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Minorations des hauteurs normalisées des sous-variétés de
variétés abeliennes I1

Sinnou David et Patrice Philippon

Résumé. E. ULLMO and S. ZHANG ont montré que les points de hauteur arbitrairement petite
sur une sous-variété algébrique (non « dégénérée ») d’une variété abelienne (toutes deux définies
sur un corps de nombres), ne peuvent étre ZARISKI dense dans cette variété. Nous avons donné
une autre preuve quantitative de ce résultat ; dans le cas des tores, nous en avons ensuite donné
une version totalement explicite. Ce travail a trouvé des applications, notamment en liaison avec
le théoreme du sous-espace. Nous consacrons donc ce texte & des minorations totalement expli-
cites pour la hauteur normalisée, ainsi que pour les minimums successifs (de la hauteur norma-
lisée) des sous-variétés de variétés abeliennes définies sur un corps de nombres. Ces minorations
ont déja trouvé une application dans un travail récent de C. REMOND, qui compte les variétés
exceptionnelles dans les théorémes de P. VOITA and G. FALTINGS (ex conjectures de MORDELL
et S. LANG respectivement).

Abstract. E. ULLMO and S. ZHANG have shown that the points of arbitrarily small normalized
heights on an algebraic subvariety of an abelian variety (defined over a number field), which is
not of a special type, cannot be ZARISKI dense. We gave an alternative quantitative proof of this
property that we made completely explicit in the analogous toric case. This latter work has found
applications to diophantine geometry, especially in connection with the subspace theorem. The
present paper is devoted to establishing completely explicit lower bounds for normalized heights
and successive minima (of the normalized height) of algebraic subvarieties of abelian varieties
defined over a number field. The results presented and proved here have found an application in
the recent work of G. REMOND, counting exceptional varieties in the theorems of P. VOJTA and
G. FALTINGS (ex MORDELL’s and LANG’s conjectures respectively).

Mathematics Subject Classification (2000). 11G10, 11J81, 14G40.

Mots clés. Hauteur, variétés abeliennes, géométrie diophantienne, effectivité.

1. Introduction et résultats

Le probleme maintenant classique, dit de BoGoMOLOV, revient a demander
si ’ensemble des points algébriques d’une sous-variété algébrique d’une variété
abelienne, de hauteurs arbitrairement petites, peut étre ZARISKI dense dans la
variété. Cette question qualitative a été résolue (négativement, sauf dégénéres-
cences évidentes) par S. ZHANG (confer [Zh2]) en s’appuyant sur les propriétés
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d’équirépartition de L. Szp1RO, E. ULLMO et S. ZHANG (confer [Sz—Ul-Zh]) et le
travail d’E. ULLMO (confer [Ul]) concernant le cas des courbes plongées dans leur
jacobienne. Nous avons aussi donné une démonstration alternative quantitative de
cette méme propriété dans [Da—Phil], puis une version totalement explicite dans le
cas des sous-variétés des tores multiplicatifs (confer [Da—Phi2]). L’intérét pour les
applications de ces résultats toriques étant réel, nous reprenons ici la démonstration
de [Da—Phil] pour donner dans le cas abelien des minorations également explicites
de la hauteur normalisée et des minimums successifs de la hauteur normalisée des
points d’une sous-variété algébrique d'une variété abelienne, définies sur Q. Les
résultats présentés et établis ici trouvent une premiere application dans le travail
récent de G. REMOND [Ré].

On supposera dorénavant que A désigne une variété abelienne définie sur un
corps de nombres k et munie dun fibré ample et symétrique M, qui permet
de définir une notion de hauteur normalisée h = h M®16 SUr les sous-variétés
algébriques de A définies sur Q.

Soit X une sous-variété algébrique de A définie sur Q, on s’intéresse aux points
de petites hauteurs de X(Q). Introduisons, comme dans [Da-Phi2], une série de
minimums successifs pour j =1, ..., dim(X) :

i5(X) = supinf {h(z);e € (X \V)@)} , (c)
Y

ol1 le supremum est pris sur les sous-ensembles algébriques Y de X, définis sur Q,
constitués de sous-variétés de X de codimension j dans X et de translatées de sous-
variétés abeliennes (non nécessairement par des points de torsion) contenues dans
X, de codimension < j dans X. En particulier, les ﬂ‘;(X ) minorent les minimums
successifs de la hauteur normalisée sur le complémentaire X° dans X de l'union des
translatées (mais non nécessairement par des points de torsion) de sous-variétés
abeliennes de A contenues dans X, de dimension > 1.

On remarquera que 45(X) n'est autre que le minimum essentiel® de h sur X ;
aussi noté 4%%(X), qui pour sa part, est généralement défini par :

i=5(X) = swpint {h(a):z € (X\V)@)} , (ess)

ou le supremum est cette fois pris sur les sous-ensembles algébriques Y de X de
codimension 1.
Par ailleurs, on a bien évidemment, par définition,

AI(X) = -+ 2 fimex) (X)) -

Nous pouvons maintenant décrire les résultats que nous obtenons. Nous sup-
poserons dans les énoncés qui suivent que la variété A est principalement polarisée

1 Sauf bien siir dans le cas olt X est un translaté d’une sous-variété abelienne de A.
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par M et nous notons g sa dimension. Nous désignerons par h(A) la hauteur pro-
jective de 'origine de A dans le plongement associé & M®16 (voir notation 3.2).

Théoréme 1.1. Soit X C A une sous-variété algébrique d’une variété abelienne,
toutes deur définies sur Q, qui n'est pas translatée d’une sous-variété abelienne,
alors

A . 2(b41)
. h(X) _ min{l;Riy}

dim(X) 4+ 1)4%%(X) > > ]
( (X) + 1) (X) 2 deg(X) = 299° deg(X )2F0+1D)
ou k désigne le nombre minimal de copies de X — X dont la somme est une
sous-variété abelienne de A, b la dimension de cette sous-variété abelienne et Rin
désigne la plus petite norme de Riemann d’une période d’une conjuguée de A sur
Q (voir la définition 4.4 pour plus de précisions).

On en déduit les théoremes suivants sur le dernier des minimums successifs
introduits précédemment. On se donne une sous-variété algébrique X de A définie
sur Q et on pose avec les notations du théoreme 1.1 :

_ 4(4g%)dim(X)—1 2\ dim(X)
9(X) = (max{l; h(A)} .min {1; Rip; } 2(g+1)) . (214 deg(X))(4g ! .
Théoréme 1.2. Soit X C A une sous-variété algébrique d’une variété abelienne
toutes deuz définies sur Q, les points x € X°(Q) satisfaisant h(z) < 1/q(X) sont
en nombre fini majoré par q(X). En particulier, ﬂgim(x)(X) > 1/¢(X).

On dispose bien entendu également d’estimations explicites pour les minimums
intermédiaires ﬂg(), 1 <7 <dim(X) —1; le lecteur pourra se reporter au para-
graphe 5, théoreme 5.3 pour les trouver.

On déduit du théoreme 1.2 le résultat de décompte suivant :

Théoréme 1.3. Soit X C A une sous-variété algébrique d’une variété abelienne
toutes deuz définies sur Q et T' C A(Q) un sous-groupe de rang fini r. Pour
tout nombre réel a > 1, il existe au plus q(X)(5aq(X))"/? points x € T N X°(Q)

satisfaisant h(z) < a.

On sait estimer (woir lemme 6.8) le rayon d’injectivité Rj,; en termes de la
hauteur h(A) et du degré d d’'un corps k de définition de la variété abelienne
polarisée (A, M). On obtient ainsi :

Théoréme 1.4. Soit X C A une sous-variété algébrique d’une variété abelienne
toutes deur définies sur Q, avec les notations introduites dans les énoncés précé-

dents et en posant ho(A) = dmax {1;h(A)}, od d=[k:Q)], on a

)(492)dim(X)

’

a(X) < (21 ho(A)/7. deg(X)

et si X nest pas translatée d’une sous-variété abelienne :

(dim(X) + 1)p=5(x) > X

A 5 97110° qeg(X) 2R po(A)—9 L,
E e 2 eg(X) o(4)
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Un des intéréts de ces résultats réside dans leur totale effectivité, et on notera
qu’en dehors de la dimension et du degré de la variété algébrique considérée, les
seuls parametres qui interviennent sont la dimension de la variété abelienne am-
biante (sa hauteur relative & un corps de définition pour les théorémes 1.2 et 1.3) et
son « rayon d’injectivité absolu », au sens de J.-B. BOST (confer [Bo]). En appen-
dice, on minore explicitement cette derniére quantité en fonction de la dimension
de la variété abelienne et de sa hauteur relative a un corps de définition dans le
plongement considéré, ce qui conduit au théoreme 1.4 ci-dessus. Les plongements
projectifs des variétés abeliennes obtenus a ’'aide des coordonnées de MUMFORD
(confer [Mu]), qui généralisent les plongements théta classiques des variétés abe-
liennes, sont ’outil essentiel qui permet de mener tous les calculs de facon explicite.
En particulier, on écrit des formules de duplication et d’addition dans ces plonge-
ments et on en estime degrés, hauteurs et croissances. Ceci permet d’étendre les
résultats de Y. MANIN et Y. ZARHIN (confer [Ma—Za]) sur la constante de compa-
raison entre hauteurs projectives et hauteurs normalisées des points des variétés
abeliennes aux sous-variétés de dimensions supérieures.

Un mot enfin sur les constantes numériques obtenues. Si nous n’avons pas
cherché systématiquement a les miminiser, nous nous sommes toutefois efforcés
de respecter les ordres de grandeurs naturellement fournis par nos arguments.
Ainsi, dans le théoréme 1.1, notre méthode nous conduit & une constante du
type exp(cg®log(g)), onl ¢ est universelle (voir la note de bas de page dans la
démonstration du théoreme 1.1, & la fin du paragraphe 4.3).

Le théoreme 1.3 ci-dessus est un des ingrédients du travail récent de G. REMOND
(confer [Ré]) sur le dénombrement des points rationnels des sous-variétés de varié-
tés abeliennes. Il est remarquable que dans le cas des courbes, les seuls parametres
intervenant dans la majoration sont, comme pour les théoremes ci-dessus, le genre
de la courbe, le degré d'un corps de définition et la hauteur de la jacobienne
de la courbe. Un énoncé conjectural de L. CAPORASO, J. HARRIS et B. MAZUR
(confer [Ca—Ha—Ma]) prédit que la dépendance en la hauteur devrait méme pouvoir
étre supprimée. Rapportée a notre travail, cette hypothese semble indiquer que
I'intervention du rayon d’injectivité dans la démonstration du théoreme 1.1 ne
devrait étre considérée que comme une défaillance technique de notre méthode et
qu’il existe un moyen de contourner la constante de comparaison entre hauteurs
projectives et normalisées mentionnées plus haut pour en déduire les théoremes 1.2
et 1.3.

Le présent travail est I’exact parallele abelien de [Da—Phi2], qui lui-méme raffine
les travaux antérieurs de W. M. SCHMIDT (confer [Schm]). De méme, les travaux
de G. REMOND (confer [Ré]) constituent le pendant abelien des énoncés obte-
nus dans les tores multiplicatifs et dont on trouvera une présentation dans ’article
de synthese de J.-H. EVERTSE ( confer [Ev]). Citons la version explicite (simplifiée)



Vol. 77 (2002) Minorations des hauteurs normalisées II 643

du théoréme 2.1 de [Ré| que nous a fourni G. REMOND en utilisant le théoréme 1.4
ci-dessus :

Théoréme (G. Rémond). Soient X C A une sous-variété algébrique d’une va-
riété abelienne toutes deuz définies sur Q et I' C A(Q) un sous-groupe de rang
fini r. Alors, avec les notations du théoréme 1.4, il eriste un entier naturel S

satisfaisant
s 5(dim (X)+1)2
S < (284, ho(A). deg(X))" T 7

des éléments xz1,...,x5 € X(Q)NT et des sous-variétés abeliennes By, ..., Bg de
A tels que z; + B; C X pouri=1,...,5 et
s
X@nr= U(fﬂerBz)(@) nr.
i=1

Le paragraphe 2 introduit les coordonnées de MUMFORD ( confer [Mu]) et expli-
cite les relations qui les lient. Si on les compare aux relations entre fonctions théta
classiques, on vérifie facilement que ce sont les mémes, a des racines de l'unité
pres, qui sont sans importance lorsqu’on traite des questions de degré et de hau-
teur. On utilise les formules obtenues pour majorer I’écart entre hauteurs projec-
tive et normalisée d'une sous-variété d’une variété abelienne, de fagon totalement
explicite. Le paragraphe 3 démontre le théoreme 1.1, on y reprend les arguments
de [Da—Phil] mais on fait disparaitre beaucoup des parametres diophantiens en
construisant une fonction auxiliaire petite (plutot que nulle) sur la fibre spéciale et
en moyennant les inégalités obtenues sur les translatés de la sous-variété considérée
par les points de torsion de la variété abelienne. Le paragraphe 4 est consacré a la
descente qui permet de déduire d’une minoration du minimum essentiel une esti-
mation des minimums suivants sur X°. La démarche, fondée sur une récurrence,
est calquée sur celle de [Da—Phi2] qui introduit malheureusement un exposant
exponentiel en la dimension de la variété. On en déduit les théoremes 1.2 et 1.3
ci-dessus. Enfin, I’'appendice donne des estimations explicites de croissance des
fonctions théta et minore le rayon d’injectivité en fonction du degré d’un corps de
définition et de la hauteur de la variété abelienne sous-jacente.

Nous remercions chaleureusement Gaél REMOND pour ses nombreux et perti-
nents commentaires sur une premiere version de ce texte, ainsi que 'arbitre de la
publication pour son considérable travail exégétique qui nous permet de présenter
au lecteur un texte plus compréhensible et notablement épuré.

2. Notations

Les questions de hauteurs étant primordiales dans ce texte, nous fixons une fois
pour toutes dans ce paragraphe les notions de hauteurs, normes et mesures locales
qui prévalent dans l'introduction et dans la suite de notre travail, en indiquant
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les différences (essentiellement de normalisation) avec celles des résultats que nous
utiliserons en références.

La notion de hauteur projective des points et des variétés dans les espaces
projectifs est celle de [Ph]-III. On la notera h(z) ou h(X) si z et X désignent
un point et une variété définis sur Q dans un espace projectif Py . Elle differe
de celle apparaissant dans [Ph]-I par la contribution des places archimédiennes.
Précisément, si k est un corps de définition de X et fx une de ses formes élimi-
nantes (ou de CHOW) définie sur k, la hauteur projective de X s’écrit en termes
de mesures locales

) = o oM (1)),

v
ol v parcourt ’ensemble des places de k, et k, (respectiverment Q,) désigne le
complété de k (respectivement Q) pour la place v (respectivement la place induite
par v). La mesure locale M, d’une forme est le maximum des valeurs absolues
v-adiques des coefficients de la forme pour les places ultramétriques et pour une
place archimédienne associée a un plongement o, de k dans C

N

log (M) = [ loglo( il ofs + 73 5

S;v+1 i=1

o r = dim(X) + 1, Sy, désignant pour sa part la sphere unité de CVN*1! et
on+1 la mesure invariante de masse totale 1 sur Sy 1. En particulier, la hauteur
projective d'un point differe de la hauteur de WEIL par la contribution des places
archimédiennes ol la norme euclidienne remplace la norme du maximum dun
systeme de coordonnées projectives du point. De méme, la hauteur projective d’une
variété differe de celle de [Ph]-I par la contribution des places archimédiennes ol
la mesure M, ci-dessus remplace la classique mesure de MAHLER.

On rappelle que si 'on désigne par o5 le plongement de VERONESE de ’espace

projectif Py dans 'espace projectif P+ avec N/ +1 = (NJ‘;) défini par
ags . ]P)N — ]P)N'
5\ /2
a(x)»—>(() $QZ~~~)QGNN+1,
o [ee|=5

on a, avec les notations précédentes, deg(os(X)) = 6" L. deg(X) et h(os(X)) =
0".h(X), voir [Ph]-I11, page 347.

Si @ est un vecteur & coordonnées dans k, on notera ||z||, la norme du maxi-
mum des coordonnées de x si v est ultramétrique et la norme euclidienne de x si
v est archimédienne. Si & désigne un systeme de coordonnées dun point projectif
z,0on a

o) =30 e o).

v
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On utilisera a occasion la hauteur de WEIL d'un vecteur & := (z1,...,zn)
k, : Q,
hw(z) =S % Jogmax(|z1lo,- .-, |zarle)

v
pour des vecteurs dont les composantes seront les coefficients d’un polynéme, voire
d’une famille de polynémes (« hauteur homogeéne »), mais aussi en adjoignant 1 &
ces coefficients (« hauteur inhomogene »).

3. Plongements et hauteurs normalisées

Nous allons établir ici des comparaisons effectives entre la hauteur projective
d’une sous-variété d’une variété abelienne et la hauteur normalisée correspondante.
Dans le cas des points, il s’agit 1a d’estimations bien connues : en effet, ce probleme
a été traité par Y. MANIN et Y. ZARHIN (voir [Ma—Zal), ainsi que par J. TATE
et H. ZIMMER dans le cas particulier des courbes elliptiques (voir par exemple
[Zi]). Dans le cas des variétés de dimensions supérieures, ces questions ont été
traitées dans [Ph]-III, §. 3, mais sans expliciter les constantes de comparaison.
Nous suivrons les preuves de cette référence, et les compléterons afin d’obtenir des
constantes numériques. Ce travail sera effectué au paragraphe 3.3, mais dans un
premier temps nous donnons des estimations effectives des degrés et hauteurs des
formules de duplication, addition et translations par des points de torsion sur les
variétés abeliennes.

Pour plus de généralité, et bien qu’a partir du paragraphe 4 suivant nous nous
restreindrons au cas principalement polarisé et n’utiliserons que des estimations
archimédiennes (on pourrait donc travailler exclusivement avec des fonctions théta
classiques), nous montrerons ces résultats & 'aide des plongements décrits par
MUMFORD (wvoir [Mu]), en termes de « coordonnées de MUMFORD », qui ne sont
rien d’autre que des avatars algébriques des fonctions théta. Le paragraphe 3.1
sera donc consacré a une étude préliminaire des coordonnées de MUMFORD.

Enfin, comme la technique pour comparer les hauteurs projective et normalisée
consiste a étudier la variation de la hauteur sous I'action d’itérés de la multiplica-
tion par 2, le paragraphe 3.2 sera consacré a une description explicite des formules
de duplication ainsi que de leurs inverses dans les coordonnées de MUMFORD.
Nous donnerons de surcroit une estimation effective de la hauteur des formules
d’addition (également obtenues & partir de formules explicites).

3.1. Coordonnées de Mumford

Nous commencerons par rappeler le plus succintement possible les notations et
définitions de base relatives aux plongements associés & des structures théta (au
paragraphe 3.1.1) ; pour plus de détails, on pourra se reporter & I’article original de
D. MUMFORD (confer [Mu]), ou par exemple au chapitre 6 de [Bi-La]. Nous modi-



646 S. David et P. Philippon CMH

fierons ensuite ces coordonnées projectives, a I’aide d’une transformation linéaire
tres simple afin d’obtenir des estimations plus agréables, et nous expliciterons le
dictionnaire permettant de passer des bases canoniques de MUMFORD & ces nou-
velles coordonnées (paragraphe 3.1.2). Au paragraphe suivant 3.1.3, nous précisons
les transformations linéaires induites par les translations par certains points de
torsion, et enfin, nous conclurons au paragraphe 3.1.4 par une discussion sur le
parallélisme avec les fonctions théta classiques.

3.1.1. Notations et rappels

On supposera donnés : une variété abelienne A, de dimension g, définie sur
k = @, un fibré tres ample et totalement symétrique £ sur A, au sens de la
définition? page 305 de [Mu] (woir aussi [Bi-La], exercice 12, page 180). On notera
H(L) le sous-groupe de A formé des points = € A tels que 7L ~ L, ou 7, désigne
la translation par z, et G(£) 'ensemble des couples (z, ), ot x € H(L) et ¢ est
un isomorphisme ¢ : £ — 75L. On vérifie alors que I'on a la suite exacte (voir
[Mu], page 290) :

{1} — k" — G(L£) — H(L) —0,

et que k™ est le centre de G(£) pour sa structure de groupe naturelle, et 1’on peut
définir une forme bilinéaire alternée non dégénérée e“ sur H(L) comme suit :

soient z et y dans H(L), et &, § dans G(L) au-dessus de z, v,

onpose: e¢“(z,y)=%-9-3 1 g ek”.

On vérifie également que ’on a une décomposition H(L) = K (L) @ K'(L) en sous-
groupes isotropes et e permet d’identifer K'(£) au dual (L) de K(£) (wvoir [Mul],
page 293).

La théorie des diviseurs élémentaires appliquée & (L) nous donne maintenant
un g-uplet d = (dy, ..., dy) d’entiers positifs, di+1 | ds, i =1,...,9—1, et 'on pose

K(d) = éZ/diZ,
i=1

K(d) = hom(K (d), k*)
et enfin : o
H(d)=K(d)® K(d).

Le g-uplet d sera appelé le type de L.
Avec ces données, on introduit le groupe G(d) qui est le produit :

—

k* x K(d) x K(d),

2 Définition que nous rappelons ci-dessous.
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muni d’une loi de groupe wvia :
(o, z,0) - (&, 2", 1) = (a- o - U(2),z+ 2/, 1.1)
et I'on vérifie que 'on a une suite exacte :
{1} — k" — G(d) — H(d) — 0.

On définit de méme que pour H(L), par les commutateurs, une forme bilinéaire
alternée non dégénérée sur H(d) qui admet pour sous-espaces isotropes les K(d),

K(d); on notera cette forme e?.

Le groupe G(L£) admet alors une représentation naturelle dans le k-espace vec-

toriel T'(A, £),
soit z = (z,p) € G(L) et s € (A4, L),

on définit U, : T'(A, L) = T(A, L), en posant : U,(s) = 7,(p(s)).

Cette représentation fait de I'(A, £) un G(£)-module irréductible (confer [Mu],
théoreme 2, page 297).

Soit maintenant V (d) 'espace des fonctions sur K(d) & valeurs dans k, on
définit une représentation U de G(d) dans V(d), en posant :

Vye K(d), (Uwen(Iy)=a-lly) flz+y).
Cette représentation est également irréductible (ébidem proposition 3, page 295).

On peut alors résumer les résultats de la premiere partie de ’article de D. Mum-
FORD [Mu] en I’énoncé suivant :

Proposition—Définition 3.1. [l existe un isomorphisme de G(L) vers G(d) quz
agit trivialement sur le sous-groupe k*. De tels isomorphismes sont en nombre fini.
Supposons un tel isomorphisme choisi. Il existe alors un unique (4 multiplication
par un scalaire non nul prés) isomorphisme du G(L)-module T'(A, L) vers le G(d)-
module V(d). On appellera un tel choir d’isomorphisme une structure théta pour
la paire (4, £).

Supposons donnée une structure théta pour (A, L), et soit f : V(d) —
(A, £) lisomorphisme induit par cette structure; on identifiera tacitement les
données V (d), G(d) a T'(A, £), G(L) respectivement.

Les fonctions caractéristiques fournissent alors une base naturelle de V(d). Soit
a € K(d), on définit 6¢ € V(d) = I'(A, L) en posant :

dz)=1 siz=a (1)
5 (2)=0 siz#a, ze€K(d).
La famille de sections globales 6 := f(6%) = (f(02))4ex(a) nous fournit alors

un plongement projectif de A que nous noterons ©,. On appelle cette base les
coordonnées de Mumford. On notera

OL(0) = (- ge(a) - Dack(@y
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ol qr(a) est la « valeur en D'origine 0 de A » de la section §, € T'(4, £) ; comme la
collection des g, (a) est définie & un scalaire non nul pres, nous disposons bien de
coordonnées projectives de l'origine dans le plongement ainsi fixé. Nous suppose-
rons implicitement dans toute la suite que ce scalaire est choisi de telle sorte que
les égalités écrites ci-dessous soient correctes>

On note [—1] la multiplication par —1 sur A, et ’on suppose donné un isomor-
phisme ¢ entre £ et [—1]*£ dont la restriction ¢(0) & la fibre de £ au-dessus de
l'origine est Iidentité. Si = est un point d’ordre 2 de A, on note e~(z) le scalaire
a tel que la restriction ¥ (z) de 4 & la fibre £(z) de £ au dessus de z soit la
multiplication par a.

On dit alors qu’un fibré en droites M sur A est totalement symétrique, s’il est

symétrique et si eM(z) = 1 pour tout point d’ordre 2 de A.

Nous allons maintenant rappeler la définition de structures théta compatibles
pour la paire (£, £2?). Pour ceci, nous aurons besoin des faits suivants.

Reprenons I'isomorphisme ¢ fixé précédemment, et considérons pour un point
z = (z,¢) € G(L) la composition :

g o N | = S

£ -1c
on pose alors v_q(z) = (—507 (Tizl/))71 o ([=1]*¢) o 1/1)
On définit ensuite pour tout entier » > 2, un morphisme £,, : G(£) — G(L®"),
en posant
€n($7 ()0) - (x7§0®n) ’

N

oll ®" est 'isomorphisme
®n
®n ¥ * PN
L =1L

induit par .

Enfin, nous utiliserons un morphisme 7, : G(£®") — G(L£); nous ne rappel-
lerons pas sa définition précise (voir [Mu], page 310), mais dirons simplement qu’il
s’agit d'un morphisme canonique rendant commutatif le diagramme :

{1} — k¥ — G(L®) — H(L®™) — 0
oa—a” | L | mult. par n
{1} — kK — G(L) — H(L) — 0.

Introduisons maintenant les pendants de ces morphismes sur les groupes G(d).
Soit d un g-uplet de diviseurs élémentaires, on note 2d le g-uplet (2d4,...,2d,),
et 'on identifie K(d) & un sous-groupe de K(2d) via la fleche

(a1,...,a9) — (2a1,...,2a,).

3 Si A est une variété abelienne complexe, plongée dans un espace projectif via un plongement
théta classique, on dispose bien évidemment d’une structure théta pour le fibré trés ample associé
au plongement ainsi fixé; nous reviendrons sur ce parallélisme ci-apres.
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e~ PR

Le dual K(d) est alors naturellement un quotient de K(2d); on notera alors [
I'image naturelle d’un élément [ de K(2d) dans K(d); on notera également que si

l € K(d), il existe un unique élément !’ de K (2d) tel que
U'(z) =1(2x)

——

pour tout élément x de K(2d). On en déduit une injection de K(d) dans K(2d)
que nous noterons 2x. On note alors Fy : G(d) — G(2d) le morphisme défini
par

By (o, z,0)) = (2, 2,2% 1) .

Pour n € Z, D,, est le morphisme de G(d) — G(d) donné par
Dy (e, 2, 1)) = (a"2,nx7l") :
et Hy : G(2d) — G(d) défini par
Hy((er,z,1)) = (2, 22,1) .

Avec ces notations, on peut définir : une structure théta f : G(L£) — G(d)
est dite symétrique si

fovi=D_yof;
deux structures théta f; pour £ et fo pour £8? sont dites compatibles si elles sont
toutes deux symétriques et si
f2082:E20f17 et f10772:H20f2,

3.1.2. Petit formulaire

Nous supposerons pour commencer que le fibré £ est totalement symétrique,
et muni d'une paire de structures théta compatibles pour (£, £%?). Notons ¢
I’isogénie :

E:AXA— AxA
(,y) — (@+y,z-y).
Notons A le fibré 71 £ ® 75 L ; I'isogénie ¢ induit alors le morphisme :

(2)

KUNNETH
A

D(A L)QT(AL) =~ T(AZLN)
1 &
T(A2E*N)~ T (AN ) A,LP?) QT (4, £3?).

Les structures théta induisent un morphisme V(d)? — V(2d)?, dont la descrip-
tion en termes de bases canoniques permet de décrire entierement ’action de £*.
Plus précisément, la « formule d’addition fondamentale » (confer [Mu], page 324)
une fois traduite (confer également [Bi—La|, exercice 1, page 208 pour la traduc-
tion) donne ’égalité suivante pour tout (a,b) € K(d)? :

Kih\gETH r (

®2 ®2
et i@ -y = Y o5, @0, (), 3)
neK(2)
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ou, pour plus de lisibilité, nous avons désigné par z, respectivement par y, la
« premiére » (respectivement la « seconde ») coordonnée dans A?. Enfin, dans
la relation ci-dessus, K(2) désigne I’ensemble des points de 2-torsion de K(d)
(rappelons que puisque £ est totalement symétrique, K(2) ~ (Z/2Z)9 en vertu
du corollaire 4, page 315 de [Mu]), et “T‘H’ (respectivement “T_b) désigne un point

de 2-division quelconque de a + b (respectivement a — b), sous la seule restriction
a+b a—b
7 T3 TG

La multiplication naturelle

(A, L)®T(A L) — I['(4, £2?%)

est également convertie en une loi de composition :
o : V(d)®V(d) > V(2d).

Nous utiliserons les relations suivantes (confer [Ma—Zal, page 172, formules (1)
et (2))

a—b ®2
R N ) (4)
neEK(2)

ol, la encore, les éléments “74’, “T“’ sont choisis de telle sorte que leur somme vaut

a, tous les autres choix étant arbitraires.

Enfin, si I'on suppose que 1’on a de plus une structure théta sur £2* donnant
une paire de structures compatibles pour (£%2, £®4), on dispose de la « formule
de duplication » :

®4
6L o2 = ;)5§+n. (5)
neK (2
On a également
®2 ®2
qr(b)6- o [2] = Z %Jm . 5%%7 . (6)
neK(2)

On déduit facilement ces relations de la formule d’addition fondamentale (for-
mule (3)) rappelée ci-dessus.

Nous allons maintenant introduire des coordonnées modifiées. Ainsi, pour toute
la suite, on fixera un fibré ample et symétrique M sur A, et 'on posera’ £ =
M®4 de telle sorte que £ est automaticquement totalement symétrique (voir [Mu],
page 307). On suppose de plus données des paires de structures théta compatibles
pour (£, L&), (L£L2?, £24), (L®*, £Z8) et (LZ®, £L216) (on renvoie & [Mu] pages 317

4 On pourrait bien siir affaiblir cette contrainte et prendre pour £ un fibré trés ample totalement
symétrique quelconque, mais cette restriction ne fait pas véritablement perdre en généralité pour
la suite de ce travail puisque la variation des hauteurs projectives est bien contrdlée sous I’action
d’un VERONESE, et simplifie de surcroit ’expression des formules de duplication en assurant
I'existence de suffisamment de points de 2™-torsion dans le groupe H(L).
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a 320 pour l'existence de telles structures, et en particulier & la proposition 7,
page 320).

On notera K; = K(2'd) pour 0 < i < 4, nous identifierons I'(4, £5%') a
V (2'd) et nous fixerons des coordonnées de MUMFORD, que nous noterons 5t —

( ((:))aem _ (6((12 d))aeKﬂ pour F(A, £®21>.

Nous noterons également pour n entier K;(n) (1 =0,...,4) le sous-groupe de
K; formé des éléments de n-torsion. On notera que le choix £ = M®* ol M est
ample et symétrique impose que le groupe H(L) contient I’ensemble A4 des points
de 4-torsion de A (confer par exemple [Bi-Lal, chapitre 2, lemme 4.7, page 38).
En particulier, pour tout n divisant 4 on a Kg(n) = --- = Ky(n) ~ (Z/nZ)9 et
nous noterons parfois K(n) ce sous-groupe.

On introduit maintenant les coordonnées modifiées suivantes : soient (a,l) €

—

Ko x K(2). On pose®

Ay = > el (7)

— —

et de méme, pour (a,l) € Ky x Ks(4) ou (a,l) € K4 x K4(8),

AR = Y Heel,

ceEK>(4) "
AG Lie) 6@ (®)
(al) — Z () a+tc-
cEK4(8)

Pour i = 0,2 ou 4, on désignera par Z; un systeme de représentants du quotient
K;/K;(2-2¥/2). Les systémes de coordonnées que nous choisissons® sont alors :

(a,l) aezi’leKi(Q.Qi/2)

Un tel systeme de coordonnées définit un plongement projectif que nous notons
O g2 (toujours pour i = 0,2 ou 4). On posera également pour tout (a,l) €

—

K; x K;(2-24/2) (alias des tres classiques « théta nullwerte »)
0eei(a,l) = Z Uc)gpess (atc),
ceEK;(2:24/2)

un systeme de coordonnées projectives de l'origine dans ce plongement est alors :

5 On effectue donc une transformée de FOURIER partielle ; d’autres choix sont possibles (confer
[Mu], page 334).

5 Qui dépendent donc d’un choix de Z;, mais uniquement & des multiplications par des racines
de Punité pres : voir le fait 3.3, plus bas.
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Notation 3.2. On désignera par h(A) la hauteur projective du point © pe4(04) =
O pe16(04). Pour alléger la notation on désignera parfois indifféremment par 04
lorigine de A, son image par le plongement projectif © res et le systéme de coor-

données projectives (- : 0pea(a,l) : ~~«)a€Z . de ce dernier point.
2, 2

Terminons ce sous-paragraphe en rappelant les propriétés de base des coor-

données de MUMFORD une fois traduites dans les nouvelles coordonnées A que
nous venons d’introduire ci-dessus.

Fait 3.3. Pour tous quintuplets de structures théta deux a deux compatibles com-
me ci-dessus, on a les propriétés suivantes :

(i) Pour i =0,2 ou 4 et pour tout a € K; on a les formules d’inversion:

(@) - - (@ .
leK;(2:29/2)
(ii) pouri=0,2, et pour tout (a,l) € K; X K¢(5~\2i/2), les formules de dupli-
cation sont : ol "
i A+
Aa,l © [2] - A(%,Q*l) 3
ot § est un point de 2-division quelconque de a (comparer avec le

point (iv) ci-dessous). Rappelons que 2x est linjection de K; (2 . 2i/2) vers
K; (4 . 2i/2) définie au paragraphe 3.1.1;
(iii) pour i = 0,2 ou 4 et pour tout (a,l) € K; x K;(2-24/2), laction de la
multiplication par —1 est donnée par :
A(il,z—l o[-1]=Af);

a,l)

e,

(iv) soit a € K; (pour i =0,2 oud), u € K;(2-2/?) etl € K;(2-2/2); on a

alors (variation du systéme (AEZ)Z)) avee Z;) :

A(i)

(atu,d) — l(_u)A(l)

(a)l)

Démonstration. Calculons

1 @ _ 1 (@)
e L Al L Y @i

lEKi(Q'Zi/Z) IGKi@m)CEKZ’(Q‘Qi/Z)

1 (4) .
= SFig >, Gt Z\ le);
cEK;(2:2/2) leK;(2:2972)

7 On notera qu’il convient de corriger comme ci-dessous les formules au bas de la page 176 de
[Ma—Zal, ainsi que les calculs subséquents de cette référence.
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la formule des caractéres donne maintenant : ZleK'Wﬂ) l(c) =0slc#0et

201+4/2)9 sinon, ce qui montre (i).
Le point (iii) découle de la formule d’inversion de MUMFORD, d’oti ’on déduit :

dao[-1]=9d_,

(voir [Mu], page 331, voir aussi [Bi-La], exercice 13, page 181) ; il suffit ensuite de
reporter cette relation dans les définitions (7) et (8) des coordonnées A.
Passons maintenant au point (ii). On a par définition :

aflolpl= X t@elof,
cEK;(2:2/2)
et, par la formule (5),
i 244 2+4
Alol= Y 1 Y 6P, = Y 1@y,
cek;(2:2/2)  nEK(2) c€Kit2(4:27/2)
et par définition méme de l'injection 2x, on a [(2¢) = 2 l(c), d’ou

AVoll= Y 2xi(e)sfl = Al

2 9x1)’
cEK; 2 (4-2@'/2) (2 )
d’ott le point (ii).
Passons maintenant au point (iv). On a par définition,
AR Ln= 2 U= > Ue—will =U-uw)al),
cEK;(2:24/2) cEK;(2.2¢/2)
d’oll le point (iv), et le fait 3.3. O

3.1.3. Action du groupe H(L) sur les coordonnées de Mumford

Le groupe théta G(L) et sa représentation U permettent d’étudier les propriétés
du plongement ©,. Cette remarque nous sera utile au paragraphe 3.3 suivant pour
étudier la variation de la hauteur projective d’une sous-variété de A définie sur
Q par translation par des points de deux torsion (voir lemme 3.10). En effet, si
z = (z,¢) € G(L£), on a un automorphisme U, de T'(A, £) et ’on vérifie & aide
de la définition de U que l'automorphisme projectif associé ne dépend que de
z € H(L), ce qui nous définit une représentation

pPo H(ﬁ) — PG]N(]C)
On a alors (woir [Bi—La), page 163, proposition (6.1)) : pour tout z € H(L), le

diagramme suivant commute :

A 25 py
T—x l l« ;OO(ZZ) (9)

A S5 Py .
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On peut bien évidemment en faire autant pour les représentations U;, i = 2 ou
4, associées a G <£®2 ) ; on notera p; la représentation associée a chacun de ces

plongements.
On en déduit la proposition :

Proposition 3.4. Soient x un élément de H (£®2i) et t+=0,2 ou 4 alors, pour

tout a € Z; et tout k € K; (2 . 21/2), on a :
pil) [Ag{k)} —lla-w)AD s

ou x est identifié a un élément (u,l) de H(2'd) = K; x K; et o estla projection
K — K /(273 K;) ~ K, (2 21/2).
En particulier, Uaction de p;(x) sur le systéme de coordonnées AW est une

transformation linéaire donnée par la composée d’une action diagonale agissant
par multiplication par des racines de l'unité avec une permutation des coordonnées.

Démonstration. On vérifie (voir par exemple [Bi-Lal], pages 168-169) que pour
tout a € K; et tout y € K;, on a
pius 3 (y) = Uy)o (u + ),
ce qui se traduit par :
pilu, 3 = Ua —w)s?,,,
en reportant dans la définition de A on en déduit que pour tout a € K; et tout
ke K;(2-2¥/2), ona:

piw DAY, = N k(late-wdl, ,
CEKi(Z*Zi/2)
=1 (a - u) At(zizu,ﬂ'(l)»k )

ce qui montre bien la proposition 3.4. (Il

Afin de pouvoir tirer parti du point (ii) de la proposition 3.8 ci-apres, pour
obtenir des informations sur la hauteur des formules de duplication, nous aurons
besoin du lemme :

Lemme 3.5. Soit (a,l) € Ko x I/(;(TL), il existe alors un élément (b,k) € Ko X
e 2

K5(4) tel que b= amod (2K>), k= -1 € Ko(4) et :
Orea(b,k) #£0.

Démonstration. Soit x € H (L¥*) tel que z = (—a,l') avec w(l') = I, ol 7 est

la projection de I/(\g sur K3(4), puisque £ est tres ample (rappelons que c’est la
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puissance quatrieme d’un fibré ample), il existe un élément (u, ) € Ky x Ko(2)
tel que :
(0 .
A(u7a)(—2x) #£0;

le fait 3.3, point (ii), nous assure que

(2) _ A0
A(%,Z*a) o A(“:a) © [2] ’
La proposition 3.4 ci-dessus, appliquée avec i = 2, (a, k) remplacé par (%7 2 x a)
et (u,!) remplacé par (—a,!’), nous assure que :

(2) _ple (2)
P2 (x)A(g,zm) =4 (5 * a) A(%m,l.zm) y

et ’on déduit des deux relations précédentes que

Oroa (g +a,l- 2*a> = (—a — %) AEQ%)Q*Q)(—@

u 0
= V(—a-5) AR, (<20) £0.
—
Par ailleurs, on a bien 2%« € K5(4) et 7 est un élément de Ky donc de 2K, ce
qui montre bien le lemme 3.5. O

3.1.4. Comparaison avec les théta classiques

Supposons que la variété abelienne A est définie sur C. Supposons également
pour simplifier la présentation que M est un fibré symétrique et ample associé
a une polarisation principale (pour une discussion dans un cadre plus général,
on pourra par exemple se reporter a [Ig]). On peut alors identifier A & un tore
complexe CI/A ot A = Z9 + 779, et 7 est dans I’espace de SIEGEL de dimension
g (voir appendice). Soit 7 un entier > 3 (de telle sorte que M®" est trés ample),
on peut alors plonger A dans un espace projectif via ’application

éM@n ¢ — ]P)ng,1

z — (H(GVO)(nﬂnz))ae%Zg ,

ol, si a, b sont des éléments de RY, la fonction 8, 3y est définie par :

Oap)(T,2) 1= Z exp (ir'(m+ a)r(m +a) + 2in'(m +a) - (2+0b)) . (10)
mezZ9

Si I'on suppose de surcroit que n est pair, alors le fibré M®" est totalement
symétrique et, si ’on note n le g-uplet (n,...,n), on peut vérifier facilement que
lapplication V(n) — T (A, M®") définie par §, — 6, 0)(n7,n2) pour tout
a € K(n) est une structure théta sur M®™ au sens de la proposition—définition 3.1.
De plus, ce méme énoncé nous assure qu’une telle identification est unique a une
ambiguité finie pres.
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Les plongements o men fournissent aussi naturellement des paires de structures
théta compatibles pour (/\/l‘gm7 M®2”). De ce fait toutes les propriétés et formules
des paragraphes précédents ont un avatar classique (en particulier la formule d’ad-
dition fondamentale (3) correspond au théoreme 2, page 139 de [Ig], bien que pour
la retrouver & partir de loc. eit., il faille une petite contorsion).

Ainsi, les coordonnées A ne sont qu’un avatar des plongements théta « avec
caractéristique ». Nous supposerons (cela est suffisant pour nos besoins) doré-
navant que n est de la forme n = 4%, On introduit alors le plongement © y4e- qui

, . . k
est défini par la collection des (O(Q,b)(ﬁ 2 z))mbeszg/zg.

Comme les coordonnées A, ces derniéres sont obtenues a partir des 0, 0y (n7, n2)
a ’aide d’une transformée de FOURIER partielle (confer [Ig], page 171) :

Oap)(T,2°2) = D exp(2in¥(q+a)-b) O(asa 0)(4°7,4"2)
qEZ9 )2k 79 :
. 2(k—1
= exp (2ir’a-b) . AE;%%())))(Z) ,

ot a/2F est un point de 2F-division quelconque de a.

Comme on le voit ci-dessus, les coordonnées A ne coincident pas vraiment
avec les coordonnées induites par les fonctions théta classiques. En particulier,
O(a,p) (7, .) dépend du choix de b dans sa classe modulo Z9 par une multiplication
par une racine de I'unité, alors que pour A, ), c’est une fonction de [ vu dans

le quotient 1?0/41/(\0 o I?(Z) Il s’agit toutefois grosso modo de la méme notion,
a ces petites ambiguités pres. On verra d’ailleurs ci-dessous que les formules de
RIEMANN satisfaites par les coordonnées A sont exactement les mémes que celles
satisfaites par les fonctions théta classiques.

On peut retrouver les fonctions théta classiques de maniere algébrique en modi-
fiant légerement la définition des A ; il suffit de poser pour z € H (M®") identifié

PSS

a un élément (a,l) de K(n) x K(n)

Agz(i@—n) = g 3] {Aggfg)—l))} .

—a,l)

En tout état de cause, on pourra par la suite et pour chaque place archimédienne
v du corps de nombres sur laquelle A sera supposée définie, identifier A(C,) a la
variété abelienne complexe plongée via © p e~». On disposera alors de toutes les
estimations de comparaison de hauteur que nous allons établir au paragraphe 3.3,
puisque les © y on satisfont toutes les hypotheses requises (tours de structures
théta compatibles) pour établir ces comparaisons.

3.2. Formules d’addition et de duplication

Pour déduire des formules explicites pour les formules d’addition et de duplica-
tion, il est agréable de passer aux coordonnées de MUMFORD modifiées, que nous
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avons introduites. Il est en fait préférable d’établir préalablement pour ces nou-
velles coordonnées un analogue des « formules de RIEMANN » classiques (confer par
exemple [Ig], theorem 1, page 137), dont nous pourrons déduire, par spécialisation
a des cas particuliers les formules recherchées. Pour ceci, nous allons introduire le
morphisme :
X : At — At
(,9,2,t) — (s,u,v,w)

ouls =z+y+z+t,u =x+y—z—t,v . =x—yt+z—tetw =x—y—z+t.
Avec ces notations, on a :

Proposition 3.6. Soient ay,...,as des éléments de Ko et ly, ..., 1y des éléments
de [?2—(\) Notons by = a1+as+azt+ag, by = a1+ay—az—ay, b3 = ay—ast+az—ay,
b4 = ay — ag — ag + a4 ; on choisira également un relevé quelconque l; de l; dans
K4( ) pour chaque 1 < < A4. Enﬁn on posem By = [l l4 ko =1, 13 ~l L
ks =1 lQ lg l4 et k4 = l l2 l3 l4 Alors, on a la relation :

2 2 2 2
WAL (AL () AL (0) AR) | (w)=

14 A(4) } 2 AW A AAW £),
deK;K(i) b1+d k1 ~4*u)( ) ( b24+d 7k2-4~ku)(y) ( baId ,k3-4*u)( ) (b4jd ,k4'4*u)( )
we Ky (3)

be +d tous les

autres choiz étant arbztmzres

Remarques. On notera que dans la formule de RIEMANN classique, on ne change
pas de fibré ; on pourrait penser a utiliser le fait 3.3, point (ii), mais rien ne permet
d’assurer a priori que les b;/2 sont des éléments de Ky, d’ou la formulation que
nous avons choisie.

Plus généralement, la formule de RIEMANN classique autorise des « coordonnées
théta avec caractéristiques réelles quelconques » alors qu’ici nous ne disposons bien
évidemment que de coordonnées dans Ko X m Pour obtenir une telle variante,
il suffit toutefois, en notant P le fibré de POINCARE sur A x ﬁ, de remplacer le
fibré V' = @} ;77 L par un fibré de la forme N’ := ®}_ 7*L; ou pouri=1,...,4
on choisit £; = £ ® P| 4y}, et ou les y; sont quelconques dans A. Nous n’avons
toutefois pas jugé utile d’alourdir la présentation de cette proposition plus avant.

Démonstration. Fixons, pour ¢ = 1,...,4, des éléments (a;,(;) de Ko X I?g(?) et
notons P le produit :

_ A(Q)

2
SAROT Y

(2) (2
(a2, 12)( )A(as,ls)( )A(a4,l4)( w).
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(2)

En remplagant les A", ) par leur valeur (formule (8)), on a :

2 ) 2 2
P= 3 Hz D05 (8105 0y (WL oy (0105, ()
e €K (4) =1
en tenant compte de la formule (3), appliquée une fois avec X :=z4yetY :=24¢
de sorte que s = X +Y et u = X — Y, et une deuxieme fois avec X = x —y et

Y :=z—tdesortequev=X+Y et w=X —Y, on obtient :

P Z Hl Ci 5(a31+a2+cl+02+ ($+y) 65131)—a2-2f—01—r:2 +771(Z +t)

Clyeens cg €K (4) i=1
n1,m2€K(2)

x & (z —y) 6 (z—1).

a3+a4+63+c4+ as a4+<:3 C4+

En appliquant une nouvelle fois la méme formule (3), on en tire :

} : 4
P = Hl i 5a1+a2+a3+a4+61+62+63+64+7/1+7)2 +n3 ($)
weg €K (1) i=1
n1sna €K (2)

X (5(4) (y)

ajtaz—az— a4+61+62 €3— C4+T/1 12 4 g

x 6 (2)

a1 a2+a3 7 C2+63 C4+n1+n2+n

x & ).

a1 —as— as+a4+c1 c2— 63+C4+n1 n2+n4

En tenant compte du fait 3.3, point (i), on a :

@ _ 1 @
nl;ﬁ’l +ns+3 5y %Zci (ZE) Y Z,:,\ A(m;ngﬂLTls‘FZ?:l ”Z%f,al)(x) ?
O£1€K4(8)

et de méme pour les autres facteurs intervenant dans le produit ci-dessus.

Posons maintenant d = ¢; + ¢ + ¢3 + ¢4 et remplacons dans les expressions
ci-dessus ¢4 par d—cq —cy —c3 ; on note que 252 AL ef, 226 gont des éléments
de K4(8), et 'on applique le fait 3.3, point (iv). On obtient donc :

4 4 o
Aéd)f%ﬂLng +773,a1)(x) AE b)lfd 1)(x)a1 ' (771 JQH72 + 773)
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et, de méme :

A% )= Al

—1 + S
(rgrean mom gy o) ) = Biaza o )07 (955 272 4oms)

(2) = Afba | (2)og" (g2 + 232 4 ),

( 1 70‘3)

AW
(batZertles—d  mAn2 1y 0s)

NG

)
by—2co— d —
( 4 2624 eyt 4 M2 +”l47044)

4 _ _
- AE b)4—+d a4)(t) Oy ' ( = 203 = 2772 774)'
Notons maintenant :

Flag,..oon) = > (-l (el 1) ea)Us - 1y ) (es)

c1,02,c3€K(4)
NLsiens na€K(2)

I e LR G b D)

—1 (cites nitn2 —1(_cotes n1—n2
X ol (g 4 M 4y ot (— 925 4 MR 4y

nous allons simplifier la fonction I' avant de la réinjecter dans I’expression trouvée
pour P.
Tout d’abord, en isolant la somme

5 ot (g g (25 g )
na€K(2)

la formule des caracteres nous assure que cette somme ne peut étre non nulle que
—
si oy = ag mod (K(2)). De méme, en isolant la somme portant sur 73, on trouve
—
ay = aj mod (K (2)); en isolant ensuite les sommes portant sur 7,72, on trouve
——

également que a3 = o1 mod (K (2)). En d’autres termes, les «; sont tous égaux
modulo des carrés, et nous pouvons done poser a; = ay - (2% 3;), pour i = 2,3 et

4, ou les 3; sont des éléments de K5(4).
Isolons maintenant la somme portant sur ¢y, c¢’est-a-dire :

S e Neart (3) 208 (5 (F) 248(5)

62€K2(4)

on vérifie alors a 1’aide de la formule des caracteres, que cette somme ne peut étre
non nulle que si By = Iy - l;l - By.
A 5 1
De méme, en isolant la somme portant sur cs, on trouve 83 = 4 - I3 - {; *.
Sachant que l'expression I’ ne peut étre non nulle que sous ces conditions,
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celle-ci se simplifie alors en :
F(a17a1~2*lg ~2*ZZI ~2*64,041~2*13~2*121 ~2*64,a1 ~2*/34)

=649 Z (Ll 515 (er)  ba(=n1 +1m2)

c] EK(4)
n1,m2 €K(2)
X As(—m —n2) . o1 (—c1) . Ba(=2c1+m +m2) -
En isolant le terme en 71 par exemple, on obtient la somme :
> la(m)la(n)Ba (m)
mekK(2)

—

qui ne peut étre non nulle que si B4 = lg - I3 - 2% «, avec o € K (2), et ’on obtient
(notons que la somme portant sur 79 se simplifie également sous cette condition) :

Flagar2x (B30 32xa) ,ar- 2% (131, 1 2%a) yar- 2x(la-13-2 %a))

= 2569 Z l1 '14 ~12 ~13(01)a1 (—Cl) 3
CleK(4)

Notons, pour i = 1,...,4, [; un relevé quelconque de I; dans K4(8), que nous
fixerons une fois pour toutes. La formule des caracteres nous assure que cette
expression ne peut étre non nulle que si oy =1y -lo - lg - ly - 4%y = ki -4 %, oll
~v1 est un élément de K(2). On pose :

dxyg =4d%y3=4xy=4%v1 2% (l% B ~2*a) .

Calculons avec ces notations et en notant que pour tout ¢ compris entre 1 et 4

on a, par définition, la relation 2x {; = [ :

a1~2*(l§~121~lg~2*a) = 4*71~4*Q~Z1~<[2~2*l§)~(Zg'2*lg)'<2’4~2*l471>
= 4*71~4*a~l~1~l~2~l~§1~Z~Z1-2*l§~2*l§

= ];}Q -4 % Y2 -
On vérifie a ’aide d’un calcul similaire :

Qi :1~€1~4~k’yl,
Qo :a1~2*(l§~lgl~13~2*a) = /~fg~4*'\/2,

a3 :a1~2*(l§~l21~12~2*a) = ];'3~4*’)/3,
a4:a1~2*(12~l3'2*a) k4~4~k’y4.

On en déduit, pour finir, en reportant dans F' :

F(%l~4*717122~4*72,123~4*7371~c4~4*74) — 10249 .
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Il suffit maintenant de reporter ce calcul dans la valeur de P que nous avions
trouvée ci-dessus :

1 @)
P oo Sl (d)A(bﬁd

dEK (4)

(4)
k1 4*71)(217) A(bQZd,l;zA*“/z)(y)

v1.0€K(3)
4
X A( b) d 7
( 3 /fg 4*’}/3

En injectant le point (iv) du fait 3.3 (4. e. on remplace les termes _Td par % en
écrivant %d = % — %)7 et en tenant compte du fait que tous les 4 xy; sont triviaux

sur les points de K (4), ceci donne :

1 () ()
P = E Z ll(d)A(#,%l"l*’Yl)(m) A(b21d7,;2.4*72)(y)

deK(4)

(4)
)(Z) A( bytd )(t) .

7 ok dxya

-
71 €K (2)

(4) (4)
X A8 Byann) I s

Notons maintenant Z un systéme de représentants de K(4)/K(2). On a donc,
toujours en tenant compte du point (iv) du fait 3.3 :

_ 1 @ @
P = 4—9 Z ll(d+e)A(b—#,é1‘4*Vl)($)A(bi#,%z“l*ﬁ’z)(y)
deZ,ec K (2)
a,'uef?(?)

(4) (4)
X A(b3+4d+e (2) A(b4+4d+e7k4,4ﬂ4)(t)

7’23~4*’73)
! @ @)
= 4—9 ; ll(d)A(bljd’,';lA*%)(m)A(b2:d,];2,4*72)(y)
a,'neK/(?)
(4) @ . —€
x A g (DA () H(k4m)<7)
eEK(Z) i=1

Comme d’une part Hle ki = Z‘ﬂ et d’autre part

4
H4*'yi:4*7‘1‘~(2*(l§~lg~2*oz3)):2*l§~2*l§~4*a7
i=1
on a
4 ~
> he) [Jkidxm) (4> S o(nhirarhil) (@)= Y (abis)e).
ecK(2) i=1 ecK(2) ecK(2)

La formule des caractéres nous donne donc que s - [3 = a (rappelons que -
désigne ici la projection naturelle de K5(4) vers K3(2)). En reportant la valeur de
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a que nous venons de calculer dans la définition des ~;, on en tire :
dxyy =4dxyy=4xy3=4*%v4.

Cette simplification nous permet enfin de réécrire ’expression P ci-dessus sous
la forme voulue :

_ 1 () ()
P=g 2 @Al @) By 0 O)

dEK (4) /K (2) 4 plseat
weK (2
(4) 4)
x A(#,l}yéb&u)(lz) A( b4jd,/;4~4*u) (t)

(maintenant le membre de droite est invariant lorsque d est inchangé modulo K(2),
ce qui justifie le fait de remplacer Z par K(4)/K(2)).
Ceci montre bien la proposition 3.6. |

On peut maintenant énoncer les formules d’addition :

—

Proposition 3.7. Soient (a,l), (b, k) des éléments quelconques de Koy x K(4).

Choisissons des éléments (a’,l'), (b, k") de Ky X I?(I) tels que Opea(a’,l') et
Ores(b, k') soient non nuls et tels que o/ = a mod (2K5), b’ = bmod (2K>) et enfin
U= 1,2, k' = k-x'* pour certains éléments k, k' de K(4). Posons ¢c; = a+a’+b+¥V,
¢y =at+b—ad =V, c3 =a—b+d -V etcy = a—b—a'+b dunepartetly = l-k-x-K/,
lh=xr"! ~/</_1, la=10-k1.k- KT et ly =k~ & d’autre part. On a alors :

290 p0a(a, 1) 0oa(t, K) AL (@ + ) Al (@ — y)=
2 2 2 2
D MDA, @A @) A, (A, )

dEK(4) /K (2) 2 2 2
weK(2)

c;+d
2

En particulier, le morphisme &, défini a la formule (2), peut étre représenté dans
le plongement © pea par des formes bi-homogénesS de bi-degré (2,2), a coefficients
dans® Q(p4,0 £84(0)) et la hauteur de Weil de la famille formée de 1 et de leurs
coefficients est magjorée par 2(49 — 1)h(A).

ot pour i = 1,2,3,4 sont choisis de sorte que leur somme vaille 2a.

Démonstration. Tout d’abord, I'existence des éléments (a’,l'), (b, k') est assurée
par le lemme 3.5. On choisit pour commencer des relevés [, k, I’ et k' de [, k, I’ et &’

dans K4(8) et I’'on pose de méme que ci-dessus mq = [k-T K, gy = A

g = k1.0 et g = kL gt k' il suffit d’appliquer la proposition 3.6,

8 Le fait que & puisse étre représenté par des formes de bi-degré (2,2) est classique, confer par
exemple [La—Rul, le point est plutot dans le calcul de la hauteur.
9 Suivant 'usage, on note pour tout entier n > 1, y, le groupe des racines ni*™mes de unité.
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en y remplacant le quadruplet (z, v, 2,t) par (z,z,y,y). On trouve ainsi :

2 2
AP 2z +y) AR 2z —y)) Ogas(al 1) Opos (B, K)
1 4
— > l(d)AEc)lrdvaA*u)(x)
deEK(4)/K(2)

weR (@)
(4 (4 4

XA 2 ) ) A (24 ) V) AE&gj_d,mm) ).

Par hypothese sur a’ et b les quantités cy,. .., cs sont des éléments de 2K et,

de méme, par hypothese sur I’ et £/, les caracteres m;, 1 <14 < 4, sont des carrés

dans K4(8). On peut donc terminer la preuve en se ramenant de sections de £©16
a des sections de £®4 par le point (ii) du fait 3.3. On obtient alors :

AR (120( + 1)) AL (1202 — 1)) Oces(a/, 1) Opas (', K)

1
- 2_9 Z l(d) AEQCI_Fd,Lk%«H’Q*u)([2]x) AEQ‘:ZT“LCI,H*LH’*LZ*U)(B]ZE)

dEK (4) /K (2) 2

weK(3)
2 2
8 AE#,Z%*LH%’*LQ*U)(p]y) AEG)‘lT'*’d,H*LnﬂZ*u)(p]y) ’

La proposition 3.7 suit en remarquant que A est divisible ; en effet, le supplément
découle immédiatement de la formule que nous venons d’établir, par définition de
la hauteur de WEIL, une fois noté d'une part que pour toute famille de nombres
algébriques non nuls,

hw (1,xf17...7m;1) <nhw(l,z1,...,2n),

e D
et d’autre part, qu'il y a au plus 49 éléments (a, k) de (K2/2K5) x <K (4)/Ka(4) >
tels que 84 (a, k) #£ 0 (il est facile de vérifier directement sur les formules qu’il ne
peut-y avoir de regroupement de termes). La proposition 3.7 est donc entiérement

établie. O

Passons maintenant aux formules de duplication :

—

Proposition 3.8. Soit (a,l) € Ky x K2(4) ; on a alors :

(i)

4 1 d 3
(2) _ (2)
{A(aJ)} = 5 Z I(d) Oes (57 2 x u> A(2a+g,z2~2m) o 2],

deK(4)/K(2)
wek(2)

ot % est un point de 2-division quelconque de d ;
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(ii) pour tout couple (b, k) € Ky x m tel que b= a mod (2K>) et k = Ik?,

pour un certain k € Ko(4), on a :

3
2 2 2
Al o121 0con(b k=50 DU AF) m1.M){Aéf—g+d,w.zw)} .

deK(4)/K(2)

weK(2)

Démonstration. Commengons par (i) ; appliquons pour ce faire la proposition 3.6,
avec (z,y,z,t) = (2,0,0,0). On obtient alors :

n 41 4 d °
[AEQ)Z)( )] - ﬁ Z l(d) AE&Z—%,[A‘A*u)(x) 0£®16 (174*?/,) ’

deK(4)/K(2)

weK (2

II suffit maintenant d’appliquer le fait 3.3, point (ii).
Passons maintenant au point (ii). Appliquons la proposition 3.6, avec cette fois
(z,y,2,t) = (z,z,z,z). On obtient :
1
Oos(b,RPAL) o l4] = o~ 3 Ud )Agtwd B s
deEK(4)/K(2)
weK (2)

3
(4)
> |:A(Liﬂ7[_%—l,4*u):| ¢

Cette fois encore, I’hypothese nous permet d’appliquer le fait 3.3, point (ii), et 'on
en tire :
1

2 2
Ocos(b, AL o2l = 5 D U A o1
dEK(4)/ K (2)
weK(2)
3
A(Z)
2 (—‘“7g+d,n*1~ Q*u) ’
Ce qui montre bien la proposition 3.8. (Il

3.3. Hauteurs normalisées sur les variétés abeliennes

Soit k un corps de nombres contenant toutes les racines 4-iemes de 1'unité, que
I’'on supposera plongé dans C, et A une variété abelienne de dimension g, munie
d’un fibré en droites ample et symétrique M, définie sur k. Rappelons qu’il est
défini dans [Ph]-I une hauteur normalisée h des sous-variétés algébriques de A
satisfaisant un certain nombre de propriétés (voir proposition 9 de loc. cit.). Nous
précisons la constante dans la comparaison de h et de la hauteur projective h dans
le plongement projectif © = © g4 associé a la structure théta décrite et fixée au
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sous-paragraphe 3.1 précédent pour le fibré £8* = M®16 On notera D le degré
du fibré M.
Plus précisément, nous montrerons :

Proposition 3.9. Soit V une sous-variété algébrique de A, définie sur Q. Alors,
h(V) = h(V)| < co(©).(dim(V) 4 1). deg(V),

ot co(©) :=49T1h(A) + 3glog(2).

Remarque. Cette constante est tout a fait comparable a celle obtenue pour les
points par Y. MANIN et Y. ZARHIN (confer [Ma—Za]). Elle est un peu plus faible
pour ce qui est de la dépendance en h(A) (d’un facteur 4). Cette perte n’apparait
que lorsque I’on travaille avec des variétés de dimension > 1. Pour les points, le
calcul redonnerait naturellement une dépendance en (49 —1)h(A), comme dans loc.
cit. Pour ce qui est de la constante numérique finale par contre, la comparaison
est plus lourde en raison des différences de normalisations (hauteur de WEIL dans
loc. cit., hauteur projective ici, plongement associé & M®* 13 bas et & M®16 ici).
Tous calculs faits, notre estimation est tres légerement plus fine.

Avant de passer & la preuve de la proposition 3.9, nous donnons ci-dessous
des versions effectives des lemmes intermédiaires de [Ph]-I, §. 3, concernant les
comparaisons entre la hauteur projective et la hauteur normalisée. Nous nous
permettrons donc, pour éviter trop de redites, ici ou la de reprendre des pans
de preuves de cette référence; que les lecteurs préférant un texte plus « auto-
explicite » veuillent bien nous en excuser.

Lemme 3.10. Soit § un point de 2-torsion de A et V' une sous-variété algébrique
de A définie sur Q; alors, h(V) =h(E+ V) et d(V + &) =d(V).

Démonstration. (Remplace le lemme 4 de [Ph]-1.) On remarque simplement que la
translation par un point de 2 torsion est donnée par une transformation linéaire
de PV, de hauteur nulle. Plus précisément, on remarque que cette transformation
linéaire est tres particuliere. C’est une action diagonale qui agit par multiplication
par des racines de I'unité : cela résulte de la proposition 3.4 (dans le cas classique,
cela se voit facilement sur les séries théta, confer [Ig], pages 49-50) ; une telle trans-
formation ne change donc pas les mesures locales de la hauteur projective (confer
paragraphe 2) et laisse donc cette derniére invariante ; il en est bien évidemment
de méme du degré. [l

— —

Pour tout élément (a,l) € K9 x K(4), fixons un élément (b, k) € Ko x K(4),
tel que b = a mod (2K5) et k = [.x% pour un certain x € K(4) (on notera a(a,l)
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un tel choix) tel que 0 e4(b, k) # 0, et notons G, ;) la forme

3
! 2) @) .
290 34 (b,/f)g Z l(d) A(%,ﬁn*lﬁ*u) (A(“g“,nl.z*u) !

dEK(4)/ K (2)
weK ()

Pexistence d’un tel élément (b, k) est assurée par le lemme 3.5. Notons également
B le point projectif
B = (i Oeoa(b k) >b€Kz/2K2,k€K2(4)/K2(4)2 :

On vérifie aisément que B est défini sur le méme corps de nombres que I’origine
04 = Ore1(04) (voir notation 3.2) de la variété abelienne A et que (inégalité
valable aussi bien pour la hauteur de WEIL que pour la hauteur projective) :

h(B) < (49 — 1)h(A).

Avec ces notations on dispose du lemme :
Lemme 3.11. Soit G = (G(a»l)>(a,l)eK2xI?(4\) le systéme de formes introduit ci-
dessus ; G représente les formules de duplication sur A, les formes (G(q,)) sont

de degré 4, leurs coefficients sont dans Q(py, B) C k et la hauteur de Weil de la

famille formée de 1 et des coefficients de toutes les formes (G(avw)(al)GKgxI?(T)
est magorée par 3h(B) + glog(2). Pour toute place v de k et tout x € A(k,), on

dispose des inégalités :

G o | 117
[2/2exp(—d,glog(4)—31og 04 )< NG 1 1F 05, glog(4) + 31og|B]) (1)

el ~]2

0t 6y, = 1 siv |00 et 0, =0 siv est finie. Plus généralement, pour tout entier
m>1 et en notant G les formules de multiplication par 2™, la hauteur de Weil

de la famille formée de 1 et des coefficients de toutes les formes (G’(mg> o
(@b)) (a ek, x K(d)

est magorée par 4™ . (h(B) + glog(2)) et :

g(4™—1)
3
Co(@)*", (12)

—— o _ G ()]l _ |2
2l T Cu(0)™ < =< |5
e[k 2

v

0il Cy(©) = exp (6,2%EL 1 log||B]l, +log |04l.)-

Démonstration. Les formes G, ;y représentent bien les formules de duplication
(c’est la proposition 3.8, point (ii)); un calcul direct montre que la hauteur de la
famille formée de 1 et des coeflicients des formes G/, ;) est majorée par 3h(B) +
glog(2) (on vérifie & encore sur la formule qu’il ne peut-y avoir de simplification).
On majore la hauteur de la famille formée de 1 et des coefficients des formes

(Ggml)) ) __ par récurrence a partir de ’estimation précédente ; toutefois,
@)/ (a1 K x K(3)
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a ce stade, vu la complexité des formules, il n’est pas clair qu’il n’y a pas de
regroupement, de termes; on tient donc compte de la longueur des formes pour
obtenir la majoration annoncée.

Comme la deuxieme série d’inégalités (12) s’obtient par récurrence & partir de
I’encadrement (11), il suffit de montrer ce dernier ; la majoration de (11) découle
de la proposition 3.8, point (ii); la minoration est, elle, une conséquence de la
proposition 3.8, point (i), tout au moins pour les places finies. Pour les places
archimédiennes, les deux calculs étant tout & fait similaires, nous nous contenterons

e b
d’expliquer la majoration. Notons I := Z3x Ks(4), J 1= K3/2K> XKQ( )/Kg( ).
Il s’agit d’estimer : >, ; |G;(2)[? ; le lemme 3.8, point (ii) nous assure que

D B EI L) Y—— |9£®4 (leul || ) :

iel i€l
et donc :
Y T gt (St ) (S
il v
ou encore
4QZ|G z)| <Z = 6Z<Z|%Iz> (ZI$”|6>
iel i 0o (9l 177 \

1/2

(o) (s (5]

= J \1/7\ u
<169B]° (z w) (zw) |
I I

ol 'on observe pour la derniére inégalité que chaque terme intervenant dans ces
sommes est répété 49 fois. Au total, on a bien :

IG(2)]| <22IBI°.=|*.
Le lemme 3.11 est donc établi. O

On notera que cet énoncé n’'est rien d’autre qu'une version quantitative du
fait 3, page 276 de [Ph]-I pour S = {2}.

Lemme 3.12. Pour toute sous-variété algébrique V de A, de dimension r — 1,
définie sur Q et tout entier m >0, on a :

b2 V)

M) = =4

< crd™ deg(V),

ot ¢y = 49h(A) + 2glog(2).
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Démonstration. On reprend la preuve du lemme 5 de [Ph]-1, mais ici oy, désigne
le plongement de VERONESE de degré 4™ de Py dans Py (ot N’ + 1 = (N’;V‘lm))
et fn est une forme éliminante de o, ([2™]7'V), d’indice (4™,...,4™) € N". La
hauteur projective utilisée dans le présent texte (confer paragraphe 2) satisfait
h(fm) = 4™ H([27]71V) et d° fr = 740D deg([27] V) = r4™9 deg(V). Et, si
p* désigne comme dans loc. cit. la spécialisation des variables de f,, en les coeffi-

cients de combinaisons génériques des formes (G, 1) (a0 e s x K7D fournies par le
’ ; 2

lemme 3.11, h(p*(fm)) = 4™90(V). Finalement, on compare hA(fm) et h(p* (fm))
en décomposant les mesures locales M, (u*(fm)/fm) par la formule de PoissoN
comme dans la preuve du lemme 5 de loc. cit. et en utilisant les estimations du
lemme 3.11 plutét que le fait 3 de cette référence. On a ainsi

g(4 3—1) dofm

Cy(©@)4" & fm

g(4™—1) ;o m o &
2 5 I o) i < o, (M) < |

v

En sommant le logarithme de M, (1*(fm)/ fim) sur toutes les places d’un corps de
définition de f,,

o () = )] < 47 1 3 T o 0)).

v

En combinant avec ce qui précede on obtient I’estimation annoncée avec

o= X g 08(C (@)
< S8 | 1) + hioa)
< ana) + 260,
D’otu le lemme 3.12. O

Lemme 3.13. Awvec les hypothéses du lemme 3.12 et en notant Sy le stabilisateur

de V' dans A, on a pour tout entier m > 1,
4" h(V)

|ker([2™]) N Sy |

47+ deg (V)

h([2™]V) Clr—lker([Zm]) A5y .

£

Démonstration. (C’est celle des lemme 6, 7 et 8 de loc. ¢it.) On fait ici le calcul
car un remplacement brutal de C% par sa valeur nous ferait perdre un peu. On
applique le lemme 3.12 & W = [2™]V. L’expression

2w = U e+

Eeker[2™]/ ker[27]NSy
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nous assure que :

3 WV +§) 4™ deg(V)

hw) — e | S @ asy

£€ker[2™]/ ker[2™m]NSy

Le lemme 3.10 donne maintenant :

5 h(V + ) 47 h(V)

49— |ker[2] N Sy |’

£€ker[2]/ ker[2]NSy

combinant avec (x) on en déduit le résultat souhaité pour m = 1 avec ¢; remplacée
par c¢1/4. Reprenant la preuve du lemme 7 de [Ph]-I on montre par récurrence sur
m’ > 1 que pour tout point de 2°°-torsion on a :

Ih(V +€) — h(V)]| < 3err deg(V). (13)

Enfin, substituant ce dernier résultat au lemme 3.10 dans () on obtient la conclu-
sion recherchée. O

Démonstration de la proposition 3.9. Le lemme 3.13 donne
h2"v) — _h(V)
T deg([27]V)  deg(V)

< 4eqr.

Et comme

h(V) , h([2m]V)

deg(V) ~ mveo 47 deg([27]V)

on en tire bien la proposition par passage a la limite (et en remplagant ¢; par sa
valeur). O

Passons au plongement « enroulé » de [Ph]-III. Rappelons que ce dernier per-
met, dans certaines situations, par une technique de passage a la limite de se
débarasser des constantes de comparaison entre les hauteurs projectives et hau-
teurs normalisées. Pour raffiner les estimations, nous utilisons ici le plongement
« étiré » de [Da—Phi2] défini par :

@g A — A2 @—2> (]P)N)Z SﬂE ]P)N2+2N
z —s (,[2%2).

Nous noterons deg,, he (respectivement fzg) le degré et la hauteur relative au plon-
gement P, (respectivement la hauteur normalisée). Nous reprenons ici les propo-
sitions 7 et 9 de loc. cit. pour Py :

Proposition 3.14. Soit V' une sous-variété algébrique de A, définie sur Q de
dimension r — 1. Alors :

he(V) — he(V)| < 2c0(©)r deg, (V).
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Démonstration. On remarque que la démonstration de la proposition 3.9 ne fait
intervenir le plongement © que par les propriétés des lemmes 3.11 et 3.10 ; comme
ces derniéres sont encore valables pour les plongements ®,, quitte & remplacer ¢
par 2c¢q, le résultat est établi. (Il

Proposition 3.15. Soit V une sous-variété algébrique de A définie sur Q, de
dimension r — 1. Alors, avec les notations ci-dessus, on a

deg,(V) = (4°+1) 1. deg(V) et ho(V)= (4 +1).W(V).
) h(v)

En particulier, ﬂ% tend vers r“;) lorsque € tend vers Uinfini.

Démonstration. Nous suivons la preuve de la proposition 7 de [Ph]-I11. On obtient
une forme de CHOW de ®,(V') en spécialisant les formes génériques de degrés 441
&)

en des combinaisons linéaires générales des X;G (X)) dans une forme éliminante

d’indice (4+1,...,4°41) de V. Le résultat s’en déduit en estimant les mesures de
telles formes linéaires & ’aide du lemme 3.11 et en appliquant ’estimation obtenue
aux variétés [2™]V lorsque m — oo. O

4. Minoration de hauteurs normalisées

Nous allons établir ici le théoreme 1.1 ; nous allons donc supposer donnée dans
tout ce paragraphe, une variété abelienne A de dimension g > 1, définie sur un
corps de nombres k, munie d’un fibré en droites ample et symétrique M associé a
une polarisation principale. Nous supposerons que A est plongée dans un espace
projectif Py, avec N = 169 — 1 wia le plongement © = O g4 (avec £ = M®*)
décrit dans le paragraphe §. 3.1; on dispose donc d’une comparaison numérique
entre les hauteurs projectives et normalisées.

On munit A x A du fibré M := 7t M ® 15M, que 'on plonge dans Py (avec
N’ = (N +1)2 — 1), via les coordonnées de MUMFORD associées & M®6, ce qui
revient a plonger A x A dans Py24 9y par le plongement de SEGRE ]P’%V — Ppr2ion.
Nous noterons ©2 ce plongement.

A toute place archimédienne v de k nous associons un plongement o, de k dans
C et nous identifierons o, (A)(C) & un tore complexe C9/A,. Nous disposons donc
du plongement projectif

Oy 1 0y(A)(C) = Pn(C),

ou ©, est le plongement projectif associé a M?w décrit au paragraphe 3.1, et
que 'on peut également sans perte de généralité ni modification des constantes de
comparaisons entre hauteurs projectives et normalisées décrire & ’aide des fonc-
tions théta classiques (confer §. 3.1); on a 9, 00,(A) = 0, 0©O(A). Nous noterons
©? le plongement déduit de ©, pour o,(A) x ,(A). Nous désignerons par H, la
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forme de RIEMANN associée 4 ©, et par H? la forme de RIEMANN associée & ©2.
Nous noterons 75 (4)(c) I'espace tangent a l'origine de o, (A)(C).
Pour tout entier £ > 1, nous considérerons également le plongement étiré :

P A - AxA < Py

z — (z,2%).

Nous noterons 7 le plongement étiré de A x A.
Enfin, lorsqu’aucune ambiguité sur la place archimédienne v considérée ne nous
semblera possible, nous omettrons les indices v des objets introduits ci-dessus.

4.1. Préliminaires

La structure générale de la preuve est la méme que dans [Da—Phil]; nous la
rappelons brievement et donnons les valeurs numériques des diverses estimations
qui nous seront utiles. o

Soit X une sous-variété algébrique de A, définie sur @, qui n’est pas translatée
d’une sous-variété abelienne de A. On note Bx la sous-variété abelienne de A
engendrée par X — X et ky désigne le nombre minimal de copies de X — X dont
la somme vaut Bx. On supposera pour commencer que kx = 1 (une récurrence
permettra d’en déduire le cas général), et nous noterons k' une extension finie de
k sur laquelle Bx est définie.

Décrivons la situation que nous allons utiliser. Introduisons I’'isomorphisme :

s A7 — A?
(z1,22) — (21,71 — 22).
Rappelons que (voir par exemple [Ph]-I11, proposition 1) :
2dim(X) A 2dim(X) +1
deg(X?) = deg(X)? et h(X?) =2
o) = (A )-dee(0? et hx?) —2(*

Comme le plongement de A dans Py est projectivement normal (confer par
exemple [Bi-Lal, chapitre 7, théoreme 3.1, page 190), I'isomorphisme s (ainsi que
son inverse) peut étre représenté par des formules bi-homogenes de bi-degré (2, 2)
(confer proposition 3.7), et 'on a :

27290 deg(X?) < deg(s(X?) < 22N deg(X?),

). h(X)deg(X).

9—2dim(X)~1 fL(XQ) < ;L(S(XQ)) < 22dim(X)+1 fL(XQ) )

Soit 9 la projection linéaire de P4, sur le second facteur Py, on a alors 75 o s(X?)
=X—-Xet:

deg(X — X) = deg(m 0 s(X?)) < deg(s(X?)) < 164 deg(X)?,

h(X = X) = h(m 0 s(X?2)) < h(s(X?)) < 8.169™(X) j(X)deg(X).
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On notera B = By = X — X, W = s(X?) et m le morphisme surjectif
m: W —B

dont la fibre générique est de dimension 2dim(X) — dim(B) et la fibre spéciale
W Ny t(0) est de dimension dim(X) > 2dim(X) — dim(B). On notera que cette
fibre spéciale s’identifie & X x {0} et est donc de degré deg(X).

Nous donnons tout d’abord une version quantitative du « lemme du volume »
(lemme 4.3 de [Da—Phil], § 4), qui permet de minorer la hauteur normalisée ; afin
de simplifier (et d’améliorer) les estimations numériques, nous commencgons par
établir la proposition suivante, qui permettra de « travailler en moyenne ».

Proposition 4.1. Soit A = CI9/A une variété abelienne complexe principalement
polarisée, plongée dans Py comme ci-dessus, et Qpy, la forme de Fubini-Study sur
Pn(C), 7o la translation par x dans A et dva la mesure de Haar normalisée sur
A. Alors, pour d=1,...,g on a, en tout point z de A,

/A(@ 0 T )* (3 )(2) A dva(z) = (wdd°H(z, )"
c _ H(dz,dz)
et mdd°H(z,2) = &T
Démonstration. On pose f := log||©||> — 7H, ott || - || est la norme euclidienne ;

c’est une fonction périodique par rapport & A (confer [Ig], lemma 4, page 69) et
I'intégrant du membre de gauche s’écrit alors

d
(d=dSlog |0z + 2)|)M = (rdodSH (2 + 2,2 + )N+ (Z) dywi (2, )
k=1

avec
wr(z,z) = dSf(z+ ) A (dzdS f(z 4+ 2)) DA (rdydS H (2 + z, 2 + z)) N4

pour k=1,...,d. Comme d,d; H est invariante par translations,

/A(WdzdﬁH(z +a, 24 2))Mdva(x) = (rdd°H(z, 2)) .

Il suffit de montrer que pour k = 1,...,d, les composantes de la (d, d)-forme
[ 4 dowi(2, 2)Adv o () sont nulles. Pour I, J C {1,..., g} de méme cardinal m et or-
dzg) AdZz) A Ndzg,, NdZ5

donnés de facon croissante, notons pr s(z) la (m, m)-forme 2 ,
on vérifie la relation dva(x) = det(H).ug, 1,(z) ot I, = {1,..., g} et, pour I, J de

cardinal g — d, que la forme
dywi(z,2) ANdva(z) A py g(2) = dywil(z, 2) A py g (@) Adva(z)

est fermée pour d,.
Pour conclure, on note que wy(z, z) est périodique par rapport & A ; on déduit
donc de la formule de STOKES que l'intégrale de d,wy (2, 2) Adva(x) A pr,s(2) sur
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A est nulle. Ceci, établi pour tous I, J de cardinal g — d, montre que les formes
Ja dowi(z,2) A dvg(z) sont nulles pour k = 1,...d, d’ott la proposition. O

Lemme 4.2. Soit W une sous-variété de A?, QP?\V la forme de Fubini-Study sur
P2, exp, Uapplication exponentielle de A et B, = {z € Tacy;mH(z,2) < r2}. Si
r< mm{LHQM;Ae A\ {0}

} et my désigne la projection de A® sur le second

facteur alors,

[/ (83 0 72) (QI™V) A dy g2 (2)
A2 JWmy t(exp 4 (Br) N’

est minoré par :

(4€ + 1)dim(W). deg(W N 751(0)) 7_2(dim(W)7dim(Wﬂ7r271(O))) )

Démonstration. Notons D un domaine fondamental de C9/A ; la proposition 4.1
qui précede permet d’écrire I'intégrale considérée sous la forme

V= (rdd°H?(z, 2) + wdd®H?(2¢z, 2¢2))N dim(W)

exp;é (WHN(DxB,)
_ (44 + 1)dim(W)./ (,ﬂdchQ(z7 Z))/\dim(W) )
exp;%(W)ﬁ(DXBT)

En effet, par hypothese sur r, la fonction exp, est injective sur B,, et par suite
le changement de domaine d’intégration est licite et la premiere ligne s’obtient en
tenant compte de la définition des plongements étirés ®2. Comme

(mdd°H?(z, 2))N ™) — (rdd®H (21, 21) + 7dd°H (29, 29) )" (W)

se développe en somme de formes positives, on peut encore écrire

V> (4f 4 1)dim0v), / V(21).(rdd°H (2, 21)) dmWnms (0))
expzl[Wﬁﬂ'gl(O)]
avec
V(z1) ;:/ (,ﬂddCH(227ZZ))/\(dim(W)fdim(Wﬁwgl(0)))7
exp i3 (W)N({z1}x By)

et en identifiant W N7y 1(O) A sa projection sur le premier facteur de A2. Fina-

lement, comme le nombre |, 7ddeH (21, 21))" 4mWNms (0 st ggal

expgl[Wﬁwgl(O)] (
a (toujours par la proposition 4.1)

L4, (807 ()T ON A g (@1) = deg(W 173 0)),
My

il suffit de montrer V(z;) > rXdim(W)—dim(Wnm,(0))  Mais ceci résulte, apres

changement de variable ramenant wH a sa forme orthonormale, de la croissance
de la masse de LELONG (woir [Gr-Hal, pages 390-391 ou [Ph]-1, fait 1). O
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Nous généralisons ensuite le théoréme 3.1 de [Wa] en y considérant des fonctions
de €% & valeurs dans €™, oll b et n sont des entiers > 1, analytiques sur une boule
de la forme {z € C%;||z|| < R} C C°. Si F est une telle fonction et F},. .., F), ses
composantes on notera

Wla := ax, 1Biln = 2, oie, =l

Cette généralisation du résultat de M. WALDSCHMIDT (ce dernier se restrei-
gnait au cas » = 1) permet de disposer de plusieurs fonctions analytiques simul-
tanément petites, et par suite, en faisant opérer le groupe de GALOIS, de tra-
vailler avec toutes les places archimédiennes simultanément. C’est cette approche
qui nous permet d’éliminer la dépendance en le corps de définition de A dans le
théoreme 1.1.

Proposition 4.3. Soient L, b et n des entiers strictement positifs, S, U, R et
E des nombres réels positifs et fi1,..., fr des fonctions continues sur la boule
{z € CY||2|| € R} de C? et analytiques a Uintérieur de cette boule, 4 valeurs dans
C". On suppose™® que 5 < S < U, max(e;vb) < E < eV, winsi que

L
Z|f>\|R — eU7
A=1

8nU(4U +blog(E))® < (b—1)ILS(log(E))°.

A

Alors, il existe des entiers pi, ..., pr, non tous nuls, de valeurs absolues < e tels

que
B
> nh
A=1

<eV

?

-

ovr = R/E.

Démonstration. Soit T' € [4,4U] le plus petit entier > 4U /log(F), considérons le
systeme d’inéquations d’inconnues py donné par

L
Zpkfk,i,r
A=1

lorsque i = 1,...,n, 7 = (11,...,7%) E N, ou |7| :=7 + -+ 7 <T et frir
désigne le T-ieme coeflicient de TAYLOR de la i-ieme composante de fy. Le nombre
d’inconnues est L et, par définition de T', le nombre d’inéquations est :

() <5 ()

Tl < %T*be*U (14)

10 On notera qu’il convient également de renforcer comme nous le faisons ici ’hypothese E > e
de [Wa). Ceci permet de corriger les estimations liées aux inégalités de CAUCHY de loc. cit.
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On a
B 5
Z | Frir] '™ < Z 1Fal,vp < €Y
A=1 A=1

et on vérifie que l'on se trouve dans les conditions d’application du lemme 3.3
(principe des tiroirs) de [Wa] car nos hypotheses entrainent que

5log(2)\ 2n [4U +blog(E)\® _ 8nU [AU +blog(E)\°
2 )ﬁ< log(B) )%—1)!( log(B) )

<3U +blog(T) +

est majoré par LS.
On obtient donc l'existence d’entiers p1, ..., pr, non tous nuls, de valeurs abso-
lues < e solutions du systeme (14) et donc tels que

i er
Z Zpkfk,i,r ] < T
[7|<T IA=1
pour tous 1 = 1,...,n. Le lemme 3.4 de [Wa] (lemme de SCHWARZ approché)

entraine pour toutes les composantes de la fonction F' = Zle pafx:
Fil, < VT+DE T |Flg+ Y [Fir| ol
|| <T

lE*Te3U 4 %er

IN

er

IN

car

L
IFilp €% Y 1l < 6%,
A1

et la conclusion s’en déduit. La proposition 4.3 est donc entierement établie. [

4.2. Hauteurs et intersections

On reprend les notations du paragraphe précédent et en particulier les plonge-
ments O, &, de A dans Py, Py respectivement et ©2, &2 de A? dans P%,, P%,
respectivement, avec N’ + 1 = (N + 1)? et £ un entier > 1.

Soit W C A2, on suppose que (W) = B est une sous-variété abelienne de A
oll my désigne la projection sur le second facteur de A%. On note k' un corps de
définition de A et B ; & toute place & I'infini v de k" on associe un plongement ¢,
de k' dans C et on note 0,0, ...,0, n les fonctions théta paramétrant o, (A)(C).
Suivant J.-B. BosT [Bo], §. 2, on introduit la notion suivante :
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Définition 4.4. On appelle rayon d’injectivité de o,(A)(C), et on note Riyj,, la
plus petite norme de RIEMANN d’une période non nulle de o, (A)(C) :

Rinj.o(A) := min{m. H,(A\, A); A € A, \ {0}}1/2.

Et, si pour chaque place archimédienne v de k', on a identifié o,,(A)(C) & un tore
complexe C9 /(Z9 + 7,Z9), avec T, dans le « domaine fondamental » de I’espace de
Siegel pour I'action de Sp,,(Z) (woir appendice, §. 6), on appelle rayon d’injectivité
absolu de A, que I'on note R;pj, la quantité

Rinj := min{Riyj ;v | 00} .

On pose,

Vmax = 8dim(B). (max {e; \/m} Rinj)?dim(B)

et, pour zg € o, (Ta(c)),
B, s(20) 1= {z € 1o aycy; 7. Hy(z — 20,2 — 20) < 7"2} .

On note ONU = (éu,m . -~,§u,0) les fonctions analytiques sur C9 déduites des
0, ; aprés changement de variables ramenant 7wH, sur sa forme orthonormale et
T, (B)(c) sur un sous-espace de dimension dim(B) fixé de C¢, que nous noterons
Tg(c). Il existe un réel co > 0 tel que pour toute place archimédienne v de kK

exp(—e2) < sup [,4(2)] < exp (Jl2]2 + ) - (15)
0<i<N

Cela résulte en effet, apres le changement de variables opéré, de [Da, théoreme 3.1.
D’apres la proposition 3.7 les produits 6, ;(#+20)0y,;(2—20) s’expriment comme
formes de bidegré (2,2) en les 0, ;(z) et 0, ;(z0). On a de plus

oo < WGt 0z = 20)lo _ e, 155
181216 (20)12

K.:Q, L
avec y, [[K:g] Loy < ez =249 — 1)h(A) + 2glog(2).
Dans la situation ci-dessus, on dispose du :

Lemme 4.5. Soient ¢ € A?>(Q) un point de torsion, 0 <V < deg(B) un réel et

\% im 1/2 dim (B) ; cote c o

o DAL o i ¢ o, (M),
on a

iL(W) s 1 Ve v 1 V T (B

deg(W) = 8 \deg(W) deg(B) 2¢ 8dim(B) ’
avec

_di [k, : Q] 9 A dim(W)
Vi o= [l e e (@Fore)* (s M))
U% K" Q JouwWynms  (exp., ay (Brw (0))) v
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Démonstration. Dans toute la démonstration les o(-) sont relatifs & § tendant
vers l'infini. Pour ¢ assez grand, le nombre de monomes de degré ¢ linéairement
indépendants sur @ modulo 'idéal de définition de ®,(B) est

 deg(®¢(B)).s4mB)

(1+0(1))-

En multipliant chacun de ces monomes par les éléments &1, . .., {jx.q) d’une base
im(B)
entitre de k' sur Q, on en déduit [k’ : Q] W(l + o(1)) mondmes
linéairement indépendants sur Q.
Pour A e NV L x| =4, et m=1,...,[k" : Q], notons fx », le vecteur dont les

composantes fx n ,(2), pour chaque place archimédienne v de k', sont les monémes
. - Pos,
fA,m,v(Z) = Uv(gm) . H ((91]’1‘(2)9@&(262))
0<i,j<N

Les fonctions f m|ry., sont des fonctions analytiques de dim(B) variables & va-

leurs dans C* 2 Pour toute place archimédienne v de k' on déduit de (15) les
inégalités suivantes :

[k":Q)
S 3 [famel2)] > exp(=3(2es + o(1)))

m=1 |}\|:§

(17)
[k":Q]
D D0 [famol2)] < exp (8(4° + 1).]1201° + 28 (e2 +log(N +1) + o(1))
m=1 |X|=6
car logmax{|§1|u, |§1|1717 ceey |§[k'iQ]|U7 |£[k'i@] |171} - 0(6)
On applique la proposition 4.3 avec
vy
=di = [k : . ; =7 ; = —— K
b=dim(B), L=k :QH(®(B);s), R=rmax {e, \/E} 5= 3eqrm <V

et une famille £ de fonctions f}‘7m|TB(C) de b variables complexes, correspondant a
des monémes indépendants sur @ modulo I'idéal de définition de ®,(B). On pose
enfin

1
1 b— 1L B
U=-. (/# .max(1;log(b)/2).
8 \ 8[k': Q] deg(B)
Comme ¢ > %10g2 (W) par hypothese, en supposant § assez grand

on a (vérification numérique immédiate pour la premiére inégalité ; on remplace r
par sa valeur pour la deuxiéme) :

§.(45+1) [V
> R
v <8b

Z B1o) )b > 5(4% 4 1)r?. max(e?; b) + 6(2¢y + log(N 4+ 1) 4+ o(1)) .
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Par ailleurs, on vérifie numériquement que :

8|k : QU <4U + blog max {e;\/g})b < (b-1ILS (logmax {e;\/g})b .

On est donc dans les conditions d’application de la proposition 4.3 et on obtient
Pexistence d’entiers py ,, de modules < e tels que la fonction

F = Z p)\,m~f>\,m|TB(C)

(Am)eL
satisfasse
0<|Fl, = sup |Fy(s)| <oV
v [lzll<r
On note q la forme de k'[ X, . . ., X ] dont les coefficients sont les combinaisons

linéaires des pax ., correspondant aux multiples d’'un méme mondéme unitaire par
les éléments de la base de k' sur Q fixée (i. e. Z[k::(f] Pam&m). On a ainsi Fy,(z) =

m

o4(q)(®y(2)) pour toute place archimédienne v de k', ol
$, ¢ —s Py/(C)
z — ( e éu,i(z)9~U7j(2Zz) : ) 0<i<N

025N
Et done, pour toute place archimédienne v de k et tout = = ®,,(z) avec || z|| < 7,
on a encore, en tenant compte de la premiere inégalité de la relation (17),
Iav(Q)(va - |Fv(z)|v

13 194 (2)113

18
< |Flr- exp((26 + o(1))5) (18)
< exp(=U + (2¢2 +0(1))9),
tandis que pour tout x € o,(B)(C) on a
|0'v|(|i)“(6x)|v < eS+C4(N+1)26. (19)

Pour les places ultramétriques v, comme ¢ est a coefficients entiers algébriques, on
a pour tout = € B(C,)
low (@) ()]

(B[

<1. (20)

Sans perte de généralité on peut supposer que la variété abelienne B n’est
pas contenue dans le diviseur découpé par la forme linéaire Xy. Considérons la
forme X3¢(Y'), que I'on peut voir dans le plongement de SEGRE de ®2(A?). On
sait (wvosr proposition 3.7) que I'image inverse par le morphisme &, introduit & la
formule (2), de X3¢(Y') s’écrit comme une forme bihomogene de bidegré (24, 25)
sur <I>§(A2). En spécialisant les variables Y en des coordonnées du point de torsion
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79 (&) fixé dans I’énoncé, on obtient une forme @ de degré 26 sur ®,(A), qui satisfait
pour toute place v et z € $y(B)(C,)

o @@)e_ Jow(@)(@ = ma(E)o-low(Xo) (@ + ma(O)y

BRG] 113 Il ()11

Intersectons ®7 o 7¢(W) avec 735(Q), la hauteur relative ha2or(w)(73(Q)) interve-
nant dans le théoréme de BEzoUT arithmétique (cf. [Ph]-III, prop. 4) s’écrit

! [k, - Q] oo (@) (ma (&)l
ECEPS [k’:@J'/crvoész?g( o127 )%MWM@).

Notons I, lintégrale ci-dessus divisée par deg(®? o 7:(W)), on vérifie que
deg(®? o 7¢(W)).I, est majoré par

|UU(Q)(7T2 (y)) |v
/mgm<w> o8 (umy)nzé.nw O > Dagors w0 (y) + 20l08(ma(E)]l.)

car |lyllv > ||72(y)||lv, puis, en tenant compte de la formule (16),

/ log(I%(Q)(Wz(y—5))Iu»|0u(Xo)(7Tz(y+£))|3
o020 (W) 2y — EN3-llma(y + IS

+ d(cy + 2log(||ma(§)llw)) -
La formule (20) nous assure alors que, pour les places ultramétriques,

deg(®7 o 7e(W)).Ly < 8(cy + 2log([lma(€)]l)) -

v

) 'Q@'%OTE(W),U (y)

Tandis que, pour les places archimédiennes, on vérifie que deg(®7 o 7¢(W)).I, est
majoré par

/ 1 <|UU(Q)(W2(9_5))|U
avo{>§OT§(W)ﬁ1r2_l(expav(A)(BT,v(zv))) ||7T2 (y - 6)”2

> 'Q<I>§OT§(W),1J (y)

+ 54 6(cy + 2log((N + D[ma(§)])) + e

ol exp, ( 4y(20) = 0y 0m3(€). En effet, on majore pour ces places archimédiennes
I'intégrant par S + 25 log(N 4 1) + ¢4 sur le complémentaire du domaine d’inté-
gration mis & part, grace a la formule (19), puis par

log ('(fu(q)(m(y — 5>>|U>

Im2(y = E)II3
sur ce domaine. Enfin, ‘U“ﬁzrl(@{ygif))]“ est majoré par e UtQ2e2to(1))d gur 1a boule

exp,, (a)(Brw(zv)), d’apres (18).
D’on, en sommant sur toutes les places et puisque la somme sur toutes les
places archimédiennes du volume du dernier domaine d’intégration considéré est
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(48 + 1)dim) y, = %{mﬂgw- Ve, par définition de Vg,
(U = (25 + 0(1))5).Ve

he3ore(w) (3 (Q)) <S+6(c3+2h(m2(€))+21og(N +1))+es— deg(W)

On applique donc le théoreme de BEzOUT arithmétique a l'intersection de
D% o 7:(W) et de 7:(Z(Q)). La hauteur de lintersection étant toujours > 0 et le
degré et la hauteur normalisée étant invariants par translations par les points de
torsion (wvoir [Ph]-I, prop. 9), on obtient

WV @ or(W)
deg(W) (4¢ + 1) deg(®7 o 7e(W))
h(®7 o e(W)) 2¢0(©)

W1 Ddeg@ ore(W)) 441
_héfzo‘r&(W)(ﬂ-ﬁ(Q)) _ 200(@)

(4¢ +1)d 441
WU =22 +0(1))9)-Ve 5+ (e + 2h(m2(€)) +2log(N +1)) +ea  2¢0(O)
T (48 + 1)6. deg(W) (4t +1)8 4% 41
LU < Ve v ) 2¢o + 6¢0(0) + e3 + 2log(N + 1) + o(1)
“(4£41)6 \deg(W) ~ deg(B)) 4+ 1

la derniére inégalité se vérifie en remplacant S par sa valeur S = —2¥ - en majo-
¢ deg(B)

rant h(my(€)) par 2¢o(©) et en notant que, par définition, %ﬁw) <1

16(ca+cs+3co (@) +log(N+1 =
Enfin, comme 2¢ > 18(cates (V/Ofgb)z log(N+1)) o 5'(4[,&1) > 8+(1)(1) (Z)*, on
obtient
W) 1( Ve v 1 vy
deg(W) = 8 \deg(W) deg(B) 2¢) \8b
en faisant tendre ¢ vers 'infini. Le lemme 4.5 est donc entierement établi. [l

4.3. Preuve du théoréme 1.1

La preuve de l'inégalité [i°%(X) h(X) y est déja connue (woir par

2 @mE) T DX
exemple [Zh1], theorem 1.10 ou [Da—Phil], théoréme 1.4). Commengons par établir

un résultat plus précis que le théoreme 1.1 lorsque kx = 1.

Théoréme 4.6. On reprend les notations et hypothéses du théoréme 1.1, et l'on
suppose de plus que kx =1 (i.e. X — X est une sous-variété abelienne Bx de A
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de dimension > dimX), on a :

dimBx +1
dim B dimBy +1
vmax ) mBy imBy +

deg(X)? deslX) T

h(X)
deg(X)

> (2129)*92. min (

En particulier, en posant C1(A) 1= (2129)92.min {1;Rinj}72(dim(Bx)+l), on a

h(X) > C1(A) ™" deg(X)~4mBx)

16(co+c3+3co(@)+1log(N+1))
(V/8b)L/e

dim(By) et on applique le lemme 4.5 & W et aux points de torsion £ € A2. On en
déduit en faisant la moyenne sur tous les points de m-torsion lorsque m tend vers
I'infini :
WX b
deg(X) ~ 8(16)dm(X) deg(W)

g | B (L S DA%
7 4(16)dm(X)+1pdg ok deg(W) deg(Bx) 2¢) \8b

m

S 1 (JeVedvaz() V1 .
“ [LGE=iEyte deg(W) deg(Bx) 2¢) "

Pour V < V.« le lemme 4.2 entraine

Démonstration. Soit £ > log, ( ) un entier, on pose b :=

Ve.dvae(€) = Vo = deg(W 0wy 1(0)).r2(dim(W)—dim(Wnm,™ (0)))
A2
1

V)ﬁ ; ce choix de 7 et la condition V < Vi,.x permettent

1
3 max(e;vb) ' (%
d’assurer que les hypotheses du lemme 4.2 sont bien satisfaites, d’ou
B(X)> 1 Vo V. 1\
deg(X) = (16)4im(X)+2 \ deg(W) deg(Bx) 2

avec r —

> . 1 . Vo 1% v
(1630772 "\ deg(W) ~ deg(Bx)
en faisant tendre ¢ vers l'infini.
Nous posons d = dim(X) et B = Bx ; notons que par définition, dim(W) = 2d
et, dim(W N, 1(0)) = d. Nous allons imposer de surcroit
. Vo deg(B)
= ;deg(B); —————=
1% mln{Vmax, eg(B); 2 deg(W)

de sorte que
Y = Vmax ou VYV = deg(B) ou

{ deg(W Ny 1(0)). deg(B) \ 77
W=t <16b.(9 max(zz; b))d deg(W))
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et
b41

h(X) Sl vw
deg(X) ~ 169t2 deg(B)
Dans le dernier cas, en remplacant » par sa valeur, on a :
~ Vodeg(B)  deg(W Ny }(0)).deg(B) ( v )2’
2deg(W) 2.(9max(e?;b))4deg(W) \8 ) ’
ce qui donne bien la valeur de V annoncée. On a donc (toujours dans le dernier
cas)

. b1
MX) bdeg(B) i deg(W N w3 1(0)) b
deg(X) ~  24d+5 16b(9max(e?;b))4 deg(W) ’
D’on, puisque
deg(W Ny 1(0)) S deg(X) 1
deg(W) 7 24ddeg(X)2 T 24ddeg(X)’

la minoration
hX) bdeg(B)#a 1 =
deg(X) =  24d+5 24d+4p(9max(e?; b))? deg( X) ’

b1

Supposons maintenant que V = Viax ; on a alors

. b1 b1
h(X) 1 ) vmgx S 2~8d78 Vmax b
deg(X) 7 24448 deg(B) ~ "\ deg(X)? ’

car deg(B) < 2% deg(X)?.
Enfin, pour finir, supposons que V = deg(B); on a :

h(X) 1 L 5-4d-8
> -deg(B)b > 27148
deg(X) ~ 24d+8 eg(B)

Le théoreme 4.6 s’en déduit en mettant ces inégalités ensemble et en majorant b

par g, d par g — 1, puis en remplagant Vpmax par sa valeur 8.(2max {e; \/E} Rinj)%.

Démonstration du théoréme 1.1. On procede par récurrence sur kx, le cas kx =1
se déduisant du théoreme 4.6. Posons Yo =X et Y; =Y, 1—Y; 1 pouri=1,...,¢
ou ¢ désigne le plus grand entier < 1+ lﬁfé]g;g). Sikx >1l,onaf>1letky, =1,
d’olt 'on déduit par le théoreme 4.6

h(Ye) > C1(A) ™" deg(Yy)~ AmiPve),
et par les considérations du paragraphe 4.1 :

h(YV;_1) 3 2~ 4dim(¥i1)-3, h(Y3)
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En télescopant ces inégalités pour ¢ = 1, ..., £ on obtient (en notant b la dimension
de B X )

~

h(Ye)
deg(X) deg(Y1). .. deg(Ye—1)
9—4 T dim(Yi-1)-3¢ . ¢ (4)~1
B3 .
= deg(X)deg(Y1)...deg(Ye—1)deg(Ye)®

Mais, comme pour tout ¢ compris entre 1 et ¢,

h(X) 3 24T i dim(Yim1)-3¢

)1+A.,+2i*1

i 2°
deg(¥;) < (240D deg(X)* < (210-V.deg(X))

en notant que, par définition, 2~ < kx et que, par construction, By, = Bx est
de dimension b, on en déduit!?

deg(X)deg(Yl) . deg(Ygfﬂdeg(Yg)b S 24(b71)(2kx(b+1)7Z7b71)+1deg(X)ZI{X(b+1)71.
Enfin, puisque Zledim(Yi,l) < ¢b— @ et kx <b-—d, ona

QAT Ly dim(Yim1)+3€ | 9a(b—1)(2kx (b+1)—1—£—b)+1 986 —126—8b+16
D’ou

~

R(X) 2 (22128415, (4), deg X)zkx<b+1>71)"1 .

Pour conclure la preuve du théoreme 1.1, il suffit de remarquer (le théoreme
étant vide pour g = 1, on peut supposer g > b > 2)

C(A) = 98b° —12b°—8b+16 C1(A)

28b3—12b2—8b+16.(212b)62 —_— {1; Rinj}%(bﬂ)
< 2993.min{1;7€inj}72(b+1) ,

ce qui conduit bien au théoreme 1.1. (Il

5. Minorations explicites des minimums essentiels et absolus

L’objet de ce paragraphe est de déduire du théoreme 1.1 que nous venons de
démontrer au paragraphe 4.3, les théoremes 1.2 et 1.3 de l'introduction. Comme
dans [Da—Phi2], I'idée sera d’utiliser une minoration effective de la fonction de
HILBERT arithmétique pour controler le degré du « diviseur exceptionnel » conte-
nant les petits points.

Soit donec A une variété abelienne de dimension g > 1, munie d’un fibré en
droites ample et symétrique L associé a une polarisation principale, et © le plon-
gement de A dans un espace projectif Py défini au paragraphe 3.1 associé & £&16

11 Une majoration plus fine de deg(Y;) & cet endroit permet d’obtenir la majoration de C(A)
en exp(cg? log(g)) mentionnée dans I'introduction.
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(N 4+ 1 = 169). On suppose A définie sur Q@ et soit de plus X une sous-variété
algébrique de A de dimension d, également définie sur Q.
On reprend le plongement étiré de A :
P, A — A2 S PR — Py

SEGRE
z — (z, [2%]z)
avec £ un entier et N’ +1 = (N + 1)%.

On sait que X est définie dans Py par des équations de degrés < deg(X). De
plus, ®,(A) est définie dans Py par des équations de degré < 4¢+ 1. On en déduit
que $,(X) est définie dans Py par des équations de degrés < max {44 +1; deg(X)}.
D’apres la proposition 4.2, points (i) et (iii), de [Da—Phi2], on en déduit que I'idéal
de définition de ®¢(X) dans Q[Yp, ..., Y| est sympa'? en degré (N+1)%. max {4¢+
1; deg(X)}.

On obtient alors avec ces notations et cette remarque :

Lemme 5.1. Supposons que l'on ait linégalité :
h(®¢(X))
deg(Pe(X))

Il existe alors une forme F de degré L = 3(N + 1)?. max {44—}— 1;deg(X)}, a
coefficients dans Q, découpant un diviseur Z de ®,(X) telle que tout point x €

D, (X)(Q) de hauteur au plus :

> 12(d + 1)(4e)? og(N +1).

h(®e(X))

() Geg(@e(X))

soit un élément de 7.

Démonstration. Cest essentiellement le corollaire 4.12 de [Da—Phi2] (minoration
effective de la fonction de HILBERT arithmétique jointe a la formule du produit),
ol 'on a simplement tenu compte du fait que I'idéal de définition de ®,(X) est
sympa en degré (N + 1)%. max {4° + 1;deg(X)}, et ajusté la valeur numérique de
L afin d’assurer que les hypotheses de cet énoncé soient satisfaites.

Nous allons maintenant résumer en 1’énoncé suivant les propriétés qui nous
seront utiles pour la récurrrence qui va suivre, pour passer de la codimension 1 a
la codimension d.

Proposition 5.2. Supposons que X ne soit pas un translaté d’une sous-variété
abelienne de A, notons, comme au paragraphe 4, Bx la sous-variété abelienne de

12 Rappelons que, suivant la terminologie de [Da-Phi2|, un idéal de Q[Yo,...,Yn] de rang
N 4+ 1 —r est dit sympa en degré D si I[d] Tl QYo,..-, YNID+dy+ - +dp—r+1 7 (0), pour
tout d = (di,...,dr) € (N*)" et ol l'idéal J[d| est « l'idéal engendré par J augmenté des
formes génériques de degré dy, ..., d, dans un sur-anneau convenable » ; on pourra se reporter a
[Da—Phi2|, définition 4.1 pour plus de précisions.
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A engendrée par X — X et kx le nombre minimal de copies de X — X dont la
somme vaut Bx , et reprenons les notations introduites ci-dessus. Posons de plus :

12(4)%2(d + 1).¢0(©)

) :3(N+1)2max{1; A }.deg(X).

Il existe alors un sous-ensemble algébrique Z de X, défini sur Q, de dimension
d—1, satisfaisant :
2
deg(Z) < ———-deg(X
“8(2) < gy deelX).

qui contient tous les points de X (Q) de hauteur normalisée :

h(X)

< (46)7(172' deg(X)

En particulier, les points de X (Q) de hauteur normalisée
< ((4e)F20(4)) " . deg(x)~2x (dim Bxth)
appartiennent a Z et deg(Z) est magjoré par

(N +1)2 (12(d + 1)(4e) 2co(©)C(A))* . deg(X )x(dim(Bx)+1+1

oi C(4) 1= 29" min {1; R} ™Y,

Démonstration. Commencons par choisir ¢ minimal, de telle sorte que :
deg(X
49 41 > 3(4e)412 (d + 1).@@)&. (21)
h(X)

En tenant compte de la proposition 3.14, (pour comparer la hauteur et le degré
de ©,(X) en fonction de la hauteur normalisée et du degré de X), on a :

deg(P,(X)) _ deg(X) !
(4°+1) =
< A ea(®) e (X)
h(Pe(X)) h(X) 1 (4é+()1)12(X)

et le choix de ¢ que nous venons d’effectuer assure pour sa part,

(deg(®o(X)) _, deg(X)
h(@e(X)) = h(X)

Par ailleurs, toujours a 1’aide de la proposition 3.14, on a :

W®(X)) _ 44+1 h(X) o(®)
Tos, ) 2 des(o) 2 ST D= (22)

(4 + 1)

en remplagant finalement c¢o(©) par sa valeur numérique (donnée a la proposi-
tion 3.9), on en déduit que I'’hypothese du lemme 5.1 est satisfaite.
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Comme par ailleurs une hypersurface de Py, de degré L découpe sur A le
méme diviseur qu'une hypersurface de degré L' = L.(4° + 1) de Py, le diviseur Z
de ®,(X) dont D'existence est assurée par le lemme 5.1, nous fournit, une fois tiré
en arriere sur Py un diviseur de X (que nous noterons encore Z) dont le degré
deg(Z) est bien majoré par la quantité :

deg(Z) < L(4°+1)deg(X)
< 3(N 4+ 1)% max {46 +1;deg(X)}. (4£ + 1) deg(X)
2
< 3(N +1)% max {1; 12(4e)d+2((;l(;r Leo() } . deg(X)?
52, deg(X)
S 3Ny

Ainsi, toujours par le lemme 5.1, en tirant la situation en arriére sur X et en

tenant compte de la proposition 3.14 pour se ramener a des hauteurs normalisées,
—d—2_ _h(X)

on voit que si z est un point de X de hauteur normalisée < (4e) T 00 alors
(rappelons que (4¢ 4 1)h(z) = h(®4(z))) :
Las (P DA(X)
h(Pe(z)) < (de) 7deg(X) + 2¢p(©)
_g—a_h(®(X)) d+1
< (4e) T2 S 49 (@) [ 14— ] .
= U Geg@ay) T g

En tenant compte de la minoration obtenue en (22) pour % et de la valeur

numérique fixée pour ¢, on vérifie bien que

1 h(®(X))
(1)1 ™ deg(®y(X))’

h(®e(z)) <

et le lemme 5.1 nous montre bien qu’en particulier = est un élément du diviseur
de Z de X introduit ci-dessus.

On en déduit les premieres majorations de la proposition. Les majorations
supplémentaires s’obtiennent tout simplement en tenant compte de la minoration
obtenue au théoreme 1.1 pour fz(X ). Ce qui démontre donc la proposition 5.2. O

En ce qui concerne les minimums introduits au paragraphe 1, pour avoir un
controle des ensembles exceptionnels, il est utile d’introduire des minimums « quan-
titatifs » et donc de restreindre les variations & des variétés de degré controlé. Plus
précisément, on pose pour tout triplet d’entiers (d, A, A’) avec d > 1, A > 1 et
A >1:

£°(d, A, A’) ;= inf sup inf{ﬁ(x);x e (V'\ Z)(@)} .
VCAZCV
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Vinfimum étant pris sur toutes les sous-variétés V de A définies sur Q, de dimen-
sions < d, et de degrés majorés par A, qui ne sont pas translatées de sous-variétés
abeliennes, le supremum (qui est un maximum) est pour sa part pris sur les sous-
ensembles algébriques propres de V de degrés < A’ également définis sur @.

De méme, on introduit :

p°(d, A, A’) := inf sup inf{iz(:t:);x e (ve \Z)(@)} ,
VCAZCVe

le premier infimum étant pris sur toutes les sous-variétés V de A définies sur Q,
de dimensions < d, de degrés majorés par A, et le supremum'®(qui est encore
un maximum) est pour sa part pris sur les sous-ensembles finis de V° également
définis sur Q et de cardinaux au plus A’

On déduit alors de la proposition 5.2 :

Théoréme 5.3. Supposons donnés des entiers d > 1 et A > 1, et posons :
FIA) = (212914 oo(@)C(A)) . A% .
On a alors les minorations suivantes pour les quantités p*=(-,-,-) et p°(+, ) -

3(N+1)2.c0(@)> 1
Ay Ty’

f5(d, A, F(A)) 2

ainst que
1
~O d,A7 od A R
e (d, A, f°(A)) FA(A)

Démonstration. Tout d’abord, on vérifie aisément, en tenant compte des valeurs
numériques de C(A) (donnée dans la proposition 5.2) et de ¢o(©) (donnée & la
proposition 3.9) :

3(N +1)%¢y(O) L1
Ay Ty
Maintenant, si V est une sous-variété de A, définie sur @ de degré deg(V) < A,

et si V n’est pas un translaté d’une sous-variété abelienne de A, la proposition 5.2
nous assure que les points de V' de hauteur au plus

1
(4e)d+2C(A) ARG+

appartiennent a un diviseur Z de V, de degré au plus

poi=

deg(Z) <7 :=3(N + 1)2 [12(d+ 1)(4e)d+260(9)C(A)]2deg(v)4k(b+1)+17

ol, pour alléger, nous avons posé k :=ky et b := by.

13 Par convention infimum (respectivement le supremum) de I’ensemble vide est +oo (respecti-
vement 0).
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Par définition de [i**(d, A, -), on en déduit :
f52(d, A7) 2 s
comme il découle immédiatement de la définition de 1°*°(d, A, -) que 7/ > T entraine
que °=(d, A, ") > [(1#%(d, A, 1), il suffit de montrer d’une part que :
2
RN
f(A)

et d’autre part que f(A) > 7 pour obtenir la premiére partie du théoreme.
Commencons par la premieére inégalité ; on remarque aisément que :

2k(b+1) < 2(g —1)(g +1) < 292,
il suffit maintenant de vérifier que :
1 3(N +1)?
(4e)dT2C(A) — 2129H4C(A)’

qui est triviale en tenant compte de N +1 =169, d < g—1 et g > 2 (le théoréme
est vide si g = 1).

Pour vérifier que 7 < f(A), il suffit, en tenant compte de nouveau de ’inégalité
2k(b+ 1) < 2g° et en remplacant f(A) par sa valeur, de vérifier que

432(N + 1)2(d + 1)%(4e) 24T < 924918

?

qui est triviale.

Vérifions maintenant que

~AO o 1
M (d7A7f d(A)) > JCOTA).

Pour ceci, nous allons commencer par remarquer que, si d > 2 :

0 (d, A, f2U(A)) 2 min {4 (d, A, f(A));4° (d =1, f(A), fU(A) } . (23)

Par définition des 4°(-, -, ), pour tout ¢ > 0, il existe une - sous-variété V' de
A de dimension d et de degré au plus A, qui est définie sur Q et qui n’est pas
translatée d'une sous-variété abelienne de A, telle que :

i (d A, £(8)) > inf {h(z), 2 € (VA (V° N 2)(@) -2

pour tout ensemble fini Z d’au plus f°¢(A) points de A.
11 existe un diviseur W de degré < f(A) tel que

inf {h(z);e € VAW)@} 2 4, A, F(A)) e,
et il existe un ensemble fini Z d’au plus f°¢(A) points de W* tel que
inf {h(z);e € W\ D)@} 2 4°(d—1, F(A), F*4A)) —e.
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On a alors
e, 8, 74 2 win { int (i) € W\ @)}
inf {f}(x);x e (V\ W)(@)} } e

> min {4°(d — 1, f(A), fUA)); 4%=(d, A, f(A)} — 2
car W° D V°onW. L’inégalité (23) s’en déduit en faisant tendre £ vers 0.

On déduit par récurrence de la relation (23), lorsque j =1,...,d — 1,
Ao, A, FHA) 2 min {A=(d—j+1,7°070(a), ;9an}
<<

car ﬂo(17 ] ) = ﬂeSS(L E )
La premiere partie de la preuve nous donne donc :

1 1 1 1
(°(d, A, fPUA Zmin{ : I } .
L (&) FA) IR A | T )
Le théoréme 5.3 est donc entierement établi. O

Démonstration des théoréemes 1.2, 1.3 et 1.4. Pour établir le théoreme 1.2, il reste
a évaluer la constante.

Posons C'(A) := (2129+4.Co(@)C(A
(C'(A)A)49” et Ion trouve

1/292
) ; par définition de f, on a f(A) =

¢ 2
fod(A) _ (C/(A)fO(dfl)(A))zlg :C/(A)492+m+(492)d~ A(492)d < (C/(A)Z.A>(4g j2 )
Comme C”(A)292 < 2149 max{1, h(A)}. min {1; Riy; }72(g+1), cette derniére quan-
tité est bien majorée par g(X) lorsque d = dim(X) et A = deg(X), ce qui acheve
de montrer le théoreme 1.2. O

Pour le théoréme 1.3 on raisonne comme suit (voir aussi [Ré], preuve du théo-
reme 2.1 et lemme 6.1).

Soient z1, . .., z, des éléments de T", dont les projections sur I'/T'os engendrent
I'/Tors ; tout élément z €l s’écrit donce de fagon unique14 r=qairi+ - -topr+t,
ol t € Tios, et la hauteur fz(x) est la valeur en o = (@q,...,0,) € Q" d’une
forme quadratique définie positive ¢. Soit ¢ : I' — R” définie par (z) = a.
Ainsi, pour tout nombre réel a > 0, les images par £ de 'ensemble des points
z € I satisfaisant h(z) < a sont contenues dans un ellipsoide &(a) de R”. Posons
ap = f°4A)~! et recouvrons £(a) NI'N X°(Q) par des 'ellipsoides translatés de

14 1] est sous-entendu que pour chaque entier n > 1 et chaque indice 4, 1 < i < r, un point de
n-division de z; est fixé une fois pour toutes; ce dernier est noté x;/n.
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la forme {a} + &(ao)},.; de telle sorte que les ellipsoides ] + & (%) soient deux
a deux disjoints. On peut choisir z} € £(a) N T'N X°(Q) pour i € I; le nombre
d’ellipsoides du recouvrement (%. e. le cardinal de ’ensemble d’indices I') nécessaires

pour cette opératiogl est majoré par le rapport des volumes des ellipsoides £ (%)
et £ ((\/E + %‘/ao) ) qui contient l'union des z} + & (%f)

Vol<€<<\/5+%\/a—o)2)> /Vol(é’(%)) = (2\/%+1>T .

Maintenant, dans chacun des ensembles =1 (2] + £(ag)), il y a au plus fo¢(A)

points de I' N X°(Q), en vertu du théoreme 5.3. En effet, pour tout élément v
de et (zt +E(a))NTNX°(Qonav—z,cl'N (T (X)) N e 1(&(ap)). En
particulier, v — 2 est un élément de (7_,/(X))° de hauteur au plus 1/f°4A) et
le théoreme 5.3 nous assure qu’il y a au plus f°¢(A) tels points puisque

deg(r_y (X)) = deg(X).

Au total, il y a donc au plus

card(I) f*4(A) < (2, /ai+1) £2UA) < (safia)) " o)
0
points dans I'ensemble {z € I' N X°(Q); fz(az) < a}; pour justifier I'inégalité ci-
dessus, il suffit de vérifier que (24/a/ao + 1)? < 5af°4(A), c'est-a-dire

Av/ajag+1 < af*?(A),
et cette inégalité découle trivialement du fait que a > 1 et de la relation fo%(A) >
228 car, par définition, co(©) > 1 ainsi que C(A) > 1.
Le théoreme 1.3 est donc entiérement établi. (Il

Pour le théoréme 1.4 on reporte la minoration de Rjyj, obtenue au lemme 6.8 de
Pappendice, dans I’expression de ¢(X) et le théoréme 1.1. On a, dans les notations
du théoréme 1.4, Rinj > g~ 2.ho(A)~/? et done

)4(492)““"‘()()’1 (4g2) im0

a(X) < (9"0FD. ho(4)?+? - (219 deg(X)

)(492)dim(x)

IN

<g4(g+1)/g2 L2149 ho(A)0tD/9 deg(X)

(4g2)dimX)

< (2% ho(A)/9. deg(X)) :

puis, lorsque X n’est pas translatée d’une sous-variété abelienne, pour le théore-
me 1.1

B(X) —4( —9g3 - -
i e g+1)9—99" e N 2k(b+1)
deg(X) = g 2 ho(A) deg(X)

> 271193.deg(X)fyf(bﬁ»l).ho(A)fbfl7

ce qui conduit bien au théoreme 1.4. ([l
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6. Appendice

L’objet de cet appendice est de donner une version explicite d’'un énoncé main-
tenant classique : le « lemme matriciel » de D. MASSER (woir [Ma], page 115) ; on
en déduit facilement une estimation du rayon d’injectivité R;,;. Pour ceci, nous
commencons par donner une minoration de la norme archimédienne de 'origine
d’une variété abelienne dans le plongement théta; nous passerons ensuite a une
preuve de ce lemme.

Nous rappelons tout d’abord quelques notations, définitions et lemmes clas-
siques de la théorie de la réduction des matrices symétriques, dont nous donnons
au passage des versions quantitatives.

Soit g un entier positif, on notera &, I'espace de SIEGEL en dimension g 7. e.
I’espace des matrices g X g, symétriques, de partie imaginaire définie positive ; on
notera S, l'espace des matrices g x g symétriques, réelles et enfin B, le sous-
ensemble de S; formé des matrices définies positives. Tous les vecteurs considérés
seront notés en colonnes et la transposée sera notée « » ; si n est un entier > 1, on
notera Z,, I’ensemble %ZQ /Z9 . Sauf précision du contraire, la norme d’une matrice
sera la norme du sup.

Rappelons que le groupe symplectique Sp, g(Z) de dimension 2g agit sur &, de
la facon suivante : soit o un élément de Sp, g(Z) et 7 un élément de & ; alors o -7
est défini par :

o-T=(ar+B)(yr+8)", on o= (3’?) .

Définition 6.1. Soit 7 = z + iy un élément de I'espace de Siegel &, = S, + Py,
on dit que 7 est Siegel réduite si :
(D) ¥i, 4,1 <4, < g, |wigl < 35
(ii) Vo € Spy,(Z), det(Sm (0.7)) < det(Im (7));
(iii) la partie imaginaire y de 7 est Minkowski réduite, 4 e. :
(1) pour tout élément & = (&1,...,&,) € Z9 et pour tout indice k, 1 < k <
g, tel que les nombres &, . .., &, sont non tous nuls, on a ‘Eyé > y;, -
Yk ks
(2) pour tout k, 1 <k <g—1, onay;pp1 > 0.

On notera §, 1’ensemble des matrices Siegel réduites. On rappelle que §, est
«un domaine fondamental » de &, pour ’action de Sp, (Z).

Lemme 6.2. Soit K un corps, g un entier > 1 ety une matrice g X g, symétrique.
Soit enfin 1 < g < g un entier tel que le mineur principal y' d’ordre g’ x ¢’ de y
soit inversible. Dans ces conditions, Uéquation :

¢

 (1dy w y' 0 Idy w
vy= 0 Idg// 0 y* 0 Idg// ’
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d’inconnues y* € Mg (K), w € Mg g/ (K) admet une solution unique (bien en-
tendu, ici, " = g —¢') ; de plus, y* est symétrique.

Démonstration. Voir par exemple [Ig], lemme 12, page 190. O

Lemme 6.3. (« théoréme d’HERMITE ») Soient g un entier > 1, y un élément de
Py et m(y) le minimum de la forme quadratique associée sur le réseauZ9 privé de

lorigine. On a :
4\ 2909—1)
m(y)? < <§> det(y) .

Démonstration. Le lemme est clairement vrai pour g = 1, supposons-le donc vrai
pour g — 1 > 1, et vérifions-le pour g. Soit u; € Z9 tel que m(y) = "uyyuy. Les
coefficients de uy étant premiers entre eux, on peut compléter w1 en un élément u
de Gly(Z) ayant u; comme premiére colonne. En remplacant y par ‘uyu, on peut
supposer que y1 = y1,1 = m(y). Appliquons maintenant le lemme 6.2 avec ¢’ = 1.
On en déduit que pour tout £ = (¢/,¢") € RY (avec ¢ € R), on a :

"€y = y1(€' +we")? +%¢"ye".
Choisissons maintenant &” € Z97! tel que %&"y*¢" = m(y*), et & € Z tel que
& + w¢” soit minimal en valeur absolue, on en tire donc :

g1 =mly) < '6E < Jur +mly?),

ey < %m (y*). Cette inégalité, jointe & ’hypothese de récurrence donne donc :

g—1
m? < 5] wm@)
4 (g—1)4-Lta=tie=2) ) i s(a—1)
< |z yidet(y*) = { 5 det(y) .
3 3
Le lemme 6.3 est établi. O

Lemme 6.4. Soit y une matrice g X g Minkowski réduite. On a :
(i)
det(y) <wi...ys et yi...yg < csdet(y),
39(9—1)
ot l'on peut prendre : c5 1= (M) ’ ;

(ii) pour tout & = (&1,...,&) €RI, on a :

g g

g+1

feyg < —5 E yi&l et E yi? < ca'yt,
i=1 i=1

1
< i (2 71) 59(9*1) +1 g—1
ot lon peut prendre : cg 1= ( - ) (L)
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Démonstration. La premiere inégalité du point (i) est le « théoréme de HADA-
MARD » (woir par exemple [Ig], page 190). 1l suffit donc d’établir la deuxieme.
Clairement, ’énoncé est vrai pour g = 1 (avec ¢ = 1) et pour g = 2 (avec
cs = % s woir [lg], page 192). 1l suffit done de faire une récurrence. Soit g > 3 et
y une matrice MINKOWSKI réduite de dimension g. Supposons que pour tout k,

1<k<g—1,onait: ypr1 < ayg, avec o = %. On a alors par le lemme 6.3 :

1
g(g—1) ate—1) (4 39(9—1)
Yi--yg<a 7 oyl <a 2 (g) det(y),

et le lemme est vrai. Nous pouvons donc supposer qu’il existe un entier k, 1 < k <
g—1, tel que y; 11 < ay; pour tout i, k+1 <4 < g—1, et yrr1 > ayi. Appliquons le
lemme 6.2 avec g’ = k. Choisissons £ € ZI~F tel que ¢"y*¢" = m(y*) et £ € Z*
tel que toutes les coordonnées de £* = £’ +w” soient < %7 et posons § = (¢/,¢").
Puisque y est MINKOWSKI réduite, (définition 6.1, propriété (iii), point 1), on a
Yrr1 < €y et l'on en tire :

g—k—1

k(k+1 2 1
Yre1 < s ="y +m(y*) < %yk + (%) (det(y*))o—* .

On tire de cette inégalité et de I'inégalité yp41 > ayy,

1 4 %(9*’“*1) L
Ykl < 1_ A0 \3 (det(y™))e—* .
T 29(g-1)

k(k+1)

Comme 290o—1)

%7 I’hypothese de récurrence donne alors :

1Yy = W1 Y)Wkt Yg)

ek —1)\ 2
-1 2 (g=R)g=k=1) ,_
< (f) . det(y’) 2 yg+lf
(g—k)(g—k—1) k(k—1)
—1 2 2k(k —1 2
& 2g7k g(g ) ( ) det(y)
4 3
(=B (g—F—1)+k(k—1)
_ 2 ,
< (79(93 1)> 20—k et ()
1 —1)
29 g— 1 29(9
< (%) det(y) .

Le point (i) du lemme 6.4 est donc établi. Passons 4 (ii).

Soit d la matrice diagonale dont le i*™° coefficient est d; = /g, et y* =
d~yd ™. Comme |y} ;| = % < 3, pour i # j (et y}; = 1), la plus grande valeur
propre de y* est < %1; par ailleurs, det(y*) = % et le point (i) nous assure
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que cgl < det(y*) < 1. On en tire que la plus petite valeur propre de y* est

g—1
> (%) cgl > cgl, ce qui montre bien le point (ii) et donc le lemme 6.4. O

Rappelons que pour p = (a,b) € R?? on a noté 0,(r, 2) la fonction théta avec
caractéristique classique (confer formule (10)).

Lemme 6.5. Pour tout 7 € &y, on a :
max{|0,(7,0)|,p € Z3} > 1.
Démonstration. (Voir aussi [Ma—Wu2], lemme 6.3.) Soient 7 € &, et 7% € §, tels
que 7 soit I'image de 7* via un élément o = (’C; ? > de Spy,(Z). Les formules de
transformations modulaires (voir par exemple [Ig], page 85), nous donnent alors :
max{|0,(r,0)|,p € 23} = |det(y7* + 8)|> max{|6,(r*,0)|,p € 23} .
Or, comme 7* € §,, on a |det(y7* + ¢)| > 1 (voir définition 6.1, point (ii)). Par
ailleurs, en raisonnant comme dans [Da], §. 3, on voit que :
nEnw 0(0,00(2"7%,0) = 1.
En effet,

00,0)(2"7%,0) =1+ Z exp(iT'm2"7*m),
meEZI m#0

Or, en vertu du lemme 6.4, point (ii), et comme 7* est supposée SIEGEL réduite,

n—s00 n—-o0 206
meZI m#0 mEeZI,m#0

727/3 s
lim Z exp(iT'm2"7*m)| < lim Z exp | — me =0.

i=1
Les formules de « duplication » ([Ig], théoreme 2, page 139) assurent que :
max {|0,(2"7*,0)|,p € 23} < max {|6,(2""17*,0)|,p € 23},

en effet, spécialisées au cas particulier qui nous intéresse, ces dernieres s’écrivent :

1 : n— n—
0(a7b)(2n7_*7 0)2 — 2—9 Z eXp(—417Tta.m) 9(2a,b+m) (2 17'*7 0) Q(O,m)(2 17'*7 0) .

meZo

Ces inégalités mises ensemble donnent le lemme 6.5. (Il

Lemme 6.6. Pour tout 7 € §, et tout b € Zo, on a, avec ¢4 := 0,...,0,1) €
79 :

2 _ g ,(
8=,y 0] < (39) % T473 S 7 "7 e~ IO T < (4g)%" Bl 7,

De plus, il existe un élément b € Z5 tel que lon ait 0 # 9(3; b) (7,0).
2



Vol. 77 (2002) Minorations des hauteurs normalisées II 695

Démonstration. 1 existence d’un élément b € Z5 tel que 0 £ 0(3 b)(ﬁ', 0) découle
PR

des formules de duplication (voir [Ig], theorem 2, page 139); en effet, soit 2z € C9,
on a :

1 C. .
9(67970) (27‘7,2) 9(070)(27'72) — 2_g é:/z exp(—m eg~’m) Q(eTgym) (7‘7 z) 9(:57m)(7‘, O) ;
me L9 ) 1LY

comme le membre de gauche n’est pas identiquement nul lorsque z décrit C9, I'un
des 9(3 m)(T7 0) est non nul, d’out la deuxiéme partie du lemme 6.6 (voir aussi le
2 2

lemme 11, page 168 de [Ig]).
Il suffit donc d’établir la majoration. Soit donc 7 € Fg4, et b€ Z5. On a :

Pour évaluer la somme du membre de droite, notons Ay le nombre :
Ap :=card {m € Z9,'(2m + e,)y(2m + ¢g) < k’y,} .

On a done, avec la propriété (iii)-(1) des matrices SIEGEL-réduites, A1 =0 et

‘9(%’b)(T7 O)‘ < Z Appe” s

E>1

Remarquons que si a est un nombre réel > 1,

g—1

Gl —a® o0 g—=1
/ 29" dp = L/ (%Jrl) © e Vdv
z>a 2 0 a
g—1 —a? s} g
%/ (v+ l)nge*"dv
0

lag—le—a2+1l—w (g + 1)

IN

IN

2 2

1\ ? )
2(%) ad le "

IN
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Maintenant, en posant a := max {1; —21} € [1, /9], on dispose de I'inégalité :

TYg

‘lrk2 ‘lra2 7r:1:2
E ke~ 7% < g9tle 1" JV/ 291 da
E>1 z>a
4 g+1
2
_ralyg s
< a9Tle — ve V dv
TYgq p> 2V

IA
Q
Q
+
N
@
|
3
5]
«
@
@ /T~ +
[
s
‘ TN
‘ ©
N |+
—
~—
Wi
Q@ | =
~

IN
N
TN

=
<
+
—_
——
w\
3
«
@

2
. : : /2
car la fonction x — 29 exp (——m4yg) atteint son maximum en x — "yg (et
g

modulo une estimation plus précise si g =1).
On remarque maintenant que Ay est majoré par le volume de I'ellipsoide

2
k1 1
£ :={zeR% oYz < (—; \/ngr\/ig(g; )\/yg>

car, d’apres le lemme 6.4, point (ii), une maille fondamentale de Z9 centrée en un
point m + % satisfaisant {(2m + ey)y(2m +¢,) < (k +1)?y, est contenue dans cet
ellipsoide. Le volume en question est égal a

% g
GO (RN FTRVA N
29T (1 + £) det(y)? 2
d’ot
Apy1 K9 (em(g +3))% 49/ det(y)~1/2,
car
g
1+ /g(g+1))
k+1+ 7g(g+1)§2k<1+ 79(9-{—1)) et <—29§(e(9+3))g~
2 g I(1+4)

En tenant compte de I'inégalité précédente, on obtient :
g+1

0z )0 <4 (Tato+ Vg +3)) v det(y)Fexp (- 72} .

En tenant compte du lemme 6.4, point (i), pour obtenir I'inégalité (1a encore,
il convient d’étre plus précis si g = 1)

g(g—1) g—1
3 N\ (3
det(y) > <m> (7) Yg




Vol. 77 (2002) Minorations des hauteurs normalisées II 697

%)

a(g—1) g+1

g=1
ceci nous donne, vu que y,° < g7exp (

29(g — 1)

‘9(%5)(770)‘ S4<T> ' (f/—%g(g+1)(g+3)> ’ yﬁlexp(—%)

(3g) +Q+2 yg; exp ( Z/g)

4
(49)%" eXP( gg) :

Le lemme 6.6 est donc établil® O

IN

IN

Nous pouvons maintenant passer au lemme « matriciel » de MASSER. Pour
tout élément 7 de &gy, nous noterons k; le corps Q[0(7,0)],c z2.

Lemme 6.7. Soit 7 un élément de &, tel que k; soit contenu dans un corps de
nombres k, de degré d sur Q. Soit o un plongement compleze de k et 7(0) un
élément de & satisfaisant A7 = A, (). Soit enfin 7'(0) un représentant de (o)
dans §g et y'(o) la partie imagmaire de 7'(0). On a alors :

lel’ < = (max{1; h(A)} + 20° log(49))

Démonstration. ( Voir aussi [Ma—Wu2], lemme 8-6.) Quitte & faire une extension de
k, on peut supposer que 7/ (o) = 7(0) ; ¢’est ce que nous ferons ; soit donc o un plon-
gement complexe de k. Choisissons un élément p(c) € Z3 tel que |0, (7(0),0)]
soit maximal. De méme, en tenant compte du lemme 6.6, choisissons un élément
b e Z5 tel que 0 # |0(e7g7b)(7’(0)70)| < (49)92 exp(—% |y’ (0)]). La définition de la
hauteur de WEIL nous assure alors que :

0 (< p)(7(0),0)

|
q%?
®E
AN
——;,

\%
|
A3
=
)
2
=

> — heews(A;).

Par ailleurs, en tenant compte des lemmes 6.5 et 6.6 :

dZ

et le lemme 6.7 est établi. O

(¢.0)(7(0),0)

p(O’) )70)

< —5q 2 (@)l + g*log(do),

15 On peut remarquer que cette majoration est un peu brutale en y, ; la valeur exacte du terme

asymptotique dominant est bien entendu exp (—%)‘
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Concluons cet appendice par une estimation du rayon d’injectivité Rj,; appa-
raissant dans les estimations précédentes.

Lemme 6.8. Avec les notations introduites précédemment on a :

RS 327
M7 (g 1) max, {[[Tm, ||}

ou le mazimum porte sur toutes les places archimédiennes d’un corps de définition
de la variété abelienne A.

En particulier,

1 _
Ring 2+ (d-max {13 h(A)}) 77
ot d est le degré sur Q d’un corps de définition k de A.

Démonstration. Fixons une place archimédienne v d'un corps de définition k de
A, et posons 7, =7 =z +iyet A=a+ (x +iy)b, ol a,b € Z9 et z,y € My(R).
Avec ces notations,

min {HAA} > 16 min {{a+azb)y ' (a+zb) + byb}

AeA\{0} (a,b)€z?9\{0}
> 16min{ min {%yb}: min {fay!
= {bezg\{O} e }’aezg\{O} {fay a}}

v

V3 1
16min ¢ —:; —— 3,
{ 2 )\max

oll Apmax est la plus grande valeur propre de y.
Mais, par le lemme 6.4, point (ii), si £ est un vecteur propre de y associé a
Amax, ON & :

g+1 g+1g
5 yoll€l® > 5 > " ui&l 2 y¢ = AmaxllélI” -
i=1

1,2
Amax — (g+ Dyl

en reportant ces inégalités dans la définition de Rj,;, on en déduit bien la premiere
partie du lemme 6.8. Pour le supplément, il suffit de combiner la premiere inégalité
avec le lemme 6.7. Le lemme 6.8 est donc entierement établi. |

On notera que si I'on tient compte du théoreme 1.1 de [Bo-Da], on déduit
immédiatement du lemme 6.7 le corollaire suivant :

Corollaire 6.9. Soit A une variété abelienne de dimension g, principalement po-
larisée, définie sur un corps de nombres k sur lequel elle admet une réduction
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semi-stable, et soit hp(A) sa hauteur de Faltings. Alors :

hA) = he(4)| < olog (max (L HAD) + 3o+ 1)
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