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A gap theorem for hypersurfaces of the sphere with constant
scalar curvature one

Hilario Alencar*, Manfredo do Carmo™* and Walcy Santos*®

Abstract. We consider closed hypersurfaces of the sphere with scalar curvature one, prove a
gap theorem for a modified second fundamental form and determine the hypersurfaces that are
at the end points of the gap. As an application we characterize the closed, two-sided index one
hypersurfaces with scalar curvature one in the real projective space.

Mathematics Subject Classification (2000). 53C42.
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1. Introduction

To state our main result we need some notation.

x: M™ — S"T1(1) will be a closed (compact without boundary) hypersurface
of the unit sphere S"*1(1). We denote by A the linear map associated to the
second fundamental form and by ki, ..., ky its eigenvalues (principal curvatures
of M). We will use the first two elementary symmetric function of the principal

curvatures:
n n
Si=> ki Sa= Y kik;.
i=1 i<j=1
. . 1
We will also use the normalized means: the mean curvature H = —S1 and the

n
scalar curvature R, given by n(n — 1)(R — 1) = S5. Finally, we introduce the first
two Newton tensors by

Py=1d, P, =511d - A.

Clearly P; commutes with A and it is also a self-adjoint operator. We will show
later (see Remark 2.1) that if R = 1 and S7 > 0, then all eigenvalues of P; are
nonnegative, hence we can consider /P, .

*Partially supported by CNPq, Brazil.
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We can now state our gap theorem.

Theorem 1. Let z : M™ — S™t1(1) be a closed orientable hypersurface with
scalar curvature R = 1 (equivalently, So = 0). Assume that S1 does not change
sign and choose the orientation such that S1 > 0. Assume further that

v/ PLA||? < traceP;.

Then.:

(i) VP A|? = traceP;.

(ii) M™ is either a totally geodesic submanifold or M™ = S™ (r1) x S™2(rq) C

2
S™ (1), where ny +ns =n, r} +713 = 1 and <:—2> = [3 satisfies the quadratic
1
equation:
ny(ny — l)ﬁ?’ —2n1n9f3 + na(ng — 1) = 0.

Our theorem was inspired by a similar theorem on minimal submanifolds of the
sphere first proved by J. Simons [S] (part (i)) and latter completed (part (ii)) by
S. S. Chern, M. do Carmo and Kobayashi [CdCK] and, independently, by H. B.
Lawson [L].

Remark. The condition on the modified second fundamental form in above theo-
rem can not be dropped, as can be seen by the following example: Let M% — S7(1)
be an isoparametric hypersurface with principal curvatures given by

0+1 1 1-6

=T Ni=Je=—= and Ay —e——
1_07 4 5 oan 6 1+97

13+ v 165
2

A= Ag=1, X4

where 0 is given by 6 = (see [M]). It is easy to see that M® has

R =1 and S; > 0. We would like to thank Luiz Amancio de Sousa Junior for
showing us this example.

As an application of Theorem 1, we will present a characterization of index
one closed hypersurfaces with constant scalar curvature one of the real projective
space P(R)"*!. For minimal submanifolds this result was obtained recently by M.
do Carmo, M. Ritoré and A. Ros [dCRR].

Before giving a formal statement we need some considerations. Hypersurfaces
of a curvature one space form with constant scalar curvature one are solutions to
a variational problem (see [Re], [Ro], [BC]) whose Jacobi equation is

Tif = Lif + {||v/PLA||?> + traceP; } f = 0.
Here f € C*(M) and L; is a second order differential operator given by

Lyf = div(P1 V),
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where V f is the gradient of f. Notice that L generalizes the Laplacian. However,
differently from the Laplacian, L1 is not always elliptic. J. Hounie and M. L. Leite
[HL] have proved that if S5 # 0 everywhere, then L is elliptic. Of course, from
the definition of L1, it follows that L is elliptic if and only if P, is positive definite
(or negative definite). For the next theorem we will assume that L is elliptic and
Py is positive definite. Denote by Ind(M) the Morse index of M, i.e., the number
of negative eigenvalues of T;.

Theorem 2. Let x : M"™ — P(R)" (1) be a closed two-sided hypersurface with

scalar curvature one. Then Ind(M) > 1 and if Ind(M) = 1, M is the Clifford
hypersurfaces obtained by the projection of the Clifford torus of Theorem 1.

2. Preliminaries

In this section we will present some properties of the * Newton tensors in M and
describe the Clifford hypersurfaces of P(R)"*1.

2.1. The r** Newton tensors

We introduce the r** Newton tensors, P, : T,M — T,M, which are defined
inductively by

Py=1,
P.=51—-AP,_, r>1,
where S, = Z ki, ...k, is the rth symmetric function of the principal cur-
i <<y
vatures ki, ..., ky.

It is easy to see that each P, commutes with A and if ¢; an eigenvector of A
associated to principal curvature k;, then

Pye;) = pses = (S1 — ki)es.

In [Re], Reilly showed that the P,’s satisfy the following

Proposition 2.1 ([Re], see also [BC] — Lemma 2.1). Let 2 : M™ — N™t! be an
isometric immersion between two Riemannian manifolds and let A be its second
fundamental form.The r’th Newton tensor P, associated to A satisfies:

1. trace(Py) = (n —r)S,,

2. trace(AP,) = (r + 1)S,41,

3. trace(A?P,) = 515,41 — (r +2)S, 2.

It follows from (3) that if Sy = 0, trace(A2P;) = —35;.
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Remark 2.1. Observe that if Sy = 0, we have that
52 — |A> + 28y > k2, for all i.

Thus, 0 < (S7 — k7) = (S1 — k;)(S1 + ki), what implies that all eigenvalues of Py
are nonnegative if S7 > 0, that is, P; is a nonnegative operator. We also remark
that if S5 = 0 and P; has one eigenvalue equal to zero, then

In fact, if y;, = 0, then k;, = Si. As S} = |A|?, we get
2
Y B =0
iio
So k; =0, for all i # ip, hence PLA = 0.

Associated to each Newton tensor P,, we define a second order differential
operator
L,(f) = trace( P, Hess f).

If N™t! has constant sectional curvature, it follows from Codazzi equation (see
Rosenberg [Ro], p. 225) that L, is

L, (f) = divy (P, VF).

Hence L, is a self-adjoint operator and for any differentiable functions f and g on

M,
/M FLegdM = /M gL, faM (2)

We observe that for » = 0, Lg is the Laplacian which is always an elliptic operator.
For r > 0 we have to add some extra condition in order to ensure that L, is elliptic.
For hypersurfaces of R**! with S, = 0, Hounie and Leite, [HL], were able to give
a geometric condition that is equivalent to L, being elliptic. In fact their proof
can be generalized to hypersurfaces of the sphere and we have that

Theorem 2.1 ([HL] — Proposition 1.5). Let M be a hypersurface in R"T1 or S7+1
with S, = 0, 2 <7 < n. Then the operator L,_1(f) = div(P,_1Vf) s elliptic at
p € M if and only if Sy11(p) # 0.

Thus, for hypersurfaces with Sy = 0, L is an elliptic operator if and only if
S3 # 0. Since Li(f) = divp(P1Vf), it follows that the ellipticity of Ly implies
that P, is definite, hence then S| # 0.

Let a € R"™2 be a fixed vector. Let z : M — S"T1(1) C R**? be an isometric
immersion with S5 = 0 and let N be its unit normal vector. The functions f =
(N, a) and g = (z, a) satisfy (see [BC], lemma 5.2)

Li(g) = =(n = 1)51g (3)
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and

Li(f) = 38sf. (4)

2.2. Clifford hypersurfaces of P(R)"**!

We are now going to describe some properties of the Clifford hypersurface in
P(R)***. A Clifford torus in S™*!(1) is given by the product immersion of
M = S™(ry) x S"2(ry), with ny +ng = n and r +r3 = 1, which is a closed hyper-
surface of S"T1(1). It is easy to see that this immersion is invariant under the an-
tipodal map, hence it induces an immersion of M into P(R)"*!. This hypersurface
will be called Clifford hypersurface. If x 1 S™ (r{) x S™2(ry) — S™T1(1) is a Clifford
torus, then the unit normal vector at a point p = (p1,p2) € S™(r1) x S"2(ry) is

given by
9 T1
E
71 9

r 7
Thus, the principal curvatures of M are 2 with multiplicity ny and —-L with
r

71 2
multiplicity ng. It is easily checked that the scalar curvature of M is equal to one

B
(S = 0) if and only if (:—2> = (3 satisfies the quadratic equation:
1

nl(nl = 1)52 =4 2n1n25 + TLQ(TLQ = 1) =0. (5)

We will show in a while that only one of the torus given by (5) yields S; > 0.
Notice that Ly is an elliptic operator and in order to calculate the index of M, we
first observe that in a principal basis, P; is a diagonal matrix whose elements are

{(m — 1)2 — ngﬂ} with multiplicity nq

1 72
and
{m?”_z —(ng — I)T—l} with multiplicity ns.
71 g
Thus,
traceP; = (n —1)S1 = (n — 1) (mr—z —n2r—1> .
1 72

We will need the following relation:
[V PLA||? = =385 = (n — 1)S;.

The first equality is a general fact that follows from Proposition 2.1, part 3, by
setting » = 1 and S5 = 0. The second equality is specific for Clifford tori with
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S = 0 and can be proved as follows. Write:

S = 2 —nyt,
1 2
nl(nl — ].) T9 2 TLQ(’I”LQ — 1) 71 2
SQ — A + 1 — —ning,
2 71 2 72

(rama(ny = 1) (r_l)z ra _ mina(n —1) (E)QQ

2 9 T 2 1 T2

By introducing the condition S5 = 0 into S3, we obtain, after a long but straight-
forward computation, that

1
355 = = {—2(7» — )2 4 2(n— 1)n2’"—1} = —(n—1)8,
2 T1 9

and this proves our claim. Thus the Jacobi operator reduces to
T1(f) = Li(f) + {IVPIAI? + tracePi}f = Li(f) +2(n — 1)1 f.
If ¢ = const., Li(¢) =0 and
Ti(p) +2(n —1)S1p = 0.

Thus the first eigenvalue of T} is negative, hence Ind(M) is at least 1. Now let us
look at the second eigenvalue of T7. By using the expression of the eigenvalues of
Py given above, we have that

Li(f) = div(P1VF)

T r T r
{02 —m I A+ 2 - -y 2 am),
! 72 71 T2
where A" is the Laplacian in 5™ (r;), i = 1,2. Thus the second eigenvalue of L,
is given by

79 1 A1 () 71 AT2
/\2:—{(n1—1)——n2—}y2 +{n1——(n2—1)—}1/2 .
1 T 1 T

s

where v3* ° is the first nonzero eigenvalue of A™ that corresponds to an eigen-
function which is invariant by the antipodal map (see [BGM] chap III, CII). Thus

7 i) n T 1) n
Ap = — H(m -1 - nz—l} — + {m-z — (g — 1)—1} —5}
T1 ¥ 1 1 T2 r5 (6)
-1
= 53 {[nl(nl —1)—ny(n— 1)7’%]7"5 + [na(n — l)rg —ng(ng — 1)]7"%}
179
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Observe that

79 7 nlrg — ngr%

Sl = Ny— —Ng— =
T1 T9 T172

The fact that S5 = 0 is equivalent to

(7)

n(n—1rt =201 (n—1)r2 +n1(ny —1) = n(n—1)rs —2na(n—1)r12% +ny(ny—1) = 0.

(8)
By using (7) and (8), we have that

[n1(ny —1) —ni(n — 1)1"%]1"% =(n— 1)517"?7"3

and
[na(n — 1)r% —ng(ng — 1)]7"% =(n-— 1)517"?7";’.

Thus,
)\2 = —2(7’L — 1)51

Since the second eigenvalue of T} is given by Ag + 2(n — 1)51, it is equal to zero.
This shows then that the Clifford hypersurfaces of P(R)**! have index one.

Remark. Observe that, by equation (7), the condition S; > 0 means that

nlrg — ngr% > 0.

2
On the other hand, since g = (T—2> , the above inequality implies that
1
n1fB 2 na. 9)
The condition S5 = 0 is equivalent to
ni(ny —1)B> = 2nyno B+ na(ny — 1) = 0, (10)

and one can easily see that only one solution of (10) is compatible with (9).

3. A gap theorem for hypersurfaces of the sphere with R =1
In this section we prove a gap theorem for hypersurfaces of the sphere with R = 1.

Theorem 3.1 (Theorem 1 of the Introduction). Let x : M™ — S"t1(1) be a
closed orientable hypersurface with scalar curvature R = 1 (equivalently, So = 0).
Assume that St does not change sign and choose the orientation such that S1 > 0.
Assume further that

v/ PLA|]? < traceP;.

Then:
(i) VP A|? = traceP;.
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(ii) M™ s either a totally geodesic submanifold or M™ = 5™ (ry) x S™2(rs) C

2

2
S™t1(1), where ny +ng =n, 3 +1r2 =1 and < ) = [3 satisfies the quadratic

1
equation:

ny(ny —1)3% = 2n1na B + na(ny — 1) = 0.

Proof. Let us calculate L[| A||%. Since R =1, S =n(n — 1)(R—1) =0, by the
Gauss’ formula. Thus ||A]|? = (nH)? = S%. Hence,

1 1
§L1||A||2 = §L15% = 510151+ (P1V51,VSy).

From [AdCC|(Lemma 3.7), by using that 255 = n(n — 1)(R — 1) = 0, we have
L1Sy = |VA]> = |VS|* + n| Al — S7 +35155.

Therefore,
L1S; = |VA]? = |VS1|> 4 (n — 1)5% 435 Ss. (11)

Now, by using Proposition 2.1 (3), we obtain that
v/ PLA|?> = traceP; A2 = —3S5.
Then, equation (11) becomes
LSy = VAP — |VSi* + (n — 1)S? — S1[v/PiA|%.
Thus,
%L1||A|]2 = 510181 + (P1VS;,VS))
= Si(IVAP = [VSi1 + (n = 1)S} = 381V PLAI") + (P V51, VS))
= S1(|IVAP = [VSi]*) + S1((n — 1)S1 — [|VPLA|®) + (PLVS1, VSh).

Since M is compact, we obtain

1
0— _/ Ly||A|2dM
2 Ju

— [ {510V AP — V81 20— 151 — [VPTAIP) + (PVS1, V51 .
M
(12)
We recall the following result (see [AdCC] — Lemma 4.1):

Lemma 3.1 ([AACC]). Let M be an n-dimensional compact hypersurface in an
(n + 1)-dimensional unit sphere S*T1. If the normalized scalar curvature R is
constant and R —1 > 0, then

VAP = [VSi? > 0. (13)
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Since S7 > 0 and P, is positive, we have that
(PyVS1,V51) = ||[/PVSy|? > 0. (14)

Our hypothesis and inequalities (13) and (14) implies that the right-hand side of
(12) is non-negative. Thus we conclude that

S1(|VA]2 — |VS1?) + S ((n — 1)S1 — |V PiA|I*) + (P1VS1,VS1) =0.  (15)
Since each term in above equation is non-negative, we have

Si((n—1)S1 — |[VPLA|I*) = 0.
Observe that when S; = 0, ||A]|*> = 0 and ||v/PiA|> = 0. Since by Lemma 2.1,
traceP; = (n — 1)51, the first part of the theorem is proved.

Now, let us assume that ||v/PLA(p)||> = (n—1)Si(p), for all p € M. If S;(p) = 0
for all p € M, since Sy = 0, ||A||*> = 0 and M is totally geodesic. Let us suppose
that there exists a point po in M such that Si(py) > 0. So the set A C M
where S1(p) > 0 is an open and non-void set of M. We claim that P; is positive
definite in A. In fact, if P; has one eigenvalue equal to zero, then by Remark 2.1,
Py A =0 and since ||v/PLA(p)|?> = (n — 1)S1(p), we conclude that S; = 0, which
is a contradiction. On each connected component of A, we have that

(PVS;,VS) =0

and
VA2 - |VSi|? =0.

Since Pj is positive definite, the first equation implies that V.S; = 0. This implies
that [V A|?> = 0, by the second equation, i.e., the second fundamental form of M is
covariant constant. It follows that the component A is a piece of a Clifford torus,
by using the following theorem of H. B. Lawson ([L] — Theorem 4, see also [CdCK]
Lemma 3).

Theorem 3.2 [L|. Let M™ be an isometrically immersed hypersurface of S"1,
over which the second fundamental form is covariant constant. Then, up to isome-

tries of ST, M™ is an open set of S¥(r) x S"7F(V/1 —r2).

Finally, since along the boundary of A, ||A||?> = S? = 0, we conclude that
0A =0 and M is a Clifford torus. O

4. Characterization of index one closed hypersurfaces with R =1
in the real projective space

In this section we will assume that the operator L, is elliptic and will describe the
index of closed hypersurfaces in the real projective space P(R)**!. In order to do
that we are going to use the covering map of S"*! onto P(R)"**!. The following
result will be needed.
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Lemma 4.1. Let M™ — S™t! is a closed orientable hypersurface with R = 1.
Then the index of the quadratic form

16,5 == [ fTigam
M
= [ TLif 4 (= )81 - 38
M
is greater than one.
Proof. First of all observe that for constant functions f = const., we have that
160 == [ fLaf + (0= 181 - 380) f2d
M
— —/ ((n—1)S; —3S3)f%dM < 0.
M

Thus ind(M) > 1.

Suppose that this index is equal to one. Let {eq, ..., e,12} be an orthonormal
n+2

basis of R”T2. If we write the normal vector field of the immersion as N = Z €5,
i=1

we obtain that
Li(n;) =3S3n;, forall i=1,...,n+2.

Thus
I(ni,n;) = —/ ((n —1)S1)n?dM < 0.
M

Since the functions n; are linearly independent, the index one hypothesis implies
that (n — 1) of the n}s have to be null and since |N| = 1, after reordering if
necessary, we have ny = 1 and n; =0 for i = 2,...,n+2 . Thus the normal vector
field N = e;. This implies that M™ is totally geodesic. On the other hand, since
L1 is elliptic, we have that S7 > 0, and this contradicts the fact that M™ is totally
geodesic. We conclude then that ind(M) > 1.

The main result of this section is the following characterization of index one
closed hypersurfaces of P(R)" 1.

Theorem 4.1 (Theorem 2 of the introduction). Let z : M™ — P(R)"T1(1) be a
closed two-sided hypersurface with scalar curvature one. Then Ind(M) > 1 and
if Ind(M) =1, M is the Clifford hypersurfaces obtained by the projection of the
Clifford torus of Theorem 3.1.

Proof. The proof is inspired by the proof of the minimal case in [{CRR]. Observe
that the index one hypothesis implies that M must be connected. Since, by lemma
4.1, S™*! does not have an index one hypersurface with R = 1, 2 cannot lift to an
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immersion of M into S7 1. Thus we obtain that there exists a connected twofold
covering M — M and an isometric immersion z : M — S"jvl which is locally
congruent to the immersion of M in P(R)**'. An object in M that corresponds
to an object in M will be denoted by the same notation as in M. If we denote by
7w M — M the isometric involution induced by the covering, then Z must satisfy

Towm=—-2
and, since (M) is two-sided, M is orientable, and
Nonm=—N,

where N is the unit normal vector field of the immersion. We have that the
immersion & is such that R = 1 and S3 # 0. By ellipticity we can choose the
orientation of M in such way that S; > 0.

Let A\; be the first eigenvalue of the operator

Ti(p) = Li(p) + ((n — 1)S1 + 3S3)¢.

We know that its first eigenspace is one-dimensional and generated by a function
o that does not change sign on M. Now, let ¢; = ¢ o 7. Since 7 is an isometry,
we obtain that T1(¢1) = A1p1. This implies that ¢ = ¢ o . Observe that if

@ = —pom, ¢ has to change sign on M. Thus ¢ = pomr. .
From the fact that Ind(M) = 1, we obtain that any function « : M — R such

that won = v and /Nuade = 0 satisfies
M

T(u,u) — —/M{uLlu +((n— 1)Sy + 3S5)u?}dIT > 0.

Moreover, if such a function « satisfies I(u,u) = 0, then w« is a Jacobi function,
that is,
Liu+ ((n — 1)51 + 353)7/, =0.

Given a,b € R"™2 let ¢, 4 : M — R"*2 be defined by
bap = (T,a)T+ (N,a)N + (Z,b)N.

By doing the calculation coordinatewise and using equations (3) and (4) we have
that
Ll(%) = —(n — 1)515

and
Li(N) =3S83N.
Thus,
Li((#,a)T) = —2(n — 1)S1(Z, a)T — P1A(a"),
Li({N,a)N) = 653(N,a)N — P;A?(a®)
and

Li({Z,b)N) = [=(n — 1)S1 + 3S3](Z, ) N — PLA(b"),
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where af, bt are the tangent projection of a and b. This implies that

Ti(¢ap) = —[(n —1)S1 + 3S3][{Z, )7 — (N, a) N + Xap, (16)

where X, ; is a tangent vector field. Then,

- /Mm(gba,bx Go.p) AN

= /M[(n —1)8; + 385)[(F, a)? — (N, a)? — (&, b)(N, a)|dM.

Now, by (2), we have

/N[(n — 1)S; + 353] (%, b) (N, a)dM
M

— /M{w a) Ly ({5, b)) — (&, B) Ly ((V, a))}d = 0.

Thus

?

- /N (T1(bas), $up)dBT = /N[(n 1)8; + 384][(F, )2 — (N, a)JdM.  (17)
M M

Observe that the above expression does not depend on b. We are going to show
that for any a € R*12, it is possible to choose b € R*? such that /Ngoqﬁmbd]T/f =0.
M

To do this, consider a linear map F : R**2 — R"*? given by
F(b) = /NWE bYNdM.
M

We claim that F' is injective (thus a linear isomorphism). In fact, if & # 0 is
such that F'(b) = 0, one has that (17), with ¢ = ¢q, = (,b) N, implies that

I(¢,¢)=0.
Then, T1(¢) = 0. On the other hand, for ¢ = 0,
Ti(¢) = Xop = —PLA(b) =0, (18)

where b* is the tangent projection of b along M. Since Py is positive definite, (18)
says that A(b*) =0 on M, which is the same that (N, b) is constant along M. As
we have that N om = —N, we get that (N, b) = 0. This implies that the function
u = (T, by satisfies that Hessu(X,Y) = (X, Y)u. We need the following result of
M. Obata.

Theorem 4.2 ([O] — Theorem A). In order that a complete Riemannian man-
ifold of dimension n > 2 admit a non-constant function ¢ with Hess¢(X,Y) =
o(X,Y), it is necessary and sufficient that the manifold be isometric to a sphere
S™(c) of radius L in the (n+ 1) Buclidean space.
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Thus, if « is non-constant, then M is isometric to a _unit sphere and since M
is isometrically immersed in S"T1(1), this implies that M is totally geodesic. On
the other hand, if u is constant, Mis totally umbilic. Since Sy = 0, M is again
totally geodesic. In both cases, S? = |A|” = 0, which is a contradiction to the fact
that S7 > 0. Thus the claim is proved.

Take an orthonormal basis {ai,...,a,12} of R*"2. By using the isomor-
phism F, for any ¢ = 1,...,n + 2, it is possible to find b; € R”2 such that

/N<p¢>ai7bid]T/Il = 0. Thus each coordinate ¢;; of ¢, », is such that /N<p¢>ij dM = 0.
M

M
Then, I(¢ij, $i;) > 0. From equation (17), we have

n+2
0< i/ [(n — 1)Sy + 385][(@, a:)® — (N, a;)?]dM

n+2
/ (n —1)S1 + 383](|7]2 — |N|2)dM = 0.

This implies that T1(<baz.,bz.) =0, i=1,...,n+2. Hence, (T1(¢a;p;), Ty = 0 and,
by equation (16), we obtain that

[(n—1)S1 4+ 3S3)(Z,a;) =0, i=1,...,n+ 2.

But this is only possible if (n—1)S1+383 = 0. Since ||/PiA|> = =353 = (n—1)S},
theorem (3) implies that M is a Clifford torus. O
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