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Divergence exponentielle des sous-groupes discrets en rang
supérieur

Jean-Francois Quint

Résumé. Soient G un groupe de Lie semi-simple, réel, connexe et de centre fini, a un sous-
espace de Cartan de lalgébre de Lie de G et at C a une chambre de Weyl fermée de a. Si
I' est un sous-groupe discret Zariski dense de G, nous lui associons une fonction homogene
Yp : at — RU{—o0} qui généralise 'exposant de convergence de I' considéré en R-rang 1. Nous
montrons alors que cette fonction est concave. Dans un travail ultérieur, nous en déduirons des
constructions de généralisations des mesures de Patterson—Sullivan.

Nous démontrons aussi des analogues de nos résultats sur les corps locaux.

Mathematics Subject Classification (2000). Primaire 22E40 ; Secondaire 53C35.

Mots clés. Lie groups, discrete subgroups, higher rank geometries.

1. Introduction
1.1. Résultats

Soit G' un groupe de Lie semi-simple, réel, connexe et de centre fini. On choisit
une involution de Cartan 7 de G. On note K le sous-groupe compact maximal
de G constitué de 'ensemble des points fixes de 7 et g un sous-espace de Cartan
de I'algebre de Lie de g tel que, pour z dans a, 7(expz) = exp(—z). Soit a™ C
a une chambre de Weyl. On dispose alors de la décomposition de Cartan G =
K(expa™)K et de la projection associée p: G — at.

Si I est un sous-groupe de G, I’étude des propriétés asymptotiques de I' passe
par la description de I’ensemble p(T"). Dans [4], Y. Benoist a démontré que, si "
est un sous-groupe Zariski dense de G, le céne asymptote & I'ensemble u(I") est
convexe et d’intérieur non vide. On 'appelle cone limite de I

Si le R-rang de G est égal a 1, pour g dans G, la donnée de p(g) est simplement
celle de la distance entre le point fixe x de K dans 'espace symétrique de G et
son translaté gz par g. Si I' est un sous-groupe discret de GG, un réle important est
alors joué par 'exposant de convergence de la série de Dirichlet

Z eftd(z,'yz) (t e R)7

el
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c’est-a-dire par le nombre réel

lim sup <llog (card{y e T | d(z,vyz) < a})) .
a—00 a
Citons par exemple, la théorie de Patterson—Sullivan introduite dans [14] et [18].
Le but de cet article est la généralisation & la situation de rang supérieur
de I’étude de la divergence exponentielle des sous-groupes discrets. On voit alors
apparaitre un phénomene nouveau de convexité, que nous allons a présent décrire.
Soit I" un sous-groupe discret Zariski dense de G. Soit ||.|| une norme (invariante
par le groupe de Weyl) sur a. Si ||.|| est la norme euclidienne provenant d’une
métrique riemannienne G-invariante sur l’espace symétrique de G, pour tout g
dans G, ||u(g)|| est la distance entre le point fixe de K et son translaté par g.
Pour tout cone ouvert C de g, on note 7¢ 'exposant de convergence de la série

de Dirichlet
Z e~ tlrMl (t € R)

yel
w(v)ec

et, pour z dans g, on pose
¢(z) = [|lz]|inf rc,

la borne inférieure étant prise sur ’ensemble des cones ouverts C de a qui con-
tiennent z. La fonction homogeéne 1 ne dépend pas de la norme choisie. Si ||.|| est
une norme sur g, la série de Dirichlet

Sl (e R)
yel
a pour exposant de convergence
Sup M.
vear{o} |zl

Soit p la forme linéaire sur a qui est la somme des racines multipliées par la
dimension de leurs espaces poids dans l’algebre de Lie de g. Notre principal résultat
s’écrit :

Théoréme. La fonction ¢ est majorée par p. Elle est concave et semi-continue
supérieurement. L’ensemble

{zea|y(x) > -0}
est exactement le cone limite de I'. De plus, ¢ est positive sur le cone limite de I’

et strictement positive sur son intérieur relatif.

Dans [17], nous appliquerons ce théoréme & la construction de généralisations
des mesures de Patterson—Sullivan. Ce probleme avait déja été considéré par P.
Albuquerque dans [1]. En R-rang 1, c’est I’étude de ces mesures qui permet, sous
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certaines hypotheses, d’obtenir des équivalents des fonctions orbitales de comptage
pour l'action de I' dans ’espace symétrique de G. Concernant les questions de
comptage, nos méthodes permettent de montrer :

Proposition. Soit ||| une norme sur a. Alors

1
~log(card{y €T | ()l < a})
admet une limite T € RY. quand a tend vers oo et l'on a :
card {7 €T | |u(m)| a} = O(ae™)

ot 1 est le R-rang de G.

En d’autres termes, en appliquant ce résultat aux normes euclidiennes inva-
riantes par le groupe de Weyl :

Corollaire. Soit X lespace symétrique de G, muni d’une métrique riemannienne
G-invariante. Alors, il existe T > 0 tel que, pour tous x,y dans X, on ait :

1
—log (card{v €Tl |d(z,vy) <a}) —— 7T
a

et
card{y €' | d(z,7y) <a} = O(a" ).

a— o0

1.2. Structure des démonstrations

La démonstration du théoreme s’effectue en deux étapes.
Dans la premiere partie du texte, on établit :

Proposition. Soit I' un sous-groupe discret Zariski dense de G. Il eriste une
application m: ' x I' = T ayant les propriétés suivantes :

(i) 4l existe un réel k > 0 tel que, pour tous v1,v2 dans T,
[l (v 72)) — plyn) — py2)ll < &

(ii) pour tout réel R > 0, il existe une partie finie H de I' telle que, pour
Y172, 71,72 dans T, avec [|u(v1) — p(y)ll < B et [lu(y2) — p(n)l < R,

7(y1,72) = 7(v1, ) = (v € H et vy € Hya).

Une telle application 7 sera, dans la suite du texte, appelée produit générique
dans T'. L’idée de la preuve est d’écrire w(y1,v2) = v1fv2 ou f est choisi dans
une partie finie I’ de T', de facon a éliminer les problemes qui se posent quand
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~1 est proche de ~, . La partie I sera construite en utilisant un résultat de H.
Abels, G.-A. Margulis et G.-A. Soifer, le lemme 2.3.4, dont nous redonnerons la
démonstration. La vérification du point (i) de la proposition s’effectue en estimant
la norme de «y;fvs dans suffisament de représentations de G, au lemme 2.3.3.
Le point délicat est la vérification de la partie (ii). Sa démonstration s’inspire de
phénomenes de géométrie dans G/ K liés a ’existence en rang supérieur d’analogues
du fameux lemme des ombres de Sullivan ([18]). On définit, pour g dans G, une
partie B de la variété des drapeaux de G de sorte que gBj joue le role des ombres
de [18] et on montre un analogue du lemme des ombres, la proposition 2.3.7. Reste
alors & vérifier que, sous les hypotheses que nous aurons faites, les ombres v B et
Y1 fva Bil f, S€ rencontrent, c’est ce qui est fait dans la démonstration du lemme
2.3.8.

Dans la deuxieme partie on déduit de I'existence dun produit générique dans
I' qu’il existe des réels o, 3,v > 0 tels que, pour z,y dans a,

card(I' N u~ ! (b(@ +y, @))) 2 yeard(' N =" (b(z, 8))) card(T' 0 ™ (b(y, 5))),

et 'on démontre la concavité de ¢ a partir de cette seule propriété de I’ensemble
w(T).

Enfin, dans une troisieme partie, nous terminerons la démonstration précise du
théoreme.

1.3. Corps locaux

Dans Desprit de [4], nous démontrerons des analogues des résultats ci-dessus
pour les groupes semi-simples définis sur un corps valué localement compact. Nous
utiliserons les analogues des décompositions de Cartan et d’Iwasawa pour ces
groupes, établis par F. Bruhat et J. Tits dans [8] et [9]. Nous renvoyons le lec-
teur a [20], pour un résumé de cette théorie.

J’ai bénéficié, pour 1’élaboration de ce travail, des remarques et des suggestions
d’Yves Benoist. Je tiens ici a ’en remercier.

2. Produit générique

Soit K un corps local : K est soit R ou C, soit une extension finie de Q,, pour un
entier premier p, soit le corps des fractions F,((7)) de ’anneau des séries formelles
sur le corps fini a ¢ éléments.

Si K est R ou C, on le munit de la valeur absolue usuelle et on pose ¢ = e,
u=e"! et pour tout = # 0 dans K, w(x) = —log |z|.

Si K est non-archimédien, on note O 'anneau de valuation de K, m l'idéal
maximal de O, k = O/m le corps résiduel de K, ¢ le cardinal de k et w une
uniformisante de K, 4.e. un élément de m\m?; on note w la valuation de K telle
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que w(u) = 1 et on munit K de la valeur absolue z — ¢,

Etant donnée une extension algébrique de K, on la munit de 'unique valeur
absolue prolongeant celle de K.

Soit (X, d) un espace métrique. Pour tout £ > 0, pour toute partie Y de X, on
note :

b(Y,e) ={zx e X|d(z,Y) <c} et B(Y,e)={x € X|d(z,Y) > ¢}.
Pour toutes parties Y et Z de X, on note :

dY,Z)= inf d(y,z)eté(Y,Z)=supd(y,2).
(y,2)EY XZ yey
Pour tout ensemble X et pour tout x dans X, on note §, la mesure de Dirac
en .
Si ¢ est un nombre réel, on note [t| sa partie entiére.

2.1. Algébre linéaire normée

Nous démontrons ici ’ensemble des résultats d’algebre linéaire qui seront uti-
lisés dans ce texte. Ils seront ensuite réinterprétés dans les groupes réductifs, a
travers leurs représentations linéaires.

Soit V' un K-espace vectoriel de dimension finie m. On munit P (V) de la
topologie quotient de celle de V' — {0} : ¢’est un espace topologique compact.

2.1.1. Rayon spectral et proximalité

Soit f un endomorphisme de V. On note A1(f) le rayon spectral de f, c’est-
a-dire le plus grand des modules des valeurs propres de f. On note V}f le plus
grand sous-espace vectoriel f-stable de V' ou toutes les valeurs propres de f sont
de module Aq(f) et Vf< I'unique supplémentaire f-stable de fo

Munissons V' d’une norme. On a la formule du rayon spectral :

VfeLV) T —— M.

Un endomorphisme f =£ 0 de V est dit proximal dans P (V) si et seulement si f
possede une unique valeur propre de module maximal et qu’elle est de multiplicité
1, i.e. si et seulement si dim V;’ = 1. Cette valeur propre appartient alors a K.

Soit f un endomorphisme non nul de V. Alors f est proximal dans P (V) si
et seulement si f posséde un point fixe attracteur dans P (V). Ce point fixe est
alors fo

2.1.2. Bonnes normes et bonnes sommes directes

Une norme sur V' est une application ||.|| : V — Ry vérifiant les axiomes usuels :
(i) YveV |v|=0<v=0.
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(i) VAeK YoeV ||| =M.

(iii) Yo,w eV |lv+w| <o + ||w].

Si K est R (resp. C), on dit qu'une norme sur V est une bonne norme si
et seulement si elle est induite par un produit scalaire euclidien (resp. un produit
scalaire hermitien). Si V' est muni d’une bonne norme, on dit qu’une somme directe
V = V) & V5 est une bonne somme directe si et seulement si elle est orthogonale
pour le produit scalaire.

Si K est non archimédien, on dit qu’une norme sur V' est une bonne norme si
et seulement si elle est ultramétrique, c’est-a-dire si et seulement si, pour tous v, w
dans V, on a ||v + w|| < max(||v|, ||w]]). Si V est muni d’une bonne norme, on dit
qu'une somme directe V = V| @ V5 est une bonne somme directe si et seulement
si, pour tout v = vy + vy dans V, avec v1 dans Vj et vy dans V5, on a :

[[ol] = max({|oa]], [|v2]])-

Supposons dorénavant V muni d’une bonne norme. Donnons une caractérisation
des bonnes sommes directes; c’est une généralisation d'un exercice classique de
géométrie euclidienne :

Lemme 2.1.1. Soit V = V| ® V5 une somme directe dans V. Elle est bonne si et
seulement si ses projecteurs sont de norme 1.

Démonstration. Soit p le projecteur sur V; parallelement a V5. Si la somme directe
est bonne, on a ||p|| = 1. Réciproquement, supposons que p est de norme 1.

Supposons que K est R ou C. Soit v dans V;-. Soit w = v — p(v). Alors v et w
sont orthogonaux et p(v) = v —w. Par conséquent, on a :

2 2
[oll = lp()ll = y/lloll™ + llwll” = [lo]]

et, donc, ||p(v)|| = ||lv||, ou encore w = 0. 1l vient V3~ C V; et, comme ces deux
espaces ont méme dimension, V3~ = V7, ce qu'il fallait démontrer.

Supposons que K est non-archimédien. Remarquons que l'on a ||1 —p| <
max(1, ||p]|) < 1. Pour tout v dans V, il vient :

o]l = llp(v) + (1 = p)(v)l| < max([p()], [(1 —p)(@)]) < [l
et, done, ||v|| = max(||p(v)||, [|(1 — p)(v)|), ce qu’il fallait démontrer. O

Il existe une unique bonne norme sur AV telle que, pour toute bonne somme
directe Vi @ Vo C V la somme directe (A?Vy) @ (Vi A Vo) @ (A?V2) € A%V soit
bonne et que, pour v,w dans V, si Kv et Kw sont en bonne somme directe, on ait
llo A w| = ||v] ||w]||. Alors, application

(V - {0})2 > Ry
o Aol

) = ool
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factorise & travers une distance sur P (V), qui y induit sa topologie usuelle. Cest
un résultat classique si K est R ou C. Le cas général est traité dans [15]. On munira
toujours ’espace projectif d'un espace vectoriel bien normé de cette distance. Si
le dual V* de V' est muni de la bonne norme duale de celle de V', pour tous v # 0

dans P (V) et ¢ # 0 dans P(V*), on a :

b gl = (@) _ -
Ko, 27 = 1oy ~ e )

Nous utiliserons :

Lemme 2.1.2. Soit ¢ > 0. Soient V = V1, & Vo une bonne somme directe et p le
projecteur sur Vi parallélement a Va. Pour tout v dans V —{0} avee d(Kov, P (V3)) >
e, ona |[p()|| = |lof|.

Démonstration. On peut, bien sir, supposer v ¢ Vi. Alors, soient vy et vy les
composantes de v sur Vi et V5. On a d(Kv, Kvg) > . Or
N e e

ol floall ol floall o]l

d’otu le résultat. O

d(Kv, Kvs)

2.1.3. Semi-similitudes

Nous étudions ici une classe particuliere d’endomorphismes d’un K-espace vec-
toriel normé.

On dit qu'un endomorphisme f de V est une similitude si et seulement s’il
existe un réel A > 0 tel que, pour tout v dans V, on ait :

If @) = Allell.
On dit alors que X est le rapport de f. On dit que f est une semi-similitude si et
seulement s’il existe une bonne somme directe V = V; & ... @ V; telle que, pour
tout ¢ dans [1,k], f stabilise V; et induise sur V; une similitude de rapport A;.
Dans ce cas, on peut supposer que 'on a :

AL > 0> A

On a alors, pour tout v dans V', g ||lv|| < ||fvl| < Ay |jv||. En particulier, A; est &
la fois la norme et le rayon spectral de f.

Si K est R ou C, une semi-similitude est simplement un endomorphisme normal
de V.

Lemme 2.1.3. Soit f une semi-similitude. Soit V.=V, @& ... @& Vi, une bonne
somme directe dans 'V telle que, pour tout i dans [1,k], [ laisse stable V; et induise
sur V; une similitude de rapport ;. Supposons que l'on a Ay > ... > .

(i) Soit W un sous-espace vectoriel de V' stable par f. Alors on a W = (W nN
Vi)®...o (WnNV) et, en particulier, la restriction de f a W est une
semi-similitude.
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(ii) Soit V.= Wi & ... ® W, une autre somme directe, non nécessairement
bonne, telle que, pour tout j dans [1,1], f laisse stable W; et induise sur
W, une similitude de rapport p; et que Uon ait py > ... > py. Alors k=1
et, pour tout i dans [1,k], W; =V, et \; = pu;.

Démonstration. Pour tout entier n, posons

N 13 (1)) [P U
log g ultn

On a, pour tout n dans N,
1< “an <q.

On fixe une valeur d’adhérence p dans £(V') de la suite (pp )nen-

Pour tout v dans Vi, le vecteur p(v) appartient a Vi et ||p(v)|| = ||p|l||v||. En
particulier, la restriction de p & V; est un automorphisme. Par ailleurs, pour tout
vdans Vo @ ...® Vi, on a p(v) = 0.

Soit W un sous-espace vectoriel de V' stable par f. Alors, W est stable par p.
En particulier, W N V] est stable par p et, donc, par 'inverse de la restriction de
P a Vl.

Soit v dans W. Fcrivons w = v + v’ avec v dans V; et v/ dans Vo @ ... @ Vj.
On a:

p(v) =plvi)) e Wnwy

et, donc,

v € W.

Il vient :
W=WnVi)e(WnWe...eV))

d’oll la premiere propriété par récurrence.
La seconde en est une conséquence. (Il

Soit f une semi-similitude. On note VM le plus grand sous-espace vecto-
riel stable par f ou f induise une similitude de rapport || f]|| et V" son unique
supplémentaire stable par f. La somme directe V = VfM @® V;* est bonne. Une
semi-similitude f est proximale si et seulement si dim VfM = 1 et, alors, on a
V}T = VfM et Vf< =V

2.1.4. Propriétés des semi-similitudes

Nous effectuons ici des controles uniformes sur 'action des semi-similitudes
dans P (V) qui seront utilisés pour la construction du produit générique, a la
section 2.3.

Commencons par remarquer que beaucoup de vecteurs permettent d’estimer la
norme d'une semi-similitude :
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Lemme 2.1.4. Soient f une semi-similitude de V et ¢ > 0. Pour tout vecteur

non nulv de V', si d (Ku]P (me)) >¢, alors on a || fo|| > | f| ¢l

Démonstration. Ecrivons v = vy + vy avec vy dans VfM et v9 dans me. D’apres le
lemme 2.1.2, on a ||vy|| > € ||v|| et, donc,

[foll 2 | foill = [fHloall = & [ 1ol - 0

On a aussi une information sur I’action des semi-similitudes sur P (V') en termes
de métrique :

Lemme 2.1.5. Soient f une semi-similitude de V' et ¢ > 0. La restriction de f a

B (]P’ (me) 7€) est E%—lz’pschz’tzz’enne.

Démonstration. Remarquons que, comme f est une semi-similitude, on a H/\2 f ” <

I£11”. Donnons-nous alors deux vecteurs non nuls v et w avec d(Kv, P Vi) ze

et d(Kw,P (me)) > . D’apres le lemme 2.1.4, on a || fv|| > || f]l ||lv] et ||fv] >
ellfll ||v]l- I vient :

ICF2) A ()l _ AP flo A 2o

d(K fo. K fw) =
Ko Kfw) = SRl lfel = 7ol 17l
1 |lvAwl 1
_WAWI (Ko, Kuw).
S o) — 20K .

Le lemme suivant et notre généralisation du lemme des ombres serviront de
base au contréle de distance dans la construction du produit générique :

Lemme 2.1.6. Soient r > 0 et € > 0. Il existe un réel n > 0 tel que pour toute
semi-similitude f de V', pour tout hyperplan W de V' avec § (]P’ (VfM> P (W)) >,
on ait :

FTR® W) ,n) CbP(f'W),e).

Démonstration. Soit f une semi-similitude de V. Alors, son adjoint f* est une
semi-similitude de V*. Soit ¢ une forme linéaire non nulle de V. On a f~*(¢) =

(f*())*. Supposons que § (IP’ (VfM> ,]P’(ch)) > r. Alors, comme, pour v dans
¥, (V)R C vt on a
d(Ke, P ((V)R)) 2 .

Soit 0 < 5 < %. Soit v un vecteur non nul de V et supposons que l'on a
d(Ko,P (")) < n. On a d(Ke,P (vh)) < 7 et, done, d’apres le lemme 2.1.5,
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on a d(Kf*(¢), P (f*(v))) < 2. Comme f*(v') = (f~1(v))*, il vient,
fbletm) C b (flwﬂ 4—2) )

d’ou le résultat. O

2.2. Groupes réductifs

On fixe un K-groupe réductif connexe G. On note G le groupe de ses K-points.
Nous introduisons ici le vocabulaire concernant G et ses décompositions qui sera
utilisé dans la suite du texte. Le lecteur trouvera plus de précisions, pour la théorie
générale des groupes réductifs, dans [6] et [12], pour la théorie sur R ou C, dans
[10] et [11] et, pour la théorie sur des corps non-archimédiens, dans [8], [9] et [20].

2.2.1. Systéme de racines et chambre de Weyl

Pour tout K-groupe H, on note X(H) le groupe de ses caracteres rationnels.

On note 7 le K-rang de G. On fixe un tore K-déployé maximal A de G et on
note A le groupe de ses K-points. On note Z le centralisateur de A dans G et Z
le groupe de ses K-points. Le groupe X(A) est un groupe abélien libre de rang r.
’homomorphisme de restriction identifie X(Z) & un sous-groupe d’indice fini de
X(A). On note E* le R-espace vectoriel R ®z X(A) et E son dual. Pour tout x
dans X(A), on note x* la forme linéaire associée sur F.

Soit g D’algeébre de Lie de G. Soit ¥ I’ensemble des racines de A dans g. Alors
> est un systeme de racines dans E*. On choisit dans > un systéeme de racines
positives X1 et on note II la base de 3} associée & ce choix.

On note Et et BT les chambres de Weyl positive et strictement positive de
¥ T dans ET. On munit & de l'ordre associé & ET : si = et y sont deux vecteurs de
E,on ax >y si et seulement si z — y appartient & £, Plus généralement, pour
tous z,y dans F, pour tout C > 0, on note z >4 v si et seulement si

Vaell o¥(z—y)>—C.

On note W le groupe de Weyl de ¥ : il s’identifie au quotient du normalisateur
de A dans G par Z. Pour tout a dans 3, on note o, € W la réflexion associée. On
note wy le plus long élément de W : c’est 1'unique élément de W qui envoie I sur
—E1. On appelle © = —wg 'involution d’opposition de E+. On note Eg I'unique
supplémentaire W-stable de 'espace EV des points fixes de W dans F et (@, )acrn
la famille des poids fondamentaux de II, avec la convention (w, ) pw = 0, pour «
dans II.

Pour tout z dans Z, on note v(z) I'unique vecteur de F tel que, pour tout x
dans X(Z), on ait :

x“(v(z)) = —wx(2))-
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L’application v est un homomorphisme de groupes de Z dans F. Si K est R ou C,
I’application v est surjective. Si K est non-archimédien, I'image de v est un réseau
stable par P’action de W dans E. On note ZT = v~ 1(E1).

Pour tout « dans ¥, on note m,, la dimension de I’espace poids de « dans g et
on pose p =[] e+ ™.

Dorénavant, on considerera tout caractere rationnel de A comme une forme
linéaire sur E. On fixe une partie X de X(Z) qui engendre (E*)"

On fixe un produit scalaire W-invariant (.,.) sur E. On note |.|| la norme
euclidienne associée.

2.2.2. Facettes

On note P le K-sous-groupe parabolique minimal de G associé au choix de
A et de 3T,

Soit § C II. On note 6° le complémentaire de ¢ dans II.

On note

Ey= () kere, Bf =EBpnET et Bft =Ef — | | J Bf
ache 7¢O
Les (E; )ocn sont les facettes du cone polyhédral E.
On note Wy le fixateur de Fy dans W : c’est le sous-groupe de W engendré
par les réflexions associées aux éléments de #°. On note py 'unique projecteur
(orthogonal) Wy-invariant de E dans Ej,. Nous aurons a utiliser :

Lemme 2.2.1. Pour tout x dans E, pour tout y dans Fy, on a :

(po(z) = y) & (Vx € XgU{mala €8} x(z) = x(y))-

Démonstration. Nous utilisons ici librement les résultats de [7, 1.10].
Il s’agit de montrer que l'on a :

kerpy = Eg N ﬂ ker w,,.
aclh

Soit pj, 'adjoint de py. Alors, comme l'image de py est Ey, pj est un projecteur
orthogonal de noyau € Ra et, donc, d'image

oEfe
1
(@ Ra> = PRw, @ (B1)7,
agye agd
d’ou le résultat. [l

On note Ay la composante Zariski connexe de [ weoe Ker a dans A Soit Ly le
centralisateur de Ay dans G : c’est un K-groupe réductif connexe. On note Ly
le groupe de ses K-points. On note Py le K-groupe LyPy et Py le groupe de ses
K-points. De méme, on note Py le K-sous-groupe parabolique de G opposé a Py
par rapport & A et P’ le groupe de ses K-points.
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2.2.3. Représentations de G

Soit (p, V) une représentation rationnelle irréductible de dimension finie de G.

On appelle poids restreints de p les poids rationnels de la représentation pa.
D’apres [19, 7.2], ’ensemble des poids restreints posséde un plus grand élément
pour l'ordre associé a IT sur E*. On dit que x est le plus haut poids restreint de p.
Les autres poids restreints sont de la forme x — > _;; noa avec, pour tout o dans
I1, n, € N. On note Vﬁ“ Iespace poids associé & x et V[ P'unique supplémentaire
A-stable de Vi .

D’apres [19], on a :

Proposition 2.2.2. (Tits) Il existe une famille de représentations rationnelles ir-
réductibles (pa, Va)aen de G telles que, pour tout o dans 11, le plus haut poids
restreint Xo, de (pu, Va) soit un multiple du poids fondamental associé a o et que
dim VI = 1. O

Dorénavant, on fixe une telle famille de représentations. D’apres le lemme 2.2.1,
on a :

Lemme 2.2.3. Pour tout 8 C 11, pour tous z dans E ety dans Fg, on a :
(po(z) =y) & (Vx € Xo U {xala €0} x(z) =x(y)). 0

Pour tout a dans I, on note X, la droite V;H et V.= son unique supplémentaire
A-stable. Tous les poids de A dans V= sont de la forme

Xa_a_znﬂﬁ

Bell

avec, pour tout 3 dans II, ng € N.

2.2.4. Décomposition de Jordan

Un élément de G est dit elliptique si et seulement s'il est semi-simple et contenu
dans un sous-groupe compact de G. Un élément de GG est dit hyperbolique si et
seulement s’il est conjugué a un élément de A. On dit qu’un élément g de G
admet une décomposition de Jordan si et seulement s’il peut s’écrire sous la forme
g = gegngu avec g, elliptique, g, hyperbolique et g, unipotent qui commutent deux
a4 deux. Dans ce cas, on note A(g) I'image par v d’un élément de AT conjugué a
gn : il ne dépend que de g.

Si K est R ou C, tous les éléments de G admettent une décomposition de
Jordan.

Si K est non-archimédien, pour tout g dans G, il existe n dans N* tel que
g" admette une décomposition de Jordan. On note encore A(g) = %)\(g”) : il ne
dépend pas de n.

L’application A : G — E7T est R-analytique si K est R ou C et localement
constante si K est non-archimédien. Pour tout g dans G, on a : A(g~1) = «(A(g)).

Soit (p, V') une représentation rationnelle irréductible de dimension finie de G
de plus haut poids restreint x. Pour tout g dans G, on a Ai(p(g)) = X)),
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Supposons dim VH+ = 1. Alors p(g) est proximal si et seulement si, pour tout «
dans TI tel que y — « soit un poids de p, on a a(A(g)) > 0. En particulier, pour
tous « dans Il et g dans G, p,(g) est proximal dans P(V,) si et seulement si
a(A(9)) #0.

Soient # C Il et g dans G. On dit que g est f-proximal si et seulement si, pour
tout a dans 0, a(A(g)) > 0, c’est-a-dire si et seulement si, pour tout a dans 0,
palg) est proximal dans P (V).

2.2.5. Décomposition de Cartan

Soit K un bon sous-groupe compact maximal de G relativement & A, c¢’est &
dire tel que le normalisateur de A dans K contienne des représentants de tous les
éléments de W.

Si K est R ou C, K est I’ensemble des points fixes d'une involution de Cartan
7 de G telle que, pour tout a dans A, 7(a) = a '

Ona G = KZTK. De plus, pour tous 21, zo dans Z1, z9 appartient & Kz K si
et seulement si v(z1) = v(22). En particulier, on a ker v = KN Z. 1l existe donc une
unique application p : G — E7T telle que, pour tous g1, go dans G, g5 appartienne
a Kgi K si et seulement si p(g1) = p(g2) et que pz+ = vjz+. L'application p
est propre. Elle est R-analytique si K est R ou C et localement constante si K
est non-archimédien. Pour tout g dans G, on a u(g~") = «(u(g)) et la formule du
rayon spectral :

%u(g") — Mo

L application g +— pg(u(g)) est un homomorphisme de G' dans E' ; en d’autres
termes, pour tout y dans X¢, pour tous g, h dans G, on a x(u(gh)) = x(u(g)) +
X(a(h).

Soit (p, V) une représentation rationnelle irréductible de dimension finie de G,
de plus haut poids restreint x. Pour tout x dans X (A), on note V, 'espace poids
associé a k.

Si K est R (resp. C), on peut choisir un produit scalaire (resp. un produit
scalaire hermitien) sur V' pour lequel les éléments de p(K) sont orthogonaux (resp.
unitaires) et ceux de p(A) symétriques (resp. hermitiens). On munit V' de la norme
associée. Les (Vi) «ex(a) sont en bonne somme directe et, pour tout 2z dans Z, pour
tout s dans X(A), p(z) induit sur V, une similitude de rapport e®*(2)),

Si K est non-archimédien, on peut trouver, d’aprés [16, 6], une norme ul-
tramétrique K-invariante sur V' telle que les (Vi ).ex(a) solent en bonne somme
directe et que, pour tout z dans Z, pour tout x dans X(A), p(z) induise sur Vj
une similitude de rapport ¢** (=)

Dans les deux cas, on dira qu’'une norme sur V ayant ces propriétés est (p, A, K)-
bonne. Pour une norme (p, A, K)-bonne, les éléments de p(K) sont des isométries
et ceux de p(Z) des semi-similitudes. Pour tout g dans G, la décomposition de
Cartan permet donc d’écrire p(g) comme le produit d'une isométrie et d’une semi-
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similitude. En particulier, on a :

lp(g)]| = g¥#()

et, si k est un élément de K tel que g appartienne a kZ K, pour tout v dans V' tel
que p(g)v appartienne a kV;/, on a :

lo(g)oll = el Il -

Dorénavant, on munit, pour tout o dans II, V,, d’une norme (p,, A, K)-bonne
et P(V,,) de la distance associée. Rappelons un résultat de Y. Benoist :

Lemme 2.2.4. (Benoist, [3, 5.1]) Pour toute partie compacte L de G, il existe
une partie compacte M de FE telle que, pour tout g dans G, on ait :

p(LgL) C p(g) + M.

Démonstration. Soit L une partie compacte de GG. Soient g dans G et [y et [5 dans
L. D’une part, pour tout « dans I, on a :

loa@) ™| leal@ |pall) | < loaltigh)ll < ool lIpa(@)l llpal)]

d’ou, par conséquent,
Xa(p(g)) = 2max xa(p(l 1)) < Xal(p(hgl)) < xal(p(9)) + 2max xa(p(D))
et, d’autre part, pour tout x dans X, on a :
x(plliglz)) = x (1)) + x(p(g)) + x(u(l2))
d’ou
De(ullaglz)) = x(u(g)l < 2max [x(u(1))] -

Le résultat en découle, puisque I'ensemble Xo U {x. | @ € 1T} engendre E*. Il

De méme, on peut montrer :

Lemme 2.2.5. Pour tout voisinage V de 0 dans F, il exriste un voisinage W de
e dans G tel que, pour tout g dans G,

p(WgW) C pu(g) + V. O

2.2.6. Sous-groupes paraboliques et variétés drapeaux

Soit 8 C I1. On note Py I’ensemble des K-sous-groupes paraboliques conjugués
a Py de G. L’application
G — Py
g+ gPog !

identifie Py et G/ Py : on peut ainsi voir Pp comme une variété K-analytique.
Comme l'action de K sur Py est transitive, cette variété analytique est compacte.
On note vy 'unique probabilité borélienne K-invariante de Py.
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On note & le sous-groupe Py vu comme un point de Py et Q, la sous-variété
fermée Py — Py &y = Py — P&y de Py.

Pour tout « dans 6, GX, est une sous-variété K-analytique fermée de P (V).
En particulier, le G-entrelacement

Py — H P(V,)
act

qui, & un sous-groupe parabolique de type 0, associe la famille de ses uniques points
fixes dans les V,,, a € 6, est une immersion fermée. 1l identifie & avec (X, )aco €t
Q, avec le complémentaire de [lintersection de son image et de
[Toco P (Vo) =P (V). Pour tout £ dans Py, on note (n)aco son image par
cette application. On munit Py de la distance induite par la distance produit de
[[,coP(Va). Alors, K agit par isométries et G par transformations lipschitziennes
sur Pp.

Soit g dans G. Alors g est #-proximal si et seulement s’il posseéde un point fixe

attracteur dans Py. On note alors 5; 4 e point fixe : il s’identifie a (V{jp (g)) .
A Wel9)) oo

Soit L C Ppy une partie bornée. L’ensemble | J, ot 2z~ 1Lz est encore borné. De
méme, si L C P/ est une partie bornée, I’ensemble Usez+ 2Lz est encore borné.
Pour tout € > 0, on pose :

B ={¢€PolVach dEa,P(VY)) >e)}

Il existe une partie compacte L de Py telle que B§ C L&,.

2.2.7. Sous-groupes Zariski denses

Nous rappelons ici une partie des résultats de [4, 4] et de [5].

Soit I' un sous-groupe Zariski dense de G. On appelle cone limite de I' et on
note Ir le come fermé engendré par A\(T') dans E'T.

Soit P C F. On appelle cone asymptote & P I’ensemble des vecteurs x dans F
pour lesquels il existe une suite de vecteurs (z,,)new dans P et une suite de réels

positifs (¢, )nen tendant vers 0 telles que ¢z, —— x.
n—oo

Par la formule du rayon spectral, Ip est contenu dans le cone asymptote a p(I7).

Théoréme 2.2.6. (Benoist, [4]) Le cone limite Iy de T est exactement le cone
asymptote a p(T") et Uensemble p(T") reste a distance bornée de lp. Le céne lp est
convexe et, si K est R, son intersection avec Fg est d’intérieur non vide dans Fg.

O

On appelle type de I' et on note 6p 'unique partie 8 de II telle que Ip C E;
et que Ip N E; T £ : cest le plus grand # C II tel que ' contienne des éléments
f-proximaux. Si K est R, 6p = II. L’ensemble 0r est stable par ¢ et, si I est discret,
or # 0.

On note FT le sous-espace vectoriel de F/ engendré par [. Nous aurons a utiliser
I'existence dans I' de sous-semi-groupes libres :



578 J.-F. Quint CMH

Proposition 2.2.7. (Benoist, [4, 5.1]) Si 0p £ 0, il existe un réel k > 0 tel que,
pour tout cone C dans E, si Uintérieur dans Fr de C NIp est non vide, il existe
des éléments v, et vo dans I' et des wvecteurs x1 et x9 dans C Nl tels que le
sous-semi-groupe A de I" engendré par 1 et o soit libre et que, si ® est Uunique
homomorphisme de semi-groupes envoyant v1 sur x1 et vy sur xq, pour toul 7y
dans A, mot de longueur | en les générateurs v1 et vya, on ait :

p(y) €C et [|u(y) — 2N < wl. 0

2.3. Produit générique

Dans cette section nous allons démontrer :
Proposition 2.3.1. Soit I' un sous-groupe discret Zariski dense de G. Il erxiste
une application 7 : T x I' = ' ayant les propriétés sutvantes :

(i) 4l existe un réel k > 0 tel que, pour tous vi,v2 dans T,

(7 (1 72)) — plva) — p(y2)ll < .

(ii) pour tout réel R > 0, il existe une partie finie H de ' telle que, pour
V172,71, 72 dans T, avee ||p(y1) — p()ll < R et [lu(vy2) — p(9)ll < R,

(v, 72) = 7(V1,72) = (v € H et vy € Hys).

L’idée de la construction est d’écrire, pour v1,v2 dans T', m(v1,v2) = Y1 v v 72
ol fy, , est choisi dans une partie finie de I" de fagon a vérifier les hypotheses des
lemmes 2.3.3 et 2.3.8.

Dorénavant, on fixe, pour tout élément g de G, un élément z, de ZT et des
éléments kg et [, de K tels que g = kgz4l,.

2.3.1. Un calcul de composante de Cartan

Nous effectuons ici le calcul qui permet de valider le point (i) de la proposition
2.3.1.

Soit (p, V) une représentation rationnelle irréductible de dimension finie de
G munie d'une norme (p, A, K)-bonne. On munit P (V') de la distance associée.
Rappelons que, pour tout z dans Z7, si, pour tout « dans I, a(v(2)) > 0, p(z)
est une semi-similitude avec VP%) = VH+ et V;Z‘z) = Vi et que, pour tout g dans
G, pour tout v dans V tel que p(g)v appartienne & kgVﬁr7 on a :

g)

llo(

Pour tout g dans G, on note :

M -+ m _ —1y<
VM — k Vi et VI = VS

ol = lle(@)l Il

M m M m
Pour a dans II, on notera V) et V' pour V)" et V" .
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Si K est R ou C et si, pour tout o dans IT, a(u(g)) > 0, ij}g et V" ne dépendent
pas des kg et [, choisis.
En appliquant le lemme 2.1.4 aux représentations de G, on obtient :

Lemme 2.3.2. Soit (p, V) une représentation rationnelle irréductible de dimen-
sion finie de G munie d’une norme (p, A, K)-bonne. Pour touse > 0 et g dans G,
on a:

YoeV —{0} (d(Ke,P(V7)) =)= (llgoll = llp(a)ll o]])-

Démonstration. Comme K agit par isométries sur V, il suffit de démontrer ce

résultat quand g est dans Z*. Alors, p(g) est une semi-similitude et V;E‘g) est

contenu dans V5. Le résultat est alors une conséquence du lemme 2.1.4. O

Nous sommes a présent en mesure d’effectuer le calcul de la composante de
Cartan du produit générique. L’hypothese sur les distances dans 1’énoncé ci-dessous
traduit le fait que f écarte suffisament les uns des autres les ensembles de drapeaux
associés a g et a h.

Lemme 2.3.3. Soient 0 C 11, r > 0 et F' une partie compacte de G. Il eriste un
réel Kk > 0 tel que, pour tous g, h dans G, pour tout f dans I,

(Vaeb d(fvy5.P (V) =r) = (lpe(ulgfh) — m(g) — p(h)| < ).

Démonstration. Comme on I’a vu au paragraphe 2.2.5., pour tous g et h dans G,
pour tout f dans F', pour tout x dans X¢, on a :

x(ulgfh)) = x(u(g)) + x(p(f)) + x(pu(h))
et, donc,

Ix(p(gfh) — ulg) — u(h))| < max|x(u(£))l-

Par ailleurs, d’apres le lemme 2.3.2, pour tout g dans G, pour tout « dans @,
on a :

Yoe Vo (d(Ko,P (V7)) 27) = (lgvll = rllpal(o)ll Io]])-
Soient g et h dans G. Soit f dans F' tels que, pour tout o dans 6, on ait :
d(fVan P (V) 2.

(o4

Soit a dans #. D’une part, on a :

lealgf PN < llpal@) I lpalP) lpa (£l
< llpal@) loa(h) | max [l oo (K)

donc,

Xa(u(gfh) — plg) — p(h)) < maxxa(p(k)).
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D’autre part, soit v un vecteur non nul de V,, tel que hv € VM . On a:

lpalgfh)ell = 7 loa(@)ll lpalfR)oll
> 7 [lpa(@ [|oa(F) M| lpalh)o]
> lloa(@)ll loa ()| lpa® ]l

Il vient :

lontatl = (s loa®) ) Dol loali]

Xeplgfh) = plg) = p(h)) > log, r — maxxa(u(k™")).

Le résultat en découle, puisque, d’apres le lemme 2.2.3, pour tout z dans E, pg(z)
est entierement déterminé par les x(z), pour x dans X¢o U {x, | @ € 6}. O

2.3.2. Un résultat de finitude

Rappelons que, si V' est un K-espace vectoriel, une famille de droites (X;);cs
est dite étre en position générale si et seulement si pour toute partie finie K de J
de cardinal < dimV, la famille de droites (X;);cx est en somme directe. Si J est
fini, ’ensemble des familles de droites en position générale est un ouvert de Zariski
de P(V)’.

Le résultat suivant est dit & H. Abels, G.-A. Margulis et G.-A. Soifer ([2, 4.7]). 11
nous permettra de trouver, dans un sous-groupe Zariski dense I de GG, une partie
finie I telle que, étant donnés deux éléments g et h de G, il existe f dans F
vérifiant les hypotheses des lemmes 2.3.3 et 2.3.8.

Si (p, V) est une représentation rationnelle irréductible et de dimension finie
de G, de plus haut poids restreint , on note #, I’ensemble des o dans II tels que
X — « soit un poids de p.

Proposition 2.3.4. (Abels—Margulis—Soifer) Soit I un sous-groupe Zariski dense
de G. Soit (pi, Vi)icr une famille finie de représentations rationnelles, irréductibles
et de dimensions finies de G, chacune munie d’une norme. On suppose que, pour
tout i dans I, on a 0, C Op. Alors, il existe une partie finie F' de I' el un réel
7 > 0 ayant la propriété suivante : pour toutes familles (X;);; et (Y3),o; ot, pour
tout © dans I, X; est une droite et'Y; un hyperplan de V;, il existe f dans I tel
que, pour tout i dans I,

d(fXi,P(Y:) >

Démonstration. Soit h un élément Op-proximal de I' : pour tout 4 dans I, p(h) est
proximal dans P (V;). Notons, pour simplifier,

Vi =v"t

< __ <
i =Vipm Vi =Y,

i,04(h)
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Soit | € N. Par récurrence, comme I" est Zariski dense dans G, qui est Zariski
connexe, et comme les (p;, V;)ier sont irréductibles, on peut construire une famille
(95)1<j<i d’éléments de T telle que, pour tout i dans I,

(i) la famille de droites (g;V;")1<j<; est en position générale.
(ii) la famille d’hyperplans (g;V,~)1<;<; est en position générale.
(iii) pour tous j, k dans [1,], ¢;V;" ¢ gxV,~.
Supposons [ > 3., dimV;. Alors, on peut trouver r > 0 tel que, pour toutes

familles (X;),.; et (Yi);c; oli, pour tout i dans I, X; est une droite et Y; un
hyperplan de V;,

(i) il existe j dans [1,!] tel que, pour tout i dans I,
4(X P (V) 27
(ii) il existe k dans [1,!] tel que, pour tout i dans I,
d (Vi P (V) 2 7
(iii) pour tous j, k dans [1,{],
d(g;V;", P (Vi) 2 7.
Pour tout j dans [1,!], on pose sz =g,V et sz = g;V;<.

Choisissons, pour tout j dans [1,/], un entier n; suffisament grand pour que,

pour tout i dans I, p(g;h"i g;l) envoie
r LT
B (]P V35), 5) dans b (Vi,j7 5)

et posons, pour tout j dans [1,1], h; = gjh"fgjfl.

Posons ' = {hyh;|1 < j,k < [} et montrons que la partie F' et le réel
vérifient les conclusions de la proposition.

Soient, pour tout ¢ dans I, X; une droite de V; et Y; un hyperplan de V;. Il
existe j dans [1,{] tel que, pour tout ¢ dans I,

(X B(VS) 27

S

et, par conséquent,

T
d (X, Vi) < 5.

Par ailleurs, il existe k dans [1,[] tel que, pour tout ¢ dans I,
a (Vi P (%) 27
Or, pour tout ¢ dans I, comme
a(viP(vis)) zn

on a
o{orer (7)) 2

N3



582 J.-F. Quint CMH

et, donc,
a (i Xi,P (Vi) < a:
Il vient :
d (hiehy X, P(Y)) > 3,
ce qu’il fallait démontrer. (Il

Déduisons-en un résultat qui sera utilisé dans la démonstration du lemme 2.3.8 :

Corollaire 2.3.5. [l existe ¢ > 0 tel que, pour toutes familles (Uy)aemn et
(Wa)actr, o, pour tout o dans 11, U, et W, sont des hyperplans de V,,, il existe
& dans P avece, pour tout o dans 11,

(e, P(Uy)) > € et d(€a, P(W,)) > &.

Démonstration. Soit r > 0 comme dans la proposition 2.3.4 avec I' = G et, comme
famille de représentations, la réunion de deux copies de (V,, ). Soient, pour tout
a dans I1, U, et W, des hyperplans de V,,. Alors, il existe f dans G tel que, pour
tout « dans II, on ait :

A(f X0, P(Uy)) Zret d(fXo,P(Wy)) >
Le point £ = f& convient. [l

2.3.3. Un contréle de distance

Ce paragraphe et le suivant ont pour but d’établir les résultats intermédiaires
permettant de démontrer le point (ii) de la proposition 2.3.1. Nous commencons
ici par généraliser des phénomenes de géométrie a courbure strictement négative.

Soit toujours @ C II. On note Ky le groupe Py N K et, pour tout C > 0, on
pose

E§ ={z e Et|Nae€ 6 ofz)<C}

ot Z§ — L (ES).

Dans [1, 3.5], P. Albuquerque démontrait une généralisation du lemme des
ombres de Sullivan. Le lemme suivant est la contraposée de ce résultat : & partir
d’une information sur les actions d'un élément k de K et d’un élément z de Z sur
une variété drapeau, il permet de controler la distance entre z et kz.

Lemme 2.3.6. Pour tout C >0 el pour toute partie compacte L de PY, il existe
une partie compacte M de G telle que, pour tout z dans Z§ , pour tout k dans K,

(kép € L&) = (¢ 'kz € M) .

Démonstration. Donnons-nous C' et L comme dans 1’énoncé. On peut supposer
que, pour tout z dans Z T, 2Lzt C L.
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Pour tout z dans ZT et pour tout p dans L, choisissons k(z,p) dans K et
q(z, p) dans Pr tels que zp = k(z,p)q(z,p), i.e. k(z,p)q(z, p) est une décomposition
d’'Iwasawa de zp.

Pour z dans Zt et p dans L, on a : q(z,p)2 = = k(z,p) " 'zpz~' € KL et, donc,
la partie de Prg

L'={q(zp)z Mz € Z",pe L}

est bornée. Par conséquent,
L"={z"Yq(z,p)lz€ Z*,pe L} C U P 4
z€Z+
est bornée. Or, pour tout z dans ZT, pour tout p dans L,
27 k(2 )2 = 27 (2pq(2,p) "z = p(z " a(z,p)) T € L(LY) T
Par ailleurs, ’ensemble
R = U 2 Kpz

zEZec

est borné.
Soient alors k dans K et z dans Z§ tels que kg € zL&y. Ecrivons k&y = 2p&y
avec p dans L. On a :

k&o = k(2,p)&o
i.e. k € k(z,p)Kp et, donc,
27 kz € (27 k(2,p)2) (27 Kpz) € L(L")1L". O

Pour tous g dans G et ¢ > 0, on note
B;,=1,'B;.

Nous faisons jouer a I'ensemble gBj | le role des ombres de [18] et [1].

L’énoncé du résultat suivant signifie que, si un élément de GG a une composante
de Cartan proche de la facette associé a 6, on peut reconstituer cet élément, a un
compact pres, a partir de sa composante de Cartan et de son ombre dans Pp.

Proposition 2.3.7. Pour tous C > 0 et ¢ > 0, il existe une partie compacte
M de G telle que, pour tout 6 C I, pour tous g,h dans G avec u(g) € Ef et
p(h) 2c plg), si gBg ,NhBg ), # 0, alors on a :

g e khng

Démonstration. Choisissons une partie compacte L de P telle que B C L&y et
que, pour tout z dans Z*, 2Lz~ C L. Posons :

L= U 2 'Lz

2€Z
Vaell |a(v(z))|<C
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L’ensemble L’ est encore borné.
D’apres le lemme 2.3.6, on peut trouver une partie compacte M de G telle que,
pour tout z dans Zec , pour tout k dans K,

(k& € 2L'&p) = (kz € 2M).

Par ailleurs, on peut trouver une partie compacte M’ de G telle que, pour tout
z dans Z§, 2 1Kez C M.

Soient g et h comme dans 1’énoncé. On a :

ng,g & nggLfg et th,h C knznLép.
Comme pu(h) = v(zp) >c plg) = v(zg), il vient :
knznL&o C knzgL'&o
et, donc,
nggL/ge n kthL/gg 7é @

Soit & € kgzgL'Eo M kpzgL'Sp. Soit my dans K tel que & = kym1p.
On a :
mi&g € ZgL/£9

et, donc,
my1zg € oM ou encore kymyz, € gKM.

Soient b’ = kpzg4l, et mo dans K tels que § = kgmae. On a, de méme,

khﬂ’LQZg e WKM.

Or, comme
kgm &g = &£ = kpma&y,
on a :
kgml € kpmoKop.
1l vient :
g€ kymiz,M 'K C kymaKozyM 'K C W KMM' MK, O

2.3.4. Produit générique dans G

Le résultat suivant combine la proposition 2.3.7 et les raisonnements de la
section 2.1.

Lemme 2.3.8. Soient 6 C II, C > 0, r > 0 et I' une partie compacte de G. Il
exriste une partie compacte M de G ayant la propriété suivante : soient g, h dans

G et f dans F'; si
1i(g), u(gfh) € E§ et siVae 0 d(fVY, PVE)) =,

a,g
alors on a :
g e kgthgM.



Vol. 77 (2002) Divergence exponentielle des sous-groupes discrets 585

Ce lemme signifie que, si f, g et h sont des éléments de G et que f met
les ensembles de drapeaux associés a g et h en position suffisament générale, on
peut retrouver g, & un compact pres, & partir de sa composante de Cartan et de
gfh. Comme on sait, d’apres le lemme 2.3.3, que, quitte a augmenter C, sous
nos hypotheses, on a p(gfh) >¢ plg), on va chercher a appliquer la proposition
2.3.7, et, donc, & montrer que, pour un € > 0, on a gBj N (gfh)B;gfh £, ou
encore B N fhB ¢ = (). Pour montrer cette derniére propriété, on appliquera
le lemme suivant a 5 :

Lemme 2.3.9. Soit (p, V) une représentation rationnelle irréductible de dimen-
sion finie de G, munie d’une norme (p, A, K)-bonne. Pour tousr >0 ete >0, il
existe un réel n > 0 tels que, pour tout g dans G, pour tout hyperplan W de V| si
§(VMP(W))>r, ona:

g b (®(W),n) Cb(P(g'W),e).

Démonstration. Comme K agit par isométries sur P (V), il suffit de le démontrer
pour g dans Z 7. Alors, p(g) est une semi-similitude et notre résultat est le lemme
2.1.6. O

Démonstration du lemme 2.8.8. Comme G agit par transformations lipschitziennes
sur les P(V,), a € II, on peut trouver v’ > 0 tel que, pour tout f dans F', pour
tout o dans 0 et pour tous X,Y dans P (V,,), on ait

(d(FX,Y) 2r) = ([@d(X, [7Y) 2 0).

Soit £ > 0 comme dans le corollaire 2.3.5.
D’apres le lemme 2.3.9, il existe un réel 0 < n < ¢ vérifiant la propriété sui-
vante : soient g dans G et, pour tout o dans 6, un hyperplan W, de V,, avec

d(P (Vo%) P (Wa)) > ",
alors, on a

VYaed g (P (W,)),n) CbP (97 Wa),e).

Il existe un réel 0 < w < 5 tel que, pour tout « dans @, pour tout hyperplan
W de V,, pour tout f dans F', on ait :

@ (W), @) Ch(f P (W), ).

Par ailleurs, d’apres le lemme 2.3.3, quitte & augmenter C, on peut supposer
que, pour tous g, h dans G, pour tout f dans F', si

Vaeb d(fVY,P(VD)) =,

onapg(p(gfh)) >c pe(p(g)). Alors, si p(g), u(g fh) sont dans EF', on a u(gfh) >ac

1(g)-
Enfin, d’apres la proposition 2.3.7, il existe une partie compacte M de G telle

que, pour tout @ C I1, pour tous g, h dans G avec u(g) € E§ et u(h) >3c ulg), si
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9B ,NhBj, # 0, alors on a :
g € kpzgM.
Soient g, h dans G et f dans F avec u(g), u(gfh) € E§. Supposons que l'on a :
Vaed d(fVy,.PVD)) =,
On a u(gfh) >3c 1(g). Par ailleurs, pour tout o dans €, on a :
Wb (F B (V) n) b (R (V) )
ce qui implique :
Rt (P (Vof’fg) ,@) Ch(h tf P (Va"fg) JE).
On peut trouver £ dans Py tel que, pour tout « dans 6, on ait :

d (&, P (V) 2eetd (&, b TP (VY)) > &

On a alors :
§€ By g C Bogp et fhE € By,
ou encore :
gfh§ € (gfh)Bg ¢ N 9By,
et, par conséquent, d’apres la proposition 2.3.7, g € kg2, M. (Il

2.3.5. Produit générique dans I

Les lemmes 2.3.3 et 2.3.8 et la proposition 2.3.4 nous permettent maintenant
de conclure :

Démonstration de la proposition 2.3.1. D’apres le théoreme 2.2.6, on peut trouver
un réel C' > 0 tel que, pour tout v dans I', pour tout « dans 67, a(u()) < C.

La famille (pa, Va)aeep vérifie les hypotheses de la proposition 2.3.4. 1l existe
donc une partie finie F' de I'" et un réel » > 0 tels que, pour toute famille
(Uaawoz)aeer oll, pour tout « dans Op, U, est une droite et W, un hyperplan
de V,, il existe f dans F' tel que, pour tout « dans 6,

d(fUn, P(Wy)) > 1.

Soient 1, v2 dans I'. On peut trouver un élément f,, ., de I' tel que, pour tout o
dans 0, on ait :
d (f71772 Vo%yg? P (VOTW» Z e
En d’autres termes, le triplet (g, b, f) = (71,72, fy, ~,) Vérifie les hypotheses des
lemmes 2.3.3 et 2.3.8.
On pose m(v1,72) = Y1 fy1 .72 Comme p(T") est & distance bornée de Fg,, il
existe, d’apres le lemme 2.3.3, un réel £ > 0 tel que, pour tous v1,y2 dans I,

(1, 72)) = pva) — p(2)ll < &
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Par ailleurs, d’apres le lemme 2.3.8, il existe une partie compacte M de G telle
que, pour tous 71,72 dans I', on ait y1 € ky(y, )2y, M. En particulier, soient
R >0 et vi,72,71, 72 dans T, avec [|u(v1) — p(v)ll < R, [lu(r2) — p(9)] < R et
m(v1,72) = 7(71, %) =73- On a:

Y1 € kyyzy, M et 4] € ks 2y M.

Il vient
v € M~ (b(0, R)M.
L’ensemble H = M 'y~ 1(b(0, R))M NT est fini et 1'on a :

%= foy () T € FTIH T P, O

3. Mesures coniques

Cette partie est indépendant de la premiere. Nous y traitons d’un point de
vue abstrait le probleme du calcul de I'exposant de convergence d’une mesure
de Radon sur un espace vectoriel. Nous restreignons ensuite notre attention a
certaines classes de mesures : si I' est un sous-groupe discret Zariski dense de G,
la mesure de comptage yET d,(y) vérifiera les hypotheses que nous ferons.

Soit & un R-espace vectoriel de dimension finie » et v une mesure de Radon
positive sur £.

3.1. Divergence exponentielle

Dans cette section, nous abordons d'un point de vue général I’étude des expo-
sants de convergence de v. Nous commencons par donner des méthodes de calcul
du type de la formule de Hadamard. Nous associons alors & v une fonction ho-
mogene ¥, qui contient toutes les informations sur la divergence exponentielle de
v dans chacune des directions de £. Enfin, nous introduisons un vocabulaire pour

I’étude particuliere des exposants de convergence associés aux formes linéaires de
&

3.1.1. Exposants de convergence et formules de Hadamard

Etant donnée une norme N sur &, pour tout réel ¢, on pose :

LN = / e~ N@dy(z)
&
et :
TN =inf{teR|L)(t) <o}
= sup {t ER‘L{,V(t) =00} € RU {+00, —oc}.
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On 'appelle exposant de convergence de v relativement a N.
Pour tous z dans £ et a < b dans R, on note b" (z, a) la boule de centre z et
de rayon a relativement & la norme N et CV(a,b) la couronne :

{zefla< N(z)<b}.
Donnons quelques formules de Hadamard pour le calcul de 7 :

Lemme 3.1.1. Pour tous a >0 etb,c >0 avecb+c>a, ona :
N

N _
N 1 lim sup log (v (CN(na — b, na + c))) .

a4 n—oo n

Pour tous 0 <a<bete,d>0, 0ona:

1 o — b+d
min (aT,fv,lefV) < limsup 8 (V( (na—c,mb+ )>)

< max (CL’7'1£V7 bT,fV) }
n—oo n

SN .
Sit) >0, ona:

l{v ~limsup log (1/ (bN(O, a))) '

T
a—0o0 a

Démonstration. Soient a > 0 et b,c > 0 avec b+ ¢ > a. 1l existe un entier ng > 0
tel que, pour tout = dans &,
0 < card {n € Njz € CN(na — b,na +¢)} < no.

Il vient, pour tout ¢ dans R,

1 o0
L el maxv0) $™ 3, ((CV (0 — b, na + ) =70 < / N @) 4y (z)
10 n=0 €

£ gl MR8} Z v ((CN(na —b,na + c)) g e
n=0

d’oll la premiere formule.
Soient 0 < a < bet ¢,d > 0. Comme a < b, il existe R > 0 tel que

£-bN(0,R)C | J CN(na—c,nb+d).
n>0

D’autre part, pour tout entier n > 0, pour tout = dans CV (na — ¢,nb + d), pour
tout m >0, on a :
a

(xECN(ma—qmerd)):>(ma—c§nb+d):> <m§M>

et, donc,
nb+c+d

card {m € N*|z € CN(ma —c,mb+d)} <
a
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Il vient, par conséquent, pour tout ¢ dans R,

o0 1
—|t| max(c,d) N _ —n max(at,bt)
ae ngzlinb—i—c—i—dl/ (CY(na—c,mb+d))e

< / e~ N @) dy(z)
E—bN(0,R)

589

xf CM max(ec,d) Z v (CN(TLC& — B nb + d)) e " min(at,bt)7
n=1

d’ou la deuxieme formule.
Enfin, on a :

Tl =

log (1/ (bN(O7 n)))

N f—
V' = lim sup log {v (C"(n —1,m))) < limsup

n—oo n n—o0 n

< lim sup

log (v (b™(0,a))) .

a—o0 a
Supposons 7 > 0. Soient ¢ et s avec

N
0 <t < s<limsup log (V (b (O7a))).

a— o0 a

Pour tout réel a > 0, il existe b > a tel que, pour tout ¢ > b, on ait :

e — e > v (bN(0,a))

et, donc, il existe ¢ > b tel que l'on ait :

v(CN(a,c)) > v (BN (0,¢)) —v (BV(0,a)) > e — v (BV(0,a)) > €.

On peut donc construire une suite (ay )nen de réels > 0 avec, pour tout n dans N,

i1 > ap +1 et v (CV(an +1,an41)) 2 et

Il vient alors :

/ e NGy 2 3 (0N (o 4 Tpan 7)) a0 — 03
£ n=0

done ¢ < 7V, d’ou la troisieme formule.

De ces formules, on déduit immédiatement :

Corollaire 3.1.2. Soient v et v/ des mesures de Radon sur £. Sl existe une

partie compacte M de &€ et un réel w > 0 tels que, pour tout borélien B de &,

V'(B) <wv(B+ M),

alors, pour toute norme N sur &£, on a Tlf\f < Tlfv.
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3.1.2. Indicateur de croissance

Soit N une norme sur £. Soit C C £ un coéne ouvert. On note Tévl/ I’exposant
de convergence relativement & N de la mesure v|c.
Pour tout z dans £ — {0}, on pose

¥, (z) = N(z)inf TéYw

la borne inférieure étant prise sur I’ensemble des cones ouverts C de £ contenant =z,
et on pose 1, (0) = 0. Cette fonction ne dépend pas de N. On I’appelle indicateur
de croissance de v. Elle est positivement homogene, i.e. pour tous ¢t > 0 et x dans

E, on a ¥, (tr) = t,(x).
La fonction v, permet de calculer tous les exposants de convergence de v :

Lemme 3.1.3. Soit 0 : £ — R une fonction homogéne et continue.
Si, pour tout x dans £ — {0}, 6(z) > ¥, (z), alors on a :

/e_e(z)dy(x) < 0.
&

Sl existe un z dans £ — {0} tel que 0(z) < ¢, (z), alors on a :

/efe(z)du(x) = 00.
£

Démonstration. Soit N une norme sur &.

Supposons que, pour tout z dans & — {0}, 8(z) > v, (x). En particulier, pour
tout x dans &, ¢, (z) < oo. Soit  dans £ — {0}. 1l existe un coéne ouvert C,
contenant x et un réel ¢, tels que

N(x)'ré\i# < N(z)ty < 0(z).

Il existe un céne ouvert D, C C, contenant z et tel que, pour tout y # 0 dans D,,
on ait :

N(y)t. < 0(y)

et, donc,
Ny, < N, < N(yt. < 6(y).

Soient z1,...,z, dans £ tels que I'on ait :
E-{0}CD,,U...UD,, .

Il vient : .
/ e @ dy(z) < Z/ e =N Wdy(y) < .
£—{0} i=1 sz’

Supposons & présent qu'il existe z dans £ — {0} tel que 8(z) < ¥, (z). On peut
trouver un céne ouvert C de £ et un réel ¢ tels que, pour tout y # 0 dans C,

Yy(z)
N(z)

0(y) < N(y)t < N(y) <Ny,
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Il vient :

/efe(y)dl/(y) Z/eitN(y)dV(y) = 0. O
&

C

Corollaire 3.1.4. Pour toute norme N sur £, on a :

'rlfv = sup ¢V($) |
vce—q0p N(z)
Corollaire 3.1.5. Pour toute fonction 8 : £ — R homogéne et continue, on a :
Qpeeu = wu + 0. O

D’apres le corollaire 3.1.2, on a :

Lemme 3.1.6. Soient v et v/ des mesures de Radon sur £. Sl existe une partie
compacte M de £ et un réel w > 0 tels que, pour tout borélien B de &,

V'(B) <wv(B+ M),
alors ¥, < 1hy,. O

On suppose dorénavant qu’il existe une norme N sur & pour laquelle 7.V < oo,
c’est-a-dire que, pour toute norme N sur &, 7Y < oo.

Lemme 3.1.7. La fonction v, : € — RU {—o0} est semi-continue supérieure-
ment.

Démonstration. Soit N une norme sur £.
Soit & # 0 dans £ et (2, )nenw Une suite tendant vers z. Soit C un cone ouvert
contenant x. Pour n suffisament grand, z,, appartient aussi a C, et, donc, on a :

PYu(zn) < N(xn)Té\,[w

1l vient :
limsup v, (z,,) < limsup (N(mn)’]'é\’,y> = N(x)ﬂ-é\fy.

Par conséquent, on a :
limsup 4, (z) < ()

n—oo

et, donc, 9, est semi-continue supérieurement en .
En particulier, il existe un réel M tel que, pour tout = dans £ avec N(z) = 1,
Py(z) < M. On a alors :

limsup 4, (y) < limsup (tM) =0 = +,(0)
yel ,y—0 teRy ,t—0

et, donc, v, est semi-continue supérieurement en 0. (Il
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3.1.3. Convergence suivant les hyperplans

Pour toute forme linéaire ¢ dans £*, on pose :

L, () :/Ee*"’(z)dl/(x).

D’apres 'inégalité de Holder, 'ensemble {¢ € £*, L, (¢) < 0o} est convexe.
Si N est une norme sur &, on pose

o = inf N(p).
peE™*
L, (p)<o0
Pour toute forme linéaire ¢ dans £*, on a :
/ew(z)d,/(x) > /efN(w)N(w)dy(x)

& &
et, donc, o > 7V,
Proposition 3.1.8. Sl existe une forme linéaire @ dans E* telle que, pour tout
x dans € — {0}, p(x) > ¢, (x), alors, pour toute norme N sur &, on a :

ol = inf N(p).
pes™*
P>ty

Démonstration. D’apres le lemme 3.1.3, on a toujours :
oY > inf N(p).
pek”
P>y

Réciproquement, soit ¢ une forme linéaire majorant strictement ¢, en dehors de
0. Alors, pour toute forme linéaire ¢ > 1, pour tout ¢ dans ]0, 1], two + (1 —¢)p
majore strictement ), en dehors de 0. Par conséquent, d’apres le lemme 3.1.3, on
%7

Ly(tpo + (1 —t)p) < oo
et, donc,

N(two + (1 —t)p) 2 0.
Il vient, quand ¢ — 0,

N(p) 2 a7,

ce qu’il fallait démontrer. (Il

3.2. Mesures a croissance concave

Soit toujours N une norme sur £. Nous dirons que v est & croissance concave
si et seulement s’il existe des réels «, 3,7 > 0 tels que, pour tous z,y dans &,

v (bN(x +y, a)) >y (bN(LB)) v (bN(y, B)) .
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Cette condition ne dépend pas de la norme choisie.
Dans cette section, nous allons démontrer :

Théoréme 3.2.1. Si v est a croissance concave, son indicateur de croissance est
concave.

Le lecteur non intéressé par la démonstration de ce théoreme peut directement
passer a la section 3.3.

3.2.1. Evaluations préliminaires
Commencons par donner un lemme évident de recouvrement :

Lemme 3.2.2. Soient N une norme sur &€ et 5 > 0. Il existe un réel M > 0 telle
que, pour tout x dans & et pour tout a > 0, il existe un entier

p<M(+a)
et des points zq,...,xp de & avec

P
WY (z,a) C | bV (21, ). O

i=1
L’idée générale de nos preuves est d’utiliser le lemme 3.2.2 pour estimer la
mesure d’une couronne C¥(a,b), 0 < a < b, & un facteur (b+ 1)" pres, & laide de
la mesure d’une boule b" (z, 3), pour un certain z. Le facteur (b + 1)” ne jouera

pas de réle du point de vue de la divergence exponentielle.
Nous commencons par itérer la formule de définition :

Lemme 3.2.3. Supposons v a croissance concave. Soit N une norme sur & et
soient o, 3, tels que, pour tous z,y dans I,

v (6N (@ +y,a)) 2w (07 (z,8) v (b7 (y, 0)) -

Alors il existe des réels 6 > 0 et n > 0 tels que, pour tout entier k > 2 et pour
tous x1,...,xy dans &, on ail :

v (0N (z1+ ...+ 2, (k= Da+ (k—2)8))
> 0nFv (WY (21, B)) ... v (b (2, B)) -

Démonstration. Soit N une norme sur £. Donnons-nous «, 3,y comme ci-dessus
et M comme dans le lemme 3.2.2.

Posons
1

M(a+p+1)r

et montrons par récurrence sur k > 2 que, si { est le plus petit entier tel que 2! > k,

77:
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alors, pour tous zy, ...,z dans £, on a :
v (0N (z1+ ...+ 2k, (k — Da+ (k—2)8))
k—1,k—2

Tn N N
2 (22(l71)+4(172)+8(673)+...+2l*1)rV(b (@1,8)) v (b7 (2, 8))

ce qui implique le lemme.

Pour k = 2, il s’agit juste de la définition de la croissance concave.

Pour k = 3, c’est un raisonnement analogue a celui fait ci-apres.

Soit donc k > 4 et supposons la formule vraie pour tous les entiers < k. Soient
I le plus petit entier tel que 2! > k et zq,...,z; dans &.

Si k est pair, on pose h = % ; 8'il est impair, on pose h = % Dans les deux
cas, on a

e 3L ) S TE Y

D’apres le lemme 3.2.2, il existe un point y; dans bY (z1 +... +xp, (h—1)(a+ )
tel que I’on ait :
v (0N (z1+ ...+ 2h, (b= Da+ (h—2)8))

<M+ (h—Da+ (h—2)8) v (BN (41, 8))

27"(171)
< .
n

De méme, il existe un point yo dans b™ (2,11 + ... + 2, (k — h — 1)(a + 3)) tel
que 'on ait :

v (b (@hi1 + .oz, (B —h—Da+ (k—h—2)B3))
<MOA+k=h—=Datk—-h—-2)8)v (" (y,3)

27’(171)
< .
n
On a alors :
v(b™ (y1+ y2, @) = w (b (y1, B)v(b" (y2, B))
2
v

Zmu(bN(ler...erh,(h—1)a+(/€—2)5))
v (WY (@h1 + oot g, (E—h—Da+ (k—h—2)p3)).

Donc, par récurrence,

v (6N (y1 + 2, )
g N N
2 (22(171)+4(172)+8(173)+...+2l*1)rV<b (21, 8)) v (b" (2, 8)) ,

d’ou le résultat, puisque l'on a :

Y (y1 +y2, @) C WY (21 + ..+ ap, (b — Da+ (k- 2)B).
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Par récurrence, la formule est vraie pour tout k& > 2. (Il

Rappelons que, si (t,),cn est une suite de nombres réels avec, pour tous n,p
dans N, tp1, > ¢, + tp, alors la suite (%tn)n21 converge dans R U {—oo}. Les
deux lemmes qui suivent s’inspirent de la démonstration de ce résultat usuel pour
minorer la limite inférieure du logarithme de la mesure des couronnes.

Lemme 3.2.4. Supposons v a croissance concave. Soit N une norme sur E. 1l
eriste des réels 0,n,k > 0 ayant la propriété suivante : pour tout cone ouvert C
de &, pour tout x £ 0 dans C et pour tout € > 0, il existe un céone ouvert D C C
contenant x et un réel ag > 0 tels que, pour tous réels a > ag et b > 0, pour tout
entier naturel m et pour toute partition m = ny + ...+ np, de m, on ait :

V(CN((l—E)ma—(p—l)n,ma+pb+( - 1r)NC)

P
Z( P (1+nka+b H (Y (nka, nka+b) ND).
k=1 i

Démonstration. Il suffit de montrer la propriété pour des partitions m =ni+...+
nyp de l'entier m avec p > 2.

Soit N une norme sur &, o, 3,y comme dans la définition de la croissance
concave, M comme dans le lemme 3.2.2 et 0, comme dans le lemme 3.2.3.

Soit C un cone ouvert de £, z un vecteur unitaire de C et 0 < & < 1. Il existe
un cone ouvert convexe D de & contenant x tel que D — {0} C C et que, pour tout
vecteur unitaire y de D, N(y — z) < .

Soient z1, ..., x,, des vecteurs de D. Pour tout i dans [1,p], on a :

N(z; — N(zi)z) <eN(z)
et, donc :
N({(z1+...42p) — (N(@1)+ ...+ N(zp))z) <e(N(z1)+ ...+ N(zp)).

1l vient :
N(wy+ ...+ ap) = (L =) (N(@) + ...+ Nlzy).

11 existe un réel ag > 0 tel que, pour tout y dans D avec N(y) > 1 —¢, on ait :

By <y,°‘+2ﬁ> cc.

ao

Alors, pour tout a > ag, pour tout b > 0 et pour tout entier n, on ait :
b (CN((1 - e)na,na+b)ND, (a+28)n) CC
Soient a > ag et b > 0. Pour tout entier n, choisissons un point z, dans
N (C'N(na7 na+b)ND, ,6’) tel que 1’on ait :
1

v (WY (2, B)) > mv (CN(na,na +b)ND).
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Soit m un entier naturel et m = nq + ... 4 n, une partition de m avec p > 2.
On a:

v (0N (@, + ..+ 2y, (p— D+ (p—2)3))

> o [[ v " (@ns. B)

k=1
onP

P
N
= v (TThe (1 + npa + )" [1v(c¥a,niatb)nD).

k=1

Or, on a :
By oo Ity B b (CN (1 — e)ma, ma + pb) N D, pp)
et, donc, d'une part,
b (@ny + ...+ @y, (0~ Do+ (p — 2)B)
c bV (CN((1 - e)yma,ma+pb)N D, (p—1)(a+2B)) CC
et, d’autre part,
b (@ny + .+ Ty, (p — D+ (p— 2)P)
C CN((1 —e)ma— (p = 1)(a+ B),ma+pb+ (p — 1)(a + 5)).
Il vient :
v (CN((1 —e)yma — (p — 1)(a+ B),ma+pb+ (p— 1)(a+ B))NC)
> on”
~ Mr(J[P_,(1 +nga+b)

P
H v (CN (nga, nga+b)N'D) .

k=1

O

Pour les mesures & croissance concave, on a donc un complément aux formules
du lemme 3.1.1 :

Lemme 3.2.5. Supposons v a croissance concave. Soit N une norme sur €. Pour
tout cone ouvert C de £, pour tout  # 0 dans C et pour tout € > 0, il existe ag > 0
tel que, pour tout a > ag, on ait :

! I;Lrggf log (1/ (C’N(n(l — ET)La, n(l+e)a)N C)) % z]ﬁ\},((;c))

Démonstration. Soient N une norme sur £ et &, 6, comme dans le lemme 3.2.4.
Soient C un céne ouvert de £, x un vecteur non nul de C et ¢ > 0.

D’apres le lemme 3.2.4, on peut trouver un céne ouvert D C C contenant x
et un réel agp > 0 tel que, pour tout a > ag, pour tous m et n entiers > 1, si
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m = pn + q est la division euclidienne de m par n, alors on a :

v (CN((1 —&)ma —pk, (m+p+ Da+pr) N C)
onptt

&y P
A+ (n+ Da)P(L+ (g + Da)) (CY(na, (n+1)a) N D)

=1
v (C'N(qa7 (¢g+ Da)N D) .

Soit ng > 0 tel que
K

1
<ecetque — <e.
apno 0

Soit a > ag. Pour tous m,n > ng, si m = pn + ¢ est la division euclidienne de m
par m, on a :

977P+1
1+ (n+1Da)?(1+ (g +1)a))"
v (CN(na, (n +1)a) N D)’ v (C¥ (qa, (¢ + 1)a) N D)

v (CN (m (1 —3g)a,m(1+ 3<)a) ﬁC) > (

et, done, pour tout n > ng,

1 imin log (v (CN(m(1 = 32)a, m(1 + 3e)a) NC))

a m—oo m

> 1 n log (v (CN(na, (n+ 1)a) N D))
= na ® (1+(n+1)a)
Il vient, en faisant tendre n vers oo, d’apres le lemme 3.1.1,

! jiming (28 (/ (CV ({1 —3e)a, m(1 +36)a) N C))  n o thula)

a m—oo m = Tl N(CE) ’

na

O

3.2.2. Démonstration du théoréme de concavité

Nous pouvons a présent conclure la preuve du théoreme 3.2.1. Puisque v, est
homogene, il s’agit de prouver qu’elle est sur-additive. L.’idée consiste a se donner
z et y dans &, avec z+ y # 0 et & estimer le volume d’une couronne dans un céne
autour de z +y a ’aide de ¢, (z) + ¥, (y), en employant le lemme 3.2.5.

Démonstration du théoréeme 3.2.1. Soit N une norme sur & et soient toujours
a, 3,y > 0 tels que, pour tous z,y dans &,

v (0N (z+y, @) =y (b (2, 8) v (¥ (y, B)) -

Soit M comme dans le lemme 3.2.2.

Soient z et y des vecteurs non nuls de £. Commengons par supposer z +y # 0.
Soit C un cone ouvert contenant x + y.

Soient 0 < w < % et C1 un cone ouvert de &, contenant = + y et tel que

C; — {0} C C. On peut trouver un réel £ > 0 et des cones ouverts A et B contenant
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respectivement x et y tels que l'on ait

(CY(N(2)(1 &), N(2)(1 +e)) N A)
+ (CM(N(y)(1 =€), N(y)(1 +¢)) N B)
C (CM(N(z +y)(1 ~w), N(z +y)(1 +w))NCi).
D’apres le lemme 3.2.5, on peut trouver un réel a > 0 tel que 'on ait :

1 i inf log (v (CN(n(1 — )aN(z),n(1 + £)aN(z)) N A))

2 (@)

et de méme en remplacant = par y.
D’apres le lemme 3.2.2, pour tout entier n, il existe un vecteur z,, de & tel que

d (zn, CY(na(l — )N (z),na(l + )N(z)) N A) < B8
et que
v (CN(na(l — e)N(z),na(l +)N(z)) N A)
<M (1+na(l+e)N(z)) v (B (24, 8))
et un vecteur y,, de £ vérifiant les inégalités analogues en remplacant = par y.
Alors, pour tout entier n > 0, le vecteur

Tn + Yn
na

est a une distance < % de I’ensemble
(CN(N(@)(1 — ), N(z)(1 +)) N A) + (CV(N()(1 —€), N)(L +£)) N B).
de sorte qu’il existe un entier ng > 0 tel que, pour tout n > ng, on ait :
WY (2 + yn, @) € CV (na(l — 20)N(z + y), na(l 4 2w)N(z + y)) N C.

Il vient, pour tout entier n > ng,

v (CY (na(l — 2w)N(z + y), na(l + 2w)N(z +y)) N C)
> v (Y (2 + yn, @)
>y (bN (Zn, 5)) v (bN (ymﬁ))

> 0
~ M?2(1 +na(l+e)N(2))"(1 +na(l +£)N(y))"

(
v (CN(na(l —e)N(z),na(l + )N (z))
v (CN(na(l —)N(y),na(l +£)N(y))

En faisant tendre n vers co on a, d’apres le lemme 3.1.1,

max (N (z +y)(1 +2w)d,, N(z + y)(1 - 2w)78), ) 2 du(2) + ¢ (y)-
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Comme l'inégalité ci-dessus est vraie pour tout 0 < w < %, il vient :

N(z + )78, > vu(z) + b (y),
d’ou :
Yoz +y) > bu(x) + P (y),

ce qu’il fallait démontrer.
Supposons a présent que y = —x. Pour tout ¢ > 1, on a :

tx—xz=(—1)x#0
et, donc,
Pu(tz) + Pu(—2) < ¢ ((t — 1))
et, donc, comme v, est homogene, on a bien, méme quand ¢, (z) = —o0,

wu(x) =+ Qbl/(_ﬂg) <0. O

3.3. Mesures a croissance concave divergente

Nous dirons que v est a croissance divergente (resp. strictement divergente) si
et seulement si, étant donnée une norme N sur &, on a 7Y > 0 (resp. 7¥ > 0).
Ces conditions sont indépendantes de la norme choisie.

3.3.1. Contrdle de la divergence
Pour les mesures a croissance concave, on peut améliorer le lemme 3.1.1 :

Proposition 3.3.1. Si v est 4 croissance concave strictement divergente, pour

toute norme N sur &, on a :
N
log (V (b (0, a))) 7_15\7 oF (bN(O7 a)) -0 (arflea'r,fv) )

a a—00 a—00

La démonstration utilise le lemme suivant, dont la démonstration est analogue
a celle du lemme 3.2.4, en employant une variante du lemme 3.2.2.

Lemme 3.3.2. Supposons v a croissance concave. Soit N une norme sur £. Il
existe des réels 0,1,k > 0 tels que, pour tout réel a > 0 et pour tous réels aq, ..., ap
tels que a = ay + ...+ ap, on ait :

v (BN (0,a+p+ (p—1)k))
> e
T ((I4ay)... (1+ ap))r_

IIJ(CN(CL17CL1+ 1))...1/(CN(ap,ap+ 1)).
O
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Démonstration de la proposition 3.3.1. Commencons par remarquer que, si f :
R} — R est une fonction croissante, on a :

lim sup M = lim sup m et liminf M = liminf M
a—o00 a n—oo n oL a —roe n
a€RYy nelN* a€RY neN*

Soit alors N une norme sur £. D’apres le lemme 3.1.1, on a :

N
= lim sup log (V (ba ©, a))) :

7_N

174

Soient €,7,x > 0 comme dans le lemme 3.3.2. Soient m > n > 1 des entiers
naturels et m = pn + ¢ la division euclidienne de m par n. On a :

V(bN <O,m (1+ ’”2))) > v (B (0,m+ (p+ 1) +pr))

n

977p+1
= el
(1+n)P(1+4q))
v (CN(n,n + 1))p v(CN{(q,q+1)).
Il vient, pour tout n > 1, d’apres la remarque ci-dessus,

(1 + %”) timint 122 & (07(0,0)))

a—00 a

Z<%10g<( y >+log<u(cN<n7n+1>>>>‘

1+n)—1 n

On en déduit, en réutilisant le lemme 3.1.1 :

log (1/ (bN(O7 a))) log (V (CN(”7 n+ 1))) N

lim inf > limsup =7,
a—00 a n—oo n
et, donc,
log (v (b7 (0, a))) P
T s

a a—o0
Mais alors, pour tout n > 1, on a :
d’oll )
v(CN(nn+1) <=(1+ n)rfle("+”+2)75v.
n
En d’autres termes, il existe un réel M > 0 tel que, pour tout entier naturel n, on

ait :
v (CN(mnqL 1)) <M1 +n)’”_1em’£v.
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Il vient, comme 'r > 0,
(bNOn S Zl+kr 1k7’ _ O(n'r’flenﬂfv).
%)
On en déduit le résultat. O

3.3.2. Propriétés de concavité

Les résultats suivants appliquent des propriétés élémentaires de concavité au
calcul des exposants de convergence.

Proposition 3.3.3. Si v est ¢ croissance concave divergente et s’il eriste une
forme linéaire ¢ dans E* telle que, pour tout x dans € — {0}, p(z) > ¥, (x), alors,
pour toute norme N sur &, on a :

gl =,

Démonstration. C’est une conséquence du corollaire 3.1.4, de la proposition 3.1.8,
du théoreme 3.2.1 et du résultat de convexité ci-apres. (Il

Lemme 3.3.4. Soit ¢ : &€ — R U {—o0} une fonction concave homogéne semi-

continue supérieurement. Soient N une norme sur £ et

T = sup ¢(x) s
zce—{0} N(z)

Si T >0, il existe une forme linéaire p dans E* telle que
w > et que N(p) =1.
Démonstration. Si = = 0, le résultat est clair. Supposons donc 7 > 0 et, pour

simplifier les notations, 7 = 1.
Soit z dans & tel que N(z) =1 et que ¢(z) = 1. Pour tout y dans &£, on a :

¥(y) < N(y)
et, donc, les parties convexes fermées de R x &
{(s;y) eRx Els =2 N(y)} et {(t,2) € R X EJt < ¥(2)}

ne se rencontrent qu’en leurs bords. D’apres le théoreme de Hahn—-Banach, il existe
un réel o et une forme linéaire ¢ dans £* non tout deux nuls et tels que, pour tous
y, z dans & avec ¥(z) > —o0, on ait :

aN(y) +¢(y) 2 ap(z) + ¢(2).

En particulier, pour tout y dans &, on a :

aN(y) + ¢(y) > aN(z) + ¢(z).
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Supposons a < 0. Alors, pour tout y dans &, on a :
P(y) > a+ p(x)
et, donc, ¢ = 0. Mais alors, a # 0 et, pour tout y dans £, on a :
N(y)<1

ce qui est absurde. Par conséquent, o > 0.
On peut donc supposer que o« = 1. Pour tout y dans &, on a :

¢z —y) < N(y) — N(z) < N(y — )

donc N(¢) < 1. Mais, en posant y = ¢ ci-dessus, il vient :
i 1
e(3) =3

done p(z) = —1 et N(p) = 1.
Or, pour tout z dans £, on a :

P(2) +¢(2) < N(z) + p(z) =0
t.e. —p > . 0

Corollaire 3.3.5. Supposons que v est a croissance concave strictement diver-
gente et qu’il existe une forme linéaire majorant strictement 1, en dehors de 0.
Soit N la norme associée a un produit scalaire (.,.) sur £. Alors, il existe une
unique forme linéaire p > 1, de norme 7¥. Si x est lunique vecteur unitaire de
E tel que i, (x) = 7N, ¢ est la forme (Tlfvx7 >

Démonstration. L’existence a été prouvée au corollaire 3.3.3.

Démontrons 'unicité. Soit ¢ > 1, de norme Tlfv . Comme la norme euclidienne
est strictement convexe, d’apres le corollaire 3.1.4 et le théoreme 3.2.1, il existe un
unique vecteur unitaire z de & tel que ¢, (z) = 7. On a :

() 2 ¢u(z) =7, = N(¢)N(z)

d’oul le résultat, d’apres le théoréeme de Cauchy—Schwarz. Il

4. L’indicateur de croissance de I'

Dans cette partie, nous utilisons 1’existence d’'un produit générique dans un
sous-groupe discret Zariski dense I' de G, démontrée a la section 2.3, pour montrer
que la mesure de comptage ng du(y), C'est-a-dire la mesure image de ) YT Ory
par la composante de Cartan vérifie les hypotheses des énoncés de la partie 3. Nous
commencons par controler I'indicateur de croissance de 'image par la composante
de Cartan d’une mesure de Haar de GG. Ensuite, nous utilisons les sous-semi-groupes
libres de I' pour montrer que ses exposants de convergence sont nécessairement
positifs. Enfin, nous appliquons les résultats de la partie 3 a 1’étude de T".
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4.1. Préliminaires

4.1.1. Estimations de volume dans G

Nous commencons par calculer ici I'indicateur de croissance de la mesure image
par p d’une mesure de Haar de G.

On choisit une fois pour toutes une mesure de Haar o sur G. On note vg la
mesure sur F image de p par p et

Yo = 2re

- logq’
Montrons que g = p.
Supposons que K est R ou C.

Proposition 4.1.1. ([11, 1.5.8]) La mesure vg est absolument continue par rap-
port a la classe de la mesure de Lebesque. Si \ est une mesure de Lebesgue sur F,
il existe un réel ¢ > 0 tel que, pour tout x dans E, on ait :

d

g(x) =c [ sinh(a(a)™ . O

aext

Corollaire 4.1.2. Pour tout = dans ET, on a :
Ya(z) = p(z). O

Supposons que K est non-archimédien. Pour z dans Z T, notons 8. 1’ensemble
des o dans TI tels que a(v(z)) > 0.

Proposition 4.1.3. ([13, 3.2.7]) Il existe une famille (gp)oc1 de nombres réels
> 0 telle que, pour tout z dans ZT, on ait :

o(KzK) p(v())
= 46.9 : O
o(K) ’
Corollaire 4.1.4. Pour tout x dans ET, on a :
da(z) = p(z). O

4.1.2. Exposant de convergence des semi-groupes libres

Soit A un semi-groupe libre de générateurs £ et 5. Pour tous éléments z et y
d’un semi-groupe S, on note <I>f7y I'unique homomorphisme de A dans S envoyant
& sur x et npsur y.

Pour calculer les exposants de convergence des sous-semi-groupes fournis par
la proposition 2.2.7, nous utiliserons :

Lemme 4.1.5. Pour tous réels u,v > 1, la série de Dirichlet

1
I(t) =y ——— (teR)
% Dy ()
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a pour erposant de convergence unique réel T tel que

1 1
s 1l
u’” ot
On a7 >0 et, pour toutt > 7,
1
9(t) =
R EaEy

Démonstration. Pour tout entier naturel n, on note A,, ’ensemble des éléments de
A dont la longueur comme mot en £ et en g est <n. On a :

Apt1 ={e} UEA, UnA,.
Soit 7 'unique réel tel que

1 1
= < - L.
Onar7>0.
On pose, pour tout entier naturel n et pour tout réel ¢,

D)= 3

-
cenn Puu(C)
Il vient, pour tout entier naturel n et pour tout réel ¢,
1 1
Ip(t) <Yppi(t) =1+ —tﬁn(t) + —tﬁn(t).
U v

Done, d’une part, pour tout réel ¢ tel que ¥(t) < oo, on a :

1 1 1
— — let ()= ——F—
w7 = T

et, par conséquent, 'exposant de convergence de ¢ est > 7. D’autre part, pour
tout réel ¢ > 7 et pour tout entier n > 1,

1
() € —————
e Sy

Done 9(t) < oo et Iexposant de convergence de ¥ est exactement 7. O

4.2. La fonction ¢

Soit I' un sous-groupe discret Zariski dense de G. On note vr la mesure
Z Ou()-
yel

C’est "image de la mesure 3 v 0, par u. Nous allons appliquer a vp la théorie
générale des sections 3.2 et 3.3.
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On note ]

¢UF et Tyt = il g

log ¢ log ¢
A

Pour tout cone ouvert C de E, on note 7¢ r = lg’g”; .

Lemme 4.2.1. Pour tout cone ouwvert C de E rencontrant lp, on a :

Yr =

Ter > 0.

Rappelons qu’on a noté Fr le sous-espace vectoriel de E engendré par Ip : si K
est R et si G est semi-simple, T = F.

Démonstration. Soit C un cone ouvert de F rencontrant [r. L’intérieur dans Fr de
IrNC est non vide. D’apres la proposition 2.2.7, il existe un réel k > 0, des éléments
~v1 et o dans I et des vecteurs =1 et z9 dans C NI tels que le sous-semi-groupe
A de T' engendré par ~y; et v, soit libre et que, avec les notations du paragraphe
précédent, pour tout v dans A,

p(y) €C et |luly) -
On a alors, pour tout v dans I,

R
NN < )y 4, w2 )6 (V)
et, donc, pour tout réel ¢ > 0,

V|| < ®F (v

9017272

— —t0h e+ (1) — (PR -
g O > g Blenimiieat 4= () — AR ) B

D’apres le lemme 4.1.5, la série de Dirichlet
Z g M (t €R)
YEA

a un exposant de convergence > 0. Comme p(A) C C, la série de Dirichlet

Z gt (¢ e R)

&
u(v)ec
a, elle aussi, un exposant de convergence strictement positif, ce qu’il fallait démon-
trer. O

Théoréme 4.2.2. Pour tout © dans ET, on a :

Yr(z) < p().
La mesure vp est a croissance concave et, donc, la fonction Yr est concave et
semi-continue supérieurement. L’ensemble

{z € El¢r(z) > —oo}

est exactement le cone limite de I'. De plus, {¥r est positive sur lp et strictement
positive sur son intérieur relatif.
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Démonstration. Comme I est un sous-groupe discret de G, d’apres les lemmes
224 et 3.1.6, on a :

Yr < g

et, d’apres les corollaires 4.1.2 et 4.1.4, pour tout = dans ET,

ba(z) = p(z).

En particulier, 70 < oo et, d’apres le lemme 3.1.7, ¢ est semi-continue supérieu-
rement.

D’apres la proposition 2.3.1, la mesure vp est a croissance concave et, donc,
d’apres le théoreme 3.2.1, la fonction ¢ est concave.

On a clairement ¢¥p = —o0 en dehors de [p. Réciproquement, d’apres le lemme
4.2.1, 4r est positive sur [p et, puisqu’on a 7p = Sup|,—; wr(z) > 0, elle y prend
des valeurs strictement positives. Comme elle est concave, elle est strictement
positive sur I'intérieur relatif de [p. (Il

Corollaire 4.2.3. On a :

1
logg (card {y e T'[lp(y) < a}) ==

et
card {y € T[[u(1)]| < a} = O(atmFr-igem),

Démonstration. Soit p un projecteur de F sur Fr. Comme, d’apres le théoreme
2.2.6, u(T") reste & distance bornée de IT, la mesure p,ur est encore a croissance
concave et, d’apres le lemme 3.1.6, elle a méme indicateur de croissance que vr.
Le résultat est alors une conséquence de la proposition 3.3.1 appliquée a p,vp. O

Nous pouvons enfin généraliser un résultat obtenu par P. Albuquerque ([1])

notamment dans le cas ot I — {0} était inclus dans ETT.

TN U’N
Pour toute norme N sur E, notons 77 pour 1ngF et o pour 1o;;Fq' Rappelons
qu’un cone fermé C d’un espace vectoriel réel £ de glimension finie est dit saillant

si et seulement s’il ne contient pas de sous-espace vectoriel de &.

Corollaire 4.2.4. Si lp est saillant, ce qui est toujours vrai lorsque G est semi-
simple, pour toute norme N sur K, on a :

o =

En particulier, il existe alors un unique vecteur unitaire x de ET tel que les séries

de Dirichlet
Zq*t\\u(v)l\ et Zq*t(z,u(v)) (t €R)
~el ~el

atent méme exposant de convergence. Ce vecteur appartient a lp.
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Démonstration. 11 s’agit de 'application & vp des corollaires 3.3.3 et 3.3.5. (Il
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