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Foliations, topology and geometry of 3-manifolds: R-covered
foliations and transverse pseudo-Anosov flows

Sérgio R. Fenley

Abstract. We analyse the topological and geometrical behavior of foliations on 3-manifolds.
We consider the transverse structure of an R-covered foliation in a 3-manifold, where R-covered
means that in the universal cover the leaf space of the foliation is Hausdorff. If the manifold is
aspherical we prove that either there is an incompressible torus in the manifold; or there is a
transverse pseudo-Anosov flow. It follows that manifolds with R-covered foliations satisfy the
weak hyperbolization conjecture.
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57TM50, 57M99, 58F15, 58F18.
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1. Introduction

In this article we analyse the topological and geometrical consequences that foli-
ations induce on 3-manifolds. More specifically we study the transverse structure
of an R-covered foliation in a 3-manifold, where R-covered means that in the
universal cover the leaf space of the foliation is Hausdorff. When the manifold is
aspherical we prove that either there is a region in the leaves where the geometry
does not change much transversely, yielding an incompressible torus in the man-
ifold; or there is a transverse pseudo-Anosov flow which captures the directions
of maximal stretch/contraction transverse to the foliation. Hence if the manifold
is atoroidal and aspherical there is always a transverse pseudo-Anosov flow. As a
consequence manifolds with R-covered foliations satisfy the weak hyperbolization
conjecture.

The goal of this article is to understand the geometrical /topological implica-
tions of the existence of a foliation in a 3-manifold. First we review some basic
facts of foliation theory. The main villain in 3-manifold foliation theory is the
Reeb component: a foliation of the solid torus where the boundary is a leaf and
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the interior leaves are topological planes spiralling towards the boundary leaf.
Reebless foliations, that is those without Reeb components, are extremely use-
ful in understanding the topology of 3-manifolds: fundamental work of Novikov,
and later Rosenberg, Palmeira showed that leaves inject in the fundamental group
level (incompressible leaves) [No], the manifold is irreducible (that is every em-
bedded sphere bounds a ball) [Ro] and the universal cover is homeomorphic to
R? [Pa]. Such foliations have excellent properties and they reflect the topology
of the manifold. On the other hand Gabai constructed Reebless foliations in any
irreducible, oriented, compact 3-manifold with non-trivial second homology and
derived fundamental results in 3-manifold theory, such as property R and many
other results [Gal, Ga2, Ga3]. Roberts also constructed many Reebless foliations
in large classes of 3-manifolds which are not Haken [Rob] and jointly with Delman
used this to prove property P for alternating knots [De-Ro|. Notice that the Reeb-
less property is crucial here, since any closed 3-manifold admits a codimension one
foliation [Li, Wo], most of which are not useful for topology — for instance S* has
many foliations (with Reeb components).

Our focus will be on the transverse geometric structure of a Reebless foliation.
Thurston [Th8, Th9, Th10] recently showed that foliations are much better be-
haved in the transverse direction than was previously expected: nearby leaves stay
nearby forever in many directions of the leaf. This gives a tremendous boost in un-
derstanding the global structure of foliations and it aids the understanding of the
geometry of the foliation and the manifold in connection with the geometrization
conjecture [Th4].

There is a natural breakup into two cases here: the lifted foliation in the
universal cover is a foliation by planes (or spheres) and the leaf space of this lifted
foliation is a l-manifold which may be Hausdorff or not. In a lot of situations
the question of Hausdorff/non-Hausdorff turns out to play an important role and
have strong consequences [Ve, Bal, Ba2, Ba3, Fe2, Fe3, Fed]. If the leaf space is
Hausdorff then it is homeomorphic to the real numbers R and the foliation is said
to be R-covered [P12, Fe2].

In this article we analyse R-covered foliations in 3-manifolds — the simplest
case in studying the global structure of foliations in the universal cover. Examples
of this large class of foliations are:

1) fibrations over the circle;

2) foliations defined by non-singular closed 1-forms;

3) stable/unstable foliations of large classes of Anosov flows in 3-manifolds
[Fe2];

4) slitherings over the circle as defined by Thurston [Th7] - roughly a slithering
is a map from the universal cover of the manifold to the circle S! which is a fibration
equivariant under covering translations, inducing a foliation in the manifold;

5) Uniform foliations: a foliation is uniform if any two leaves in the universal
cover are a bounded distance from each other (the bound depends on the pair of
leaves) — they are closely related to slitherings [Th7];
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6) Many examples R-covered foliations not induced by slitherings [Cal2].

On the other hand, Reebless finite depth foliations [Gal, Ga3] are not R-
covered unless the compact leaf is a fiber of M over the circle [Go-Sh].

The case of fibrations is very illuminating and is a precursor of the whole idea of
analysing the transverse geometry of foliations. In a seminal work Thurston proved
that in the aspherical case either there is an incompressible torus transverse to the
fibration or there is a suspension flow which is a pseudo-Anosov flow producing
singular stable/unstable foliations [Th2, Bl-Ca]. He went on to prove that the
pseudo-Anosov case yields hyperbolic manifolds, establishing a deep relationship
with geometry [Th3, Th4, Th5]. We concentrate on the first step. Thurston’s result
can be summarized as follows from the foliations point of view: any transversal
flow to the fibration produces homeomorphisms between leaves. There may be a
region in the fiber whose geometry stays bounded under the transversal flow — this
produces an invariant curve and a transverse incompressible torus. The second
option is that transversely there will be unbounded distortion of the geometry
everywhere and this produces a transverse flow which is (pseudo) hyperbolic — a
pseudo- Anosov flow.

The goal of this article is to extend this result to general R-covered foliations:

Main theorem. Let F be a transversely oriented, R-covered foliation in M3
closed, aspherical. Then either there is a Z & Z in w1 (M) or there s a (singular)
pseudo-Anosov @ transverse to F.

Calegari [Call] has independently also proved the main theorem. Many of the
tools used by Calegari are similar to those used in this article and the strategy for
the proof of a preliminary result follows general ideas of Thurston [Th9, Th10],
which have never been written up. On the other hand this article is more complete
than [Call] and contains full details. This work was done independently of [Call].

The pseudo-Anosov flow & is singular, that is, it has p-prong singular orbits
with p greater or equal than 3. In particular it is not an Anosov flow. See also the
remark after corollary 6.10.

The aspherical condition is only used to rule out manifolds finitely covered
by 82 x S!, see below. As in the fibering case this shows that either there is a
region where the geometry varies boundedly in the transverse direction or there
are directions of maximal stretch/contraction everywhere.

Thurston produced a transverse pseudo-Anosov flow in the case that the folia-
tion is associated to a slithering, which implies that the foliation is uniform [Th7].
General R-covered foliations need not be uniform: an easy example is the stable
foliation of an Anosov flow which is the suspension of an Anosov diffeomorphism
of the torus. Thurston asked whether any R-covered foliation in atoroidal man-
ifolds had to be uniform. This is not true in general: recently Calegari [Cal2]
has produced many examples of R-covered, non-uniform foliations in hyperbolic
3-manifolds. In the uniform situation Thurston used the existence of projectively
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invariant measures in the appropriate setting to the produce transversal lamina-
tions to the foliation. The proof in the general case is completely different and is
more topological.

We now explain the basic ideas in the proof. First of all the intrinsic geometry
of the leaves plays a fundamental role in our analysis. Two manifolds can be
uniformized to be spherical, euclidean or hyperbolic and to a great extent the
same is true for 2-dimensional foliations. This study started with Reeb’s result
[Re] on stability of compact leaves. Then there was the seminal work of Plante
[P11] on holonomy invariant transverse measures, which was extended by Sullivan
[Sul] and put in the context of spaces which are negatively curved in the large by
Gromov [Gr]. As a result there is a fundamental trichotomy for general foliations
of 3-manifolds:

1) There is a sphere or projective plane leaf,

2) There is a holonomy invariant transverse measure of 0 Euler characteristic,
approximated by a torus (either transverse or in a leaf);

3) Leaves are uniformly Gromov negatively curved in the large.

In case 1) Reeb showed that M is finitely covered by S? x S! with the product
foliation [Re]. In case 2) if the foliation is Reebless, then the torus in question is
incompressible and the manifold is toroidal. As spherical and toroidal manifolds
are in some sense rare, this implies that 3) is the generic case if F is Reebless. In
addition if F is Reebless then in cases 1) and 2) the manifold M can be decomposed
into geometric pieces [Th3, Th4, Th5] and is well understood. More recently
Candel [Can] showed that in case 3) there is a metric in the manifold which makes
all leaves hyperbolic (constant Gaussian curvature equal to —1). Therefore case
3) is the remaining case to be analysed in the proof of the main result.

A fibration over the circle is very nice because any transverse flow induces
homeomorphisms between leaves (in M or in the universal cover M). This homeo-
morphism was used to analyse the transversal distortion of the geometry of leaves.
General foliations have holonomy, so it only makes sense to look for homeomor-
phisms between leaves in the universal cover. This is not possible for non-R-
covered foliations, so the R-covered property is necessary here. One of the biggest
difficulties in general is the lack of a transversal flow which gives homeomorphisms
between leaves in the universal cover. Any transversal flow gives local homeomor-
phism between subsets of leaves in M but it is far from clear they should give global
homeomorphisms. In fact there are many natural counterexamples: for instance
let ¥ be a geodesic flow on the unit tangent bundle of a closed hyperbolic surface
R, so ¥ is an Anosov flow [An, An-Si]. Let F be the (weak) stable foliation of ¥
which is R-covered and choose the transversal flow to be generated by the strong
unstable foliation of ¥. This transversal flow produces local homeomorphisms
between leaves in M which definitely are not global homeomorphisms [Bal, Fe2].

But all is not lost. For foliations with hyperbolic leaves one useful strategy is
to first analyse the variation of distance between leaves of F in M to obtain rela-
tionships between ideal boundaries of leaves. Each leaf of F has a circle at infinity.
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Thurston [Th9, Th10] explained how to use contracting directions between differ-
ent leaves to locally and then globally collate these individual circles at infinity
into a single universal circle which encodes all circles at infinity. For R-covered
foliations it turns out the local stitching between different circles at infinity is in
fact a homeomorphism of ideal boundaries. There are two cases: if leaves are a
bounded distance from each other in M (uniform case), this yields a quasi-isometry
between leaves and hence a homeomorphism between ideal boundaries. If leaves
are not a bounded distance from each other, this forces an arbitrary pair of leaves
of F to contract together in a dense set of directions also producing a homeomor-
phism between circles at infinity of leaves of . These boundary identifications
are group equivariant. The common identified circle is called the universal circle
of the foliation in this setting [Th9, Th10]. Universal circles for foliations with
hyperbolic leaves were introduced by Thurston recently [Th9, Th10]. In general
these ideal maps between circles at infinity come from maps defined only between
strict subsets of leaves of F even for R-covered foliations.

This identification of circles at infinity can be used to produce natural maps
between the entire leaves in the universal cover. Given any two leaves F, IV of F
there is a homeomorphism (3 between the circles at infinity of F' and E. If 3 can
be continuously extended to an isometry between F' and F, one calls 5 a Moebius
map. In general one can quantify how far g is from a Moebius map: one way is to
look for the best possible extension of 3 to a map from F to EF — one such tightest
extension was called an earthquake map by Thurston [Thé]. Another way is to
use the universal circle and check the distortion on the geometry of various ideal
quadrilaterals in leaves of the foliation. In either case one possibility is that the
distortion in geometry (measured via earthquakes or ideal quadrilaterals) is in some
sense globally bounded. This corresponds to the notion that the geometry does not
change very much in the transversal direction and yields an incompressible torus
in the manifold. The other option is that the analysis of the distortion produces
either a Z @ Z subgroup of the fundamental group 71 (M) of M or a transverse
lamination to F — this result was announced by Thurston in 1997 [Th9, Th10].

We analyse the second option in much more detail here. First we show that if
the homeomorphisms between circles at infinity are not uniformly bounded then
there is always a transversal lamination to JF, that is, in this case even if there is
Z @ Z subgroup of 71 (M) there will be one transverse lamination which encodes
regions of maximal distortion. Thurston had obtained either one or the other
conclusion. We then analyse the atoroidal case in much more detail: we show there
are in fact two distinct transverse laminations which have the behavior of stable
and unstable laminations. These laminations are transverse to each other and fill
M. They intersect in an orientable 1-dimensional foliation producing a flow in the
intersection of the laminations. Collapse the complementary regions of the union of
the laminations to produce a flow ® in M. The transverse laminations blow down
to singular foliations F*, F*, which are shown to have “hyperbolic” behavior,
so ¢ is pseudo-Anosov. In the first option of bounded distortion of geometry
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we prove a rigidity result: up to topological conjugation the foliation F admits
a transverse foliation which is a local isometry between leaves — a transversely
hyperbolic foliation [Ep, Th3].

The laminations constructed here are genuine essential laminations [Ga-Ka].
Using results of Gabai and Kazez [Ga-Ka] it immediately implies the following
result, also proved by Calegari [Call]:

Corollary. Suppose that M aspherical supports an R-covered foliation F. Then
M satisfies the weak hyperbolization conjecture: either there is Z@® Z < w1(M) or
71 (M) is Gromouv negatively curved.

We mention a potential but extremely important possible use of the results
here. In the atoroidal case above the geometrization conjecture predicts that the
manifold is hyperbolic [Th4]. The pseudo-Anosov flow can be used to compare
the geometries of leaves of F and this can possibly be used as a starting point to
geometrize M. A similar approach was successful in the case of fibrations [Th5].

The flow ® constructed here is is regulating for F. This means that every orbit
of ® intersects every leaf of F and vice versa: there is a (topological) product
picture in the universal cover. Hence P produces global homeomorphisms between
leaves of F — as was desired in the initial analysis of the R-covered case. In [Fe5]
we analyse when a transverse pseudo-Anosov flow to an R-covered foliation can
fail to be regulating. It turns out that this can only occur if F itself was an
R-covered stable foliation of a flow.

In [Fe7] we use the results of this article and of [Fe5, Fe6] to prove that except
in the case of R-covered Anosov foliations, then up to topological conjugacy there
is only one transverse pseudo-Anosov flow transverse to the R-covered foliation.
Hence our construction is in fact canonical.

We thank Bill Thurston for sharing with us his wonderful results, in particular
his construction of the universal circle for foliations and transverse laminations.
We thank Danny Calegari for conversations and ideas concerning R-covered foli-
ations. We also thank the referee for an extremely careful reading with numerous
corrections and suggestions which greatly improved the presentation of the paper.
Most of the research was done while the author visited Princeton University and
we thank this institution for its hospitality.

2. Uniform foliations, compact leaves and minimality

Throughout the article F will denote a 2-dimensional foliation of a closed 3-
manifold M. The universal cover of M will be denoted by M and F is the lifted
foliation to M. The map
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will always denote the universal covering map. The fundamental group (M ) is
identified with the group of covering translations of M. For any subset B of M
let Z(B) denote the isotropy group of B, which is the subgroup of 71 (M) leavmg
B invariant. Finally H is the leaf space of F , which is a topological space.

Definition 2.1. ([Fe2]) F is R-covered if H is homeomorphic to the real num-
bers R.

A weaker property is equivalent to R-covered:
Lemma 2.2. F is R-covered if and only if H is Hausdorff.

Proof. Assume first that H is Hausdorff. Suppose there is a closed curve v in
M which is transverse to F. Then v bounds an immersed disk D which can
be put into general position with respect to F [Ha, No, So|. An analysis of the
induced (singular) foliation in D shows there are leaves aq, s so that ay is a
closed curve and «o spirals towards «q. Let F; be the leaf of E containing o;.
Then F3 limits on Fy so any neighborhood of Fy contains /5 and hence ‘H is not
Hausdorff contradiction. Hence any transversal curve to F projects injectively to
‘H, so H is a 1-manifold with a countable base. It is also Hausdorff so it can only
be the circle or the real line. In the circle case, construct a closed transversal to
F, contradiction. Hence F is R-covered. The converse implication is immediate.

O

Here is how Reeb components interact with the R-covered property: if F is
R-covered then F is Reebless unless M is finitely covered by S? x S [Go-Sh].
The restriction is necessary: glue two Reeb components along their boundaries to
produce 82 x 8! with an R-covered foliation.

Most of the time we assume that F is transversely orientable. The non-
orientable case usually follows from some additional considerations.

Definition 2.3. (foliated I-bundle) A foliated I-bundle (in dimension 3) is a pair
(N, G), with N homeomorphic to a product R x I, where R is a surface, which
may be compact or not, and may have boundary or not; and [ is the unit interval.
In addition G is a foliation in NN so that:

— R x {0} and R x {1} are leaves of G;

— G is transverse to the I-fibers in N (including R x [0, 1]).
Up to topological conjugacy, the foliation G is completely determined by the mon-
odromy, which is a map from 71 (R) to the group of homeomorphisms of 1. Some-
times we abuse the notation and say that N or G is a foliated I-bundle.

A fundamental concept here is that of a uniform foliation:

Definition 2.4. ([Th7]) A foliation F is uniform if given any two leaves E, F' of
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F , there is a positive constant b, so that the Hausdorff distance between F, I is
smaller than b. Explicitly, for any point z of F there is v in I so that d(z,y) is
less than b and conversely. The bound depends on the pair F, I

Obviously it is not at all important that leaves be hyperbolic to define uniform
foliations. In the case of R-covered foliations, the existence of compact leaves
implies that the foliation is uniform:

Lemma 2.5. (compact leaves) Let F be an R-covered foliation in M3, closed and
not finitely covered by 8% x 8. Then F is taut. In addition if F has a compact
leaf R then F is uniform.

Proof. If necessary lift to a finite cover and assume that F is transversely orientable
and M is orientable. If the lifted foliation is taut then so it the original one.
The uniform condition concerns objects in the universal cover so the same holds
concerning this property. Since F is R-covered and M is not finitely covered by
S? x S! then F is Reebless as shown by Goodman and Shields [Go-Sh].

With the orientation conditions, if F is not taut then that there is a codimen-
sion 0 submanifold V' bounded by a union T4,...,T, of tori so the transversal
flow is say outgoing along the boundary [Go]. Hence there are no transversals
connecting distinct lifts of the T} to M. As F is R-covered any two leaves of F are
connected by a transversal. The only possibility is that n = 1 and there is only one
lift of T} to M. Hence 7y (11) surjects in 71(V). But if T} is incompressible this
is impossible by Theorem 10.5 of [He]. But F is Reebless so T} in incompressible.
This contradiction shows that F is taut.

If in addition F has a compact leaf R, then Goodman and Shields proved that
R is the fiber of a fibration of M over the circle [Go-Sh] (this uses F transversely
orientable). Cut M along R to produce a manifold M; homeomorphic to R x [
with an induced foliation F{. We want to show that F is a foliated I-bundle.
Let A be an annulus in M; of the form v x I where « is a simple closed curve in
R. Tsotope A to be in general position with respect to . By Euler characteristic
arguments A has no singularities. Since F is taut, Gabai [Ga5] showed that A can
be made transverse to F1. Cut along A to produce a new manifold with a new
foliation transverse to the vertical boundary. Continue cutting along transverse
annuli and disks until obtaining a union of manifolds homeomorphic to D? x I,
where D? is the closed disk. The foliation in the boundary of these balls has a
tangential part D? x I and a transverse part D2 x I. The transverse part has
no holonomy because this is a ball. Therefore (up to topological conjugacy) this
is a foliation by horizontal disks. Conclusion: we can isotope F1 so that it is
transverse to the I-fibers in Ay and hence F is a foliated I-bundle. Glue back
along R and lift to M. As M, is a foliated I-bundle, it now follows that F is
uniform. O
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When there are no compact leaves we can reduce to the minimal case:

Proposition 2.6. (minimal case) Suppose that F is R-covered, does not have
compact leaves and its not minimal. Then F can be collapsed to a minimal foli-
ation: there is a foliation F' which is minimal and which is obtained from F by
collapsing at most countably many foliated I-bundles of F to single leaves.

Proof. Suppose first that F is transversely orientable.

Let Z be a minimal set of . By hypothesis Z is not a compact leaf and not
all of M. This implies that Z intersects any transversal curve to F in a Cantor
set.

Let U be a component of the complement of Z in M and U the metric com-
pletion of U. The interior of U embeds in M and there is an induced map in
the boundary, but the boundary may be a double cover of a leaf By of F. In the
last case the leaf By will be isolated on both sides. Since By is in a minimal set,
it follows that By is a compact leaf. This contradicts the hypothesis. Hence U
embeds in M. R

We claim that U is a foliated [-bundle. By the general theory of codimension
one foliations [Di] the set U is equal to a union of two subsets K and A, intersecting
only in their boundaries and satisfying:

e K is a compact, connected, codimension 0 submanifold of U , which is called
the core of U ,

e A is a union of manifolds @; which are homeomorphic to products R; x I,
where each R; is a non-compact, connected surface with compact, connected
boundary and F restricted to @, is a foliated I-bundle (see also [Ca-Col).

In addition in the induced metric the I-fibers in Q; are very short, so we can
choose them to be the transversal flow segments of .

Let U be a component of W*I(ﬁ). Since U embeds in M and is not all of M,
then U is not all of M. Therefore it has boundary components. Then U is closed,
connected, has non-empty interior and is not all of M. Since the leaf space of F
is R, then U has leaf space which is a closed interval J. Here it is fundamental
that F is R-covered. Let L1, L> be the boundary leaves of U. If an element of
the isotropy group of U switched L; and Ly then F would not be transversely
oriented, contradiction. It follows that the isotropy group of U is the same as the
isotropy group of Ly or Ls.

Let now _

— K be a component of 77! (K) contained in U;

— E be the intersection of K and Ly

— Bj be a component of E and let C; = w(B;) which is a subset of K.

If there is another component By of E, then there is a curve « contained in 9By
separating By from B, in L. But a projects to a closed curve 8 in dK. Recall
that 0K is equal to A (as subsets of U ) and then 3 is contained in an annulus
B x Iin K. The annulus 3 x I separates K from a component of A in U. The
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component Cy of 7=1(3 x I) containing o separates K from the component of
U— C5 containing By. Therefore the lift K of K does not intersect B,. This is
a contradiction. We conclude that F is connected and therefore equal to By. As
any covering translation preserving K , also preserves F then it also preserves Bj.
It follows that the isotropy groups Z(Bi) and Z(K) are equal. Therefore m1(Cy)
surjects in 7y (K).

But K is compact and irreducible, so Theorem 10.5 of Hempel [He] implies
that K is homeomorphic to €| x I. As in the previous lemma isotope the foliation
to be transverse to the I-fibers in K. This proves the claim that U is a foliated
I-bundle.

Notice that this discussion shows that there is a unique minimal set Z. This is
because we just proved that the complement of Z is a union of foliated I-bundles
with non-compact bases. Any leaf in the interior of the I-bundles will limit in
points that the boundary leaves also limit on, that is they will have limit points
in Z. But Z is a minimal set so the additional leaf is not part of a minimal set. It
is fundamental in all of this discussion that F is R-covered — clearly these results
do not work in more generality.

So we can consider the at most countably many components of M — Z. There
is a positive number € so that any two points in M which are less than e apart,
then their local leaves are connected by a very small transversal arc. At most
finitely components of M — Z may have thickness bigger than €, hence in the other
ones the transversal flow already produces an I-bundle structure. For the finitely
many other ones change the original transversal flow in the core part (which is an
I-bundle) to consist of the I-fibers in the particular component. This is done only
in finitely many compact pieces — so we may assume the flow is smooth. Finally
blow down all the complementary regions of Z using the new transversal flow to
produce a foliation F’. Because the minimal set Z intersects transversals to the
original F in a Cantor set, the collapsed object is still A/ with a foliation F’. Also
F' is minimal — if there is a non-trivial minimal set of ', it would generate a
complementary component of Z which was not collapsed. This finishes the proof
in the transversely orientable case.

Suppose now that F is not transversely orientable. In any case choose a trans-
verse line field to F. There is a double cover My and a lift Fo of F which is
transversely orientable. The cover is normal and there is an involution f of M
so that M is the quotient of My by f. Certainly F9 is R-covered and the results
above work for Fo.

Let Z be a minimal set of 7 and Z’ be its inverse image in M,. Let Z, be a
minimal set contained in Z’. Then Z5 projects to a set in M which is closed and
contained in Z, hence the projection is Z. Furthermore f(Z;) is also a minimal
set of Fo, hence by the above discussion f(Z2) equals Z;. This now implies that
Z5 equals Z’ and then Z is the unique minimal set of F.

Let U be a complementary region of Z’ which is an I-bundle. One option
is that it projects homeomorphically to M and as above we can use I-fibers to
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collapse this to a single leaf. The other option is that it double covers a set in M,
which may have one or two boundary components. Isotope the I-fibration in U so
that it is invariant under f — one only needs to do this in the compact pieces of the
I-bundle. Then one can collapse the resulting I-fibration in M. If the region has
only one boundary component, then it collapses to a leaf which is not transversely
orientable. The resulting foliation is minimal as above. This finishes the proof of
Proposition 2.6. O

Notice F is a blow up of at most countably many leaves of F'. To prove the
main theorem, if we find a subgroup Z & Z in n1(M) we are done. If we find a
pseudo-Anosov flow transverse to F’, then it pulls back by the blow up operation
to a pseudo-Anosov flow transverse to F. Hence from now on assume that F is
minimal if it does not have compact leaves.

3. Ideal geometry and the universal circle

In order to prove the main theorem, the remaining case is when the leaves are
Gromov hyperbolic. Using Candel’s theorem [Can] we assume each leaf of F
is hyperbolic — notice the metric may vary only continuously in the transversal
direction [Can]. Thurston explained how to locally stitch the circles at infinity of
different leaves and then to globalize the local stitching to produce a universal circle
which encodes all circles at infinity [Th9, Th10]. In the case of R-covered foliations
we show how to do the identifications so that the local maps are homeomorphisms
between the circles at infinity.

Remark. In this section and the next there are no orientability conditions.

If E, F are leaves of ]?, let (E, F) denote the set of leaves of F separating I/
from F'. As ‘H is homeomorphic to R, then if F, F' are distinct the set (F, F) is
homeomorphic to an interval. Let [E, F] be the union of (F, F') and the two leaves
E,F. Each leaf of F is isometric to the hyperbolic plane H? and has an ideal
circle at infinity S1 (F). We now come to a key object of our study:

Definition 3.1. (cylinder at infinity) Let F be an R-covered foliation with hy-
perbolic leaves. Let

A= ] sL).
reF

which is the cylinder at infinity of F — the union of all ideal circles of leaves of F.

Since F is R-covered, then set wise A is an infinite cylinder S* x R. First of
all we put a topology in A so that it is also homeomorphic to a cylinder.
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Notation. To be used throughout the article: given x € M let F (z) denote the
leaf of F containing z. The same holds for z in M.

Each geodesic ray in F'(z) starting at 2 defines a unique ideal point in S (F(z))
giving a homeomorphism between the unit tangent bundle of F'(z) at x and
S (F(z)). Let T1F be the unit tangent bundle of . Given any B C M, let
F g be the union of leaves of F which intersect B and

Ap= | SL(F).
FE.%B

This is particularly useful if B = 1 is a transversal arc to F. In addition if F is a
leaf of F, then dr denotes the path distance in I'. The term “open transversal”
will be used for a transversal to F or F which is homeomorphic to an open interval
(0,1).

Lemma 3.2. (topology of A) Let u be an open transversal to F. Then TvF re-
stricted to u is homeomorphic to an open cylinder S' x (0,1). This provides an
identification of A, with an open cylinder S' x (0,1) and defines a topology in A

making it homeomorphic to a cylinder. The union M U A has a natural topology
making it homeomorphic to D> x R, where D? is the closed disk and D x {t}

correspond to the union F'U S (F) for F a leaf of F.

Proof. If p,p/ are two transversals to F so that F H,J’E w intersect, we need to
show that the topology 7,, induced by p in the intersection of 4, and A, is the
same as the topology 7, induced by g/ in this intersection. By restricting to their
intersection we can assume that the sets A, A, are equal.

Since both topologies induced in A, are first countable it suffices to consider

the behavior of sequences. Consider a sequence y;, ¢ in N converging to yo in 7,,.
Then y; are in S (F}), for uniquely defined leaves F; which are in F » (equal to
‘7?#/)' Let

z=Fnu z=Fny.

Then the sequence F; converges to Fy in ‘H with a9 in Fy and Fj a leaf of ﬁu'
Also

. " /
zi—xo in p and z;— 2o in g

For each i let [;, s; geodesic rays in F; from z;, z; respectively with ideal point y;
in SL (F;). These come from identifications of the unit tangent bundle to F at
x;, 2 with SL (F;) respectively. Since the sequence y; converges to yo in 7, then
the directions of [; at z; converge to the direction of Iy at xo.

Notice y; converges to yg in 7, if and only if the directions of s; in F; converge
to the direction of sy in Fj;. We use a couple properties of the hyperbolic metric.
Since z; converges to zg and z; converges to zp then dp, (z;, z;) is bounded above
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for all 7. In addition the rays [;, s;, for i > 1 define the same ideal point y; in
S (F;). Hence [; and s; are asymptotic in F;. These two facts imply that given
any positive e there is a positive a(e) so that except for initial length a(e), the
remainder of the rays [;, s; are within e of each other in F; for each ¢ > 1. Notice
that the constants are independent of i — this only uses the fact that all leaves
are hyperbolic and the distance between x; and z; in F; is bounded above.

Consider any subsequence s;3) so that s;) converges to a ray vg in Iy or
equivalently that the directions of s;(;y at z;;) converge to the direction of vy
at zo. For notational simplicity assume this is the original sequence s;. As [;
converges to [y and s; converges to v, the above property implies that except for
initial segments of length smaller than a(e), the remainder of the rays [y, vg are
within e of each other in Fy. Explicitly, if w is a point in [y which is more than
a(€) away from zg in Fjp, then

w = llirgo w; with w; €l; and dp,(z;,w;) > ale).

Also dp,(z;,w;) is bounded above. By the property above there are wu; in s;
with d, (w;,u;) smaller than e and up to subsequence again we may assume u;
converges. As dp,(x;,w;) is bounded above, then so is dp,(u;,v;). Therefore u;
has to converge to a point v in vg. Then dp,(w,u) is bounded above by e and
conversely. This implies that ly, vo have subrays which are at most ¢ distant from
each other, so it again follows from hyperbolic geometry that they are asymptotic
in Fy. That means that vy defines the ideal point yo in S (Fy). Therefore the
rays vp, sp are equal. This is equivalent to the sequence s; converging to sg: the
directions of s; converge to that of sg. But notice that this is in fact a subsequence
of the original sequence! This proves that any sequence y; converging to yo in
7,, has a subsequence which converges to yg in 7,,. This then implies that the
original sequence converges to yo in 7,/ as we wanted to prove. This shows that
the topology in A is well defined. Clearly

A= U A/'Lz'7
i€EN

with p; transversals intersecting more and more of the leaf space of F. Each Ay,
is homeomorphic to a cylinder hence 4 is homeomorphic to S' x R.
Similar arguments show that there is a natural topology on

U (F@)u S (F(2)),

making it homeomorphic to D? x (0, 1), where each leaf with its ideal circle corre-

sponds to D? x {t}. It follows that MUA is naturally homeomorphic to D? x R.
O

If g is a covering translation of M and L a leaf of 7?7 then g maps L to g(L)
by an isometry which extends to a homeomorphism g% between their circles at
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infinity. This produces a bijection g, from A to itself. Similar arguments as in
the lemma above show that g.. is a homeomorphism of A, which will be called a
covering homeomorphism. Many times we will abuse notation and write g instead
of geo for this “ideal” map. In this way 71(M) acts in the cylinder at infinity.

Clearly A 22 S' x R has a natural foliation by circles, which comes from the
circles at infinity of leaves. This is what we call the “horizontal” foliation of A.
Natural means that this foliation is left invariant by the action of n1(Af). In
general the action of (M) on A =2 S! x R does not respect the vertical foliation
by {z} x R. The main goal of this section is to produce a natural “vertical”
foliation of LA which also is associated to the geometry of the foliation. This will
create the universal circle of the foliation F (or F). First recall the definition of
quasi-isometries:

Definition 3.3. (quasi-isometry)/Th3] A quasi-isometry is a map ¢ : (My,d;) —
(Ms, ds) between metric spaces so that there is positive k satisfying: for any z,y
in M then

1

i@, y) =k < da(p(2), ¢(y)) < kd(z,y) +k

and in addition there is a positive &’ so that for any point z of My there is z of
M with dy(z, p(z)) smaller than &’. If the constant is important we say that ¢ is
a k-quasi-isometry.

First we produce the natural vertical foliation in the uniform case:

Proposition 3.4. (vertical foliation — uniform case) Let F be an uniform R-
covered foliation with hyperbolic leaves. Then given any two leaves F, F of .7?,
there is a canonical homeomorphism between S: (E) and SL (F). This yields a
universal circle which is naturally homeomorphic to any circle at infinity. There
is a “wvertical” foliation in A which is transverse to the horizontal foliation and is
group invariant. The homeomorphisms between SL (E) and S (F) are given by
the holonomy of this vertical foliation.

Proof. There is a brief proof of this result in [Th7] — for completeness we provide
the details here.

Fix E, I in F and positive by so that their Hausdorff distance is less than b;.
Define a map ¢ : £ — F":

p(x) =y forsomey in I with d(z,y) < by.

The map ¢ is not well defined, but it is coarsely defined. This follows from a
fundamental property of R-covered foliations: If F is R-covered, then for any
positive ba, there is positive by = f(by) satisfying:

Vzwe M with we F(z), then d(z,w) < by = dpey(z,w) < bs,
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see [Fel]. The important thing is that b3 depends only on by and not on individual
leaves or points. This property is in fact equivalent to the R-covered property (for
Reebless foliations) and does not hold in general. Hence there is positive by so
that if z in ¥ and y, z in I' with

d(z,y) < b1, d(z,z) <bi, then dp(y,z) <bs= f(2b1).

We conclude that ¢(x) is well defined up to a set of diameter by in F. This is
what we mean by coarsely defined. We want to show that ¢ is a quasi-isometry
from F to F.

For any z,y € F choose a geodesic arc from = to y in F, having length a
and let n be the integer |a;| where | | is the greatest integer function. Then
dp(r,y) is a number in the interval [n,n + 1). Split v to produce points zg =
Ty 1y ey Tny Epp1 = y With dg(z;—1, x;) equal to 1 for any ¢ smaller than n and
dg(xn, Tyy1) less than 1. Then

d(p(zi—1, p(x:))) < d(p(zi-1), i) + d(zi—1, i) + d(zs, p(24))
by 14 by = (2bs +1).

Let bs = f(2by + 1) so if w, z are in the same leaf of F and d(w, z) is smaller than
(2b1 + 1) then dp(;)(2,w) is smaller than bs. It follows that

dp(p(z), ¢(y)) < (n+ 1)bs < (dp(z,y) + 1)bs = bsdp(x,y) + bs.

This shows one side of the required inequalities for quasi-isometries. In the same
way there is a map & from F to E with d(w, {(w)) smaller than b for all w in F.
Hence

d(w, p&(w)) <2b; and so dp(w,p&(w)) < by = f(2b4)

for all w in F. This shows that ¢ is almost onto as required in the definition of
quasi-isometry. Similarly dg(z,&p(z)) is smaller than by for all z in E. Given z,y
in B, let z = ¢(z), w=¢(y). An argument as above implies that

dp(&(2), {(w)) < bsdp(z,w) + bs.
So
de(z,y) < d(z,Ep(z)) + de(§p(z), Sp(y)) + dr(e(y), v)
< 2bg + bsdp(p(z), ¢(y)) + bs,

ds(z,9) - (2,% + 1) < dr(p(z), o).

We conclude that ¢ : F — F is a quasi-isometry. Therefore it extends to a
homeomorphism ¢ between S. (E) and S. (F) [Gr, Th2]. This works for any
pair of leaves L,G of ﬂ?, producing corresponding maps: @f from L to G — a
quasi-isometry; and ¢¢ homeomorphism between S1 (L) and S (G).
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We now produce a natural “vertical” foliation in A. Fix F in F. For any y in
Sl (F) and any F in F, then ¢£(y) is a point in SL (F). Let

reF
By the above ay intersects every circle SL (F) in a single point. We claim that
ay is a continuous curve in A. Let p be a transversal to F and z; a sequence in
w converging to zq. Let F; = F/(z;). We want to show that y; = wg(y) produces
a sequence converging to yg = wgo(y).
Consider [; geodesic rays in Fj starting in z; and with ideal point y;. For
simplicity assume that all F;, with 7 bigger than 1 are in the interval (Fp, F). Such

F; separate Fy from F} in M. The Hausdorff distance is monotone increasing: if
[F,G] is asubset of [L, H] in H, then dy (F, G) is smaller than dg (L, H). Therefore

dy(Fo, F;) is bounded above by dy(Fy, Fy)

for all 4. Using the arguments above and this uniform bound on dg(Fp, F;) this
implies that that all zp?o are uniform quasi-isometries — they are all k-quasi-

isometries for some fixed k. The images Lpgz(lo) are uniform quasigeodesics in F;
with ideal point y;. Hence they are a bounded distance from a geodesic ray in
F; starting in z; and with ideal point y;. Since they are uniform quasigeodesics
starting in z; which is a uniformly bounded distance from z; then the images
wgg are a uniform bounded distance from [; in F;. If the sequence [; does not
converge to [p, up to subsequence suppose that [; converges to vy not equal to
lo. But dg(l;, lo) is bounded above by ag for some globally defined ag, where this
Hausdorff distance is computed in M. Hence dp (v, lo) is bounded above by ag
as well. The R-covered property implies that dg, (vo, lo) is bounded, contradicting
the fact that vy and [y diverge exponentially in Fjy. Therefore I; converges to [y.

Hence oy, is a continuous curve in A. Consider the collection {ay } where y is
arbitrary in SL (E). For any point z of A, z is in S (F) for some F of F and
z = ¢L(y) for a unique y in S (E). Equivalently

z=a,NSL(F(z)) and hence A= U Q.
yeSL (B)
Furthermore the sets {ay,} with y in SL (F) are disjoint for distinct y. Since
they are continuous curves, this collection produces a vertical trivialization of
A = S8' x R. Since covering translations preserve distances and relations
between distances, it is very easy to check that this foliation of A is invariant
under covering translations, producing a “natural” vertical foliation in 4. This
will be used to analyse how the geometry changes transverse to F. This finishes
the proof of Proposition 3.4. (Il

Before we analyse the non-uniform situation we introduce contracting directions
and markers.
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Definition 3.5. (contracting direction) Let = be a point in a leaf L of F and let
{7(t),tin [0,400)} be a geodesic ray in L starting in z and with tangent vector v at
x. Let pin SL (L) be the ideal point of 4. Then « (or v) is a contracting direction
if the following happens: there is a transversal p to F containing = (maybe as an
endpoint or maybe in the interior) so that for any leaf F of F which intersects m
the distance d(F,~(t)) converges to 0 as ¢ — oo. In other words holonomy along
~ (or in the v direction) contracts a neighborhood of leaves towards L. Similarly
define contracting directions in F.

Remarks. 1) Contracting directions can be defined for any foliation: it just means
that nearby leaves get contracted together in that direction. Using harmonic
measures Thurston [Th8] showed that contracting directions are quite common in
codimension one foliations in closed manifolds (any dimension).

2) In our setting the contracting direction is really a property of the ideal point
pin S (L) and is independent of the initial point = or the geodesic ray defining p.
This is because all such rays are asymptotic, so a packet of leaves gets contracted
together irrespective of the initial point or ray.

Lemma 3.6. Let x in L with a contracting direction given by a geodesic ray {v(®)}
and p a transversal to F contracted in the ~ direction. For any K of]: intersecting
w, the contracting direction v defines an ideal point ((F) of E and any geodesic
ray of F with ideal point ((F) is contracted to L. In addition for any F in F there
is at most one direction in F which gets contracted towards .

Proof. Fix a transverse line field to F and lift to F. Let Ein F intersecting .
For any positive ag there is positive ¢y so that d(v(¢), F) is smaller than ag for
t bigger than ty. If ap is small, the translate of ~(¢) for ¢ bigger than ¢y to L
along the transverse foliation is defined for all time (as they are very close) and
is a curve with arbitrarily small geodesic curvature in . Hence the translate is a
quasigeodesic in E [Th3| and it defines an ideal point in S (E) which is denoted
by ((F). Also for smaller and smaller ag the translates have smaller and smaller
geodesic curvature and become more and more geodesic. Hence a geodesic ray in
E with ideal point ¢(F) is asymptotic with the initial ray v in Ep.

Finally suppose there is F' in F and there are geodesic rays r1, 79 in I which are
asymptotic to . Therefore they are asymptotic to each other. But F is Reebless,
so there are no closed transversals to F. This implies when 71 and r are close in
M they have to be in the same local sheet of F. This in turn implies that rq,79
are also asymptotic in F'. Therefore they define the same direction in F'. (Il

Contracting directions in F in turn produce markers in the cylinder at infinity:

Definition 3.7. (marker) Let L in F with a contracting direction given by the
geodesic ray v which contracts a transversal segment . For any F intersecting
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w let ((E) be the unique ideal point of F defined in the previous lemma. The
set of {¢(F)} with E intersecting u is a subset of .4 which defines a marker in A
associated to the pair (v, p). For any F intersecting p we say there is a marker
between SL (L) and SL (E) or equivalently a contracting direction between L and
E. Sometimes we abuse notation and say that this produces a marker between L
and E. Let ¢ denote the marker.

Remark. If F is a non-R-covered foliation with hyperbolic leaves there is not a
global cylinder at infinity. However the union of the circles at infinity associated
to a transversal to F still is a cylinder and one can define markers associated to
intervals of leaves in the leaf space.

Some needed properties of markers are now established. If  is a marker and
Ein F, let ((E) be the intersection of ¢ and S (F) which is at most one point.

Lemma 3.8. If «, 3 are markers in A which intersect each other, then they do
not intersect transversely, that is: For any F in F with o(F), B(E) not empty,
then a( F) = B(E).

Proof. Let «, 3 be markers which intersect in a point p and let and £ in F with
a(FE), B(E) both non-empty. There is L in F with p equal to «(L) and (L). Let
7 be a geodesic ray in L with ideal point p. Let

ri,79 geodesic rays in £ with ideal points «(F), B(E) respectively.

As p,a(F) are in « then r and ry are asymptotic (in ]T/f) Similarly » and ro are
asymptotic so r1 and ro are asymptotic. As in Lemma 3.6 this implies that r; and
ro are asymptotic in K. In other words «(F), 3(F) are equal. O

Lemma 3.9. Markers are continuous curves in A.

Proof. Consider a contracting direction in a leaf F' of F defined by the geodesic
ray v = {y(t), t in [0, +o0)} and ideal point p in S (F). There is a packet of
leaves near I’ which contracts to I in the v direction. For any positive € the whole
packet is € near v(¢) for any ¢ bigger than tq for some ¢y > 0, depending only on e.
Since the remainder is a compact initial segment ([0, ¢o]), if the packet is reduced
the whole ray ~ is € near any leaf in the (smaller) packet. Hence one can move
~ to curves in nearby leaves using the transversal foliation. These curves have
arbitrarily small geodesic curvature, which goes to 0 as € goes to 0. Therefore the
curves are closer and closer to being geodesics and their ideal points are better
and better determined by the initial directions. But the directions of the initial
segments converge to the direction of v at v(0) and so the ideal points of the lifted
curves in the nearby leaves converge to the ideal point p in the topology of A. This
shows continuity of the marker at p and as p is arbitrary this completes the proof.
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The proof shows that a marker defined by a transversal arc p is a homeomorphic
image of p in A which is transverse to the horizontal foliation in .A. d

We will now consider the case of R-covered non-uniform foliations. Again the
goal is to produce a natural vertical foliation in 4. Lemma 2.5 shows that F has
no compact leaves and by Proposition 2.6 we may assume that that F is minimal.
Hence:

Running hypothesis for the rest of the section. F is a minimal, R-covered,
non-uniform foliation with hyperbolic leaves.

In the uniform case if one of the leaves has a point sufficiently far from the
other, then the leaves can never get too close to each other at all (for ideas on this
see [Th7]). The non-uniform case is completely different: any pair of leaves of F
has many directions where they are arbitrarily close.

We learned some ideas in this section from Danny Calegari in 1998 — at that
point he was studying foliations with “confined regions”. This means there are I
and L in F and a half plane of I’ which is asymptotic to L. His goal was to prove
that if in addition F is minimal then it is conjugate to the stable foliation of a
suspension Anosov flow. We realized that some ideas of the confined case can be
used to treat the general case. The article [Call] has a similar treatment of the
general non-uniform situation.

Fix an orientation in H. We first prove several needed properties of non-uniform
R-covered foliations.

Lemma 3.10. No two leaves of F are a bounded distance from each other.

Proof. Suppose there are leaves E, F' of F which are a bounded distance from each
other. Let J be the interval [F, F] of H and consider the union of J with all
its translates under covering translations. Take the component C containing 7.
Assume first that C is a bounded interval in H. Then translates of C are either
C' itself or disjoint from C. It follows that the closure C of Cin H is precisely
invariant. But then the leaves of F corresponding to the translates of C project
to a non-trivial closed set of F in M. This is not possible by hypothesis. If C' is
unbounded below in H then it has to be invariant under all of 71(M) and so it
must be unbounded above, that is C'is equal to H. But as the Hausdorff distance is
monotone increasing, that implies that any two leaves in F are a bounded distance
from each other or that F is uniform, contrary to assumption. This finishes the
proof. (Il

The following proposition is crucial for our results. It states that anything
bounded can be put in between two arbitrary leaves and then uses that to produce
contracting directions between the leaves.
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Proposition 3.11. (compression of the universal cover and contracting direc-
tions) Given arbitrary distinct leaves K, F of F and B a bounded set, there is
a covering translate of B contained between E and F'. As a consequence there is
at least one contracting direction between E and F'.

Proof. By hypothesis dy (F, F') is infinite. For simplicity we may assume without
loss of generality that F is transversely orientable, F' is in front of F and choose

p; € B with d(p;, F') converging to infinity.

Let B be a bounded set in M. We are looking for a translate h(B) of B so that
h(B) is in the front of E and in the back of F, that is, between E and F. Choose
covering translations g; with g;(p;) converging to pg and so g;(E) converge to Ky
containing pg. Let L leaf of F very near pg and in front of Ep.

We claim that we can choose a covering translate h(B) contained in the front of
L. This seemingly obvious fact is not true in general, even for Reebless foliations!
For example, start with a Reeb foliated annulus A and consider A x S! with the
product foliation. Then glue the two boundary tori to produce a non-taut, but
Reebless foliation F. A non-compact leaf in A produces an annulus leaf of F.
Lifting to Z in F, one of the complementary regions of Z in M has every point
a bounded distance from Z, and there are sets of big diameter which cannot be
mapped into that component. This example also shows that for general F, given
arbitrary leaves G, H of F, the fact that GG is in a bounded neighborhood of H
does not imply that H is in a bounded neighborhood of G — this relation is not
symmetric.

To prove the claim we use that F is taut. Suppose there is a finite supremum
ag of d(z, L) for z in front of L. Let z in front of L with d(z, L) very near ag. Any
geodesic arc from z to L with length very close to ag is almost perpendicular to L.
There is positive € so we can choose foliated box neighborhoods of these points in
L with d(z, y) bigger than ag+e€ for any y in the other side of L from these foliated
boxes. As F is taut there is a transversal from L to a translate f(L) in the back
of L and not intersecting those neighborhoods. Then z is in front of f(L) and
d(z, f(L)) is greater than ag + e¢. Hence f~!(z) is in front of L and d(f~'(z), L)
is bigger than agp contradiction to assumption. This proves the claim.

As g;(F) converges to Ey then for 4 big enough L is in front of g;(F) and so is
h(B). Then

d(gi(p:), gi(F)) — +oo, but d(g;(p;), H(B)) is bounded.

It follows that g;(F') does not intersect h(B) and does not separate it from g;(E)
for ¢ big enough. Since F is R-covered this implies that h(B) is in the front of
g:(E) and in the back of g;(F), that is between g;(F) and g;(F). Hence g, *h(B)
is between F and F', see Fig. 1 This proves the first statement, compression of the
universal cover.
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Figure 1. a. Contraction in the universal cover, b. Producing a contracting direction in
a leaf.

Now take B intersecting F and F' and choose g(B) to be between F and F,
see Fig. 1, a. This implies that g(F), g(F') are between E and F and so

g([E, F]) C (E,F).

As [E, F)| is an interval in H, there is Iy in (E, F') with g(Fy) equal to Fy and
g*(F) converging to Fy when i converges to infinity. Hence there is a geodesic v
in Iy with g(vy) = v and which has contracting holonomy in one side, that is g
contracts the interval [Fp, F] to Fy as ¢ converges to infinity, see Fig. 1, b.

By the same arguments as above then for any two leaves U, V of F one can map
the interval [U, V] of H inside [Fp, F']. Since Fy has a contracting direction with
F' it produces a contracting direction between any two leaves in [Fy, F]. Pulling
back by a covering translation, this produces a contracting direction between U
and V. This finishes the proof of the proposition. (Il

The goal is to use these contracting directions to produce identifications of the
circles at infinity.

Lemma 3.12. There are al least two contracting directions between any two leaves

EFeF.

Proof. Otherwise there are Ep, Fp in F with only one contracting direction between
them. For any F, F in F we can map [Fy, Fp] inside [E, F], so there is only one
contracting direction between [F, F] as well. Choosing leaves F;, F; of F with B,
F}; escaping to opposite ends of H and the packets [F;, F}] increasing, it follows
that there is a unique “vertical” curve « in A, which contains all markers. For
any leaf F' let ap be the intersection of o and F'. The action of 71(M) on A
sends markers to markers, therefore any covering translation acts in A sending the
unique vertical marker « to itself.

Given a covering translation g not acting freely in H, there is a leaf F' with
g(F) = F, so there is a geodesic axis [ in F invariant under g. Since g(ar) = ar,
then ap is one of the ideal points of . Let now f be any other covering translation

with f(F') and I’ distinct. Then
(faf HFWEF) =F(F) and (fgf H(f(D) = (1)
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so f(I) has an ideal point in ay(py. This implies that [ and f(I) are asymptotic in
M, which is impossible since 7 (1) is a closed curve in M and there is a minimum

distance between any two distinct lifts to M. We conclude that there are at least
two markers connecting any two leaves. O

Proposition 3.13. (local density of markers) Given I in ]?, Y any open set in
SL(F), and A any component of A — SL (F), there is a marker with an endpoint
'Y and contained in the closure of A.

Proof. This shows that there are markers on “both” sides of Y in A. The key
property is that F is minimal. Suppose the result is not true. Let

— F be a leaf of F, Y an open set in S (F);

— A component of A—SL (F), so that there is no marker in A with an endpoint
in Y and contained in the closure of A.

Choose points p; in F' with p; converging to p in Y. Fix a small transversal p
to F, let E, L be the leaves of F through the endpoints of . Since F is minimal,
there is a positive constant ag so that any point in a leaf of F is within ag (in its
leaf) of another point very near the center of w(y). Lifting to M , there are ¢; in
F with dp(q;,p;) smaller than ag and covering translations g; with g;(¢;) in p. Up
to subsequence

gi(q;) converges to go € p, g € Fy € F.

Notice that in F'U S (F), ¢; also converges to p in Y, hence the visual measure
of Y (in SL (F)) as measured from ¢; is #; with 8; converging to 27. Hence from
9:(q;), the visual measure of ¢;(Y) in SL (g;(F)) is 6; also.

By Lemma 3.12 there are at least two markers

¢1,¢ from SL(E) to SL(L).

Use the parametrization of the circles at infinity between F and L given by le? | .
The markers (1, (o intersect S (Fp) in angles 61, d as measured by this identifi-
cation. Since the markers are continuous in 4 and disjoint, there is positive a; so
that for any G in F intersecting p the markers (i, (s define directions in G which
are at least a; angles apart — as measured in T, | (G N ). But g;(F) converges
to Fy as i converges to infinity and the markers in one side of SL (g;(F)) are re-
stricted to have an endpoint in SL (g;(F)) — g:(Y). This set has visual measure
smaller than 27 — 6; which converges to zero with i. These two facts contradict
each other. This shows the local density of markers. (Il

Markers were introduced by Thurston in [Th7]: he showed that markers are
(locally) dense in A (also in the non-R-covered case). We will show a much
stronger fact in our setting: there is a dense set of contracting directions between
any two leaves of F. The markers will be the skeleton of the vertical foliation in
A. Tt is fundamental for all the analysis that markers are continuous curves in \A.
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The continuity of markers can be strengthened to a property that says markers
are not too horizontal:

Lemma 3.14. Let L a leaf of.% and Z a closed subset of S (L). For any open
neighborhood N of Z in A, there are neighborhoods V' of L in'H defined by transver-
salp toF (Fu=V) and W of Z in A, so that any marker ¢ which intersects W
then its intersection with A, is contained in N.

Proof. If there were a horizontal marker — that is contained in some SL (F) — it
would clearly fail the lemma. This is because no matter how small a neighborhood
of S (F) in A, this curve still moves a fixed amount in the horizontal direction.
Still this is a continuous curve. The aim is to show that markers cannot even get
too close to horizontal arcs.

If the lemma is not true there are 1) a leaf L in F, 2) a closed subset Z of
SL (L), and 3) an open neighborhood N of Z in A satisfying: there are shrinking
neighborhoods V; of L in H (that is NV; = L) defined by transversals u; (that is
F u; = Vi), there are shrinking open neighborhoods W; of Z in A (that is "\W; = Z)
and markers (; with

CiﬁWi 7£ @ but szA@ ¢ N.

Choose points z; in the intersection of W; and (;. As the W; shrink to Z
assume up to subsequence that z; converges to xp with o in Z. There are

y; € ¢ with gy € A, butnotin N.

Since A,,; shrinks to S (L), we can choose another subsequence so that y; con-
verges to yo a point in S (L). But y; is not in N, so yp is not in Z, hence y, 2o
are different points. For simplicity assume y; are points in SL (F}), with F; above
L and only consider the part of the markers on the corresponding side of SL (L) in
A. Since the markers are continuous curves in A, then up to another subsequence
the markers ¢; have to limit in at least one of the segments in S! (L) defined by z¢
and yo. Let B be this segment. If B has a marker ¢ on that side of SL (L) in A,
then because the ¢; limit on B, it follows that {; will intersect ¢ for 7 big enough.
Lemma 3.8 shows that for each such 4, { and (; are subpieces of a possibly bigger
marker ¢’. Hence for i big enough the intersection of {’ and A,,, is equal to the
intersection of ¢; and A,,. The marker ¢’ is a continuous curve in A, transverse
to the horizontal foliation, so for ¢ big enough 4,

¢'NA,, C N whichimplies {n.A, C N,

contradiction to assumption. We conclude that this is impossible.

The remaining option is that there are no markers on that side of SL (L) with
endpoint in B. This is disallowed by the previous proposition. The proof is
complete. [l

The following lemma says that if a sequence of markers converges to a point in
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a marker ¢ then the whole markers also converge to (. It is needed later for the
analysis of global density of markers.

Lemma 3.15. Let S, S’ leaves of F and {G} with i > 0 a sequence of markers
from SL(S) to SL (S"). If the intersection a; of {; and SL (S) converges to ag with
i, then the (; converge to (o in A, that 4s, for any Z in [S,S’], the intersection b;
of ¢; and S (Z) converges to by, the intersection of (o and S (Z).

Proof. Else there are {(;}, Z as above so that b; does not converge to by. For
simplicity suppose the sequence a; for i bigger than 0 is nested (with ¢) in SL (5).
The non-transversal intersection of markers implies that the b; are also nested in
S1.(Z). Let r be a geodesic ray in S with ideal point ag and let v be a geodesic
ray in Z with ideal point bg. Let p; be a sequence in r converging to ag. We
can choose ¢; in v with d(g;,p;) converging to zero since ag defines a contracting
direction from S to Z. For each positive i let 7; ; (respectively v; ;) be the ray in S
starting in p; with ideal point a; (respectively in Z starting in ¢; with ideal point
b;). For each j we can choose i(j) big enough so that the directed angle in S at p;
between r and r; ;(;) is #; and 0; converges to 0. Directed means it is measured
from 7 to r; ;) in the side the r;; accumulates on r (when i grows). Since the
b@‘@ do not converge to by, then as seen from g, the visual angle of the segment in
S.o(Z) from by to by;y does not converge to 0. It follows that the directed angle
B; at q; between the rays
v and vj,i(j)

does not converge to zero (in fact it converges to 7). Then choose covering trans-
lations f; so that f;(p;) converges to a point pg, hence f;(g;) converges to pg as
well. At f;(p;) the angle between

fi(r) and  fi(r5.05))

converges to 0, but at ¢; the angle between f;(v) and f;(v;(;)) does not converge
to zero. This shows that least one of the markers f;((o) or f;(y(;)) moves a definite
amount horizontally in arbitrarily small vertical displacement. For j big enough
this contradicts Lemma 3.14. This finishes the proof. (Il

Definition 3.16. (invariant curves) An invariant curve in A is an embedded
curve intersecting each circle at infinity exactly once and invariant under all cov-
ering homeomorphisms of \A. An invariant curve which is a limit of longer and
longer markers is called a limit invariant curve.

For instance if F is the stable foliation of a suspension Anosov flow, form the
curve of all the positive ideal points of leaves of F. This is continuous in A and
invariant. This foliation is R-covered and not uniform. The analysis of R-covered
non-uniform foliations will go roughly as follows:

If the set of contracting directions between a pair of leaves is not dense then
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one produces a limit invariant curve £ in 4. One can show that the leaves are
asymptotic away from the invariant curve — that is all directions but one are
contracting. So in any case one obtains a dense set of contracting directions.
The strategy here is to first analyse limit invariant curves in detail in Lemmas
3.17 through 3.20 and Proposition 3.21 and then use that to produce the vertical
foliation in Proposition 3.22.

Lemma 3.17. Any limat invariant curve £ has no points associated to contracting
directions of F.

Proof. Suppose the limit invariant curve line £ has a point ¢ associated to a
contracting direction. Then there is a marker (p through ¢. By hypothesis there
are markers (; which converge pointwise to £. The previous lemma shows that
these markers converge pointwise to (y in the circles at infinity that (y intersects.
This shows that £ contains the marker {y — that is, £ coincides with (p locally.
We can map any interval [U,U’] of H inside this small segment, hence the whole
curve £ is a marker. But since £ is w1 (M) invariant, the argument of Lemma 3.12
shows that this is impossible. This finishes the proof. [l

We use the transversal flow distance between points and leaves: Fix a transver-
sal line field to F generating a foliation 7 with lift 7 to M. Given G in F and z in
M, consider the transversal flow line 7, through z. As F is Reebless 7, can inter-
sect GG at most once. If they do not intersect let d,(z, G) be infinity. Otherwise let
d,(z,G) be the length of the segment of 7, from z to the intersection with G. If
L is an invariant curve in A and L a leaf of F let £, be the intersection of S (L)
and L.

Lemma 3.18. Let L be a limit invariant curve. Given L in F and a side of L
in M there is G of F in that side so that: for any half plane H of L which does
not limit on Lr and any escaping sequence of points z; in H then the limsup of
d-(z;, G) is bounded above (depending only on H and G).

Proof. This is stronger than limsup d(z;, G) being bounded, which can occur even
if d;(#;, G) is infinite for all i — for example if F is the stable foliation of an Anosov
geodesic flow and 7 is given by the strong unstable foliation. We do the proof for
G above L, the same proof applies for G below L.

Roughly the proof goes as follows: if there is w in S (L) distinct from L£j,
so that d, “blows up” near u, then one can map any transversal segment to one
“near w”. This produces covering translations with invariant leaves in F and a
contracting fixed point in £ — contradicting the previous lemma.

Suppose the proposition is not true. Let G; be a sequence in F converging to
L. Given 4 there is a sequence z; ; in H with d-(2; ;, G;) bigger than j and z; ;
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escapes in H (with 5 growing). Using subsequences find
2z € H with d;(2,G;)>i and 2z —we€ S.L(L), u distinct from Lp.

Fix v in L. Let « be 7, and «; the subsegments of a between L and G;, whose
lengths converge to 0.

Since F is minimal any leaf is dense. Given positive ag there is positive a; so
that if 3 is a segment of the foliation 7 of length bigger than ag, w any point in
M and W the leaf of F through w then the following happens: W intersects 8 in
a point w’ which is within ag/4 of the midpoint of 8 (in the flow length of 3) and
w' is at most aq distant from w in the path distance of W.

Also there is positive as sufficiently small, so that for any segment ' of 7 of
length smaller than as, then if it is moved by holonomy so that starting point
moves a distance less than a; in its leaf (of F) then the final segment of 7 has
length bounded above by ag/4. Hence any segment of 7 of length bounded by
as can be moved by holonomy, with initial point moved a distance less than a
within its leaf to have a point in the segment 3 within aq/4 of the middle point of
3. Since the length of the holonomy translate is less than ag/4 the final holonomy
translate is entirely contained in .

By truncating finitely many terms assume length of «; is bounded above by as.
Let 8; be segments in leaves of 7 of length ag with an endpoint in z; and contained
in the positive side of L. The property of the z;’s implies that (at least for i big
enough) all 3; are in the union of leaves S of F contained in the interval

[L,G;) of H.

Using the previous paragraph there are covering translations h; so that h;(v) is in
a leaf h;(L) of F intersecting 3; within distance ag/4 of the midpoint of 8; and
path distance from h;(v) to 3; is less than ay in h;(L). By the previous paragraph
the image of h;(ay) by holonomy will map into ;. The endpoints of «; are in
L, G; and the endpoints of 3; are in L and in another leaf between L and G;.
This implies that on the level of the leaf space h; sends the interval [L, G;] of H
into a subset of its interior (L,G;) — so h; has a fixed point in (L,G;). Then
h(L) converges to a leaf L; of F when n converges to infinity (for each i!) and
L; is invariant under h;. Notice that L; converges to L as i converges to infinity,
because L; is in (L, G;) and G; converges to L in H.

Since h;(L;) = L; then h; acts as a hyperbolic isometry in L; and has two fixed
points in SL (L;). Let

for any point @ of L;. Let h; be the other fixed point of h;. The key fact needed
here is the following:
Lemma 3.19. b converges to u in A when i converges to infinity.

Proof. Let N be a neighborhood of v € A in the top side of SL (L) (u defined
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at the beginning of the proof Lemma 3.18). Identify N to a subset of T}« using
the ideal circles. Then N contains an open segment 7" in SL (L) with w in T As
markers are locally dense in S. (L), there are markers

&, & from S (L) to SL(S))

with S; above L, intersecting S._ (L) in &;(L), & (L) respectively so that: the in-
tersections with S. (L) are in T and define a small segment in S. (L) with « in the
interior. Let r, 71,72 be geodesic segments in L starting in v and with ideal points
u, £1(L), & (L) respectively. Notice that ri,ry are contracting directions between
L and Sy. Let as positive, very small. Since rq1,7r9 are contracting directions be-
tween L and Sy, there is Sy in (L, S1) so that any point in r{, 79 is within ag of
S5, and hence within as of any S between L and S5. For any such S we can move
r1 and r9 to S using the transversal flow — if as is sufficiently small. The geodesic
curvature of the pushed curves in S is small tending to zero as as tends to zero
hence they are quasigeodesics in S and their initial directions give arbitrarily close
estimates of the direction defined by the lifts of r1, 75 to S. Hence these directions
are in N and are close to the direction of r in Ty« (if N is small). The markers
£1,& and the circles SL (L), SL(S2) define a small neighborhood Nj of w in A in
that side of S (L) in .A. We can choose Nj to be a subset of N.

Let v; be the intersection of o and L;. Then for i big z; is in the wedge of L
defined by r{, 79, so the intersection b; of 3; and L; is in the wedge defined by
the images of r{,79 in L;. The direction of the geodesic segment in L; from v;
to b; is within this wedge and defines a point in Ny and hence in N. As h;(v;)
is boundedly close to b; in L;, then the direction of the geodesic segment in L;
from v; to h;(v;) also defines a point in N for ¢ big enough. The points v; are in
the fixed transversal « and very close to v, hence they are in a compact subset of
L;. The points h;(v;) are boundedly close to 3; hence also from z;. As dp(v, z;)
converges to infinity then

dr; (s, hi(v;))

is also converging to infinity. Since h; is a hyperbolic isometry of L;, this now
implies that h;(v;) is close to b in the compactification L; U SL (L;). Notice this
argument does not give any information about h; . This shows that the direction
in L; defined by h:’ isin V. As N is arbitrary this shows that hj converges to w.
This finishes the proof. O

Remarks. 1) These arguments in fact show: if there is positive ¢y and there are
z; in L converging to u, G; in F converging to L to that d,(z;, G;) bigger than cq,
then one obtains h; in 71 (M) with fixed points b in A converging to u.

2) Similarly if w in S1 (L) is a contracting direction on the positive side (of F),
one switches the roles of o; and j3; to get: let G; in F converging to L all in the
domain of contraction of holonomy in the direction «. Fix geodesic ray r in L with
ideal point u. Fix 7 and let ¢g be the length of a;. As above there is positive but
very small ¢ so that any segment of 7 of length smaller than ¢; can be transported
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by a bounded distance holonomy to be in the interior of a covering translate of «;.
As w is contracting direction choose z; in r with d,(z;, G;) smaller than c¢;. Let 3;
defined as before, now with length less than ¢;. This produces g; in 7y (M) with
9:(3;) contained in the interior of the set of leaves of F intersected by a;. The g, t
acting on A have (positive) fixed points ¢; which converge to w in A. This shows
that arbitrarily near any contracting direction there are contracting fixed points
of covering homeomorphisms.

Conclusion of the proof of Lemma 3.18

Let +; be the geodesic in L; which is the axis of h; in L; so hi(v;) = 7. The ideal
points of ~; are hiﬁ h; . Then

hi sends [L,L;] inside (L, L;]

and has no other invariant leaf in (L, L;]. Hence h; contracts the leaf space near
L; and therefore the direction of ~; associated to hj is an expanding direction for
F: nearby leaves of F diverge from L; in this direction.

This implies that the direction of ~; associated to h; is a contracting direction
(or equivalently h;l expands the leaf space near L;). But h;(L) = L, so one of
the ideal points of v is in £. As h;L converges to u and w is not £, then for 4
big enough hj is not Lr,. So for ¢ big enough, h; is Lr,. But this would imply
L has a point h; associated to a contracting direction. This contradicts Lemma
3.17 and finishes the proof of Lemma 3.18. (Il

With more work we can show d,(z;, G) converges to 0:

Lemma 3.20. Suppose there is a limit invariant curve L. For any L in F and
a side of L in M there is G of F in that side so that: for any w in SL (L) and
distinct from L1, and any sequence z; in L converging to u then d,(z;, G) converges
to 0. In particular w is a contracting direction between L and G.

Proof. Given L and a side of it pick a G as given by Lemma 3.18. Suppose the
proposition is not true. Then find w in S (L) distinct from £; and sequence
z; with d.(z;, G) not converging to 0. By Lemma 3.18 the limsup of d,(z;, G)
is bounded above by a constant a4 which depends only on L,G and w. Since
d,(z;, G) does not converge to 0, up to subsequence assume d,(z;, G) converges to
as positive. Up to another subsequence choose f; in 71 (M) with f;(2;) converging
to a point zg. Then f;(L) converges to Ly containing zg and f;(G) converges to a
leaf G because d,(z;, G) converges to as. Here Gy, Lo are distinct leaves because
as is positive. For any w in Ly, dr,, (w, zp) is finite, so w is the limit of w; with w;
in fi(L) and dy,(r)(ws, fi(2i)) bounded (the bound depends on dy,,(w, 2z0)). The
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points f; ! (w;) of L are a bounded distance from z; and in particular
£ w) »u € SL(L) when i — +oo.

Therefore the limsup of d,( f;l(wi)7 G) is less than ay. Up to subsequence
d-(f; Hw;), G) converges to ag, which is not 0 because dp,(f; ! (w;), z;) is bounded
above and d.(z;, G) is bounded below by a positive constant. There are y; in G
with y;, f~1(w;) in the same leaf of 7 and d.(y, f[l(wi)) converging to ag. Then
fi(ys) converges to a point y in 7, and d,(w,y) is ag. But f;(y;) is in f;(G) and
fi(@) converges only to Gy hence y is in Gp. This produces a map ¢ from Lg to
Gy given by p(w) = y. Notice that for any w in Ly, the w, ¢(w) are in the same
leaf of 7 and d,(w, p(w)) is less than ay.

The map ¢ from Lo to Gy is injective because F is Reebless and hence it is a
homeomorphism onto its image. If ¢(Lo) is not all of G then there is b in G with
b in the boundary of ¢(Lg) (as a subset of Go). Choose s; in ¢(Lg) converging to
b. Let z; in Lo with ¢(x;) = s;. Then

d(zj,85) < d-(z5,85) < aq

hence d(z;,b) is bounded and so is d(z;,z1). As F is R-covered this implies that
dp,(xzj,x1) is bounded too (this is a key point!). Up to subsequence assume that
x; converges to zo. Then s; = ¢(z;) converges to ¢(xg) — a point in Gp. But b is
equal to ¢(zo) and is in ¢(Lg) contradicting the hypothesis.

We conclude that ¢ is surjective and in fact for every point s in Gy, d(s, Lg)
is less than a4. Using the fact that F is minimal this quickly shows that any two
leaves of F are a bounded distance from each other, contradicting the non-uniform
hypothesis. This finishes the proof of Lemma 3.20. O

Since L in H and v in S. (L) — L, are arbitrary, Lemma 3.20 shows that every
point u of A— L is an interior point of some marker ¢ in A. If two markers intersect
then their union is a marker. This produces a 1-dimensional foliation A" in A — L
consisting of the collection of all markers. The goal is to show that any leaf of N/
intersects all circles at infinity.

Proposition 3.21. Suppose there is a limit invariant curve L. For any E, F in
F and any v in S (E) distinct from Lg then v is a contracting direction with F
— that is every direction but those in L are contracting direction between arbitrary
leaves.

Proof. Let v in A — L be a fixed point of a covering homeomorphism f; ¢ the
leaf of A/ through v and Ry in F with v in SL (Rp). For simplicity assume that
¢ misses some SiO(R) with R above Ry. Let Ry above Ry the smallest such that
¢ misses — the set of R such that ¢ intersects S (R) is open in ‘H because every
point in A — £ is in the interior of a marker. Then

f(€) =¢ implies f(R1) = Ry



444 S. R. Fenley CMH

ideal point R1 St (Sy)
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f (@) (b)

Figure 2. a. Contraction in one direction implies expansion in the other direction,
b. Trapping markers in the upper direction leads to trouble.

because F is R-covered. Also for any R in the interval (Rg, Ri) of H one has
f(R), R distinct, because all such R are asymptotic to Ry in the v direction and
cannot be left invariant by covering translations associated to that direction. If
needed switch f, f~! so that v is the attracting fixed point of f in S (Ro). Then
Ry is an expanding point for the action of f in [Ry, R1], see Fig. 2, a. The action
of f on the closed interval

B=LnN (URE[RO,Rll‘Sgo(R))

has an expanding fixed point in L£g,. As f has no invariant leaf in (Rg, R1), the
action of f on B has Lg, as an attracting point, see Fig. 2, a. As f(Ry) = Ry
this shows that Lg, corresponds to a contracting direction in R;, contradicting
Lemma 3.17. We conclude that { intersects all circles at infinity.

If a leaf v of AV intersecting SL (Sp) does not intersect all circles at infinity;
assume there is (say) a top limit SL (S1). Then v limits to £ near S (S;), see
Fig. 2, b. It follows that v, S. (So) and £ bound a region Z which does not
intersect S1 (S1), see Fig. 2, b. Any marker intersecting Z is bounded above.
Now just choose w in Z which is a fixed point of some covering translation — we
showed before that any contracting direction is the limit of fixed points of covering
translations. Let v’ be the leaf of A7 through v’. As v’ is in Z then v/ is bounded
above, which was previously disallowed.

The conclusion is that for any marker ¢ in A, then ¢ intersects all SL (R). In
particular given F, F' in F and w in Sl (E) — Lp then the marker ¢ through u
intersects S (F) — that is w is a contracting direction between E and F. This
finishes the proof of Proposition 3.21. |

Using these results, we can now finish the analysis of the non-uniform case:

Proposition 3.22. (vertical foliation — non-uniform case) Let F be a minimal,
non-uniform R-covered foliation with hyperbolic leaves. Given any F,E of ]?,
there is a dense set of directions in F' contracting towards E. The set of markers
extends to a natural vertical foliation in A which is group invariant.
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Proof. The argument goes like this: If markers are not dense, zoom in towards an
interior point of the markerless set. This pushes markers to the opposite end and
defines an ideal point of the leaf — all markers between sufficiently spaced leaves
of F have to pass near this point. This collection of points at infinity produces
a curve L in A which is a limit invariant curve. Then appeal to the previous
proposition. _ _

Suppose the proposition is not true. Then there are F' in F and F in F (say
above F') and not a dense set of contracting directions from F' to E — this is from
the point of view of F'! Hence there is an open interval Jy in SL (F) so that no
point in Jy corresponds to a contracting direction from F' to E. Let go in Jy. Since
qo is not a contracting direction between [’ and F, there is positive € and p; in F'
converging to ¢ along a geodesic ray ! and so that d(p;, F) is bigger than e.

In the leaf I, the visual measure of Jy from the point of view of p; is 6; with
0; converging to 2w as i converges to infinity. Up to a subsequence of p; choose
covering translations g; with g;(p;) converging to py and g;(l) converging to a
geodesic ray lp. Let Fp in F containing po. Let

O={GeF | G=f(Fy), forsome fem (M)} C H.

We will define a function 7 from O to A which picks out the “limit” marker
direction and will produce a limit invariant curve. Since d(g;(F), g;(p;)) is bigger
than e then g;(F) does not have any subsequence converging to Fy. A marker
from g;(F') to ¢g;(F) must start in the set

Ui = S5 (9:(F)) — gi(Jo).
From the point of view of g;(p;) in g;(F'), the visual measure of U; is 27 — 6; which
converges to 0. Also visually from g;(p;) the set U; is very close to the direction of
the segment of g;(!) from g;(p1) to g;(p;). Because the directions of g;(l) converge
to that of /p and the topology of A is given by the visual topology from transversals
to F, it follows that the segments U; converge to a unique point in S% (Fp).

Definition 3.23. (function n) Define : O — A by
n(Fy) = Jim U = lim (S (0u(F) - g:(o))

and for any covering translation f define n(f(Fy)) = f(n(Fo)).

The leaves I, ., Fyy of F as well as the covering translations g; will be fixed in
this proof.

Lemma 3.24. The functionn from O to A extends to an embedding n: H=R — A.

Proof. Roughly the idea is: if the lemma is not true we produce spaced enough

leaves A, B in F with no markers between S (A) and S._(B), contradiction.
Suppose the lemma is not true. There is L in F and two sequences L;, H;

converging to L with n(L;) converging to a, n(H;) converging to b, with a,b
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disjoint markers

S!(H)
~ S
S;(L)—> a b \\

/ ¢ =\ \
SI(Ly) F N\ \

oy ") n(H)  h)

4

Figure 3. If n is not continuous this forces markers to be in disjoint regions at the same
time — contradiction.

distinet points in S (L). The L;, H; are covering translates of Fy:
L; = f;(Fy), Hj = h;(Fo) for chosen f;,h; € m(M).

Choose small disjoint open neighborhoods V,, V;, of a, b respectively in .A. Lemma
3.14 shows that there are small disjoint open neighborhoods V, V) of a, b respec-
tively in A, and a small neighborhood Y of L in H defined by transversal p, so
that any marker through V and contained in A, is contained in V, and similarly
any marker intersecting V; is contained in V;. In particular the two sets of mark-
ers contained in 4, through V! and V) are disjoint from each other. Lemma 3.8
implies that any marker in 4 through V] does not intersect V},.

Fix j big enough so that n(L;) is in V] and n(H;) is in V,. As L; = f;(Fb)
then

n(L;) = £5(n(F)) = f3(lim Us) = lim f5(U;) € V.

Similarly n(Hj) is the limit of h;(U;) with ¢ converging to infinity. Now fix i big
enough so that f;(U;) is contained in V] and h;(U;) is contained in V;/. By the
property of V and V}/, this implies that any marker through f;(U;) is disjoint from
a marker through h;(U;), see Fig. 3.

Choose A in F with A less than L in the linear ordering of H. By taking j,4
big enough we can assume that L;, H; are bigger than A and so are

15(gi(F)), hy(gi(F))-

Also choose B in F with B bigger than both f;(g:(E)) and h;j(g:;(E)) in H. A
marker from S (A) to SL(B) has to pass through S% (f;(g;(F))) and through
S.(fi(gi(E))), since the leaves f;(g;(F)) and f;(g:(F)) separate A from B. By
the property of U;, it follows that the marker has to pass through f;(U;) con-
tained in V. Similarly any such marker has to pass through S (h;(g;(F))) and
S1.(hj(gi(E))) hence it has to pass through h;(U;) contained in V. But we just
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showed no marker can pass through both V and V. This would imply there is
no marker from SL (A) to SL (B) which contradicts Proposition 3.11. These ar-
guments show that n can be extended to a continuous function from the closure of
O to A. But F is a minimal foliation so O is dense in H so there is a continuous
extension 1 : ' H = R — A. The image is a curve £ which is transverse to the
horizontal foliation and intersects every circle at infinity. This finishes the proof
of the lemma. |

Conclusion of the proof of Proposition 3.22

The set
n(f(Fo))}, f € m(M)

is an equivariant subset of A. By the previous lemma the curve L is left invariant
by every covering homeomorphism — it is an invariant curve. Also given any
covering translation g with an invariant leaf L (¢(L) = L), then one of the fixed
points of g in SL (L) is in L.

Let Lin O, L = g(Fy). Then L is the limit of g(g;(F')) as i converges to infinity.
Any marker from

Selglgs(F)) to S (g9(gi(E))

has to start in in g(U;). Recall that g(U;) converges to n(L) as i converges to
infinity. Choose a collection of leaves Gy, Ry in F , escaping to opposite ends of H
and Gy, always smaller than Ry in H. For each k choose a marker {j, from Séo(Gk)
to SL (Ry). Fix a neighborhood N of n(L) in A. Choose i big enough so that
g(U;) is contained in N. For k big enough the leaves Gy, g(g;(F)), g(g:(F)) and
Ry, are linearly ordered in increasing order in 7, hence (; has to pass through
some point 2 in g(U;), so z; is in N. Therefore

forall L in O, n(L)= lim (&N S(L)) (%).

As O isdense in H, and 7 is continuous in H, Lemma 3.14 implies that equation (x)
holds for any GG in F. We conclude that £ is the limit of the sequence of longer and
longer markers (i and L is a limit invariant curve. But in that case Proposition
3.22 implies that given any G, H leaves in F and any u in S (G) — Lg then u is a
contracting direction between G and H. This now contradicts the assumption in
the proof of Proposition 3.22 that there is not a dense set of contracting directions
from I’ to E. So in any case for any G, H in F there a dense set of contracting
directions between G and H.

We now finish the proof of Proposition 3.22. Given arbitrary G, H in F , the
dense set of markers between S1 (G) and SL (H), extends uniquely to a vertical
foliation of the region of A between S (G) and S. (H). This is because it is dense
from the point of view of both G and H! In addition if G’, G, H, H' are linearly
ordered in H and one does the same operation using G’, H’, the resulting foliation
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is an extension of the foliation between S. (H) and S! (G). This is because
markers from SL (G") to S (H') produce markers from S. (G) to SL (H) and
there is a unique extension of the foliation to the bigger annulus. Consequently
there is a well defined vertical foliation in 4. Since the collection of markers in A
is invariant under covering homeomorphisms, the vertical foliation also is and is
a natural foliation associated to F. This finishes the construction of the vertical
foliation in the non-uniform case. O

4. The uniformly quasisymmetric case

As shown in the previous section, if F is R-covered, with hyperbolic leaves, then
both in the uniform or non-uniform cases there is a vertical foliation in A which
is equivariant. No need of transverse orientability for these results. The leaf space
of the vertical foliation is a circle, which is the wniversal circle of the foliation
as defined by Thurston [Th9, Th10] and is denoted by U. For the arguments in
this and the following sections, fix once and for all a leaf I'* € F and identify U
to the circle at infinity S (I™*) — for each point in I associate the intersection
of the corresponding vertical leaf with S (F*). The leaf F* is isometric to the
hyperbolic plane H? and we use the model of F** as the unit disk in the plane,
hence S (F*) homeomorphic to U is the unit circle S' in the complex plane C.

Notation. If g is in 71(M), let #(g) denote the induced homeomorphism of U =
St

The transverse change in geometry of leaves of F is encoded by how the hy-
perbolic metrics vary from leaf to leaf. The distortion can also be measured in
the ideal circles in the following way: We say that a homeomorphism of ¢ = S is
Méebius if it continuously extends to an isometry of H?. Since hyperbolic isome-
tries act freely and transitively on triples of distinct points in S*, one cannot verify
directly whether f in Homeo(S') is Mdebius by looking at the action on triples
of points. However one can do that by considering the action on quadruples of
points. Given 4 distinct points Z = {z1, 29, 23, 24} in S!, that follow each other in

the positive counterclockwise direction, recall that the cross ratio of the set is
Z4 — 21 23— %
c(Z) = 4— 21 23— 2

24— 2y 23— 21
Then C(Z) is always real and in (0,1). The 4 points in Z define an unique ideal
quadrilateral in H? with ideal points in Z, which is regular if and only if C(Z) is
equal to 1/2. For any homeomorphism f of U let 7 = {f(z1), f(22), f(23), f(24) }.
Let K bigger than 1. Then f is said to be K-quasisymmetric if

QK)™ < C(fZ) <1-(2K)7,

whenever C(Z) = 1/2 [Hil, Hi2]. This means regular quadrilaterals do not get too
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distorted. The notation is f is K-qs [Hil]. It is easy to see that f is Méebius if
and only if C(Z) = C(fZ) for all sets of 4 distinct points — equivalently f is 1-gs.
This definition is the analogue in dimension 1 of the concept of a quasiconformal
map in a complex domain of dimension > 2.

There is a rich theory of quasisymmetric maps [Hil, Hi2, Le]. A group I' acting
on S!is wniformly quasisymmetric if there is K so that for any f € I, then f is a
K-quasisymmetric homeomorphism of S*. We denote this by I' is K-gs [Hil]. In
this section we deal with following the situation:

Case 1. m1(M) acts on U as a uniformly quasisymmetric group.

This is the rigid case and it implies that the action is always topologically
conjugate to a Moebius action in S': there is f in Homeo(S') so that for every
gin m (M), fof(g)o f~!is Mdebius on S!. This has already been done in the
literature using works of various authors. We just outline the possibilities.

Suppose first that 71 (M) acts a non-discrete group on U. Given that m (M)
acts a K-qgs group, it was proved by Hinkkanen in chapter 9 of [Hil] that the action
of w1 (M) is conjugate to a Mdebius group.

Suppose now that 7y (M) acts as a discrete group of homeomorphisms of U.
This means that given a sequence gn,n € N in m1(M) with f, = 6(g,) and f,
converging to the identity then f, is the identity for n big enough. The idea is
to first prove that 71 (M) is a convergence group: that is, w1 (M) acts discreetly
in the triple space which is the set of triples {a,b,c} in 8! x S x S! with a,b, ¢
distinct [Ge-Ma, Gad]. In general the convergence group property is stronger than
discreteness of the group, but not in the case of uniformly quasisymmetric groups.
This is because there is a normal property associated to K-qgs groups: Let g, in
w1 (M), with f, = 6(g,) and suppose there are a, b, ¢ distinet in U so that

fu(a), fu(b), fulc)

converge to 3 distinct points. It follows that there is a subsequence which converges
uniformly to a K-qs homeomorphism. Gehring and Martin [Ge-Ma] do this is
detail for uniformly quasiconformal maps in higher dimension and the result for
K-gs groups acting in the circle is mentioned by Hinkkanen in [Hil], page 62,
even though the proof is not written down there. The key ideas are well known,
for instance: choose z in U so that Z = {a,b, ¢, z} form the vertices of an ideal
quadrilateral in F*. The key fact is that C(f,(Z)) is bounded away from 0 and 1
so that the quadrilaterals associated to these points are never too thin (meaning
that two opposite sides of the quadrilateral do not have points very close to each
other). Hence there is a subsequence f,. with f,, (z) converging to w different
from the limits of f,,(a), fn(b), fn(c). Starting with the initial ideal triangle in
F* with ideal points a, b, c we can tesselate I['* = H? with ideal triangles so that
any two adjacent ones form a regular ideal quadrilateral. Then as above there is
a subsequence f,, which converges in all the ideal points of the triangles, hence
in a dense set of the circle . Again using the K-qs property of the action of
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7m1(M) one shows that the limit map extends to a continuous map h from U to
S!  which is a homeomorphism and the convergence is in fact uniform. Also the
inverses converge to h~'. This implies that the compositions e il o fy, converge
uniformly to the identity. As the group is discrete f,,, are all equal for i sufficiently
big. This shows that 71 (M) acts discretely in the triple space and is a convergence
group. Fundamental work of Tukia [Tu], Gabai [Ga4] and Casson—Jungreis [Ca-Ju]

then implies that 71 (M) is conjugate to a Moebius group.

Let f in Homeo(S!) be the conjugating homeomorphism. We prove a rigidity
result. First produce a transversely hyperbolic [Th3, Ep| 1-dimensional foliation
in a manifold M’ as follows:

Identify the leaf space H to R and parametrize it as {F}} with ¢ a real number
and Fy = F*. Given g in 71 (M), let g* be the induced homeomorphism of H. Let
M’ be the product H? x R. Let 7{(M) act on M’ as follows. By hypothesis for
any g in m1(M), the homeomorphism f o 8(g) o f~! is Mdebius and it extends to

an isometry of H?, still denoted by f o #(g) o f~'. Define the action on M by
Fwt) = (Fob(g)o F (), g"(H), win H2, tinR.

We analyse properties of this action to prove the rigidity result.
Claim 1. The action is free.

Suppose there is g in 71 (M) and (u,t) in M’ with g fixing (u,t). Then g* fixes
t so g leaves F; invariant. If g is not the identity in F}, then g is a non-trivial
isometry in F; which must be of hyperbolic type. Hence g acts on S% (F}) with two
fixed points, one contracting one expanding and the same is true for the action of
0(g) on U and the action of fo#(g)o f~!in S'. As the extension of fof(g)o f~!
to H? is an isometry it has to have hyperbolic type and has no fixed points in
H?2. This contradiction shows that g acts as the identity in F; and hence g is the
identity. This proves claim 1.

At this point we need the following simple but extremely useful continuity
property which relates curves in A with geodesics in leaves of F. We establish
notation which will be used often: if a, b are two ideal points of a leaf L of F, let
ab be the geodesic in L defined by the ideal points a,b if they are different and
let this be the emptyset if a,b are equal. We show a basic continuity property of
geodesics:

Lemma 4.1. Let L;, ¢ in N be a sequence of leaves ofj? converging to Lg. Let
pi, i distinct points in SL (L;) with p; converging to po, ¢; converging to qo in A.
Then p;q; converges in M to Poqo.

Proof. First suppose that pg, go are equal. Let o be a transversal to F through
zo in Lo, which intersects L; in a point z;. Identify the unit tangent bundle of
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the leaves T%|a to the union of circles at infinity near S. (Lo). From the point

of view of «, the visual angle seen by p;q; is converging to 0, because p;, q; are
both converging to pg. Hence dy,, (z;,D;g;) converges to infinity. As F is R-covered
d(z;, piq;) also converges to infinity. Therefore the geodesics p;q; escape in M and
have no limit point in Lg.

Suppose now that pg, go are distinct points. With the notation as in option 1,
the visual angle of p;q; as seen from z; converges to the visual angle of pogy as
seen from zg — this last one is not 0, so we may assume all of them are bounded
away from 0. Hence the geodesics p;¢; have points y; a bounded distance from z;.
There is a subsequence y; converging to yo which is in Ly and so that directions
at ;,, also converge. Choose a transversal o’ to F through yp and containing ;.. .
From the new point of view still p; converges to pg and g;, converges to gy in A.
Hence the two rays of p;_¢;,, defined by y;_ converge to two rays in Lg starting in
yo and with ideal points po, go. In addition the angle between the rays of p;_q;.
is always equal to 7, hence so is the angle between the two rays in Lg starting
at yo. This means that the union of these two rays in Lg is a geodesic, which is
none other than pggg. So P;, q;,, converges to ppgp. Since any such sequence has a
convergent subsequence to ppgp this proves the lemma. O

It follows that if 3, ~ are continuous curves in A which are transverse to the
horizontal foliation, then the geodesics in L defined by the intersections of 3 and
v with S! (L) vary continuously in M as L varies in F. In particular this occurs
if 3,~ are contained in leaves of the vertical foliation of A.

—
Claim 2. The action of m1(M) on M is properly discontinuous.

Let C' compact in M. Let ¢; in w1 (M) so that there are z; in C with z;
also in (g;) (). Let y; be g,(x;). Up to subsequence x; converges to zo and y;
converges to yo = (v/,t'). Let

z; = (us,t;) with w; € H?, t; € R, w; — ug, t; — to.

Choose triples of points (2;,w;,v;) in 8H? = S! with w; the barycenter of the ideal
triangle in H? defined by these 3 points. Assume that z; converges to z5 which
implies w;,v; also converge to distinct points wg,vg. Up to another subsequence
Fo0(g:) o f(2) converges to z{, so also f 0 8(g;) o f~*(w;) converges to w} and
fo0(g:)o f (v;) converges to v}, distinet in S!. Hence y; is equal to (s;, ;) with
s; converging to the barycenter of the triangle defined by z{,w},v;. Using the
conjugacy by f, it follows that in U the sequences

£ z), £ (wi), £ (v;) converge to distinet points £ '(z0), £ ' (wo), £ (vo)

respectively. Let a; in I}, which are the barycenters of the ideal triangles in F},
defined by the points b}, b2, b3 in SL (F,,) associated to f~*(w;), f~*(2), f~(v;) of

1?71 e

U. As these points converge to 3 distinct points in A, the lemma above implies that
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bibZ, bib?, b2b converge to geodesics in the limit leaf. The associated barycenters

a; also converge to the barycenter ag in Fy, of the limit ideal triangle. But

0(gi)(F () = fH(fob(gi) o f M=) = FH(20) in U,
similarly for w;,v;. The g;(a;) are barycenters of ideal triangles in Fyx s,y with
ideal points associated to

0g:) (1 (20)), 0(g)(fH(wi)), B(ga)(F " (w))
and they converge to the barycenter c¢o of the ideal triangle in F, defined by
Y=Y, fHw)), f~1(v)). That means g;(a;) converges to co. As the action of

w1 (M) on M is properly discontinuous there are only finitely many distinct g;.
This proves claim 2.

Let I' be the action of (M) induced in M’'. Claims 1) and 2) imply that
M’ = M'/T is a manifold.

Claim 3. M’ is a compact manifold.

Let z; in M’ and lift to T; in M. Similarly to arguments in claim 2, find
associated points a; in M. Up to subsequence there are covering translates g;(a;)
converging in M. Again similarly to claim 2 show that g,(Z;) is in a compact

o~
subset of M , implying compactness of M’. We leave the details to the reader.
Notice that M is homotopy equivalent to M’.

There are two product foliations in M one by leaves H? x {t} and another by
vertical lines {z} x R. Both of these foliations are invariant by the action of I"
producing two transverse foliations in M’. The two dimensional foliation implies
that M’ is irreducible. The foliation by vertical lines {z} x R induces a 1-dim V
foliation in M’ which is transversely hyperbolic: there is a transversal H? structure
which is preserved by holonomy [Th3, Ep]. Under these circumstances Thurston
[Th3, Ep] showed that either

1) M’ is a Seifert fibered manifold with V a Seifert fibration, or

2) M’ is a torus bundle over S' with Anosov monodromy and V is (say) the
strong unstable foliation of the corresponding suspension Anosov flow.

In case 2) M’ is Haken and as M is homotopy equivalent to M’, then M is
in fact homeomorphic to M’ [He, Wa]. In case 1) M’ is homotopy equivalent to
a Seifert fibered space and since M is irreducible, Scott [Sc| proved that M is
homeomorphic to M’.

Using averaging techniques one can show that F is topologically conjugate to
F'. These techniques have been used for instance by Ghys [Gh] and others in the
one dimensional setup. The two dimensional case is more involved and for brevity
we only do the following: In situation 1) M is a Seifert fibered space, and work of
Brittenham [Br] (see also [Th1]), implies that F is either vertical (a union of circle
fibers in the Seifert fibration) or horizontal (transverse to the circle fibers). The
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first option cannot occur because the leaves of F are hyperbolic. Hence F can be
put transverse to the Seifert fibration and by careful choices, the transversal flow
in M lifts to a flow in M which produces global homeomorphims between leaves
of F which are isometries of the hyperbolic metric. No change in geometry! In
any case it is easy to see that in this case there is a Z & Z subgroup of m1(M).

In case 2), M fibers over S! with Anosov monodromy. One can put the incom-
pressible torus T' transverse to F [Rou, Thl, Ga5] and hence there is an induced
foliation in T'. This foliation is invariant by the monodromy of the fibration and
hence has to be the stable or unstable foliation of the monodromy. Hence F is
conjugate to (say) the (weak) stable foliation of the associated Anosov flow and
the transversal flow can be chosen to be the strong unstable foliation of this flow.
Asin case 1) no transversal change of the leaf metrics. In any case thereisa Z @ Z
subgroup of my(M).

This finishes the proof of the main theorem in the case 71 (M) acts by uniformly
quasisymmetric homemorphisms of .

5. The non-uniformly quasisymmetric case

For the rest of the article we we analyse the following situation:

Case 2. The action of m1(M) on U is not uniformly quasisymmetric.

Theorem 5.1. If the action of w1 (M) on U is not uniformly quasisymmetric and
F is transversely orientable, then there is a lamination G transverse to F inter-
secting leaves of F in geodesics.

Proof. The goal of this section is to prove this theorem. Thurston [Th9, Th10]
announced a very similar result with an additional possibility in the conclusion:
a Z & Z subgroup of w1(M). He explained to us the main steps of his proof
[Th9]. We extend Thurston’s result by always obtaining a transverse lamination.
The detailed constructions in this section are essential for the results in the next
section.

Roughly the proof goes like this: using the hypothesis on the action we produce
ideal quadrilaterals in leaves of F which get arbitrarily distorted. They shrink to
geodesics in leaves of the foliation. Using the universal circle one can sweep these
geodesics across the foliation to produce an immersed lamination transverse to F.
The difficult part will be to show they are embedded.

We use the same notation as in the previous section: the universal circle U is
identified to a circle 8! and also to the circle at infinity SL (F*) of a fixed leaf F'™* of
F , where F'* is identified to H2. Given a covering translation g, then #(g) denotes
the induced homeomorphism in U (or in S. (F*)). The set H (the leaf space of

F) is parametrized as {F;} with ¢ in R. The proof is divided into several steps.
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Step 1. Constructing ideal quadrilaterals which get stretched in opposite direc-
tions.

By hypothesis there are quadruples Z; of points in U with C(Z;) = 1/2 and
g; in w1 (M) with the cross ratio C(6(g;)(Z;)) arbitrarily close to 0 or 1. There
is a way to produce the transverse laminations to F using earthquake maps on
the hyperbolic plane [Thé] as explained by Thurston [Th9]. Here we use simple
properties of the cross ratio to obtain the laminations.

If Z = {21, 29, 23,24} is a positively oriented quadruple of points in S', then
C(Z) is very near 0 or 1 if and only if the ideal quadrilateral in H? associated to it
is very thin: there are two opposite sides of the quadrilateral which are very close
to each other in the hyperbolic metric. This obviously implies that the other two
opposite sides are very far from each other and is equivalent to it. Given an ideal
quadrilateral we define the waist to be the minimum distance between opposite
sides. Using the formula for C(Z) it is very easy to verify that C(Z) is very near
0 if and only if the geodesic ZiZz of H? defined by 21, 2o has a point very near z3zz
and that C(Z) is very near 1 if and only if z323 has a point very near z;z7.

Definition 5.2. Given a quadruple U of points in a circle at infinity S. (L) of a
leaf L of F, let W(U) denote the ideal quadrilateral in L with endpoints in U.

Let Z be a quadruple in SL (F*). For g in 71(M) the map 6(g) acts on U
(identified to S'). This defines an action on geodesics and ideal quadrilaterals of
I, for simplicity of notation also denoted by #(g). In particular

0(g)W(Z)) = W(8(9)(Z)).
We stress that

0(g)OWV(Z)) C F*, usually not isometric to W(Z),
whereas g(W(Z)) C g(F*) is always isometric to W(Z).

First check the action in F*. Let Z; be a sequence of quadruples in ¢/ and g;
in m (M) with C(Z;) = 1/2 (that is, the W(Z;) are regular ideal quadrilaterals in
F* = H?) but the cross ratios C(0(g;)(Z;)) converge to either 0 or 1. Circularly
rename the points in Z; so that these cross ratios converge to 0.

Lemma 5.3. There are ideal quadrilaterals C; wn H? defined by quadruples Y;
in U and covering translations g; with C(Y;) converging to 0, but C(6(g;))(Y;))
converging to 1.

Proof. This means that with the ordering in the quadruples, the map 6(h;) sends
quadrilaterals very thin in one direction (C(Z) near 0) to quadrilaterals very thin
in the other direction (C(Z) near 1). Given n in N and any waist size bg sufficiently
small, there is a waist size by much smaller than by so that any quadrilateral of
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waist < by
8@, €m)
€
‘ W, )
waist < b1

(a)

Figure 4. a. Interpolating an extremely thin quadrilateral using a lot of thin quadrilaterals
— the quadrilaterals &, are supposed to be thin, that is the top and bottom sides have
points which are very close. We draw & big for viewing purposes.
b. Packing the inverse images of &,, inside the regular quadrilateral W(Z;) implies that
some of the images are quadrilaterals very thin in the other direction (vertical).

waist b; can be covered by n quadrilaterals
{€n}, 1<m<n,

of waist smaller than by (the associated cross ratio is very close to 0) satisfying:
the interiors of the &,, are disjoint from each other, consecutive quadrilaterals are
adjacent, see Fig. 4, a.

Now if W(8(g;)(Z;)) has waist size less than by, cover it by quadrilaterals {&,, }
with m in [1, n] all of waist size smaller than by as above, see Fig. 4, a. Let 0(9;1)
act on this. The union of

e(gi)_l(gM)

will cover the regular quadrilateral W(Z;). Since the quadrilaterals 8(g;) (&)
are restricted in one direction to be inside the regular quadrilateral W(Z;)
(see Fig. 4, b) then: If n is sufficiently big, at least one of the quadrilaterals
0(g;)" (&) is very thin in the other direction, that is the associated cross ratio
is very close to 1. Let C; be one such quadrilateral &,,. This finishes the proof of
Lemma 5.3. O

Definition 5.4. If [ is a geodesic in a leaf a leaf F' of }Nﬂ it has two ideal points
in SL (F) and therefore two distinct points in ¢. The set [ x R consists of the
union of the geodesics in leaves of F associated to the same points in U defined by
[. The curves in A defined by each point in U/ are continuous hence the set [ x R
is a topological plane which is properly embedded in M. In the same way if V' is
a convex set in a leaf of F bounded by geodesics s;, one forms s; x R and jointly
they bound the set V' x R.
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Step 2. The distortion parallelepipeds.
We will use the thin quadrilaterals
W(Ys),  W(b(g:)(Y))

of the previous step to produce immersed transverse laminations to . First con-
struct a distorted ideal parallelepiped in M as follows. For simplicity suppose that
F* is in the back of g; *(F*). Notice that 0(g;)(Y;) defines an ideal quadrilateral
in F* with cross ratio very close to 1. Since g; acts as isometries between leaves
of F, then

Zi=g (W) (V) < g '(F)

is isometric to W(6(g;)(Y;)) and has cross ratio very close to 1. The ideal points
of

g7 {W(O(g:)(V) in SL(g; ' (F"))

define the same points by, bo, bs, by in U that Y; does. For each F'in ‘H between F™*
and g; 1(F*) form the ideal quadrilateral with the ideal points corresponding to
b1,bo,b3,by in U. The 4 curves in A defined by these points in U are continuous
curves in A, hence Lemma 4.1 implies that the sides of the ideal quadrilaterals
in I vary continuously with the leaf F'. The union of these ideal quadrilaterals
between F™* and g;l(F*) is a parallepiped P; in M, see Fig. 5. That is

Pi=J{W(Y) x R)NF | F e [F*,g ' (F)]} .

The bottom of P; is the quadrilateral W(Y;) in F*, the top is the quadrilateral Z;
in g;l(F*) and there are 4 sides which are transverse to F, which are biby x R
and so on. The tops of the parallelepipeds will shrink to geodesics producing one
lamination and likewise for the bottoms. We will change the parallelepipeds P; in
the next step.

Remark. Lemma 4.1 implies that for any geodesic « in a leaf of F , then the
geodesics in o X R vary continuously in M. Hence o x R is an embedded plane
in M. It follows that all objects constructed here (D_ x R, Dy xR, G, G_, G,
etc.) are continuous.

Step 3. Convergence of the bottoms of the parallelepipeds.

We use the distortion parallelepipeds P; from step 2. We take limits: First
project to leaves of F in M. The quadrilaterals W(Y;) have associated cross ratios
C(Y;) converging to 0. Let z; in the boundary of the waist of W(Y;). Up to
subsequence assume that 7(z;) converges to zp in M and the directions of the
geodesic sides of w(W;) at 7(x;) also converge. In M the quadrilaterals #(W(Y;))
shrink to geodesics in leaves. Lift zg to Zg in M with the limit geodesic in the leaf
of F lifting to a geodesic ly in a leaf I of F through zy. This geodesic defines
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Tt

Figure 5. Quadrilaterals which stretch in different directions. Here Z; =

g; "W(6(g:)(Y3))). The ideal points of the quadrilaterals define the same points in U

as the leaves vary in F , but the geometry of the quadrilaterals (depicted in the figure)
changes from leaf to leaf. The union of the quadrilaterals is the parallelepiped P;.

two points in U and hence a geodesic [1 in F'* — the geodesic [ is exactly o x R
intersected with F'*. We define two important sets:

D.= |J {em@)} c F* and D_xR = [J(@'xR)cC M.
nemy (M) reD_

We now change the P; so that bottoms converge to /1. Up to covering translations
we may assume that the bottoms B; of P; converge to the geodesic o in a leaf I’ 4
of F. This changes the P; so the bottoms are not in F* anymore — we adjust that
as follows: For F' in F between F* and F’ let

These are ideal quadrilaterals in F'. The ideal endpoints of B; converge to the 2
ideal points of ly as 4 grows, so the ideal points of A;(F™*) collapse to the 2 ideal
points of [; — because the leaves of the vertical foliation in A vary continuously.
This produces a thin wall from I™* to F’. Since the horizontal quadrilaterals in
‘P; eventually have cross ratio close to 1 (when going up), the P; extends beyond
F’. We can extend or contract the parallepipeds P; so that the bottoms are now
always in F* and they converge to ;.

Conclusion 1. Up to subsequences, covering translations and extension or con-
tractions we may assume that the parallelepipeds P; have bottoms B; which are
ideal quadrilaterals in [™* with cross ratio converging to 0 and B; converging to
the geodesic [y of D_, so that the waists of B; converge to a fixed point of /;. The
tops of P; have cross ratio converging to 1.

Step 4. Convergence of the tops of the parallelepipeds.
We want to do the same approach for the tops 7; of P;. Since the bottoms of
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the P; will stay in F'™* clearly the tops cannot do the same. As in step 3, up to
another subsequence the waists of 7(7;) converge to a point in M and so do the
directions of the sides of 7 (7;). Lifting to M this defines a geodesic in a leaf of F
and using the vertical foliation this defines a geodesic I in F™*. Define

D.= |J {6m)}cF and DyxR= |J ('xR)C M.
hemy (M) reDy

In the same way as above we can extend or contract the tops of P; so that:

Conclusion 2. In addition to conclusion 1: There are covering translations g; in
71 (M) so that the tops g;(7;) are contained in F* and converge to a geodesic ls
of F*. The waists of g;(7;) converge to a single point of /5. Finally in the case
there is a leaf of D_ transversely intersecting a leaf of D, then up to renaming
lo by covering translations we can assume that these are [y and [ly. If this does
not happen but D_ and D, share a leaf assume that {; is equal to l5. Fix the
Pi, B, T;, g; from now on.

Using covering translations one gets the same conclusions for any leaves of D_
and D,. In fact using a diagonal process on sequences the same is true for any
limit of leaves of D_ or D.. We stress this:

Lemma 5.5. Using covering translations, extensions/contractions of parallelepi-
peds and limits, the following happens: suppose that l is either the intersection of
a leaf of D_ x R with a leaf F' of F (a geodesic in a leaf of .7:) or a limit of such
intersections. Then there is a sequence Q; of parallelepipeds so that 2 opposite
sides of bottoms converge to | and so that cross ratio of bottoms (respectively tops)
converges to 0 (respectively 1). The same holds if I comes from Dy x R in which
case the tops converge to l.

Step 5. Producing the (a priori only immersed) laminations.

We will eventually prove (in the next section) that each of D_ x R, D, xR
does not have transverse self intersections. But the first step is to obtain some
embedded lamination which may not be one of these two a priori. There are 3
cases to consider (we will keep coming back to these options in the next section):

Option A. No leaf of D_ transversely intersects another leaf of D_ (similarly for
D.). -

Then D_ x R C M is a collection of properly embedded planes without any
transverse intersections which is invariant under covering translations. Its closure
is a 71 (M) invariant lamination in A/ which intersects leaves of F in a union of
geodesics. The image in M is a lamination transverse to F.

Option B. No leaf of D_ transversely intersects a leaf of D,.



Vol. 77 (2002) Foliations, topology and geometry of 3-manifolds 459

If no two leaves of D_ intersect transversely, then as in option A, we produce
a lamination in M transverse to F. Otherwise by option B, no leaf of D_ is also
a leaf of D . Consider a connected component in F'* of the union of leaves in D_.
Then the convex hull C of this set (in the hyperbolic metric of F*) is not all of
H?. Let B be the boundary of C. The translates of B under #(g) with g in 71 (M)
do not intersect B transversely. Therefore 7(B x R) produces a lamination as in
option A above. Notice that in this case maybe all leaves of the lamination are
neither in D_ nor D,

Option C. There is a leaf of D_ transversely intersecting a leaf of D, .

This is the most interesting case. The rest of the proof of Theorem 5.1 is
devoted to an analysis of this case. By conclusion 2, here we can choose the /1 in
D_ and Il in D, with a transverse intersection. The goal is to show that leaves
of D_ do not intersect transversely and likewise for D, that is, option C implies
option A. We stress that options A and B can happen concurrently, but B and C
are contradictory.

An important remark here is that in all options A, B, C, these laminations
are obtained as a union of r x R for a collection of geodesics r in I'™*. If r; x R
intersects 7o X R then there is I’ in F so that

up = (r1 x R)N F  intersects wug = (rs Xx R)NF,

both geodesics in F'. If u; = us, then 1 Xx R is equal to 7o x R. In particular r1 xR
cannot be tangent to ro x R at level I’ and then cross from one side of o x R
to the other when passing through F'. If on the other hand w; and w, intersect
transversely in I then r; X R and 73 x R will have transverse intersection for all G
in F. This is one big advantage of producing these laminations using the universal
circle.

To prove that option C implies option A, then by way of contradiction suppose
there is I3 in D_ which transversely intersects /1. There is a covering translation
h with 6(h)(l1) = l3. Fix h for the rest of the analysis of option C. It follows that
O(h~1)(11) also intersects [; transversely. We use the setup in much more detail
in this case. Notice that the bottoms B; of the parallelepipeds P; converge to
{1, in fact two opposite sides of B; do and likewise two opposite sides of 6(g;)(7;)
converge to Iy of Dy .

For the rest of the proof fix 7/ big enough so that: If py, po, p3, ps in U are the
ideal points of B;, then pips and p3ps are very close to /3 and so

PiPs, Papi intersect [y, I3 =0(h)(l1) and 6(h ')(ly) transversely.
Also 6(g:)(7:») has two opposite sides very close to {5. Let
g= 93/ s hi=0(h), g1=10(g9) and q; =gi(p;) =0(g)p;) € U.

For simplicity we omit the notational dependence of p;, g5, h, b1, g, g1 on the index

i
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Figure 6. a. Crossing of the two limits D_, D,. The arrows indicate the action of
g1 = 0(g2), for instance ¢1(p1) = q1, etc.. Here C = By and D = g1(By). Then gy has 4
or more fixed points in U.
b. In this picture ls = h1(l1) with endpoints in I» U Is and z = hy(l3). Notice that z is
closer to I; than I3 is.

Step 6. Analysing the dynamics of hy = 8(h) and g; = 6(g) in U.

First we explain why we consider g the square of g;» instead of just g;. Let
T be the open interval of U defined by p1, p2 and not containing ps and similarly
J defined by ps,ps and not containing p;. One possibility is that (g, )(p1) and
0(gi')(p2) are in Z. Another possibility is that the quadrilateral 8(g;)(7Z;/) is ro-
tated 180 degrees, that is, 6(g;/)(p1) and 8(gy/)(p2) are in J. In any case 6(g?)(p1)
(equal to ¢1) and g2 are in 7 and ¢ is the one closest to p1, see Fig. 6, a. Also

91(Tor) = 0(g3)(Bi)

is even thinner than 6(g;/)(B;). The dynamics of g1 in U is as follows: g¢1(cl(Z))
is contained in Z producing at least one fixed point in Z and similarly g1 (cl(J))
a subset of J yields a fixed point in 7, where here ¢/ denotes the closure in U.
Similarly there are at least two fixed points outside {Z U J}: one near py,ps and
another near p3, py. In any case g; has at least 4 fixed points in . It follows that
g acts freely in H: if g(F') = F for some leaf F' of F, then g fixes only two points
in SL (F) and similarly for g; acting in U.
We define 8 points in U from the dynamics of 8(g): Let

aj= lm_g7(p;), b;= lm g7 (p;).

Notice by, by are in Z; b3, by are in J and none of the a; are in 7 or J. Let
— v =Taja; which is very close to pips and to [y,
— 1 = biby and By = bybs, both both very close to g1gz.
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Figure 7. a. The set A = x R — the horizontal segments represent intersections of A
with leaves of F. The curve p = BN AN P where P = (UF},t > 0) moves closer to (1

when ¢ increases. Notice ¢(¢1) = (1.
b. Let m : A — A/g be the projection. The curve p projects to a compact subannulus
of w1 (A).

We define 8 closed intervals in U first [ is the interval of U/ from a4 to a; not
containing the other points a;,b;, then similarly

IQ . from CI/1—>I)17 Iglbl—>b2; I4 :b2—>a2; I5 Lag — as;

]61a3—>b3; I7Zbg—>b4 and Igib4—>a4,

see Fig. 6, b. Notice that g;(I}) = I} for all k. In addition g; acts as a homeomor-
phism with only two fixed points in I, the repelling is a1 and the attracting is by.
Similarly for Iy, Is, Is. Any of the intervals I1, I3, I5, I may be a single point —
that is, if a3 = a4 then I is a single point. On the other hand none of I, I, Iy, Ig
is a single point.

One key point here is that by choice of ¢/, none of the endpoints of hy(l;) = I3
are in I or in Iz and we may assume the same happens for the endpoints of hy(y)
and for hi(p;) (make i’ bigger if necessary). Let

A=~xR, B=h(A).

Then g(A) = A and A is a properly embedded plane in M. Also B transversely
intersects A, because hy(vy) transversely intersects v. Using the dynamics of g;
we show that the intersections of the surfaces w(A), 7(B) stay in compact parts of
both w(A) and 7(B) and derive a contradiction.

Step 7. Analysing intersection of walls A =~ x R and B = h(A)

Consider 31 x R a properly embedded plane which intersects A in an infinite
curve (1. Then

gBixR)=p1 xR, g(A)=A, so g((1)="Cr

Hence ¢ projects to a closed curve «y in the annulus A/g. Similarly 5 produces
a closed curve ay in A/g. Notice oy is equal to s if and only if 51 = 3. Let N
be the annulus (possibly degenerate) in A/g bounded by «; and «s and let N be
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its lift to A. Recall the parametrization of F as {F;} with ¢ in R and F™* equal to
Fy. The curve
p=(BnAN (UFt)
>0
is an infinite curve of transverse intersection of A and B.

The geodesic I3 of H? has one endpoint ¢; in Is, Is or I; and the other ¢ in
Ig, I7 or Ig. Suppose first the endpoints are in I, and Ig respectively. Notice that
gir(Tir) is contained in F*, so g sends a leaf above F* to F*, or g~ ! acts as an
increasing homeomorphism in ‘H. Let

s=hi(y)Ny=(BNA)NFy € p.

We consider how the points g move in A as ¢ increases. The action by gfl =
(6(g))~* brings the endpoints of hi(v) closer to I; because the endpoints of hy(7)
are in I> and Ig, see Fig. 6, b. Looking at the action g 1 in A, it sends s to a
point with same distance from N, see Fig. 7, a (IV is invariant under g—'). Hence
sy = pN g Y(F*) is closer to N than g—(s) is, see Fig. 7, a. This means that
going up brings the intersection of B and A closer to N in A. In the same way let

sp=p0g "(F")

Then g"(sy) is in a geodesic in F* with endpoints near 6(¢™)(c1) and 6(g™)(ca).
But
0(g")(c1) = by, 0(g"™)(c2) > by when n — +oo.

As 3 has ideal points by, by, the above convergence implies that p is actually
asymptotic to {1 going up. Hence p projects in A/g to a curve asymptotic to the
closed curve ¢y /g see Fig. 7, b.

Let o be the projection of ¢; to M, that is, o = 7((y). Since (; is invariant
under g, it follows that « is a closed curve in M and since (1/g is already closed
it follows that

a=g" forsome n+#£0.

This means that the curve « represents the element ¢" in the fundamental group.
Now reverse the roles of A and B. The points in U — {I; U Is} get contracted
towards I3 and Ir under the action of g1 = 0(g). Let

8 = hgh™ L.

Notice that the points a; are not in the union of hy(l1) and hy(I5), by choice of
i’. Hence the a; are in the regions of & which get contracted by the action of 6(4)
towards hq(I3) and hi(I7). From the point of view of B the same arguments as
above show that the intersection of B with A going up (in the positive direction) is
also trapped closer to a band of B invariant under . Here we use the fact that F
is transversely orientable — h preserves orientation in H, so going up in A (action
by g~1) corresponds to going up in B (action by §—1) as well. An argument as
the one done in for the curve p as seen in A shows that there is a curve ¢, in this
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band invariant under ¢ and so that p is asymptotic to (» in the positive direction.
Let o, be the projection of (» in M. Similarly as above one shows that

§=hgh ! =a™ for some m #0.

Now p is asymptotic to {3 and to (s both of which project to closed curves in M.
Therefore « is equal to a,. Since the intersection of B and A is a single curve,
then in fact (3 is equal to (o.

Step 8. Incompatible actions in i.
In the previous step we proved that
g=a" andalso hgh™'=a™ n,m+#0.

It follows that
gm — " — (hghfl)n _ hgnhil.

This is obtained when I3 has endpoints in I5, Ig. The other cases are similar. An
argument as above shows that the curve p when viewed in A is always asymptotic
to a curve ¢ which is invariant under g. The curve ( is obtained as the intersection

(=({xR) n A,
where [ is a geodesic in F'* with endpoints

a= lim 0(g")(c;), b= lim 0(g")(cy).
i—+00 1—+00
Recall that c¢q, ¢y are the endpoints of l3. This occurs because ¢ is in the union of
I, I3 and I, and so is a. Similarly for b. Now the same arguments as above imply
the same conclusion. The important fact is that the endpoints of I3 are not in I
or Is!

Conclusion. In all cases there are n, m non-zero integers with ¢ = h~1g™h.

We now prove this is impossible. Notice that g and hence h~'gh act freely in
‘H and both act as decreasing homeomorphisms of H. This again uses the fact
that h preserves orientation of H! Hence if n is positive then m is positive as well.
Assume this is the case. Given w in U, if

gi(u) =u, then g}(u)=u=hy'g hi(u) or g{'hi(u)=hi(u).

Since g has fixed points in U this implies g1 h1(u) = hy(w). The same applies to
hl_1 so hy leaves the set of fixed points of g; invariant. These fixed points are in
11, I3, Is and Ir. By construction hi(l;) is disjoint from Iy and [5 therefore it is a
subset of I3 or Ir and likewise for hy(I5). Similarly by '(I}), hi'(I5) are subsets of
I3 or I, so hy(I3), hi(I;) are very small and hence contained in I; or I5. Together
these imply that

hi(l;) = Iy

5y forany j € [1,8].
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There are 4 cases to consider all similar. Suppose first that hq(l1) = I3 and hy
preserves orientation of . Since hi(I;) = Iy, this implies the very important
consequence that hy(ls) = Iy.

Now consider the action of g7 and hflg’lnhl in Is. The key is that both n,m
are positive!

o g7 only fixes 0l in Iy, with a; repelling fixed point for g7 and by attracting,

° hflginhl conjugates the action of ¢7* in Iy to act in Is. As h; preserves
orientation in U then hy(a1) = by and hi(b1) = as. In Iy, g} fixes only 0l
and b is attracting, a, is repelling. Hence the action of hfl g7t hy on I fixes
only 815 and has aq attracting, by repelling.

Hence the actions of g and hfl g7 hy are incompatible in I5 and therefore they
cannot be equal. Consider the other 3 cases: When hy(I;) = I3 but hy reverses
orientation in U, then hy(Ily) = I, flipping the endpoints. The same argument
produces a contradiction. When hy(I1) = Ir and hy preserves the orientation then
hi(Iy) = Ig but it sends the attracting fixed point in I (of g1) to the repelling one
in Ig (of g1) again contradiction. Finally if /;(I1) = I; and h; reverses orientation
in U then hy(Is) = Ig, flipping the endpoints, again a contradiction.

As all cases are impossible this finally shows that hy({{) and [; intersecting
transversely is impossible. The same proof applied to D, shows that 0(h')(l2)
transversely intersecting lo for some A’ in m1(M) is impossible. Hence both D_
and D, generate laminations in M:

Lemma 5.6. If a leaf of D_ transversely intersects a leaf of Dy then both the
sets cl(m(D_ x R)) and cl(n(D4 x R)) are embedded laminations in M which are
transverse to each other — here cl denotes closure in M. In particular option C
implies option A for both D_ and D,..

This finishes the proof of Theorem 5.1. |

6. The two transverse laminations

In the previous section we proved that if F is R-covered with hyperbolic leaves,
then either M is Seifert fibered, or a torus bundle over S! or there is a lamination
transverse to F. We use the constructions and notations of the previous section.
In this section we show that in the atoroidal case both D_ and Dy produce lami-
nations transverse to F which are also transverse to each other. Unless otherwise
stated, from now on assume that M is homotopically atoroidal. We first obtain
some general results about laminations transverse to R-covered foliations and then
use these results to study the laminations constructed in the previous section.
We say that a lamination G transverse to a foliation F is a lamination by
geodesics if leaves of G intersect leaves I’ of F in geodesics of I'. Now restrict to
R-covered foliations with hyperbolic leaves. If in addition for each leaf G of G , the
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ideal points of GN I as I varies in F define two leaves of the vertical foliation of
A, then we say that G is a universal lamination by geodesics — like the laminations
constructed in the last section. First we analyse complementary regions of general
universal geodesic laminations in a series of results from Proposition 6.1 till Lemma
6.4.

If F is a leaf of F (or of F) let Gp (G respectively) denote the lamination by
geodesics induced by g7 (or G) in F.

Proposition 6.1. Let F be R-covered with hyperbolic leaves and M homotopically
atoroidal. Suppose that G is an universal lamination by geodesics transverse to F.
Then for any leaf F' of F, the complementary regions of Gp (that is, GN F) are
all finite sided ideal polygons in F with an upper bound on the number of boundary
sides. Complementary regions of G in M are either solid tori or solid Klein bottles
bounded by finitely leaves of G.

Proof. We first show that geodesics which are boundary leaves of G and which
get sufficiently close in F' are asymptotic in F"

Lemma 6.2. There is positive € so that for any F in F then any neck of size
smaller than € in a complementary region of Gp will produce asymptotic leaves in
F. Similarly for G and F.

Proof. Here a neck is a geodesic segment « in a leaf I of F so that its boundary is
in (_7 r but the interior of « is disjoint from § . There are two leaves w1, ug of g~ P
through the endpoints of o and the goal is to show that if o has small length then
w1, ug are asymptotic. Suppose the lemma is not true. Find necks of size smaller
than 1/4 from points in leaves

8;,7; of QNL“ with L¢€f7 but s;,7; not asymptotic in ;.

Since s;,7; are not asymptotic we may assume these are the closest points in L;
from s; to r;. Since s;, r; are distinct they eventually diverge (in some direction),
so find necks &; of size 1 between s;,r; with angles between the necks and the
geodesics s;, 7; bounded away from 0 and 7. Let p; be the middle points of &;. Let
fi in w1 (M) with f;(p;) converging to p with necks f;(&;) also converging, and so
that the geodesics fi(s;), fi(r:) converge to leaves s,r in Lg of F. Here Ly is the

If s, r are not asymptotic Lg, there is a minimum positive distance by between
them and they diverge from each other in each direction. For nearby f;(p;) the
leaves f;(s;), fi(r;) also get roughly by away from each other and then start to
diverge from each other — this is all happening in a compact set near the leaf L.
But in hyperbolic geometry, once a pair of geodesics starts to diverge from each
other they will never get close anymore. Hence for i big the minimum distance
between f;(s;) and fi(r;) in f;(L;) is close to bg. This contradicts dy,(s;,7;)
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converging to 0. We conclude that s,r are in fact asymptotic in Lo.
The leaves fi(s;), fi(r;) are boundary leaves of Gy, (r,). Using the universal
circle identification,

(filss) x R) N Lo, (filri) xR) N Lo

are also boundary leaves of G L, With necks of size very close to 1 near py. But the
only boundary leaves of G L, Near po and with neck size near 1 are s, r, hence f;(s;)
is contained in say (s x R) and f;(r;) is contained in (r x R) for ¢ big enough.

Equivalently this argument says that nearby gaps of G in fact map to each other
by moving transversally to F. This uses the fact that the laminations are made of
sets [ X R associated to the universal circle — a universal geodesic lamination. This
argument that if necks are very near, then the geodesics through the endpoints are
contained in the same leaves of G will be often used here — we call it the matching
boundary effect.

But now the leaves s,7 define the same ideal point in S. (Lo) and again by
hypothesis of the proposition this implies that leaves f;(s;), fi(r;) also define the
same ideal point in SL (fi(L:)), that is, fi(s:), fi(r;) are asymptotic for i big
enough. This contradicts the fact that s;,r; are not asymptotic in I; and finishes
the proof of Lemma 6.2. O

We stress that this works for boundary leaves. In general there are infinitely
many pairs of leaves s;, r; of G r which have necks of arbitrarily small size but are
not asymptotic in F'. But if they are boundary leaves of the same complementary
region of G then they have to be asymptotic.

We now return to the proof of Proposition 6.1. If G is a foliation Proposition
6.1 is trivial. Otherwise consider ¢ much smaller than ¢/2 (e as in Lemma 6.2).
We define an open set B, in M: let u be a point in a leaf E of F. Then

w € Be if dg(u,Gg) <€,

where dg is measured in /. Choose € small enough so that B, is not M and
let Z be a component of the boundary of B.,. We consider how Z intersects the
foliation F. Let p be a point in Z which is in a leaf E of F. If p is ¢/ away from
two leaves [y, s of G, then [y, 5 are 2¢/ away from each other, which is less than e.
By Lemma 6.2, [; and [, are asymptotic in £ and in that direction their distance
decreases: any point between them is less than € from at least one of /1 and [, and
therefore Z does not intersect that direction anymore. Now consider the opposite
direction: in that direction I,y diverge from each other and become more than
2¢/ from each other, this means that the intersection of Z and E has a corner at
p and in the diverging direction two arcs of

ZNE emanate from p.

On the other hand if p is not a corner then p is e distant from a single boundary leaf
l1 of G and the intersection of Z with F tracks this leaf [y nearby. Conclusion:
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the intersections of Z with F track boundary leaves of Gg until they hit a corner
and start to track another leaf of Gg (they can also never hit a corner).

What happens transversely to F in a nearby leaf L7 If p is not a corner point,
then for nearby L, the set Z intersects L in a curve ¢’ away from G; and near
the one in F. This means that Z is a two dimensional manifold near p. If on
the other hand p is a corner point, then [y,[ly are asymptotic in E. For nearby
L there are unique boundary leaves of G, associated to [1,l> — by the matching
boundary effect, and these leaves in L are also asymptotic. The associated corner
point in L is near the corner point in £, which shows that near p, the set 7 is a
two dimensional set. This also shows that Z is transverse to F.

This is a crucial point: if boundary leaves of Gg could get close to each other
without being asymptotic, there are two corners associated to these leaves. Moving
transversely to F could push those boundary leaves apart from each other. In
terms of Z this would mean two corners coming together and splitting to two curves
without corners tracking the two boundary leaves, producing a saddle tangency of
Z and F.

In addition to being two dimensional it is easy to see by definition that Z
cannot limit on itself transversely: one side would have to be closer to G. Hence
Z is compact surface transverse to F, so 7 is either the torus or the Klein bottle.
Let Fz be the induced foliation in Z by F.

Lemma 6.3. The leaves of F 7 are closed curves which are null homotopic in their
respective leaves of F. The set Z bounds a solid torus or solid Klein bottle in M.

Proof. If Z is mi-injective then there is a Z & Z subgroup in #1(M), contrary to
the atoroidal hypothesis. Hence there is a simple closed curve v in Z which is null
homotopic in M.

First we show there are no Reeb annuli in . Suppose there is a Reeb annulus
C bounded by leaves «, 3, which are the limit of «, with = converging to infinity.
Consider lifts

C, &, B, &, to M.
Since C' is a Reeb annulus, the curves &75 are in leaves of F which are not
separated from each other. But F is R-covered, so they are in the same leaf
of F, let it be F. Then /37 a do not track the same geodesics of G F, because they
are distinct curves. Now look at nearby leaves a;: by construction they track a
chain of consecutively asymptotic boundary leaf geodesics of G in the respective
leaves of F. By the matching boundary effect this chain pulls to I" to a chain of
consecutively asymptotic geodesics in Gr. But some of then are tracked by 5 and
some are tracked by @. This can only happen if /6’ is equal to & which is impossible.
As in the previous lemma this is basically saying that the combinatorics of the
intersections of Z with F do not change transversely to F.

Given that there are no Reeb annuli in F; the curve « is homotopic to one
which is either a leaf of F 5z or transverse to it. A transversal to Fz is transverse
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to F and as F is Reebless, the transversal is not null homotopic in M. Hence
we can assume that v is a leaf 7z - by Reebless again, « is null homotopic in its
leaf. Nearby leaves of F are also closed since v has no holonomy. The limit of
compact leaves is compact [Ha], so all leaves of Fz are closed and bound disks in
their respective leaves of F. It now follows that Z bounds a solid torus or solid
Klein bottle in M. This finishes the proof. [l

We now finish the proof of Proposition 6.1. If U is a complementary region of
G, let ¢ be small enough so that B, does not contain U and let Z be a component
of 0B contained in U. Let F be a leaf of F intersecting Z and 3 a component
of the intersection of F and Z. By Lemma 6.3, 3 is a closed curve in £ which
is null homotopic in F and tracks boundary leaves of Gg. Hence the associated
complementary region in F is a finite sided ideal polygon in /. Moving transversely
does not change the combinatorics or the number of boundary sides in this polygon
and since Z is closed, it follows that the complementary region U is a solid torus
or solid Klein bottle. This also shows that for any F' in F any complementary
region of Gp is a finite sided ideal polygon.

We know show there are finitely many complementary regions of G. Do the
argument in M. A complementary region of G contains an ideal triangle in a leaf
of F. Suppose for a moment there are infinitely many complementary regions V;
which are not equivalent under covering translations. Let v; be the barycenter
of an ideal triangle contained in a leaf L; of F and also in V;. Up to covering
translations and a subsequence the v; converge to a point vy in a leaf Lj. Also

sz'(vi7§Li) > Co,

for some positive constant cp, because v; is the barycenter of an ideal triangle in
L; — Gr,. By continuity v is not in G so there is a complementary component
Vo of g~ with vo in Vo. As Vg is open then V; is equal to Vy for ¢ sufficiently big,
contradiction.

Hence there are only finitely many complementary regions of G in M and there
is an upper bound to the number of sides in any complementary region of G r for
any F'in F. This finishes the proof of Proposition 6.1. Il

Lemma 6.4. Let F be a transversely oriented foliation with hyperbolic leaves in
M orientable and G a minimal, universal lamination by geodesics transverse to
F. 1If s1,82 are asymptotic leaves of Gp then 81,82 are in the boundary of a
complementary region of Gp. Similarly for asymptotic leaves of G.

Proof. Here we use the notation of the previous section where F'* is the distin-
guished leaf. In addition if g is in 7 (M) then g acts in U and geodesics of F* by

0(g). We also use the notation ! x R for any geodesic { in a leaf of F. Let V, be
G . It suffices to prove the lemma for V.
If the lemma is false find s; boundary leaf of a complementary region @ of Vj
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uo uo
U, = u,
(@ () h(U1)

Figure 8. a. Asymptotic leaves not in the closure of same complementary component,
b. Chain of asymptotic components, producing a contradiction. Here u1 = h(uz).

and s9 not in 9Q but asymptotic to s, see Fig. 8, a. Assume that s separates s
from Q. Let u; be the common ideal point of sy, s5 and us the other ideal point
of s1. Let s3 be the other boundary leaf of @ with ideal point us.

Fix z in sy. Let e given by Lemma 6.2. Here s{ is not isolated in the s, side,
since it is isolated in the s3 side and G is minimal. Let w; be a sequence in s;
converging to us. As G is minimal, there are v; in (s; x R) which are a bounded
distance (depending on €) from w; in (s; x R) and

fi in 7T1(M) with d(fl(i}l%Z) < 6/27 but fz('Uz) not in (SlxR).

As s1, 83 are asymptotic and d(v;, w;) is bounded, then there are y; in (s3 x R) with
d(y;,v;) converging to zero. So d(f;(y;),2) is smaller than €/2 for 7 big enough.
We may assume that f;(y;) and f;(v;) are in Vi. By the property of ¢, the leaves
of V through f;(y;) and f;(v;) are asymptotic in the u; direction, see Fig. 8, a.
Since s1, s3 are asymptotic in the us direction this implies that

O(fi)(ua) =wuy for 1 big enough.

To simplify notation fix i sufficiently big and let h = 6(f;). By assumption h
preserves the orientation of ¢. It follows that h(Q) is asymptotic to @ along
s1,h(s1) and in the same way h?(Q) is asymptotic to h(Q) along h(s1), h?(s1), see
Fig. 8, b. This shows that h(s) is asymptotic to both s; and h?(s). Recall that
h(s1) is not isolated in V;. But it is isolated on the h(Q) side. On the other side
it is asymptotic to s1, h?(s1) both in Vp, so again it is isolated. This contradiction
shows that s, s» cannot be asymptotic and finishes the proof of the lemma. [

Notice that M atoroidal is not needed for this lemma.

Definition 6.5. Let Q; be a sequence of distortion parallelepipeds in M so that
bottoms are ideal quadrilaterals in leaves of F with cross ratios converging to 0,
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while tops are ideal quadrilaterals in leaves of F with cross ratios converging to
1. We call Q; a shrinking sequence of distortion parallepipeds. For simplicity we
sometimes omit the word shrinking and refer to Q; as a sequence of distortion
parallelepipeds.

We now analyse the laminations constructed in the last section in detail in
particularly in relation to the options in step 5 of the proof of Theorem 5.1. The
eventual goal of this section is

Goal. Show that option B does not occur.

Hence option C will occur and as shown in the previous section option A holds
for both D_ and D, and there will be two transverse laminations in M. We use
the notations and constructions of section 5. In order to analyse this situation
recall the options in step 5 to produce laminations by geodesics in M:

o If leaves of D_ do not self intersect transversely (option A which can also
happen when option B occurs) then let G_ be the closure of 7(D_ x R) and
this is a lamination.

e Suppose there are transverse self intersections of leaves of D_. Then since
option C implies option A, we have that no leaf of D_ transversely intersects
a leaf of Dy. Let A be the connected component of the union of leaves of D_
containing {1 and let C be its convex hull. Then C'is not all of H? by hypothesis
here. Let B be 9C and in this case let G_ be the closure of 7(C x R), also a
lamination. Here we are in option B.

Similarly for D producing a lamination G;. Hence there are always two
laminations, which a priori may be equal. In addition let

e G be a minimal sublamination of G_ and

. QT a minimal sublamination of G .

The 4 laminations G_, G, G™ and G will be fixed from now on. As we will
see later G and QT are uniquely defined and in the end we will prove that G™ is

equal to G_ and similarly for QT. Let
V.=G NF* V,=G,nF* V"=G NnF*, V"=G, nF*

all laminations in F* (could be foliations too). Also V™ is contained in V_ and
V™ is contained in V.

We first derive general properties of leaves of V', V™. Let [ be a leaf of V™. If
D_ does not transversely self intersect, then G™ is contained in ¢l(w(D_ x R)) so
there are leaves u; in D_ converging to [. On the other hand, if D_ has transverse
self intersections, say {1 with l4; then [; does not intersect G _,s0l1 has to be in a
complementary region of V™ — a finite sided ideal polygon. Therefore a ray of [y
is asymptotic to a leaf of V™. But since G™ is minimal this implies that 7({; x R)

limits on every leaf of G™, so again there are leaves w; of D_ converging to [. The
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same happens for D, so if [ is a leaf of V] there are leaves v; of D converging
to [. Lemma 5.5 now implies:

Conclusion 3. If [ is a leaf of V™ there is a shrinking sequence of parallelepipeds
Q; with bottoms in I'* so that two opposite sides of the bottoms converge to [,
the cross ratio of bottoms (respectively tops) converges to 0 (respectively 1). In
the same way if [ is a leaf of V" there are parallelepipeds Q; with the same cross
ratio characteristics with tops converging to [. The same holds for intersections of
é/r? é/,f with any leaf I of F.

If Q is an ideal polygon in F'* (or H?) let d5,Q be the ideal points of Q.

We will now prove a crucial technical lemma which will help in analysing option
B later on and also help produce a transverse pseudo-Anosov flow to F. Consider
the case that G™ is not a foliation. Recall that if g is in 71 (M), then 8(g) acts
in U and in convex sets of I'*. Let Cy be a complementary region of V. By
Proposition 6.1, 7(C; x R) is a solid torus or solid Klein bottle, and the core is
a curve transverse to F. So there is a non-trivial g in 71 (M) with 6(g)(C1) equal
to Cy. Taking powers we may assume 6(g) fixes all points of 9.,C1, Here we are
identifying S (F*) with U so 6(g) acts on SL (F*). There are at least 3 points in
0-cC1, therefore g acts freely in H. Up to taking inverse assume that g is monotone
decreasing in H, that is F'* is in the front of g(F™).

Lemma 6.6. Suppose that G™ s not a foliation and Cy s a complementary region
of V™. Let g in w1 (M) non-trivial with 6(g)(C1) equal to C1 and 0(g) fizing all
ideal points of Cy. Suppose that g is monotone decreasing in H. Let J; be a
component of U — Cy. Then 6(g) acts as a contraction in J; with a single fired
point. Similarly if G is not a foliation and Cy is a complementary region of VI
with g,J; as above (g acts decreasing in H) then 6(g1) acts as a contraction in
Jy with a single fired point.

Proof. First we do the proof for G™. Let sg be a side of Cy, hence 6(g)(s) is equal
to sg. Let e, es be the ideal points of sy and

J1 = closure of interval of U — {e1,ea} not containing other ideal points of Cj.

We analyse the action of 8(g) in Ji1. Notice 0(g) fixes Cy hence fixes ey, e5. Notice
sg is isolated on the C; side, so not isolated on the other side. Choose s in V™
arbitrarily close to sy hence with ideal points in J;. By conclusion 3 above there
are parallepipeds Q; with bottoms R; having two opposite sides converging to s;
and tops S; with cross ratios of bottoms converging to 0 and cross ratios of tops
converging to 1. Let I} in F with S; contained in F}, the t here depends on .
Since g is monotone decreasing in H, there is a unique positive n so that either

F, =g ™(F*) or F, isbetween g "(F*) and g~ ("*U(F*)
(notice that g~ (F™*) is above F*). The quadrilateral R; has ideal points es, eq4,
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K Cs
AN
€¢
e, €4
R Cs
e
> 1
es (a) (b) A

Figure 9. a. Limiting leaves and quadrilaterals, b. The action of 8(¢™™) in Ky pushes
es, e¢ far away. Here ¢; = 0(g")(e;),¢ = 3,4,5,6.

es, €s in U, so that ezez, e5eg are the sides close to each other and close to sy, see
Fig. 9, a. By Lemma 6.4, if s; is asymptotic to sg then sg and s; are boundary
sides of a complementary region of V5. But then sg would be isolated on both
sides contradiction to minimality of G™. Hence once sy is fixed, then for 4 big
enough all the ideal points es, eq4, €5, €g are in J; — d.J;. Choose the points so that
89 = €xeg is farther from sy than esez. Notice t,n, e, ..., 5 all depend on 7, which
is omitted for simplicity.

Map S; back by ¢”, pushing it down in the leaf space. Then ¢"(S;) is either in
F* or is between I™* and g~ (F*). Also ¢"(S;) is an ideal quadrilateral with cross
ratio very close to 1. Suppose that both 6(¢")(es) and 0(g"™)(eg) are very close to
es, eg respectively. Projecting ¢”(S;) to F* using U, that is,

(g"(S:) xR) n F7,

we get an ideal quadrilateral in F'* with cross ratio very close to 0. This is because
0(g™) fixes e; and ey and 6(g")(e3) is between e; and 6(g™)(es) and 6(g™)(e4)
between ey and 0(g™)(es). The same will happen for the cross ratio of the inter-
section

(¢"(S;)xR) N F, forany F between F* and ¢ '(F*).

All of them are very near the intersection of F' and sg x R. This contradicts the
fact that cross ratio of ¢™(S;) is very close to 1. Hence at least one of 6(g™)(es)
and 0(g")(e®) is very far from ez or eg respectively.

One option is say that 0(g™)(es) is very close to e5. But if this keeps happening
as sy gets closer to sg and i converges to infinity, then the only possibility for the
dynamics of 6(g") in J; is that 8(g™) has a repelling fixed point in ey, an attracting
fixed point in e; and no other fixed points. In fact since 0(g)(J1) is equal to Ji,
this implies that #(g) acts in J; with the same dynamics. Take s leaf of V™ very
close to sg with ideal points a,b, a close to eq, b close to e5. By Lemma 6.4, a is
not e; and b is not eo. Hence for a,b sufficiently close to ey, es respectively, the
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points
€1, a, 9(9)(0’)7 b7 9(9)(b)7 €2,

are circularly ordered in Ji. In other words the endpoints of s separate the end-
points of 8(g)(s) in U, or s intersects 8(g)(s) transversely. This contradicts the
fact that G™ is a lamination.

It follows that J; contains an interval J; bounded by es, es, with 8(g™)(J2) a
subinterval of J5. The cross ratio of (g™ )(S;) is very close to 1, so this quadrilateral
is very thin in the other direction, see Fig. 9, b. Since 8(g™)(€°), (9" )(e®) cannot
be near es or eg, it follows that 6(g™)(J2) is a very small interval contained in Js.

This is the fundamental property of a curve which is in the boundary of a
complementary region of V™ so that it is the limit of bottoms of a shrinking
sequence of distortion parallelepipeds. Choosing now s; closer and closer to sg
and cross ratio of R; converging to 0, cross ratio of S; converging to 1, we can get
es arbitrarily close to e; and eg arbitrarily close to e5. In addition the subinterval
of Jy from 6(g™)(es) to 8(g™)(es) is shrinking to a point (recall here that n varies
with sy and 7). This yields the conclusion:

Conclusion 4. Using that sq is the limit of bottoms of distortion parallelepipeds,
we obtain that 0(g) acts in J; — dJ; as a contraction with a unique fixed point y
not in 0.Jj.

This proves the first part of the lemma. If on the other hand C; is a comple-
mentary component of V™ (assumed not to be I'*) and sg, .J; are defined as above,
the same analysis applies. But now there is a sequence of distortion parallepipeds
with the tops converging to sg. The difference is that R; is below S;, hence use a
translate g™ to bring R; closer to F™*, with m negative. Using the same arguments
as above, we conclude that #(g~!) acts as a contraction in J; — 8.J; or that 6(g)
acts as an ezpansion in J; — @J. This finishes the proof of Lemma 6.6. O

We will now show that option B does not occur.

Proposition 6.7. Suppose that M is orientable and F is transversely orientable.
There is a leaf of D_ intersecting a leaf of Dy transversely.

Proof. Suppose that this is not true. Then option B holds and it implies that no
leaf of G_ transversely intersects a leaf of G. If G_ (or G ) is a foliation then
G_ is minimal, for a non-trivial sublamination would have complementary regions
in leaves of F which are finite sided ideal polygons and could not be filled with a
foliation by geodesics. This also implies G_, G are equal. In this case all of the
laminations

g*7 g+7 gT and gT

are the same.
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If none of G_, G are foliations then a complementary region of V™ is a finite
sided ideal polygon @ in I"*. Since G" does not intersect G™ transversely then V"
cannot intersect dQ) transversely. So any intersection of V" with @ is a geodesic in
the interior of Q. There are only finitely many such geodesics and these would be
isolated contradicting minimality of QT. Hence QT does not intersect the interior
of @ and so G"" is contained in ™. Similarly G™ is contained in G"" and so they
are equal. These arguments also show that in general G” and G’" are uniquely
defined laminations. In any case we proved:

Fact. In option B, then G™ is equal to G'".

This is the fact that will lead to a contradiction.

Suppose first that G_ and G, are not foliations. Then G™, 7]: are also not
foliations. Let C; be a complementary region of V™ and sg a boundary leaf of C;.
Let g be non-trivial in 71 (M) with 6(g) fixing all points in do,C; and let J; be a
component of U — d,,Cy with endpoints the ideal points of sp. Since sg is a leaf of
V™, the first part of Lemma 6.6 shows that 6(g) acts as a contraction in J;. As
G™ is equal to G, then sg is also a leaf of V. The second part of Lemma 6.6
implies that @(g~!) acts as a contraction in J;.

These two conclusions are contradictory, so we obtain that D_ and D, not
intersecting transversely is impossible when at least one of G_ or G4 is not a
foliation.

The next proposition shows that none of G_,G,G can be foliations, so this
finishes the proof of Proposition 6.7. |

Proposition 6.8. The lamination G_ (or G ) cannot be a foliation in M.

Proof. This is presented separately because here we do not a priori assume that
D_ and D, have no transversal intersection. It will be used later as well, see
remark 1. Also no orientability conditions here.

Suppose that say G_ is a foliation in M. Then as seen before G_ is minimal,
hence G™ = G_. Since

V.=G_.NnF

is a foliation by geodesics in I™* then its leaf space is Hausdorff and hence home-
omorphic to the reals. We analyse this in detail. Fix ¢’ in F™*, let s’ be the leaf of
V_ through ¢’. Let v be a finite transversal to V_ in F™* starting at ¢’ and look at
all geodesics of V_ through ~. Suppose one is asymptotic to s’ in the direction of
the ray r’ of s. Then all leaves between these two are also asymptotic to s’ and
hence in any case there is a direction so no nearby leaf is asymptotic to s’ (the
opposite direction to r’ if there is 7). As points in s’ escape in that direction their
distance to nearby leaves grows without bound. For any natural n there are points
¢n in these nearby leaves of V_ which are centers of balls B,, of I'* of radius n so
that all leaves in B,, will eventually intersect a subsegment of v of length less than
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1/n. Up to subsequence choose f,, in w1 (M) with f,(g,) converging to go and qo
in a leaf L of F. Let s be the leaf through ¢ of the lamination G_NLof L. Let v
another leaf of this lamination. If s and v are not asymptotic there is a minimum
distance between them which is achieved in a fixed distance from starting points.
Pairs of geodesics limiting on s and v will also have a minimum distance between
them close to this distance, contradiction to the construction.

Conclusion. All leaves of G_ N L are asymptotic in L defining a unique ideal
point in SL (L).

As G_ is a universal geodesic lamination the same holds for all leaves of F and
let w in S (F*) be the distinguished ideal point in F™*. Hence leaves of G_ are
described exactly as s* x R, where s* is an arbitrary geodesic in F™* with one ideal
point u. Every point in SL (F*) is an ideal point of some leaf in V_.

We claim that this implies that G_ and G are equal. Let [* be a leaf of V..
Then I* is asymptotic to a leaf I’ of V_ so the angle between [*,1’ converges to 0.
Take a limit in M and obtain F in F and a common leaf of Q~¥ NF and §+ NF, soa
common leaf of Q~+ and @ _. As G_ is minimal, then G_ is contained in ¢, which
implies that G_ is equal to G. (because G_ is a foliation). Hence all laminations

G.,G,, " and G7

are equal and they are foliations. In that case let V; be V_ (same as V. and so
on).

The proof now is similar to arguments in Lemma 6.6. However in that situation
there were complementary regions of V_, and these naturally produced covering
translations acting freely on H and leaving invariant the complementary region
and one needs to first find appropriate g acting freely in H. First lift to a finite
regular cover so that the manifold is orientable and all foliations are transversely
oriented and for simplicity in this proof we assume they are the original M,G_,G .
Notice G_, G are still minimal since they are foliations. Notice U/ is still the same
and the action of w1 (M) on U is still not uniformly quasisymmetric because of
compactness of the finite cover.

Let (1 be aleaf of V_. Then (; is the limit of bottoms R; of a shrinking sequence
of distortion parallelepipeds with cross ratios of R; converging to 0. There are 2
points in OR; very close to the distinguished point « of U.

Suppose first that « is in the interior of the small interval of ¢ with these end-
points. We split the quadrilateral into thinner quadrilaterals: cover the quadrilat-
eral R; by two thin quadrilaterals @1, @2 both of which have ideal point in « and
another in v, see Fig. 10, a. There are two corresponding parallelepipeds V1, V>
with tops S1,82 in a leaf L of F. For simplicity we omit the dependence of L on
1. We now choose the point v carefully so that at least one of &1, Sy has cross
ratio very close to 1. Let /), u),u,v’ be the points in S (L) corresponding to
u1, v, u, v respectively under the universal circle U, see Fig. 10, b. The top of
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Figure 10. a. Splitting a thin quadrilateral in two. The added sides to Q1,2 are
shown in dashed lines,

b. The picture on a leaf of F containing the top of the parallelepiped. We can choose v’
so that in this case Sz will be very thin in the other direction. Going down to F™ using

the universal circle we choose the associated v in SL (F™*).

the original parallelepiped is a quadriletaral S very thin in the other direction, see
Fig. 10, b. If for example «’ is not very near either of v/, u5, then choose v’ very
close to one of the other ideal points of 7, see Fiig. 10, b. Then one of S; or S is
thin in the other direction, in the picture S, is thin. Conversely if «’ is very near
u) or uh choose v/ in the middle between the other ideal points of 7. Regardless
one obtains a thin quadrilateral in the other direction.

If on the other hand the small interval from w; to us does not contain u, then
enlarge R; to include w. For high enough 7, the new R; will still have cross ratio
very close to 0. But clearly the top of the associated parallelepiped is an ideal
quadrilateral which is even thinner, so its cross ratio is even closer to 1.

A priori this process has changed G_, G, so let us consider this carefully. The
splitting or enlarging does not distort the bottoms R; substantially, so G_ is not
changed. Therefore G_ is still a foliation. Since G_ is a foliation, then regardless
of what the new D, is, the first part of the proof implies that G is equal to G_.
Hence G is not changed either. This fact will be used in the arguments below.

Conclusion. Any leaf of V_ is a limit of bottoms R; of a shrinking sequence of
distortion parallepipeds with all ideal quadrilaterals R; having a vertex in «.

In order to mimic the proof of Lemma 6.6 we first construct a suitable g in
71 (M) with at least 3 fixed points in ¢. Put any orientation in /. Let ideal points
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V3

(b)

Figure 11. a. Action of g on a particular quadrilateral near ¢;. Here uw; = 0(g)(us),
b. Forcing the contraction in a certain interval.

of R; as positively oriented in & be denoted by
Uy, U2, U3, U4,

where w1 is equal to w. Up to subsequence and choosing orientation to U assume
ug is very close to uy, see Fig. 11, a. We are still using the fixed leaf {; introduced
before. The points u; are fixed in this proof.

Now choose a leaf (3 of V} having an ideal point in the interval defined by us
and wug, not containing v and not near wy or us, see Fig. 11, a. This is possible
since G is equal to G_. The tops S; of the sequence of distortion parallepipeds
have cross ratio very close to 1. For ¢ big enough there is a covering translation
g so that 0(g)(R;) is very close to {» and with cross ratio very close to 1. This is
because (s is a leaf of G . The element g depends on (i, {» and ¢. Notice that
0(g) fixes uy and preserves the orientation in ¢. The fact that 0(g)(R;) is very
close to (» and has cross ratio very close to 1 together with 6(g)(u1) being equal
to uy implies the following:

— 0(g)(ua) is very close to uq,

— 6(g) moves uy counterclockwise (as seen in Fig. 11, a);

— 0(g)(u2), 6(g)(us) are very close to the ideal point of (5 (the other one
besides 1) and

— B(g) moves uy counterclockwise, moves ug clockwise, see Fig. 11, a.

This implies there are at least 3 fixed points of 8(g) in U: wuq, plus one fixed
point near uwy and one near 6(g)(u3). Hence g acts freely in H. Assume it is
decreasing in H.

Once the suitable g is found the argument follows the analysis in the proof of
Lemma 6.6. We only sketch the main ideas. The element g is fixed here. Let (3
be another a leaf in V_ invariant under 6(g) with an ideal point us not equal to «
and wug near ug (ug defined above). Let J be the interval of U — {uy, us } containing
0(g)(u2). By the above there is a fixed point of 6(g) in J. There is a sequence of
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ideal quadrilaterals which are bottoms of distortion parallelepipeds, for simplicity
still denoted by R;, so that R; converges to (3 and R; has ideal points wu, v, vs, vy
positively circularly oriented in U and wvs,vs, vy all in J (vs,v3,v4 depend on 7).
This is possible because ug (in the prior construction) was chosen in J and using
covering translates we can map (3 to arbitrarily near {4 with ideal point in J.
Going up transversely to F using the universal circle we obtain quadrilaterals S;
with cross ratios very close to 1 and map back by ¢", n positive.

We check the action of 6(g™) in J: first of all it fixes the boundary of .J. Notice
6(g™) has a fixed point in J, hence 6(g™) cannot map vy very near us and cannot
map vs, vq very near u. Hence the arguments in Lemma 6.6 show that 6(g") moves
vy, v3,v4 close together. In the limit one obtains that the action of 8(g) in J is a
contraction with a single fixed point.

Using the same arguments with (3 a leaf of G, that is {3 being the limit of
tops of a sequence of distortion parallelepipeds we obtain 6(g) acts as an expansion
in J.

This is contradiction and shows that G_ (or G) cannot be a foliation. This
finishes the proof of Proposition 6.8. (Il

These results imply the following:

Corollary 6.9. Suppose that M is orientable and F transversely orientable. Nei-
ther G_ nor G4 can be a foliation. Also by Proposition 6.7, there is a leaf of D_
intersecting a leaf of Dy transversely. This shows that option C in step 5 of The-
orem 5.1 occurs. As seen in the proof of Theorem 5.1 this implies that both D_
and Dy have no transverse self intersections. This means that option A occurs
for both of them. Therefore G_ is cl(w(D_ x R)). Similarly G is cl(w(D4 x R)).
In addition there is positive r1 so that for every G in 6,, F in F and p in the
intersection | of G and F, there is a point in the intersection of g~+ and | at most
ry distant from p an l. Otherwise taking limits we find one such [ not intersecting
Gy and a leaf of G_ not intersecting G which was disallowed. Finally if U s a
leaf of the intersection of §+ and F' and I intersects | in q then the angle between
LU in F* at q is bounded away from 0 and w. Similarly for @/T, gf

To sum up what we have obtained so far:

Corollary 6.10. Suppose that F is an R-covered foliation with hyperbolic leaves,
M is atoroidal and not a Seifert fibered space. Suppose that F is transversely
oriented and M orientable. Let G_ and G be the universal geodesic laminations
constructed in the previous section. Then neither G_, G is a foliation. They are
transverse to each other and with solid torus complementary components.

Remark. At this point it is useful to make the following remark: In some situa-
tions it may seem at first that the main theorem is trivial: Consider ¢ an Anosov
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flow so that its stable foliation F* is R-covered and transversely orientable (there
are many examples [Fe2]). The flow ¢ is tangent to F° and since F° is trans-
versely orientable one can perturb ¢ slightly to a new flow ¢/ transverse to F*.
By Anosov’s fundamental results ¢’ is also an Anosov flow [An]. However if in
addition M is atoroidal then the flow ® transverse to F° which will be constructed
here is not a perturbation of ¢ as above. It has substantially different properties.
In particular ® is not an Anosov flow — it has singularities. This is because ® is
obtained by blowing down complementary regions of G_, G and the solid torus
complementary components will produce singularities. In fact this is the key prop-
erty that implies the weak hyperbolization conjecture for M. Also the flow & will
be regulating for G: every orbit of the flow ® in M intersects every leaf of F and
vice versa, as opposed to what happens for small perturbations of the Anosov flows
above [Fe2, Fe5|.

We now relate gi and §+.

Proposition 6.11. For every complementary region QQ of V_ there is an unique
associated complementary region Q' of Vi having the same number of sides as Q).
Let g in w1(M), non-trivial with 0(g) firing all points in 0xcQ). Suppose that g acts
as a decreasing homeomorphism in H. Then the fired point set of 6(g) in U is
exactly the union of 0seQ and 0scQ’; the points in 0seQ are repelling fired points,
those in 05,Q’ are atlracting and they alternate in U. There is a unique compact
complementary region of the union of Q and Q' in F* which is a compact finite
sided polygon.

Proof. First we will prove this result for the minimal sublaminations G™, G'"" of
G_,G.. Then we show that G_, G are minimal, that is G™ is equal to G_ proving
the result for G_ and G as well.

Let @ be a complementary region of V™ (which is the intersection of QJT with
F*) and 7 the number of ideal points of ). The proof of Lemma 6.6 shows that
the action of 8(g) on each component of

U —05Q

is a contraction with a single fixed point. This is because each component of the
boundary of @ (a geodesic in F'*) is a leaf of V™. This shows that there are exactly
27 fixed points of 8(g) in U. Let l; be a boundary leaf of @ and Iy another leaf
asymptotic to it, defining the common ideal point w; — a repelling fixed point of
0(g), see Fig. 12. Let J; be the complementary interval of 0.Q in U defined by
l1 and similarly define J5. Let

pj in & NV with p; — w;y.

Let v; be the leaves of V™ through p;. Since the angle between v; and [y is
bounded away from 0 and 7 the endpoints of v; are eventually in the union of J;
and .J; and close to w;. Let v be one such leaf. Then 0(g")(v) is a leaf of V"
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Figure 12. How one lamination forces the structure in the other lamination. For
viewing purposes the sides of Q" are dashed.

and as n converges to 400, the endpoints of 8(¢™)(vy) converge to the fixed points
y1,y2 of 8(g) in Jy, Jy respectively, see Fig. 12. As V" is a lamination in F'* this
produces s a leaf of V" with ideal points y1,y2. Also 6(g)(s1) is equal to s;.

In the same way associated to any ideal point w; of @ we find s; leaf of V™.
Consecutive s;’s are asymptotic, creating a finite sided ideal polygon Q" with the
same number of sides as @ and Q' invariant under 6(g). If there is any leaf of
V™ in the interior of Q' it would be isolated in V™ contradiction. Hence Q' is
a complementary region of V™. This proves the conclusion of of Lemma 6.11 for
V™ and V™.

This analysis implies that G_ is minimal and so equal to G”". Otherwise there
is @ complementary region of V™ left invariant under 6(g) with g non-trivial in
71 (M) and [ a leaf of V_ in the interior of Q). Hence @ has at least 4 ideal points.
Let @’ be the associated complementary region of V™ — by construction it has at
least two ideal points on each component of U — I, let py, p2 in one component and
pa, pa in the other component. The p; are all fixed by 6(g). Consider a sequence
of ideal quadrilaterals R; converging to [ which are the bottoms of a sequence of
distortion parallepipeds. Then one can show that the associated tops S; have cross
ratio bounded away from 1 — the fixed points p1,p2 and p3,ps of 6(g) in @’
keep the quadrilateral S; from being too thin in the other direction. The S; are
trapped between two walls

(pipz x R) and  (p3pz x R).

These walls are invariant under g, so the cross ratios (with the correct order)
cannot get too close to 1. This contradiction shows that G™ is equal to G_, that
is G_ is a minimal lamination.

Similarly G, is minimal. As we already proved the results for G™ and QT this
finishes the proof of Proposition 6.11. ([l
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Before producing the transversal flow we check the non-orientable situations:

Proposition 6.12. Suppose that F is transversely oriented and R-covered with
hyperbolic leaves and that M is homotopically atoroidal. Then there are lamina-
tions by geodesics G, G_ transverse to F and transverse to each other and which
satisfy the conclusions of Lemma 6.11.

Proof. The difference here is that M may be non-orientable. The covering trans-
lations reversing orientation in M are exactly those which reverse orientation in
U, because F is transversely orientable. If M is orientable previous results apply.
Otherwise let M5 be the orientable double cover so m1(M>) is a normal subgroup
of index 2 in 71 (M). Using that Mj is homotopically atoroidal construct the lam-
inations G* ,G% in M, as before. Let f in my(M) which is orientation reversing.
It induces an involution f; of My so that M = Ms/f.

We claim that f leaves invariant the laminations 5_ , éj_ Lift F to Fq in M,.
Notice that the universal circle is the same for F and F,. Let

V.-G nF* V,=G nF*

as before. Suppose that 6(f)(V_) is not equal to V_. Since V_ is a minimal
lamination in F'* with no isolated leaves and finite sided complementary regions,
then 6(f)(V_) has some transverse intersection with V_. Let Q be a complemen-
tary region of V_ with a boundary leaf [ and a leaf I’ of 8(f)(V_) intersecting {
transversely. Let g be a non-trivial covering translation in w1 (M) with 0(¢)(Q)
equal to @ and fixing all ideal points of Q. Assume that g acts as a decreasing
homeomorphism of H. The arguments in the proof of Proposition 6.11, show that
the sequence of geodesics #(g™)(I') converges to a geodesic I” which is asymptotic
to a leaf r of V.. This is because the ideal points of [” are attracting fixed points
of 8(g), so the rays in {” are asymptotic to leaves in V.. We do not know a priori
that I” is a leaf of V., it could be a diagonal in a complementary component of
V+.

But since 71(M>) is normal in 7y (M), then for any h in 7{(Ms) it follows that
hf = fh' for some b’ in m1(M>). Hence

hf(G ) =fH(G )= f(G ).

So 71 (My) preserves f(é* ) and therefore 6(7i(Mz)) preserves f(V_). Hence

0(g")(I") € f(V-) and I" € f(V_)

also. Since r in Vi and [” in 8(f)(V_) are asymptotic, then taking limits this
implies that 0(f)(V_) and V, share a leaf. But f(G") and G% are minimal so
O(f)(V_) is equal to V. However leaves in 8(f)(V_) are still limits of bottoms
of sequences of distortion parallelepipeds. As in the proof of Proposition 6.7 this

contradicts the properties of leaves of Vi (that is they are limits of tops of sequences
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of distortion parallelepipeds), because 6(f)(V_) is equal to V.. We conclude that
ONV) =V, 0(NH(Vy)=Vy, so f(G-)=6G_, f(G:)=0..

Therefore G* ,G* are invariant under fo and induce laminations G_,G in M

which are transverse to F and to each other and satisfy the properties of Lemma
6.11. This finishes the proof of Lemma 6.12. [l

Remark 1. By Proposition 6.8 the lamination G_ is never a foliation. Also in
the atoroidal case the complementary regions of G_ are solid tori (or solid Klein
bottles). Therefore G_ is a an essential lamination [Ga-Oe| and it is a genuine
lamination [Ga-Kal], that is, complementary regions are not I-bundles.

A theorem of Gabai and Kazez [Ga-Ka] then implies that:

Corollary 6.13. If M is aspherical and has an R-covered foliation, then M satis-
fies the weak hyperbolization conjecture: either there is a Z @ Z subgroup of w1 (M)
or w1 (M) is Gromov negatively curved.

Since M is irreducible [Ro] there are many important consequences for the
geometry of M. In particular M is conjecturally hyperbolic [Th4].

Remark 2. The final case to be considered is F not transversely orientable. Lift
to double cover M’ so that the lifted F’ is transversely orientable. Using the
Proposition 6.12 produce laminations G_, G in M’. Let B be 71(M’) and f in
(71(M) — B). Then f reverses orientation in H. Hence leaves of f(V_) are now
the limit of thin quadrilaterals which get distorted when moving down transverse
to F. The same arguments as in the previous proposition show that

0F)(V) =V, and 0(f)(V})=V.,

that is, f switches the invariant laminations. This is because f reverses the ori-
entation to ‘H so something which is limit of bottoms of sequences of distortions
parallelepipeds, has image under 6(f) which is the limit of tops of sequences of
distortion parallelepipeds. This would produce a non-orientable line field in the
intersection of the two laminations in M, which is tranverse to F. We think this
situation in fact cannot occur, but at this point we cannot rule it out. In any case
M has a finite regular cover M’ with an essential lamination G_. Remark 1 shows
that 71 (M’) is negatively curved in the large and so is 71 (M), because 71 (M’) has
finite index in 7y (M) [Gr].

Remark 3. If there is a Z @& Z subgroup of m1(M), it can be represented by
an ¢mmersed incompressible torus 7" which is in general position with respect to
F. Following classical ideas of Thurston [Thl], Roussarie [Rou] and more recently
Gabai [Gab], it follows that T" can be put in tight position with respect to 7. As F
is R-covered and Reebless it follows that F is taut [Feb, Go|. Given that F is taut
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Gabai [Ga5] showed that 1" can be homotoped to be either contained in a leaf of F
or transverse to F (here 7' may fail to be embedded!). Taut is used to avoid circles
of tangency. In the first case not all leaves of F are hyperbolic. In the second
case T represents a region in leaves whose geometry is only boundedly distorted
moving tranversely to the foliation — this explains the dichotomy mentioned in
the introduction.

7. The transverse pseudo-Anosov flow

Here F is a transversely oriented, R-covered foliation with hyperbolic leaves; M
homotopically atoroidal. By section 6 there are universal laminations by geodesics
G.,G_, transverse to F and to each other. We use the notations and constructions
from the previous sections. A complementary region @ of V_ is an ideal polygon
and has associated complementary region Q' of Vi, producing a complementary
region

P=Qnq@ of F*—(V.,UV)

with compact closure. This region has at least 6 boundary sides, see Fig. 13, a;
and there is g in 71 (M) with 6(g) leaving both @ and @’ invariant, hence also
leaving their intersection invariant. In M these produce complementary regions of
G, UG_ which are solid tori or solid Klein bottles. They are homeomorphic to

Px1/n,

where 7 is a homeomorphism of P. All other complementary regions P’ of V_UV,
are in “cusps” of V_ and V., hence are relatively compact quadrilaterals in F™.
Up to the action of 71 (M) there are finitely many complementary components of
(V_U VL) in F* with 6 sides or more,

There is a flow transverse to F defined in the intersection of G and G_: just
consider the orientable line field which is the intersection of leaves of G, G_. Now
collapse the complementary regions of G, U G_ along leaves of F to produce 2
invariant singular foliations in M. In F* each closure of complementary region of
V_ UV, collapses to a point. This produces a flow ® in M which is transverse
to F. The collapsing of G, produces the singular foliation F* (unstable) and G_
produces F* (stable). This operation of collapsing along leaves was described in
great detail in Mosher’s articles [Mol, Mo2]. A complementary region of V_ with
p sides (see Fig. 13, a) blows down to a p-prong singular leaf of F*in F* see Fig.
13, b. These complementary regions are periodic under some 6(g) with g in = (M)
and therefore produce closed orbits of ® in M. The local cross section is given
in Figure 13, b. All other points in M are topologically non-singular for the flow
® and foliations F°, F*. The flow lines of ® are “tangent” to F*, F*°. Since the
laminations G_, G are minimal it follows that all leaves of F° and F" are dense
in M. There is a homotopy equivalence § : M_— M preserving leaves of F and
sending G4 to F*, G_ to F®°. There is a lift £ : M — M preserving leaves of F
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blow down
>

(@)

Figure 13. a. Complementary regions of the laminations, b. They blow down to the the
standard picture of periodic singular leaves.

and moving points a bounded distance.
We now show that ® is a pseudo-Anosov flow.

Definition 7.1. (topological pseudo-Anosov) A flow ¢ in a manifold N? is a topo-
logical pseudo-Anosov flow if there are no point orbits of ¢ and orbits of ¢ are
contained in two (possibly singular) foliations £°, £* stable and unstable satisfying:

1 — All flowlines in a leaf of £° are forward asymptotic, all flow lines in a leaf
of £ are backward asymptotic.

2 — The (topological) singularities of £%,E" are all of p-prong type. The sin-
gular locus is a finite union of closed orbits of ¢ and p-local leaves of £° about this
singular orbit and similarly for £*.

3 — The foliations £°,&" are transverse to each other and intersect exactly
along the flow lines of .

The flow ® constructed above is transverse to F and its flow lines are contained
in leaves of F*, F*. Under a small perturbation so that & is still transverse to F we
can assume that: the orbits of ® are C' and leaves of F°, F* are C'! submanifolds
in the complement of the singularities and in the singularities we have a standard
topological p-prong picture. We stress that is not clear whether these flows can be
made “smooth” pseudo-Anosov as defined by Mosher in [Mo2]. In particular it is
not clear whether one can define the strong stable/unstable foliations associated
to the flow.

Notice that for any g in m (M), 6(g) acts on V_ and V. hence acts on the
points of the intersection. This action is still denoted by 8(g). A leaf of F* or Fs
is periodic if it contains a periodic orbit of ® or the lift of a periodic orbit. Given
z € M let W*(z) be the leaf of F* containing = and likewise define W*(z). Let
F*, F*. d be the lifts to M. Ify e M define ﬁ//“(y)7 ws (y) similarly to the above.
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Proposition 7.2. (topological hyperbolicity) For any two points z,y in a leaf
of F* their orbits are asymptotic in future time. In negative time the distance
between orbits converges to infinity, in the intrinsic metric of EJ. The opposite
behavior occurs in leaves of F*.

Proof. The dynamics of ® is entirely encoded by the dynamics of the orientable
line field G, N G_. This is what is going to be used here. We first analyse the
case that W(E) contains a smgular orbit of ®. Then F is a blow down of p leaves
of g, in M. Let L in Q be one of them. The intersection [ of L and F*
is in the boundary a complementary region @ of V_ and there is an associated
complementary region @’ of V.. There is g in 71 (M) non-trivial, with g acting as
a decreasing homeomorphism of H and #(g) fixing only 95Q, 9xQ’ in SL (F*),
so that points in 0,Q’ are attracting and points in 0,.Q are repelling. This
dynamics of 8(g) is the fundamental point here. There are two boundary leaves of
Q' intersecting L, let s be one of them. Let

S=(sxR), a=SNL and z=(SNL)NF*=snl.
Also
lCcoQ isaleafof V_, sC Q" isaleafof V., sni+#£0.

Then 0(g)(s) = s and g(S) = 5. The map g is associated to the closed orbit
o = 7(&) in w(L). Orbits of ® in L correspond to leaves of G, intersecting L, so
let
He§, with HAL=7,

orbit of the flow. Start with the intersection ag of H and L at level I* — which
is a point in {. Go up to g~ '(F*) along the flow line 5. Mapping the intersection
of ¥ and g~ (F*) down by g produces a point a; in [ — this is like the first return
map associated to the closed orbit a. The action of #(g) in SL (F*) moves the
ideal points of of H N F™* closer to the ideal points of s, because the ideal points of
s are in 05,@Q’ and are attracting for 8(g). This implies that ay is closer to z than
ag is. This is exactly the same argument as in step 7 of the proof of Theorem 5.1.
Iterating this procedure the images in [ converge to z, that is,
an=g"(y N g " (F"))

converges to z. Hence in M the orbit 7 is asymptotic to the orbit & in the forward
direction as one moves up. All orbits in L on that side of S are asymptotic to
the orbit @. Orbits through the corners of Q N Q’ collapse to a single orbit in the
blow down. Hence all orbits are asymptotic to the closed orbit in #(E) after the
collapsing. This proves the result for singular leaves. The key is the action of 0(g)
inU.

If now ( is any periodic orbit of ®, which is non-singular then C is the inter-
section of two leaves of F* and of F" Wthh come from unique leaves

L of G and S of G,.
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Figure 14. If flow lines do not forward converge together there is a lack of explosion in
the backward direction.

Let
Il=LNF* s=8NnF* a=8nNnL

and let by, by the ideal points of . Let g in w1 (M) non-trivial with g(a) equal to
& so that g leaves both components of L — S invariant. Then 6(g) has at least
4 fixed points and therefore acts freely in H, assume as a decreasing homeomor-
phism. Given that, use an analysis similar to the proof of Lemma 6.6: let R; be
quadrilaterals converging to a leaf [y of V_ near but not equal to {. The analysis
of Lemma 6.6 shows that

6(g) is a contraction in that interval of U — {b1,bo}.

Therefore 6(g) has exactly 4 fixed points in & which are the ideal points of [ and
s. Then the same analysis as in the singular case yields that all orbits in L are
forward asymptotic to a so after collapse all orbits are forward asymptotic to .

This takes care of periodic leaves of F = Fu. We now deal with general leaves.
Notation: if z,y are in the same leaf of the intersection of F and F*, let d'(z,y)
be their distance along that leaf. Consider z,y in the same leaf F'N E where I is
a leaf of F and F a leaf of F?. If the orbits of & through z,y are not asymptotic
in future time we can find positive ag so that

Dy, (z), Ds,(y) € Fie F, d(®s(x), Bs,(y)) > a0 and t;,8 — +oo.

Hence we can find segments (3; in the intersection of leaves of F* with leaves of F
with endpoints z;,y; in leaves of F which have length of 3; converging to ap and
so that

4, (2:),® o, (y:) €F, and d'(D_y, (1), P ,(w:)) < a1, for some fixed a; > 0.
Up to subsequence there are covering translations h; with h;(3;) converging to So.

Since a periodic leaf of F* is dense in M let vy orbit of ® with 7 () periodic and
non-singular so that W“(’y) intersects 3y, see Fig. 7. Hence for i big W“(’y) and
hi(B;) intersect. Making [3;, By smaller if necessary we may assume that: for any
pin hy(B;), the leaf W*(p) does not intersect a singular orbit between W*(h;(3;))
and W*(y). Bquivalently W*(p) intersects W*(y). Now flow back. The points
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in By flow back very near 171/75(7) and from then on always near Ws(y), see Fig.
14. So for i big h;(3;) also does. Flowing backwards in W#(y), the segments

which intersect v in the interior blow up, because all orbits in W#() are forward
asymptotic to v and WS('y) is periodic — hence the lengths will blow up past 2a,
and will never again be smaller than 2a;. Therefore nearby segments obtained
flowing back pieces of h;(3;) will also have big length. But the segments h;(3;)
flow back to segments of length smaller than a; for arbitrarily long time when i is
big — hence this is a contradiction. Hence orbits in E are forward asymptotic.
The same argument shows that flowing in the negative direction blows up
distance along stable leaves without bound — because this happens in periodic
leaves and then use the argument above of the intersection with W*(v). This
finishes the proof of the proposition. Il

Finally we get the metric pseudo-Anosov property for the flow ®.

Proposition 7.3. (metric hyperbolic) For every positive aq, there is positive ag
so that: let B be a segment in the intersection of a leaf of]? with a leaf of Fu of
length at least as. Flow forward every point of 8 to obtain another segment 3" in
another leaf ofj?. If every point of B moves at least as flow length, then the length
of the final segment is at least double the length of 3.

Proof. Otherwise get segments 3; so that there are longer and longer times so that
length of flow of 3; is smaller than 2ay. Call these segments in leaves F; of F to be
(;. Then the ¢; have length less than 2as and it takes longer and longer for them
in the negative direction to decrease to length as. The arguments in the previous
proposition disallow this. This finishes the proof. (Il

Remark. A very important question is to analyse geometric properties of the
transverse flow ®. For instance is the flow quasigeodesic? That means flow lines
of & are uniformly efficient in measuring distance [Fe2]. This has several im-
portant consequences, for instance the continuous extension property for leaves
of F [Ca-Th|. When G is an uniform foliation, it is very easy to see that & is
quasigeodesic, because @ is regulating [Th7]. In general this is an open question.
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