W \ ¼¡1
2 0 µa sa projection sur le premier facteur de A2 Fina-

lement comme le nombre
Rexp¡1

A [W\¼¡1
2 0 ] ¼ddcH z1; z1 ^ dim W\¼¡1

2 0 est ¶egal
µa toujours par la proposition 4 1

Z
A

Z
W\¼¡1

2 0
£ ± ¿x1 ­PN ^ dim W\¼¡1

2 0
^ dºA x1 deg W \ ¼¡1

2 0 ;

il su±t de montrer V z1 > r2 dim W ¡dim W\¼¡1
2 0 Mais ceci r¶esulte aprµes

changement de variable ramenant ¼H µa sa forme orthonormale de la croissance

de la masse de Lelong voir [Gr-Ha] pages 390-391 ou [Ph]-I fait 1 ¤
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Nous g¶en¶eralisons ensuite le th¶eorµeme 3 1 de [Wa] en y consid¶erant des fonctions

de Cb µa valeurs dans Cn oµu b et n sont des entiers ¸ 1 analytiques sur une boule
de la forme fz 2 Cb; kzk · Rg ½ Cb Si F est une telle fonction et F1; : : : ; Fn ses

composantes on notera

jF jR : max
i 1;:::;n jFijR max

i 1;:::;n
sup

kzk·R jFi z j :

Cette g¶en¶eralisation du r¶esultat de M Waldschmidt ce dernier se restrei-
gnait au cas n 1 permet de disposer de plusieurs fonctions analytiques simul-
tan¶ement petites et par suite en faisant op¶erer le groupe de Galois de tra-
vailler avec toutes les places archim¶ediennes simultan¶ement C'est cette approche

qui nous permet d'¶eliminer la d¶ependance en le corps de d¶e¯nition de A dans le
th¶eorµeme 1 1

Proposition 4 3 Soient L b et n des entiers strictement positifs S U R et
E des nombres r¶eels positifs et f1; : : : ; fL des fonctions continues sur la boule

fz 2 Cb; kzk · Rg de Cb et analytiques µa l'int¶erieur de cette boule µa valeurs dans

Cn On suppose10 que 5 · S · U max e;pb · E · eU ainsi que

8
>
>

<
>
>:

L

X̧
1
jf¸jR · eU ;

8nU 4U + b log E b · b ¡ 1 LS log E b :

Alors il existe des entiers p1; : : : ; pL non tous nuls de valeurs absolues · eS tels
que

¯
¯
¯
¯
¯

L

X̧1

p¸f¸
¯
¯
¯
¯
¯r
· e¡U ;

oµu r : R E

D¶emonstration Soit T 2 [4; 4U ] le plus petit entier ¸ 4U log E consid¶erons le
systµeme d'in¶equations d'inconnues p¸ donn¶e par

¯
¯
¯
¯
¯

L

X̧1

p¸f¸;i;¿
¯
¯
¯
¯
¯

:rj¿ j ·
1

2
T¡be¡U 14

lorsque i 1; : : : ; n ¿ ¿1; : : : ; ¿b 2 Nb oµu j¿ j : ¿1 + ¢ ¢ ¢ + ¿b < T et f¸;i;¿
d¶esigne le ¿ -iµeme coe±cient de Taylor de la i-iµeme composante de f¸ Le nombre

d'inconnues est L et par d¶e¯nition de T le nombre d'in¶equations est :

nµT + b ¡ 1

b
¶ · n

b
µ

4U + b log E
log E

¶
b

:

10 On notera qu'il convient ¶egalement de renforcer comme nous le faisons ici l'hypothµese E ¸ e

de [Wa] Ceci permet de corriger les estimations li¶ees aux in¶egalit¶es de Cauchy de loc cit
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On a
L

X̧
1
jf¸;i;¿ j :rj¿ j ·

L

X̧
1
jf¸jrpb · eU

et on v¶eri¯e que l'on se trouve dans les conditions d'application du lemme 3 3
principe des tiroirs de [Wa] car nos hypothµeses entrâ³nent que

µ3U + b log T +
5 log 2

2 ¶ ¢

2n
b ¢ µ

4U + b log E
log E

¶
b

·
8nU

b¡ 1 µ
4U + b log E

log E
¶

b

est major¶e par LS
On obtient donc l'existence d'entiers p1; : : : ; pL non tous nuls de valeurs abso-

lues · eS solutions du systµeme 14 et donc tels que

X
j¿ j<T ¯

¯
¯
¯
¯

L

X̧1

p¸f¸;i;¿
¯
¯
¯
¯
¯

:rj¿ j ·
e¡U

2

pour tous i 1; : : : ; n Le lemme 3 4 de [Wa] lemme de Schwarz approch¶e

entrâ³ne pour toutes les composantes de la fonction F P
L
¸ 1 p¸f¸ :

jFijr · pT + 1 E¡T
jFijR + X

j¿ j<T
jFi;¿ j :rj¿ j

·
1

2
E¡T e3U +

1

2
e¡U

· e¡U

car

jFijR · eS :
L

X̧1
jf¸;ijR · e2U ;

et la conclusion s'en d¶eduit La proposition 4 3 est donc entiµerement ¶etablie ¤

4 2 Hauteurs et intersections

On reprend les notations du paragraphe pr¶ec¶edent et en particulier les plonge-
ments £ ©` de A dans PN PN 0 respectivement et £2 ©2`

de A2 dans P2
N P2

N 0

respectivement avec N 0 + 1 N + 1 2 et ` un entier > 1
Soit W ½ A2 on suppose que ¼2 W B est une sous-vari¶et¶e abelienne de A

oµu ¼2 d¶esigne la projection sur le second facteur de A2 On note k0 un corps de

d¶e¯nition de A et B ; µa toute place µa l'in¯ni v de k0 on associe un plongement ¾v
de k0 dans C et on note µv;0; : : : ; µv;N les fonctions thêta param¶etrant ¾v A C
Suivant J -B Bost [Bo] x 2 on introduit la notion suivante :
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D¶e¯nition 4 4 On appelle rayon d'injectivit¶e de ¾v A C et on note Rinj;v la
plus petite norme de Riemann d'une p¶eriode non nulle de ¾v A C :

Rinj;v A : minf¼:Hv ¸; ¸ ;¸ 2 ¤v n f0gg
1 2 :

Et si pour chaque place archim¶edienne v de k0 on a identi¯¶e ¾v A C µa un tore

complexe Cg Zg +¿vZg avec ¿v dans le < domaine fondamental > de l'espace de

Siegel pour l'action de Sp2g Z voir appendice x 6 on appelle rayon d'injectivit¶e
absolu de A que l'on note Rinj la quantit¶e

Rinj : minfRinj;v ; v j 1g :

On pose

Vmax : 8 dim B :³max ne;pdim B o Rinj´
2 dim B

et pour z0 2 ¾v TA C

Br;v z0 :
©

z 2 T¾v A C ; ¼ :Hv z ¡ z0; z ¡ z0 6 r2

ª :

On note ~µv
~µv;0; : : : ; ~µv;0 les fonctions analytiques sur Cg d¶eduites des

µv;i aprµes changement de variables ramenant ¼Hv sur sa forme orthonormale et
T¾v B C sur un sous-espace de dimension dim B ¯x¶e de Cg que nous noterons

TB C Il existe un r¶eel c2 > 0 tel que pour toute place archim¶edienne v de k0 :

exp ¡c2 · sup
0·i·N j

~µv;i z j · exp ¡kzk
2 + c2¢

: 15

Cela r¶esulte en e®et aprµes le changement de variables op¶er¶e de [Da] th¶eorµeme 3 1

D'aprµes la proposition 3 7 les produits ~µv;i z+z0
~µv;j z¡z0 s'expriment comme

formes de bidegr¶e 2; 2 en les ~µv;i z et ~µv;i z0 On a de plus

e¡cv · k
~µv z + z0 kv:k

~µv z ¡ z0 kv

k
~µv z k

2
v:k

~µv z0 k
2
v · ecv 16

avec
Pv

[Kv :Qv]
[K:Q] ¢ cv · c3 : 2 4g ¡ 1 h A + 2g log 2

Dans la situation ci-dessus on dispose du :

Lemme 4 5 Soient » 2 A2 Q un point de torsion 0 < V · deg B un r¶eel et
r : V 8 dim B 1 2 dim B

3 max e;pdim B
pour tout entier ` ¸ log2 ³16 c2+c3+3c0 £ +log N+1

V 8 dim B 1 dim B ´
on a :

ĥ W
deg W

>
1

8 ¢ µ V»

deg W ¡ V
deg B ¡

1

2` ¶ ¢ µ V
8 dim B

¶
1

dim B
;

avec

V» : 4`+1 ¡ dim W :X
vj1

[k0
v : Qv]

[k0 : Q] ¢ Z
¾v W \¼¡1

2 exp¾v A Br;v 0
©2

`±¿» ³­^ dim W
P2

N0 ´ :
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D¶emonstration Dans toute la d¶emonstration les o ¢
sont relatifs µa ± tendant

vers l'in¯ni Pour ± assez grand le nombre de monômes de degr¶e ± lin¶eairement
ind¶ependants sur Q modulo l'id¶eal de d¶e¯nition de ©` B est

H ©` B ; ±
deg ©` B :±dim B

dim B
1 + o 1

¢

En multipliant chacun de ces monômes par les ¶el¶ements »1; : : : ; »[k0:Q] d'une base

entiµere de k0 sur Q on en d¶eduit [k0 : Q]
¢

deg ©` B :±dim B
dim B

1 + o 1 monômes

lin¶eairement ind¶ependants sur Q
Pour ¸ 2 NN0+1

j¸j ± et m 1; : : : ; [k0 : Q] notons f¸;m le vecteur dont les

composantes f¸;m;v z pour chaque place archim¶edienne v de k0 sont les monômes

f¸;m;v z : ¾v »m : Y
0·i;j·N

³~µv;i z ~µv;j 2`z ´
¸i;j :

Les fonctions f¸;mjTB C
sont des fonctions analytiques de dim B variables µa va-

leurs dans C[k0:Q] Pour toute place archim¶edienne v de k0 on d¶eduit de 15 les

in¶egalit¶es suivantes :

[k0:Q]

Xm 1 X
j¸j ±

¯
¯
f¸;m;v z

¯
¯

> exp ¡± 2c2 + o 1

[k0:Q]

Xm 1 X
j¸j ±

¯
¯
f¸;m;v z

¯
¯

6 exp ¡± 4` + 1 :kzk
2 + 2± c2 + log N + 1 + o 1

¢

17

car log maxfj»1jv; j»1j¡1
v ; : : : ; j»[k0:Q]jv; j»[k0:Q]j¡1

v g o ±

On applique la proposition 4 3 avec

b dim B ; L [k0 : Q]:H ©` B ; ± ; R r: max ne;pbo ; S
U:V

deg B 6 U

et une famille L de fonctions f¸;mjTB C
de b variables complexes correspondant µa

des monômes ind¶ependants sur Q modulo l'id¶eal de d¶e¯nition de ©` B On pose

en¯n

U
1

8 ¢ µ
b ¡ 1 LV

8[k0 : Q] deg B
¶

1
b

: max 1; log b 2 :

Comme ` ¸ 1
2 log2 ³28 c2+log N+1

V 8b 1 b ´ par hypothµese en supposant ± assez grand
on a v¶eri¯cation num¶erique imm¶ediate pour la premiµere in¶egalit¶e ; on remplace r
par sa valeur pour la deuxiµeme :

U >
± : 4` + 1

8 + o 1 ¢ µ V
8b

¶
1
b

> ± 4` + 1 r2: max e2; b + ± 2c2 + log N + 1 + o 1 :
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Par ailleurs on v¶eri¯e num¶eriquement que :

8[k0 : Q]U ³4U + b log maxne;pbo´
b

· b¡ 1 LS ³log maxne;pbo´
b

:

On est donc dans les conditions d'application de la proposition 4 3 et on obtient
l'existence d'entiers p¸;m de modules 6 eS tels que la fonction

F : X¸;m 2L

p¸;m:f¸;mjTB C

satisfasse

0 < jF jr sup
v;kzk6r jFv z j 6 e¡U :

On note q la forme de k0[X0; : : : ; XN0 ] dont les coe±cients sont les combinaisons

lin¶eaires des p¸;m correspondant aux multiples d'un même monôme unitaire par
les ¶el¶ements de la base de k0 sur Q ¯x¶ee i e

P
[k0:Q]
m 1 p¸;m»m On a ainsi Fv z

¾v q ~©v z pour toute place archim¶edienne v de k0 oµu

~©v : Cg ¡ PN0 C

z
7¡ ³¢ ¢ ¢ : ~µv;i z ~µv;j 2`z : ¢ ¢ ¢ ´ 0·i·N

0·j·N
:

Et donc pour toute place archim¶edienne v de k0 et tout x ~©v z avec kzk 6 r
on a encore en tenant compte de la premiµere in¶egalit¶e de la relation 17

j¾v q x jv
kxk

±
v

jFv z jv
k~©v z k

±
v

6 jF jr : exp 2c2 + o 1 ±

6 exp ¡U + 2c2 + o 1 ± ;

18

tandis que pour tout x 2 ¾v B C on a

j¾v q x jv
kxk

±
v

6 eS+c4 N + 1 2± : 19

Pour les places ultram¶etriques v comme q est µa coe±cients entiers alg¶ebriques on
a pour tout x 2 B Cv

j¾v q x jv
kxk

±
v

6 1 : 20

Sans perte de g¶en¶eralit¶e on peut supposer que la vari¶et¶e abelienne B n'est
pas contenue dans le diviseur d¶ecoup¶e par la forme lin¶eaire X0 Consid¶erons la
forme X±

0 q Y que l'on peut voir dans le plongement de Segre de ©2
`

A2 On
sait voir proposition 3 7 que l'image inverse par le morphisme » introduit µa la
formule 2 de X±

0 q Y s'¶ecrit comme une forme bihomogµene de bidegr¶e 2±; 2±
sur ©2

`
A2 En sp¶ecialisant les variables Y en des coordonn¶ees du point de torsion
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¼2 » ¯x¶e dans l'¶enonc¶e on obtient une forme Q de degr¶e 2± sur ©` A qui satisfait
pour toute place v et x 2 ©` B Cv

j¾v Q x jv
kxk

2±
v :k¼2 » k

2±
v

j¾v q x¡ ¼2 » jv :j¾v X0 x + ¼2 » j
±
v

kxk
2±
v :k¼2 » k

2±
v

:

Intersectons ©2
` ± ¿» W avec ¼2 Q la hauteur relative h©2

`±¿» W ¼2 Q interve-
nant dans le th¶eorµeme de B¶ezout arithm¶etique cf [Ph]-III prop 4 s'¶ecrit

1

deg ©2
` ± ¿» W ¢Xv

[k0
v : Qv ]

[k0 : Q] ¢ Z
¾v±©2

`±¿» W
log µ j¾v Q ¼2 y jv

kyk
2±
v

¶:­©2
`±¿» W ;v y :

Notons Iv l'int¶egrale ci-dessus divis¶ee par deg ©2
` ± ¿» W on v¶eri¯e que

deg ©2
` ± ¿» W :Iv est major¶e par

Z
¾v±©2

`±¿» W
log µ j¾v Q ¼2 y jv

k¼2 y k
2±
v :k¼2 » k

2±
v

¶:­©2
`±¿» W ;v y + 2± log k¼2 » kv

car kykv ¸ k¼2 y kv puis en tenant compte de la formule 16

Z
¾v±©2

`±¿» W
log µ j¾v q ¼2 y ¡ » jv :j¾v X0 ¼2 y + » j

±
v

k¼2 y ¡ » k
±
v :k¼2 y + » k

±
v

¶:­©2
` ±¿» W ;v y

+ ± cv + 2 log k¼2 » kv

La formule 20 nous assure alors que pour les places ultram¶etriques

deg ©2
` ± ¿» W :Iv · ± cv + 2 log k¼2 » kv :

Tandis que pour les places archim¶ediennes on v¶eri¯e que deg ©2
` ± ¿» W :Iv est

major¶e par

Z
¾v±©2

`±¿» W \¼¡1
2 exp¾v A Br;v zv

log µ j¾v q ¼2 y ¡ » jv
k¼2 y ¡ » k

±
v

¶:­©2
` ±¿» W ;v y

+ S + ± cv + 2 log N + 1 k¼2 » kv + c4

oµu exp¾v A zv ¾v ± ¼2 » En e®et on majore pour ces places archim¶ediennes

l'int¶egrant par S + 2± log N + 1 + c4 sur le compl¶ementaire du domaine d'int¶e-
gration mis µa part grâce µa la formule 19 puis par

log µ j¾v q ¼2 y ¡ » jv
k¼2 y ¡ » k

±
v

¶

sur ce domaine En¯n j¾v q ¼2 y¡» jv
k¼2 y¡» k±

v
est major¶e par e¡U+ 2c2+o 1 ± sur la boule

exp¾v A Br;v zv d'aprµes 18

D'oµu en sommant sur toutes les places et puisque la somme sur toutes les

places archim¶ediennes du volume du dernier domaine d'int¶egration consid¶er¶e est
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4` + 1 dim W :V»
deg ©2

`±¿» W
deg W ¢ V» par d¶e¯nition de V»

h©2
`±¿» W ¼2 Q ·S+± c3+2h ¼2 » +2 log N+1 +c4¡

U ¡ 2c2 + o 1 ± :V»

deg W
:

On applique donc le th¶eorµeme de B¶ezout arithm¶etique µa l'intersection de

©2
` ± ¿» W et de ¿» Z Q La hauteur de l'intersection ¶etant toujours > 0 et le

degr¶e et la hauteur normalis¶ee ¶etant invariants par translations par les points de

torsion voir [Ph]-I prop 9 on obtient

ĥ W
deg W

ĥ
©2

` ± ¿» W
4` + 1 deg ©2

` ± ¿» W

> h ©2
` ± ¿» W

4` + 1 deg ©2
` ± ¿» W ¡

2c0 £
4` + 1

>¡
h©2̀±¿» W ¼2 Q

4` + 1 ± ¡
2c0 £
4` + 1

>
U ¡ 2c2 + o 1 ± :V»

4` + 1 ±: deg W ¡
S + ± c3 + 2h ¼2 » + 2 log N + 1 + c4

4` + 1 ± ¡
2c0 £
4` + 1

>
U

4` + 1 ± ¢µ V»

deg W ¡ V
deg B

¶¡
2c2 + 6c0 £ + c3 + 2 log N + 1 + o 1

4` + 1

la derniµere in¶egalit¶e se v¶eri¯e en rempla»cant S par sa valeur S UV
deg B

en majo-

rant h ¼2 » par 2c0 £ et en notant que par d¶e¯nition V»
deg W · 1

En¯n comme 2` ¸ 16 c2+c3+3c0 £ +log N+1

V 8b 1 b
et U

±: 4`+1 > 1
8+o 1 ¢ ¡

V
8b ¢

1
b on

obtient

ĥ W
deg W

>
1

8 µ V»

deg W ¡ V
deg B ¡

1

2` ¶ : µ V
8b

¶
1
b

en faisant tendre ± vers l'in¯ni Le lemme 4 5 est donc entiµerement ¶etabli ¤

4 3 Preuve du th¶eorµeme 1 1

La preuve de l'in¶egalit¶e ¹̂ess X ¸ ĥ X
dim X +1 d X

est d¶ejµa connue voir par
exemple [Zh1] theorem 1 10 ou [Da{Phi1] th¶eorµeme 1 4 Commen»cons par ¶etablir
un r¶esultat plus pr¶ecis que le th¶eorµeme 1 1 lorsque kX 1

Th¶eorµeme 4 6 On reprend les notations et hypothµeses du th¶eorµeme 1 1 et l'on
suppose de plus que kX 1 i e X ¡X est une sous-vari¶et¶e abelienne BX de A
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de dimension > dimX on a :

ĥX
deg X > 212g ¡g2

: min
8
<

:
µ Vmax

deg X 2 ¶
dimBX+1

dimBX
; deg X ¡ dimBX+1

dimBX¡dimX

9

;
:

En particulier en posant C1 A : 212g g2
: min

©
1; Rinjª¡

2 dim BX +1 on a

ĥX > C1 A ¡1: deg X ¡ dim BX :

D¶emonstration Soit ` ¸ log2 ³16 c2+c3+3c0 £ +log N+1

V 8b 1 b ´ un entier on pose b :

dim BX et on applique le lemme 4 5 µa W et aux points de torsion » 2 A2 On en
d¶eduit en faisant la moyenne sur tous les points de m-torsion lorsque m tend vers

l'in¯ni :

ĥ X
deg X > ĥ W

8 16 dim X deg W

>
1

4 16 dim X +1m4g ¢ X
»2A2

m

µ V»

deg W ¡ V
deg BX ¡

1

2` ¶µ V
8b

¶
1
b

>
1

16 dim X +2 ¢ µ RA2 V»:dºA2 »

deg W ¡ V
deg BX ¡

1

2` ¶ V
1
b :

Pour V · Vmax le lemme 4 2 entrâ³ne

Z
A2 V»:dºA2 » > V0 : deg W \ ¼¡1

2 0 :r2 dim W ¡dim W\¼¡1
2 0

avec r : 1
3 max e;pb ¢ ¡ V

8b ¢

1
2b ; ce choix de r et la condition V · Vmax permettent

d'assurer que les hypothµeses du lemme 4 2 sont bien satisfaites d'oµu

ĥ X
deg X >

1

16 dim X +2 ¢ µ V0

deg W ¡ V
deg BX ¡

1

2` ¶ V
1
b

>
1

16 dim X +2 ¢ µ V0

deg W ¡ V
deg BX

¶ V
1
b

en faisant tendre ` vers l'in¯ni
Nous posons d dim X et B BX ; notons que par d¶e¯nition dim W 2d

et dim W \ ¼¡1
2 0 d Nous allons imposer de surcrô³t

V : min ½Vmax; deg B ; V0 deg B
2 deg W

¾

de sorte que

8
>
>
<
>
>:

V Vmax ou V deg B ou

V 8b µ
deg W \ ¼¡1

2 0 : deg B
16b: 9 max e2; b d deg W

¶
b

b¡d
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et
ĥ X

deg X ¸
1

16d+2 ¢
V

b+1
b

deg B
:

Dans le dernier cas en rempla»cant r par sa valeur on a :

V
V0 deg B
2 deg W

deg W \ ¼¡1
2 0 : deg B

2: 9 max e2; b d deg W ¢ µ V
8b

¶
d
b

;

ce qui donne bien la valeur de V annonc¶ee On a donc toujours dans le dernier
cas

ĥ X
deg X >

b deg B
d+1
b¡d

24d+5 ¢ µ
deg W \ ¼¡1

2 0

16b 9 max e2; b d deg W
¶

b+1
b¡d

:

D'oµu puisque

deg W \ ¼¡1
2 0

deg W
>

deg X
24d deg X 2 ¸

1

24d deg X
;

la minoration

ĥ X
deg X >

b deg B
d+1
b¡d

24d+5 ¢ µ
1

24d+4b 9 max e2; b d deg X
¶

b+1
b¡d

:

Supposons maintenant que V Vmax ; on a alors

ĥ X
deg X >

1

24d+8 ¢
V

b+1
b

max
deg B

> 2¡8d¡8:µ Vmax
deg X 2 ¶

b+1
b

:

car deg B 6 24d deg X 2

En¯n pour ¯nir supposons que V deg B ; on a :

ĥ X
deg X >

1

24d+8 ¢ deg B
1
b > 2¡4d¡8 :

Le th¶eorµeme 4 6 s'en d¶eduit en mettant ces in¶egalit¶es ensemble et en majorant b

par g d par g¡1 puis en rempla»cant Vmax par sa valeur 8: 2 max ne;pboRinj
2b

¤

D¶emonstration du th¶eorµeme 1 1 On procµede par r¶ecurrence sur kX le cas kX 1
se d¶eduisant du th¶eorµeme 4 6 Posons Y0 X et Yi Yi¡1¡Yi¡1 pour i 1; : : : ; `
oµu ` d¶esigne le plus grand entier < 1 + log kX

log 2
Si kX > 1 on a ` > 1 et kY` 1

d'oµu l'on d¶eduit par le th¶eorµeme 4 6

ĥ Y` > C1 A ¡1 deg Y` ¡ dim BY` ;

et par les consid¶erations du paragraphe 4 1 :

ĥ Yi¡1 > 2¡4 dim Yi¡1 ¡3
¢ ĥ Yi

d Yi¡1
¢
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En t¶elescopant ces in¶egalit¶es pour i 1; : : : ; ` on obtient en notant b la dimension
de BX

ĥ X > 2¡4 P
`i 1 dim Yi¡1 ¡3`

¢
ĥ Y`

deg X deg Y1 : : : deg Y`¡1

¸
2¡4 P

`i 1 dim Yi¡1 ¡3`
¢ C1 A ¡1

deg X deg Y1 : : : deg Y`¡1 deg Y`
b :

Mais comme pour tout i compris entre 1 et `

deg Yi 6 ³24 b¡1 ´
1+¢¢¢+2i¡1

: deg X 2i 6 ³24 b¡1 : deg X ´
2i

;

en notant que par d¶e¯nition 2`¡1 6 kX et que par construction BY` BX est
de dimension b on en d¶eduit11

deg X deg Y1 ¢ ¢ ¢
deg Y`¡1 deg Y`

b · 24 b¡1 2kX b+1 ¡`¡b¡1 +1deg X 2kX b+1 ¡1:

En¯n puisque
P

`
i 1 dim Yi¡1 · `b ¡ ` `+1

2
et kX · b ¡ d on a

24 P
`i 1 dim Yi¡1 +3`

¢
24 b¡1 2kX b+1 ¡1¡`¡b +1 · 28b3¡12b2¡8b+16 :

D'oµu

ĥ X ¸ ³28b3¡12b2¡8b+16C1 A : deg X 2kX b+1 ¡1´¡
1

:

Pour conclure la preuve du th¶eorµeme 1 1 il su±t de remarquer le th¶eorµeme

¶etant vide pour g 1 on peut supposer g ¸ b ¸ 2

C A : 28b3¡12b2¡8b+16: C1 A

28b3¡12b2¡8b+16: 212b b2
min

©
1; Rinjª¡

2 b+1

6 29g3
: min

©
1;Rinjª¡

2 b+1
;

ce qui conduit bien au th¶eorµeme 1 1 ¤

5 Minorations explicites des minimums essentiels et absolus

L'objet de ce paragraphe est de d¶eduire du th¶eorµeme 1 1 que nous venons de

d¶emontrer au paragraphe 4 3 les th¶eorµemes 1 2 et 1 3 de l'introduction Comme

dans [Da{Phi2] l'id¶ee sera d'utiliser une minoration e®ective de la fonction de

Hilbert arithm¶etique pour contrôler le degr¶e du < diviseur exceptionnel > conte-
nant les petits points

Soit donc A une vari¶et¶e abelienne de dimension g ¸ 1 munie d'un ¯br¶e en
droites ample et sym¶etrique L associ¶e µa une polarisation principale et £ le plon-
gement de A dans un espace projectif PN d¶e¯ni au paragraphe 3 1 associ¶e µa L­16

11 Une majoration plus ¯ne de deg Y` µa cet endroit permet d'obtenir la majoration de C A
en exp cg2 log g mentionn¶ee dans l'introduction



684 S David et P Philippon CMH

N + 1 16g On suppose A d¶e¯nie sur Q et soit de plus X une sous-vari¶et¶e
alg¶ebrique de A de dimension d ¶egalement d¶e¯nie sur Q

On reprend le plongement ¶etir¶e de A :

©` : A A2 P2
N PN0

x 7¡ x; [2`]x

Segre

avec ` un entier et N 0 + 1 N + 1 2

On sait que X est d¶e¯nie dans PN par des ¶equations de degr¶es 6 deg X De

plus ©` A est d¶e¯nie dans PN 0 par des ¶equations de degr¶e · 4` +1 On en d¶eduit
que ©` X est d¶e¯nie dans PN0 par des ¶equations de degr¶es 6 max

©
4` + 1; deg X ªD'aprµes la proposition 4 2 points i et iii de [Da{Phi2] on en d¶eduit que l'id¶eal

de d¶e¯nition de ©` X dans Q[Y0; : : : ; YN ] est sympa12 en degr¶e N+1 2: max
©

4`+
1; deg X ªOn obtient alors avec ces notations et cette remarque :

Lemme 5 1 Supposons que l'on ait l'in¶egalit¶e :

h ©` X
deg ©` X > 12 d + 1 4e d+1 log N + 1 :

Il existe alors une forme F de degr¶e L 3 N + 1 2: max
©

4` + 1; deg X ª µa

coe±cients dans Q d¶ecoupant un diviseur Z de ©` X telle que tout point x 2
©` X Q de hauteur au plus :

4e ¡d¡1
¢

h ©` X
deg ©` X

soit un ¶el¶ement de Z

D¶emonstration C'est essentiellement le corollaire 4 12 de [Da{Phi2] minoration
e®ective de la fonction de Hilbert arithm¶etique jointe µa la formule du produit
oµu l'on a simplement tenu compte du fait que l'id¶eal de d¶e¯nition de ©` X est
sympa en degr¶e N + 1 2: max

©
4` + 1; deg X ª

et ajust¶e la valeur num¶erique de

L a¯n d'assurer que les hypothµeses de cet ¶enonc¶e soient satisfaites

Nous allons maintenant r¶esumer en l'¶enonc¶e suivant les propri¶et¶es qui nous

seront utiles pour la r¶ecurrrence qui va suivre pour passer de la codimension 1 µa
la codimension d

Proposition 5 2 Supposons que X ne soit pas un translat¶e d'une sous-vari¶et¶e
abelienne de A notons comme au paragraphe 4 BX la sous-vari¶et¶e abelienne de

12 Rappelons que suivant la terminologie de [Da{Phi2] un id¶eal de Q[Y0; : : : ; YN ] de rang
N + 1 ¡ r est dit sympa en degr¶e D si I[d] :Q[d] Q[Y0; : : : ; YN ]D+d1+¢¢¢+dr¡r+1 6 0 pour
tout d d1; : : : ; dr 2 N r et oµu l'id¶eal J [d] est < l'id¶eal engendr¶e par J augment¶e des
formes g¶en¶eriques de degr¶e d1; : : : ; dr dans un sur-anneau convenable > ; on pourra se reporter µa
[Da{Phi2] d¶e¯nition 4 1 pour plus de pr¶ecisions
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A engendr¶ee par X ¡ X et kX le nombre minimal de copies de X ¡ X dont la
somme vaut BX et reprenons les notations introduites ci-dessus Posons de plus :

± : 3 N + 1 2 max 1;
12 4e d+2 d + 1 :c0 £

ĥ X
: deg X :

Il existe alors un sous-ensemble alg¶ebrique Z de X d¶e¯ni sur Q de dimension
d ¡ 1 satisfaisant :

deg Z ·
±2

3 N + 1 2 ¢ deg X ;

qui contient tous les points de X Q de hauteur normalis¶ee :

· 4e ¡d¡2
¢

ĥ X
deg X

:

En particulier les points de X Q de hauteur normalis¶ee

· ¡
4e d+2C A ¢

¡1
: deg X ¡2kX dim BX+1

appartiennent µa Z et deg Z est major¶e par

3 N + 1 2

¡12 d + 1 4e d+2c0 £ C A ¢
2

: deg X 4kX dim BX +1 +1 ;

oµu C A : 29g3
: min

©
1; Rinjª¡

2 dim BX +1

D¶emonstration Commen»cons par choisir ` minimal de telle sorte que :

4` + 1 > 3 4e d+2: d + 1 :c0 £ ¢

deg X

ĥ X
: 21

En tenant compte de la proposition 3 14 pour comparer la hauteur et le degr¶e
de £` X en fonction de la hauteur normalis¶ee et du degr¶e de X on a :

¡4` + 1
¢

deg ©` X
h ©` X ·

deg X

ĥ X
1

1 ¡ 2 d+1 c0 £ deg X
4`+1 ĥ X

;

et le choix de ` que nous venons d'e®ectuer assure pour sa part

4` + 1
¢

deg ©` X
h ©` X · 2

¢

deg X

ĥ X
:

Par ailleurs toujours µa l'aide de la proposition 3 14 on a :

h ©` X
deg ©` X >

4` + 1

2
ĥX

deg X ¸ 3 4e d+2 d + 1
c0 £

2
; 22

en rempla»cant ¯nalement c0 £ par sa valeur num¶erique donn¶ee µa la proposi-
tion 3 9 on en d¶eduit que l'hypothµese du lemme 5 1 est satisfaite
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Comme par ailleurs une hypersurface de PN 0 de degr¶e L d¶ecoupe sur A le
même diviseur qu'une hypersurface de degr¶e L0 L: 4` + 1 de PN le diviseur Z
de ©` X dont l'existence est assur¶ee par le lemme 5 1 nous fournit une fois tir¶e
en arriµere sur PN un diviseur de X que nous noterons encore Z dont le degr¶e
deg Z est bien major¶e par la quantit¶e :

deg Z · L¡4` + 1
¢

deg X

· 3 N + 1 2: max
©

4` + 1; deg X ª : ¡4` + 1
¢

deg X

6 3 N + 1 2: max 1;
12 4e d+2: d + 1 c0 £

ĥ X

2

: deg X 3

6
±2: deg X
3 N + 1 2 ¢

Ainsi toujours par le lemme 5 1 en tirant la situation en arriµere sur X et en
tenant compte de la proposition 3 14 pour se ramener µa des hauteurs normalis¶ees

on voit que si x est un point de X de hauteur normalis¶ee < 4e ¡d¡2
¢

ĥ X
deg X alors

rappelons que 4` + 1 ĥx ĥ©` x :

h ©` x < 4e ¡d¡2
¢

4` + 1 ĥX
deg X

+ 2c0 £

· 4e ¡d¡2
¢

h ©` X
deg ©` X

+ 2c0 £ µ1 + d + 1

4e d+2 ¶ :

En tenant compte de la minoration obtenue en 22 pour h ©` X
deg ©` X

et de la valeur
num¶erique ¯x¶ee pour ` on v¶eri¯e bien que

h ©` x <
1

4e d+1 £
h ©` X

deg ©` X
;

et le lemme 5 1 nous montre bien qu'en particulier x est un ¶el¶ement du diviseur
de Z de X introduit ci-dessus

On en d¶eduit les premiµeres majorations de la proposition Les majorations

suppl¶ementaires s'obtiennent tout simplement en tenant compte de la minoration
obtenue au th¶eorµeme 1 1 pour ĥ X Ce qui d¶emontre donc la proposition 5 2 ¤

En ce qui concerne les minimums introduits au paragraphe 1 pour avoir un
contrôle des ensembles exceptionnels il est utile d'introduire des minimums < quan-
titatifs > et donc de restreindre les variations µa des vari¶et¶es de degr¶e contrôl¶e Plus

pr¶ecis¶ement on pose pour tout triplet d'entiers d;¢;¢0 avec d ¸ 1 ¢ ¸ 1 et
¢0 ¸ 1 :

¹̂ess d;¢; ¢0 : inf
V ½A

sup
Z½V

inf nĥ x ; x 2 V n Z Q o ;
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l'in¯mum ¶etant pris sur toutes les sous-vari¶et¶es V de A d¶e¯nies sur Q de dimen-
sions · d et de degr¶es major¶es par ¢ qui ne sont pas translat¶ees de sous-vari¶et¶es

abeliennes le supremum qui est un maximum est pour sa part pris sur les sous-
ensembles alg¶ebriques propres de V de degr¶es · ¢0 ¶egalement d¶e¯nis sur Q

De même on introduit :

¹̂± d;¢; ¢0 : inf
V ½A

sup
Z½V ±

inf nĥ x ; x 2 V ± n Z Q o ;

le premier in¯mum ¶etant pris sur toutes les sous-vari¶et¶es V de A d¶e¯nies sur Q
de dimensions · d de degr¶es major¶es par ¢ et le supremum13 qui est encore

un maximum est pour sa part pris sur les sous-ensembles ¯nis de V ± ¶egalement
d¶e¯nis sur Q et de cardinaux au plus ¢0

On d¶eduit alors de la proposition 5 2 :

Th¶eorµeme 5 3 Supposons donn¶es des entiers d ¸ 1 et ¢ ¸ 1 et posons :

f ¢ ¡
212g+4: c0 £ C A ¢

2
: ¢4g2

:

On a alors les minorations suivantes pour les quantit¶es ¹ess
¢; ¢; ¢

et ¹±
¢; ¢; ¢ :

¹̂ess d; ¢; f ¢ >
3 N + 1 2: c0 £

pf ¢ >
1

f ¢ ;

ainsi que

¹̂± d; ¢; f±d ¢ >
1

f±d ¢ ¢

D¶emonstration Tout d'abord on v¶eri¯e ais¶ement en tenant compte des valeurs

num¶eriques de C A donn¶ee dans la proposition 5 2 et de c0 £ donn¶ee µa la
proposition 3 9 :

3 N + 1 2c0 £

pf ¢ ¸
1

f ¢ :

Maintenant si V est une sous-vari¶et¶e de A d¶e¯nie sur Q de degr¶e deg V · ¢
et si V n'est pas un translat¶e d'une sous-vari¶et¶e abelienne de A la proposition 5 2
nous assure que les points de V de hauteur au plus

¹ :
1

4e d+2C A ¢2k b+1

appartiennent µa un diviseur Z de V de degr¶e au plus

deg Z · ¿ : 3 N + 1 2
£
12 d + 1 4e d+2c0 £ C A ¤

2 deg V 4k b+1 +1 ;

oµu pour all¶eger nous avons pos¶e k : kV et b : bV

13 Par convention l'in¯mum respectivement le supremum de l'ensemble vide est +1 respecti-
vement 0
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Par d¶e¯nition de ¹̂ess d; ¢; ¢
on en d¶eduit :

¹̂ess d; ¢; ¿ ¸ ¹ ;

comme il d¶ecoule imm¶ediatement de la d¶e¯nition de ¹̂ess d;¢; ¢ que ¿ 0 ¸ ¿ entrâ³ne

que ¹̂ess d;¢; ¿ 0 ¸ ¹̂ess d;¢; ¿ il su±t de montrer d'une part que :

¹ ¸
3 N + 1 2c0 £

pf ¢
;

et d'autre part que f ¢ ¸ ¿ pour obtenir la premiµere partie du th¶eorµeme

Commen»cons par la premiµere in¶egalit¶e ; on remarque ais¶ement que :

2k b + 1 6 2 g ¡ 1 g + 1 < 2g2 ;

il su±t maintenant de v¶eri¯er que :

1

4e d+2C A ¸
3 N + 1 2

212g+4C A
;

qui est triviale en tenant compte de N + 1 16g d · g ¡ 1 et g ¸ 2 le th¶eorµeme

est vide si g 1
Pour v¶eri¯er que ¿ · f ¢ il su±t en tenant compte de nouveau de l'in¶egalit¶e

2k b + 1 < 2g2 et en rempla»cant f ¢ par sa valeur de v¶eri¯er que

432 N + 1 2 d + 1 2 4e 2d+4 · 224g+8 ;

qui est triviale

V¶eri¯ons maintenant que

¹̂±
¡d; ¢; f±d ¢ ¢ ¸

1

f±d ¢ ¢

Pour ceci nous allons commencer par remarquer que si d > 2 :

¹̂±
¡d; ¢; f±d ¢ ¢ ¸ min

©¹̂ess d;¢; f ¢ ; ¹̂±
¡d ¡ 1; f ¢ ; f±d ¢ ¢ª : 23

Par d¶e¯nition des ¹̂±
¢; ¢; ¢ pour tout " > 0 il existe une sous-vari¶et¶e V de

A de dimension d et de degr¶e au plus ¢ qui est d¶e¯nie sur Q et qui n'est pas

translat¶ee d'une sous-vari¶et¶e abelienne de A telle que :

¹̂±
¡d;¢; f±d ¢ ¢ > inf nĥ x ; x 2 V ± n V ± \ Z Q o¡ "

pour tout ensemble ¯ni Z d'au plus f±d ¢ points de A
Il existe un diviseur W de degr¶e · f ¢ tel que

inf nĥ x ;x 2 V n W Q o ¸ ¹̂ess d;¢;f ¢ ¡ " ;

et il existe un ensemble ¯ni Z d'au plus f±d ¢ points de W ± tel que

inf nĥ x ; x 2 W ±
n Z Q o ¸ ¹̂± d ¡ 1; f ¢ ; f±d ¢ ¡ " :
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On a alors

¹̂± d;¢; f±d ¢ ¸ min ½ inf nĥ x ; x 2 W ±
n Z Q o ;

inf nĥ x ; x 2 V n W Q o ¾ ¡ "

¸ min
©¹̂± d ¡ 1;f ¢ ; f±d ¢ ; ¹̂ess d;¢;f ¢ ª¡ 2"

car W ± ¾ V ± \W L'in¶egalit¶e 23 s'en d¶eduit en faisant tendre " vers 0

On d¶eduit par r¶ecurrence de la relation 23 lorsque j 1; : : : ; d ¡ 1

¹̂± d;¢; f±d ¢ ¸ min
1·j·d n¹̂ess d¡ j + 1; f± j¡1 ¢ ;f±j ¢ o ;

car ¹̂± 1; ¢; ¢ ¹̂ess 1; ¢; ¢

La premiµere partie de la preuve nous donne donc :

¹̂± d;¢; f±d ¢ ¸ min ½
1

f ¢ ;
1

f±2 ¢ ; : : : ;
1

f±d ¢ ¾
1

f±d ¢ ¢

Le th¶eorµeme 5 3 est donc entiµerement ¶etabli ¤

D¶emonstration des th¶eorµemes 1 2 1 3 et 1 4 Pour ¶etablir le th¶eorµeme 1 2 il reste

µa ¶evaluer la constante

Posons C0 A : ³212g+4:c0 £ C A ´
1 2g2

; par d¶e¯nition de f on a f ¢
C0 A ¢ 4g2

et l'on trouve

f±d ¢ ³C 0 A f± d¡1 ¢ ´
4g2

C0 A 4g2+¢¢¢+ 4g2 d
: ¢ 4g2 d · ¡C 0 A 2:¢¢

4g2 d
:

Comme C0 A 2g2

· 214g3
maxf1; h A g: min

©
1; Rinjª¡

2 g+1 cette derniµere quan-
tit¶e est bien major¶ee par q X lorsque d dim X et ¢ deg X ce qui achµeve

de montrer le th¶eorµeme 1 2 ¤

Pour le th¶eorµeme 1 3 on raisonne comme suit voir aussi [R¶e] preuve du th¶eo-
rµeme 2 1 et lemme 6 1

Soient x1; : : : ; xr des ¶el¶ements de ¡ dont les projections sur ¡ ¡tors engendrent
¡ ¡tors ; tout ¶el¶ement x2¡ s'¶ecrit donc de fa»con unique14 x ®1x1+ ¢ ¢ ¢+®rxr+t
oµu t 2 ¡tors et la hauteur ĥ x est la valeur en ® ®1; : : : ; ®r 2 Qr d'une

forme quadratique d¶e¯nie positive q Soit " : ¡ Rr d¶e¯nie par " x ®
Ainsi pour tout nombre r¶eel a ¸ 0 les images par " de l'ensemble des points

x 2 ¡ satisfaisant ĥ x 6 a sont contenues dans un ellipsoÄ³de E a de Rr Posons

a0 : f±d ¢ ¡1 et recouvrons E a \¡\X± Q par des l'ellipsoÄ³des translat¶es de

14 Il est sous-entendu que pour chaque entier n ¸ 1 et chaque indice i 1 · i · r un point de

n-division de xi est ¯x¶e une fois pour toutes ; ce dernier est not¶e xi n
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la forme fx0i + E a0 gi2I de telle sorte que les ellipsoÄ³des x0i + E ¡
a0
4 ¢

soient deux
µa deux disjoints On peut choisir x0i 2 E a \ ¡ \ X± Q pour i 2 I ; le nombre

d'ellipsoÄ³des du recouvrement i e le cardinal de l'ensemble d'indices I n¶ecessaires

pour cette op¶eration est major¶e par le rapport des volumes des ellipsoÄ³des E ¡
a0
4 ¢

et E ³¡pa + 1
2
pa0¢

2

´ qui contient l'union des x0i + E ¡
a0
4 ¢

VolµE³³pa +
1

2
pa0´

2

´¶ VolµE³
a0

4 ´¶ µ2r a
a0

+ 1¶
r

:

Maintenant dans chacun des ensembles "¡1 x0i + E a0 il y a au plus f±d ¢
points de ¡ \ X± Q en vertu du th¶eorµeme 5 3 En e®et pour tout ¶el¶ement v
de "¡1 x0i + E a0 \ ¡ \ X± Q on a v ¡ x0i 2 ¡ \ ¿¡x0i X ± \ "¡1

E a0 En
particulier v ¡ x0i est un ¶el¶ement de ¿¡x0i X ± de hauteur au plus 1 f±d ¢ et
le th¶eorµeme 5 3 nous assure qu'il y a au plus f±d ¢ tels points puisque

deg ¿¡x0i X deg X :

Au total il y a donc au plus

card I f±d ¢ · µ2r a

a0
+ 1¶

r
f±d ¢ · ¡

5af±d ¢ ¢
r 2 f±d ¢

points dans l'ensemble fx 2 ¡ \ X± Q ;
ĥ x · ag ; pour justi¯er l'in¶egalit¶e ci-

dessus il su±t de v¶eri¯er que 2pa a0 + 1 2 · 5af±d ¢ c'est-µa-dire

4pa a0 + 1 · af±d ¢ ;
et cette in¶egalit¶e d¶ecoule trivialement du fait que a ¸ 1 et de la relation f±d ¢ ¸228 car par d¶e¯nition c0 £ ¸ 1 ainsi que C A ¸ 1

Le th¶eorµeme 1 3 est donc entiµerement ¶etabli ¤
Pour le th¶eorµeme 1 4 on reporte la minoration de Rinj obtenue au lemme 6 8 de

l'appendice dans l'expression de q X et le th¶eorµeme 1 1 On a dans les notations

du th¶eorµeme 1 4 Rinj ¸ g¡2:h0 A ¡1 2 et donc

q X · ³g4 g+1 : h0 A g+2´
4 4g2 dim X ¡1

: ¡214g deg X ¢
4g2 dim X

· ³g4 g+1 g2
: 214g: h0 A g+2 g2

: deg X ´
4g2 dim X

· ³216g :h0 A 2 g : deg X ´
4g2 dim X

;

puis lorsque X n'est pas translat¶ee d'une sous-vari¶et¶e abelienne pour le th¶eorµe-
me 1 1

ĥ X
deg X ¸ g¡4 g+1 2¡9g3

:h0 A ¡b¡1 deg X ¡2k b+1

¸ 2¡11g3
: deg X ¡2k b+1 :h0 A ¡b¡1 ;

ce qui conduit bien au th¶eorµeme 1 4 ¤
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6 Appendice

L'objet de cet appendice est de donner une version explicite d'un ¶enonc¶e main-
tenant classique : le < lemme matriciel > de D Masser voir [Ma] page 115 ; on
en d¶eduit facilement une estimation du rayon d'injectivit¶e Rinj Pour ceci nous

commen»cons par donner une minoration de la norme archim¶edienne de l'origine

d'une vari¶et¶e abelienne dans le plongement thêta ; nous passerons ensuite µa une

preuve de ce lemme

Nous rappelons tout d'abord quelques notations d¶e¯nitions et lemmes clas-
siques de la th¶eorie de la r¶eduction des matrices sym¶etriques dont nous donnons

au passage des versions quantitatives

Soit g un entier positif on notera Sg l'espace de Siegel en dimension g i e

l'espace des matrices g £ g sym¶etriques de partie imaginaire d¶e¯nie positive ; on
notera Sg l'espace des matrices g £ g sym¶etriques r¶eelles et en¯n Pg le sous-
ensemble de Sg form¶e des matrices d¶e¯nies positives Tous les vecteurs consid¶er¶es

seront not¶es en colonnes et la transpos¶ee sera not¶ee < t > ; si n est un entier ¸ 1 on
notera Zn l'ensemble 1

nZg Zg Sauf pr¶ecision du contraire la norme d'une matrice

sera la norme du sup
Rappelons que le groupe symplectique Sp2g Z de dimension 2g agit sur Sg de

la fa»con suivante : soit ¾ un ¶el¶ement de Sp2g Z et ¿ un ¶el¶ement de Sg ; alors ¾ ¢ ¿

est d¶e¯ni par :

¾
¢ ¿ ®¿ + ¯ °¿ + ± ¡1 ; oµu ¾ µ ® ¯

° ±
¶ :

D¶e¯nition 6 1 Soit ¿ x + iy un ¶el¶ement de l'espace de Siegel Sg Sg + iPg
on dit que ¿ est Siegel r¶eduite si :

i 8i; j; 1 · i; j · g; jxi;j j · 1
2

;

ii 8¾ 2 Sp2g Z det m ¾:¿ · det m ¿ ;

iii la partie imaginaire y de ¿ est Minkowski r¶eduite i e :

1 pour tout ¶el¶ement » »1; : : : ; »g 2 Zg et pour tout indice k 1 · k ·g tel que les nombres »k; : : : ; »g sont non tous nuls on a t»y» ¸ yk :
yk;k ;

2 pour tout k 1 · k · g ¡ 1 on a yk;k+1 ¸ 0

On notera Fg l'ensemble des matrices Siegel r¶eduites On rappelle que Fg est
< un domaine fondamental > de Sg pour l'action de Sp2g Z

Lemme 6 2 Soit K un corps g un entier ¸ 1 et y une matrice g£g sym¶etrique

Soit en¯n 1 · g0 · g un entier tel que le mineur principal y0 d'ordre g0 £ g0 de y
soit inversible Dans ces conditions l'¶equation :

y

t
µ Idg0 w

0 Idg00
¶µ y0 0

0 y ¶µ Idg0 w
0 Idg00

¶ ;
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d'inconnues y 2 Mg00 K w 2 Mg0£g00 K admet une solution unique bien en-
tendu ici g00 g ¡ g0 ; de plus y est sym¶etrique

D¶emonstration Voir par exemple [Ig] lemme 12 page 190 ¤

Lemme 6 3 < th¶eorµeme d'Hermite > Soient g un entier ¸ 1 y un ¶el¶ement de

Pg et m y le minimum de la forme quadratique associ¶ee sur le r¶eseau Zg priv¶e de

l'origine On a :

m y g · µ
4

3¶
1
2

g g¡1

det y :

D¶emonstration Le lemme est clairement vrai pour g 1 supposons-le donc vrai
pour g ¡ 1 ¸ 1 et v¶eri¯ons-le pour g Soit u1 2 Zg tel que m y tu1yu1 Les

coe±cients de u1 ¶etant premiers entre eux on peut compl¶eter u1 en un ¶el¶ement u
de Glg Z ayant u1 comme premiµere colonne En rempla»cant y par tuyu on peut
supposer que y1 y1;1 m y Appliquons maintenant le lemme 6 2 avec g0 1
On en d¶eduit que pour tout » »0; »00 2 Rg avec »0 2 R on a :

t»y» y1 »0 + w»00 2 + t»00y »00 :

Choisissons maintenant »00 2 Zg¡1 tel que t»00y »00 m y et »0 2 Z tel que

»0 + w»00 soit minimal en valeur absolue on en tire donc :

y1 m y · t»y» ·
1

4
y1 + m y ;

i e y1 · 4
3m y Cette in¶egalit¶e jointe µa l'hypothµese de r¶ecurrence donne donc :

m y g · µ
4

3¶
g¡1

y1m y g¡1

· µ
4

3¶
g¡1 + g¡1 g¡2

2

y1 det y µ
4

3¶
g g¡1

2

det y :

Le lemme 6 3 est ¶etabli ¤

Lemme 6 4 Soit y une matrice g £ g Minkowski r¶eduite On a :
i

det y · y1 : : : yg et y1 : : : yg · c5 det y ;

oµu l'on peut prendre : c5 : ³2g g¡1
3 ´

1
2

g g¡1
;

ii pour tout » »1; : : : ; »g 2 Rg on a :

t»y» ·
g + 1

2

g

Xi
1

yi»2
i et

g

X
i 1

yi»2
i · c6

t»y» ;

oµu l'on peut prendre : c6 : ³2g g¡1
3 ´

1
2

g g¡1

¢ ¡
g+1

2 ¢
g¡1
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D¶emonstration La premiµere in¶egalit¶e du point i est le < th¶eorµeme de Hada-
mard > voir par exemple [Ig] page 190 Il su±t donc d'¶etablir la deuxiµeme

Clairement l'¶enonc¶e est vrai pour g 1 avec c5 1 et pour g 2 avec
c5

4
3

: voir [Ig] page 192 Il su±t donc de faire une r¶ecurrence Soit g ¸ 3 et
y une matrice Minkowski r¶eduite de dimension g Supposons que pour tout k
1 · k · g¡ 1 on ait : yk+1 · ®yk avec ® g g¡1

4
On a alors par le lemme 6 3 :

y1 : : : yg · ®
g g¡1

2 yg
1 · ®

g g¡1
2 µ

4

3¶
1
2

g g¡1

det y ;

et le lemme est vrai Nous pouvons donc supposer qu'il existe un entier k 1 · k ·g¡1 tel que yi+1 · ®yi pour tout i k+1 · i · g¡1 et yk+1 > ®yk Appliquons le
lemme 6 2 avec g0 k Choisissons »00 2 Zg¡k tel que t»00y »00 m y et »0 2 Zk

tel que toutes les coordonn¶ees de » »0 + w»00 soient · 1
2

et posons » »0; »00

Puisque y est Minkowski r¶eduite d¶e¯nition 6 1 propri¶et¶e iii point 1 on a

yk+1 · t»y» et l'on en tire :

yk+1 · t»y» t» y0» + m y · k k + 1

8
yk + µ

4

3¶
g¡k¡1

2

det y
1

g¡k :

On tire de cette in¶egalit¶e et de l'in¶egalit¶e yk+1 > ®yk

yk+1 ·
1

1 ¡ k k+1
2g g¡1

µ
4

3¶
1
2

g¡k¡1

det y
1

g¡k :

Comme k k+1
2g g¡1 · 1

2 l'hypothµese de r¶ecurrence donne alors :

y1 : : : yg y1 : : : yk yk+1 : : : yg

· µ
2k k ¡ 1

3 ¶
k k¡1

2

: det y0 ®
g¡k g¡k¡1

2 yg¡k
k+1

· 2g¡k µg g ¡ 1

4 ¶
g¡k g¡k¡1

2

µ
2k k ¡ 1

3 ¶
k k¡1

2

det y

· µ
g g ¡ 1

3 ¶
g¡k g¡k¡1 +k k¡1

2
2g¡k+k k¡1

2 det y

· µ
2g g ¡ 1

3 ¶
1
2

g g¡1

det y :

Le point i du lemme 6 4 est donc ¶etabli Passons µa ii
Soit d la matrice diagonale dont le iµeme coe±cient est di pyi et y

d¡1yd¡1 Comme jyi;j j jyi;j j
didj · 1

2 ; pour i 6 j et yi;i 1 la plus grande valeur
propre de y est · g+1

2
; par ailleurs det y det y

y1:::yg
et le point i nous assure
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que c¡1
5 · det y · 1 On en tire que la plus petite valeur propre de y est

¸ ³ 2
g+1´

g¡1
c¡1

5 ¸ c¡1
6 ce qui montre bien le point ii et donc le lemme 6 4 ¤

Rappelons que pour p a; b 2 R2g on a not¶e µp ¿; z la fonction thêta avec
caract¶eristique classique confer formule 10

Lemme 6 5 Pour tout ¿ 2 Sg on a :

maxfjµp ¿; 0 j; p 2 Z
2
2 g ¸ 1 :

D¶emonstration Voir aussi [Ma{Wu2] lemme 6 3 Soient ¿ 2 Sg et ¿ 2 Fg tels

que ¿ soit l'image de ¿ via un ¶el¶ement ¾ µ ® ¯
° ±

¶ de Sp2g Z Les formules de

transformations modulaires voir par exemple [Ig] page 85 nous donnent alors :

maxfjµp ¿; 0 j; p 2 Z
2
2 g j det °¿ + ± j

1
2 maxfjµp ¿ ; 0 j; p 2 Z

2
2 g :

Or comme ¿ 2 Fg on a jdet °¿ + ± j ¸ 1 voir d¶e¯nition 6 1 point ii Par
ailleurs en raisonnant comme dans [Da] x 3 on voit que :

lim
n¡ 1

µ 0;0 2n¿ ; 0 1 :

En e®et
µ 0;0 2n¿ ; 0 1 + Xm2Zg ;m 6 0

exp i¼tm2n¿ m ;

Or en vertu du lemme 6 4 point ii et comme ¿ est suppos¶ee Siegel r¶eduite

lim
n¡ 1 ¯

¯
¯
¯
¯
¯

Xm2Zg ;m 6 0

exp i¼tm2n¿ m
¯
¯
¯
¯
¯
¯

· lim
n¡ 1 Xm2Zg ;m 6 0

exp Ã¡
¼2np3

2c6

g

X
i 1

m2
i

0 :

Les formules de < duplication > [Ig] th¶eorµeme 2 page 139 assurent que :

max
©jµp 2n¿ ; 0 j; p 2 Z

2
2ª · max

©jµp 2n¡1¿ ; 0 j; p 2 Z
2
2ª ;

en e®et sp¶ecialis¶ees au cas particulier qui nous int¶eresse ces derniµeres s'¶ecrivent :

µ a;b 2n¿ ; 0 2 1

2g Xm2Z2

exp ¡4i¼ta:m µ 2a;b+m 2n¡1¿ ; 0 µ 0;m 2n¡1¿ ; 0 :

Ces in¶egalit¶es mises ensemble donnent le lemme 6 5 ¤

Lemme 6 6 Pour tout ¿ 2 Fg et tout b 2 Z2 on a avec eg : t 0; : : : ; 0; 1 2
Zg :

jµ eg
2 ;b ¿; 0 j · 3g

g2
2 +g+ 3

2 k m ¿k
g¡1

2 e¡¼
4k m ¿k · 4g 2g2

e¡¼
8 k m ¿k :

De plus il existe un ¶el¶ement b 2 Z2 tel que l'on ait 0
6

µ eg
2 ;b ¿; 0
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D¶emonstration L'existence d'un ¶el¶ement b 2 Z2 tel que 0
6

µ eg
2 ;b ¿; 0 d¶ecoule

des formules de duplication voir [Ig] theorem 2 page 139 ; en e®et soit z 2 Cg

on a :

µ eg
2 ;0 2¿; z µ 0;0 2¿; z

1

2g X
m21

2
Zg Zg

exp ¡i¼ teg ¢m µ eg
2 ;m ¿; z µ eg

2 ;m ¿; 0 ;

comme le membre de gauche n'est pas identiquement nul lorsque z d¶ecrit Cg l'un
des µ eg

2 ;m ¿; 0 est non nul d'oµu la deuxiµeme partie du lemme 6 6 voir aussi le
lemme 11 page 168 de [Ig]

Il su±t donc d'¶etablir la majoration Soit donc ¿ 2 Fg et b 2 Z2 On a :

¯̄
¯

µ eg
2 ;b ¿; 0

¯
¯
¯

· Xm2Zg

exp³¡¼ t³m + eg

2 ´ m ¿ ³m + eg

2 ´´ :

Pour ¶evaluer la somme du membre de droite notons Ak le nombre :

Ak : card
©m 2 Zg; t 2m + eg y 2m + eg < k2ygª :

On a donc avec la propri¶et¶e iii - 1 des matrices Siegel-r¶eduites A1 0 et

¯̄
¯

µ eg
2 ;b ¿; 0

¯
¯
¯

·Xk¸1

Ak+1e¡¼k2yg
4 :

Remarquons que si a est un nombre r¶eel ¸ 1

Z
x¸a

xge¡x2
dx

ag¡1e¡a2

2
Z

1
0 ³

v
a2 + 1´

g¡1
2

e¡vdv

· ag¡1e¡a2

2
Z

1
0

v + 1
g¡1

2 e¡vdv

·
1

2
ag¡1e¡a2+1¡µg + 1

2 ¶

· 2 µg + 1

2 ¶
g
2

ag¡1e¡a2
:
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Maintenant en posant a : max n1;q 2g
¼yg o 2 [1;pg] on dispose de l'in¶egalit¶e :

Xk¸1

kge¡¼k2yg
4 · ag+1e¡ ¼a2yg

4 + Z
x¸a

xge¡¼x2yg
4 dx

· ag+1e¡ ¼a2yg
4 + µ

4

¼yg
¶

g+1
2

Z
v¸ap¼yg

2

vge¡v2
dv

· ag+1e¡ ¼a2yg
4 Ã1 + µg + 1

2 ¶
g
2

:
4

g

· 4 µg g + 1

2 ¶
g+1

2
e¡

¼yg
4

car la fonction x ¡ xg exp³¡¼x2yg
4 ´ atteint son maximum en x q 2g

¼yg
et

modulo une estimation plus pr¶ecise si g 1
On remarque maintenant que Ak+1 est major¶e par le volume de l'ellipsoÄ³de

E :

8<
:

x 2 Rg ; txyx · Ãk + 1

2
pyg +rg g + 1

8
pyg

2

9

;car d'aprµes le lemme 6 4 point ii une maille fondamentale de Zg centr¶ee en un
point m + eg

2
satisfaisant t 2m + eg y 2m + eg · k + 1 2yg est contenue dans cet

ellipsoÄ³de Le volume en question est ¶egal µa

¼yg
g
2

2g¡ ¡1 + g
2 ¢

det y 1
2

¢
Ãk + 1 +rg g + 1

2

g

;

d'oµu
Ak+1 · kg : e¼ g + 3 g 2 : yg 2

g det y ¡1 2 ;

car

k+1+r g g + 1

2 · 2k Ã1 +rg g + 1

2
et

µ1 + qg g+1
2 ¶

g

¡ ¡1 + g
2 ¢ · e g + 3

g
2 :

En tenant compte de l'in¶egalit¶e pr¶ec¶edente on obtient :

¯
¯
¯

µ eg
2 ;b ¿; 0

¯
¯
¯

· 4 ³
e¼

2
g g + 1 g + 3 ´

g+1
2

y
g
2
g det y ¡ 1

2 exp³¡
¼yg

4 ´ :

En tenant compte du lemme 6 4 point i pour obtenir l'in¶egalit¶e lµa encore

il convient d'être plus pr¶ecis si g 1

det y ¸ µ
3

2g g ¡ 1 ¶
g g¡1

2
Ãp3

2

g¡1

yg ;
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ceci nous donne vu que y
g¡1

2
g · gg exp ¡

¼yg
8 ¢

:

¯̄
¯

µ eg
2 ;b ¿; 0

¯
¯
¯

· 4 µ
2g g ¡ 1

3 ¶
g g¡1

4

µ
e¼

p3
g g + 1 g + 3 ¶

g+1
2

y
g¡1

2
g exp³¡

¼yg

4 ´

· 3g
g2
2 +g+ 3

2 y
g¡1

2
g exp³¡

¼yg

4 ´

· 4g 2g2
exp³¡

¼yg

8 ´ :

Le lemme 6 6 est donc ¶etabli15 ¤

Nous pouvons maintenant passer au lemme < matriciel > de Masser Pour
tout ¶el¶ement ¿ de Sg nous noterons k¿ le corps Q[µp ¿; 0 ]p2Z

2
2

Lemme 6 7 Soit ¿ un ¶el¶ement de Sg tel que k¿ soit contenu dans un corps de

nombres k de degr¶e d sur Q Soit ¾ un plongement complexe de k et ¿ ¾ un
¶el¶ement de Sg satisfaisant A¾

¿
A¿ ¾ Soit en¯n ¿ 0 ¾ un repr¶esentant de ¿ ¾

dans Fg et y0 ¾ la partie imaginaire de ¿ 0 ¾ On a alors :
1

d X¾
ky0 ¾ k ·

8

¼
¢ ¡maxf1; h A g + 2g2 log 4g

¢ :

D¶emonstration Voir aussi [Ma{Wu2] lemme 8{6 Quitte µa faire une extension de

k on peut supposer que ¿ 0 ¾ ¿ ¾ ; c'est ce que nous ferons ; soit donc ¾ un plon-
gement complexe de k Choisissons un ¶el¶ement p ¾ 2 Z

2
2 tel que jµp ¾ ¿ ¾ ; 0 j

soit maximal De même en tenant compte du lemme 6 6 choisissons un ¶el¶ement
b 2 Z2 tel que 0

6 jµ eg
2 ;b ¿ ¾ ; 0 j · 4g g2

exp ¡¼
8 ky0 ¾ k La d¶e¯nition de la

hauteur de Weil nous assure alors que :

1

d X¾

log

¯
¯
¯
¯
¯

µ eg
2 ;b ¿ ¾ ; 0

µp ¾ ¿ ¾ ; 0
¯
¯
¯
¯
¯

¸ ¡
1

d X¾

log max
p2Z

2
2

¯
¯
¯
¯
¯

µp ¿ ¾ ; 0

µ eg
2 ;b ¿ ¾ ; 0

¯
¯
¯
¯
¯¸ ¡ hW;L­16 A¿

¸ ¡ hL­16 A¿ :

Par ailleurs en tenant compte des lemmes 6 5 et 6 6 :

1

d X¾

log

¯
¯
¯
¯
¯

µ eg
2 ;b ¿ ¾ ; 0

µp ¾ ¿ ¾ ; 0
¯
¯
¯
¯
¯

· ¡
¼

8d X¾
ky0 ¾ k + g2 log 4g ;

et le lemme 6 7 est ¶etabli ¤
15 On peut remarquer que cette majoration est un peu brutale en yg ; la valeur exacte du terme

asymptotique dominant est bien entendu exp ¡¡
¼yg

4 ¢
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Concluons cet appendice par une estimation du rayon d'injectivit¶e Rinj appa-
raissant dans les estimations pr¶ec¶edentes

Lemme 6 8 Avec les notations introduites pr¶ec¶edemment on a :

Rinj > s 32¼

g + 1 maxv fkIm¿vkg

oµu le maximum porte sur toutes les places archim¶ediennes d'un corps de d¶e¯nition
de la vari¶et¶e abelienne A

En particulier

Rinj ¸
1

g2 ¢ d : max f1; h A g ¡1 2 ;

oµu d est le degr¶e sur Q d'un corps de d¶e¯nition k de A

D¶emonstration Fixons une place archim¶edienne v d'un corps de d¶e¯nition k de

A et posons ¿v ¿ x + iy et ¸ a + x + iy b oµu a; b 2 Zg et x; y 2 Mg R
Avec ces notations

min
¸2¤nf0g fH ¸; ¸ g ¸ 16 min

a;b 2Z2gnf0g
©

t a + xb y¡1 a + xb + tbybª

¸ 16 min ½ min
b2Zgnf0g

©
tbybª ; min

a2Zg
nf0g

©
tay¡1aª¾

¸ 16 min
p3

2
;

1

¸max
;

oµu ¸max est la plus grande valeur propre de y
Mais par le lemme 6 4 point ii si » est un vecteur propre de y associ¶e µa

¸max on a :

g + 1

2
ygk»k

2 ¸
g + 1

2

g

Xi
1

yi»2
i ¸ t»y» ¸maxk»k

2 :

D'oµu
1

¸max ¸
2

g + 1 kyk
;

en reportant ces in¶egalit¶es dans la d¶e¯nition de Rinj on en d¶eduit bien la premiµere

partie du lemme 6 8 Pour le suppl¶ement il su±t de combiner la premiµere in¶egalit¶e
avec le lemme 6 7 Le lemme 6 8 est donc entiµerement ¶etabli ¤

On notera que si l'on tient compte du th¶eorµeme 1 1 de [Bo{Da] on d¶eduit
imm¶ediatement du lemme 6 7 le corollaire suivant :

Corollaire 6 9 Soit A une vari¶et¶e abelienne de dimension g principalement po-
laris¶ee d¶e¯nie sur un corps de nombres k sur lequel elle admet une r¶eduction
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semi-stable et soit hF A sa hauteur de Faltings Alors :

¯
¯
¯
¯

h A ¡
1

2
hF A

¯
¯
¯
¯

·
1

4
g log max f1; h A g +

1

4
g + 1 4 :
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[Da] S David Fonctions thêta et points de torsion des vari¶et¶es ab¶eliennes Compositio
Math 78 1991 121{160

[Da{Phi1] S David et P Philippon Minorations des hauteurs normalis¶ees des sous-vari¶et¶es de

vari¶et¶es abeliennes In Number Theory Tiruchirapalli India 3{6 Janvier 1996 V
K Murty et M Waldschmidt ¶editeurs Contemp Math 210 1998 333{364

[Da{Phi2] S David et P Philippon Minorations des hauteurs normalis¶ees des sous-vari¶et¶es

des tores Ann Scuola Norm Sup Pisa Cl Sci 4 28 1999 489{543

[Ev] J -H Evertse Points on subvarieties of tori Rep Math Inst Univ Leiden 2000

[Gr-Ha] P Gri±ths et J Harris Principles of algebraic geometry Wiley-Interscience 1978

[Ig] J I Igusa Theta functions Grundlehren Math Wiss 194 Springer-Verlag Berlin{
Heidelberg{New-York 1972

[La{Ru] H Lange et W Ruppert Complete systems of addition laws on abelian varieties

Invent Math 79 1985 603{610

[Ma{Za] Y Manin et Y Zarhin Heights on families of abelian varieties Mat Sb 89 1972
171{181 ; traduit du texte russe Math USSR Sb 18 1972 169{179

[Ma] D W Masser Small values of heights on families of abelian varieties In Diophan-
tine approximation and transcendence theory Bonn 1985 G WÄustholz ¶editeur
Lecture Notes in Math 1290 1987 109{148

[Ma{Wu2] D W Masser et G WÄustholz Periods and minimal abelian subvarieties Ann of
Math 137 1993 407{458

[Mu] D Mumford On the equations de¯ning abelian varieties I Invent Math 1 1966
287{354

[Ph] P Philippon Sur des hauteurs alternatives I ; II ; III Math Ann 289 1991 255{
283 ; Ann Inst Fourier Grenoble 44 4 1994 1043{1065 ; J Math Pures Appl
74 4 1995 345{365

[R¶e] G R¶emond D¶ecompte dans une conjecture de Lang Invent Math 142 3 2000
513{545

[Schm] W M Schmidt Heights of points on subvarieties of Gn
m Number Theory 93{94

S David ¶editeur London Math Soc Ser 235 Cambridge University Press 1996



700 S David et P Philippon CMH

[Sz{Ul{Zh] L Szpiro E Ullmo et S Zhang ¶Equir¶epartition des petits points Invent Math
127 1997 337{347

[Ul] E Ullmo Positivit¶e et discr¶etion des points alg¶ebriques des courbes Ann of Math
147 1996 81{95

[Wa] M Waldschmidt Transcendance et exponentielles en plusieurs variables Invent
Math 63 1981 97{127

[Zh1] S Zhang Small points and adelic metrics J Algebraic Geom 4 1995 281{300

[Zh2] S Zhang Equidistribution of small points on abelian varieties Ann of Math 147
1996 159{165

[Zi] H Zimmer On the di®erence of the Weil height and the N¶eron{Tate height Math
Z 147 1976 35{51

Sinnou David et Patrice Philippon
Universit¶es de Paris VI et VII
Institut de Math¶ematiques de Jussieu
UMR 7586 du C N R S - UFR 921
4 Place Jussieu
75252 Paris cedex 05
France
e-mail : david@math jussieu fr
e-mail : pph@math jussieu fr

Received: February 2 2001

To access this journal online:
http://www.birkhauser.ch


	Minorations des hauteurs normalisées des sous-variétés de variétés abeliennes II

