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Commentarii Mathematici Helvetici

Artin monoids inject in their groups

Luis Paris

Abstract We prove that the natural homomorphism from an Artin monoid to its associated
Artin group is always injective

Mathematics Subject Classi¯cation 2000 Primary 20F36; Secondary 20F55

Keywords Artin groups Artin monoids linear representations

1 Introduction

Let S be a ¯nite set A Coxeter matrix over S is a matrix M ms;t s;t2S indexed
by the elements of S and such that:

² ms;s 1 for all s 2 S;

² ms;t mt;s 2 f2; 3; 4; : : : ;+1g for all s; t 2 S; s
6 t

A Coxeter matrix M ms;t s;t2S is usually represented by its Coxeter graph ¡
This is de¯ned by the following data:

² S is the set of vertices of ¡;

² two vertices s; t 2 S are joined by an edge if ms;t ¸ 3;

² the edge which joins s and t is labeled by ms;t if ms;t ¸ 4

The Coxeter system associated with ¡ is the pair W; S where W is the group
presented by

W hS j s2 1 for s 2 S; st ms;t 1 for s; t 2 S; s
6 t; ms;t < +1i:

The group W is called the Coxeter group associated with ¡
Let § f¾s; s 2 Sg be an abstract set in one-to-one correspondence with S

For two objects a; b and m 2 N we write

prod a; b; m ½
ab m

2 if m is even

ab
m¡1

2 a if m is odd
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The Artin system associated with ¡ is the pair G¡; § where G¡ is the group
presented by

G¡ h§ j prod ¾s; ¾t; ms;t prod ¾t; ¾s; ms;t for s; t 2 S; s
6 t; ms;t < +1i:

The group G¡ is called the Artin group associated with ¡
Recall that a monoid is a semigroup with a unity and a homomorphism of

monoids is a map Á : M M 0 which satis¯es Á fg Á f Á g for all f; g 2 M
and Á 1 1 The Artin monoid associated with ¡ is the monoid G+

¡
presented by

the same generators and relations as G¡ Let ¶ : G+¡
G¡ denote the canonical

homomorphism from G+
¡

to G¡ The goal of this paper is to prove the following

Theorem 1 1 The homomorphism ¶ : G+
¡

G¡ is injective for all Coxeter
graphs

It seems that the authorship of the Artin groups also called generalized braid
groups has to be attributed to Jacques Tits in spite of the fact that his name does

not always appear in the references Furthermore it is in a paper of him [Tit2]
where these groups appeared for the ¯rst time However it was Brieskorn and Saito
who proposed in [BS] the question of the study of all these groups Deligne's paper
[Del] which appeared at the same time is concerned only with spherical type Artin
groups namely those Artin groups for which W is ¯nite Some families of Artin
groups are well understood but since the paper of Brieskorn and Saito in 1972
very few results concerning all Artin groups have been published In particular
Theorem 1 1 above was known only for some particular classes namely for the

spherical type Artin groups see [BS] and [Del] for the two-dimensional Artin
groups see [ChP] and [Cha] and for the FC-type Artin groups see [Alt] and
[Cha] It was unknown for example for the so-called a±ne type Artin groups

Our proof of Theorem 1 1 is independent of the previous approaches of the

problem Note ¯rst that in order to prove Theorem 1 1 it su±ces to show that
there exists an injective homomorphism Ã : G+

¡
G where G is a group not

necessarily equal to G¡
We say that a Coxeter graph ¡ is of small type if ms;t 2 f2; 3g for all s; t 2 S

s
6 t We say that ¡ has no triangle if there is no triple fs; t; rg in S such that

ms;t;ms;r; mt;r ¸ 3 The ¯rst ingredient in our proof is to show that for any
Coxeter graph ¡ there exists an injective homomorphism Á : G+

¡
G+

~¡
where

G+
~¡

is an Artin monoid associated to a Coxeter graph ~¡ of small type with no

triangle The homomorphism Á is obtained by a \folding" as described in [Cri]
its construction is essentially the same as the one given in [CrP Sec 6] and the

proof of the injectivity is a direct application of [Cri Thm 1 3] This construction
is given in Section 5

So in order to prove Theorem 1 1 it su±ces to consider only Coxeter graphs

of small type with no triangle Take such a Coxeter graph ¡ We construct in
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Section 3 a homomorphism Ã : G+
¡

Gl V where V is a in¯nite dimensional
vector space over Q x; y and we prove in Section 4 that Ã is injective

If ¡ An then GAn is the braid group on n + 1 strings and Ã : G+
An

Gl V is equivalent to the representation constructed by Bigelow and Krammer in
[Big] [Kra1] and [Kra2] In this case V has ¯nite dimension and the injectivity
of Ã implies the injectivity of the induced representation GAn Gl V More

generally if ¡ is of spherical and small type then the representation Ã : G+
¡Gl V is equivalent to the ones constructed independently by Digne [Dig] and

by Cohen and Wales [CW] In this case again V has ¯nite dimension and the

induced representation G¡ Gl V is injective We do not know whether the

representation G¡ Gl V induced by Ã is injective for all Coxeter graphs of
small type with no triangle The construction of Ã and the proof of the injectivity
are based on a non always easy generalization of the methods of Krammer Digne

Cohen and Wales

Acknowledgments I would like to thank John Crisp for many useful conver-
sations during the preparation of this work and for drawing my attention to the

results of [Cri] which are one of the main tools of the proof of Theorem 1 1

2 Preliminaries

We summarize in this section some well known results on Artin monoids Coxeter
groups and root systems and give de¯nitions and some basic properties of closed
sets The closed sets have been introduced by Krammer in [Kra2] for Artin groups

of type An This notion has been extended to the Artin groups of small and
spherical type by Digne [Dig] Cohen and Wales [CW] Here we extend it to all
small type Artin groups

Let ¡ be a Coxeter graph It is shown in [BS] that the Artin monoid G+
¡

is
cancellative namely if fg1h fg2h then g1 g2 We say that h is a multiple of
g and write g < h if there exists f 2 G+

¡
such that gf h The relation < is a

partial ordering on G+
¡Let µ : G+

¡
W be the homomorphism which sends ¾s to s for all s 2 S

Then µ has a natural set-section ¿ : W G+
¡

de¯ned as follows Let w 2 W
We choose a reduced expression w s1 : : : sl for w and we set ¿ w ¾s1 : : : ¾sl
By Tits' solution of the word problem for Coxeter groups [Tit1] the de¯nition of
¿ w does not depend on the choice of the reduced expression

Let l : W N and l : G+
¡

N denote the word length functions of W and

G+
¡

with respect to S and § respectively De¯ne a partial ordering on W by u < v
if l v l u + l u¡1v Then l ¿ w l w for all w 2 W and one has u < v if
and only if ¿ u < ¿ v

The proof of the following proposition is essentially the same as the one of [Del
Pro 1 14] and [Mic Lem 1 4]
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Proposition 2 1 Let E be a nonempty ¯nite subset of W such that:

² if u < v and v 2 E then u 2 E;

² if v 2 W and s; t 2 S are such that l vs l vt l v + 1 and vs; vt 2 E
then ms;t < +1 and v ¢

prod s; t; ms;t 2 E
Then there exists w0 2 W such that E fv 2 W ; v < w0g

The next proposition is part of [Mic Prop 2 1] It is also a direct consequence

of [BS Lem 2 1 and Prop 2 3]

Proposition 2 2 Let f 2 G+
¡

and let E fw 2 W ; ¿ w < fg Then E satis¯es:

² if u < v and v 2 E then u 2 E;

² if v 2 W and s; t 2 S are such that l vs l vt l v + 1 and vs; vt 2 E
then ms;t < +1 and v ¢

prod s; t; ms;t 2 E

De¯nition Let f 2 G+
¡

By Propositions 2 1 and 2 2 there exists a unique

w0 2 W such that fv 2 W ; ¿ v < fg fv 2 W ; v < w0g We set

L f w0:

The next proposition is also part of [Mic Prop 2 1]

Proposition 2 3 Let f; g 2 G+¡
Then

L fg L f ¢ ¿ ± L g :

Let ¦ f®s; s 2 Sg be an abstract set in one-to-one correspondence with S
The elements of ¦ are called simple roots Let U denote the real vector space

having ¦ as a basis and let h ; i : U £ U R be the symmetric bilinear form on
U de¯ned by

h®s; ®ti ½¡2 cos ¼ ms;t if ms;t < +1
¡2 if ms;t +1

There is a faithful representation W Gl U which is de¯ned by

s x x¡ h®s; xi®s; x 2 U; s 2 S;

and which preserves the bilinear form h ; i This representation is called the

canonical representation of W
The set © fw®s; s 2 S; w 2 W g is called the root system of W The subsets

©+ fPs2S ¸s®s 2 ©; ¸s ¸ 0 for all s 2 Sg and ©¡ f¯ 2 ©;¡¯ 2 ©+
g

are the sets of positive roots and negative roots respectively For w 2 W we set
©w f¯ 2 ©+; w¡1¯ 2 ©¡g
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We list in the following proposition some well known results on root systems

see [Hil] and [Deo]

Proposition 2 4 1 © ©+ t ©¡
2 j©wj l w for all w 2 W
3 For all u; v 2 W such that u < v one has ©v ©u t u ¢

©u¡1v
4 For all w 2 W and s 2 S

l sw ½ l w + 1 if w¡1®s 2 ©+;
l w ¡ 1 if w¡1®s 2 ©¡:

5 Let ¯ w®s 2 ©+ and let r¯ wsw¡1 Then r¯ acts on U by

r¯ x x¡ hx; ¯i¯; x 2 U:

Let ¯ 2 ©+ De¯ne the depth of ¯ to be

dp ¯ minfl 2 N; there exists w 2 W such that w¯ 2 ©¡ and l w lg:

Lemma 2 5 Let ¯ 2 ©+ Then

dp ¯ minfl 2 N; there exist w 2 W and s 2 S

such that ¯ w¡1®s and l l w + 1g:

Proof Let d1 minfl 2 N; there exists w 2 W such that w¯ 2 ©¡ and l w lg
and d2 minfl 2 N; there exist w 2 W and s 2 S such that ¯ w¡1®s and
l l w + 1g

Let w 2 W and s 2 S such that ¯ w¡1®s and l w d2 ¡ 1 Since ¯ 2 ©+
by Proposition 2 4 l sw l w + 1 d2 Moreover sw¯ s®s ¡®s 2 ©¡
This shows that d2 · d1

Let w 2 W such that w¯ 2 ©¡ and l w d1 Let s 2 S such that l sw
l w ¡1 Let v sw and ° v¯ By the minimality of l w d1 one has ° 2 ©+
Moreover s° w¯ 2 ©¡ thus ° ®s and ¯ v¡1®s This shows that d1 · d2

¤
The following proposition is proved in [BH Lem 1 7]

Proposition 2 6 Let s 2 S and ¯ 2 ©+
n f®sg Then

dp s ¢ ¯ 8<
:

dp ¯ ¡ 1 if h®s; ¯i > 0;
dp ¯ if h®s; ¯i 0;
dp ¯ + 1 if h®s; ¯i < 0:
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From now on and till the end of the section we assume that ¡ is a Coxeter
graph of small type namely that ms;t 2 f2; 3g for all s; t 2 S s

6 t Note that
under this assumption all the roots can be written ¯ Ps2S ¸s®s with ¸s 2 Z
and one has

h¯;°i 2 Z for all ¯; ° 2 ©

De¯nition A subset A ½ ©+ is a closed subset if:

² A is ¯nite;

² if ®; ¯ 2 A then h®; ¯i ¸ ¡1;

² if ®; ¯ 2 A and h®;¯i ¡1 then ® + ¯ r® ¯ r¯ ® 2 A

Lemma 2 7 Let w 2 W Then ©w is a closed subset

Proof Let ®; ¯ 2 ©+ A direct calculation shows that: if h®; ¯i · ¡2 then

r®r¯ l ® is a positive root of the form al® + bl¯ where al; bl ¸ 0 for all l 2 N
and r®r¯ l ®

6 r®r¯ k ® for l 6 k This implies that: if h®; ¯i · ¡2 then
there are in¯nitely many positive roots of the form a® + b¯ with a; b ¸ 0

The set ©w is ¯nite since j©wj l w Let ®; ¯ 2 ©w If ° a® + b¯ with
a; b ¸ 0 is a positive root then ° 2 ©w since w¡1° aw¡1® + bw¡1¯ is a
negative root By the above considerations this implies that h®; ¯i ¸ ¡1 and that
® + ¯ 2 ©w if h®; ¯i ¡1 ¤

Proposition 2 8 Let A be a closed subset of ©+ and let E fw 2 W ; ©w ½ Ag
Then E satis¯es:

² E is ¯nite;

² if u < v and v 2 E then u 2 E;

² if v 2 W and s; t 2 S are such that l vs l vt l v + 1 and vs; vt 2 E
then v ¢

prod s; t; ms;t 2 E

Proof If ©w ½ A then l w j©wj · jAj Since A is ¯nite it follows that l w is
bounded for all w 2 E thus E is ¯nite

Suppose u < v and v 2 E Then by Proposition 2 4 ©u ½ ©v ½ A thus

u 2 E
Let v 2 W and s; t 2 S such that l vs l vt l v + 1 and vs; vt 2 E

By Proposition 2 4 one has ©vs ©v [ fv®sg and ©vt ©v [ fv®tg Let
w v ¢

prod s; t; ms;t If ms;t 2 then ©w ©v [ fv®s; v®tg ½ A thus w 2 E
If ms;t 3 then hv®s; v®ti h®s; ®ti ¡1 thus v®s + v®t v ®s + ®t 2 A It
follows that ©w ©v [ fv®s; v®t; v ®s + ®t g ½ A thus w 2 E ¤

De¯nition Let A be a closed subset of ©+ By Propositions 2 1 and 2 8 there

exists a unique w0 2 W such that fw 2 W ; ©w ½ Ag fw 2 W ; w < w0g We set
C A w0:

Note that C ©w w for all w 2 W



Vol 77 2002 Artin monoids inject in their groups 615

3 The representation

Throughout this section ¡ is assumed to be a Coxeter graph of small type with no

triangle namely ms;t 2 f2; 3g for all s; t 2 S s
6 t and there is no triple fs; t; rg

in S such that ms;t ms;r mt;r 3 Our aim here is to construct a in¯nite

dimensional linear representation Ã : G+
¡

Gl V We will prove in Section 4

that this linear representation is faithful This will imply that ¶ : G+
¡

G¡ is
injective

Let E fe¯ ; ¯ 2 ©+
g be an abstract set in one-to-one correspondence with

©+ let K Q x; y denote the ¯eld of rational functions on two variables over
Q and let V be the K-vector space having E as a basis

For all s 2 S we de¯ne a linear transformation 's : V V by

's e¯
8>>>>><
>>>>>:

0 if ¯ ®s;
e¯ if h®s; ¯i 0;

y ¢ e¯¡a®s if h®s; ¯i a > 0 and ¯ 6 ®s;
1¡ y ¢ e¯ + e¯+a®s if h®s; ¯i ¡a < 0:

A direct case by case calculation shows that

's't 't's if ms;t 2;

's't's 't's't if ms;t 3:

So:

Proposition 3 1 The mapping ¾s 's s 2 S induces a homomorphism ' :
G+
¡

End V

Now for all s 2 S and all ¯ 2 ©+ take a polynomial T s; ¯ 2 Q[y] and de¯ne

Ãs : V V by
Ãs e¯ 's e¯ + xT s; ¯ ¢ e®s :

The goal of this section is to prove the following:

Theorem 3 2 There is a choice of polynomials T s;¯ s 2 S and ¯ 2 ©+ so
that the mapping ¾s Ãs s 2 S induces a homomorphism Ã : G+

¡
Gl V

Let s 2 S and ¯ 2 ©+ We de¯ne the polynomial T s; ¯ by induction on
dp ¯ Assume ¯rst that dp ¯ 1 There exists t 2 S such that ¯ ®t Then
we set
D1 T s; ®t y2 if t s;
D2 T s; ®t 0 if t 6 s:
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Now assume that dp ¯ ¸ 2 We choose t 2 S such that dp t ¢ ¯ dp ¯ ¡ 1

By Proposition 2 6 one has
h®t; ¯i b > 0

Case 1: h®s;¯i a > 0 Then we set
D3 T s; ¯ ydp ¯ y ¡ 1 :

Case 2: h®s;¯i 0 Then we set
D4 T s; ¯ y ¢ T s;¯ ¡ b®t if h®s; ®ti 0;

D5 T s; ¯ y ¡ 1
¢ T s; ¯ ¡ b®t + y ¢ T t; ¯ ¡ b®s ¡ b®t if h®s; ®ti ¡1:

Case 3: h®s;¯i ¡a < 0 Then we set

T s; ¯ y ¢ T s;¯ ¡ b®t if h®s; ®ti 0D6

T s; ¯ y¡1
¢ T s; ¯¡b®tD7

+ y ¢ T t; ¯¡ b¡a ®s¡b®t if h®s; ®ti ¡1 and b > a

T s; ¯ T t; ¯ ¡ b®tD8

+ y ¡ 1
¢ T s;¯ ¡ b®t if h®s; ®ti ¡1 and b a

T s; ¯ y ¢ T s;¯¡b®tD9

+ T t; ¯¡b®t + ydp ¯ ¡1 1¡y if h®s; ®ti ¡1 and b < a:

The proofs of the following lemmas 3 3 and 3 4 are long and tedious case by
case veri¯cations and they are not very instructive for the remainder of the paper
So we put them in a separate section at the end of the paper and continue with
the proof of Theorem 3 2

Lemma 3 3 Let s 2 S and ¯ 2 ©+ such that dp ¯ ¸ 2 and h®s; ¯i 0 Then
the de¯nition of T s;¯ does not depend on the choice of the t 2 S such that
dp t ¢ ¯ dp ¯ ¡ 1

Lemma 3 4 Let s 2 S and ¯ 2 ©+ such that dp ¯ ¸ 2 and h®s; ¯i ¡a < 0

Then the de¯nition of T s; ¯ does not depend on the choice of the t 2 S such that
dp t ¢ ¯ dp ¯ ¡ 1

Lemma 3 5 Let s; t 2 S and ¯ 2 ©+ such that h®s; ®ti ¡1 h®s; ¯i 0 and

h®t; ¯i 0 Then
T s; ¯ T t; ¯ :

Proof We argue by induction on dp ¯ Assume ¯rst that dp ¯ 1 There exists

r 2 S such that ¯ ®r One has r 6 s and r 6 t since
h®s; ¯i h®t; ¯i 0

Then by D2

T s; ¯ T s; ®r 0 T t; ®r T t; ¯ :
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Now assume that dp ¯ ¸ 2 We choose r 2 S such that dp r ¢ ¯ dp ¯ ¡ 1

By Proposition 2 6 one has
h®r ; ¯i c > 0

Case 1: h®s; ®ri 0 and h®t; ®ri 0 Then

T s; ¯ y ¢ T s; ¯ ¡ c®r by D4
y ¢ T t;¯ ¡ c®r by induction
T t;¯ by D4

Case 2: h®s; ®ri 0 and h®t; ®ri ¡1 We cannot have dp ¯ · 3 in this case

Suppose dp ¯ ¸ 4 Then

T s;¯ y ¢ T s;¯ ¡ c®r by D4

y y¡1
¢ T s; ¯¡c®t¡c®r

+y2
¢ T t; ¯¡c®s¡c®t¡c®r by D5

ydp ¯ ¡1 y¡1 2 + y2
¢ T t; ¯¡c®s¡c®t¡c®r by D3

ydp ¯ ¡1 y¡1 2 + y2
¢ T r; ¯¡c®s¡c®t¡c®r by induction

y¡1
¢ T t; ¯¡c®r + y ¢ T r; ¯¡c®t¡c®r by D3 and D4

T t; ¯ by D5

Since ¡ has no triangle we cannot have
h®s; ®ri ¡1 and h®t; ®ri ¡1

because
h®s; ®ti ¡1 So Case 1 and Case 2 are the only possible cases ¤

Lemma 3 6 Let s; t 2 S such that ms;t 2 Then ÃsÃt ÃtÃs

Proof Let ¯ 2 ©+ We compute ÃsÃt e¯ and ÃtÃs e¯ replacing T s; ®s
and T t; ®t by y2 and replacing T s; ®t and T t; ®s by 0 and we compare both
expressions This can be easily made with a computer
Case 1: ¯ ®s Then we directly obtain ÃsÃt e¯ ÃtÃs e¯
Case 2: h®s;¯i 0 and h®t; ¯i 0 Then we directly obtain ÃsÃt e¯
ÃtÃs e¯

Case 3: h®s;¯i 0 and h®s; ¯i b > 0 Then the equality ÃsÃt e¯
ÃtÃs e¯ is equivalent to

T s; ¯ y ¢ T s; ¯ ¡ b®t :

This equality follows from D4

Case 4: h®s; ¯i 0 and h®t; ¯i ¡b < 0 Then the equality ÃsÃt e¯
ÃtÃs e¯ is equivalent to

T s; ¯ + b®t y ¢ T s; ¯ :

This equality follows from D4
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Case 5: h®s; ¯i a > 0 and h®t; ¯i b > 0 Then the equality ÃsÃt e¯
ÃtÃs e¯ is equivalent to

T s; ¯ y ¢ T s; ¯ ¡ b®t ;
T t; ¯ y ¢ T t; ¯ ¡ a®s :

These two equalities follow from D3

Case 6: h®s; ¯i a > 0 and h®t; ¯i ¡b < 0 Then the equality ÃsÃt e¯
ÃtÃs e¯ is equivalent to

T s; ¯ + b®t y ¢ T s;¯ ;
T t;¯ y ¢ T t; ¯ ¡ a®s :

The ¯rst equality follows from D3 and the second one from D6

Case 7: h®s; ¯i ¡a < 0 and h®t; ¯i ¡b < 0 Then the equality ÃsÃt e¯
ÃtÃs e¯ is equivalent to

T s; ¯ + b®t y ¢ T s; ¯ ;

T t; ¯ + a®s y ¢ T t;¯ :

These two equalities follow from D6 ¤

Lemma 3 7 Let s; t 2 S such that ms;t 3 Then ÃsÃtÃs ÃtÃsÃt

Proof Let ¯ 2 ©+ We compute ÃsÃtÃs e¯ and ÃtÃsÃt e¯ replacing T s; ®s
and T t; ®t by y2 replacing T s; ®t and T t; ®s by 0 and replacing T s; ®s+®t
and T t; ®s + ®t by y2 y ¡ 1 and we compare both expressions

Case 1: ¯ ®s Then we directly obtain ÃsÃtÃs e¯ ÃtÃsÃt e¯
Case 2: ¯ ®s + ®t Then we directly obtain ÃsÃtÃs e¯ ÃtÃsÃt e¯
Case 3: h®s; ¯i 0 and h®t; ¯i 0 Then the equality ÃsÃtÃs e¯ ÃtÃsÃt e¯
is equivalent to

T s; ¯ T t; ¯ :

This equality follows from Lemma 3 5

Case 4: h®s; ¯i 0 and h®t; ¯i b > 0 Then the equality ÃsÃtÃs e¯
ÃtÃsÃt e¯ is equivalent to

T t;¯ y ¢ T s; ¯ ¡ b®t ;
1 ¡ y ¢ T t; ¯ + y ¢ T s;¯ y2

¢ T t; ¯ ¡ b®s ¡ b®t :

The ¯rst equality follows from D3 and the second one follows from the ¯rst one

and from D5
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Case 5: h®s; ¯i 0 and h®t; ¯i ¡b < 0 Then the equality ÃsÃtÃs e¯
ÃtÃsÃt e¯ is equivalent to

1 ¡ y ¢ T s; ¯ + T s;¯ + b®t T t; ¯ ;

y ¢ T s;¯ 1 ¡ y ¢ T t; ¯ + b®t + T t; ¯ + b®s + b®t :

The ¯rst equality follows from D8 and the second one from D5

Case 6: h®s; ¯i a > 0 and h®t; ¯i b > 0 Then the equality ÃsÃtÃs e¯
ÃtÃsÃt e¯ is equivalent to

y ¢ T s; ¯ ¡ a®s ¡ a + b ®t 1 ¡ y ¢ T s; ¯ ¡ b®t + T t; ¯ ;

1 ¡ y ¢ T t; ¯ ¡ a®s + T s;¯ y ¢ T t;¯ ¡ a + b ®s ¡ b®t ;

T t; ¯ ¡ a®s T s; ¯ + b®t :

These three equalities follow from D3

Case 7: h®s;¯i a > 0 h®t;¯i ¡b < 0 and a > b Then the equality
ÃsÃtÃs e¯ ÃtÃsÃt e¯ is equivalent to

y2
¢ T s; ¯ ¡ a®s ¡ a ¡ b ®t 1 ¡ y 2

¢ T s;¯ + 1 ¡ y ¢ T s; ¯ + b®t + y ¢ T t; ¯ ;

T s; ¯ T t; ¯ ¡ a ¡ b ®s + b®t ;

y ¢ T t;¯ ¡ a®s 1 ¡ y ¢ T s; ¯ + T s; ¯ + b®t :

The second and third equalities follow from D3 and the ¯rst one follows from
the third one and from D7

Case 8: h®s; ¯i a > 0 h®s; ¯i ¡b < 0 and a b Then the equality
ÃsÃtÃs e¯ ÃtÃsÃt e¯ is equivalent to

y ¢ T s;¯ ¡ a®s 1 ¡ y 2
¢ T s; ¯ + 1 ¡ y ¢ T s; ¯ + a®t + y ¢ T t; ¯ ;

T t;¯ + a®t y ¢ T s; ¯ ;

y ¢ T t;¯ ¡ a®s 1 ¡ y ¢ T s; ¯ + T s; ¯ + a®t :

The second equality follows from D3 the third one follows from D5 and the

¯rst one follows from the third one and from D8

Case 9: h®s;¯i a > 0 h®t;¯i ¡b < 0 and a < b Then the equality
ÃsÃtÃs e¯ ÃtÃsÃt e¯ is equivalent to

y 1 ¡ y ¢ T s; ¯ ¡ a®s + y ¢ T s;¯ ¡ a®s + b ¡ a ®t
1 ¡ y 2

¢ T s; ¯ + 1 ¡ y ¢ T s; ¯ + b®t + y ¢ T t; ¯ ;

y ¢ T s; ¯ 1 ¡ y ¢ T t; ¯ + b®t + T t; ¯ + b ¡ a ®s + b®t ;

y ¢ T t; ¯ ¡ a®s 1 ¡ y ¢ T s; ¯ + T s; ¯ + b®t :
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The second equality follows from D3 the third one follows from D7 and the

¯rst one follows from the third one and from D9

Case 10: h®s; ¯i ¡a<0 and h®t; ¯i ¡b < 0 Then the equality ÃsÃtÃs e¯
ÃtÃsÃt e¯ is equivalent to

1 ¡ y ¢ T s;¯ + a®s + T s; ¯ + a®s + a + b ®t y ¢ T t;¯ ;

y ¢ T s; ¯ 1 ¡ y ¢ T t;¯ + b®t + T t; ¯ + a + b ®s + b®t ;

1¡y ¢ T t; ¯ +T t; ¯+a®s 1¡y ¢ T s;¯ +T s; ¯ + b®t :

The ¯rst and second equalities follow from D7 and the third one follows from
D9 ¤

Lemma 3 8 Let s 2 S Then Ãs is invertible

Proof Let ½s : V V be the linear transformation de¯ned by

½s e¯

8>>>>>>>>>><
>>>>>>>>>>:

x¡1y¡2
¢ e®s if ¯ ®s

e¯ ¡ y¡2T s; ¯ ¢ e®s if h®s; ¯i 0

1 ¡ y¡1
¢ e¯ + e¯¡a®s

¡y¡2T s;¯ ¡ a®s ¢ e®s

+y¡2 y¡1 ¡ 1 T s;¯ ¢ e®s if h®s; ¯i a > 0 and ¯ 6 ®s

y¡1
¢ e¯+a®s ¡ y¡3T s; ¯ + a®s ¢ e®s if h®s; ¯i ¡a < 0

A direct case by case calculation shows that Ãs ± ½s ½s ± Ãs IdV So Ãs is
invertible ¤

This ¯nishes the proof of Theorem 3 2

4 Faithfulness

Throughout this section ¡ is again assumed to be a Coxeter graph of small type

with no triangle Our goal here is to prove the following

Theorem 4 1 The representation Ã : G+
¡

Gl V de¯ned in Section 3 is faith-
ful

Since Gl V is a group it follows:

Corollary 4 2 The homomorphism ¶ : G+
¡

G¡ is injective
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Let V+ ©¯2©+Q[x; y]e¯ denote the free Q[x; y]-module having E fe¯; ¯ 2
©+

g as a basis The coe±cients of Ã g lie in Q[x; y] for all g 2 G+
¡

thus V+ is
invariant by the action of G+

¡
We denote by Ã+ : G+

¡
End V+ the restriction

of Ã to V+
Let V0 ©¯2©+Re¯ denote the real vector space having E as a basis Re-

placing x by 0 and y by a value 0 < y0 < 1 the homomorphism Ã+ induces a
homomorphism Ã0 : G+

¡
End V0

Let H be the vector space of formal series
P¯2©+ ¸¯e¯ and let L H be

the space of linear transformations of H Observe that Ã0 ¾s de¯nes a linear
transformation Ã1 ¾s of H because each row has only ¯nitely many non-zero
entries thus Ã0 : G+

¡
End V0 induces a homomorphism Ã1 : G+

¡ L H

De¯nition Let A be a subset of ©+ Then UA denotes the set of series
P¸¯e¯ 2

H such that:

² ¸¯ ¸ 0 for all ¯ 2 ©+;

² ¸¯ 0 if and only if ¯ 2 A

Note that UA is nonempty even if ©+
n A is in¯nite and one has UA \ UB ; if

A 6 B

Lemma 4 3 Let A ½ ©+ and g 2 G+
¡

There exists a unique subset B ½ ©+
such that Ã1 g ¢ UA ½ UB

Proof The hypothesis 0 < y0 < 1 implies that the coe±cients of Ã1 ¾s are ¸ 0 for
all s 2 S thus the coe±cients of Ã1 g are ¸ 0 Let Ã1 g e¯ P°2©+ a°;¯e°
and let Suppg e¯ denote the set of ° 2 ©+ such that a°;¯ > 0 Let

A0 ©+
n A; B0 [¯2A0Suppg e¯ ; B ©+

n B0:

Then Ã1 g ¢ UA ½ UB ¤

De¯nition Let A ½ ©+ and g 2 G+
¡

Then g ¤ A B denotes the unique subset
B ½ ©+ such that Ã1 g ¢ UA ½ UB

Lemma 4 4 Let A ½ ©+ and s 2 S Then

¾s ¤ A f®sg [ f¯ 2 ©+; h®s; ¯i 0 and ¯ 2 Ag

[ f¯ 2 ©+; h®s; ¯i a > 0; ¯ 6 ®s; and ¯ ¡ a®s 2 Ag

[ f¯ 2 ©+; h®s; ¯i ¡a < 0; ¯ 2 A; and ¯ + a®s 2 Ag:
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Proof Let ¯ 2 ©+ Then

Supp¾s e¯
8>>>>><
>>>>>:

; if ¯ ®s;

f¯g if h®s; ¯i 0;

f¯ ¡ a®sg if h®s; ¯i a > 0 and ¯ 6 ®s;

f¯; ¯ + a®sg if h®s; ¯i ¡a < 0:

Let A0 ©+
n A and B0 [¯2A0Supp¾s e¯ Then

B0 f¯ 2 ©+; h®s; ¯i 0 and ¯ 2 A0
g

[ f¯ 2 ©+; h®s; ¯i a > 0; and ¯ ¡ a®s 2 A0
g

[ f¯ 2 ©+; h®s; ¯i ¡a < 0; and either ¯ 2 A0 or ¯ + a®s 2 A0
g

thus

¾s ¤ A B ©+
n B0

f®sg [ f¯ 2 ©+; h®s;¯i 0 and ¯ 2 Ag

[ f¯ 2 ©+; h®s;¯i a > 0; and ¯ ¡ a®s 2 Ag

[ f¯ 2 ©+; h®s;¯i ¡a < 0; ¯ 2 A; and ¯ + a®s 2 Ag: ¤

Remark Let A ½ ©+ and s 2 S Then

s A n f®sg f¯ 2 ©+; h®s; ¯i 0 and ¯ 2 Ag

[ f¯ 2 ©+; h®s; ¯i a > 0; and ¯ ¡ a®s 2 Ag

[ f¯ 2 ©+; h®s; ¯i ¡a < 0 and ¯ + a®s 2 Ag:

In particular one has

¾s ¤ A ½ f®sg[ s A n f®sg :

Lemma 4 5 Let A be a closed subset of ©+ and s 2 S Then ¾s ¤ A is also a
closed subset

Proof Since A is ¯nite ¾s ¤ A is also ¯nite Now we take ¯1; ¯2 2 ¾s ¤ A and we

prove:

² h¯1; ¯2i ¸ ¡1;

² if h¯1;¯2i ¡1 then ¯1 + ¯2 2 ¾s ¤ A
Assume ¯rst that ¯1 ®s If h®s; ¯2i ¡a < 0 then ¯2; ¯2 + a®s 2 A by

Lemma 4 4 The fact that A is closed implies

h¯2;¯2 + a®si h¯2;¯2i+ ah¯2; ®si 2 ¡ a2 ¸ ¡1;
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and this inequality holds only if a 1 This shows that h®s; ¯2i ¸ ¡1 Suppose

h®s; ¯2i ¡1 Then h®s; ¯2 + ®si 1 and ¯2 2 A by Lemma 4 4 thus by
Lemma 4 4 ¯2 + ®s 2 ¾s ¤ A

Assume now that ¯1 6 ®s and ¯2 6 ®s One has ¯1; ¯2 2 s A n f®sg thus

s ¯1 ; s ¯2 2 A therefore h¯1; ¯2i hs ¯1 ; s ¯2 i ¸ ¡1 since A is closed
Suppose now that h¯1;¯2i ¡1

Case 1: h®s; ¯1i 0 and h®s; ¯2i 0 Then h®s; ¯1 + ¯2i 0 Moreover one

has ¯1; ¯2 2 A by Lemma 4 4 thus ¯1 + ¯2 2 A since A is closed therefore

¯1 + ¯2 2 ¾s ¤ A by Lemma 4 4

Case 2: h®s;¯1i 0 and h®s;¯2i b > 0 Then h®s;¯1 + ¯2i b > 0 Moreover
one has ¯1; ¯2 ¡ b®s 2 A by Lemma 4 4 and h¯1; ¯2¡ b®si ¡1 thus ¯1 + ¯2 ¡b®s 2 A since A is closed therefore ¯1 + ¯2 2 ¾s ¤ A by Lemma 4 4

Case 3: h®s;¯1i 0 and h®s;¯2i ¡b < 0 Then h®s; ¯1 + ¯2i ¡b < 0

Moreover one has ¯1; ¯2;¯2 + b®s 2 A by Lemma 4 4 and h¯1; ¯2i h¯1; ¯2 +
b®si ¡1 thus ¯1 +¯2; ¯1 +¯2 + b®s 2 A since A is closed therefore ¯1 +¯2 2
¾s ¤ A by Lemma 4 4

Case 4: h®s; ¯1i a > 0 and h®s; ¯2i b > 0 Then h®s;¯1 + ¯2i a + b > 0

Moreover one has ¯1¡a®s;¯2¡b®s 2 A by Lemma 4 4 and h¯1¡a®s; ¯2¡b®si
¡1 thus ¯1 + ¯2 ¡ a + b ®s 2 A since A is closed therefore ¯1 + ¯2 2 ¾s ¤ A
by Lemma 4 4

Case 5: h®s; ¯1i a > 0 and h®s; ¯2i ¡b < 0 Note ¯rst that ¯2; ¯2 + b®s 2 A
by Lemma 4 4 thus

h¯2;¯2 + b®si 2 ¡ b2 ¸ ¡1 since A is closed therefore

b 1
Suppose a 1 Then h®s; ¯1 + ¯2i 0 One has ¯1 ¡ ®s; ¯2 + ®s 2 A by

Lemma 4 4 and h¯1 ¡ ®s;¯2 + ®si ¡1 thus ¯1 + ¯2 2 A since A is closed
therefore ¯1 + ¯2 2 ¾s ¤ A by Lemma 4 4

Suppose a ¸ 2 Then h®s; ¯1 + ¯2i a¡ 1 > 0 One has ¯1¡ a®s;¯2 +®s 2 A
by Lemma 4 4 and h¯1¡a®s; ¯2 +®si ¡1 thus ¯1 +¯2¡ a¡1 ®s 2 A since

A is closed therefore ¯1 + ¯2 2 ¾s ¤ A by Lemma 4 4

Case 6: h®s; ¯1i ¡a < 0 and h®s; ¯2i ¡b < 0 Then ¯1; ¯2 + b®s 2 A by
Lemma 4 4 and h¯1; ¯2 + b®si ¡1 ¡ ab < ¡1 This contradicts the de¯nition
of a closed subset thus this case does not hold ¤

Corollary 4 6 Let A be a closed subset of ©+ and g 2 G+
¡

Then g ¤ A is also
a closed subset

Lemma 4 7 Let w 2 W and s 2 S such that l sw l w ¡ 1 and let A be

a closed subset of ©+ One has ©w ½ f®sg [ s A n f®sg if and only if w <
L ¾s ¢ ¿ ± C A

Proof The equality l sw l w ¡ 1 implies by Proposition 2 4 that ©w

f®sgts ¢ ©sw So the inclusion ©w ½ f®sg[ s A nf®sg is equivalent to s ©sw ½
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s A n f®sg which is equivalent to ©sw ½ A we cannot have ®s 2 ©sw because

l sw < l w This inclusion is equivalent to sw < C A which is equivalent to
¿ sw < ¿ ± C A which is equivalent to ¾s ¢ ¿ sw ¿ w < ¾s ¢ ¿ ± C A
which is equivalent to w < L ¾s ¢ ¿ ± C A ¤

Lemma 4 8 Let A and B be two closed subsets of ©+ and s 2 S If f®sg ½ B ½

f®sg[ s A n f®sg then B ½ ¾s ¤ A

Proof By Lemma 4 4 and the remark preceding Lemma 4 5 it su±ces to show
that: if ¯ 2 B is such that h®s;¯i ¡a < 0 then ¯ 2 A One has ®s; ¯ 2 B
and B is a closed subset thus

h®s; ¯i ¡1 and ¯ + ®s 2 B It follows that
s ¯ ®s + ¯ 2 B n f®sg ½ s A n f®sg thus ¯ 2 A ¤

Lemma 4 9 Let A be a closed subset of ©+ and g 2 G+
¡

Then

C g ¤ A L g ¢ ¿ ± C A :

Proof We argue by induction on l g Assume ¯rst that l g 1 Then g ¾s for
some s 2 S Let w1 C ¾s ¤ A and w2 L ¾s ¢ ¿ ± C A Since ®s 2 ¾s ¤ A
one has ©s f®sg ½ ¾s ¤ A thus s < w1 namely l sw1 l w1 ¡ 1 Moreover
©w1 ½ ¾s ¤ A ½ f®sg [ s A n f®sg thus by Lemma 4 7 w1 < w2

One has

¿ s ¾s < ¾s ¢ ¿ ± C A thus s < w2
namely l sw2 l w2 ¡ 1 By

Lemma 4 7 it follows that f®sg ½ ©w2 ½ f®sg [ s A n f®sg and so by Lemma
4 8 ©w2 ½ ¾s ¤ A This implies that w2 < w1

Assume now that l g ¸ 2 We write g ¾sg1 where s 2 S and l g1 l g ¡1

Then by induction and by Proposition 2 3

C g ¤ A C ¾s ¤ g1 ¤ A L ¾s ¿ ± C g1 ¤ A
L ¾s ¿ ± L g1 ¿ ± C A L g ¿ ± C A : ¤

De¯nition Let C denote the set of closed subsets of ©+ For w 2 W we set

Uw [A2C; C A w

UA:

Note that Uw 6 ; since it contains U©w
and one has Uu \ Uv ; if u 6 v

Lemma 4 10 Let g 2 G+
¡

and w 2 W Then

Ã1 g ¢ Uw ½ UL g¢¿ w :

Proof Let A 2 C
such that C A w One has Ã1 g ¢UA ½ Ug¤A and by Lemma

4 9 C g ¤ A L g ¢ ¿ ± C A L g ¢ ¿ w thus Ã1 g ¢ UA ½ UL g¢¿ w This
shows that Ã1 g ¢ Uw ½ UL g¢¿ w ¤
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Proof of Theorem 4 1 Let f; g 2 G+¡
such that Ã f Ã g We write f ¿ u f1

and g ¿ v g2 where u L f v L g and f1; g1 2 G+¡
Note that u 1

if and only if f 1 and v 1 if and only if g 1 Lemma 4 10 implies that
Ã1 f ¢U1 ½ UL f Uu and that Ã1 g ¢U1 ½ UL g Uv Since Ã1 f Ã1 g

and since Uu \ Uv ; if u 6 v it follows that u v
We prove now that f g by induction on l f If l f 0 then f 1 thus

u v 1 therefore g 1 Suppose l f > 0 Then l f1 < l f and

Ã f1 Ã ¿ u ¡1Ã f Ã ¿ v ¡1Ã g Ã g1 :

By the inductive hypothesis it follows that f1 g1 thus f ¿ u f1 ¿ v g1 g

¤

5 The general case

Now we assume that ¡ is any Coxeter graph The goal of this section is to prove

the following

Theorem 5 1 There exists an injective homomorphism Á : G+
¡

G+
~¡

from G+
¡to an Artin monoid G+

~¡
associated to a Coxeter graph ~¡ of small type with no

triangle

Since we already know by Corollary 4 2 that ¶ : G+
~¡

G
~¡

is injective Theorem
5 1 ¯nishes the proof of Theorem 1 1

We start summarizing some well known properties of G+¡
that can be found in

[BS] and [Mic]
We say that g 2 G+

¡
is a common multiple of a ¯nite subset F ff1; : : : ; fng ½

G+¡ if fi < g for all i 1; : : : ; n If F ff1; : : : ; fng has a common multiple
then it has a least common multiple which is obviously unique and which will be

denoted by f1 _ ¢ ¢ ¢ _ fn
Let s; t 2 S The subset f¾s; ¾tg has a common multiple if and only if ms;t <

+1 In that case one has ¾s _ ¾t prod ¾s; ¾t;ms;t More generally for a
subset T ½ S the set §T f¾t; t 2 T g has a common multiple if and only if
the subgroup WT of W generated by T is ¯nite In that case the least common
multiple of §T is denoted by ¢T It is equal to ¿ wT where wT denotes the

element of maximal length in WT If W is ¯nite namely if ¡ is of spherical type

then we will denote by ¢ ¢ ¡ the least common multiple of § f¾s; s 2 Sg
Let T ½ S and f; g 2 G+¡

If f and g have a common multiple and both lie
in the submonoid generated by §T f¾t; t 2 T g then f _ g also lies in this
submonoid

De¯nition Let ¡ and ¡0 be two Coxeter graphs let S be the set of vertices of
¡ and let Á : G+

¡
G+
¡0

be a homomorphism We say that Á respects lcm's if



626 L Paris CMH

² Á ¾s 6 1 for all s 2 S;

² fÁ ¾s ; Á ¾t g has a common multiple if and only if ms;t < +1;

² if ms;t < +1 then Á ¾s _ ¾t Á ¾s _ Á ¾t

The following theorem can be found in [Cri Thm 1 3]

Theorem 5 2 Crisp If a homomorphism Á : G+
¡

G+
¡0

between Artin monoids

respects lcm's then it is injective

Proof of Theorem 5 1 Let An be the Coxeter graph of Figure 1 Let f; g be the

elements of G+
An

de¯ned by f ¾1¾3¾5 : : : and g ¾2¾4¾6 : : : It is shown in
[BS Lem 5 8] that

prod f; g; n + 1 prod g; f ; n + 1 ¢ An : 1

n1 2 3 n-1

Figure 1 The Coxeter graph An

Let m ¸ 3 and let ¡ m denote the Coxeter graph illustrated in Figure 2
It is a bipartite graph whose set of vertices is the disjoint union I t J where

jI j jJ j m¡ 1 As a Coxeter graph ¡ m is the disjoint union of two copies of
Am¡1 Let f; g be the elements of G+

¡ m
de¯ned by f Qi2I ¾i and g

Qj2J ¾j
Then by 1 one has

prod f; g; m prod g;f ; m ¢ ¡ m : 2

J

I

Figure 2 The Coxeter graph ¡ m

Let k 2 N We denote by k¡ m the disjoint union of k copies of ¡ m It
is a bipartite graph whose set of vertices is the disjoint union kI t kJ where kI
denotes the disjoint union of k copies of I and kJ denotes the disjoint union of
k copies of J Let f; g be the elements of G+

k¡ m
de¯ned by f Qi2kI ¾i and

g
Qj2kJ ¾j Then by 2 one has

prod f; g; m prod g; f ; m ¢ k¡ m : 3
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Let ¡ 1 denote the Coxeter graph illustrated in Figure 3 It is bipartite graph
whose set of vertices is the disjoint union ItJ where I fi1; i2g and J fj1; j2g
Let f; g be the elements of G+

¡ 1
de¯ned by f ¾i1¾i2 and g ¾j1

¾j2 A common
multiple of f and g would be a common multiple of f¾i1 ; ¾i2 ; ¾j1 ; ¾j2 g But ¡ 1is not of spherical type thus such a common multiple does not exist So f and g
have no common multiple

Let k 2 N We denote by k¡ 1 the disjoint union of k copies of ¡ 1 It
is a bipartite graph whose set of vertices is the disjoint union kI t kJ where kI
denotes the disjoint union of k copies of I and kJ denotes the disjoint union of k
copies of J Let f and g be the elements of G+

k¡ 1
de¯ned by f Qi2kI ¾i and

g
Qj2kJ ¾j Then as before f and g have no common multiple

2

i i

j j

1 2

1

Figure 3 The Coxeter graph ¡ 1
Now let ¡ be any Coxeter graph Let N be the least common multiple of

fms;t ¡ 1; s; t 2 S; s
6 t; ms;t < +1g For all s 2 S we take an abstract set I s

with 2N elements We construct a Coxeter graph of small type ¡0 as follows

² The set of vertices of ¡0 is the disjoint union of the I s s 2 S

² If ms;t 2 then there is no edge joining two vertices in I s t I t

² If 3 · ms;t < +1 then the full subgraph of ¡0 generated by I s tI t is iso-

morphic to ³ 2N
ms;t¡1´¡ ms;t with an isomorphism which takes I s to ³ 2N

ms;t¡1´ I
and I t to ³ 2N

ms;t¡1´ J

² If ms;t +1 then the full subgraph of ¡0 generated by I s t I t is
isomorphic to N¡ 1 with an isomorphism which takes I s to NI and I t to
NJ

Such a graph always exists but is not unique in general By the above consid-
erations there is a well de¯ned homomorphism Á : G+

¡
G+
¡0

which sends ¾s to

Qi2I s ¾i for all s 2 S and this homomorphism respects lcm's so is injective by
Theorem 5 2 Note also that: if ¡ is of small type then one can choose N 1
rather than the above N 2 and at least one of the ¡0 thus obtained is bipar-
tite and therefore has no triangle So applying twice the above construction
one gets a Coxeter graph ~¡ of small type with no triangle and a monomorphism
Á : G+

¡
G+

~¡
¤
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6 Two lemmas

Lemma 3 3 Let s 2 S and ¯ 2 ©+ such that h®s; ¯i 0 and dp ¯ ¸ 2 Then
the de¯nition of T s;¯ does not depend on the choice of the t 2 S such that
dp t ¢ ¯ dp ¯ ¡ 1

Proof We argue by induction on dp ¯ We take t; r 2 S t 6 r such that
dp t ¢ ¯ dp r ¢ ¯ dp ¯ ¡ 1 By Proposition 2 6 we can write h®t; ¯i b > 0
and h®r; ¯i c > 0

Case 1: h®s; ®ti 0 h®s; ®ri 0 and h®t; ®ri 0 We cannot have dp ¯ 2 in
this case Suppose dp ¯ ¸ 3 Then by induction

y ¢ T s;¯ ¡ b®t y2
¢ T s; ¯ ¡ b®t ¡ c®r by D4

y ¢ T s; ¯ ¡ c®r by D4

Case 2: h®s; ®ti 0 h®s; ®ri 0 and h®t; ®ri ¡1 Suppose dp ¯ 2 Then

¯ ®t + ®r b c 1 and

y ¢ T s; ¯ ¡ ®t y ¢ T s; ®r 0 y ¢ T s; ®t y ¢ T s;¯ ¡ ®r by D2

We cannot have dp ¯ 3 in this case Suppose dp ¯ ¸ 4 Then by induction

y ¢ T s; ¯ ¡ b®t y2
¢ T s; ¯ ¡ b®t ¡ b + c ®r by D4

y3
¢ T s; ¯ ¡ b + c ®t ¡ b + c ®r by D4

y ¢ T s; ¯ ¡ c®r by symmetry
Case 3: h®s; ®ti 0 h®s; ®ri ¡1 and h®t; ®ri 0 We cannot have dp ¯ · 3
in this case Suppose dp ¯ ¸ 4 Then by induction

y ¢T s; ¯¡b®t y y ¡ 1
¢ T s; ¯ ¡ b®t ¡ c®r

+ y2
¢ T r; ¯ ¡ c®s ¡ b®t ¡ c®r by D5

ydp ¯ ¡1 y ¡ 1 2

+ y2
¢ T r; ¯ ¡ c®s ¡ b®t ¡ c®r by D3

y¡1
¢T s; ¯¡c®r +y ¢T r; ¯¡c®s¡c®r by D3 and D4 :

Case 4: h®s; ®ti 0 h®s; ®ri ¡1 and h®t; ®ri ¡1 We cannot have dp ¯ · 5
in this case Suppose dp ¯ ¸ 6 Then by induction

y ¢ T s; ¯ ¡ b®t
y y ¡ 1

¢ T s; ¯ ¡ b®t ¡ b + c ®r
+ y2

¢ T r; ¯ ¡ b + c ®s ¡ b®t ¡ b + c ®r by D5
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ydp ¯ ¡1 y ¡ 1 2 + y2 y ¡ 1
¢

¢ T r;¯ ¡ b + c ®s ¡ b + c ®t ¡ b + c ®r
+ y3

¢ T t; ¯ ¡ b + c ®s ¡ b + c ®t ¡ b + 2c ®r by D3 and D5

ydp ¯ ¡1 y ¡ 1 2 + ydp ¯ ¡2 y ¡ 1 2

+ y3
¢ T t; ¯ ¡ b + c ®s ¡ b + c ®t ¡ b + 2c ®r by D3

ydp ¯ ¡1 y¡1 2 + y y¡1
¢ T r; ¯¡c®s¡ b + c ®t¡c®r

+ y2
¢ T t; ¯ ¡ c®s ¡ b + c ®t ¡ b + 2c ®r by D3 and D4

y ¡ 1
¢ T s; ¯ ¡ c®r + y ¢ T r; ¯ ¡ c®s ¡ c®r by D3 and D5

Case 5: h®s; ®ti ¡1 h®s; ®ri ¡1 and h®t; ®ri 0 We cannot have dp ¯ · 5
in this case Suppose dp ¯ ¸ 6 Then by induction

y ¡ 1
¢ T s; ¯ ¡ b®t + y ¢ T t; ¯ ¡ b®s ¡ b®t

ydp ¯ ¡1 y ¡ 1 2

+ y2
¢ T t; ¯ ¡ b®s ¡ b®t ¡ b + c ®r by D3 and D4

ydp ¯ ¡1 y ¡ 1 2 + y2 y ¡ 1
¢

¢ T t; ¯ ¡ b + c ®s ¡ b®t ¡ b + c ®r
+ y3

¢ T s;¯ ¡ b + c ®s ¡ b + c ®t ¡ b + c ®r by D5

ydp ¯ ¡1 y ¡ 1 2 + ydp ¯ ¡2 y ¡ 1 2

+ y3
¢ T s;¯ ¡ b + c ®s ¡ b + c ®t ¡ b + c ®r by D3

y ¡ 1
¢ T s; ¯ ¡ c®r + y ¢ T r; ¯ ¡ c®s ¡ c®r by symmetry ¤

Lemma 3 4 Let s 2 S and ¯ 2 ©+ such that dp ¯ ¸ 2 and h®s; ¯i ¡a < 0

Then the de¯nition of T s; ¯ does not depend on the choice of the t 2 S such that
dp t ¢ ¯ dp ¯ ¡ 1

Proof We argue by induction on dp ¯ We take t; r 2 S t 6 r such that
dp t ¢ ¯ dp r ¢ ¯ dp ¯ ¡ 1 By Proposition 2 6 we can write

h®t; ¯i b > 0
and h®r; ¯i c > 0

Case 1: h®s; ®ti 0 h®s; ®ri 0 and h®t; ®ri 0 We cannot have dp ¯ 2 in
this case Suppose dp ¯ ¸ 3 Then by induction

y ¢ T s;¯ ¡ b®t y2
¢ T s; ¯ ¡ b®t ¡ c®r by D6

y ¢ T s; ¯ ¡ c®r by D6

Case 2: h®s; ®ti 0 h®s; ®ri 0 and h®t; ®ri ¡1 We cannot have dp ¯ · 3
in this case Suppose dp ¯ ¸ 4 Then by induction
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y ¢ T s; ¯ ¡ b®t y2
¢ T s; ¯ ¡ b®t ¡ b + c ®r by D6

y3
¢ T s; ¯ ¡ b + c ®t ¡ b + c ®r by D6

y ¢ T s; ¯ ¡ c®r by symmetry
Case 3: h®s; ®ti 0 h®s; ®ri ¡1 h®t; ®ri 0 and c > a We cannot have

dp ¯ · 3 in this case Suppose dp ¯ ¸ 4 Then by induction

y ¢ T s;¯ ¡ b®t
y y ¡ 1

¢ T s;¯ ¡ b®t ¡ c®r
+ y2

¢ T r;¯ ¡ c ¡ a ®s ¡ b®t ¡ c®r by D7

ydp ¯ ¡1 y ¡ 1 2

+ y2
¢ T r;¯ ¡ c ¡ a ®s ¡ b®t ¡ c®r by D3

y ¡ 1
¢ T s; ¯ ¡ c®r + y ¢ T r; ¯ ¡ c¡ a ®s ¡ c®r by D3 and D6

Case 4: h®s; ®ti 0 h®s; ®ri ¡1 h®t; ®ri 0 and c a We cannot have

dp ¯ 2 in this case Suppose dp ¯ ¸ 3 Then by induction

y ¢ T s; ¯ ¡ b®t
y ¢ T r; ¯ ¡ b®t ¡ a®r + y y ¡ 1

¢ T s; ¯ ¡ b®t ¡ a®r by D8

T r; ¯ ¡ a®r + y ¡ 1
¢ T s; ¯ ¡ a®r by D6 and D4

Case 5: h®s; ®ti 0 h®s; ®ri ¡1 h®t; ®ri 0 and c < a We cannot have

dp ¯ 2 in this case Suppose dp ¯ ¸ 3 Then by induction

y ¢ T s; ¯ ¡ b®t
y2

¢ T s; ¯ ¡ b®t ¡ c®r + y ¢ T r; ¯ ¡ b®t ¡ c®r + ydp ¯ ¡1 1 ¡ y by D9

y ¢ T s; ¯ ¡ c®r + T r;¯ ¡ c®r + ydp ¯ ¡1 1 ¡ y by D6

Case 6: h®s; ®ti 0 h®s; ®ri ¡1 h®t; ®ri ¡1 and c > a We cannot have

dp ¯ · 5 in this case Suppose dp ¯ ¸ 6 Then by induction

y ¢ T s; ¯ ¡ b®t
y y ¡ 1

¢ T s;¯ ¡ b®t ¡ b + c ®r
+ y2

¢ T r; ¯ ¡ b + c ¡ a ®s ¡ b®t ¡ b + c ®r by D7

ydp ¯ ¡1 y ¡ 1 2 + y2 y ¡ 1
¢

¢ T r; ¯ ¡ b + c¡ a ®s ¡ b + c ®t ¡ b + c ®r
+ y3

¢ T t; ¯ ¡ b + c¡ a ®s ¡ b + c ®t ¡ b + 2c ¡ a ®r by D3 and D7

ydp ¯ ¡1 y ¡ 1 2 + ydp ¯ ¡2 y ¡ 1 2

+ y3
¢ T t; ¯ ¡ b + c¡ a ®s ¡ b + c ®t ¡ b + 2c ¡ a ®r by D3
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ydp ¯ ¡1 y ¡ 1 2 + y y ¡ 1
¢

¢ T r; ¯ ¡ c¡ a ®s ¡ b + c ®t ¡ c®r
+ y2

¢ T t; ¯ ¡ c¡ a ®s ¡ b + c ®t ¡ b + 2c ¡ a ®r by D3 and D6

y ¡ 1
¢ T s; ¯ ¡ c®r + y ¢ T r; ¯ ¡ c ¡ a ®s ¡ c®r by D3 and D7

Case 7: h®s; ®ti 0 h®s; ®ri ¡1 h®t; ®ri ¡1 and c a Suppose dp ¯ 2

Then a b c 1 ¯ ®t + ®r and

y ¢ T s; ¯ ¡ ®t y ¢ T s; ®r 0 by D2

T r;¯¡®r + y ¡ 1
¢ T s; ¯¡®r T r; ®t + y ¡ 1

¢ T s; ®t 0 by D2

We cannot have dp ¯ 2 f3; 4g in this case Suppose dp ¯ ¸ 5 Then by
induction

y ¢ T s; ¯ ¡ b®t
y y ¡ 1

¢ T s; ¯ ¡ b®t ¡ b + a ®r
+ y2

¢ T r; ¯ ¡ b®s ¡ b®t ¡ b + a ®r by D7

ydp ¯ ¡1 y ¡ 1 2 + y2
¢ T t; ¯¡b®s¡ b + a ®t¡ b + a ®r

+ y2 y ¡ 1
¢ T r; ¯ ¡ b®s ¡ b + a ®t ¡ b + a ®r by D3 and D8

ydp ¯ ¡2 y¡1 2+y2
¢T t;¯¡b®s¡ b+a ®t¡ b + a ®r

+ ydp ¯ ¡2 y ¡ 1 3

+ y2 y ¡ 1
¢ T r; ¯ ¡ b®s ¡ b + a ®t ¡ b + a ®r

ydp ¯ ¡2 y ¡ 1 2 + y2
¢T t; ¯ ¡ b®s ¡ b + a ®t ¡ b + a ®r

+ y y ¡ 1 2
¢ T s; ¯ ¡ b + a ®t ¡ b + a ®r

+ y2 y ¡ 1
¢ T r; ¯ ¡ b®s ¡ b + a ®t ¡ b + a ®r by D3

ydp ¯ ¡2 y ¡ 1 2

+ y2
¢ T t; ¯ ¡ b®s ¡ b + a ®t ¡ b + a ®r

+ y y ¡ 1
¢ T s;¯ ¡ b + a ®t ¡ a®r by D5

y ¡ 1
¢ T r; ¯ ¡ b + a ®t ¡ a®r

+ y ¢ T t;¯ ¡ b + a ®t ¡ b + a ®r
+ y y ¡ 1

¢ T s; ¯ ¡ b + a ®t ¡ a®r by D3 and D6

T r;¯ ¡ a®r + y ¡ 1
¢ T s; ¯ ¡ a®r by D7 and D4 :

Case 8: h®s; ®ti 0 h®s; ®ri ¡1 h®t; ®ri ¡1 c < a and b + c > a We

cannot have dp ¯ · 4 in this case Suppose dp ¯ ¸ 5 Then by induction
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y ¢ T s; ¯ ¡ b®t
y y ¡ 1

¢ T s; ¯ ¡ b®t ¡ b + c ®r
+ y2

¢ T r; ¯ ¡ b + c ¡ a ®s ¡ b®t ¡ b + c ®r by D7

ydp ¯ ¡1 y ¡ 1 2 + y3
¢

¢ T r; ¯ ¡ b + c¡ a ®s ¡ b + c ®t ¡ b + c ®r
+ y2

¢ T t; ¯ ¡ b + c¡ a ®s ¡ b + c ®t ¡ b + c ®r
+ ydp ¯ ¡2 1 ¡ y by D3 and D9

ydp ¯ ¡1 y ¡ 1 2

+ y3
¢ T r; ¯ ¡ b + c ¡ a ®s ¡ b + c ®t ¡ b + c ®r

+ ydp ¯ ¡2 y ¡ 1 2

+ y2
¢ T t; ¯ ¡ b + c¡ a ®s ¡ b + c ®t ¡ b + c ®r

+ ydp ¯ ¡1 1 ¡ y

y2 y ¡ 1
¢ T s; ¯ ¡ b + c ®t ¡ b + c ®r

+ y3
¢ T r; ¯ ¡ b + c ¡ a ®s ¡ b + c ®t ¡ b + c ®r

+ ydp ¯ ¡2 y ¡ 1 2

+ y ¢ T t; ¯ ¡ b + c ®t ¡ b + c ®r + ydp ¯ ¡1 1¡ y by D3 and D6

y2
¢ T s; ¯ ¡ b + c ®t ¡ c®r + y ¡ 1

¢

¢ T r; ¯ ¡ b + c ®t ¡ c®r
+ y ¢ T t; ¯ ¡ b + c ®t ¡ b + c ®r + ydp ¯ ¡1 1¡ y by D7 and D3

y ¢ T s; ¯ ¡ c®r + T r; ¯ ¡ c®r + ydp ¯ ¡1 1¡ y by D6 and D7

Case 9: h®s; ®ti 0 h®s; ®ri ¡1 h®t; ®ri ¡1 c < a and b + c a We

cannot have dp ¯ · 3 in this case Suppose dp ¯ ¸ 4 Then by induction

y ¢ T s; ¯ ¡ b®t
y ¢ T r;¯ ¡ b®t ¡ a®r + y y ¡ 1

¢ T s; ¯ ¡ b®t ¡ a®r by D8

y2
¢ T r; ¯ ¡ a®t ¡ a®r + y ¢ T t; ¯ ¡ a®t ¡ a®r

+ ydp ¯ ¡2 1 ¡ y

+ y2 y ¡ 1
¢ T s;¯ ¡ a®t ¡ a®r by D9 and D4

y2
¢ T r; ¯ ¡ a®t ¡ a®r + y2 y ¡ 1

¢

¢ T s; ¯ ¡ a®t ¡ a®r + ydp ¯ ¡2 y ¡ 1 2

+ y ¢ T t; ¯ ¡ a®t ¡ a®r + ydp ¯ ¡1 1 ¡ y
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y2
¢ T s; ¯ ¡ a®t ¡ c®r + y ¡ 1

¢ T r; ¯ ¡ a®t ¡ c®r
+ y ¢ T t;¯ ¡ a®t ¡ a®r + ydp ¯ ¡1 1 ¡ y by D8 and D3

y ¢ T s; ¯ ¡ c®r + T r; ¯ ¡ c®r + ydp ¯ ¡1 1 ¡ y by D6 and D7

Case 10: h®s; ®ti 0 h®s; ®ri ¡1 h®t; ®ri ¡1 c < a and b + c < a We

cannot have dp ¯ · 3 in this case Suppose dp ¯ ¸ 4 Then by induction

y ¢ T s; ¯ ¡ b®t
y2

¢ T s; ¯ ¡ b®t ¡ b + c ®r
+ y ¢ T r;¯ ¡ b®t ¡ b + c ®r
+ ydp ¯ ¡1 1 ¡ y by D9

y3
¢ T s; ¯ ¡ b + c ®t ¡ b + c ®r

+ y2
¢ T r; ¯ ¡ b + c ®t ¡ b + c ®r

+ y ¢ T t; ¯ ¡ b + c ®t ¡ b + c ®r
+ ydp ¯ ¡2 1 ¡ y + ydp ¯ ¡1 1 ¡ y by D6 and D9

y3
¢ T s; ¯ ¡ b + c ®t ¡ b + c ®r

+ y2
¢ T r; ¯ ¡ b + c ®t ¡ b + c ®r

+ ydp ¯ ¡1 1 ¡ y + ydp ¯ ¡2 y ¡ 1 2

+ y ¢ T t; ¯ ¡ b + c ®t ¡ b + c ®r + ydp ¯ ¡1 1¡ y

y2
¢ T s; ¯ ¡ b + c ®t ¡ c®r

+ y ¡ 1
¢ T r;¯ ¡ b + c ®t ¡ c®r

+ y ¢ T t; ¯ ¡ b + c ®t ¡ b + c ®r + ydp ¯ ¡1 1¡ y by D9 and D3

y ¢ T s; ¯ ¡ c®r + T r; ¯ ¡ c®r + ydp ¯ ¡1 1¡ y by D6 and D7

Case 11: h®s; ®ti ¡1 h®s; ®ri ¡1 h®t; ®ri 0 b > a and c > a We cannot
have dp ¯ · 5 in this case Suppose dp ¯ ¸ 6 Then by induction

y ¡ 1
¢ T s; ¯ ¡ b®t + y ¢ T t;¯ ¡ b ¡ a ®s ¡ b®t

ydp ¯ ¡1 y ¡ 1 2 + y2
¢

¢ T t; ¯ ¡ b ¡ a ®s ¡ b®t ¡ b + c ¡ a ®r by D3 and D6

ydp ¯ ¡1 y ¡ 1 2 + y2 y ¡ 1
¢

¢ T t; ¯ ¡ b + c ¡ a ®s ¡ b®t ¡ b + c ¡ a ®r
+ y3

¢ T s; ¯¡ b + c¡a ®s¡ b + c¡a ®t¡ b + c¡a ®r by D7

ydp ¯ ¡1 y ¡ 1 2 + ydp ¯ ¡2 y ¡ 1 2 + y3
¢

¢ T s; ¯¡ b + c¡a ®s¡ b + c¡a ®t¡ b + c¡a ®r by D3
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y ¡ 1
¢ T s; ¯ ¡ c®r + y ¢ T r; ¯ ¡ c ¡ a ®s ¡ c®r by symmetry

Case 12: h®s; ®ti ¡1 h®s; ®ri ¡1 h®t; ®ri 0 and b > c a We cannot
have dp ¯ · 4 in this case Suppose dp ¯ ¸ 5 Then by induction

y ¡ 1
¢ T s; ¯ ¡ b®t + y ¢ T t; ¯ ¡ b ¡ a ®s ¡ b®t

ydp ¯ ¡1 y ¡ 1 2 + y2
¢ T t; ¯ ¡ b ¡ a ®s ¡ b®t ¡ b®r by D3 and D6

ydp ¯ ¡1 y ¡ 1 2 + y2
¢

¢ T s; ¯ ¡ b®s ¡ b®t ¡ b®r
+ y2 y ¡ 1

¢ T t; ¯ ¡ b®s ¡ b®t ¡ b®r by D8

ydp ¯ ¡2 y ¡ 1 2 + y2
¢ T s; ¯ ¡ b®s ¡ b®t ¡ b®r

+ ydp ¯ ¡2 y ¡ 1 3

+ y2 y ¡ 1
¢ T t; ¯ ¡ b®s ¡ b®t ¡ b®r

y y ¡ 1
¢ T r; ¯ ¡ b®s ¡ b®t ¡ a®r

+ y2
¢ T s; ¯ ¡ b®s ¡ b®t ¡ b®r + ydp ¯ ¡2 y ¡ 1 3

+ y y ¡ 1
¢ T t; ¯ ¡ b®s ¡ b®t ¡ a®r by D3 and D4

y ¢ T r;¯ ¡ b®t ¡ a®r + y ¡ 1 2
¢ T s; ¯ ¡ b®t ¡ a®r

+ y y ¡ 1
¢ T t; ¯ ¡ b®s ¡ b®t ¡ a®r by D7 and D3

T r; ¯ ¡ a®r + y ¡ 1
¢ T s;¯ ¡ a®r by D6 and D5

Case 13: h®s; ®ti ¡1 h®s; ®ri ¡1 h®t; ®ri 0 and b > a > c We cannot
have dp ¯ · 3 in this case Suppose dp ¯ ¸ 4 Then by induction

y ¡ 1
¢ T s;¯ ¡ b®t + y ¢ T t;¯ ¡ b ¡ a ®s ¡ b®t

ydp ¯ ¡1 y ¡ 1 2

+ y2
¢ T t; ¯ ¡ b ¡ a ®s ¡ b®t ¡ b + c ¡ a ®r by D3 and D6

ydp ¯ ¡1 y ¡ 1 2

+ y3
¢ T t; ¯ ¡ b + c ¡ a ®s ¡ b®t ¡ b + c ¡ a ®r

+ y2
¢ T s; ¯ ¡ b + c ¡ a ®s ¡ b®t ¡ b + c ¡ a ®r

+ ydp ¯ ¡2 1 ¡ y by D9

ydp ¯ ¡1 y ¡ 1 2

+ y3
¢ T t; ¯ ¡ b + c ¡ a ®s ¡ b®t ¡ b + c ¡ a ®r

+ ydp ¯ ¡2 y ¡ 1 2

+ y2
¢ T s; ¯ ¡ b + c ¡ a ®s ¡ b®t ¡ b + c ¡ a ®r

+ ydp ¯ ¡1 1 ¡ y
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ydp ¯ ¡1 y ¡ 1 2 + y2
¢ T t; ¯ ¡ b + c ¡ a ®s ¡ b®t ¡ c®r

+ y y ¡ 1
¢ T r; ¯ ¡ b + c¡ a ®s ¡ b®t ¡ c®r

+ y2
¢ T s; ¯ ¡ b + c ¡ a ®s ¡ b®t ¡ b + c ¡ a ®r

+ ydp ¯ ¡1 1 ¡ y by D6 and D3

y y ¡ 1
¢ T s; ¯ ¡ b®t ¡ c®r

+ y2
¢ T t; ¯ ¡ b + c ¡ a ®s ¡ b®t ¡ c®r

+ y ¢ T r; ¯ ¡ b®t ¡ c®r + ydp ¯ ¡1 1 ¡ y by D3 and D7

y ¢ T s; ¯ ¡ c®r + T r; ¯ ¡ c®r + ydp ¯ ¡1 1¡ y by D7 and D6

Case 14: h®s; ®ti ¡1
h®s; ®ri ¡1 h®t; ®ri 0 and a b c We cannot

have dp ¯ · 3 in this case Suppose dp ¯ ¸ 4 Then by induction

T t; ¯ ¡ a®t + y ¡ 1
¢ T s; ¯ ¡ a®t

y ¢ T t; ¯ ¡ a®t ¡ a®r + y ¡ 1 2
¢ T s; ¯ ¡ a®t ¡ a®r

+ y y ¡ 1
¢ T r;¯ ¡ a®s ¡ a®t ¡ a®r by D6 and D5

y ¢ T s;¯ ¡ a®s ¡ a®t ¡ a®r
+ y y ¡ 1

¢ T t; ¯ ¡ a®s ¡ a®t ¡ a®r
+ ydp ¯ ¡2 y¡1 3 + y y¡1

¢ T r; ¯¡a®s¡a®t¡a®r by D8 and D3

T r; ¯ ¡ a®r + y ¡ 1
¢ T s; ¯ ¡ a®r by symmetry

Case 15: h®s; ®ti ¡1
h®s; ®ri ¡1 h®t; ®ri 0 and a b > c We cannot

have dp ¯ · 3 in this case Suppose dp ¯ ¸ 4 Then by induction

T t; ¯ ¡ a®t + y ¡ 1
¢ T s; ¯ ¡ a®t

y ¢ T t; ¯ ¡ a®t ¡ c®r + y ¡ 1 2
¢ T s; ¯ ¡ a®t ¡ c®r

+ y y ¡ 1
¢ T r; ¯ ¡ c®s ¡ a®t ¡ c®r by D6 and D5

y2
¢ T t; ¯ ¡ c®s ¡ a®t ¡ c®r

+ y ¢ T s;¯ ¡ c®s ¡ a®t ¡ c®r + ydp ¯ ¡2 1 ¡ y

+ ydp ¯ ¡2 y ¡ 1 3 + y y ¡ 1
¢ T r; ¯ ¡ c®s ¡ a®t ¡ c®r by D9 and D3

ydp ¯ ¡1 y ¡ 1 2 + y2
¢ T t; ¯ ¡ c®s ¡ a®t ¡ c®r

+ y ¢ T s; ¯ ¡ c®s ¡ a®t ¡ c®r
+ y y ¡ 1

¢ T r; ¯ ¡ c®s ¡ a®t ¡ c®r + ydp ¯ ¡1 1 ¡ y

y y ¡ 1
¢ T s;¯ ¡ a®t ¡ c®r

+ y2
¢ T t; ¯ ¡ c®s ¡ a®t ¡ c®r

+ y ¢ T r; ¯ ¡ a®t ¡ c®r + ydp ¯ ¡1 1 ¡ y by D3 and D8
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y ¢ T s; ¯ ¡ c®r + T r; ¯ ¡ c®r + ydp ¯ ¡1 1 ¡ y by D7 and D6

Case 16: h®s; ®ti ¡1
h®s; ®ri ¡1

h®t; ®ri 0 a > b a > c and b + c > a
We cannot have dp ¯ · 3 in this case Suppose dp ¯ ¸ 4 Then by induction

y ¢ T s; ¯ ¡ b®t + T t;¯ ¡ b®t + ydp ¯ ¡1 1 ¡ y

y y ¡ 1
¢ T s; ¯ ¡ b®t ¡ c®r

+ y2
¢ T r; ¯ ¡ b + c¡ a ®s ¡ b®t ¡ c®r

+ y ¢ T t; ¯ ¡ b®t ¡ c®r + ydp ¯ ¡1 1¡ y by D7 and D6

ydp ¯ ¡1 y ¡ 1 2 + y2
¢ T r; ¯ ¡ b + c ¡ a ®s ¡ b®t ¡ c®r

+ y2
¢ T t; ¯ ¡ b + c ¡ a ®s ¡ b®t ¡ c®r

+ y ¢ T s;¯ ¡ b + c¡ a ®s ¡ b®t ¡ c®r + ydp ¯ ¡2 1 ¡ y

+ ydp ¯ ¡1 1 ¡ y by D3 and D9

y ¢ T s; ¯ ¡ c®r + T r; ¯ ¡ c®r + ydp ¯ ¡1 1 ¡ y by symmetry

Case 17: h®s; ®ti ¡1 h®s; ®ri ¡1 h®t; ®ri 0 and a b + c We cannot
have dp ¯ 2 in this case Suppose dp ¯ ¸ 3 Then by induction

y ¢ T s; ¯ ¡ b®t + T t; ¯ ¡ b®t + ydp ¯ ¡1 1 ¡ y

y ¢ T r; ¯ ¡ b®t ¡ c®r + y y ¡ 1
¢ T s; ¯ ¡ b®t ¡ c®r

+y ¢ T t; ¯ ¡ b®t ¡ c®r + ydp ¯ ¡1 1 ¡ y by D8 and D6

y ¢ T s; ¯ ¡ c®r + T r;¯ ¡ c®r + ydp ¯ ¡1 1 ¡ y by symmetry
Case 18: h®s; ®ti ¡1 h®s; ®ri ¡1 h®t; ®ri 0 and a > b + c We cannot
have dp ¯ 2 in this case Suppose dp ¯ ¸ 3 Then by induction

y ¢ T s;¯ ¡ b®t + T t; ¯ ¡ b®t + ydp ¯ ¡1 1 ¡ y

y2
¢ T s;¯ ¡ b®t ¡ c®r

+ y ¢ T r; ¯ ¡ b®t ¡ c®r + ydp ¯ ¡1 1 ¡ y

+ y ¢ T t; ¯ ¡ b®t ¡ c®r + ydp ¯ ¡1 1 ¡ y by D9 and D6

y ¢ T s; ¯ ¡ c®r + T r;¯ ¡ c®r + ydp ¯ ¡1 1 ¡ y by symmetry
¤
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