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Commentarii Mathematici Helvetici

Divergence exponentielle des sous-groupes discrets en rang
sup¶erieur
Jean-Fran»cois Quint

R¶esum¶e Soient G un groupe de Lie semi-simple r¶eel connexe et de centre ¯ni a un sous-
espace de Cartan de l'algµebre de Lie de G et a+

½ a une chambre de Weyl ferm¶ee de a Si
¡ est un sous-groupe discret Zariski dense de G nous lui associons une fonction homogµene

Ã¡ : a+ R[ f¡1g qui g¶en¶eralise l'exposant de convergence de ¡ consid¶er¶e en R-rang 1 Nous

montrons alors que cette fonction est concave Dans un travail ult¶erieur nous en d¶eduirons des

constructions de g¶en¶eralisations des mesures de Patterson{Sullivan
Nous d¶emontrons aussi des analogues de nos r¶esultats sur les corps locaux

Mathematics Subject Classi¯cation 2000 Primaire 22E40 ; Secondaire 53C35

Mots cl¶es Lie groups discrete subgroups higher rank geometries

1 Introduction
1 1 R¶esultats

Soit G un groupe de Lie semi-simple r¶eel connexe et de centre ¯ni On choisit
une involution de Cartan ¿ de G On note K le sous-groupe compact maximal
de G constitu¶e de l'ensemble des points ¯xes de ¿ et a un sous-espace de Cartan
de l'algµebre de Lie de g tel que pour x dans a ¿ exp x exp ¡x Soit a+

½
a une chambre de Weyl On dispose alors de la d¶ecomposition de Cartan G
K exp a+ K et de la projection associ¶ee ¹ : G a+

Si ¡ est un sous-groupe de G l'¶etude des propri¶et¶es asymptotiques de ¡ passe

par la description de l'ensemble ¹ ¡ Dans [4] Y Benoist a d¶emontr¶e que si ¡
est un sous-groupe Zariski dense de G le cône asymptote µa l'ensemble ¹ ¡ est
convexe et d'int¶erieur non vide On l'appelle cône limite de ¡

Si le R-rang de G est ¶egal µa 1 pour g dans G la donn¶ee de ¹ g est simplement
celle de la distance entre le point ¯xe x de K dans l'espace sym¶etrique de G et
son translat¶e gx par g Si ¡ est un sous-groupe discret de G un rôle important est
alors jou¶e par l'exposant de convergence de la s¶erie de Dirichlet

X°2¡
e¡td x;°x t 2 R ;
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c'est-µa-dire par le nombre r¶eel

lim sup
a 1

µ
1

a
log cardf° 2 ¡ j d x; °x · ag ¶ :

Citons par exemple la th¶eorie de Patterson{Sullivan introduite dans [14] et [18]
Le but de cet article est la g¶en¶eralisation µa la situation de rang sup¶erieur

de l'¶etude de la divergence exponentielle des sous-groupes discrets On voit alors

apparâ³tre un ph¶enomµene nouveau de convexit¶e que nous allons µa pr¶esent d¶ecrire

Soit ¡ un sous-groupe discret Zariski dense de G Soit k:k une norme invariante
par le groupe de Weyl sur a Si k:k est la norme euclidienne provenant d'une

m¶etrique riemannienne G-invariante sur l'espace sym¶etrique de G pour tout g
dans G k¹ g k est la distance entre le point ¯xe de K et son translat¶e par g

Pour tout cône ouvert C de a on note ¿
C

l'exposant de convergence de la s¶erie
de Dirichlet

X°2¡¹ ° 2C

e¡tk¹ ° k t 2 R

et pour x dans a on pose

Ã x kxk inf ¿
C ;

la borne inf¶erieure ¶etant prise sur l'ensemble des cônes ouverts
C de a qui con-

tiennent x La fonction homogµene Ã ne d¶epend pas de la norme choisie Si k:k est
une norme sur a la s¶erie de Dirichlet

X°2¡
e¡tk¹ ° k t 2 R

a pour exposant de convergence

sup
x2anf0g

Ã x
kxk

:

Soit ½ la forme lin¶eaire sur a qui est la somme des racines multipli¶ees par la
dimension de leurs espaces poids dans l'algµebre de Lie de g Notre principal r¶esultat
s'¶ecrit :

Th¶eorµeme La fonction Ã est major¶ee par ½ Elle est concave et semi-continue

sup¶erieurement L'ensemble

fx 2 a j Ã x > ¡1g

est exactement le cône limite de ¡ De plus Ã est positive sur le cône limite de ¡
et strictement positive sur son int¶erieur relatif

Dans [17] nous appliquerons ce th¶eorµeme µa la construction de g¶en¶eralisations

des mesures de Patterson{Sullivan Ce problµeme avait d¶ejµa ¶et¶e consid¶er¶e par P
Albuquerque dans [1] En R-rang 1 c'est l'¶etude de ces mesures qui permet sous
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certaines hypothµeses d'obtenir des ¶equivalents des fonctions orbitales de comptage

pour l'action de ¡ dans l'espace sym¶etrique de G Concernant les questions de

comptage nos m¶ethodes permettent de montrer :

Proposition Soit k:k une norme sur a Alors

1

a
log card f° 2 ¡ j k¹ ° k · ag

admet une limite ¿ 2 R¤+ quand a tend vers 1 et l'on a :

card f° 2 ¡ j k¹ ° k · ag a 1
O

¡
ar¡1ea¿

¢
oµu r est le R-rang de G

En d'autres termes en appliquant ce r¶esultat aux normes euclidiennes inva-
riantes par le groupe de Weyl :

Corollaire Soit X l'espace sym¶etrique de G muni d'une m¶etrique riemannienne

G-invariante Alors il existe ¿ > 0 tel que pour tous x; y dans X on ait :

1

a
log cardf° 2 ¡ j d x; °y · ag ¡¡¡a 1

¿

et
card f° 2 ¡ j d x;°y · ag a 1

O
¡
ar¡1ea¿

¢
:

1 2 Structure des d¶emonstrations

La d¶emonstration du th¶eorµeme s'e®ectue en deux ¶etapes

Dans la premiµere partie du texte on ¶etablit :

Proposition Soit ¡ un sous-groupe discret Zariski dense de G Il existe une

application ¼ : ¡ £ ¡ ¡ ayant les propri¶et¶es suivantes :

i il existe un r¶eel · ¸ 0 tel que pour tous °1; °2 dans ¡
k¹ ¼ °1; °2 ¡ ¹ °1 ¡ ¹ °2 k · ·:

ii pour tout r¶eel R ¸ 0 il existe une partie ¯nie H de ¡ telle que pour
°1;°2; °01

; °02
dans ¡ avec k¹ °1 ¡ ¹ °

01 k · R et k¹ °2 ¡ ¹ °
02 k · R

¼ °1; °2 ¼ °01
; °02

°01 2 °1H et °02 2 H°2 :

Une telle application ¼ sera dans la suite du texte appel¶ee produit g¶en¶erique

dans ¡ L'id¶ee de la preuve est d'¶ecrire ¼ °1; °2 °1f°2 oµu f est choisi dans

une partie ¯nie F de ¡ de fa»con µa ¶eliminer les problµemes qui se posent quand
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°1 est proche de °¡1
2 La partie F sera construite en utilisant un r¶esultat de H

Abels G -A Margulis et G -A Soifer le lemme 2 3 4 dont nous redonnerons la
d¶emonstration La v¶eri¯cation du point i de la proposition s'e®ectue en estimant
la norme de °1f°2 dans su±sament de repr¶esentations de G au lemme 2 3 3

Le point d¶elicat est la v¶eri¯cation de la partie ii Sa d¶emonstration s'inspire de

ph¶enomµenes de g¶eom¶etrie dans G K li¶es µa l'existence en rang sup¶erieur d'analogues

du fameux lemme des ombres de Sullivan [18] On d¶e¯nit pour g dans G une

partie B"
g de la vari¶et¶e des drapeaux de G de sorte que gB"

g joue le rôle des ombres

de [18] et on montre un analogue du lemme des ombres la proposition 2 3 7 Reste

alors µa v¶eri¯er que sous les hypothµeses que nous aurons faites les ombres °1B"
°1

et
°1f°2B"

°1f°2
se rencontrent c'est ce qui est fait dans la d¶emonstration du lemme

2 3 8

Dans la deuxiµeme partie on d¶eduit de l'existence d'un produit g¶en¶erique dans

¡ qu'il existe des r¶eels ®;¯; ° > 0 tels que pour x; y dans a

card ¡ \ ¹¡1 b x + y; ® ¸ ° card ¡ \ ¹¡1 b x; ¯ card ¡ \ ¹¡1 b y;¯ ;

et l'on d¶emontre la concavit¶e de Ã µa partir de cette seule propri¶et¶e de l'ensemble
¹ ¡

En¯n dans une troisiµeme partie nous terminerons la d¶emonstration pr¶ecise du
th¶eorµeme

1 3 Corps locaux

Dans l'esprit de [4] nous d¶emontrerons des analogues des r¶esultats ci-dessus

pour les groupes semi-simples d¶e¯nis sur un corps valu¶e localement compact Nous

utiliserons les analogues des d¶ecompositions de Cartan et d'Iwasawa pour ces

groupes ¶etablis par F Bruhat et J Tits dans [8] et [9] Nous renvoyons le lec-
teur µa [20] pour un r¶esum¶e de cette th¶eorie

J'ai b¶en¶e¯ci¶e pour l'¶elaboration de ce travail des remarques et des suggestions

d'Yves Benoist Je tiens ici µa l'en remercier

2 Produit g¶en¶erique

Soit K un corps local : K est soit R ou C soit une extension ¯nie de Qp pour un
entier premier p soit le corps des fractions Fq T de l'anneau des s¶eries formelles

sur le corps ¯ni µa q ¶el¶ements

Si K est R ou C on le munit de la valeur absolue usuelle et on pose q e

u e¡1 et pour tout x 6 0 dans K x ¡ log jxj
Si K est non-archim¶edien on note O l'anneau de valuation de K m l'id¶eal

maximal de O k O m le corps r¶esiduel de K q le cardinal de k et u une

uniformisante de K i e un ¶el¶ement de mnm2 ; on note la valuation de K telle
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que u 1 et on munit K de la valeur absolue x 7 q¡ x
¶Etant donn¶ee une extension alg¶ebrique de K on la munit de l'unique valeur

absolue prolongeant celle de K
Soit X; d un espace m¶etrique Pour tout " > 0 pour toute partie Y de X on

note :

b Y; " fx 2 X jd x; Y · "g et B Y; " fx 2 Xjd x; Y ¸ "g:

Pour toutes parties Y et Z de X on note :

d Y; Z inf
y;z 2Y £Z

d y; z et ± Y; Z sup
y2Y

d y; Z :

Pour tout ensemble X et pour tout x dans X on note ±x la mesure de Dirac
en x

Si t est un nombre r¶eel on note [t] sa partie entiµere

2 1 Algµebre lin¶eaire norm¶ee

Nous d¶emontrons ici l'ensemble des r¶esultats d'algµebre lin¶eaire qui seront uti-
lis¶es dans ce texte Ils seront ensuite r¶einterpr¶et¶es dans les groupes r¶eductifs µa

travers leurs repr¶esentations lin¶eaires

Soit V un K-espace vectoriel de dimension ¯nie m On munit P V de la
topologie quotient de celle de V ¡ f0g : c'est un espace topologique compact

2 1 1 Rayon spectral et proximalit¶e
Soit f un endomorphisme de V On note ¸1 f le rayon spectral de f c'est-

µa-dire le plus grand des modules des valeurs propres de f On note V +
f le plus

grand sous-espace vectoriel f -stable de V oµu toutes les valeurs propres de f sont
de module ¸1 f et V <

f l'unique suppl¶ementaire f -stable de V +
fMunissons V d'une norme On a la formule du rayon spectral :

8f 2 L V kfn
k

1
n ¡¡¡¡n 1 ¸1 f :

Un endomorphisme f 6 0 de V est dit proximal dans P V si et seulement si f
possµede une unique valeur propre de module maximal et qu'elle est de multiplicit¶e
1 i e si et seulement si dim V +

f 1 Cette valeur propre appartient alors µa K
Soit f un endomorphisme non nul de V: Alors f est proximal dans P V si

et seulement si f possµede un point ¯xe attracteur dans P V : Ce point ¯xe est
alors V +

f

2 1 2 Bonnes normes et bonnes sommes directes

Une norme sur V est une application k:k : V R+ v¶eri¯ant les axiomes usuels :

i 8v 2 V kvk 0 v 0
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ii 8¸ 2 K 8v 2 V k¸vk j¸j kvk
iii 8v; w 2 V kv + wk · kvk + kwk

Si K est R resp C on dit qu'une norme sur V est une bonne norme si
et seulement si elle est induite par un produit scalaire euclidien resp un produit
scalaire hermitien Si V est muni d'une bonne norme on dit qu'une somme directe

V V1 © V2 est une bonne somme directe si et seulement si elle est orthogonale
pour le produit scalaire

Si K est non archim¶edien on dit qu'une norme sur V est une bonne norme si
et seulement si elle est ultram¶etrique c'est-µa-dire si et seulement si pour tous v; w
dans V on a kv + wk · max kvk ; kwk Si V est muni d'une bonne norme on dit
qu'une somme directe V V1 © V2 est une bonne somme directe si et seulement
si pour tout v v1 + v2 dans V avec v1 dans V1 et v2 dans V2 on a :

kvk max kv1k ; kv2k :

Supposons dor¶enavant V muni d'une bonne norme Donnons une caract¶erisation
des bonnes sommes directes ; c'est une g¶en¶eralisation d'un exercice classique de

g¶eom¶etrie euclidienne :

Lemme 2 1 1 Soit V V1 © V2 une somme directe dans V Elle est bonne si et
seulement si ses projecteurs sont de norme 1

D¶emonstration Soit p le projecteur sur V1 parallµelement µa V2 Si la somme directe
est bonne on a kpk 1 R¶eciproquement supposons que p est de norme 1

Supposons que K est R ou C Soit v dans V2 Soit w v¡ p v Alors v et w
sont orthogonaux et p v v ¡ w Par cons¶equent on a :

kvk ¸ kp v k qkvk
2 + kwk

2 ¸ kvk

et donc kp v k kvk ou encore w 0 Il vient V2 ½ V1 et comme ces deux
espaces ont même dimension V2 V1 ce qu'il fallait d¶emontrer

Supposons que K est non-archim¶edien Remarquons que l'on a k1 ¡ pk ·max 1; kpk · 1 Pour tout v dans V il vient :

kvk kp v + 1 ¡ p v k · max kp v k ; k 1 ¡ p v k · kvk
et donc kvk max kp v k ; k 1 ¡ p v k ce qu'il fallait d¶emontrer ¤

Il existe une unique bonne norme sur ^
2V telle que pour toute bonne somme

directe V1 © V2 ½ V la somme directe ^
2V1 © V1 ^ V2 © ^

2V2 ½ ^
2V soit

bonne et que pour v; w dans V si Kv et Kw sont en bonne somme directe on ait
kv ^ wk kvk kwk Alors l'application

V ¡ f0g
2 R+

v; w
7

kv ^ wk
kvk kwk
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factorise µa travers une distance sur P V qui y induit sa topologie usuelle C'est
un r¶esultat classique si K est R ou C Le cas g¶en¶eral est trait¶e dans [15] On munira

toujours l'espace projectif d'un espace vectoriel bien norm¶e de cette distance Si
le dual V ¤ de V est muni de la bonne norme duale de celle de V pour tous v

6

0
dans P V et ' 6 0 dans P V ¤ on a :

d Kv;' j' v j
k'k kvk

d K'; v :

Nous utiliserons :

Lemme 2 1 2 Soit " > 0 Soient V V1 © V2 une bonne somme directe et p le
projecteur sur V1 parallµelement µa V2 Pour tout v dans V ¡f0g avec d Kv; P V2 ¸" on a kp v k ¸ " kvk

D¶emonstration On peut bien sûr supposer v 2 V1 Alors soient v1 et v2 les

composantes de v sur V1 et V2 On a d Kv; Kv2 ¸ " Or

d Kv;Kv2
kv ^ v2k
kvk kv2k

kv1 ^ v2k
kvk kv2k

kv1k
kvk

;

d'oµu le r¶esultat ¤

2 1 3 Semi-similitudes

Nous ¶etudions ici une classe particuliµere d'endomorphismes d'un K-espace vec-
toriel norm¶e

On dit qu'un endomorphisme f de V est une similitude si et seulement s'il
existe un r¶eel ¸ ¸ 0 tel que pour tout v dans V on ait :

kf v k ¸ kvk :

On dit alors que ¸ est le rapport de f On dit que f est une semi-similitude si et
seulement s'il existe une bonne somme directe V V1 © : : : © Vk telle que pour
tout i dans [1; k] f stabilise Vi et induise sur Vi une similitude de rapport ¸i
Dans ce cas on peut supposer que l'on a :

¸1 > : : : > ¸k :

On a alors pour tout v dans V ¸k kvk · kfvk · ¸1 kvk En particulier ¸1 est µa
la fois la norme et le rayon spectral de f

Si K est R ou C une semi-similitude est simplement un endomorphisme normal
de V

Lemme 2 1 3 Soit f une semi-similitude Soit V V1 © : : : © Vk une bonne

somme directe dans V telle que pour tout i dans [1; k] f laisse stable Vi et induise

sur Vi une similitude de rapport ¸i Supposons que l'on a ¸1 > : : : > ¸k

i Soit W un sous-espace vectoriel de V stable par f Alors on a W W \V1 © : : : © W \ Vk et en particulier la restriction de f µa W est une

semi-similitude
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ii Soit V W1 © : : : © Wl une autre somme directe non n¶ecessairement
bonne telle que pour tout j dans [1; l] f laisse stable Wj et induise sur
Wj une similitude de rapport ¹j et que l'on ait ¹1 > : : : > ¹l Alors k l
et pour tout i dans [1; k] Wi Vi et ¸i ¹i

D¶emonstration Pour tout entier n posons

hn ¡ ·
log kfn

k
log q ¸ et pn

1

uhn fn:

On a pour tout n dans N
1 · kpnk · q:

On ¯xe une valeur d'adh¶erence p dans L V de la suite pn n2N
Pour tout v dans V1 le vecteur p v appartient µa V1 et kp v k kpk kvk En

particulier la restriction de p µa V1 est un automorphisme Par ailleurs pour tout
v dans V2 © : : : © Vk on a p v 0

Soit W un sous-espace vectoriel de V stable par f Alors W est stable par p
En particulier W \ V1 est stable par p et donc par l'inverse de la restriction de

p µa V1
Soit v dans W ¶Ecrivons w v1 + v0 avec v1 dans V1 et v0 dans V2 © : : : © Vk

On a :
p v p v1 2 W \ V1

et donc

v1 2 W:

Il vient :
W W \ V1 © W \ V2 © : : : © Vk

d'oµu la premiµere propri¶et¶e par r¶ecurrence

La seconde en est une cons¶equence ¤

Soit f une semi-similitude On note V Mf le plus grand sous-espace vecto-
riel stable par f oµu f induise une similitude de rapport kfk et V m

f son unique

suppl¶ementaire stable par f La somme directe V V M
f © V m

f est bonne Une

semi-similitude f est proximale si et seulement si dim V Mf 1 et alors on a

V +
f V Mf et V <f V m

f
2 1 4 Propri¶et¶es des semi-similitudes

Nous e®ectuons ici des contrôles uniformes sur l'action des semi-similitudes

dans P V qui seront utilis¶es pour la construction du produit g¶en¶erique µa la
section 2 3

Commen»cons par remarquer que beaucoup de vecteurs permettent d'estimer la
norme d'une semi-similitude :



Vol 77 2002 Divergence exponentielle des sous-groupes discrets 571

Lemme 2 1 4 Soient f une semi-similitude de V et " > 0 Pour tout vecteur
non nul v de V si d³Kv; P³V m

f ´´ ¸ " alors on a kfvk ¸ "kfk kvk

D¶emonstration ¶Ecrivons v v1 + v2 avec v1 dans V M
f et v2 dans V m

f D'aprµes le
lemme 2 1 2 on a kv1k ¸ " kvk et donc

kfvk ¸ kfv1k kfk kv1k ¸ " kfk kvk : ¤

On a aussi une information sur l'action des semi-similitudes sur P V en termes

de m¶etrique :

Lemme 2 1 5 Soient f une semi-similitude de V et " > 0 La restriction de f µa

B ³P³V m
f ´ ; "´ est 1

"2 -lipschitzienne

D¶emonstration Remarquons que comme f est une semi-similitude on a

°°

^
2f

°°

·
kfk

2 Donnons-nous alors deux vecteurs non nuls v et w avec d Kv; P³V m
f ´ ¸ "

et d Kw; P³V m
f ´ ¸ " D'aprµes le lemme 2 1 4 on a kfvk ¸ " kfk kvk et kfvk ¸

" kfk kvk Il vient :

d Kfv; Kfw k fv ^ fw k
kfvk kfwk · kfk

2
kv ^ wk

kfvk kfwk

·
1

"2
kv ^ wk
kvk kwk

1

"2 d Kv; Kw :

¤

Le lemme suivant et notre g¶en¶eralisation du lemme des ombres serviront de

base au contrôle de distance dans la construction du produit g¶en¶erique :

Lemme 2 1 6 Soient r > 0 et " > 0 Il existe un r¶eel ´ > 0 tel que pour toute
semi-similitude f de V pour tout hyperplan W de V avec ± ³P³V Mf ´ ; P W ´ ¸ r
on ait :

f¡1b P W ; ´ ½ b P
¡f¡

1W
¢

; " :

D¶emonstration Soit f une semi-similitude de V Alors son adjoint f¤ est une

semi-similitude de V ¤ Soit ' une forme lin¶eaire non nulle de V On a f¡1 '
f¤ ' Supposons que ± ³P³V Mf ´ ; P

¡' ¢´ ¸ r Alors comme pour v dans

V M
f V ¤ mf¤ ½ v on a

d
¡
K'; P

¡
V ¤ m

f¤
¢¢ ¸ r:

Soit 0 < ´ · r
2

Soit v un vecteur non nul de V et supposons que l'on a

d Kv; P
¡' ¢ · ´ On a d K'; P

¡
v

¢ · ´ et donc d'aprµes le lemme 2 1 5
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on a d Kf¤ ' ; P
¡f

¤ v
¢ · 4´

r2 Comme f¤ v f¡1 v il vient

f¡1b ' ; ´ ½ b µf¡1 ' ;
4´
r2 ¶ ;

d'oµu le r¶esultat ¤

2 2 Groupes r¶eductifs

On ¯xe un K-groupe r¶eductif connexe G On note G le groupe de ses K-points

Nous introduisons ici le vocabulaire concernant G et ses d¶ecompositions qui sera
utilis¶e dans la suite du texte Le lecteur trouvera plus de pr¶ecisions pour la th¶eorie
g¶en¶erale des groupes r¶eductifs dans [6] et [12] pour la th¶eorie sur R ou C dans

[10] et [11] et pour la th¶eorie sur des corps non-archim¶ediens dans [8] [9] et [20]

2 2 1 Systµeme de racines et chambre de Weyl
Pour tout K-groupe H on note X H le groupe de ses caractµeres rationnels
On note r le K-rang de G On ¯xe un tore K-d¶eploy¶e maximal A de G et on

note A le groupe de ses K-points On note Z le centralisateur de A dans G et Z
le groupe de ses K-points Le groupe X A est un groupe ab¶elien libre de rang r
L'homomorphisme de restriction identi¯e X Z µa un sous-groupe d'indice ¯ni de

X A On note E¤ le R-espace vectoriel R ­Z X A et E son dual Pour tout Â
dans X A on note Â la forme lin¶eaire associ¶ee sur E

Soit g l'algµebre de Lie de G Soit § l'ensemble des racines de A dans g Alors

§ est un systµeme de racines dans E¤ On choisit dans § un systµeme de racines

positives §+ et on note ¦ la base de § associ¶ee µa ce choix
On note E+ et E++ les chambres de Weyl positive et strictement positive de

§+ dans E+ On munit E de l'ordre associ¶e µa E+ : si x et y sont deux vecteurs de

E on a x ¸ y si et seulement si x¡ y appartient µa E+ Plus g¶en¶eralement pour
tous x; y dans E pour tout C ¸ 0 on note x ¸C y si et seulement si

8® 2 ¦ ® x¡ y ¸ ¡C:

On note W le groupe de Weyl de § : il s'identi¯e au quotient du normalisateur
de A dans G par Z Pour tout ® dans § on note ¾® 2 W la r¶e°exion associ¶ee On
note w0 le plus long ¶el¶ement de W : c'est l'unique ¶el¶ement de W qui envoie E+ sur

¡E+ On appelle ¶ ¡w0 l'involution d'opposition de E+ On note ES l'unique

suppl¶ementaire W -stable de l'espace EW des points ¯xes de W dans E et $® ®2¦la famille des poids fondamentaux de ¦ avec la convention $® jEW 0 pour ®
dans ¦

Pour tout z dans Z on note º z l'unique vecteur de E tel que pour tout Â
dans X Z on ait :

Â º z ¡ Â z :
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L'application º est un homomorphisme de groupes de Z dans E Si K est R ou C
l'application º est surjective Si K est non-archim¶edien l'image de º est un r¶eseau
stable par l'action de W dans E On note Z+ º¡1 E+

Pour tout ® dans § on note m® la dimension de l'espace poids de ® dans g et
on pose ½

Q
®2§+ ®m®

Dor¶enavant on considµerera tout caractµere rationnel de A comme une forme

lin¶eaire sur E On ¯xe une partie XC de X Z qui engendre E¤ W

On ¯xe un produit scalaire W-invariant :; : sur E On note k:k la norme

euclidienne associ¶ee

2 2 2 Facettes

On note P¦ le K-sous-groupe parabolique minimal de G associ¶e au choix de

A et de §+
Soit µ ½ ¦ On note µc le compl¶ementaire de µ dans ¦
On note

Eµ \®2µc

ker ®; E+
µ Eµ \E+ et E++

µ E+
µ ¡0

@
[¿Ãµ

E+
¿

1
A

:

Les E+
µ µ½¦ sont les facettes du cône polyh¶edral E+

On note Wµ le ¯xateur de Eµ dans W : c'est le sous-groupe de W engendr¶e
par les r¶e°exions associ¶ees aux ¶el¶ements de µc On note pµ l'unique projecteur
orthogonal Wµ-invariant de E dans Eµ Nous aurons µa utiliser :

Lemme 2 2 1 Pour tout x dans E pour tout y dans Eµ on a :

pµ x y 8Â 2 XC [ f$®j® 2 µg Â x Â y :

D¶emonstration Nous utilisons ici librement les r¶esultats de [7 1 10]
Il s'agit de montrer que l'on a :

ker pµ ES \ \®2µ

ker$®:

Soit p
¤µ

l'adjoint de pµ Alors comme l'image de pµ est Eµ p
¤µ

est un projecteur
orthogonal de noyau

L®2µc R® et donc d'image

ÃM®2µc

R® M®2µ

R$® © E¤ W ;

d'oµu le r¶esultat ¤

On note Aµ la composante Zariski connexe de

T
®2µc ker ® dans A Soit Lµ le

centralisateur de Aµ dans G : c'est un K-groupe r¶eductif connexe On note Lµ

le groupe de ses K-points On note Pµ le K-groupe LµP¦ et Pµ le groupe de ses

K-points De même on note P
_µ

le K-sous-groupe parabolique de G oppos¶e µa Pµ

par rapport µa A et P _µ le groupe de ses K-points
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2 2 3 Repr¶esentations de G

Soit ½; V une repr¶esentation rationnelle irr¶eductible de dimension ¯nie de G
On appelle poids restreints de ½ les poids rationnels de la repr¶esentation ½jAD'aprµes [19 7 2] l'ensemble des poids restreints possµede un plus grand ¶el¶ement Â

pour l'ordre associ¶e µa ¦ sur E¤ On dit que Â est le plus haut poids restreint de ½

Les autres poids restreints sont de la forme Â¡P®2¦ n®® avec pour tout ® dans

¦ n® 2 N On note V +¦ l'espace poids associ¶e µa Â et V <¦ l'unique suppl¶ementaire

A-stable de V +¦D'aprµes [19] on a :

Proposition 2 2 2 Tits Il existe une famille de repr¶esentations rationnelles ir-
r¶eductibles ½®; V® ®2¦ de G telles que pour tout ® dans ¦ le plus haut poids

restreint Â® de ½®; V® soit un multiple du poids fondamental associ¶e µa ® et que

dim V +
®;¦ 1 ¤

Dor¶enavant on ¯xe une telle famille de repr¶esentations D'aprµes le lemme 2 2 1
on a :

Lemme 2 2 3 Pour tout µ ½ ¦ pour tous x dans E et y dans Eµ on a :

pµ x y 8Â 2 XC [ fÂ®j® 2 µg Â x Â y : ¤
Pour tout ® dans ¦ on note X® la droite V +

®;¦ et V <
® son unique suppl¶ementaire

A-stable Tous les poids de A dans V <
® sont de la forme

Â® ¡ ® ¡ X̄2¦
n¯¯

avec pour tout ¯ dans ¦ n¯ 2 N

2 2 4 D¶ecomposition de Jordan

Un ¶el¶ement de G est dit elliptique si et seulement s'il est semi-simple et contenu
dans un sous-groupe compact de G Un ¶el¶ement de G est dit hyperbolique si et
seulement s'il est conjugu¶e µa un ¶el¶ement de A On dit qu'un ¶el¶ement g de G
admet une d¶ecomposition de Jordan si et seulement s'il peut s'¶ecrire sous la forme

g geghgu avec ge elliptique gh hyperbolique et gu unipotent qui commutent deux
µa deux Dans ce cas on note ¸ g l'image par º d'un ¶el¶ement de A+ conjugu¶e µa
gh : il ne d¶epend que de g

Si K est R ou C tous les ¶el¶ements de G admettent une d¶ecomposition de

Jordan
Si K est non-archim¶edien pour tout g dans G il existe n dans N¤ tel que

gn admette une d¶ecomposition de Jordan On note encore ¸ g 1
n¸ gn : il ne

d¶epend pas de n
L'application ¸ : G E+ est R-analytique si K est R ou C et localement

constante si K est non-archim¶edien Pour tout g dans G on a : ¸ g¡1 ¶ ¸ g
Soit ½; V une repr¶esentation rationnelle irr¶eductible de dimension ¯nie de G

de plus haut poids restreint Â Pour tout g dans G on a ¸1 ½ g qÂ ¸ g
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Supposons dim V +¦ 1 Alors ½ g est proximal si et seulement si pour tout ®
dans ¦ tel que Â ¡ ® soit un poids de ½ on a ® ¸ g > 0 En particulier pour
tous ® dans ¦ et g dans G ½® g est proximal dans P V® si et seulement si
® ¸ g

6

0
Soient µ ½ ¦ et g dans G On dit que g est µ-proximal si et seulement si pour

tout ® dans µ ® ¸ g > 0 c'est-µa-dire si et seulement si pour tout ® dans µ
½® g est proximal dans P V®

2 2 5 D¶ecomposition de Cartan

Soit K un bon sous-groupe compact maximal de G relativement µa A c'est µa
dire tel que le normalisateur de A dans K contienne des repr¶esentants de tous les

¶el¶ements de W
Si K est R ou C K est l'ensemble des points ¯xes d'une involution de Cartan

¿ de G telle que pour tout a dans A ¿ a a¡1

On a G KZ+K De plus pour tous z1; z2 dans Z+ z2 appartient µa Kz1K si
et seulement si º z1 º z2 En particulier on a kerº K\Z Il existe donc une

unique application ¹ : G E+ telle que pour tous g1; g2 dans G g2 appartienne

µa Kg1K si et seulement si ¹ g1 ¹ g2 et que ¹jZ+ ºjZ+ L'application ¹
est propre Elle est R-analytique si K est R ou C et localement constante si K
est non-archim¶edien Pour tout g dans G on a ¹ g¡1 ¶ ¹ g et la formule du
rayon spectral :

1

n¹ gn ¡¡¡¡n 1 ¸ g :

L'application g
7

p; ¹ g est un homomorphisme de G dans EW ; en d'autres

termes pour tout Â dans XC pour tous g; h dans G on a Â ¹ gh Â ¹ g +
Â ¹ h

Soit ½; V une repr¶esentation rationnelle irr¶eductible de dimension ¯nie de G
de plus haut poids restreint Â Pour tout · dans X A on note V· l'espace poids

associ¶e µa ·
Si K est R resp C on peut choisir un produit scalaire resp un produit

scalaire hermitien sur V pour lequel les ¶el¶ements de ½ K sont orthogonaux resp
unitaires et ceux de ½ A sym¶etriques resp hermitiens On munit V de la norme

associ¶ee Les V· ·2X A sont en bonne somme directe et pour tout z dans Z pour
tout · dans X A ½ z induit sur V· une similitude de rapport e· º z

Si K est non-archim¶edien on peut trouver d'aprµes [16 6] une norme ul-
tram¶etrique K-invariante sur V telle que les V· ·2X A soient en bonne somme

directe et que pour tout z dans Z pour tout · dans X A ½ z induise sur V·
une similitude de rapport q· º z

Dans les deux cas on dira qu'une norme sur V ayant ces propri¶et¶es est ½; A; K -
bonne Pour une norme ½; A; K -bonne les ¶el¶ements de ½ K sont des isom¶etries

et ceux de ½ Z des semi-similitudes Pour tout g dans G la d¶ecomposition de

Cartan permet donc d'¶ecrire ½ g comme le produit d'une isom¶etrie et d'une semi-



576 J -F Quint CMH

similitude En particulier on a :

k½ g k qÂ ¹ g

et si k est un ¶el¶ement de K tel que g appartienne µa kZK pour tout v dans V tel
que ½ g v appartienne µa kV +¦ on a :

k½ g vk k½ g k kvk :

Dor¶enavant on munit pour tout ® dans ¦ V® d'une norme ½®; A;K -bonne

et P V® de la distance associ¶ee Rappelons un r¶esultat de Y Benoist :

Lemme 2 2 4 Benoist [3 5 1] Pour toute partie compacte L de G il existe
une partie compacte M de E telle que pour tout g dans G on ait :

¹ LgL ½ ¹ g + M:

D¶emonstration Soit L une partie compacte de G Soient g dans G et l1 et l2 dans

L D'une part pour tout ® dans ¦ on a :

°°

½® l1 ¡1

°°

¡1
k½® g k

°°

½® l2 ¡1

°°

¡1 · k½® l1gl2 k · k½® l1 k k½® g k k½® l2 k
d'oµu par cons¶equent

Â® ¹ g ¡ 2 max
l2L

Â® ¹ l¡1 · Â® ¹ l1gl2 · Â® ¹ g + 2 max
l2L

Â® ¹ l

et d'autre part pour tout Â dans XC on a :

Â ¹ l1gl2 Â ¹ l1 + Â ¹ g + Â ¹ l2
d'oµu

jÂ ¹ l1gl2 ¡ Â ¹ g j · 2 max
l2L jÂ ¹ l j :

Le r¶esultat en d¶ecoule puisque l'ensemble XC [ fÂ® j ® 2 ¦g engendre E¤ ¤

De même on peut montrer :

Lemme 2 2 5 Pour tout voisinage V de 0 dans E il existe un voisinage W de

e dans G tel que pour tout g dans G

¹ W gW ½ ¹ g + V: ¤

2 2 6 Sous-groupes paraboliques et vari¶et¶es drapeaux
Soit µ ½ ¦ On note Pµ l'ensemble des K-sous-groupes paraboliques conjugu¶es

µa Pµ de G L'application

G Pµ

g
7

gPµg¡1

identi¯e Pµ et G Pµ : on peut ainsi voir Pµ comme une vari¶et¶e K-analytique

Comme l'action de K sur Pµ est transitive cette vari¶et¶e analytique est compacte

On note ºµ l'unique probabilit¶e bor¶elienne K-invariante de Pµ
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On note »µ le sous-groupe Pµ vu comme un point de Pµ et Q¡µ la sous-vari¶et¶e
ferm¶ee Pµ ¡ P _µ »µ Pµ ¡ P _¦»µ de Pµ

Pour tout ® dans µ GX® est une sous-vari¶et¶e K-analytique ferm¶ee de P V®
En particulier le G-entrelacement

Pµ Y®2µ

P V®

qui µa un sous-groupe parabolique de type µ associe la famille de ses uniques points

¯xes dans les V® ® 2 µ est une immersion ferm¶ee Il identi¯e »µ avec X® ®2µ et
Q¡µ avec le compl¶ementaire de l'intersection de son image et de

Q
®2µ P V® ¡ P V <

® Pour tout » dans Pµ on note »® ®2µ son image par
cette application On munit Pµ de la distance induite par la distance produit de

Q
®2µ P V® Alors K agit par isom¶etries et G par transformations lipschitziennes

sur Pµ
Soit g dans G Alors g est µ-proximal si et seulement s'il possµede un point ¯xe

attracteur dans Pµ On note alors »+
µ;g ce point ¯xe : il s'identi¯e µa ³V +

®;½® g ´®2µ
Soit L ½ P¦ une partie born¶ee L'ensemble

S
z2Z+ z¡1Lz est encore born¶e De

même si L ½ P_¦ est une partie born¶ee l'ensemble
S

z2Z+ zLz¡1 est encore born¶e
Pour tout " > 0 on pose :

B"
µ f» 2 Pµj8® 2 µ d »®; P

¡
V <

®
¢ ¸ " g:

Il existe une partie compacte L de P _¦ telle que B"
µ ½ L»µ

2 2 7 Sous-groupes Zariski denses

Nous rappelons ici une partie des r¶esultats de [4 4] et de [5]
Soit ¡ un sous-groupe Zariski dense de G On appelle cône limite de ¡ et on

note l¡ le cône ferm¶e engendr¶e par ¸ ¡ dans E+
Soit P ½ E On appelle cône asymptote µa P l'ensemble des vecteurs x dans E

pour lesquels il existe une suite de vecteurs xn n2N dans P et une suite de r¶eels
positifs tn n2N tendant vers 0 telles que tnxn ¡¡¡¡n 1

x
Par la formule du rayon spectral l¡ est contenu dans le cône asymptote µa ¹ ¡

Th¶eorµeme 2 2 6 Benoist [4] Le cône limite l¡ de ¡ est exactement le cône

asymptote µa ¹ ¡ et l'ensemble ¹ ¡ reste µa distance born¶ee de l¡ Le cône l¡ est
convexe et si K est R son intersection avec ES est d'int¶erieur non vide dans ES

¤
On appelle type de ¡ et on note µ¡ l'unique partie µ de ¦ telle que l¡ ½ E+

µ
et que l¡ \ E++

µ 6 ; : c'est le plus grand µ ½ ¦ tel que ¡ contienne des ¶el¶ements

µ-proximaux Si K est R µ¡ ¦ L'ensemble µ¡ est stable par ¶ et si ¡ est discret
µ¡ 6 ;On note F¡ le sous-espace vectoriel de E engendr¶e par l¡ Nous aurons µa utiliser
l'existence dans ¡ de sous-semi-groupes libres :
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Proposition 2 2 7 Benoist [4 5 1] Si µ¡ 6 ; il existe un r¶eel · ¸ 0 tel que

pour tout cône
C dans E si l'int¶erieur dans F¡ de

C \ l¡ est non vide il existe
des ¶el¶ements °1 et °2 dans ¡ et des vecteurs x1 et x2 dans C \ l¡ tels que le
sous-semi-groupe ¢ de ¡ engendr¶e par °1 et °2 soit libre et que si © est l'unique

homomorphisme de semi-groupes envoyant °1 sur x1 et °2 sur x2 pour tout °
dans ¢ mot de longueur l en les g¶en¶erateurs °1 et °2 on ait :

¹ ° 2 C et k¹ ° ¡ © ° k · ·l: ¤

2 3 Produit g¶en¶erique

Dans cette section nous allons d¶emontrer :

Proposition 2 3 1 Soit ¡ un sous-groupe discret Zariski dense de G Il existe
une application ¼ : ¡£ ¡ ¡ ayant les propri¶et¶es suivantes :

i il existe un r¶eel · ¸ 0 tel que pour tous °1; °2 dans ¡
k¹ ¼ °1; °2 ¡ ¹ °1 ¡ ¹ °2 k · ·:

ii pour tout r¶eel R ¸ 0 il existe une partie ¯nie H de ¡ telle que pour
°1;°2; °01

; °02
dans ¡ avec k¹ °1 ¡ ¹ °

01 k · R et k¹ °2 ¡ ¹ °
02 k · R

¼ °1; °2 ¼ °01
; °02

°01 2 °1H et °02 2 H°2 :

L'id¶ee de la construction est d'¶ecrire pour °1; °2 dans ¡ ¼ °1; °2 °1f°1;°2°2
oµu f°1;°2

est choisi dans une partie ¯nie de ¡ de fa»con µa v¶eri¯er les hypothµeses des

lemmes 2 3 3 et 2 3 8

Dor¶enavant on ¯xe pour tout ¶el¶ement g de G un ¶el¶ement zg de Z+ et des

¶el¶ements kg et lg de K tels que g kgzg lg

2 3 1 Un calcul de composante de Cartan

Nous e®ectuons ici le calcul qui permet de valider le point i de la proposition
2 3 1

Soit ½; V une repr¶esentation rationnelle irr¶eductible de dimension ¯nie de

G munie d'une norme ½; A; K -bonne On munit P V de la distance associ¶ee

Rappelons que pour tout z dans Z+ si pour tout ® dans ¦ ® º z > 0 ½ z
est une semi-similitude avec V M

½ z V +¦ et V m
½ z V <¦ et que pour tout g dans

G pour tout v dans V tel que ½ g v appartienne µa kgV +¦ on a :

k½ g vk k½ g k kvk :

Pour tout g dans G on note :

V M
½;g kgV +¦ et V m

½;g l¡1
g V <¦ :

Pour ® dans ¦ on notera V M
®;g et V m

®;g pour V M
½®;g et V m

½®;g
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Si K est R ou C et si pour tout ® dans¦ ® ¹ g > 0 V M
½;g et V m

½;g ne d¶ependent
pas des kg et lg choisis

En appliquant le lemme 2 1 4 aux repr¶esentations de G on obtient :

Lemme 2 3 2 Soit ½; V une repr¶esentation rationnelle irr¶eductible de dimen-
sion ¯nie de G munie d'une norme ½; A;K -bonne Pour tous " > 0 et g dans G
on a :

8v 2 V ¡ f0g ¡
d
¡
Kv; P

¡
V m

½;g
¢¢ ¸ "

¢
kgvk ¸ " k½ g k kvk :

D¶emonstration Comme K agit par isom¶etries sur V il su±t de d¶emontrer ce

r¶esultat quand g est dans Z+ Alors ½ g est une semi-similitude et V m
½ g

est
contenu dans V <¦ Le r¶esultat est alors une cons¶equence du lemme 2 1 4 ¤

Nous sommes µa pr¶esent en mesure d'e®ectuer le calcul de la composante de

Cartan du produit g¶en¶erique L'hypothµese sur les distances dans l'¶enonc¶e ci-dessous

traduit le fait que f ¶ecarte su±sament les uns des autres les ensembles de drapeaux
associ¶es µa g et µa h

Lemme 2 3 3 Soient µ ½ ¦ r > 0 et F une partie compacte de G Il existe un
r¶eel · ¸ 0 tel que pour tous g;h dans G pour tout f dans F

¡8® 2 µ d
¡f

V M
®;h; P

¡
V m

®;g
¢¢ ¸ r

¢
kpµ ¹ gfh ¡ ¹ g ¡ ¹ h k · · :

D¶emonstration Comme on l'a vu au paragraphe 2 2 5 pour tous g et h dans G
pour tout f dans F pour tout Â dans XC on a :

Â ¹ gfh Â ¹ g + Â ¹ f + Â ¹ h

et donc

jÂ ¹ gfh ¡ ¹ g ¡ ¹ h j · max
f2F jÂ ¹ f j :

Par ailleurs d'aprµes le lemme 2 3 2 pour tout g dans G pour tout ® dans µ
on a :

8v 2 V®
¡
d
¡
Kv; P

¡
V m

®;g
¢¢ ¸ r

¢
kgvk ¸ r k½® g k kvk :

Soient g et h dans G Soit f dans F tels que pour tout ® dans µ on ait :

d
¡f

V M
®;h; P

¡
V m

®;g
¢¢ ¸ r:

Soit ® dans µ D'une part on a :

k½® gfh k · k½® g k k½® h k k½® f k

· k½® g k k½® h k max
k2F k½® k k

donc

Â® ¹ gfh ¡ ¹ g ¡ ¹ h ·max
k2F

Â® ¹ k :



580 J -F Quint CMH

D'autre part soit v un vecteur non nul de V® tel que hv 2 V M
®;h On a :

k½® gfh vk ¸ r k½® g k k½® fh vk

¸ r k½® g k

°°

½® f ¡1

°°

¡1
k½® h vk

¸ r k½® g k

°°

½® f ¡1

°°

¡1
k½® h k kvk :

Il vient :

k½® gfh k ¸ r µmax
k2F

°°

½® k ¡1

°°

¶
¡1

k½® g k k½® h k

d'oµu

Â® ¹ gfh ¡ ¹ g ¡ ¹ h ¸ logq r ¡max
k2F

Â® ¹ k¡1 :

Le r¶esultat en d¶ecoule puisque d'aprµes le lemme 2 2 3 pour tout x dans E pµ x
est entiµerement d¶etermin¶e par les Â x pour Â dans XC [ fÂ® j ® 2 µg ¤

2 3 2 Un r¶esultat de ¯nitude

Rappelons que si V est un K-espace vectoriel une famille de droites Xj j2J
est dite être en position g¶en¶erale si et seulement si pour toute partie ¯nie K de J
de cardinal · dim V la famille de droites Xj j2K est en somme directe Si J est
¯ni l'ensemble des familles de droites en position g¶en¶erale est un ouvert de Zariski
de P V J

Le r¶esultat suivant est dû µa H Abels G -A Margulis et G -A Soifer [2 4 7] Il
nous permettra de trouver dans un sous-groupe Zariski dense ¡ de G une partie
¯nie F telle que ¶etant donn¶es deux ¶el¶ements g et h de G il existe f dans F
v¶eri¯ant les hypothµeses des lemmes 2 3 3 et 2 3 8

Si ½; V est une repr¶esentation rationnelle irr¶eductible et de dimension ¯nie
de G de plus haut poids restreint Â on note µ½ l'ensemble des ® dans ¦ tels que

Â ¡ ® soit un poids de ½

Proposition 2 3 4 Abels{Margulis{Soifer Soit ¡ un sous-groupe Zariski dense

de G Soit ½i; Vi i2I une famille ¯nie de repr¶esentations rationnelles irr¶eductibles

et de dimensions ¯nies de G chacune munie d'une norme On suppose que pour
tout i dans I on a µ½i ½ µ¡ Alors il existe une partie ¯nie F de ¡ et un r¶eel
r > 0 ayant la propri¶et¶e suivante : pour toutes familles Xi i2I et Yi i2I oµu pour
tout i dans I Xi est une droite et Yi un hyperplan de Vi il existe f dans F tel
que pour tout i dans I

d fXi; P Yi ¸ r:

D¶emonstration Soit h un ¶el¶ement µ¡-proximal de ¡ : pour tout i dans I ½ h est
proximal dans P Vi Notons pour simpli¯er

V +
i V +

i;½i h
et V <

i V <
i;½i h :
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Soit l 2 N Par r¶ecurrence comme ¡ est Zariski dense dans G qui est Zariski
connexe et comme les ½i; Vi i2I sont irr¶eductibles on peut construire une famille
gj 1·j·l d'¶el¶ements de ¡ telle que pour tout i dans I

i la famille de droites gjV +
i 1·j·l est en position g¶en¶erale

ii la famille d'hyperplans giV <
i 1·i·l est en position g¶en¶erale

iii pour tous j; k dans [1; l] gjV +
i 6½ gkV <i

Supposons l ¸ Pi2I dim Vi Alors on peut trouver r > 0 tel que pour toutes

familles Xi i2I et Yi i2I oµu pour tout i dans I Xi est une droite et Yi un
hyperplan de Vi

i il existe j dans [1; l] tel que pour tout i dans I
d
¡
Xi; P

¡
gjV <i ¢¢ ¸ r:

ii il existe k dans [1; l] tel que pour tout i dans I
d
¡
gkV +

i ; P Yi
¢ ¸ r:

iii pour tous j; k dans [1; l]
d gjV +

i ; P
¡
gkV <

i ¢ ¸ r:
Pour tout j dans [1; l] on pose V +

i;j gjV +
i et V <

i;j gjV <
i

Choisissons pour tout j dans [1; l] un entier nj su±sament grand pour que

pour tout i dans I ½ gjhnjg¡1
j envoie

B ³P
¡
V <i;j¢

; r
2´ dans b³V +

i;j ;
r
2´

et posons pour tout j dans [1; l] hj gjhnjg¡1
jPosons F fhkhj j1 · j; k · lg et montrons que la partie F et le r¶eel r

2
v¶eri¯ent les conclusions de la proposition

Soient pour tout i dans I Xi une droite de Vi et Yi un hyperplan de Vi Il
existe j dans [1; l] tel que pour tout i dans I

d
¡
Xi; P

¡
V <i;j¢¢ ¸ r

et par cons¶equent
d
¡
hjXi; V +

i;j¢ · r
2

:

Par ailleurs il existe k dans [1; l] tel que pour tout i dans I
d³V +

i;k; P Yi ´ ¸ r:
Or pour tout i dans I comme

d³V +
i;j ; P³V <

i;k´´ ¸ r;
on a

d³hjXi; P³V <
i;k´´ ¸

r
2
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et donc

d³hkhjXi; P³V +
i;k´´ · r

2
:

Il vient :
d hkhjXi; P Yi ¸ r

2
;

ce qu'il fallait d¶emontrer ¤

D¶eduisons-en un r¶esultat qui sera utilis¶e dans la d¶emonstration du lemme 2 3 8 :

Corollaire 2 3 5 Il existe " > 0 tel que pour toutes familles U® ®2¦ et
W® ®2¦ oµu pour tout ® dans ¦ U® et W® sont des hyperplans de V® il existe

» dans P¦ avec pour tout ® dans ¦
d »®; P U® ¸ " et d »®; P W® ¸ ":

D¶emonstration Soit r > 0 comme dans la proposition 2 3 4 avec ¡ G et comme

famille de repr¶esentations la r¶eunion de deux copies de V® ®2¦ Soient pour tout
® dans ¦ U® et W® des hyperplans de V® Alors il existe f dans G tel que pour
tout ® dans ¦ on ait :

d fX®; P U® ¸ r et d fX®; P W® ¸ r:
Le point » f»¦ convient ¤

2 3 3 Un contrôle de distance

Ce paragraphe et le suivant ont pour but d'¶etablir les r¶esultats interm¶ediaires

permettant de d¶emontrer le point ii de la proposition 2 3 1 Nous commen»cons

ici par g¶en¶eraliser des ph¶enomµenes de g¶eom¶etrie µa courbure strictement n¶egative

Soit toujours µ ½ ¦ On note Kµ le groupe Pµ \ K et pour tout C ¸ 0 on
pose

EC
µ fx 2 E+

j8® 2 µc ® x · Cg

et ZC
µ º¡1 EC

µ
Dans [1 3 5] P Albuquerque d¶emontrait une g¶en¶eralisation du lemme des

ombres de Sullivan Le lemme suivant est la contrapos¶ee de ce r¶esultat : µa partir
d'une information sur les actions d'un ¶el¶ement k de K et d'un ¶el¶ement z de Z sur
une vari¶et¶e drapeau il permet de contrôler la distance entre z et kz

Lemme 2 3 6 Pour tout C ¸ 0 et pour toute partie compacte L de P _¦ il existe
une partie compacte M de G telle que pour tout z dans ZC

µ
pour tout k dans K

k»µ 2 zL»µ
¡
z¡1kz 2 M

¢
:

D¶emonstration Donnons-nous C et L comme dans l'¶enonc¶e On peut supposer
que pour tout z dans Z+ zLz¡1

½ L
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Pour tout z dans Z+ et pour tout p dans L choisissons k z; p dans K et
q z; p dans P¦ tels que zp k z; p q z; p i e k z; p q z; p est une d¶ecomposition
d'Iwasawa de zp

Pour z dans Z+ et p dans L on a : q z; p z¡1 k z; p ¡1zpz¡1
2 KL et donc

la partie de P¦ L0 fq z; p z¡1
jz 2 Z+; p 2 Lg

est born¶ee Par cons¶equent
L00 fz¡1q z; p jz 2 Z+; p 2 Lg ½ [z2Z+

z¡1L0z

est born¶ee Or pour tout z dans Z+ pour tout p dans L
z¡1k z; p z z¡1 zpq z; p ¡1 z p z¡1q z; p ¡1

2 L L00 ¡1:

Par ailleurs l'ensemble
L000 [z2ZC

µ

z¡1Kµz

est born¶e
Soient alors k dans K et z dans ZC

µ tels que k»µ 2 zL»µ
¶Ecrivons k»µ zp»µ

avec p dans L On a :
k»µ k z; p »µ

i e k 2 k z; p Kµ et donc

z¡1kz 2 z¡1k z; p z z¡1Kµz ½ L L00 ¡1L000: ¤

Pour tous g dans G et " > 0 on note

B"
µ;g l¡1

g B"
µ:

Nous faisons jouer µa l'ensemble gB"
µ;g le rôle des ombres de [18] et [1]

L'¶enonc¶e du r¶esultat suivant signi¯e que si un ¶el¶ement de G a une composante
de Cartan proche de la facette associ¶e µa µ on peut reconstituer cet ¶el¶ement µa un
compact prµes µa partir de sa composante de Cartan et de son ombre dans Pµ

Proposition 2 3 7 Pour tous C ¸ 0 et " > 0 il existe une partie compacte
M de G telle que pour tout µ ½ ¦ pour tous g; h dans G avec ¹ g 2 EC

µ
et

¹ h ¸C ¹ g si gB"
µ;g \ hB"

µ;h 6 ; alors on a :

g 2 khzgM:

D¶emonstration Choisissons une partie compacte L de P _¦ telle que B"
µ ½ L»µ et

que pour tout z dans Z+ zLz¡1
½ L Posons :

L0 [z2Z
8®2¦ j® º z j·C

z¡1Lz:
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L'ensemble L0 est encore born¶e
D'aprµes le lemme 2 3 6 on peut trouver une partie compacte M de G telle que

pour tout z dans ZC
µ pour tout k dans K

k»µ 2 zL0»µ kz 2 zM :

Par ailleurs on peut trouver une partie compacte M 0 de G telle que pour tout
z dans ZC

µ z¡1Kµz ½ M 0

Soient g et h comme dans l'¶enonc¶e On a :

gB"
µ;g ½ kgzgL»µ et hB"

µ;h ½ khzhL»µ:

Comme ¹ h º zh ¸C ¹ g º zg il vient :

khzhL»µ ½ khzgL0»µ

et donc

kgzgL0»µ \ khzgL0»µ 6 ;:

Soit » 2 kgzgL0»µ \ khzgL0»µ Soit m1 dans K tel que » kgm1»µ

On a :
m1»µ 2 zgL0»µ

et donc

m1zg 2 zgM ou encore kgm1zg 2 gKM:

Soient h0 khzg lh et m2 dans K tels que » kgm2»µ On a de même

khm2zg 2 h0KM:

Or comme

kgm1»µ » khm2»µ ;

on a :
kgm1 2 khm2Kµ :

Il vient :

g 2 kgm1zgM¡1K ½ khm2KµzgM¡1K ½ h0KMM 0M¡1K: ¤

2 3 4 Produit g¶en¶erique dans G

Le r¶esultat suivant combine la proposition 2 3 7 et les raisonnements de la
section 2 1

Lemme 2 3 8 Soient µ ½ ¦ C > 0 r > 0 et F une partie compacte de G Il
existe une partie compacte M de G ayant la propri¶et¶e suivante : soient g; h dans

G et f dans F ; si
¹ g ;¹ gfh 2 EC

µ
et si 8® 2 µ d

¡f
V M

®;h; P
¡
V m

®;g
¢¢ ¸ r;

alors on a :
g 2 kgfhzgM:
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Ce lemme signi¯e que si f g et h sont des ¶el¶ements de G et que f met
les ensembles de drapeaux associ¶es µa g et h en position su±sament g¶en¶erale on
peut retrouver g µa un compact prµes µa partir de sa composante de Cartan et de

gfh Comme on sait d'aprµes le lemme 2 3 3 que quitte µa augmenter C sous

nos hypothµeses on a ¹ gfh ¸C ¹ g on va chercher µa appliquer la proposition
2 3 7 et donc µa montrer que pour un " > 0 on a gB"

µ;g \ gfh B"
µ;gfh 6 ; ou

encore B"
µ;g \ fhB"

µ;gfh 6 ; Pour montrer cette derniµere propri¶et¶e on appliquera

le lemme suivant µa h :

Lemme 2 3 9 Soit ½; V une repr¶esentation rationnelle irr¶eductible de dimen-
sion ¯nie de G munie d'une norme ½;A;K -bonne Pour tous r > 0 et " > 0 il
existe un r¶eel ´ > 0 tels que pour tout g dans G pour tout hyperplan W de V si
±

¡
V M

½;g ; P W
¢ ¸ r on a :

g¡1b P W ; ´ ½ b
¡
P

¡
g¡1W

¢
; "

¢
:

D¶emonstration Comme K agit par isom¶etries sur P V il su±t de le d¶emontrer
pour g dans Z+ Alors ½ g est une semi-similitude et notre r¶esultat est le lemme

2 1 6 ¤

D¶emonstration du lemme 2 3 8 Comme G agit par transformations lipschitziennes

sur les P V® ® 2 ¦ on peut trouver r0 > 0 tel que pour tout f dans F pour
tout ® dans µ et pour tous X; Y dans P V® on ait

d fX; Y ¸ r d X; f¡1Y ¸ r0 :

Soit " > 0 comme dans le corollaire 2 3 5
D'aprµes le lemme 2 3 9 il existe un r¶eel 0 < ´ · " v¶eri¯ant la propri¶et¶e sui-

vante : soient g dans G et pour tout ® dans µ un hyperplan W® de V® avec

d P
¡
V M

®;g
¢

; P W® ¸ r0;

alors on a

8® 2 µ g¡1b P W® ; ´ ½ b P
¡
g¡1W®

¢
; " :

Il existe un r¶eel 0 < $ · ´ tel que pour tout ® dans µ pour tout hyperplan
W de V® pour tout f dans F on ait :

f¡1b P W ;$ ½ b f¡1P W ; ´ :

Par ailleurs d'aprµes le lemme 2 3 3 quitte µa augmenter C on peut supposer
que pour tous g; h dans G pour tout f dans F si

8® 2 µ d
¡f

V M
®;h; P

¡
V m

®;g
¢¢ ¸ r;

on a pµ ¹ gfh ¸C pµ ¹ g Alors si ¹ g ;¹ gfh sont dans EC
µ

on a ¹ gfh ¸3C

¹ g
En¯n d'aprµes la proposition 2 3 7 il existe une partie compacte M de G telle

que pour tout µ ½ ¦ pour tous g; h dans G avec ¹ g 2 EC
µ

et ¹ h ¸3C ¹ g si
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gB"
µ;g \ hB"

µ;h 6 ; alors on a :

g 2 khzgM:

Soient g; h dans G et f dans F avec ¹ g ;¹ gfh 2 EC
µ Supposons que l'on a :

8® 2 µ d
¡f

V M
®;h; P

¡
V m

®;g
¢¢ ¸ r;

On a ¹ gfh ¸3C ¹ g Par ailleurs pour tout ® dans µ on a :

h¡1b
¡f¡

1P
¡
V m

®;g
¢

; ´
¢

½ b
¡
h¡1f¡1P

¡
V m

®;g
¢

; "
¢

ce qui implique :

h¡1f¡1b
¡
P

¡
V m

®;g
¢

;$
¢

½ b
¡
h¡1f¡1P

¡
V m

®;g
¢

; "
¢

:

On peut trouver » dans Pµ tel que pour tout ® dans µ on ait :

d
¡

»®; P
¡
V m

®;gfh
¢¢ ¸ " et d

¡
»®; h¡1f¡1P

¡
V m

®;g
¢¢ ¸ ":

On a alors :
» 2 B"

µ;gfh ½ B$
µ;gfh et fh» 2 B$

µ;g

ou encore :
gfh» 2 gfh B$

µ;gfh \ gB$
µ;g

et par cons¶equent d'aprµes la proposition 2 3 7 g 2 kgfhzgM ¤

2 3 5 Produit g¶en¶erique dans ¡
Les lemmes 2 3 3 et 2 3 8 et la proposition 2 3 4 nous permettent maintenant

de conclure :

D¶emonstration de la proposition 2 3 1 D'aprµes le th¶eorµeme 2 2 6 on peut trouver
un r¶eel C > 0 tel que pour tout ° dans ¡ pour tout ® dans µc

¡
® ¹ ° · C

La famille ½®; V® ®2µ¡ v¶eri¯e les hypothµeses de la proposition 2 3 4 Il existe

donc une partie ¯nie F de ¡ et un r¶eel r > 0 tels que pour toute famille
U®; W® ®2µ¡ oµu pour tout ® dans µ¡ U® est une droite et W® un hyperplan

de V® il existe f dans F tel que pour tout ® dans µ¡
d fU®; P W® ¸ r:

Soient °1; °2 dans ¡ On peut trouver un ¶el¶ement f°1;°2 de F tel que pour tout ®
dans µ¡ on ait :

d
¡f°1;°2 V M

®;°2 ; P
¡
V m

®;°1
¢¢ ¸ r:

En d'autres termes le triplet g; h; f °1; °2; f°1;°2 v¶eri¯e les hypothµeses des

lemmes 2 3 3 et 2 3 8
On pose ¼ °1; °2 °1f°1;°2°2 Comme ¹ ¡ est µa distance born¶ee de Eµ¡ il

existe d'aprµes le lemme 2 3 3 un r¶eel · ¸ 0 tel que pour tous °1; °2 dans ¡
k¹ ¼ °1; °2 ¡ ¹ °1 ¡ ¹ °2 k · ·:
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Par ailleurs d'aprµes le lemme 2 3 8 il existe une partie compacte M de G telle
que pour tous °1; °2 dans ¡ on ait °1 2 k¼ °1;°2 z°1M En particulier soient
R ¸ 0 et °1;°2; °01

; °02
dans ¡ avec k¹ °1 ¡ ¹ °

01 k · R k¹ °2 ¡ ¹ °02 k · R et
¼ °1; °2 ¼ °01

; °02
°3 On a :

°1 2 k°3z°1M et °01 2 k°3 z°01
M:

Il vient
°¡1

1 °01 2 M¡1º¡1 b 0; R M:

L'ensemble H M¡1º¡1 b 0; R M \ ¡ est ¯ni et l'on a :

°02 f¡1
°01

;°02
°01 ¡1°3 2 F¡1H¡1F°2: ¤

3 Mesures coniques

Cette partie est ind¶ependant de la premiµere Nous y traitons d'un point de

vue abstrait le problµeme du calcul de l'exposant de convergence d'une mesure

de Radon sur un espace vectoriel Nous restreignons ensuite notre attention µa
certaines classes de mesures : si ¡ est un sous-groupe discret Zariski dense de G
la mesure de comptage

P°2¡ ±¹ ° v¶eri¯era les hypothµeses que nous ferons

Soit E un R-espace vectoriel de dimension ¯nie r et º une mesure de Radon
positive sur E

3 1 Divergence exponentielle

Dans cette section nous abordons d'un point de vue g¶en¶eral l'¶etude des expo-
sants de convergence de º Nous commen»cons par donner des m¶ethodes de calcul
du type de la formule de Hadamard Nous associons alors µa º une fonction ho-
mogµene Ãº qui contient toutes les informations sur la divergence exponentielle de

º dans chacune des directions de
E En¯n nous introduisons un vocabulaire pour

l'¶etude particuliµere des exposants de convergence associ¶es aux formes lin¶eaires de

E

3 1 1 Exposants de convergence et formules de Hadamard
¶Etant donn¶ee une norme N sur E pour tout r¶eel t on pose :

LN
º t Z

E

e¡tN x dº x

et :

¿ N
º inf

©
t 2 R

¯
¯

LN
º t < 1ªsup

©
t 2 R

¯
¯

LN
º t 1ª 2 R [ f+1;¡1g:



588 J -F Quint CMH

On l'appelle exposant de convergence de º relativement µa N
Pour tous x dans

E et a · b dans R on note bN x; a la boule de centre x et
de rayon a relativement µa la norme N et CN a; b la couronne :

fx 2 E ja · N x · b g :

Donnons quelques formules de Hadamard pour le calcul de ¿ N
º :

Lemme 3 1 1 Pour tous a > 0 et b; c ¸ 0 avec b + c ¸ a on a :

¿ N
º

1

a
lim sup
n 1

log
¡
º
¡
CN na ¡ b; na + c

¢¢n
:

Pour tous 0 < a < b et c; d ¸ 0 on a :

min
¡
a¿ N

º ; b¿ N
º

¢ · lim sup
n 1

log
¡
º
¡
CN na ¡ c; nb + d

¢¢n ·max
¡
a¿ N

º ; b¿ N
º

¢
:

Si ¿ N
º > 0 on a :

¿ N
º lim sup

a 1
log

¡
º
¡

bN 0; a
¢¢

a
:

D¶emonstration Soient a > 0 et b; c ¸ 0 avec b + c ¸ a Il existe un entier n0 > 0

tel que pour tout x dans
E

0 < card
©
n 2 Njx 2 CN na ¡ b; na + c

ª · n0:

Il vient pour tout t dans R

1

n0
e¡jtj max b;c 1

X
n 0

º
¡

CN na ¡ b; na + c
¢

e¡tna · Z
E

e¡tN x dº x

· ejtj max b;c 1

X
n 0

º
¡

CN na¡ b; na + c
¢

e¡tna;

d'oµu la premiµere formule
Soient 0 < a < b et c; d ¸ 0 Comme a < b il existe R ¸ 0 tel que

E ¡ bN 0; R ½ [n>0

CN na¡ c; nb + d :

D'autre part pour tout entier n > 0 pour tout x dans CN na ¡ c;nb + d pour
tout m > 0 on a :

¡
x 2 CN ma ¡ c; mb + d

¢
ma¡ c · nb + d µm · nb + c + d

a ¶
et donc

card
©

m 2 N¤jx 2 CN ma ¡ c; mb + d
ª ·

nb + c + d

a
:
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Il vient par cons¶equent pour tout t dans R

ae¡jtj max c;d 1

X
n 1

1

nb + c + d
º
¡
CN na ¡ c; nb + d

¢
e¡n max at;bt

· Z
E¡bN 0;R

e¡tN x dº x

· ejtj max c;d 1

X
n 1

º
¡
CN na ¡ c; nb + d

¢
e¡n min at;bt ;

d'oµu la deuxiµeme formule
En¯n on a :

¿ N
º lim sup

n 1
log

¡
º
¡
CN n¡ 1;n

¢¢n · lim sup
n 1

log
¡
º
¡

bN 0; n
¢¢n

· lim sup
a 1

log
¡
º
¡

bN 0; a
¢¢

a
:

Supposons ¿ N
º > 0 Soient t et s avec

0 < t < s < lim sup
a 1

log
¡
º
¡

bN 0; a
¢¢

a
:

Pour tout r¶eel a ¸ 0 il existe b ¸ a tel que pour tout c ¸ b on ait :

esc ¡ etc ¸ º
¡

bN 0; a
¢

et donc il existe c ¸ b tel que l'on ait :

º
¡
CN a; c

¢ ¸ º
¡

bN 0; c
¢ ¡ º

¡
bN 0; a

¢ ¸ esc ¡ º
¡

bN 0; a
¢ ¸ etc:

On peut donc construire une suite an n2N de r¶eels ¸ 0 avec pour tout n dans N

an+1 ¸ an + 1 et º
¡
CN an + 1; an+1

¢ ¸ etan+1 :

Il vient alors :

Z
E

e¡tN x dº x ¸ 1

X
n 0

º
¡
CN an + 1; an+1

¢
e¡tan+1 1;

donc t · ¿ N
º d'oµu la troisiµeme formule ¤

De ces formules on d¶eduit imm¶ediatement :

Corollaire 3 1 2 Soient º et º 0 des mesures de Radon sur E S'il existe une

partie compacte M de E et un r¶eel ¸ 0 tels que pour tout bor¶elien B de E

º0 B · º B + M ;

alors pour toute norme N sur E on a ¿ N
º0 · ¿ N

º ¤
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3 1 2 Indicateur de croissance

Soit N une norme sur E Soit C ½ E un cône ouvert On note ¿ N
C;º l'exposant

de convergence relativement µa N de la mesure ºjCPour tout x dans E ¡ f0g on pose

Ãº x N x inf ¿ N
C;º;

la borne inf¶erieure ¶etant prise sur l'ensemble des cônes ouverts
C de

E contenant x
et on pose Ãº 0 0 Cette fonction ne d¶epend pas de N On l'appelle indicateur
de croissance de º Elle est positivement homogµene i e pour tous t ¸ 0 et x dans

E on a Ãº tx tÃº x
La fonction Ãº permet de calculer tous les exposants de convergence de º :

Lemme 3 1 3 Soit µ : E R une fonction homogµene et continue

Si pour tout x dans E ¡ f0g µ x > Ãº x alors on a :

Z
E

e¡µ x dº x < 1:

S'il existe un x dans E ¡ f0g tel que µ x < Ãº x alors on a :

Z
E

e¡µ x dº x 1:

D¶emonstration Soit N une norme sur E
Supposons que pour tout x dans

E ¡ f0g µ x > Ãº x En particulier pour
tout x dans

E Ãº x < 1 Soit x dans
E ¡ f0g Il existe un cône ouvert Cx

contenant x et un r¶eel tx tels que

N x ¿ N
Cx;º < N x tx < µ x :

Il existe un cône ouvert Dx ½ Cx contenant x et tel que pour tout y
6

0 dans Dx
on ait :

N y tx < µ y

et donc

N y ¿ N
Dx;º · N y ¿ N

Cx;º < N y tx < µ y :

Soient x1; : : : ;xn dans E tels que l'on ait :

E ¡ f0g ½ Dx1 [ : : : [Dxn :

Il vient :

Z
E¡f0g

e¡µ x dº x ·
n

Xi 1
Z

Dxi
e¡txiN y dº y < 1:

Supposons µa pr¶esent qu'il existe x dans
E ¡ f0g tel que µ x < Ãº x On peut

trouver un cône ouvert C de E et un r¶eel t tels que pour tout y
6

0 dans
C

µ y < N y t < N y
Ãº x
N x · N y ¿ N

C;º:
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Il vient :

Z
E

e¡µ y dº y ¸ Z
C

e¡tN y dº y 1: ¤

Corollaire 3 1 4 Pour toute norme N sur E on a :

¿ N
º sup

x2E¡f0g

Ãº x
N x

: ¤

Corollaire 3 1 5 Pour toute fonction µ : E R homogµene et continue on a :

Ãeµº Ãº + µ: ¤
D'aprµes le corollaire 3 1 2 on a :

Lemme 3 1 6 Soient º et º0 des mesures de Radon sur E S'il existe une partie
compacte M de E et un r¶eel ¸ 0 tels que pour tout bor¶elien B de E

º0 B · º B + M ;

alors Ãº0 · Ãº ¤
On suppose dor¶enavant qu'il existe une norme N sur E pour laquelle ¿ N

º < 1c'est-µa-dire que pour toute norme N sur E ¿ N
º < 1

Lemme 3 1 7 La fonction Ãº : E R [ f¡1g est semi-continue sup¶erieure-
ment

D¶emonstration Soit N une norme sur E
Soit x 6 0 dans E et xn n2N une suite tendant vers x Soit C un cône ouvert

contenant x Pour n su±sament grand xn appartient aussi µa C
et donc on a :

Ãº xn · N xn ¿ N
C;º :

Il vient :

lim sup
n 1

Ãº xn · lim sup
n 1 ¡

N xn ¿ N
C;º

¢
N x ¿ N

C;º :

Par cons¶equent on a :

lim sup
n 1

Ãº xn · Ãº x

et donc Ãº est semi-continue sup¶erieurement en x
En particulier il existe un r¶eel M tel que pour tout x dans

E avec N x 1

Ãº x · M On a alors :

lim sup
y2E;y 0

Ãº y · lim sup
t2R+;t 0

tM 0 Ãº 0

et donc Ãº est semi-continue sup¶erieurement en 0 ¤
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3 1 3 Convergence suivant les hyperplans

Pour toute forme lin¶eaire ' dans E¤ on pose :

Lº ' Z
E

e¡' x dº x :

D'aprµes l'in¶egalit¶e de HÄolder l'ensemble f' 2 E¤; Lº ' < 1g est convexe

Si N est une norme sur E on pose

¾N
º inf'2E¤

Lº ' <1
N ' :

Pour toute forme lin¶eaire ' dans E¤ on a :

Z
E

e¡' x dº x ¸ Z
E

e¡N ' N x dº x

et donc ¾N
º ¸ ¿ N

º
Proposition 3 1 8 S'il existe une forme lin¶eaire ' dans E¤ telle que pour tout
x dans E ¡ f0g ' x > Ãº x alors pour toute norme N sur E on a :

¾N
º inf'2E¤'¸Ãº

N ' :

D¶emonstration D'aprµes le lemme 3 1 3 on a toujours :

¾N
º ¸ inf'2E¤'¸Ãº

N ' :

R¶eciproquement soit '0 une forme lin¶eaire majorant strictement Ãº en dehors de

0 Alors pour toute forme lin¶eaire ' ¸ Ãº pour tout t dans ]0; 1] t'0 + 1 ¡ t 'majore strictement Ãº en dehors de 0 Par cons¶equent d'aprµes le lemme 3 1 3 on
a :

Lº t'0 + 1¡ t ' < 1
et donc

N t'0 + 1 ¡ t ' ¸ ¾N
º :

Il vient quand t 0

N ' ¸ ¾N
º ;

ce qu'il fallait d¶emontrer ¤

3 2 Mesures µa croissance concave

Soit toujours N une norme sur E Nous dirons que º est µa croissance concave

si et seulement s'il existe des r¶eels ®; ¯; ° > 0 tels que pour tous x; y dans
E

º
¡

bN x + y; ®
¢ ¸ °º

¡
bN x; ¯

¢
º
¡

bN y; ¯
¢

:
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Cette condition ne d¶epend pas de la norme choisie
Dans cette section nous allons d¶emontrer :

Th¶eorµeme 3 2 1 Si º est µa croissance concave son indicateur de croissance est
concave

Le lecteur non int¶eress¶e par la d¶emonstration de ce th¶eorµeme peut directement
passer µa la section 3 3

3 2 1 ¶Evaluations pr¶eliminaires

Commen»cons par donner un lemme ¶evident de recouvrement :

Lemme 3 2 2 Soient N une norme sur E et ¯ > 0 Il existe un r¶eel M > 0 telle
que pour tout x dans E et pour tout a > 0 il existe un entier

p · M 1 + a r

et des points x1; : : : ; xp de E avec

bN x; a ½

p

[i 1

bN xi; ¯ : ¤

L'id¶ee g¶en¶erale de nos preuves est d'utiliser le lemme 3 2 2 pour estimer la
mesure d'une couronne CN a; b 0 · a · b µa un facteur b + 1 r prµes µa l'aide de

la mesure d'une boule bN x; ¯ pour un certain x Le facteur b + 1 r ne jouera
pas de rôle du point de vue de la divergence exponentielle

Nous commen»cons par it¶erer la formule de d¶e¯nition :

Lemme 3 2 3 Supposons º µa croissance concave Soit N une norme sur E et
soient ®; ¯; ° tels que pour tous x; y dans E

º
¡

bN x + y; ®
¢ ¸ °º

¡
bN x; ¯

¢
º
¡

bN y; ¯
¢

:

Alors il existe des r¶eels µ > 0 et ´ > 0 tels que pour tout entier k ¸ 2 et pour
tous x1; : : : ; xk dans E on ait :

º
¡

bN x1 + : : : + xk; k ¡ 1 ® + k ¡ 2 ¯
¢¸

µ´kº
¡

bN x1; ¯
¢

: : : º
¡

bN xk; ¯
¢

:

D¶emonstration Soit N une norme sur E Donnons-nous ®; ¯; ° comme ci-dessus

et M comme dans le lemme 3 2 2
Posons

´
1

M ® + ¯ + 1 r

et montrons par r¶ecurrence sur k ¸ 2 que si l est le plus petit entier tel que 2l ¸ k
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alors pour tous x1; : : : ; xk dans
E on a :

º
¡

bN x1 + : : : + xk; k ¡ 1 ® + k ¡ 2 ¯
¢

¸ °k¡1´k¡2

22 l¡1 +4 l¡2 +8 l¡3 +:::+2l¡1 r º
¡

bN x1; ¯
¢

: : : º
¡

bN xk; ¯
¢

;

ce qui implique le lemme

Pour k 2 il s'agit juste de la d¶e¯nition de la croissance concave

Pour k 3 c'est un raisonnement analogue µa celui fait ci-aprµes

Soit donc k ¸ 4 et supposons la formule vraie pour tous les entiers < k Soient
l le plus petit entier tel que 2l ¸ k et x1; : : : ; xk dans

E
Si k est pair on pose h k

2
; s'il est impair on pose h k¡1

2 Dans les deux
cas on a

2l¡1 ¸ h > 2l¡2 et 2l¡1 ¸ k ¡ h > 2l¡2:

D'aprµes le lemme 3 2 2 il existe un point y1 dans bN x1 + : : : + xh; h¡ 1 ® + ¯
tel que l'on ait :

º
¡

bN x1 + : : : + xh; h¡ 1 ® + h¡ 2 ¯
¢

· M 1 + h¡ 1 ® + h¡ 2 ¯ r º
¡

bN y1; ¯
¢

·
2r l¡1

´ :

De même il existe un point y2 dans bN xh+1 + : : : + xk; k ¡ h ¡ 1 ® + ¯ tel
que l'on ait :

º
¡

bN xh+1 + : : : + xk; k ¡ h¡ 1 ® + k ¡ h¡ 2 ¯
¢

·M 1 + k ¡ h¡ 1 ® + k ¡ h¡ 2 ¯ r º
¡

bN y2; ¯
¢

·
2r l¡1

´ :

On a alors :

º bN y1 + y2; ® ¸ °º bN y1;¯ º bN y2; ¯

¸
°´2

22r l¡1 º
¡

bN x1 + : : : + xh; h¡ 1 ® + k ¡ 2 ¯
¢

º
¡

bN xh+1 + : : : + xk ; k ¡ h¡ 1 ® + k ¡ h¡ 2 ¯
¢

:

Donc par r¶ecurrence

º
¡

bN y1 + y2; ®
¢

¸ °k¡1´k¡2

22 l¡1 +4 l¡2 +8 l¡3 +:::+2l¡1 r º
¡

bN x1; ¯
¢

: : : º
¡

bN xk; ¯
¢

;

d'oµu le r¶esultat puisque l'on a :

bN y1 + y2; ® ½ bN x1 + : : : + xk; k ¡ 1 ® + k ¡ 2 ¯ :
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Par r¶ecurrence la formule est vraie pour tout k ¸ 2 ¤

Rappelons que si tn n2N est une suite de nombres r¶eels avec pour tous n; p
dans N tn+p ¸ tn + tp alors la suite 1

n tn n¸1 converge dans R [ f¡1g Les

deux lemmes qui suivent s'inspirent de la d¶emonstration de ce r¶esultat usuel pour
minorer la limite inf¶erieure du logarithme de la mesure des couronnes

Lemme 3 2 4 Supposons º µa croissance concave Soit N une norme sur E Il
existe des r¶eels µ; ´; · > 0 ayant la propri¶et¶e suivante : pour tout cône ouvert C
de E pour tout x 6 0 dans C

et pour tout " > 0 il existe un cône ouvert D ½ C
contenant x et un r¶eel a0 > 0 tels que pour tous r¶eels a ¸ a0 et b ¸ 0 pour tout
entier naturel m et pour toute partition m n1 + : : : + np de m on ait :

º
¡
CN 1 ¡ " ma¡ p¡ 1 ·; ma + pb + p ¡ 1 · \ C

¢

¸
µ´p

Q
p
k 1

1 + nka + b r

p

Yk 1

º
¡
CN nka; nka + b \D

¢
:

D¶emonstration Il su±t de montrer la propri¶et¶e pour des partitions m n1+ : : :+
np de l'entier m avec p ¸ 2

Soit N une norme sur E ®; ¯; ° comme dans la d¶e¯nition de la croissance

concave M comme dans le lemme 3 2 2 et µ; ´ comme dans le lemme 3 2 3
Soit C un cône ouvert de

E x un vecteur unitaire de
C

et 0 < " < 1 Il existe
un cône ouvert convexe D de

E contenant x tel que D¡ f0g ½ C
et que pour tout

vecteur unitaire y de D N y ¡ x · "
Soient x1; : : : ;xp des vecteurs de D Pour tout i dans [1; p] on a :

N xi ¡N xi x · "N xi
et donc :

N x1 + : : : + xp ¡ N x1 + : : : + N xp x · " N x1 + : : : + N xp :

Il vient :
N x1 + : : : + xp ¸ 1 ¡ " N x1 + : : : + N xp :

Il existe un r¶eel a0 > 0 tel que pour tout y dans D avec N y ¸ 1¡ " on ait :

bN
µy;

® + 2¯
a0 ¶ ½ C:

Alors pour tout a ¸ a0 pour tout b ¸ 0 et pour tout entier n on ait :

bN

¡
CN 1 ¡ " na; na + b \D; ® + 2¯ n

¢
½ C:

Soient a ¸ a0 et b ¸ 0 Pour tout entier n choisissons un point xn dans

bN

¡
CN na; na + b \D; ¯

¢
tel que l'on ait :

º
¡

bN xn;¯
¢ ¸

1

M 1 + na + b r º ¡
CN na; na + b \D

¢
:
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Soit m un entier naturel et m n1 + : : : + np une partition de m avec p ¸ 2
On a :

º
¡

bN xn1 + : : : + xnp ; p ¡ 1 ® + p ¡ 2 ¯
¢

¸ µ´p
p

Yk 1

º
¡

bN xnk ;¯
¢

¸
µ´p

Mp

Q
p
k 1

1 + nka + b r

p

Yk 1

º
¡
CN nka; nka + b \D

¢
:

Or on a :

xn1 + : : : + xnp 2 bN

¡
CN 1 ¡ " ma; ma + pb \D; p¯

¢
et donc d'une part

bN xn1 + : : : + xnp ; p ¡ 1 ® + p ¡ 2 ¯
½ bN

¡
CN 1 ¡ " ma; ma + pb \D; p ¡ 1 ® + 2¯

¢
½ C

et d'autre part
bN xn1 + : : : + xnp ; p ¡ 1 ® + p ¡ 2 ¯

½ CN 1 ¡ " ma¡ p¡ 1 ® + ¯ ; ma + pb + p¡ 1 ® + ¯ :

Il vient :

º
¡
CN 1 ¡ " ma¡ p¡ 1 ® + ¯ ; ma + pb + p¡ 1 ® + ¯ \ C

¢

¸
µ´p

Mp

Q
p
k 1

1 + nka + b r

p

Yk 1

º
¡
CN nka; nka + b \D¢

:

¤

Pour les mesures µa croissance concave on a donc un compl¶ement aux formules

du lemme 3 1 1 :

Lemme 3 2 5 Supposons º µa croissance concave Soit N une norme sur E Pour
tout cône ouvert C de E pour tout x 6 0 dans

C
et pour tout " > 0 il existe a0 > 0

tel que pour tout a ¸ a0 on ait :

1

a
lim inf
n 1

log
¡
º
¡
CN n 1 ¡ " a; n 1 + " a \ C

¢¢n ¸
Ãº x
N x

:

D¶emonstration Soient N une norme sur E et ·; µ; ´ comme dans le lemme 3 2 4
Soient C un cône ouvert de E x un vecteur non nul de C

et " > 0

D'aprµes le lemme 3 2 4 on peut trouver un cône ouvert D ½ C contenant x
et un r¶eel a0 > 0 tel que pour tout a ¸ a0 pour tous m et n entiers ¸ 1 si
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m pn + q est la division euclidienne de m par n alors on a :

º
¡
CN 1 ¡ " ma ¡ p·; m + p + 1 a + p· \ C

¢

¸
µ´p+1

1 + n + 1 a p 1 + q + 1 a r º
¡
CN na; n + 1 a \D

¢

p

º
¡
CN qa; q + 1 a \D

¢
:

Soit n0 > 0 tel que

·
a0n0 · " et que

1

n0 · ":

Soit a ¸ a0 Pour tous m; n ¸ n0 si m pn + q est la division euclidienne de m
par n on a :

º
¡
CN m 1 ¡ 3" a; m 1 + 3" a \ C

¢ ¸
µ´p+1

1 + n + 1 a p 1 + q + 1 a r

º
¡
CN na; n + 1 a \D¢

p
º
¡
CN qa; q + 1 a \D¢

et donc pour tout n ¸ n0

1

a
lim inf
m 1

log
¡
º
¡
CN m 1 ¡ 3" a; m 1 + 3" a \ C

¢¢
m

¸
1

na
log µ

´
1 + n + 1 a r ¶ + log

¡
º
¡
CN na; n + 1 a \D

¢¢na
:

Il vient en faisant tendre n vers 1 d'aprµes le lemme 3 1 1

1

a
lim inf
m 1

log
¡
º
¡
CN m 1 ¡ 3" a; m 1 + 3" a \ C

¢¢
m ¸ ¿ N

D;º ¸
Ãº x
N x

: ¤

3 2 2 D¶emonstration du th¶eorµeme de concavit¶e
Nous pouvons µa pr¶esent conclure la preuve du th¶eorµeme 3 2 1 Puisque Ãº est

homogµene il s'agit de prouver qu'elle est sur-additive L'id¶ee consiste µa se donner
x et y dans E avec x+ y

6

0 et µa estimer le volume d'une couronne dans un cône

autour de x + y µa l'aide de Ãº x + Ãº y en employant le lemme 3 2 5

D¶emonstration du th¶eorµeme 3 2 1 Soit N une norme sur E
et soient toujours

®; ¯;° > 0 tels que pour tous x; y dans
E

º
¡

bN x + y; ®
¢ ¸ °º

¡
bN x; ¯

¢
º
¡

bN y; ¯
¢

:

Soit M comme dans le lemme 3 2 2
Soient x et y des vecteurs non nuls de

E Commen»cons par supposer x+y 6 0
Soit C un cône ouvert contenant x + y

Soient 0 < < 1
2

et C1 un cône ouvert de E contenant x + y et tel que

C1¡f0g ½ C On peut trouver un r¶eel " > 0 et des cônes ouverts A et B contenant
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respectivement x et y tels que l'on ait

¡
CN N x 1 ¡ " ;N x 1 + " \A¢

+
¡
CN N y 1 ¡ " ; N y 1 + " \ B

¢
½ ¡

CN N x + y 1 ¡ ; N x + y 1 + \ C1
¢

:

D'aprµes le lemme 3 2 5 on peut trouver un r¶eel a > 0 tel que l'on ait :

1

a
lim inf
n 1

log
¡
º
¡
CN n 1 ¡ " aN x ;n 1 + " aN x \A¢¢

n ¸ Ãº x

et de même en rempla»cant x par y
D'aprµes le lemme 3 2 2 pour tout entier n il existe un vecteur xn de

E tel que

d
¡
xn; CN na 1 ¡ " N x ;na 1 + " N x \A¢ · ¯

et que

º
¡
CN na 1¡ " N x ; na 1 + " N x \A¢

· M 1 + na 1 + " N x r º
¡

bN xn; ¯
¢

et un vecteur yn de E v¶eri¯ant les in¶egalit¶es analogues en rempla»cant x par y
Alors pour tout entier n > 0 le vecteur

xn + yn
na

est µa une distance · 2
n̄a

de l'ensemble

¡
CN N x 1 ¡ " ; N x 1 + " \A¢

+
¡
CN N y 1 ¡ " ; N y 1 + " \ B

¢
:

de sorte qu'il existe un entier n0 > 0 tel que pour tout n ¸ n0 on ait :

bN xn + yn; ® ½ CN na 1¡ 2 N x + y ;na 1 + 2 N x + y \ C:

Il vient pour tout entier n ¸ n0

º
¡
CN na 1 ¡ 2 N x + y ; na 1 + 2 N x + y \ C

¢

¸ º
¡

bN xn + yn; ®
¢

¸ °º
¡

bN xn;¯
¢
º
¡

bN yn; ¯
¢

¸
°

M2 1 + na 1 + " N x r 1 + na 1 + " N y r

º
¡
CN na 1 ¡ " N x ;na 1 + " N x \A¢

º
¡
CN na 1 ¡ " N y ; na 1 + " N y \B

¢
:

En faisant tendre n vers 1 on a d'aprµes le lemme 3 1 1

max
¡
N x + y 1 + 2 ¿ N

C;º ; N x + y 1 ¡ 2 ¿N
C;º

¢ ¸ Ãº x + Ãº y :
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Comme l'in¶egalit¶e ci-dessus est vraie pour tout 0 < < 1
2 il vient :

N x + y ¿ N
C;º ¸ Ãº x + Ãº y ;

d'oµu :

Ãº x + y ¸ Ãº x + Ãº y ;

ce qu'il fallait d¶emontrer
Supposons µa pr¶esent que y ¡x Pour tout t > 1 on a :

tx¡ x t¡ 1 x 6 0

et donc

Ãº tx + Ãº ¡x · Ãº t¡ 1 x

et donc comme Ãº est homogµene on a bien même quand Ãº x ¡1
Ãº x + Ãº ¡x · 0: ¤

3 3 Mesures µa croissance concave divergente

Nous dirons que º est µa croissance divergente resp strictement divergente si
et seulement si ¶etant donn¶ee une norme N sur E on a ¿ N

º ¸ 0 resp ¿ N
º > 0

Ces conditions sont ind¶ependantes de la norme choisie

3 3 1 Contrôle de la divergence

Pour les mesures µa croissance concave on peut am¶eliorer le lemme 3 1 1 :

Proposition 3 3 1 Si º est µa croissance concave strictement divergente pour
toute norme N sur E on a :

log
¡
º
¡

bN 0; a
¢¢

a ¡¡¡a 1
¿ N
º et º

¡
bN 0; a

¢ a 1
O ³ar¡1ea¿N

º ´ :

La d¶emonstration utilise le lemme suivant dont la d¶emonstration est analogue

µa celle du lemme 3 2 4 en employant une variante du lemme 3 2 2

Lemme 3 3 2 Supposons º µa croissance concave Soit N une norme sur E Il
existe des r¶eels µ; ´; · > 0 tels que pour tout r¶eel a ¸ 0 et pour tous r¶eels a1; : : : ; ap

tels que a a1 + : : : + ap on ait :

º
¡

bN 0; a + p + p ¡ 1 ·
¢

¸
µ´p

1 + a1 : : : 1 + ap
r¡1 º

¡
CN a1; a1 + 1

¢
: : : º

¡
CN ap; ap + 1

¢
:

¤
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D¶emonstration de la proposition 3 3 1 Commen»cons par remarquer que si f :
R+ R est une fonction croissante on a :

lim sup
a 1a2R¤+

f a
a

lim sup
n 1n2N¤

f n
n

et lim inf
a 1a2R¤+

f a

a
lim inf
n 1n2N¤

f n
n

:

Soit alors N une norme sur E D'aprµes le lemme 3 1 1 on a :

¿ N
º lim sup

a 1
log

¡
º
¡

bN 0; a
¢¢

a
:

Soient µ; ´; · > 0 comme dans le lemme 3 3 2 Soient m ¸ n ¸ 1 des entiers

naturels et m pn + q la division euclidienne de m par n On a :

º µbN
µ0; m µ1 + ·+ 2

n ¶¶¶ ¸ º
¡

bN 0; m + p + 1 + p·
¢

¸
µ´p+1

1 + n p 1 + q r¡1

º
¡
CN n;n + 1

¢

p
º
¡
CN q; q + 1

¢
:

Il vient pour tout n ¸ 1 d'aprµes la remarque ci-dessus

µ1 + ·+ 2

n ¶ lim inf
a 1

log
¡
º
¡

bN 0; a
¢¢

a

¸ Ã
1

n
log µ

´
1 + n r¡1 ¶ + log

¡
º
¡
CN n; n + 1

¢¢
n

:

On en d¶eduit en r¶eutilisant le lemme 3 1 1 :

lim inf
a 1

log
¡
º
¡

bN 0; a
¢¢

a ¸ lim sup
n 1

log
¡
º
¡
CN n; n + 1

¢¢
n

¿ N
º

et donc

log
¡
º
¡

bN 0; a
¢¢

a ¡¡¡a 1
¿ N
º :

Mais alors pour tout n ¸ 1 on a :

n + ·+ 2 ¿ N
º ¸ log µ

´
1 + n r¡1 ¶ + log

¡
º
¡
CN n; n + 1

¢¢

d'oµu

º
¡
CN n; n + 1

¢ ·
1

´
1 + n r¡1e n+·+2 ¿N

º :

En d'autres termes il existe un r¶eel M ¸ 0 tel que pour tout entier naturel n on
ait :

º
¡
CN n; n + 1

¢ · M 1 + n r¡1en¿Nº :
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Il vient comme ¿ N
º > 0

º
¡

bN 0; n
¢ · M

n¡1

Xk 0

1 + k r¡1ek¿Nº
n 1

O ³nr¡1en¿Nº ´ :

On en d¶eduit le r¶esultat ¤

3 3 2 Propri¶et¶es de concavit¶e
Les r¶esultats suivants appliquent des propri¶et¶es ¶el¶ementaires de concavit¶e au

calcul des exposants de convergence

Proposition 3 3 3 Si º est µa croissance concave divergente et s'il existe une

forme lin¶eaire ' dans
E ¤ telle que pour tout x dans E ¡ f0g ' x > Ãº x alors

pour toute norme N sur E on a :

¾N
º ¿ N

º :

D¶emonstration C'est une cons¶equence du corollaire 3 1 4 de la proposition 3 1 8
du th¶eorµeme 3 2 1 et du r¶esultat de convexit¶e ci-aprµes ¤

Lemme 3 3 4 Soit Ã : E R [ f¡1g une fonction concave homogµene semi-
continue sup¶erieurement Soient N une norme sur E et

¿ sup
x2E¡f0g

Ã x
N x

:

Si ¿ ¸ 0 il existe une forme lin¶eaire ' dans E¤ telle que

' ¸ Ã et que N ' ¿:

D¶emonstration Si ¿ 0 le r¶esultat est clair Supposons donc ¿ > 0 et pour
simpli¯er les notations ¿ 1

Soit x dans
E tel que N x 1 et que Ã x 1 Pour tout y dans E on a :

Ã y · N y

et donc les parties convexes ferm¶ees de R £ E

f s; y 2 R £ Ejs ¸ N y g et f t; z 2 R £ E jt · Ã z g

ne se rencontrent qu'en leurs bords D'aprµes le th¶eorµeme de Hahn{Banach il existe
un r¶eel ® et une forme lin¶eaire ' dans E¤ non tout deux nuls et tels que pour tous

y; z dans
E avec Ã z > ¡1 on ait :

®N y + ' y ¸ ®Ã z + ' z :

En particulier pour tout y dans
E on a :

®N y + ' y ¸ ®N x + ' x :
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Supposons ® · 0 Alors pour tout y dans E on a :

' y ¸ ® + ' x
et donc ' 0 Mais alors ®

6

0 et pour tout y dans
E on a :

N y · 1

ce qui est absurde Par cons¶equent ® > 0
On peut donc supposer que ® 1 Pour tout y dans

E on a :

' x¡ y · N y ¡N x · N y ¡ x
donc N ' · 1 Mais en posant y x

2
ci-dessus il vient :

'³x
2´ · ¡

1

2

donc ' x ¡1 et N ' 1
Or pour tout z dans

E on a :

Ã z + ' z · N x + ' x 0

i e ¡' ¸ Ã ¤

Corollaire 3 3 5 Supposons que º est µa croissance concave strictement diver-
gente et qu'il existe une forme lin¶eaire majorant strictement Ãº en dehors de 0
Soit N la norme associ¶ee µa un produit scalaire h:; :i sur E Alors il existe une

unique forme lin¶eaire ' ¸ Ãº de norme ¿ N
º Si x est l'unique vecteur unitaire de

E tel que Ãº x ¿ N
º ' est la forme

­
¿ N
º x; :

®

D¶emonstration L'existence a ¶et¶e prouv¶ee au corollaire 3 3 3
D¶emontrons l'unicit¶e Soit ' ¸ Ãº de norme ¿ N

º Comme la norme euclidienne

est strictement convexe d'aprµes le corollaire 3 1 4 et le th¶eorµeme 3 2 1 il existe un
unique vecteur unitaire x de

E tel que Ãº x ¿N
º On a :

' x ¸ Ãº x ¿ N
º N ' N x

d'oµu le r¶esultat d'aprµes le th¶eorµeme de Cauchy{Schwarz ¤

4 L'indicateur de croissance de ¡
Dans cette partie nous utilisons l'existence d'un produit g¶en¶erique dans un

sous-groupe discret Zariski dense ¡ de G d¶emontr¶ee µa la section 2 3 pour montrer
que la mesure de comptage

P°2¡ ±¹ ° c'est-µa-dire la mesure image de

P°2¡ ±°
par la composante de Cartan v¶eri¯e les hypothµeses des ¶enonc¶es de la partie 3 Nous

commen»cons par contrôler l'indicateur de croissance de l'image par la composante

de Cartan d'une mesure de Haar de G Ensuite nous utilisons les sous-semi-groupes

libres de ¡ pour montrer que ses exposants de convergence sont n¶ecessairement
positifs En¯n nous appliquons les r¶esultats de la partie 3 µa l'¶etude de ¡
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4 1 Pr¶eliminaires

4 1 1 Estimations de volume dans G

Nous commen»cons par calculer ici l'indicateur de croissance de la mesure image

par ¹ d'une mesure de Haar de G
On choisit une fois pour toutes une mesure de Haar % sur G On note ºG la

mesure sur E image de % par ¹ et

ÃG
ÃºG

log q
:

Montrons que ÃG ½

Supposons que K est R ou C

Proposition 4 1 1 [11 I 5 8] La mesure ºG est absolument continue par rap-
port µa la classe de la mesure de Lebesgue Si ¸ est une mesure de Lebesgue sur E
il existe un r¶eel c > 0 tel que pour tout x dans E+ on ait :

dºG
d¸ x c Y®2§+

sinh ® x m® : ¤

Corollaire 4 1 2 Pour tout x dans E+ on a :

ÃG x ½ x : ¤
Supposons que K est non-archim¶edien Pour z dans Z+ notons µz l'ensemble

des ® dans ¦ tels que ® º z > 0

Proposition 4 1 3 [13 3 2 7] Il existe une famille qµ µ½¦ de nombres r¶eels
> 0 telle que pour tout z dans Z+ on ait :

% KzK
% K

qµz q½ º z : ¤

Corollaire 4 1 4 Pour tout x dans E+ on a :

ÃG x ½ x : ¤

4 1 2 Exposant de convergence des semi-groupes libres

Soit ¢ un semi-groupe libre de g¶en¶erateurs » et ´ Pour tous ¶el¶ements x et y
d'un semi-groupe S on note ©S

x;y l'unique homomorphisme de ¢ dans S envoyant
» sur x et ´ sur y

Pour calculer les exposants de convergence des sous-semi-groupes fournis par
la proposition 2 2 7 nous utiliserons :

Lemme 4 1 5 Pour tous r¶eels u; v > 1 la s¶erie de Dirichlet

# t X³2¢

1

©R¤+
u;v ³ t

t 2 R
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a pour exposant de convergence l'unique r¶eel ¿ tel que

1

u¿
+

1

v¿
1:

On a ¿ > 0 et pour tout t > ¿

# t
1

1 ¡ ¡
1
ut + 1

vt
¢

:

D¶emonstration Pour tout entier naturel n on note ¢n l'ensemble des ¶el¶ements de

¢ dont la longueur comme mot en » et en ´ est · n On a :

¢n+1 feg t »¢n t ´¢n:

Soit ¿ l'unique r¶eel tel que

1

u¿
+

1

v¿
1:

On a ¿ > 0
On pose pour tout entier naturel n et pour tout r¶eel t

#n t X³2¢n

1

©R¤+
u;v ³ t

:

Il vient pour tout entier naturel n et pour tout r¶eel t

#n t · #n+1 t 1 +
1

ut#n t +
1

vt#n t :

Donc d'une part pour tout r¶eel t tel que # t < 1 on a :

1

ut +
1

vt 6
1 et # t

1

1 ¡ ¡
1
ut + 1

vt
¢

et par cons¶equent l'exposant de convergence de # est ¸ ¿ D'autre part pour
tout r¶eel t > ¿ et pour tout entier n ¸ 1

#n t ·
1

1 ¡ ¡
1
ut + 1

vt
¢

Donc # t < 1 et l'exposant de convergence de # est exactement ¿ ¤

4 2 La fonction Ã¡
Soit ¡ un sous-groupe discret Zariski dense de G On note º¡ la mesure

X°2¡
±¹ ° :

C'est l'image de la mesure

P°2¡ ±° par ¹ Nous allons appliquer µa º¡ la th¶eorie
g¶en¶erale des sections 3 2 et 3 3
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On note

Ã¡
Ãº¡
log q

et ¿¡
¿ k:kº
log q

:

Pour tout cône ouvert C de E on note ¿
C;¡

¿k:k
C;º¡log q

Lemme 4 2 1 Pour tout cône ouvert C de E rencontrant l¡ on a :

¿
C;¡ > 0:

Rappelons qu'on a not¶e F¡ le sous-espace vectoriel de E engendr¶e par l¡ : si K
est R et si G est semi-simple F¡ E

D¶emonstration Soit C un cône ouvert de E rencontrant l¡ L'int¶erieur dans F¡ de

l¡\C
est non vide D'aprµes la proposition 2 2 7 il existe un r¶eel · ¸ 0 des ¶el¶ements

°1 et °2 dans ¡ et des vecteurs x1 et x2 dans
C \ l¡ tels que le sous-semi-groupe

¢ de ¡ engendr¶e par °1 et °2 soit libre et que avec les notations du paragraphe

pr¶ec¶edent pour tout ° dans ¢
¹ ° 2 C

et

°°

¹ ° ¡ ©E
x1;x2 °

°°

· ©R·;· ° :

On a alors pour tout ° dans ¡
k¹ ° k · ©Rkx1k+·;kx2k+· °

et donc pour tout r¶eel t ¸ 0

q¡tk¹ ° k ¸ q¡t©R

kx1k+·;kx2k+· °
³©R¤+

qkx1k+·;qkx2k+· ° ´
¡t

:

D'aprµes le lemme 4 1 5 la s¶erie de Dirichlet

X°2¢
q¡tk¹ ° k t 2 R

a un exposant de convergence > 0 Comme ¹ ¢ ½ C la s¶erie de Dirichlet

X°2¡¹ ° 2C

q¡tk¹ ° k t 2 R

a elle aussi un exposant de convergence strictement positif ce qu'il fallait d¶emon-
trer ¤

Th¶eorµeme 4 2 2 Pour tout x dans E+ on a :

Ã¡ x · ½ x :

La mesure º¡ est µa croissance concave et donc la fonction Ã¡ est concave et
semi-continue sup¶erieurement L'ensemble

fx 2 EjÃ¡ x > ¡1g
est exactement le cône limite de ¡ De plus Ã¡ est positive sur l¡ et strictement
positive sur son int¶erieur relatif
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D¶emonstration Comme ¡ est un sous-groupe discret de G d'aprµes les lemmes

2 2 4 et 3 1 6 on a :
Ã¡ · ÃG

et d'aprµes les corollaires 4 1 2 et 4 1 4 pour tout x dans E+

ÃG x ½ x :

En particulier ¿¡ < 1 et d'aprµes le lemme 3 1 7 Ã¡ est semi-continue sup¶erieu-
rement

D'aprµes la proposition 2 3 1 la mesure º¡ est µa croissance concave et donc

d'aprµes le th¶eorµeme 3 2 1 la fonction Ã¡ est concave

On a clairement Ã¡ ¡1 en dehors de l¡ R¶eciproquement d'aprµes le lemme

4 2 1 Ã¡ est positive sur l¡ et puisqu'on a ¿¡ sup
kxk 1 Ã¡ x > 0 elle y prend

des valeurs strictement positives Comme elle est concave elle est strictement
positive sur l'int¶erieur relatif de l¡ ¤

Corollaire 4 2 3 On a :
1

a
logq cardf° 2 ¡ jk¹ ° k · ag ¡¡¡a 1

¿¡
et

card f° 2 ¡ jk¹ ° k · a g a 1
O

¡
adim F¡¡1qa¿¡

¢
:

D¶emonstration Soit p un projecteur de E sur F¡ Comme d'aprµes le th¶eorµeme

2 2 6 ¹ ¡ reste µa distance born¶ee de F¡ la mesure p¤º¡ est encore µa croissance

concave et d'aprµes le lemme 3 1 6 elle a même indicateur de croissance que º¡
Le r¶esultat est alors une cons¶equence de la proposition 3 3 1 appliqu¶ee µa p¤º¡ ¤

Nous pouvons en¯n g¶en¶eraliser un r¶esultat obtenu par P Albuquerque [1]
notamment dans le cas oµu l¡ ¡ f0g ¶etait inclus dans E++

Pour toute norme N sur E notons ¿ N¡ pour
¿Nº¡log q

et ¾N¡ pour
¾Nº¡log q

Rappelons

qu'un cône ferm¶e C d'un espace vectoriel r¶eel E de dimension ¯nie est dit saillant
si et seulement s'il ne contient pas de sous-espace vectoriel de E

Corollaire 4 2 4 Si l¡ est saillant ce qui est toujours vrai lorsque G est semi-
simple pour toute norme N sur E on a :

¾N
¡ ¿ N

¡ :

En particulier il existe alors un unique vecteur unitaire x de E+ tel que les s¶eries

de Dirichlet

X°2¡
q¡tk¹ ° k et X°2¡

q¡t x;¹ ° t 2 R

aient même exposant de convergence Ce vecteur appartient µa l¡
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D¶emonstration Il s'agit de l'application µa º¡ des corollaires 3 3 3 et 3 3 5 ¤
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