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Foliations topology and geometry of 3-manifolds: R-covered
foliations and transverse pseudo-Anosov °ows
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Abstract We analyse the topological and geometrical behavior of foliations on 3-manifolds

We consider the transverse structure of an R-covered foliation in a 3-manifold where R-covered
means that in the universal cover the leaf space of the foliation is Hausdor® If the manifold is
aspherical we prove that either there is an incompressible torus in the manifold; or there is a

transverse pseudo-Anosov °ow It follows that manifolds with R-covered foliations satisfy the

weak hyperbolization conjecture
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1 Introduction

In this article we analyse the topological and geometrical consequences that foli-
ations induce on 3-manifolds More speci¯cally we study the transverse structure

of an R-covered foliation in a 3-manifold where R-covered means that in the

universal cover the leaf space of the foliation is Hausdor® When the manifold is
aspherical we prove that either there is a region in the leaves where the geometry
does not change much transversely yielding an incompressible torus in the man-
ifold; or there is a transverse pseudo-Anosov °ow which captures the directions

of maximal stretch/contraction transverse to the foliation Hence if the manifold
is atoroidal and aspherical there is always a transverse pseudo-Anosov °ow As a
consequence manifolds with R-covered foliations satisfy the weak hyperbolization
conjecture

The goal of this article is to understand the geometrical/topological implica-
tions of the existence of a foliation in a 3-manifold First we review some basic
facts of foliation theory The main villain in 3-manifold foliation theory is the

Reeb component: a foliation of the solid torus where the boundary is a leaf and
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the interior leaves are topological planes spiralling towards the boundary leaf
Reebless foliations that is those without Reeb components are extremely use-
ful in understanding the topology of 3-manifolds: fundamental work of Novikov
and later Rosenberg Palmeira showed that leaves inject in the fundamental group
level incompressible leaves [No] the manifold is irreducible that is every em-
bedded sphere bounds a ball [Ro] and the universal cover is homeomorphic to
R3 [Pa] Such foliations have excellent properties and they re°ect the topology
of the manifold On the other hand Gabai constructed Reebless foliations in any
irreducible oriented compact 3-manifold with non-trivial second homology and
derived fundamental results in 3-manifold theory such as property R and many
other results [Ga1 Ga2 Ga3] Roberts also constructed many Reebless foliations

in large classes of 3-manifolds which are not Haken [Rob] and jointly with Delman
used this to prove property P for alternating knots [De-Ro] Notice that the Reeb-
less property is crucial here since any closed 3-manifold admits a codimension one

foliation [Li Wo] most of which are not useful for topology { for instance S3 has

many foliations with Reeb components

Our focus will be on the transverse geometric structure of a Reebless foliation
Thurston [Th8 Th9 Th10] recently showed that foliations are much better be-
haved in the transverse direction than was previously expected: nearby leaves stay
nearby forever in many directions of the leaf This gives a tremendous boost in un-
derstanding the global structure of foliations and it aids the understanding of the

geometry of the foliation and the manifold in connection with the geometrization
conjecture [Th4]

There is a natural breakup into two cases here: the lifted foliation in the

universal cover is a foliation by planes or spheres and the leaf space of this lifted
foliation is a 1-manifold which may be Hausdor® or not In a lot of situations

the question of Hausdor®/non-Hausdor® turns out to play an important role and
have strong consequences [Ve Ba1 Ba2 Ba3 Fe2 Fe3 Fe4] If the leaf space is
Hausdor® then it is homeomorphic to the real numbers R and the foliation is said
to be R-covered [Pl2 Fe2]

In this article we analyse R-covered foliations in 3-manifolds { the simplest
case in studying the global structure of foliations in the universal cover Examples

of this large class of foliations are:
1 ¯brations over the circle;
2 foliations de¯ned by non-singular closed 1-forms;
3 stable/unstable foliations of large classes of Anosov °ows in 3-manifolds

[Fe2];
4 slitherings over the circle as de¯ned by Thurston [Th7] - roughly a slithering

is a map from the universal cover of the manifold to the circle S1 which is a ¯bration
equivariant under covering translations inducing a foliation in the manifold;

5 Uniform foliations: a foliation is uniform if any two leaves in the universal
cover are a bounded distance from each other the bound depends on the pair of
leaves { they are closely related to slitherings [Th7];
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6 Many examples R-covered foliations not induced by slitherings [Cal2]
On the other hand Reebless ¯nite depth foliations [Ga1 Ga3] are not R-

covered unless the compact leaf is a ¯ber of M over the circle [Go-Sh]
The case of ¯brations is very illuminating and is a precursor of the whole idea of

analysing the transverse geometry of foliations In a seminal work Thurston proved
that in the aspherical case either there is an incompressible torus transverse to the

¯bration or there is a suspension °ow which is a pseudo-Anosov °ow producing
singular stable/unstable foliations [Th2 Bl-Ca] He went on to prove that the

pseudo-Anosov case yields hyperbolic manifolds establishing a deep relationship
with geometry [Th3 Th4 Th5] We concentrate on the ¯rst step Thurston's result
can be summarized as follows from the foliations point of view: any transversal
°ow to the ¯bration produces homeomorphisms between leaves There may be a

region in the ¯ber whose geometry stays bounded under the transversal °ow ¡ this
produces an invariant curve and a transverse incompressible torus The second
option is that transversely there will be unbounded distortion of the geometry
everywhere and this produces a transverse °ow which is pseudo hyperbolic { a
pseudo-Anosov °ow

The goal of this article is to extend this result to general R-covered foliations:

Main theorem Let F be a transversely oriented R-covered foliation in M3

closed aspherical Then either there is a Z © Z in ¼1 M or there is a singular
pseudo-Anosov © transverse to F

Calegari [Cal1] has independently also proved the main theorem Many of the

tools used by Calegari are similar to those used in this article and the strategy for
the proof of a preliminary result follows general ideas of Thurston [Th9 Th10]
which have never been written up On the other hand this article is more complete

than [Cal1] and contains full details This work was done independently of [Cal1]
The pseudo-Anosov °ow © is singular that is it has p-prong singular orbits

with p greater or equal than 3 In particular it is not an Anosov °ow See also the

remark after corollary 6 10
The aspherical condition is only used to rule out manifolds ¯nitely covered

by S2
£ S1 see below As in the ¯bering case this shows that either there is a

region where the geometry varies boundedly in the transverse direction or there

are directions of maximal stretch/contraction everywhere

Thurston produced a transverse pseudo-Anosov °ow in the case that the folia-
tion is associated to a slithering which implies that the foliation is uniform [Th7]
General R-covered foliations need not be uniform: an easy example is the stable
foliation of an Anosov °ow which is the suspension of an Anosov di®eomorphism
of the torus Thurston asked whether any R-covered foliation in atoroidal man-
ifolds had to be uniform This is not true in general: recently Calegari [Cal2]
has produced many examples of R-covered non-uniform foliations in hyperbolic
3-manifolds In the uniform situation Thurston used the existence of projectively
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invariant measures in the appropriate setting to the produce transversal lamina-
tions to the foliation The proof in the general case is completely di®erent and is
more topological

We now explain the basic ideas in the proof First of all the intrinsic geometry
of the leaves plays a fundamental role in our analysis Two manifolds can be

uniformized to be spherical euclidean or hyperbolic and to a great extent the

same is true for 2-dimensional foliations This study started with Reeb's result
[Re] on stability of compact leaves Then there was the seminal work of Plante

[Pl1] on holonomy invariant transverse measures which was extended by Sullivan
[Sul] and put in the context of spaces which are negatively curved in the large by
Gromov [Gr] As a result there is a fundamental trichotomy for general foliations

of 3-manifolds:
1 There is a sphere or projective plane leaf
2 There is a holonomy invariant transverse measure of 0 Euler characteristic

approximated by a torus either transverse or in a leaf ;
3 Leaves are uniformly Gromov negatively curved in the large

In case 1 Reeb showed that M is ¯nitely covered by S2
£ S1 with the product

foliation [Re] In case 2 if the foliation is Reebless then the torus in question is
incompressible and the manifold is toroidal As spherical and toroidal manifolds

are in some sense rare this implies that 3 is the generic case if F is Reebless In
addition if F is Reebless then in cases 1 and 2 the manifold M can be decomposed
into geometric pieces [Th3 Th4 Th5] and is well understood More recently
Candel [Can] showed that in case 3 there is a metric in the manifold which makes

all leaves hyperbolic constant Gaussian curvature equal to ¡1 Therefore case

3 is the remaining case to be analysed in the proof of the main result
A ¯bration over the circle is very nice because any transverse °ow induces

homeomorphisms between leaves in M or in the universal cover fM This homeo-
morphism was used to analyse the transversal distortion of the geometry of leaves

General foliations have holonomy so it only makes sense to look for homeomor-
phisms between leaves in the universal cover This is not possible for non-R-
covered foliations so the R-covered property is necessary here One of the biggest
di±culties in general is the lack of a transversal °ow which gives homeomorphisms

between leaves in the universal cover Any transversal °ow gives local homeomor-
phism between subsets of leaves in fM but it is far from clear they should give global
homeomorphisms In fact there are many natural counterexamples: for instance

let ª be a geodesic °ow on the unit tangent bundle of a closed hyperbolic surface

R so ª is an Anosov °ow [An An-Si] Let F be the weak stable foliation of ª
which is R-covered and choose the transversal °ow to be generated by the strong
unstable foliation of ª This transversal °ow produces local homeomorphisms

between leaves in fM which de¯nitely are not global homeomorphisms [Ba1 Fe2]
But all is not lost For foliations with hyperbolic leaves one useful strategy is

to ¯rst analyse the variation of distance between leaves of
eF

in fM to obtain rela-
tionships between ideal boundaries of leaves Each leaf of

eF
has a circle at in¯nity
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Thurston [Th9 Th10] explained how to use contracting directions between di®er-
ent leaves to locally and then globally collate these individual circles at in¯nity
into a single universal circle which encodes all circles at in¯nity For R-covered
foliations it turns out the local stitching between di®erent circles at in¯nity is in
fact a homeomorphism of ideal boundaries There are two cases: if leaves are a
bounded distance from each other in fM uniform case this yields a quasi-isometry
between leaves and hence a homeomorphism between ideal boundaries If leaves

are not a bounded distance from each other this forces an arbitrary pair of leaves

of
eF

to contract together in a dense set of directions also producing a homeomor-
phism between circles at in¯nity of leaves of

eF
These boundary identi¯cations

are group equivariant The common identi¯ed circle is called the universal circle
of the foliation in this setting [Th9 Th10] Universal circles for foliations with
hyperbolic leaves were introduced by Thurston recently [Th9 Th10] In general
these ideal maps between circles at in¯nity come from maps de¯ned only between
strict subsets of leaves of

eF
even for R-covered foliations

This identi¯cation of circles at in¯nity can be used to produce natural maps

between the entire leaves in the universal cover Given any two leaves F; E of
eFthere is a homeomorphism ¯ between the circles at in¯nity of F and E If ¯ can

be continuously extended to an isometry between F and E one calls ¯ a MÄoebius

map In general one can quantify how far ¯ is from a MÄoebius map: one way is to
look for the best possible extension of ¯ to a map from F to E { one such tightest
extension was called an earthquake map by Thurston [Th6] Another way is to
use the universal circle and check the distortion on the geometry of various ideal
quadrilaterals in leaves of the foliation In either case one possibility is that the

distortion in geometry measured via earthquakes or ideal quadrilaterals is in some

sense globally bounded This corresponds to the notion that the geometry does not
change very much in the transversal direction and yields an incompressible torus

in the manifold The other option is that the analysis of the distortion produces

either a Z © Z subgroup of the fundamental group ¼1 M of M or a transverse

lamination to F { this result was announced by Thurston in 1997 [Th9 Th10]
We analyse the second option in much more detail here First we show that if

the homeomorphisms between circles at in¯nity are not uniformly bounded then
there is always a transversal lamination to F that is in this case even if there is
Z © Z subgroup of ¼1 M there will be one transverse lamination which encodes

regions of maximal distortion Thurston had obtained either one or the other
conclusion We then analyse the atoroidal case in much more detail: we show there

are in fact two distinct transverse laminations which have the behavior of stable
and unstable laminations These laminations are transverse to each other and ¯ll
M They intersect in an orientable 1-dimensional foliation producing a °ow in the

intersection of the laminations Collapse the complementary regions of the union of
the laminations to produce a °ow © in M The transverse laminations blow down
to singular foliations F

s; F
u which are shown to have \hyperbolic" behavior

so © is pseudo-Anosov In the ¯rst option of bounded distortion of geometry
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we prove a rigidity result: up to topological conjugation the foliation F admits

a transverse foliation which is a local isometry between leaves { a transversely
hyperbolic foliation [Ep Th3]

The laminations constructed here are genuine essential laminations [Ga-Ka]
Using results of Gabai and Kazez [Ga-Ka] it immediately implies the following

result also proved by Calegari [Cal1]:

Corollary Suppose that M aspherical supports an R-covered foliation F Then
M satis¯es the weak hyperbolization conjecture: either there is Z © Z < ¼1 M or
¼1 M is Gromov negatively curved

We mention a potential but extremely important possible use of the results

here In the atoroidal case above the geometrization conjecture predicts that the

manifold is hyperbolic [Th4] The pseudo-Anosov °ow can be used to compare

the geometries of leaves of
eF

and this can possibly be used as a starting point to
geometrize M A similar approach was successful in the case of ¯brations [Th5]

The °ow © constructed here is is regulating for F This means that every orbit
of

e
© intersects every leaf of

eF
and vice versa: there is a topological product

picture in the universal cover Hence
e
© produces global homeomorphisms between

leaves of
eF

{ as was desired in the initial analysis of the R-covered case In [Fe5]
we analyse when a transverse pseudo-Anosov °ow to an R-covered foliation can
fail to be regulating It turns out that this can only occur if F itself was an
R-covered stable foliation of a °ow

In [Fe7] we use the results of this article and of [Fe5 Fe6] to prove that except
in the case of R-covered Anosov foliations then up to topological conjugacy there

is only one transverse pseudo-Anosov °ow transverse to the R-covered foliation
Hence our construction is in fact canonical

We thank Bill Thurston for sharing with us his wonderful results in particular
his construction of the universal circle for foliations and transverse laminations

We thank Danny Calegari for conversations and ideas concerning R-covered foli-
ations We also thank the referee for an extremely careful reading with numerous

corrections and suggestions which greatly improved the presentation of the paper
Most of the research was done while the author visited Princeton University and
we thank this institution for its hospitality

2 Uniform foliations compact leaves and minimality

Throughout the article F will denote a 2-dimensional foliation of a closed 3-
manifold M The universal cover of M will be denoted by fM and

eF
is the lifted

foliation to fM The map

¼ : fM M
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will always denote the universal covering map The fundamental group ¼1 M is
identi¯ed with the group of covering translations of fM For any subset B of fMlet I B denote the isotropy group of B which is the subgroup of ¼1 M leaving

B invariant Finally H is the leaf space of
eF

which is a topological space

De¯nition 2 1 [Fe2] F is R-covered if H is homeomorphic to the real num-
bers R

A weaker property is equivalent to R-covered:

Lemma 2 2 F is R-covered if and only if H is Hausdor®

Proof Assume ¯rst that H is Hausdor® Suppose there is a closed curve ° in

fM which is transverse to
eF

Then ° bounds an immersed disk D which can
be put into general position with respect to

eF
[Ha No So] An analysis of the

induced singular foliation in D shows there are leaves ®1; ®2 so that ®1 is a
closed curve and ®2 spirals towards ®1 Let Fi be the leaf of

eF
containing ®i

Then F2 limits on F1 so any neighborhood of F1 contains F2 and hence H is not
Hausdor® contradiction Hence any transversal curve to

eF
projects injectively to

H so H is a 1-manifold with a countable base It is also Hausdor® so it can only
be the circle or the real line In the circle case construct a closed transversal to

eF
contradiction Hence F is R-covered The converse implication is immediate

¤

Here is how Reeb components interact with the R-covered property: if F is
R-covered then F is Reebless unless M is ¯nitely covered by S2

£ S1 [Go-Sh]
The restriction is necessary: glue two Reeb components along their boundaries to
produce S2

£ S1 with an R-covered foliation
Most of the time we assume that F is transversely orientable The non-

orientable case usually follows from some additional considerations

De¯nition 2 3 foliated I-bundle A foliated I-bundle in dimension 3 is a pair
N; G with N homeomorphic to a product R £ I where R is a surface which

may be compact or not and may have boundary or not; and I is the unit interval
In addition G is a foliation in N so that:

¡ R £ f0g and R £ f1g are leaves of G;

¡ G is transverse to the I-¯bers in N including @R £ [0; 1]
Up to topological conjugacy the foliation G is completely determined by the mon-
odromy which is a map from ¼1 R to the group of homeomorphisms of I Some-
times we abuse the notation and say that N or G is a foliated I-bundle

A fundamental concept here is that of a uniform foliation:

De¯nition 2 4 [Th7] A foliation F is uniform if given any two leaves E; F of
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eF
there is a positive constant b so that the Hausdor® distance between E; F is

smaller than b Explicitly for any point x of E there is y in F so that d x; y is
less than b and conversely The bound depends on the pair E; F

Obviously it is not at all important that leaves be hyperbolic to de¯ne uniform
foliations In the case of R-covered foliations the existence of compact leaves

implies that the foliation is uniform:

Lemma 2 5 compact leaves Let F be an R-covered foliation in M3 closed and
not ¯nitely covered by S2

£ S1 Then F is taut In addition if F has a compact
leaf R then F is uniform

Proof If necessary lift to a ¯nite cover and assume that F is transversely orientable
and M is orientable If the lifted foliation is taut then so it the original one

The uniform condition concerns objects in the universal cover so the same holds

concerning this property Since F is R-covered and M is not ¯nitely covered by
S2

£ S1 then F is Reebless as shown by Goodman and Shields [Go-Sh]

With the orientation conditions if F is not taut then that there is a codimen-
sion 0 submanifold V bounded by a union T1; : : : ; Tn of tori so the transversal
°ow is say outgoing along the boundary [Go] Hence there are no transversals
connecting distinct lifts of the Ti to fM As F is R-covered any two leaves of

eF
are

connected by a transversal The only possibility is that n 1 and there is only one

lift of T1 to fM Hence ¼1 T1 surjects in ¼1 V But if T1 is incompressible this
is impossible by Theorem 10 5 of [He] But F is Reebless so T1 in incompressible
This contradiction shows that F is taut

If in addition F has a compact leaf R then Goodman and Shields proved that
R is the ¯ber of a ¯bration of M over the circle [Go-Sh] this uses F transversely
orientable Cut M along R to produce a manifold M1 homeomorphic to R £ I
with an induced foliation F1 We want to show that F1 is a foliated I-bundle
Let A be an annulus in M1 of the form ° £ I where ° is a simple closed curve in
R Isotope A to be in general position with respect to F1 By Euler characteristic
arguments A has no singularities Since F is taut Gabai [Ga5] showed that A can
be made transverse to F1 Cut along A to produce a new manifold with a new
foliation transverse to the vertical boundary Continue cutting along transverse

annuli and disks until obtaining a union of manifolds homeomorphic to D2
£ I

where D2 is the closed disk The foliation in the boundary of these balls has a

tangential part D2
£ @I and a transverse part @D2

£ I The transverse part has

no holonomy because this is a ball Therefore up to topological conjugacy this
is a foliation by horizontal disks Conclusion: we can isotope F1 so that it is
transverse to the I-¯bers in M1 and hence F1 is a foliated I-bundle Glue back
along R and lift to fM As M1 is a foliated I-bundle it now follows that F is
uniform ¤
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When there are no compact leaves we can reduce to the minimal case:

Proposition 2 6 minimal case Suppose that F is R-covered does not have

compact leaves and its not minimal Then F can be collapsed to a minimal foli-
ation: there is a foliation F

0 which is minimal and which is obtained from F by
collapsing at most countably many foliated I-bundles of F to single leaves

Proof Suppose ¯rst that F is transversely orientable
Let Z be a minimal set of F By hypothesis Z is not a compact leaf and not

all of M This implies that Z intersects any transversal curve to F in a Cantor
set

Let U be a component of the complement of Z in M and
b
U the metric com-

pletion of U The interior of
b
U embeds in M and there is an induced map in

the boundary but the boundary may be a double cover of a leaf B0 of F In the

last case the leaf B0 will be isolated on both sides Since B0 is in a minimal set
it follows that B0 is a compact leaf This contradicts the hypothesis Hence

b
U

embeds in M
We claim that

b
U is a foliated I-bundle By the general theory of codimension

one foliations [Di] the set
b
U is equal to a union of two subsets K and A intersecting

only in their boundaries and satisfying:

² K is a compact connected codimension 0 submanifold of
b
U which is called

the core of
b
U

² A is a union of manifolds Qi which are homeomorphic to products Ri £ I
where each Ri is a non-compact connected surface with compact connected
boundary and F restricted to Qi is a foliated I-bundle see also [Ca-Co]

In addition in the induced metric the I-¯bers in Qi are very short so we can
choose them to be the transversal °ow segments of ©

Let
e
U be a component of ¼¡1

b
U Since

b
U embeds in M and is not all of M

then
e
U is not all of fM Therefore it has boundary components Then

e
U is closed

connected has non-empty interior and is not all of fM Since the leaf space of
eFis R then

e
U has leaf space which is a closed interval J Here it is fundamental

that F is R-covered Let L1; L2 be the boundary leaves of
e
U If an element of

the isotropy group of
e
U switched L1 and L2 then F would not be transversely

oriented contradiction It follows that the isotropy group of
e
U is the same as the

isotropy group of L1 or L2
Let now

¡ e
K be a component of ¼¡1 K contained in

e
U ;

¡ E be the intersection of
e
K and L1

¡ B1 be a component of E and let C1 ¼ B1 which is a subset of @K
If there is another component B2 of E then there is a curve ® contained in @B1
separating B1 from B2 in L1 But ® projects to a closed curve ¯ in @K Recall
that @K is equal to @A as subsets of

b
U and then ¯ is contained in an annulus

¯ £ I in @K The annulus ¯ £ I separates K from a component of A in
b
U The
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component C2 of ¼¡1 ¯ £ I containing ® separates
e
K from the component of

e
U ¡ C2 containing B2 Therefore the lift

e
K of K does not intersect B2 This is

a contradiction We conclude that E is connected and therefore equal to B1 As

any covering translation preserving
e
K also preserves E then it also preserves B1

It follows that the isotropy groups I B1 and I e
K are equal Therefore ¼1 C1

surjects in ¼1 K
But K is compact and irreducible so Theorem 10 5 of Hempel [He] implies

that K is homeomorphic to C1 £ I As in the previous lemma isotope the foliation
to be transverse to the I-¯bers in K This proves the claim that

b
U is a foliated

I-bundle
Notice that this discussion shows that there is a unique minimal set Z This is

because we just proved that the complement of Z is a union of foliated I-bundles

with non-compact bases Any leaf in the interior of the I-bundles will limit in
points that the boundary leaves also limit on that is they will have limit points

in Z But Z is a minimal set so the additional leaf is not part of a minimal set It
is fundamental in all of this discussion that F is R-covered { clearly these results

do not work in more generality
So we can consider the at most countably many components of M ¡Z There

is a positive number ² so that any two points in M which are less than ² apart
then their local leaves are connected by a very small transversal arc At most
¯nitely components of M¡Z may have thickness bigger than ² hence in the other
ones the transversal °ow already produces an I-bundle structure For the ¯nitely
many other ones change the original transversal °ow in the core part which is an

I-bundle to consist of the I-¯bers in the particular component This is done only
in ¯nitely many compact pieces { so we may assume the °ow is smooth Finally
blow down all the complementary regions of Z using the new transversal °ow to
produce a foliation F

0 Because the minimal set Z intersects transversals to the

original F in a Cantor set the collapsed object is still M with a foliation F
0 Also

F
0 is minimal { if there is a non-trivial minimal set of F

0 it would generate a
complementary component of Z which was not collapsed This ¯nishes the proof
in the transversely orientable case

Suppose now that F is not transversely orientable In any case choose a trans-
verse line ¯eld to F There is a double cover M2 and a lift F2 of F which is
transversely orientable The cover is normal and there is an involution f of M2
so that M is the quotient of M2 by f Certainly F2 is R-covered and the results

above work for F2
Let Z be a minimal set of F and Z 0 be its inverse image in M2 Let Z2 be a

minimal set contained in Z0 Then Z2 projects to a set in M which is closed and
contained in Z hence the projection is Z Furthermore f Z2 is also a minimal
set of F2 hence by the above discussion f Z2 equals Z2 This now implies that
Z2 equals Z 0 and then Z is the unique minimal set of F

Let U be a complementary region of Z0 which is an I-bundle One option
is that it projects homeomorphically to M and as above we can use I-¯bers to
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collapse this to a single leaf The other option is that it double covers a set in M
which may have one or two boundary components Isotope the I-¯bration in U so

that it is invariant under f ¡ one only needs to do this in the compact pieces of the

I-bundle Then one can collapse the resulting I-¯bration in M If the region has

only one boundary component then it collapses to a leaf which is not transversely
orientable The resulting foliation is minimal as above This ¯nishes the proof of
Proposition 2 6 ¤

Notice F is a blow up of at most countably many leaves of F
0 To prove the

main theorem if we ¯nd a subgroup Z © Z in ¼1 M we are done If we ¯nd a

pseudo-Anosov °ow transverse to F
0 then it pulls back by the blow up operation

to a pseudo-Anosov °ow transverse to F Hence from now on assume that F is
minimal if it does not have compact leaves

3 Ideal geometry and the universal circle

In order to prove the main theorem the remaining case is when the leaves are

Gromov hyperbolic Using Candel's theorem [Can] we assume each leaf of F
is hyperbolic ¡ notice the metric may vary only continuously in the transversal
direction [Can] Thurston explained how to locally stitch the circles at in¯nity of
di®erent leaves and then to globalize the local stitching to produce a universal circle
which encodes all circles at in¯nity [Th9 Th10] In the case of R-covered foliations

we show how to do the identi¯cations so that the local maps are homeomorphisms

between the circles at in¯nity

Remark In this section and the next there are no orientability conditions

If E; F are leaves of
eF

let E; F denote the set of leaves of
eF

separating E
from F As H is homeomorphic to R then if E; F are distinct the set E; F is
homeomorphic to an interval Let [E; F ] be the union of E; F and the two leaves

E; F Each leaf of
eF

is isometric to the hyperbolic plane H2 and has an ideal
circle at in¯nity S1

1
F We now come to a key object of our study:

De¯nition 3 1 cylinder at in¯nity Let F be an R-covered foliation with hy-
perbolic leaves Let

A [
F2 eF

S1

1
F :

which is the cylinder at in¯nity of
eF

{ the union of all ideal circles of leaves of
eF

Since F is R-covered then set wise A is an in¯nite cylinder S1
£ R First of

all we put a topology in A so that it is also homeomorphic to a cylinder
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Notation To be used throughout the article: given x 2 fM let F x denote the

leaf of
eF

containing x The same holds for x in M

Each geodesic ray in F x starting at x de¯nes a unique ideal point in S1

1
F x

giving a homeomorphism between the unit tangent bundle of F x at x and
S1

1
F x Let T1

eF
be the unit tangent bundle of

eF
Given any B ½ fM let

eFB be the union of leaves of
eF

which intersect B and

AB [
F2 eFB

S1

1
F :

This is particularly useful if B ¹ is a transversal arc to
eF

In addition if F is a
leaf of

eF
then dF denotes the path distance in F The term \open transversal"

will be used for a transversal to F or
eF

which is homeomorphic to an open interval
0; 1

Lemma 3 2 topology of A Let ¹ be an open transversal to
eF

Then T1
eF

re-
stricted to ¹ is homeomorphic to an open cylinder S1

£ 0; 1 This provides an
identi¯cation of A¹ with an open cylinder S1

£ 0; 1 and de¯nes a topology in A
making it homeomorphic to a cylinder The union fM [A has a natural topology
making it homeomorphic to D2

£ R where D2 is the closed disk and D2
£ ftg

correspond to the union F [ S1

1
F for F a leaf of

eF

Proof If ¹;¹0 are two transversals to
eF

so that
eF¹;

eF¹0 intersect we need to
show that the topology T¹ induced by ¹ in the intersection of A¹ and A¹0 is the

same as the topology T¹0 induced by ¹0 in this intersection By restricting to their
intersection we can assume that the sets A¹; A¹0 are equal

Since both topologies induced in A¹ are ¯rst countable it su±ces to consider
the behavior of sequences Consider a sequence yi i in N converging to y0 in T¹
Then yi are in S1

1
Fi for uniquely de¯ned leaves Fi which are in

eF¹ equal to

eF¹0 Let
xi Fi \ ¹; zi Fi \ ¹0:

Then the sequence Fi converges to F0 in H with x0 in F0 and F0 a leaf of
eF¹

Also

xi x0 in ¹ and zi z0 in ¹0:

For each i let li; si geodesic rays in Fi from xi; zi respectively with ideal point yi
in S1

1
Fi These come from identi¯cations of the unit tangent bundle to

eF
at

xi; zi with S1

1
Fi respectively Since the sequence yi converges to y0 in T¹ then

the directions of li at xi converge to the direction of l0 at x0
Notice yi converges to y0 in T¹0 if and only if the directions of si in Fi converge

to the direction of s0 in F0 We use a couple properties of the hyperbolic metric
Since xi converges to x0 and zi converges to z0 then dFi xi; zi is bounded above
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for all i In addition the rays li; si for i ¸ 1 de¯ne the same ideal point yi in
S1

1
Fi Hence li and si are asymptotic in Fi These two facts imply that given

any positive ² there is a positive a ² so that except for initial length a ² the

remainder of the rays li; si are within ² of each other in Fi for each i ¸ 1 Notice

that the constants are independent of i ¡ this only uses the fact that all leaves

are hyperbolic and the distance between xi and zi in Fi is bounded above

Consider any subsequence si k so that si k converges to a ray v0 in F0 or
equivalently that the directions of si k at zi k converge to the direction of v0
at z0 For notational simplicity assume this is the original sequence si As li
converges to l0 and si converges to v0 the above property implies that except for
initial segments of length smaller than a ² the remainder of the rays l0; v0 are

within ² of each other in F0 Explicitly if w is a point in l0 which is more than
a ² away from x0 in F0 then

w lim
i 1

wi with wi 2 li and dFi xi; wi > a ² :

Also dFi xi; wi is bounded above By the property above there are ui in si
with dFi wi; ui smaller than ² and up to subsequence again we may assume ui
converges As dFi xi; wi is bounded above then so is dFi ui; vi Therefore ui
has to converge to a point u in v0 Then dF0 w;u is bounded above by ² and
conversely This implies that l0; v0 have subrays which are at most ² distant from
each other so it again follows from hyperbolic geometry that they are asymptotic
in F0 That means that v0 de¯nes the ideal point y0 in S1

1
F0 Therefore the

rays v0; s0 are equal This is equivalent to the sequence si converging to s0: the

directions of si converge to that of s0 But notice that this is in fact a subsequence

of the original sequence This proves that any sequence yi converging to y0 in
T¹ has a subsequence which converges to y0 in T¹0 This then implies that the

original sequence converges to y0 in T¹0 as we wanted to prove This shows that
the topology in A is well de¯ned Clearly

A [i2N
A¹i ;

with ¹i transversals intersecting more and more of the leaf space of
eF

Each A¹i
is homeomorphic to a cylinder hence A is homeomorphic to S1

£ R
Similar arguments show that there is a natural topology on

[x2¹
F x [ S1

1
F x ;

making it homeomorphic to D2
£ 0; 1 where each leaf with its ideal circle corre-

sponds to D2
£ ftg It follows that fM [A is naturally homeomorphic to D2

£ R
¤

If g is a covering translation of fM and L a leaf of
eF

then g maps L to g L
by an isometry which extends to a homeomorphism gL

1
between their circles at
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in¯nity This produces a bijection g1 from A to itself Similar arguments as in
the lemma above show that g1 is a homeomorphism of A which will be called a
covering homeomorphism Many times we will abuse notation and write g instead
of g1 for this \ideal" map In this way ¼1 M acts in the cylinder at in¯nity

Clearly A » S1
£ R has a natural foliation by circles which comes from the

circles at in¯nity of leaves This is what we call the \horizontal" foliation of A
Natural means that this foliation is left invariant by the action of ¼1 M In
general the action of ¼1 M on A » S1

£R does not respect the vertical foliation
by fxg £ R The main goal of this section is to produce a natural \vertical"
foliation of A which also is associated to the geometry of the foliation This will
create the universal circle of the foliation F or

eF
First recall the de¯nition of

quasi-isometries:

De¯nition 3 3 quasi-isometry [Th3] A quasi-isometry is a map ' : M1; d1

M2; d2 between metric spaces so that there is positive k satisfying: for any x; y
in M1 then

1

k
d1 x; y ¡ k < d2 ' x ;' y < kd1 x; y + k

and in addition there is a positive k0 so that for any point z of M2 there is x of
M1 with d2 z;' x smaller than k0 If the constant is important we say that ' is
a k-quasi-isometry

First we produce the natural vertical foliation in the uniform case:

Proposition 3 4 vertical foliation { uniform case Let F be an uniform R-
covered foliation with hyperbolic leaves Then given any two leaves E; F of

eFthere is a canonical homeomorphism between S1

1
E and S1

1
F This yields a

universal circle which is naturally homeomorphic to any circle at in¯nity There
is a \vertical" foliation in A which is transverse to the horizontal foliation and is
group invariant The homeomorphisms between S1

1
E and S1

1
F are given by

the holonomy of this vertical foliation

Proof There is a brief proof of this result in [Th7] ¡ for completeness we provide

the details here

Fix E; F in
eF

and positive b1 so that their Hausdor® distance is less than b1
De¯ne a map ' : E F :

' x y for some y in F with d x; y < b1:

The map ' is not well de¯ned but it is coarsely de¯ned This follows from a

fundamental property of R-covered foliations: If F is R-covered then for any
positive b2 there is positive b3 f b2 satisfying:

8 z; w 2 fM with w 2 F z ; then d z; w < b2 dF z z; w < b3;
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see [Fe1] The important thing is that b3 depends only on b2 and not on individual
leaves or points This property is in fact equivalent to the R-covered property for
Reebless foliations and does not hold in general Hence there is positive b4 so

that if x in E and y; z in F with

d x; y < b1; d x; z < b1; then dF y; z < b4 f 2b1 :

We conclude that ' x is well de¯ned up to a set of diameter b4 in F This is
what we mean by coarsely de¯ned We want to show that ' is a quasi-isometry
from E to F

For any x; y 2 E choose a geodesic arc from x to y in E having length a1
and let n be the integer ba1c where b c is the greatest integer function Then
dE x; y is a number in the interval [n;n + 1 Split ° to produce points x0

x; x1; : : : ; xn;xn+1 y with dE xi¡1; xi equal to 1 for any i smaller than n and
dE xn; xn+1 less than 1 Then

d ' xi¡1;' xi · d ' xi¡1 ; xi + d xi¡1; xi + d xi;' xi

· b1 + 1 + b1 2b1 + 1 :

Let b5 f 2b1 + 1 so if w; z are in the same leaf of
eF

and d w; z is smaller than
2b1 + 1 then dF z z; w is smaller than b5 It follows that

dF ' x ;' y · n + 1 b5 < dE x; y + 1 b5 b5dE x; y + b5:

This shows one side of the required inequalities for quasi-isometries In the same

way there is a map » from F to E with d w; » w smaller than b1 for all w in F
Hence

d w;'» w · 2b1 and so dF w;'» w · b4 f 2b1

for all w in F This shows that ' is almost onto as required in the de¯nition of
quasi-isometry Similarly dE x; »' x is smaller than b4 for all x in E Given x; y
in E let z ' x ; w ' y An argument as above implies that

dE » z ; » w · b5dF z; w + b5:

So

dE x; y · dE x; »' x + dE »' x ; »' y + dE »' y ; y

· 2b4 + b5dF ' x ;' y + b5;

or
1

b5
dE x; y ¡ µ2b4

b5
+ 1¶ · dF ' x ;' y :

We conclude that ' : E F is a quasi-isometry Therefore it extends to a
homeomorphism Á between S1

1
E and S1

1
F [Gr Th2] This works for any

pair of leaves L; G of
eF

producing corresponding maps: 'G
L

from L to G ¡ a
quasi-isometry; and ÁG

L
homeomorphism between S1

1
L and S1

1
G
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We now produce a natural \vertical" foliation in A Fix E in
eF

For any y in
S1

1
E and any F in

eF
then ÁF

E y is a point in S1

1
F Let

®y [
F2 eF

ÁF
E y :

By the above ®y intersects every circle S1

1
F in a single point We claim that

®y is a continuous curve in A Let ¹ be a transversal to
eF

and xi a sequence in

¹ converging to x0 Let Fi F xi We want to show that yi 'FiE y produces

a sequence converging to y0 'F0
E y

Consider li geodesic rays in Fi starting in xi and with ideal point yi For
simplicity assume that all Fi with i bigger than 1 are in the interval F0; F1 Such

Fi separate F0 from F1 in fM The Hausdor® distance is monotone increasing: if
[F; G] is a subset of [L; H ] in H then dH F; G is smaller than dH L; H Therefore

dH F0; Fi is bounded above by dH F0; F1

for all i Using the arguments above and this uniform bound on dH F0; Fi this
implies that that all 'Fi

F0
are uniform quasi-isometries ¡ they are all k-quasi-

isometries for some ¯xed k The images 'FiF0 l0 are uniform quasigeodesics in Fi
with ideal point yi Hence they are a bounded distance from a geodesic ray in
Fi starting in zi and with ideal point yi Since they are uniform quasigeodesics

starting in zi which is a uniformly bounded distance from xi then the images

'Fi
F0

are a uniform bounded distance from li in Fi If the sequence li does not
converge to l0 up to subsequence suppose that li converges to v0 not equal to
l0 But dH li; l0 is bounded above by a0 for some globally de¯ned a0 where this
Hausdor® distance is computed in fM Hence dH v0; l0 is bounded above by a0
as well The R-covered property implies that dF0 v0; l0 is bounded contradicting

the fact that v0 and l0 diverge exponentially in F0 Therefore li converges to l0
Hence ®y is a continuous curve in A Consider the collection f®yg where y is

arbitrary in S1

1
E For any point z of A z is in S1

1
F for some F of

eF
and

z ÁF
E y for a unique y in S1

1
E Equivalently

z ®y \ S1

1
F z and hence A [y2S1

1 E

®y:

Furthermore the sets f®yg with y in S1

1
E are disjoint for distinct y Since

they are continuous curves this collection produces a vertical trivialization of

A » S1
£ R Since covering translations preserve distances and relations

between distances it is very easy to check that this foliation of A is invariant
under covering translations producing a \natural" vertical foliation in A This
will be used to analyse how the geometry changes transverse to

eF
This ¯nishes

the proof of Proposition 3 4 ¤

Before we analyse the non-uniform situation we introduce contracting directions

and markers
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De¯nition 3 5 contracting direction Let x be a point in a leaf L of
eF

and let
f° t t in [0; +1 g be a geodesic ray in L starting in x and with tangent vector v at
x Let p in S1

1
L be the ideal point of ° Then ° or v is a contracting direction

if the following happens: there is a transversal ¹ to
eF

containing x maybe as an
endpoint or maybe in the interior so that for any leaf E of

eF
which intersects ¹

the distance d E; ° t converges to 0 as t 1 In other words holonomy along

° or in the v direction contracts a neighborhood of leaves towards L Similarly
de¯ne contracting directions in F

Remarks 1 Contracting directions can be de¯ned for any foliation: it just means

that nearby leaves get contracted together in that direction Using harmonic
measures Thurston [Th8] showed that contracting directions are quite common in
codimension one foliations in closed manifolds any dimension

2 In our setting the contracting direction is really a property of the ideal point
p in S1

1
L and is independent of the initial point x or the geodesic ray de¯ning p

This is because all such rays are asymptotic so a packet of leaves gets contracted
together irrespective of the initial point or ray

Lemma 3 6 Let x in L with a contracting direction given by a geodesic ray f° t g
and ¹ a transversal to

eF
contracted in the ° direction For any E of

eF
intersecting

¹ the contracting direction ° de¯nes an ideal point ³ E of E and any geodesic
ray of E with ideal point ³ E is contracted to L In addition for any F in

eF
there

is at most one direction in F which gets contracted towards °

Proof Fix a transverse line ¯eld to F and lift to
eF

Let E in
eF

intersecting ¹
For any positive a0 there is positive t0 so that d ° t ; E is smaller than a0 for
t bigger than t0 If a0 is small the translate of ° t for t bigger than t0 to L
along the transverse foliation is de¯ned for all time as they are very close and
is a curve with arbitrarily small geodesic curvature in E Hence the translate is a
quasigeodesic in E [Th3] and it de¯nes an ideal point in S1

1
E which is denoted

by ³ E Also for smaller and smaller a0 the translates have smaller and smaller
geodesic curvature and become more and more geodesic Hence a geodesic ray in
E with ideal point ³ E is asymptotic with the initial ray ° in E0

Finally suppose there is F in
eF

and there are geodesic rays r1; r2 in F which are

asymptotic to ° Therefore they are asymptotic to each other But F is Reebless

so there are no closed transversals to
eF

This implies when r1 and r2 are close in

fM they have to be in the same local sheet of
eF

This in turn implies that r1; r2
are also asymptotic in F Therefore they de¯ne the same direction in F ¤

Contracting directions in
eF

in turn produce markers in the cylinder at in¯nity:

De¯nition 3 7 marker Let L in
eF

with a contracting direction given by the

geodesic ray ° which contracts a transversal segment ¹ For any E intersecting
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¹ let ³ E be the unique ideal point of E de¯ned in the previous lemma The

set of f³ E g with E intersecting ¹ is a subset of A which de¯nes a marker in A
associated to the pair °;¹ For any E intersecting ¹ we say there is a marker
between S1

1
L and S1

1
E or equivalently a contracting direction between L and

E Sometimes we abuse notation and say that this produces a marker between L
and E Let ³ denote the marker

Remark If F is a non-R-covered foliation with hyperbolic leaves there is not a
global cylinder at in¯nity However the union of the circles at in¯nity associated
to a transversal to

eF
still is a cylinder and one can de¯ne markers associated to

intervals of leaves in the leaf space

Some needed properties of markers are now established If ³ is a marker and
E in

eF
let ³ E be the intersection of ³ and S1

1
E which is at most one point

Lemma 3 8 If ®; ¯ are markers in A which intersect each other then they do
not intersect transversely that is: For any E in

eF
with ® E ; ¯ E not empty

then ® E ¯ E

Proof Let ®; ¯ be markers which intersect in a point p and let and E in
eF

with
® E ;¯ E both non-empty There is L in

eF
with p equal to ® L and ¯ L Let

r be a geodesic ray in L with ideal point p Let

r1; r2 geodesic rays in E with ideal points ® E ; ¯ E respectively:

As p; ® E are in ® then r and r1 are asymptotic in fM Similarly r and r2 are

asymptotic so r1 and r2 are asymptotic As in Lemma 3 6 this implies that r1 and
r2 are asymptotic in E In other words ® E ; ¯ E are equal ¤

Lemma 3 9 Markers are continuous curves in A

Proof Consider a contracting direction in a leaf F of
eF

de¯ned by the geodesic
ray ° f° t t in [0; +1 g and ideal point p in S1

1
F There is a packet of

leaves near F which contracts to F in the ° direction For any positive ² the whole
packet is ² near ° t for any t bigger than t0 for some t0 > 0 depending only on ²
Since the remainder is a compact initial segment ° [0; t0] if the packet is reduced
the whole ray ° is ² near any leaf in the smaller packet Hence one can move

° to curves in nearby leaves using the transversal foliation These curves have

arbitrarily small geodesic curvature which goes to 0 as ² goes to 0 Therefore the

curves are closer and closer to being geodesics and their ideal points are better
and better determined by the initial directions But the directions of the initial
segments converge to the direction of ° at ° 0 and so the ideal points of the lifted
curves in the nearby leaves converge to the ideal point p in the topology of A This
shows continuity of the marker at p and as p is arbitrary this completes the proof
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The proof shows that a marker de¯ned by a transversal arc ¹ is a homeomorphic
image of ¹ in A which is transverse to the horizontal foliation in A ¤

We will now consider the case of R-covered non-uniform foliations Again the

goal is to produce a natural vertical foliation in A Lemma 2 5 shows that F has

no compact leaves and by Proposition 2 6 we may assume that that F is minimal
Hence:

Running hypothesis for the rest of the section F is a minimal R-covered
non-uniform foliation with hyperbolic leaves

In the uniform case if one of the leaves has a point su±ciently far from the

other then the leaves can never get too close to each other at all for ideas on this
see [Th7] The non-uniform case is completely di®erent: any pair of leaves of

eFhas many directions where they are arbitrarily close

We learned some ideas in this section from Danny Calegari in 1998 ¡ at that
point he was studying foliations with \con¯ned regions" This means there are F
and L in

eF
and a half plane of F which is asymptotic to L His goal was to prove

that if in addition F is minimal then it is conjugate to the stable foliation of a
suspension Anosov °ow We realized that some ideas of the con¯ned case can be

used to treat the general case The article [Cal1] has a similar treatment of the

general non-uniform situation
Fix an orientation in H We ¯rst prove several needed properties of non-uniform

R-covered foliations

Lemma 3 10 No two leaves of F are a bounded distance from each other

Proof Suppose there are leaves E; F of
eF

which are a bounded distance from each
other Let J be the interval [E; F ] of H and consider the union of J with all
its translates under covering translations Take the component C containing J
Assume ¯rst that C is a bounded interval in H Then translates of C are either
C itself or disjoint from C It follows that the closure Ĉ of C in H is precisely
invariant But then the leaves of

eF
corresponding to the translates of @C project

to a non-trivial closed set of F in M This is not possible by hypothesis If C is
unbounded below in H then it has to be invariant under all of ¼1 M and so it
must be unbounded above that is C is equal to H But as the Hausdor® distance is
monotone increasing that implies that any two leaves in

eF
are a bounded distance

from each other or that F is uniform contrary to assumption This ¯nishes the

proof ¤

The following proposition is crucial for our results It states that anything
bounded can be put in between two arbitrary leaves and then uses that to produce

contracting directions between the leaves
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Proposition 3 11 compression of the universal cover and contracting direc-
tions Given arbitrary distinct leaves E; F of

eF
and B a bounded set there is

a covering translate of B contained between E and F As a consequence there is
at least one contracting direction between E and F

Proof By hypothesis dH E; F is in¯nite For simplicity we may assume without
loss of generality that F is transversely orientable F is in front of E and choose

pi 2 E with d pi; F converging to in¯nity:

Let B be a bounded set in fM We are looking for a translate h B of B so that
h B is in the front of E and in the back of F that is between E and F Choose

covering translations gi with gi pi converging to p0 and so gi E converge to E0

containing p0 Let L leaf of
eF

very near p0 and in front of E0

We claim that we can choose a covering translate h B contained in the front of
L This seemingly obvious fact is not true in general even for Reebless foliations

For example start with a Reeb foliated annulus A and consider A £ S1 with the

product foliation Then glue the two boundary tori to produce a non-taut but
Reebless foliation F A non-compact leaf in A produces an annulus leaf of F
Lifting to Z in

eF
one of the complementary regions of Z in fM has every point

a bounded distance from Z and there are sets of big diameter which cannot be

mapped into that component This example also shows that for general F given
arbitrary leaves G; H of

eF
the fact that G is in a bounded neighborhood of H

does not imply that H is in a bounded neighborhood of G { this relation is not
symmetric

To prove the claim we use that F is taut Suppose there is a ¯nite supremum
a0 of d z;L for z in front of L Let z in front of L with d z;L very near a0 Any
geodesic arc from z to L with length very close to a0 is almost perpendicular to L
There is positive ² so we can choose foliated box neighborhoods of these points in
L with d z; y bigger than a0+² for any y in the other side of L from these foliated
boxes As F is taut there is a transversal from L to a translate f L in the back
of L and not intersecting those neighborhoods Then z is in front of f L and
d z;f L is greater than a0 + ² Hence f¡1 z is in front of L and d f¡1 z ;L
is bigger than a0 contradiction to assumption This proves the claim

As gi E converges to E0 then for i big enough L is in front of gi E and so is
h B Then

d gi pi ; gi F +1; but d gi pi ;h B is bounded:

It follows that gi F does not intersect h B and does not separate it from gi E
for i big enough Since F is R-covered this implies that h B is in the front of
gi E and in the back of gi F that is between gi E and gi F Hence g¡1

i h B
is between E and F see Fig 1 This proves the ¯rst statement compression of the

universal cover
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a) b)

F

E

g(F)

g(E)B
g(B)

F

F0

q
g(q)

pg(p)

g(F)

g

Figure 1 a Contraction in the universal cover b Producing a contracting direction in
a leaf

Now take B intersecting E and F and choose g B to be between E and F
see Fig 1 a This implies that g E ; g F are between E and F and so

g [E; F ] ½ E; F :

As [E; F ] is an interval in H there is F0 in E; F with g F0 equal to F0 and
gi F converging to F0 when i converges to in¯nity Hence there is a geodesic °
in F0 with g ° ° and which has contracting holonomy in one side that is g
contracts the interval [F0; F ] to F0 as i converges to in¯nity see Fig 1 b

By the same arguments as above then for any two leaves U; V of
eF

one can map
the interval [U; V ] of H inside [F0; F ] Since F0 has a contracting direction with
F it produces a contracting direction between any two leaves in [F0; F ] Pulling
back by a covering translation this produces a contracting direction between U
and V This ¯nishes the proof of the proposition ¤

The goal is to use these contracting directions to produce identi¯cations of the

circles at in¯nity

Lemma 3 12 There are at least two contracting directions between any two leaves

E; F 2 eF

Proof Otherwise there are E0; F0 in
eF

with only one contracting direction between
them For any E;F in

eF
we can map [E0;F0] inside [E; F ] so there is only one

contracting direction between [E; F ] as well Choosing leaves Ei; Fi of
eF

with Ei
Fi escaping to opposite ends of H and the packets [Ei; Fi] increasing it follows

that there is a unique \vertical" curve ® in A which contains all markers For
any leaf F let ®F be the intersection of ® and F The action of ¼1 M on A
sends markers to markers therefore any covering translation acts in A sending the

unique vertical marker ® to itself
Given a covering translation g not acting freely in H there is a leaf F with

g F F so there is a geodesic axis l in F invariant under g Since g ®F ®F
then ®F is one of the ideal points of l Let now f be any other covering translation
with f F and F distinct Then

fgf¡1 f F f F and fgf¡1 f l f l
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so f l has an ideal point in ®f F This implies that l and f l are asymptotic in

fM which is impossible since ¼ l is a closed curve in M and there is a minimum
distance between any two distinct lifts to fM We conclude that there are at least
two markers connecting any two leaves ¤

Proposition 3 13 local density of markers Given F in
eF

Y any open set in
S1

1
F and A any component of A¡ S1

1
F there is a marker with an endpoint

in Y and contained in the closure of A

Proof This shows that there are markers on \both" sides of Y in A The key
property is that F is minimal Suppose the result is not true Let

¡ F be a leaf of
eF

Y an open set in S1

1
F ;

¡ A component of A¡S1

1
F so that there is no marker in A with an endpoint

in Y and contained in the closure of A
Choose points pi in F with pi converging to p in Y Fix a small transversal ¹

to
eF

let E; L be the leaves of
eF

through the endpoints of ¹ Since F is minimal
there is a positive constant a0 so that any point in a leaf of F is within a0 in its

leaf of another point very near the center of ¼ ¹ Lifting to fM there are qi in
F with dF qi; pi smaller than a0 and covering translations gi with gi qi in ¹ Up
to subsequence

gi qi converges to q0 2 ¹; q0 2 F0 2 eF
:

Notice that in F [ S1

1
F qi also converges to p in Y hence the visual measure

of Y in S1

1
F as measured from qi is µi with µi converging to 2¼ Hence from

gi qi the visual measure of gi Y in S1
1

gi F is µi also

By Lemma 3 12 there are at least two markers

³1; ³2 from S1

1
E to S1

1
L :

Use the parametrization of the circles at in¯nity between E and L given by T1
eF j¹

The markers ³1; ³2 intersect S1

1
F0 in angles ±1; ±2 as measured by this identi¯-

cation Since the markers are continuous in A and disjoint there is positive a1 so

that for any G in
eF

intersecting ¹ the markers ³1; ³2 de¯ne directions in G which
are at least a1 angles apart ¡ as measured in T1

eF j G \ ¹ But gi F converges

to F0 as i converges to in¯nity and the markers in one side of S1

1
gi F are re-

stricted to have an endpoint in S1

1
gi F ¡ gi Y This set has visual measure

smaller than 2¼ ¡ µi which converges to zero with i These two facts contradict
each other This shows the local density of markers ¤

Markers were introduced by Thurston in [Th7]: he showed that markers are

locally dense in A also in the non-R-covered case We will show a much
stronger fact in our setting: there is a dense set of contracting directions between
any two leaves of

eF
The markers will be the skeleton of the vertical foliation in

A It is fundamental for all the analysis that markers are continuous curves in A
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The continuity of markers can be strengthened to a property that says markers

are not too horizontal:

Lemma 3 14 Let L a leaf of
eF

and Z a closed subset of S1

1
L For any open

neighborhood N of Z in A there are neighborhoods V of L in H de¯ned by transver-
sal ¹ to

eF eF¹ V and W of Z in A so that any marker ³ which intersects W
then its intersection with A¹ is contained in N

Proof If there were a horizontal marker { that is contained in some S1

1
F { it

would clearly fail the lemma This is because no matter how small a neighborhood
of S1

1
F in A this curve still moves a ¯xed amount in the horizontal direction

Still this is a continuous curve The aim is to show that markers cannot even get
too close to horizontal arcs

If the lemma is not true there are 1 a leaf L in F 2 a closed subset Z of
S1

1
L and 3 an open neighborhood N of Z in A satisfying: there are shrinking

neighborhoods Vi of L in H that is \Vi L de¯ned by transversals ¹i that is

eF¹i Vi there are shrinking open neighborhoods Wi of Z in A that is \Wi Z
and markers ³i with

³i \Wi 6 ; but ³i \A¹i 6½ N:

Choose points xi in the intersection of Wi and ³i As the Wi shrink to Z
assume up to subsequence that xi converges to x0 with x0 in Z There are

yi 2 ³i with yi 2 A¹i but not in N:

Since A¹i shrinks to S1

1
L we can choose another subsequence so that yi con-

verges to y0 a point in S1

1
L But yi is not in N so y0 is not in Z hence y0; x0

are di®erent points For simplicity assume yi are points in S1

1
Fi with Fi above

L and only consider the part of the markers on the corresponding side of S1

1
L in

A Since the markers are continuous curves in A then up to another subsequence

the markers ³i have to limit in at least one of the segments in S1

1
L de¯ned by x0

and y0 Let B be this segment If B has a marker ³ on that side of S1

1
L in A

then because the ³i limit on B it follows that ³i will intersect ³ for i big enough
Lemma 3 8 shows that for each such i ³ and ³i are subpieces of a possibly bigger
marker ³ 0 Hence for i big enough the intersection of ³ 0 and A¹i is equal to the

intersection of ³i and A¹i The marker ³ 0 is a continuous curve in A transverse

to the horizontal foliation so for i big enough i
³ 0 \A¹i ½ N which implies ³i \A¹i ½ N;

contradiction to assumption We conclude that this is impossible
The remaining option is that there are no markers on that side of S1

1
L with

endpoint in B This is disallowed by the previous proposition The proof is
complete ¤

The following lemma says that if a sequence of markers converges to a point in
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a marker ³ then the whole markers also converge to ³ It is needed later for the

analysis of global density of markers

Lemma 3 15 Let S; S0 leaves of
eF

and f³ig with i ¸ 0 a sequence of markers

from S1

1
S to S1

1
S0 If the intersection ai of ³i and S1

1
S converges to a0 with

i then the ³i converge to ³0 in A that is for any Z in [S; S0] the intersection bi
of ³i and S1

1
Z converges to b0 the intersection of ³0 and S1

1
Z

Proof Else there are f³ig; Z as above so that bi does not converge to b0 For
simplicity suppose the sequence ai for i bigger than 0 is nested with i in S1

1
S

The non-transversal intersection of markers implies that the bi are also nested in
S1

1
Z Let r be a geodesic ray in S with ideal point a0 and let v be a geodesic

ray in Z with ideal point b0 Let pj be a sequence in r converging to a0 We

can choose qj in v with d qj ; pj converging to zero since a0 de¯nes a contracting
direction from S to Z For each positive i let rj;i respectively vj;i be the ray in S
starting in pj with ideal point ai respectively in Z starting in qj with ideal point
bi For each j we can choose i j big enough so that the directed angle in S at pi
between r and rj;i j is µj and µj converges to 0 Directed means it is measured
from r to rj;i j in the side the rj;i accumulates on r when i grows Since the

bi j do not converge to b0 then as seen from q0 the visual angle of the segment in
S1

1
Z from b0 to bi j does not converge to 0 It follows that the directed angle

¯j at qj between the rays

v and vj;i j
does not converge to zero in fact it converges to ¼ Then choose covering trans-
lations fj so that fj pj converges to a point p0 hence fj qj converges to p0 as

well At fj pj the angle between

fj r and fj rj;i j
converges to 0 but at qj the angle between fj v and fj vj;i j does not converge

to zero This shows that least one of the markers fj ³0 or fj ³i j moves a de¯nite
amount horizontally in arbitrarily small vertical displacement For j big enough
this contradicts Lemma 3 14 This ¯nishes the proof ¤

De¯nition 3 16 invariant curves An invariant curve in A is an embedded
curve intersecting each circle at in¯nity exactly once and invariant under all cov-
ering homeomorphisms of A An invariant curve which is a limit of longer and
longer markers is called a limit invariant curve

For instance if F is the stable foliation of a suspension Anosov °ow form the

curve of all the positive ideal points of leaves of
eF

This is continuous in A and
invariant This foliation is R-covered and not uniform The analysis of R-covered
non-uniform foliations will go roughly as follows:

If the set of contracting directions between a pair of leaves is not dense then
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one produces a limit invariant curve L in A One can show that the leaves are

asymptotic away from the invariant curve { that is all directions but one are

contracting So in any case one obtains a dense set of contracting directions

The strategy here is to ¯rst analyse limit invariant curves in detail in Lemmas

3 17 through 3 20 and Proposition 3 21 and then use that to produce the vertical
foliation in Proposition 3 22

Lemma 3 17 Any limit invariant curve L has no points associated to contracting

directions of F

Proof Suppose the limit invariant curve line L has a point q associated to a
contracting direction Then there is a marker ³0 through q By hypothesis there

are markers ³j which converge pointwise to L The previous lemma shows that
these markers converge pointwise to ³0 in the circles at in¯nity that ³0 intersects

This shows that L contains the marker ³0 ¡ that is L coincides with ³0 locally
We can map any interval [U; U 0] of H inside this small segment hence the whole
curve L is a marker But since L is ¼1 M invariant the argument of Lemma 3 12
shows that this is impossible This ¯nishes the proof ¤

We use the transversal °ow distance between points and leaves: Fix a transver-
sal line ¯eld to F generating a foliation ¿ with lift

e
¿ to fM Given G in

eF
and z in

fM consider the transversal °ow line ¿z through z As F is Reebless ¿z can inter-
sect G at most once If they do not intersect let d¿ z; G be in¯nity Otherwise let
d¿ z; G be the length of the segment of ¿z from z to the intersection with G If

L is an invariant curve in A and L a leaf of
eF

let LL be the intersection of S1

1
L

and L

Lemma 3 18 Let L be a limit invariant curve Given L in
eF

and a side of L
in fM there is G of

eF
in that side so that: for any half plane H of L which does

not limit on LL and any escaping sequence of points zi in H then the limsup of
d¿ zi; G is bounded above depending only on H and G

Proof This is stronger than limsup d zi; G being bounded which can occur even
if d¿ zi; G is in¯nite for all i { for example if F is the stable foliation of an Anosov
geodesic °ow and ¿ is given by the strong unstable foliation We do the proof for
G above L the same proof applies for G below L

Roughly the proof goes as follows: if there is u in S1

1
L distinct from LL

so that d¿ \blows up" near u then one can map any transversal segment to one

\near u" This produces covering translations with invariant leaves in
eF

and a
contracting ¯xed point in L { contradicting the previous lemma

Suppose the proposition is not true Let Gi be a sequence in
eF

converging to
L Given i there is a sequence zi;j in H with d¿ zi;j ; Gi bigger than j and zi;j
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escapes in H with j growing Using subsequences ¯nd

zi 2 H with d¿ zi; Gi > i and zi u 2 S1

1
L ; u distinct from LL:

Fix v in L Let ® be ¿v and ®i the subsegments of ® between L and Gi whose

lengths converge to 0
Since F is minimal any leaf is dense Given positive a0 there is positive a1 so

that if ¯ is a segment of the foliation ¿ of length bigger than a0 w any point in
M and W the leaf of F through w then the following happens: W intersects ¯ in
a point w0 which is within a0 4 of the midpoint of ¯ in the °ow length of ¯ and
w0 is at most a1 distant from w in the path distance of W

Also there is positive a2 su±ciently small so that for any segment ¯0 of ¿ of
length smaller than a2 then if it is moved by holonomy so that starting point
moves a distance less than a1 in its leaf of F then the ¯nal segment of ¿ has

length bounded above by a0 4 Hence any segment of ¿ of length bounded by
a2 can be moved by holonomy with initial point moved a distance less than a1
within its leaf to have a point in the segment ¯ within a0 4 of the middle point of

¯ Since the length of the holonomy translate is less than a0 4 the ¯nal holonomy
translate is entirely contained in ¯

By truncating ¯nitely many terms assume length of ®i is bounded above by a2
Let ¯i be segments in leaves of

e
¿ of length a0 with an endpoint in zi and contained

in the positive side of L The property of the zi's implies that at least for i big
enough all ¯i are in the union of leaves S of

eF
contained in the interval

[L; Gi of H:

Using the previous paragraph there are covering translations hi so that hi v is in
a leaf hi L of

eF
intersecting ¯i within distance a0 4 of the midpoint of ¯i and

path distance from hi v to ¯i is less than a1 in hi L By the previous paragraph
the image of hi ®i by holonomy will map into ¯i The endpoints of ®i are in
L; Gi and the endpoints of ¯i are in L and in another leaf between L and Gi
This implies that on the level of the leaf space hi sends the interval [L; Gi] of H
into a subset of its interior L; Gi ¡ so hi has a ¯xed point in L; Gi Then

hni L converges to a leaf Li of
eF

when n converges to in¯nity for each i and
Li is invariant under hi Notice that Li converges to L as i converges to in¯nity
because Li is in L; Gi and Gi converges to L in H

Since hi Li Li then hi acts as a hyperbolic isometry in Li and has two ¯xed
points in S1

1
Li Let

h+
i lim

n +1
hn
i x

for any point x of Li Let h¡i be the other ¯xed point of hi The key fact needed
here is the following:

Lemma 3 19 h+
i converges to u in A when i converges to in¯nity

Proof Let N be a neighborhood of u 2 A in the top side of S1

1
L u de¯ned
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at the beginning of the proof Lemma 3 18 Identify N to a subset of T1® using

the ideal circles Then N contains an open segment T in S1

1
L with u in T As

markers are locally dense in S1

1
L there are markers

»1; »2 from S1

1
L to S1

1
S1

with S1 above L intersecting S1

1
L in »1 L ; »2 L respectively so that: the in-

tersections with S1

1
L are in T and de¯ne a small segment in S1

1
L with u in the

interior Let r; r1; r2 be geodesic segments in L starting in v and with ideal points

u; »1 L ; »2 L respectively Notice that r1; r2 are contracting directions between
L and S1 Let a3 positive very small Since r1; r2 are contracting directions be-
tween L and S1 there is S2 in L; S1 so that any point in r1; r2 is within a3 of
S2 and hence within a3 of any S between L and S2 For any such S we can move

r1 and r2 to S using the transversal °ow { if a3 is su±ciently small The geodesic
curvature of the pushed curves in S is small tending to zero as a3 tends to zero
hence they are quasigeodesics in S and their initial directions give arbitrarily close

estimates of the direction de¯ned by the lifts of r1; r2 to S Hence these directions

are in N and are close to the direction of r in T1® if N is small The markers

»1; »2 and the circles S1

1
L S1

1
S2 de¯ne a small neighborhood N1 of u in A in

that side of S1

1
L in A We can choose N1 to be a subset of N

Let vi be the intersection of ® and Li Then for i big zi is in the wedge of L
de¯ned by r1 r2 so the intersection bi of ¯i and Li is in the wedge de¯ned by
the images of r1; r2 in Li The direction of the geodesic segment in Li from vi
to bi is within this wedge and de¯nes a point in N1 and hence in N As hi vi
is boundedly close to bi in Li then the direction of the geodesic segment in Li
from vi to hi vi also de¯nes a point in N for i big enough The points vi are in
the ¯xed transversal ® and very close to v hence they are in a compact subset of
Li The points hi vi are boundedly close to ¯i hence also from zi As dL v; zi
converges to in¯nity then

dLi vi;hi vi
is also converging to in¯nity Since hi is a hyperbolic isometry of Li this now
implies that hi vi is close to h+

i in the compacti¯cation Li [ S1

1
Li Notice this

argument does not give any information about h¡i This shows that the direction
in Li de¯ned by h+

i is in N As N is arbitrary this shows that h+
i converges to u

This ¯nishes the proof ¤

Remarks 1 These arguments in fact show: if there is positive c0 and there are

zi in L converging to u Gi in
eF

converging to L to that d¿ zi; Gi bigger than c0

then one obtains hi in ¼1 M with ¯xed points h+
i in A converging to u

2 Similarly if u in S1

1
L is a contracting direction on the positive side of

eFone switches the roles of ®i and ¯i to get: let Gi in
eF

converging to L all in the

domain of contraction of holonomy in the direction u Fix geodesic ray r in L with
ideal point u Fix i and let c0 be the length of ®i As above there is positive but
very small c1 so that any segment of

e
¿ of length smaller than c1 can be transported
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by a bounded distance holonomy to be in the interior of a covering translate of ®i
As u is contracting direction choose zi in r with d¿ zi; Gi smaller than c1 Let ¯i
de¯ned as before now with length less than c1 This produces gi in ¼1 M with
gi ¯i contained in the interior of the set of leaves of

eF
intersected by ®i The g¡1

i
acting on A have positive ¯xed points ci which converge to u in A This shows

that arbitrarily near any contracting direction there are contracting ¯xed points

of covering homeomorphisms

Conclusion of the proof of Lemma 3 18

Let °i be the geodesic in Li which is the axis of hi in Li so hi °i °i The ideal
points of °i are h+

i ; h¡i Then

hi sends [L; Li] inside L; Li]

and has no other invariant leaf in L; Li] Hence hi contracts the leaf space near
Li and therefore the direction of °i associated to h+

i is an expanding direction for

eF
: nearby leaves of

eF
diverge from Li in this direction

This implies that the direction of °i associated to h¡i is a contracting direction
or equivalently h¡1

i expands the leaf space near Li But hi L L so one of
the ideal points of ° is in L As h+

i converges to u and u is not LL then for i
big enough h+

i is not LLi So for i big enough h¡i is LLi But this would imply
L has a point h¡i associated to a contracting direction This contradicts Lemma
3 17 and ¯nishes the proof of Lemma 3 18 ¤

With more work we can show d¿ zi; G converges to 0:

Lemma 3 20 Suppose there is a limit invariant curve L For any L in
eF

and
a side of L in fM there is G of

eF
in that side so that: for any u in S1

1
L and

distinct from LL and any sequence zi in L converging to u then d¿ zi; G converges

to 0 In particular u is a contracting direction between L and G

Proof Given L and a side of it pick a G as given by Lemma 3 18 Suppose the

proposition is not true Then ¯nd u in S1

1
L distinct from LL and sequence

zi with d¿ zi; G not converging to 0 By Lemma 3 18 the limsup of d¿ zi; G
is bounded above by a constant a4 which depends only on L; G and u Since

d¿ zi; G does not converge to 0 up to subsequence assume d¿ zi; G converges to
a5 positive Up to another subsequence choose fi in ¼1 M with fi zi converging

to a point z0 Then fi L converges to L0 containing z0 and fi G converges to a
leaf G0 because d¿ zi; G converges to a5 Here G0; L0 are distinct leaves because

a5 is positive For any w in L0 dL0 w; z0 is ¯nite so w is the limit of wi with wi
in fi L and dfi L wi; fi zi bounded the bound depends on dL0 w; z0 The
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points f¡1
i wi of L are a bounded distance from zi and in particular

f¡1
i wi u 2 S1

1
L when i +1:

Therefore the limsup of d¿ f¡1
i wi ; G is less than a4 Up to subsequence

d¿ f¡1
i wi ; G converges to a6 which is not 0 because dL f¡1

i wi ; zi is bounded
above and d¿ zi; G is bounded below by a positive constant There are yi in G
with yi; f¡1 wi in the same leaf of

e
¿ and d¿ yi; f¡1

i wi converging to a6 Then

fi yi converges to a point y in ¿w and d¿ w; y is a6 But fi yi is in fi G and

fi G converges only to G0 hence y is in G0 This produces a map ' from L0 to
G0 given by ' w y Notice that for any w in L0 the w;' w are in the same

leaf of
e
¿ and d¿ w;' w is less than a4

The map ' from L0 to G0 is injective because F is Reebless and hence it is a

homeomorphism onto its image If ' L0 is not all of G0 then there is b in G0 with
b in the boundary of ' L0 as a subset of G0 Choose sj in ' L0 converging to
b Let xj in L0 with ' xj sj Then

d xj ; sj · d¿ xj ; sj · a4

hence d xj ; b is bounded and so is d xj ; x1 As F is R-covered this implies that
dL0 xj ; x1 is bounded too this is a key point Up to subsequence assume that
xj converges to x0 Then sj ' xj converges to ' x0 { a point in G0 But b is
equal to ' x0 and is in ' L0 contradicting the hypothesis

We conclude that ' is surjective and in fact for every point s in G0 d¿ s; L0

is less than a4 Using the fact that F is minimal this quickly shows that any two

leaves of
eF

are a bounded distance from each other contradicting the non-uniform
hypothesis This ¯nishes the proof of Lemma 3 20 ¤

Since L in H and u in S1

1
L ¡LL are arbitrary Lemma 3 20 shows that every

point u of A¡L is an interior point of some marker ³ in A If two markers intersect
then their union is a marker This produces a 1-dimensional foliation N in A¡L
consisting of the collection of all markers The goal is to show that any leaf of N
intersects all circles at in¯nity

Proposition 3 21 Suppose there is a limit invariant curve L For any E; F in

eF
and any v in S1

1
E distinct from LE then v is a contracting direction with F

{ that is every direction but those in L are contracting direction between arbitrary
leaves

Proof Let v in A ¡ L be a ¯xed point of a covering homeomorphism f ; ³ the

leaf of N through v and R0 in
eF

with v in S1

1
R0 For simplicity assume that

³ misses some S1

1
R with R above R0 Let R1 above R0 the smallest such that

³ misses { the set of R such that ³ intersects S1

1
R is open in H because every

point in A¡ L is in the interior of a marker Then

f ³ ³ implies f R1 R1
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Figure 2 a Contraction in one direction implies expansion in the other direction
b Trapping markers in the upper direction leads to trouble

because F is R-covered Also for any R in the interval R0; R1 of H one has

f R ; R distinct because all such R are asymptotic to R0 in the v direction and
cannot be left invariant by covering translations associated to that direction If
needed switch f; f¡1 so that v is the attracting ¯xed point of f in S1

1
R0 Then

R0 is an expanding point for the action of f in [R0; R1] see Fig 2 a The action
of f on the closed interval

B L \ [R2[R0;R1]S1

1
R

has an expanding ¯xed point in LR0 As f has no invariant leaf in R0; R1 the

action of f on B has LR1 as an attracting point see Fig 2 a As f R1 R1

this shows that LR1 corresponds to a contracting direction in R1 contradicting
Lemma 3 17 We conclude that ³ intersects all circles at in¯nity

If a leaf º of N intersecting S1

1
S0 does not intersect all circles at in¯nity;

assume there is say a top limit S1

1
S1 Then º limits to L near S1

1
S1 see

Fig 2 b It follows that º; S1

1
S0 and L bound a region Z which does not

intersect S1

1
S1 see Fig 2 b Any marker intersecting Z is bounded above

Now just choose u in Z which is a ¯xed point of some covering translation ¡ we

showed before that any contracting direction is the limit of ¯xed points of covering

translations Let º0 be the leaf of N through v0 As v0 is in Z then º 0 is bounded
above which was previously disallowed

The conclusion is that for any marker ³ in A then ³ intersects all S1

1
R In

particular given E; F in
eF

and u in S1

1
E ¡ LE then the marker ³ through u

intersects S1

1
F { that is u is a contracting direction between E and F This

¯nishes the proof of Proposition 3 21 ¤

Using these results we can now ¯nish the analysis of the non-uniform case:

Proposition 3 22 vertical foliation { non-uniform case Let F be a minimal
non-uniform R-covered foliation with hyperbolic leaves Given any F; E of

eFthere is a dense set of directions in F contracting towards E The set of markers

extends to a natural vertical foliation in A which is group invariant
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Proof The argument goes like this: If markers are not dense zoom in towards an
interior point of the markerless set This pushes markers to the opposite end and
de¯nes an ideal point of the leaf { all markers between su±ciently spaced leaves

of
eF

have to pass near this point This collection of points at in¯nity produces

a curve L in A which is a limit invariant curve Then appeal to the previous

proposition
Suppose the proposition is not true Then there are F in

eF
and E in

eF
say

above F and not a dense set of contracting directions from F to E ¡ this is from
the point of view of F Hence there is an open interval J0 in S1

1
F so that no

point in J0 corresponds to a contracting direction from F to E Let q0 in J0 Since

q0 is not a contracting direction between F and E there is positive ² and pi in F
converging to q0 along a geodesic ray l and so that d pi; E is bigger than ²

In the leaf F the visual measure of J0 from the point of view of pi is µi with
µi converging to 2¼ as i converges to in¯nity Up to a subsequence of pi choose

covering translations gi with gi pi converging to p0 and gi l converging to a

geodesic ray l0 Let F0 in
eF

containing p0 Let
O f G 2 eF j G f F0 ; for some f 2 ¼1 M g ½ H:

We will de¯ne a function ´ from O to A which picks out the \limit" marker
direction and will produce a limit invariant curve Since d gi E ; gi pi is bigger
than ² then gi E does not have any subsequence converging to F0 A marker
from gi F to gi E must start in the set

Ui S1

1
gi F ¡ gi J0 :

From the point of view of gi pi in gi F the visual measure of Ui is 2¼¡ µi which
converges to 0 Also visually from gi pi the set Ui is very close to the direction of
the segment of gi l from gi p1 to gi pi Because the directions of gi l converge

to that of l0 and the topology of A is given by the visual topology from transversals
to

eF
it follows that the segments Ui converge to a unique point in S1

1
F0

De¯nition 3 23 function ´ De¯ne ´ : O A by

´ F0 lim
i 1

Ui lim
i 1

S1

1
gi F ¡ gi J0

and for any covering translation f de¯ne ´ f F0 f ´ F0

The leaves F; E;F0 of
eF

as well as the covering translations gi will be ¯xed in
this proof

Lemma 3 24 The function ´ from O to A extends to an embedding ´ :H»R A

Proof Roughly the idea is: if the lemma is not true we produce spaced enough
leaves A; B in

eF
with no markers between S1

1
A and S1

1
B contradiction

Suppose the lemma is not true There is L in
eF

and two sequences Lj; Hj
converging to L with ´ Lj converging to a ´ Hj converging to b with a; b
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a b
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j

Figure 3 If ´ is not continuous this forces markers to be in disjoint regions at the same

time { contradiction

distinct points in S1

1
L The Lj ; Hj are covering translates of F0:

Lj fj F0 ; Hj hj F0 for chosen fj ; hj 2 ¼1 M :

Choose small disjoint open neighborhoods Va; Vb of a; b respectively in A Lemma
3 14 shows that there are small disjoint open neighborhoods V 0

a; V 0
b

of a; b respec-
tively in A and a small neighborhood Y of L in H de¯ned by transversal ¹ so

that any marker through V 0
a and contained in A¹ is contained in Va and similarly

any marker intersecting V 0
b is contained in Vb In particular the two sets of mark-

ers contained in A¹ through V 0
a and V 0

b are disjoint from each other Lemma 3 8

implies that any marker in A through V 0
a does not intersect V 0

b
Fix j big enough so that ´ Lj is in V 0

a and ´ Hj is in V 0
b As Lj fj F0

then

´ Lj fj ´ F0 fj lim
i 1

Ui lim
i 1 fj Ui 2 V 0

a:

Similarly ´ Hj is the limit of hj Ui with i converging to in¯nity Now ¯x i big
enough so that fj Ui is contained in V 0

a and hj Ui is contained in V 0
b By the

property of V 0
a and V 0

b this implies that any marker through fj Ui is disjoint from
a marker through hj Ui see Fig 3

Choose A in
eF

with A less than L in the linear ordering of H By taking j; i
big enough we can assume that Lj ; Hj are bigger than A and so are

fj gi F ; hj gi F :

Also choose B in
eF

with B bigger than both fj gi E and hj gi E in H A
marker from S1

1
A to S1

1
B has to pass through S1

1
fj gi F and through

S1

1
fj gi E since the leaves fj gi F and fj gi E separate A from B By

the property of Ui it follows that the marker has to pass through fj Ui con-
tained in V 0

a Similarly any such marker has to pass through S1

1
hj gi F and

S1

1
hj gi E hence it has to pass through hj Ui contained in V 0

b But we just
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showed no marker can pass through both V 0
a and V 0

b This would imply there is
no marker from S1

1
A to S1

1
B which contradicts Proposition 3 11 These ar-

guments show that ´ can be extended to a continuous function from the closure of

O to A But F is a minimal foliation so O is dense in H so there is a continuous

extension ´ : H » R A The image is a curve L which is transverse to the

horizontal foliation and intersects every circle at in¯nity This ¯nishes the proof
of the lemma ¤

Conclusion of the proof of Proposition 3 22

The set
f´ f F0 g; f 2 ¼1 M

is an equivariant subset of A By the previous lemma the curve L is left invariant
by every covering homeomorphism { it is an invariant curve Also given any
covering translation g with an invariant leaf L g L L then one of the ¯xed
points of g in S1

1
L is in L

Let L in O L g F0 Then L is the limit of g gi F as i converges to in¯nity
Any marker from

S1

1
g gi F to S1

1
g gi E

has to start in in g Ui Recall that g Ui converges to ´ L as i converges to
in¯nity Choose a collection of leaves Gk ; Rk in

eF
escaping to opposite ends of H

and Gk always smaller than Rk in H For each k choose a marker ³k from S1

1
Gk

to S1

1
Rk Fix a neighborhood N of ´ L in A Choose i big enough so that

g Ui is contained in N For k big enough the leaves Gk ; g gi F ; g gi E and
Rk are linearly ordered in increasing order in H hence ³k has to pass through
some point zk in g Ui so zk is in N Therefore

for all L in O; ´ L lim
k 1

³k \ S1

1
L ¤ :

As O is dense in H and ´ is continuous in H Lemma 3 14 implies that equation ¤
holds for any G in

eF
We conclude that L is the limit of the sequence of longer and

longer markers ³k and L is a limit invariant curve But in that case Proposition
3 22 implies that given any G; H leaves in

eF
and any u in S1

1
G ¡LG then u is a

contracting direction between G and H This now contradicts the assumption in
the proof of Proposition 3 22 that there is not a dense set of contracting directions

from F to E So in any case for any G; H in
eF

there a dense set of contracting
directions between G and H

We now ¯nish the proof of Proposition 3 22 Given arbitrary G; H in
eF

the

dense set of markers between S1

1
G and S1

1
H extends uniquely to a vertical

foliation of the region of A between S1

1
G and S1

1
H This is because it is dense

from the point of view of both G and H In addition if G0; G; H; H 0 are linearly
ordered in H and one does the same operation using G0; H 0 the resulting foliation
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is an extension of the foliation between S1

1
H and S1

1
G This is because

markers from S1

1
G0 to S1

1
H 0 produce markers from S1

1
G to S1

1
H and

there is a unique extension of the foliation to the bigger annulus Consequently
there is a well de¯ned vertical foliation in A Since the collection of markers in A
is invariant under covering homeomorphisms the vertical foliation also is and is
a natural foliation associated to F This ¯nishes the construction of the vertical
foliation in the non-uniform case ¤

4 The uniformly quasisymmetric case

As shown in the previous section if F is R-covered with hyperbolic leaves then
both in the uniform or non-uniform cases there is a vertical foliation in A which
is equivariant No need of transverse orientability for these results The leaf space

of the vertical foliation is a circle which is the universal circle of the foliation
as de¯ned by Thurston [Th9 Th10] and is denoted by U For the arguments in
this and the following sections ¯x once and for all a leaf F ¤ 2 eF

and identify U
to the circle at in¯nity S1

1
F ¤ ¡ for each point in U associate the intersection

of the corresponding vertical leaf with S1

1
F ¤ The leaf F ¤ is isometric to the

hyperbolic plane H2 and we use the model of F ¤ as the unit disk in the plane

hence S1

1
F ¤ homeomorphic to U is the unit circle S1 in the complex plane C

Notation If g is in ¼1 M let µ g denote the induced homeomorphism of U »
S1

The transverse change in geometry of leaves of
eF

is encoded by how the hy-
perbolic metrics vary from leaf to leaf The distortion can also be measured in
the ideal circles in the following way: We say that a homeomorphism of U » S1 is
MÄoebius if it continuously extends to an isometry of H2 Since hyperbolic isome-
tries act freely and transitively on triples of distinct points in S1 one cannot verify
directly whether f in Homeo S1 is MÄoebius by looking at the action on triples

of points However one can do that by considering the action on quadruples of
points Given 4 distinct points Z fz1; z2; z3; z4g in S1 that follow each other in
the positive counterclockwise direction recall that the cross ratio of the set is

C Z
z4 ¡ z1

z4 ¡ z2
:
z3 ¡ z2

z3 ¡ z1
:

Then C Z is always real and in 0; 1 The 4 points in Z de¯ne an unique ideal
quadrilateral in H2 with ideal points in Z which is regular if and only if C Z is
equal to 1 2 For any homeomorphism f of U let fZ ff z1 ; f z2 ; f z3 ; f z4 g
Let K bigger than 1 Then f is said to be K-quasisymmetric if

2K ¡1 · C fZ · 1 ¡ 2K ¡1;

whenever C Z 1 2 [Hi1 Hi2] This means regular quadrilaterals do not get too
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distorted The notation is f is K-qs [Hi1] It is easy to see that f is MÄoebius if
and only if C Z C fZ for all sets of 4 distinct points ¡ equivalently f is 1-qs

This de¯nition is the analogue in dimension 1 of the concept of a quasiconformal
map in a complex domain of dimension ¸ 2

There is a rich theory of quasisymmetric maps [Hi1 Hi2 Le] A group ¡ acting
on S1 is uniformly quasisymmetric if there is K so that for any f 2 ¡ then f is a

K-quasisymmetric homeomorphism of S1 We denote this by ¡ is K-qs [Hi1] In
this section we deal with following the situation:

Case 1 ¼1 M acts on U as a uniformly quasisymmetric group

This is the rigid case and it implies that the action is always topologically
conjugate to a MÄoebius action in S1: there is f in Homeo S1 so that for every
g in ¼1 M f ± µ g ± f¡1 is MÄoebius on S1 This has already been done in the

literature using works of various authors We just outline the possibilities

Suppose ¯rst that ¼1 M acts a non-discrete group on U Given that ¼1 M
acts a K-qs group it was proved by Hinkkanen in chapter 9 of [Hi1] that the action
of ¼1 M is conjugate to a MÄoebius group

Suppose now that ¼1 M acts as a discrete group of homeomorphisms of U
This means that given a sequence gn; n 2 N in ¼1 M with fn µ gn and fn
converging to the identity then fn is the identity for n big enough The idea is
to ¯rst prove that ¼1 M is a convergence group: that is ¼1 M acts discreetly
in the triple space which is the set of triples fa; b; cg in S1

£ S1
£ S1 with a; b; c

distinct [Ge-Ma Ga4] In general the convergence group property is stronger than
discreteness of the group but not in the case of uniformly quasisymmetric groups

This is because there is a normal property associated to K-qs groups: Let gn in
¼1 M with fn µ gn and suppose there are a; b; c distinct in U so that

fn a ; fn b ; fn c

converge to 3 distinct points It follows that there is a subsequence which converges

uniformly to a K-qs homeomorphism Gehring and Martin [Ge-Ma] do this is
detail for uniformly quasiconformal maps in higher dimension and the result for
K-qs groups acting in the circle is mentioned by Hinkkanen in [Hi1] page 62
even though the proof is not written down there The key ideas are well known
for instance: choose z in U so that Z fa; b; c; zg form the vertices of an ideal
quadrilateral in F ¤ The key fact is that C fn Z is bounded away from 0 and 1
so that the quadrilaterals associated to these points are never too thin meaning

that two opposite sides of the quadrilateral do not have points very close to each
other Hence there is a subsequence fni with fni z converging to w di®erent
from the limits of fn a ; fn b ; fn c Starting with the initial ideal triangle in
F¤ with ideal points a; b; c we can tesselate F ¤ » H2 with ideal triangles so that
any two adjacent ones form a regular ideal quadrilateral Then as above there is
a subsequence fni which converges in all the ideal points of the triangles hence

in a dense set of the circle U Again using the K-qs property of the action of
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¼1 M one shows that the limit map extends to a continuous map h from U to
S1 which is a homeomorphism and the convergence is in fact uniform Also the

inverses converge to h¡1 This implies that the compositions f¡1
ni+1 ± fni converge

uniformly to the identity As the group is discrete fni are all equal for i su±ciently
big This shows that ¼1 M acts discretely in the triple space and is a convergence

group Fundamental work of Tukia [Tu] Gabai [Ga4] and Casson{Jungreis [Ca-Ju]
then implies that ¼1 M is conjugate to a MÄoebius group

Let f in Homeo S1 be the conjugating homeomorphism We prove a rigidity
result First produce a transversely hyperbolic [Th3 Ep] 1-dimensional foliation
in a manifold M 0 as follows:

Identify the leaf space H to R and parametrize it as fFtg with t a real number
and F0 F ¤ Given g in ¼1 M let g¤ be the induced homeomorphism of H Let

fM 0 be the product H2
£ R Let ¼1 M act on fM 0 as follows By hypothesis for

any g in ¼1 M the homeomorphism f ± µ g ± f¡1 is MÄoebius and it extends to
an isometry of H2 still denoted by f ± µ g ± f¡1 De¯ne the action on fM

0 by

g u; t f ± µ g ± f¡1 u ; g¤ t ; u in H2; t in R:

We analyse properties of this action to prove the rigidity result

Claim 1 The action is free

Suppose there is g in ¼1 M and u; t in fM 0 with g ¯xing u; t Then g¤ ¯xes

t so g leaves Ft invariant If g is not the identity in Ft then g is a non-trivial
isometry in Ft which must be of hyperbolic type Hence g acts on S1

1
Ft with two

¯xed points one contracting one expanding and the same is true for the action of
µ g on U and the action of f ± µ g ± f¡1 in S1 As the extension of f ± µ g ± f¡1

to H2 is an isometry it has to have hyperbolic type and has no ¯xed points in
H2 This contradiction shows that g acts as the identity in Ft and hence g is the

identity This proves claim 1

At this point we need the following simple but extremely useful continuity
property which relates curves in A with geodesics in leaves of

eF
We establish

notation which will be used often: if a; b are two ideal points of a leaf L of
eF

let
ab be the geodesic in L de¯ned by the ideal points a; b if they are di®erent and
let this be the emptyset if a; b are equal We show a basic continuity property of
geodesics:

Lemma 4 1 Let Li i in N be a sequence of leaves of
eF

converging to L0 Let
pi; qi distinct points in S1

1
Li with pi converging to p0 qi converging to q0 in A

Then piqi converges in fM to p0q0

Proof First suppose that p0; q0 are equal Let ® be a transversal to
eF

through
x0 in L0 which intersects Li in a point xi Identify the unit tangent bundle of
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the leaves T 1

eF
j® to the union of circles at in¯nity near S1

1
L0 From the point

of view of ® the visual angle seen by piqi is converging to 0 because pi; qi are

both converging to p0 Hence dLi xi; piqi converges to in¯nity As F is R-covered
d xi; piqi also converges to in¯nity Therefore the geodesics piqi escape in fM and
have no limit point in L0

Suppose now that p0; q0 are distinct points With the notation as in option 1

the visual angle of piqi as seen from xi converges to the visual angle of p0q0 as

seen from x0 ¡ this last one is not 0 so we may assume all of them are bounded
away from 0 Hence the geodesics piqi have points yi a bounded distance from xi
There is a subsequence yin converging to y0 which is in L0 and so that directions

at yin also converge Choose a transversal ®0 to
eF

through y0 and containing yin
From the new point of view still pin converges to p0 and qin converges to q0 in A
Hence the two rays of pinqin de¯ned by yin converge to two rays in L0 starting in
y0 and with ideal points p0; q0 In addition the angle between the rays of pinqin
is always equal to ¼ hence so is the angle between the two rays in L0 starting
at y0 This means that the union of these two rays in L0 is a geodesic which is
none other than p0q0 So pinqin converges to p0q0 Since any such sequence has a
convergent subsequence to p0q0 this proves the lemma ¤

It follows that if ¯; ° are continuous curves in A which are transverse to the

horizontal foliation then the geodesics in L de¯ned by the intersections of ¯ and

° with S1

1
L vary continuously in fM as L varies in

eF
In particular this occurs

if ¯; ° are contained in leaves of the vertical foliation of A

Claim 2 The action of ¼1 M on fM
0 is properly discontinuous

Let C compact in fM 0 Let gi in ¼1 M so that there are xi in C with xi
also in gi ¡1 C Let yi be gi xi Up to subsequence xi converges to x0 and yi
converges to y0 u0; t0 Let

xi ui; ti with ui 2 H2; ti 2 R; ui u0; ti t0:

Choose triples of points zi; wi; vi in @H2 S1 with ui the barycenter of the ideal
triangle in H2 de¯ned by these 3 points Assume that zi converges to z0 which
implies wi; vi also converge to distinct points w0; v0 Up to another subsequence

f ± µ gi ± f¡1 zi converges to z
00

so also f ± µ gi ± f¡1 wi converges to w
00

and

f ± µ gi ± f¡1 vi converges to v
00

distinct in S1 Hence yi is equal to si; ri with
si converging to the barycenter of the triangle de¯ned by z

00
; w

00
; v

00
Using the

conjugacy by f it follows that in U the sequences

f¡1 zi ; f¡1 wi ; f¡1 vi converge to distinct points f¡1 z0 ; f¡1 w0 ; f¡1 v0

respectively Let ai in Fti which are the barycenters of the ideal triangles in Fti
de¯ned by the points b1

i
; b2i; b3i in S1

1
Fti associated to f¡1 wi ; f¡1 zi ;f¡1 vi of

U As these points converge to 3 distinct points in A the lemma above implies that
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b1
i

b2
i

b1
i
b3
i

b2
i

b3
i

converge to geodesics in the limit leaf The associated barycenters

ai also converge to the barycenter a0 in Ft0 of the limit ideal triangle But
µ gi f¡1 zi f¡1 f ± µ gi ± f¡1 zi f¡1 z

00
in U ;

similarly for wi; vi The gi ai are barycenters of ideal triangles in Fg¤i ti with
ideal points associated to

µ gi f¡1 zi ; µ gi f¡1 wi ; µ gi f¡1 vi
and they converge to the barycenter c0 of the ideal triangle in Ft0 de¯ned by
f¡1 z

00
; f¡1 w00 ; f¡1 v00

That means gi ai converges to c0 As the action of
¼1 M on fM is properly discontinuous there are only ¯nitely many distinct gi
This proves claim 2

Let ¡ be the action of ¼1 M induced in fM 0 Claims 1 and 2 imply that
M 0 fM 0 ¡ is a manifold

Claim 3 M 0 is a compact manifold

Let xi in M 0 and lift to xi in fM 0 Similarly to arguments in claim 2 ¯nd
associated points ai in fM Up to subsequence there are covering translates gi ai
converging in fM Again similarly to claim 2 show that gi xi is in a compact
subset of fM

0 implying compactness of M 0 We leave the details to the reader
Notice that M is homotopy equivalent to M 0

There are two product foliations in fM
0 one by leaves H2

£ ftg and another by
vertical lines fxg £ R Both of these foliations are invariant by the action of ¡
producing two transverse foliations in M 0 The two dimensional foliation implies

that M 0 is irreducible The foliation by vertical lines fxg £ R induces a 1-dim V
foliation in M 0 which is transversely hyperbolic: there is a transversal H2 structure

which is preserved by holonomy [Th3 Ep] Under these circumstances Thurston
[Th3 Ep] showed that either

1 M 0 is a Seifert ¯bered manifold with V a Seifert ¯bration or
2 M 0 is a torus bundle over S1 with Anosov monodromy and V is say the

strong unstable foliation of the corresponding suspension Anosov °ow
In case 2 M 0 is Haken and as M is homotopy equivalent to M 0 then M is

in fact homeomorphic to M 0 [He Wa] In case 1 M 0 is homotopy equivalent to
a Seifert ¯bered space and since M is irreducible Scott [Sc] proved that M is
homeomorphic to M 0

Using averaging techniques one can show that F is topologically conjugate to
F

0 These techniques have been used for instance by Ghys [Gh] and others in the

one dimensional setup The two dimensional case is more involved and for brevity
we only do the following: In situation 1 M is a Seifert ¯bered space and work of
Brittenham [Br] see also [Th1] implies that F is either vertical a union of circle
¯bers in the Seifert ¯bration or horizontal transverse to the circle ¯bers The
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¯rst option cannot occur because the leaves of F are hyperbolic Hence F can be

put transverse to the Seifert ¯bration and by careful choices the transversal °ow
in M lifts to a °ow in fM which produces global homeomorphims between leaves

of
eF

which are isometries of the hyperbolic metric No change in geometry In
any case it is easy to see that in this case there is a Z © Z subgroup of ¼1 M

In case 2 M ¯bers over S1 with Anosov monodromy One can put the incom-
pressible torus T transverse to F [Rou Th1 Ga5] and hence there is an induced
foliation in T This foliation is invariant by the monodromy of the ¯bration and
hence has to be the stable or unstable foliation of the monodromy Hence F is
conjugate to say the weak stable foliation of the associated Anosov °ow and
the transversal °ow can be chosen to be the strong unstable foliation of this °ow
As in case 1 no transversal change of the leaf metrics In any case there is a Z © Z
subgroup of ¼1 M

This ¯nishes the proof of the main theorem in the case ¼1 M acts by uniformly
quasisymmetric homemorphisms of U

5 The non-uniformly quasisymmetric case

For the rest of the article we we analyse the following situation:

Case 2 The action of ¼1 M on U is not uniformly quasisymmetric

Theorem 5 1 If the action of ¼1 M on U is not uniformly quasisymmetric and

F is transversely orientable then there is a lamination G transverse to F inter-
secting leaves of F in geodesics

Proof The goal of this section is to prove this theorem Thurston [Th9 Th10]
announced a very similar result with an additional possibility in the conclusion:
a Z © Z subgroup of ¼1 M He explained to us the main steps of his proof
[Th9] We extend Thurston's result by always obtaining a transverse lamination
The detailed constructions in this section are essential for the results in the next
section

Roughly the proof goes like this: using the hypothesis on the action we produce

ideal quadrilaterals in leaves of
eF

which get arbitrarily distorted They shrink to
geodesics in leaves of the foliation Using the universal circle one can sweep these

geodesics across the foliation to produce an immersed lamination transverse to F
The di±cult part will be to show they are embedded

We use the same notation as in the previous section: the universal circle U is
identi¯ed to a circle S1 and also to the circle at in¯nity S1

1
F ¤ of a ¯xed leaf F ¤ of

eF
where F ¤ is identi¯ed to H2 Given a covering translation g then µ g denotes

the induced homeomorphism in U or in S1

1
F ¤ The set H the leaf space of

eF
is parametrized as fFtg with t in R The proof is divided into several steps
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Step 1 Constructing ideal quadrilaterals which get stretched in opposite direc-
tions

By hypothesis there are quadruples Zi of points in U with C Zi 1 2 and
gi in ¼1 M with the cross ratio C µ gi Zi arbitrarily close to 0 or 1 There

is a way to produce the transverse laminations to F using earthquake maps on
the hyperbolic plane [Th6] as explained by Thurston [Th9] Here we use simple
properties of the cross ratio to obtain the laminations

If Z fz1; z2; z3; z4g is a positively oriented quadruple of points in S1 then
C Z is very near 0 or 1 if and only if the ideal quadrilateral in H2 associated to it
is very thin: there are two opposite sides of the quadrilateral which are very close

to each other in the hyperbolic metric This obviously implies that the other two
opposite sides are very far from each other and is equivalent to it Given an ideal
quadrilateral we de¯ne the waist to be the minimum distance between opposite

sides Using the formula for C Z it is very easy to verify that C Z is very near
0 if and only if the geodesic z1z2 of H2 de¯ned by z1; z2 has a point very near z3z4
and that C Z is very near 1 if and only if z2z3 has a point very near z4z1

De¯nition 5 2 Given a quadruple U of points in a circle at in¯nity S1

1
L of a

leaf L of
eF

let W U denote the ideal quadrilateral in L with endpoints in U

Let Z be a quadruple in S1

1
F ¤ For g in ¼1 M the map µ g acts on U

identi¯ed to S1 This de¯nes an action on geodesics and ideal quadrilaterals of
F¤ for simplicity of notation also denoted by µ g In particular

µ g W Z W µ g Z :

We stress that
µ g W Z ½ F ¤; usually not isometric to W Z ;

whereas g W Z ½ g F ¤ is always isometric to W Z :

First check the action in F¤ Let Zi be a sequence of quadruples in U and gi
in ¼1 M with C Zi 1 2 that is the W Zi are regular ideal quadrilaterals in
F¤ H2 but the cross ratios C µ gi Zi converge to either 0 or 1 Circularly
rename the points in Zi so that these cross ratios converge to 0

Lemma 5 3 There are ideal quadrilaterals Ci in H2 de¯ned by quadruples Yi
in U and covering translations gi with C Yi converging to 0 but C µ gi Yi
converging to 1

Proof This means that with the ordering in the quadruples the map µ hi sends

quadrilaterals very thin in one direction C Z near 0 to quadrilaterals very thin
in the other direction C Z near 1 Given n in N and any waist size b0 su±ciently
small there is a waist size b1 much smaller than b0 so that any quadrilateral of
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a) b)

waist < b0

waist < b1

e

e

1

2

W q g
i

Z i

W Zi

q g i
)-1(em)

Figure 4 a Interpolating an extremely thin quadrilateral using a lot of thin quadrilaterals
{ the quadrilaterals Em are supposed to be thin that is the top and bottom sides have

points which are very close We draw E2 big for viewing purposes

b Packing the inverse images of Em inside the regular quadrilateral W Zi implies that
some of the images are quadrilaterals very thin in the other direction vertical

waist b1 can be covered by n quadrilaterals

fEmg; 1 · m · n;

of waist smaller than b0 the associated cross ratio is very close to 0 satisfying:
the interiors of the

Em are disjoint from each other consecutive quadrilaterals are

adjacent see Fig 4 a
Now if W µ gi Zi has waist size less than b1 cover it by quadrilaterals fEmg

with m in [1; n] all of waist size smaller than b0 as above see Fig 4 a Let µ g¡1
i

act on this The union of
µ gi ¡1

Em

will cover the regular quadrilateral W Zi Since the quadrilaterals µ gi ¡1
Em

are restricted in one direction to be inside the regular quadrilateral W Zi
see Fig 4 b then: If n is su±ciently big at least one of the quadrilaterals

µ gi ¡1
Em is very thin in the other direction that is the associated cross ratio

is very close to 1 Let Ci be one such quadrilateral Em This ¯nishes the proof of
Lemma 5 3 ¤

De¯nition 5 4 If l is a geodesic in a leaf a leaf F of
eF

it has two ideal points

in S1

1
F and therefore two distinct points in U The set l £ R consists of the

union of the geodesics in leaves of
eF

associated to the same points in U de¯ned by
l The curves in A de¯ned by each point in U are continuous hence the set l £ R
is a topological plane which is properly embedded in fM In the same way if V is
a convex set in a leaf of

eF
bounded by geodesics si one forms si £ R and jointly

they bound the set V £ R
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Step 2 The distortion parallelepipeds

We will use the thin quadrilaterals

W Yi ; W µ gi Yi
of the previous step to produce immersed transverse laminations to F First con-
struct a distorted ideal parallelepiped in fM as follows For simplicity suppose that
F¤ is in the back of g¡1

i F¤ Notice that µ gi Yi de¯nes an ideal quadrilateral
in F ¤ with cross ratio very close to 1 Since gi acts as isometries between leaves

of
eF

then

Zi g¡1
i W µ gi Yi ½ g¡1

i F ¤

is isometric to W µ gi Yi and has cross ratio very close to 1 The ideal points

of
g¡1
i W µ gi Yi in S1

1
g¡1
i F ¤

de¯ne the same points b1; b2; b3; b4 in U that Yi does For each F in H between F ¤

and g¡1
i F ¤ form the ideal quadrilateral with the ideal points corresponding to

b1; b2; b3; b4 in U The 4 curves in A de¯ned by these points in U are continuous

curves in A hence Lemma 4 1 implies that the sides of the ideal quadrilaterals
in F vary continuously with the leaf F The union of these ideal quadrilaterals
between F ¤ and g¡1

i F ¤ is a parallepiped Pi in fM see Fig 5 That is

Pi [ © W Yi £ R \ F j F 2 [F ¤; g¡1 F ¤ ]ª :

The bottom of Pi is the quadrilateral W Yi in F ¤ the top is the quadrilateral Zi
in g¡1

i F ¤ and there are 4 sides which are transverse to
eF

which are b1b2 £ R
and so on The tops of the parallelepipeds will shrink to geodesics producing one

lamination and likewise for the bottoms We will change the parallelepipeds Pi in
the next step

Remark Lemma 4 1 implies that for any geodesic ® in a leaf of
eF

then the

geodesics in ® £ R vary continuously in fM Hence ® £ R is an embedded plane

in fM It follows that all objects constructed here D¡ £ R D+ £ R G G¡ G+
etc are continuous

Step 3 Convergence of the bottoms of the parallelepipeds

We use the distortion parallelepipeds Pi from step 2 We take limits: First
project to leaves of F in M The quadrilaterals W Yi have associated cross ratios

C Yi converging to 0 Let xi in the boundary of the waist of W Yi Up to
subsequence assume that ¼ xi converges to x0 in M and the directions of the

geodesic sides of ¼ Wi at ¼ xi also converge In M the quadrilaterals ¼ W Yi
shrink to geodesics in leaves Lift x0 to

e
x0 in fM with the limit geodesic in the leaf

of F lifting to a geodesic l0 in a leaf F 0 of
eF

through
e
x0 This geodesic de¯nes
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Figure 5 Quadrilaterals which stretch in di®erent directions Here Zi
g¡1
i W µ gi Yi The ideal points of the quadrilaterals de¯ne the same points in U

as the leaves vary in
eF

but the geometry of the quadrilaterals depicted in the ¯gure
changes from leaf to leaf The union of the quadrilaterals is the parallelepiped Pi

two points in U and hence a geodesic l1 in F ¤ ¡ the geodesic l1 is exactly l0 £ R
intersected with F ¤ We de¯ne two important sets:

D¡ [h2¼1 M
fµ h l1 g ½ F ¤ and D¡ £ R [l02D¡

l0 £ R ½ fM :

We now change the Pi so that bottoms converge to l1 Up to covering translations

we may assume that the bottoms Bi of Pi converge to the geodesic l0 in a leaf F 0

of
eF

This changes the Pi so the bottoms are not in F ¤ anymore { we adjust that
as follows: For F in

eF
between F ¤ and F 0 let

Ai F Bi £ R \ F:

These are ideal quadrilaterals in F The ideal endpoints of Bi converge to the 2
ideal points of l0 as i grows so the ideal points of Ai F ¤ collapse to the 2 ideal
points of l1 { because the leaves of the vertical foliation in A vary continuously
This produces a thin wall from F ¤ to F 0 Since the horizontal quadrilaterals in
Pi eventually have cross ratio close to 1 when going up the Pi extends beyond
F 0 We can extend or contract the parallepipeds Pi so that the bottoms are now
always in F ¤ and they converge to l1

Conclusion 1 Up to subsequences covering translations and extension or con-

tractions we may assume that the parallelepipeds Pi have bottoms Bi which are

ideal quadrilaterals in F ¤ with cross ratio converging to 0 and Bi converging to
the geodesic l1 of D¡ so that the waists of Bi converge to a ¯xed point of l1 The

tops of Pi have cross ratio converging to 1

Step 4 Convergence of the tops of the parallelepipeds

We want to do the same approach for the tops Ti of Pi Since the bottoms of
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the Pi will stay in F ¤ clearly the tops cannot do the same As in step 3 up to
another subsequence the waists of ¼ Ti converge to a point in M and so do the

directions of the sides of ¼ Ti Lifting to fM this de¯nes a geodesic in a leaf of
eFand using the vertical foliation this de¯nes a geodesic l2 in F ¤ De¯ne

D+ [h2¼1 M
fµ h l2 g ½ F¤ and D+ £ R [l02D+

l0 £ R ½ fM :

In the same way as above we can extend or contract the tops of Pi so that:

Conclusion 2 In addition to conclusion 1: There are covering translations gi in
¼1 M so that the tops gi Ti are contained in F ¤ and converge to a geodesic l2
of F ¤ The waists of gi Ti converge to a single point of l2 Finally in the case

there is a leaf of D¡ transversely intersecting a leaf of D+ then up to renaming

l2 by covering translations we can assume that these are l1 and l2 If this does

not happen but D¡ and D+ share a leaf assume that l1 is equal to l2 Fix the

Pi; Bi; Ti; gi from now on

Using covering translations one gets the same conclusions for any leaves of D¡and D+ In fact using a diagonal process on sequences the same is true for any
limit of leaves of D¡ or D+ We stress this:

Lemma 5 5 Using covering translations extensions/contractions of parallelepi-
peds and limits the following happens: suppose that l is either the intersection of
a leaf of D¡ £ R with a leaf F of

eF
a geodesic in a leaf of

eF
or a limit of such

intersections Then there is a sequence Qi of parallelepipeds so that 2 opposite
sides of bottoms converge to l and so that cross ratio of bottoms respectively tops

converges to 0 respectively 1 The same holds if l comes from D+ £ R in which
case the tops converge to l

Step 5 Producing the a priori only immersed laminations

We will eventually prove in the next section that each of D¡ £ R; D+ £ R
does not have transverse self intersections But the ¯rst step is to obtain some

embedded lamination which may not be one of these two a priori There are 3
cases to consider we will keep coming back to these options in the next section :

Option A No leaf of D¡ transversely intersects another leaf of D¡ similarly for
D+

Then D¡ £ R ½ fM is a collection of properly embedded planes without any
transverse intersections which is invariant under covering translations Its closure

is a ¼1 M invariant lamination in fM which intersects leaves of
eF

in a union of
geodesics The image in M is a lamination transverse to F

Option B No leaf of D¡ transversely intersects a leaf of D+
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If no two leaves of D¡ intersect transversely then as in option A we produce

a lamination in M transverse to F Otherwise by option B no leaf of D¡ is also
a leaf of D+ Consider a connected component in F¤ of the union of leaves in D¡Then the convex hull C of this set in the hyperbolic metric of F ¤ is not all of
H2 Let B be the boundary of C The translates of B under µ g with g in ¼1 M
do not intersect B transversely Therefore ¼ B £ R produces a lamination as in
option A above Notice that in this case maybe all leaves of the lamination are

neither in D¡ nor D+

Option C There is a leaf of D¡ transversely intersecting a leaf of D+
This is the most interesting case The rest of the proof of Theorem 5 1 is

devoted to an analysis of this case By conclusion 2 here we can choose the l1 in
D¡ and l2 in D+ with a transverse intersection The goal is to show that leaves

of D¡ do not intersect transversely and likewise for D+ that is option C implies

option A We stress that options A and B can happen concurrently but B and C
are contradictory

An important remark here is that in all options A B C these laminations

are obtained as a union of r £ R for a collection of geodesics r in F ¤ If r1 £ R
intersects r2 £ R then there is F in

eF
so that

u1 r1 £ R \ F intersects u2 r2 £ R \ F;

both geodesics in F If u1 u2 then r1£R is equal to r2£R In particular r1£R
cannot be tangent to r2 £ R at level F and then cross from one side of r2 £ R
to the other when passing through F If on the other hand u1 and u2 intersect
transversely in F then r1 £R and r2 £R will have transverse intersection for all G
in

eF
This is one big advantage of producing these laminations using the universal

circle
To prove that option C implies option A then by way of contradiction suppose

there is l3 in D¡ which transversely intersects l1 There is a covering translation
h with µ h l1 l3 Fix h for the rest of the analysis of option C It follows that
µ h¡1 l1 also intersects l1 transversely We use the setup in much more detail
in this case Notice that the bottoms Bi of the parallelepipeds Pi converge to
l1 in fact two opposite sides of Bi do and likewise two opposite sides of µ gi Ti
converge to l2 of D+

For the rest of the proof ¯x i0 big enough so that: If p1; p2; p3; p4 in U are the

ideal points of Bi0 then p1p2 and p3p4 are very close to l1 and so

p1p2; p3p4 intersect l2; l3 µ h l1 and µ h¡1 l1 transversely:

Also µ gi0 Ti0 has two opposite sides very close to l2 Let
g g2

i0 ; h1 µ h ; g1 µ g and qj g1 pj µ g pj 2 U :

For simplicity we omit the notational dependence of pj ; qj ; h;h1; g; g1 on the index
i0
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Figure 6 a Crossing of the two limits D¡ D+ The arrows indicate the action of
g1 µ g2

i0 for instance g1 p1 q1 etc Here C Bi0 and D g1 Bi0 Then g1 has 4
or more ¯xed points in U

b In this picture l3 h1 l1 with endpoints in I2 [ I8 and z h1 l3 Notice that z is
closer to I1 than l3 is

Step 6 Analysing the dynamics of h1 µ h and g1 µ g in U

First we explain why we consider g the square of gi0 instead of just gi0 Let
I be the open interval of U de¯ned by p1; p2 and not containing p3 and similarly
J de¯ned by p3; p4 and not containing p1 One possibility is that µ gi0 p1 and
µ gi0 p2 are in I Another possibility is that the quadrilateral µ gi0 Ti0 is ro-
tated 180 degrees that is µ gi0 p1 and µ gi0 p2 are in J In any case µ g2

i0 p1
equal to q1 and q2 are in I and q1 is the one closest to p1 see Fig 6 a Also

g1 Ti0 µ g2
i0 Bi0

is even thinner than µ gi0 Bi0 The dynamics of g1 in U is as follows: g1 cl Iis contained in I producing at least one ¯xed point in I and similarly g1 cl J
a subset of J yields a ¯xed point in J where here cl denotes the closure in U
Similarly there are at least two ¯xed points outside fI [ J g: one near p1; p4 and
another near p3; p2 In any case g1 has at least 4 ¯xed points in U It follows that
g acts freely in H: if g F F for some leaf F of

eF
then g ¯xes only two points

in S1

1
F and similarly for g1 acting in U

We de¯ne 8 points in U from the dynamics of µ g : Let
aj lim

n ¡1
gn

1 pj ; bj lim
n +1

gn
1 pj :

Notice b1; b2 are in I ; b3; b4 are in J and none of the aj are in I or J Let
¡ ° a1a2 which is very close to p1p2 and to l1
¡ ¯1 b1b4 and ¯2 b2b3 both both very close to q1q4
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Figure 7 a The set A ° £ R { the horizontal segments represent intersections of A
with leaves of

eF
The curve ¹ B \A \ P where P [Ft; t ¸ 0 moves closer to ³1

when t increases Notice g ³1 ³1
b Let ¼1 : A A g be the projection The curve ¹ projects to a compact subannulus

of ¼1 A

We de¯ne 8 closed intervals in U : ¯rst I1 is the interval of U from a4 to a1 not
containing the other points aj ; bj then similarly

I2 : from a1 b1; I3 : b1 b2; I4 : b2 a2; I5 : a2 a3;

I6 : a3 b3; I7 : b3 b4 and I8 : b4 a4;

see Fig 6 b Notice that g1 Ik Ik for all k In addition g1 acts as a homeomor-
phism with only two ¯xed points in I2 the repelling is a1 and the attracting is b1
Similarly for I4; I6; I8 Any of the intervals I1; I3; I5; I7 may be a single point ¡that is if a1 a4 then I1 is a single point On the other hand none of I2; I4; I6; I8

is a single point
One key point here is that by choice of i0 none of the endpoints of h1 l1 l3

are in I1 or in I5 and we may assume the same happens for the endpoints of h1 °
and for h1 pj make i0 bigger if necessary Let

A ° £ R; B h A :

Then g A A and A is a properly embedded plane in fM Also B transversely
intersects A because h1 ° transversely intersects ° Using the dynamics of g1
we show that the intersections of the surfaces ¼ A ; ¼ B stay in compact parts of
both ¼ A and ¼ B and derive a contradiction

Step 7 Analysing intersection of walls A ° £ R and B h A

Consider ¯1 £ R a properly embedded plane which intersects A in an in¯nite

curve ³1 Then

g ¯1 £ R ¯1 £ R; g A A; so g ³1 ³1:

Hence ³1 projects to a closed curve ®1 in the annulus A g Similarly ¯2 produces

a closed curve ®2 in A g Notice ®1 is equal to ®2 if and only if ¯1 ¯2 Let N
be the annulus possibly degenerate in A g bounded by ®1 and ®2 and let

e
N be
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its lift to A Recall the parametrization of
eF

as fFtg with t in R and F ¤ equal to
F0 The curve

¹ B \A \ ³[t¸0

Ft´

is an in¯nite curve of transverse intersection of A and B
The geodesic l3 of H2 has one endpoint c1 in I2; I3 or I4 and the other c2 in

I6; I7 or I8 Suppose ¯rst the endpoints are in I2 and I8 respectively Notice that
gi0 Ti0 is contained in F ¤ so g sends a leaf above F ¤ to F ¤ or g¡1 acts as an
increasing homeomorphism in H Let

s h1 ° \ ° B \A \ F0 2 ¹:

We consider how the points ¹ move in A as t increases The action by g¡1
1

µ g ¡1 brings the endpoints of h1 ° closer to I1 because the endpoints of h1 °
are in I2 and I8 see Fig 6 b Looking at the action g¡1 in A it sends s to a
point with same distance from

e
N see Fig 7 a

e
N is invariant under g¡1 Hence

s1 ¹ \ g¡1 F¤ is closer to
e
N than g¡1 s is see Fig 7 a This means that

going up brings the intersection of B and A closer to
e
N in A In the same way let

sn ¹ \ g¡n F ¤

Then gn sn is in a geodesic in F ¤ with endpoints near µ gn c1 and µ gn c2
But

µ gn c1 b1; µ gn c2 b4 when n +1:

As ¯1 has ideal points b1; b4 the above convergence implies that ¹ is actually
asymptotic to ³1 going up Hence ¹ projects in A g to a curve asymptotic to the

closed curve ³1 g see Fig 7 b
Let ® be the projection of ³1 to M that is ® ¼ ³1 Since ³1 is invariant

under g it follows that ® is a closed curve in M and since ³1 g is already closed
it follows that

® gn; for some n 6 0:

This means that the curve ® represents the element gn in the fundamental group
Now reverse the roles of A and B The points in U ¡ fI1 [ I5g get contracted

towards I3 and I7 under the action of g1 µ g Let
± hgh¡1:

Notice that the points aj are not in the union of h1 I1 and h1 I5 by choice of
i0 Hence the aj are in the regions of U which get contracted by the action of µ ±

towards h1 I3 and h1 I7 From the point of view of B the same arguments as

above show that the intersection of B with A going up in the positive direction is
also trapped closer to a band of B invariant under ± Here we use the fact that F
is transversely orientable { h preserves orientation in H so going up in A action
by g¡1 corresponds to going up in B action by ±¡1 as well An argument as

the one done in for the curve ¹ as seen in A shows that there is a curve ³2 in this
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band invariant under ± and so that ¹ is asymptotic to ³2 in the positive direction
Let ®¤

be the projection of ³2 in M Similarly as above one shows that
± hgh¡1 ®m

¤
for some m

6

0:

Now ¹ is asymptotic to ³1 and to ³2 both of which project to closed curves in M
Therefore ® is equal to ®

¤
Since the intersection of B and A is a single curve

then in fact ³1 is equal to ³2

Step 8 Incompatible actions in U

In the previous step we proved that
g ®n and also hgh¡1 ®m; n; m 6 0:

It follows that
gm ®nm hgh¡1 n hgnh¡1:

This is obtained when l3 has endpoints in I2; I8 The other cases are similar An
argument as above shows that the curve ¹ when viewed in A is always asymptotic
to a curve ³ which is invariant under g The curve ³ is obtained as the intersection

³ l £ R \ A;

where l is a geodesic in F ¤ with endpoints

a lim
i +1

µ gi c1 ; b lim
i +1

µ gi c2 :

Recall that c1; c2 are the endpoints of l3 This occurs because c1 is in the union of
I2; I3 and I4 and so is a Similarly for b Now the same arguments as above imply
the same conclusion The important fact is that the endpoints of l3 are not in I1
or I5

Conclusion In all cases there are n; m non-zero integers with gn h¡1gmh

We now prove this is impossible Notice that g and hence h¡1gh act freely in

H and both act as decreasing homeomorphisms of H This again uses the fact
that h preserves orientation of H Hence if n is positive then m is positive as well
Assume this is the case Given u in U if

g1 u u; then gn
1 u u h¡1

1 gm
1 h1 u or gm

1 h1u h1 u :

Since g1 has ¯xed points in U this implies g1h1 u h1 u The same applies to
h¡1

1
so h1 leaves the set of ¯xed points of g1 invariant These ¯xed points are in

I1; I3; I5 and I7 By construction h1 I1 is disjoint from I1 and I5 therefore it is a
subset of I3 or I7 and likewise for h1 I5 Similarly h¡1

1 I1 ; h¡1
1 I5 are subsets of

I3 or I7 so h1 I3 ; h1 I7 are very small and hence contained in I1 or I5 Together
these imply that

h1 Ij Ik j for any j 2 [1; 8]:



464 S R Fenley CMH

There are 4 cases to consider all similar Suppose ¯rst that h1 I1 I3 and h1
preserves orientation of U Since h1 Ij Ik j this implies the very important
consequence that h1 I2 I4

Now consider the action of gn
1 and h¡1

1 gm
1 h1 in I2 The key is that both n; m

are positive

² gn
1 only ¯xes @I2 in I2 with a1 repelling ¯xed point for gn

1 and b1 attracting

² h¡1
1 gm

1 h1 conjugates the action of gm
1 in I4 to act in I2 As h1 preserves

orientation in U then h1 a1 b2 and h1 b1 a2 In I4 gm
1 ¯xes only @I4

and b2 is attracting a2 is repelling Hence the action of h¡1
1 gm

1 h1 on I2 ¯xes

only @I2 and has a1 attracting b1 repelling

Hence the actions of gn
1 and h¡1

1 gm
1 h1 are incompatible in I2 and therefore they

cannot be equal Consider the other 3 cases: When h1 I1 I3 but h1 reverses

orientation in U then h1 I2 I2 °ipping the endpoints The same argument
produces a contradiction When h1 I1 I7 and h1 preserves the orientation then
h1 I2 I8 but it sends the attracting ¯xed point in I2 of g1 to the repelling one

in I8 of g1 again contradiction Finally if h1 I1 I7 and h1 reverses orientation
in U then h1 I8 I8 °ipping the endpoints again a contradiction

As all cases are impossible this ¯nally shows that h1 l1 and l1 intersecting

transversely is impossible The same proof applied to D+ shows that µ h0 l2
transversely intersecting l2 for some h0 in ¼1 M is impossible Hence both D¡and D+ generate laminations in M :

Lemma 5 6 If a leaf of D¡ transversely intersects a leaf of D+ then both the

sets cl ¼ D¡ £ R and cl ¼ D+ £ R are embedded laminations in M which are
transverse to each other ¡ here cl denotes closure in M In particular option C
implies option A for both D¡ and D+

This ¯nishes the proof of Theorem 5 1 ¤

6 The two transverse laminations

In the previous section we proved that if F is R-covered with hyperbolic leaves

then either M is Seifert ¯bered or a torus bundle over S1 or there is a lamination
transverse to F We use the constructions and notations of the previous section
In this section we show that in the atoroidal case both D¡ and D+ produce lami-
nations transverse to F which are also transverse to each other Unless otherwise

stated from now on assume that M is homotopically atoroidal We ¯rst obtain
some general results about laminations transverse to R-covered foliations and then
use these results to study the laminations constructed in the previous section

We say that a lamination G transverse to a foliation F is a lamination by
geodesics if leaves of G intersect leaves F of F in geodesics of F Now restrict to
R-covered foliations with hyperbolic leaves If in addition for each leaf G of

eG
the
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ideal points of G \ F as F varies in
eF

de¯ne two leaves of the vertical foliation of

A then we say that G is a universal lamination by geodesics ¡ like the laminations

constructed in the last section First we analyse complementary regions of general
universal geodesic laminations in a series of results from Proposition 6 1 till Lemma
6 4

If F is a leaf of
eF

or of F let
eG

F GF respectively denote the lamination by
geodesics induced by

eG
or G in F

Proposition 6 1 Let F be R-covered with hyperbolic leaves and M homotopically
atoroidal Suppose that G is an universal lamination by geodesics transverse to F
Then for any leaf F of

eF
the complementary regions of

eG
F that is

eG \ F are
all ¯nite sided ideal polygons in F with an upper bound on the number of boundary
sides Complementary regions of G in M are either solid tori or solid Klein bottles

bounded by ¯nitely leaves of G

Proof We ¯rst show that geodesics which are boundary leaves of
eG

F and which
get su±ciently close in F are asymptotic in F :

Lemma 6 2 There is positive ² so that for any F in
eF

then any neck of size

smaller than ² in a complementary region of
eG

F will produce asymptotic leaves in
F Similarly for G and F

Proof Here a neck is a geodesic segment ® in a leaf F of
eF

so that its boundary is
in

eG
F but the interior of ® is disjoint from

eG
F There are two leaves u1; u2 of

eG
F

through the endpoints of ® and the goal is to show that if ® has small length then
u1; u2 are asymptotic Suppose the lemma is not true Find necks of size smaller
than 1 i from points in leaves

si; ri of
eGLi ; with Li 2 eF

; but si; ri not asymptotic in Li:

Since si; ri are not asymptotic we may assume these are the closest points in Li
from si to ri Since si; ri are distinct they eventually diverge in some direction
so ¯nd necks »i of size 1 between si; ri with angles between the necks and the

geodesics si; ri bounded away from 0 and ¼ Let pi be the middle points of »i Let
fi in ¼1 M with fi pi converging to p with necks fi »i also converging and so

that the geodesics fi si ; fi ri converge to leaves s; r in L0 of
eF

Here L0 is the

limit of fi Li
If s; r are not asymptotic L0 there is a minimum positive distance b0 between

them and they diverge from each other in each direction For nearby fi pi the

leaves fi si ;fi ri also get roughly b0 away from each other and then start to
diverge from each other { this is all happening in a compact set near the leaf L0
But in hyperbolic geometry once a pair of geodesics starts to diverge from each
other they will never get close anymore Hence for i big the minimum distance

between fi si and fi ri in fi Li is close to b0 This contradicts dLi si; ri
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converging to 0 We conclude that s; r are in fact asymptotic in L0
The leaves fi si ; fi ri are boundary leaves of

eGfi Li Using the universal
circle identi¯cation

fi si £ R \ L0; fi ri £ R \ L0

are also boundary leaves of
eG
L0 with necks of size very close to 1 near p0 But the

only boundary leaves of
eG
L0 near p0 and with neck size near 1 are s; r hence fi si

is contained in say s £ R and fi ri is contained in r £ R for i big enough
Equivalently this argument says that nearby gaps of

eG
in fact map to each other

by moving transversally to
eF

This uses the fact that the laminations are made of
sets l£R associated to the universal circle { a universal geodesic lamination This
argument that if necks are very near then the geodesics through the endpoints are

contained in the same leaves of
eG

will be often used here ¡ we call it the matching

boundary e®ect
But now the leaves s; r de¯ne the same ideal point in S1

1
L0 and again by

hypothesis of the proposition this implies that leaves fi si ; fi ri also de¯ne the

same ideal point in S1

1
fi Li that is fi si ; fi ri are asymptotic for i big

enough This contradicts the fact that si; ri are not asymptotic in Li and ¯nishes

the proof of Lemma 6 2 ¤

We stress that this works for boundary leaves In general there are in¯nitely
many pairs of leaves si; ri of

eG
F which have necks of arbitrarily small size but are

not asymptotic in F But if they are boundary leaves of the same complementary
region of

eG
F then they have to be asymptotic

We now return to the proof of Proposition 6 1 If G is a foliation Proposition
6 1 is trivial Otherwise consider ²0 much smaller than ² 2 ² as in Lemma 6 2
We de¯ne an open set B²0 in M : let u be a point in a leaf E of F Then

u 2 B²0 if dE u; GE < ²0;

where dE is measured in E Choose ²0 small enough so that B²0 is not M and
let Z be a component of the boundary of B²0 We consider how Z intersects the

foliation F Let p be a point in Z which is in a leaf E of F If p is ²0 away from
two leaves l1; l2 of GE then l1; l2 are 2²0 away from each other which is less than ²
By Lemma 6 2 l1 and l2 are asymptotic in E and in that direction their distance

decreases: any point between them is less than ²0 from at least one of l1 and l2 and
therefore Z does not intersect that direction anymore Now consider the opposite

direction: in that direction l1; l2 diverge from each other and become more than
2²0 from each other this means that the intersection of Z and E has a corner at
p and in the diverging direction two arcs of

Z \ E emanate from p:

On the other hand if p is not a corner then p is ² distant from a single boundary leaf
l1 of GE and the intersection of Z with E tracks this leaf l1 nearby Conclusion:
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the intersections of Z with E track boundary leaves of GE until they hit a corner
and start to track another leaf of GE they can also never hit a corner

What happens transversely to F in a nearby leaf L If p is not a corner point
then for nearby L the set Z intersects L in a curve ²0 away from GL and near
the one in E This means that Z is a two dimensional manifold near p If on
the other hand p is a corner point then l1; l2 are asymptotic in E For nearby
L there are unique boundary leaves of GL associated to l1; l2 ¡ by the matching
boundary e®ect and these leaves in L are also asymptotic The associated corner
point in L is near the corner point in E which shows that near p the set Z is a

two dimensional set This also shows that Z is transverse to F
This is a crucial point: if boundary leaves of GE could get close to each other

without being asymptotic there are two corners associated to these leaves Moving

transversely to F could push those boundary leaves apart from each other In
terms of Z this would mean two corners coming together and splitting to two curves

without corners tracking the two boundary leaves producing a saddle tangency of
Z and F

In addition to being two dimensional it is easy to see by de¯nition that Z
cannot limit on itself transversely: one side would have to be closer to G Hence

Z is compact surface transverse to F so Z is either the torus or the Klein bottle
Let FZ be the induced foliation in Z by F

Lemma 6 3 The leaves of FZ are closed curves which are null homotopic in their
respective leaves of F The set Z bounds a solid torus or solid Klein bottle in M

Proof If Z is ¼1-injective then there is a Z © Z subgroup in ¼1 M contrary to
the atoroidal hypothesis Hence there is a simple closed curve ° in Z which is null
homotopic in M

First we show there are no Reeb annuli in FZ Suppose there is a Reeb annulus

C bounded by leaves ®; ¯ which are the limit of ®x with x converging to in¯nity
Consider lifts

e
C;

e
®;

ē
;

e
®x; to fM :

Since C is a Reeb annulus the curves

e
®;

ē
are in leaves of

eF
which are not

separated from each other But F is R-covered so they are in the same leaf
of

eF
let it be F Then

ē
;
e
® do not track the same geodesics of

eG
F because they

are distinct curves Now look at nearby leaves

e
®x: by construction they track a

chain of consecutively asymptotic boundary leaf geodesics of
eG

in the respective

leaves of
eF

By the matching boundary e®ect this chain pulls to F to a chain of
consecutively asymptotic geodesics in

eG
F But some of then are tracked by

ē
and

some are tracked by
e
® This can only happen if

ē
is equal to

e
® which is impossible

As in the previous lemma this is basically saying that the combinatorics of the

intersections of Z with F do not change transversely to F
Given that there are no Reeb annuli in FZ the curve ° is homotopic to one

which is either a leaf of FZ or transverse to it A transversal to FZ is transverse
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to F and as F is Reebless the transversal is not null homotopic in M Hence

we can assume that ° is a leaf FZ - by Reebless again ° is null homotopic in its

leaf Nearby leaves of FZ are also closed since ° has no holonomy The limit of
compact leaves is compact [Ha] so all leaves of FZ are closed and bound disks in
their respective leaves of F It now follows that Z bounds a solid torus or solid
Klein bottle in M This ¯nishes the proof ¤

We now ¯nish the proof of Proposition 6 1 If U is a complementary region of
G let ²0 be small enough so that B²0 does not contain U and let Z be a component
of @B²0 contained in U Let E be a leaf of F intersecting Z and ¯ a component
of the intersection of E and Z By Lemma 6 3 ¯ is a closed curve in E which
is null homotopic in E and tracks boundary leaves of GE Hence the associated
complementary region in E is a ¯nite sided ideal polygon in E Moving transversely
does not change the combinatorics or the number of boundary sides in this polygon
and since Z is closed it follows that the complementary region U is a solid torus

or solid Klein bottle This also shows that for any F in
eF

any complementary
region of

eG
F is a ¯nite sided ideal polygon

We know show there are ¯nitely many complementary regions of G Do the

argument in fM A complementary region of
eG

contains an ideal triangle in a leaf
of

eF
Suppose for a moment there are in¯nitely many complementary regions Vi

which are not equivalent under covering translations Let vi be the barycenter
of an ideal triangle contained in a leaf Li of

eF
and also in Vi Up to covering

translations and a subsequence the vi converge to a point v0 in a leaf L0 Also

dLi vi; eGLi > c0;

for some positive constant c0 because vi is the barycenter of an ideal triangle in
Li ¡ eG

Li By continuity v0 is not in
eG

so there is a complementary component
V0 of

eG
with v0 in V0 As V0 is open then Vi is equal to V0 for i su±ciently big

contradiction
Hence there are only ¯nitely many complementary regions of G in M and there

is an upper bound to the number of sides in any complementary region of
eG

F for
any F in

eF
This ¯nishes the proof of Proposition 6 1 ¤

Lemma 6 4 Let F be a transversely oriented foliation with hyperbolic leaves in
M orientable and G a minimal universal lamination by geodesics transverse to

F If s1; s2 are asymptotic leaves of
eG

F then s1; s2 are in the boundary of a
complementary region of

eG
F Similarly for asymptotic leaves of G

Proof Here we use the notation of the previous section where F ¤ is the distin-
guished leaf In addition if g is in ¼1 M then g acts in U and geodesics of F ¤ by
µ g We also use the notation l £ R for any geodesic l in a leaf of

eF
Let V0 be

eG
F ¤ It su±ces to prove the lemma for V0

If the lemma is false ¯nd s1 boundary leaf of a complementary region Q of V0
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Figure 8 a Asymptotic leaves not in the closure of same complementary component
b Chain of asymptotic components producing a contradiction Here u1 h u2

and s2 not in @Q but asymptotic to s1 see Fig 8 a Assume that s1 separates s2
from Q Let u1 be the common ideal point of s1; s2 and u2 the other ideal point
of s1 Let s3 be the other boundary leaf of Q with ideal point u2

Fix z in s1 Let ² given by Lemma 6 2 Here s1 is not isolated in the s2 side

since it is isolated in the s3 side and G is minimal Let wi be a sequence in s1
converging to u2 As G is minimal there are vi in s1 £ R which are a bounded
distance depending on ² from wi in s1 £ R and

fi in ¼1 M with d fi vi ; z < ² 2; but fi vi not in s1 £ R :

As s1; s3 are asymptotic and d vi; wi is bounded then there are yi in s3£R with
d yi; vi converging to zero So d fi yi ; z is smaller than ² 2 for i big enough
We may assume that fi yi and fi vi are in V0 By the property of ² the leaves

of V0 through fi yi and fi vi are asymptotic in the u1 direction see Fig 8 a
Since s1; s3 are asymptotic in the u2 direction this implies that

µ fi u2 u1 for i big enough:

To simplify notation ¯x i su±ciently big and let h µ fi By assumption h
preserves the orientation of U It follows that h Q is asymptotic to Q along
s1; h s1 and in the same way h2 Q is asymptotic to h Q along h s1 ; h2 s1 see

Fig 8 b This shows that h s1 is asymptotic to both s1 and h2 s1 Recall that
h s1 is not isolated in V0 But it is isolated on the h Q side On the other side

it is asymptotic to s1; h2 s1 both in V0 so again it is isolated This contradiction
shows that s1; s2 cannot be asymptotic and ¯nishes the proof of the lemma ¤

Notice that M atoroidal is not needed for this lemma

De¯nition 6 5 Let Qi be a sequence of distortion parallelepipeds in fM so that
bottoms are ideal quadrilaterals in leaves of

eF
with cross ratios converging to 0
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while tops are ideal quadrilaterals in leaves of
eF

with cross ratios converging to
1 We call Qi a shrinking sequence of distortion parallepipeds For simplicity we

sometimes omit the word shrinking and refer to Qi as a sequence of distortion
parallelepipeds

We now analyse the laminations constructed in the last section in detail in
particularly in relation to the options in step 5 of the proof of Theorem 5 1 The

eventual goal of this section is

Goal Show that option B does not occur

Hence option C will occur and as shown in the previous section option A holds

for both D¡ and D+ and there will be two transverse laminations in M We use

the notations and constructions of section 5 In order to analyse this situation
recall the options in step 5 to produce laminations by geodesics in M :

² If leaves of D¡ do not self intersect transversely option A which can also
happen when option B occurs then let G¡ be the closure of ¼ D¡ £ R and
this is a lamination

² Suppose there are transverse self intersections of leaves of D¡ Then since

option C implies option A we have that no leaf of D¡ transversely intersects

a leaf of D+ Let A be the connected component of the union of leaves of D¡containing l1 and let C be its convex hull Then C is not all of H2 by hypothesis
here Let B be @C and in this case let G¡ be the closure of ¼ C £ R also a
lamination Here we are in option B

Similarly for D+ producing a lamination G+ Hence there are always two
laminations which a priori may be equal In addition let

² Gm
¡

be a minimal sublamination of G¡ and

² Gm+
a minimal sublamination of G+

The 4 laminations
G¡; G+; Gm

¡
and Gm

+
will be ¯xed from now on As we will

see later Gm

¡
and Gm

+
are uniquely de¯ned and in the end we will prove that Gm

¡
is

equal to G¡ and similarly for Gm
+

Let

V¡ eG¡ \ F ¤; V+ eG+ \ F ¤; V m
¡ eG

m

¡ \ F ¤; V m
+ eG

m
+ \ F ¤;

all laminations in F ¤ could be foliations too Also V m
¡ is contained in V¡ and

V m
+ is contained in V+

We ¯rst derive general properties of leaves of V m
¡ ; V m

+ Let l be a leaf of V m
¡ If

D¡ does not transversely self intersect then Gm

¡
is contained in cl ¼ D¡ £ R so

there are leaves ui in D¡ converging to l On the other hand if D¡ has transverse

self intersections say l1 with l4; then l1 does not intersect
eG¡ so l1 has to be in a

complementary region of V m
¡ ¡ a ¯nite sided ideal polygon Therefore a ray of l1

is asymptotic to a leaf of V m
¡ But since Gm

¡
is minimal this implies that ¼ l1 £R

limits on every leaf of Gm

¡
so again there are leaves ui of D¡ converging to l The
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same happens for D+ so if l is a leaf of V m
+ there are leaves vi of D+ converging

to l Lemma 5 5 now implies:

Conclusion 3 If l is a leaf of V m
¡ there is a shrinking sequence of parallelepipeds

Qi with bottoms in F ¤ so that two opposite sides of the bottoms converge to l
the cross ratio of bottoms respectively tops converges to 0 respectively 1 In
the same way if l is a leaf of V m

+ there are parallelepipeds Qi with the same cross

ratio characteristics with tops converging to l The same holds for intersections of

eG
m
+ ;

eG
m

¡ with any leaf F of
eF

If Q is an ideal polygon in F ¤ or H2 let @1Q be the ideal points of Q
We will now prove a crucial technical lemma which will help in analysing option

B later on and also help produce a transverse pseudo-Anosov °ow to F Consider
the case that Gm

¡
is not a foliation Recall that if g is in ¼1 M then µ g acts

in U and in convex sets of F ¤ Let C1 be a complementary region of V m
¡ By

Proposition 6 1 ¼ C1 £ R is a solid torus or solid Klein bottle and the core is
a curve transverse to F So there is a non-trivial g in ¼1 M with µ g C1 equal
to C1 Taking powers we may assume µ g ¯xes all points of @1C1 Here we are

identifying S1

1
F ¤ with U so µ g acts on S1

1
F ¤ There are at least 3 points in

@1C1 therefore g acts freely in H Up to taking inverse assume that g is monotone

decreasing in H that is F ¤ is in the front of g F ¤

Lemma 6 6 Suppose that Gm

¡
is not a foliation and C1 is a complementary region

of V m
¡ Let g in ¼1 M non-trivial with µ g C1 equal to C1 and µ g ¯xing all

ideal points of C1 Suppose that g is monotone decreasing in H Let J1 be a
component of U ¡ @C1 Then µ g acts as a contraction in J1 with a single ¯xed
point Similarly if Gm

+
is not a foliation and C1 is a complementary region of V m

+
with g;J1 as above g acts decreasing in H then µ g¡1 acts as a contraction in
J1 with a single ¯xed point

Proof First we do the proof for Gm

¡
Let s0 be a side of C1 hence µ g s0 is equal

to s0 Let e1; e2 be the ideal points of s0 and

J1 closure of interval of U ¡ fe1; e2g not containing other ideal points of C1:

We analyse the action of µ g in J1 Notice µ g ¯xes C1 hence ¯xes e1; e2 Notice

s0 is isolated on the C1 side so not isolated on the other side Choose s1 in V m
¡arbitrarily close to s0 hence with ideal points in J1 By conclusion 3 above there

are parallepipeds Qi with bottoms Ri having two opposite sides converging to s1
and tops Si with cross ratios of bottoms converging to 0 and cross ratios of tops

converging to 1 Let Ft in
eF

with Si contained in Ft the t here depends on i
Since g is monotone decreasing in H there is a unique positive n so that either

Ft g¡n F ¤ or Ft is between g¡n F ¤ and g¡ n+1 F ¤

notice that g¡n F ¤ is above F ¤ The quadrilateral Ri has ideal points e3 e4
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Figure 9 a Limiting leaves and quadrilaterals b The action of µ g¡n in K1 pushes
e5; e6 far away Here ci µ gn ei ; i 3; 4; 5; 6

e5 e6 in U so that e3e4; e5e6 are the sides close to each other and close to s1 see

Fig 9 a By Lemma 6 4 if s1 is asymptotic to s0 then s0 and s1 are boundary
sides of a complementary region of V0 But then s0 would be isolated on both
sides contradiction to minimality of G

m Hence once s1 is ¯xed then for i big
enough all the ideal points e3; e4; e5; e6 are in J1 ¡ @J1 Choose the points so that
s2 e5e6 is farther from s0 than e3e4 Notice t; n; e3; : : : ; e6 all depend on i which
is omitted for simplicity

Map Si back by gn pushing it down in the leaf space Then gn
Si is either in

F¤ or is between F ¤ and g¡1 F¤ Also gn
Si is an ideal quadrilateral with cross

ratio very close to 1 Suppose that both µ gn e5 and µ gn e6 are very close to
e5; e6 respectively Projecting gn

Si to F ¤ using U that is

gn
Si £ R \ F ¤;

we get an ideal quadrilateral in F ¤ with cross ratio very close to 0 This is because

µ gn ¯xes e1 and e2 and µ gn e3 is between e1 and µ gn e5 and µ gn e4
between e2 and µ gn e6 The same will happen for the cross ratio of the inter-
section

gn
Si £ R \ F; for any F between F ¤ and g¡1 F ¤ :

All of them are very near the intersection of F and s0 £ R This contradicts the

fact that cross ratio of gn
Si is very close to 1 Hence at least one of µ gn e5

and µ gn e6 is very far from e5 or e6 respectively
One option is say that µ gn e5 is very close to e2 But if this keeps happening

as s1 gets closer to s0 and i converges to in¯nity then the only possibility for the

dynamics of µ gn in J1 is that µ gn has a repelling ¯xed point in e1 an attracting

¯xed point in e2 and no other ¯xed points In fact since µ g J1 is equal to J1

this implies that µ g acts in J1 with the same dynamics Take s leaf of V m
¡ very

close to s0 with ideal points a; b a close to e1 b close to e2 By Lemma 6 4 a is
not e1 and b is not e2 Hence for a; b su±ciently close to e1; e2 respectively the
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points

e1; a; µ g a ; b; µ g b ; e2;

are circularly ordered in J1 In other words the endpoints of s separate the end-
points of µ g s in U or s intersects µ g s transversely This contradicts the

fact that Gm

¡
is a lamination

It follows that J1 contains an interval J2 bounded by e5; e6 with µ gn J2 a
subinterval of J2 The cross ratio of µ gn

Si is very close to 1 so this quadrilateral
is very thin in the other direction see Fig 9 b Since µ gn e5 ; µ gn e6 cannot
be near e5 or e6 it follows that µ gn J2 is a very small interval contained in J2

This is the fundamental property of a curve which is in the boundary of a
complementary region of V m

¡ so that it is the limit of bottoms of a shrinking
sequence of distortion parallelepipeds Choosing now s1 closer and closer to s0
and cross ratio of Ri converging to 0 cross ratio of Si converging to 1 we can get
e5 arbitrarily close to e1 and e6 arbitrarily close to e2 In addition the subinterval
of J1 from µ gn e5 to µ gn e6 is shrinking to a point recall here that n varies

with s1 and i This yields the conclusion:

Conclusion 4 Using that s0 is the limit of bottoms of distortion parallelepipeds

we obtain that µ g acts in J1 ¡ @J1 as a contraction with a unique ¯xed point y
not in @J1

This proves the ¯rst part of the lemma If on the other hand C1 is a comple-
mentary component of V m

+ assumed not to be F ¤ and s0; J1 are de¯ned as above

the same analysis applies But now there is a sequence of distortion parallepipeds

with the tops converging to s0 The di®erence is that Ri is below Si hence use a

translate gm to bring Ri closer to F ¤ with m negative Using the same arguments

as above we conclude that µ g¡1 acts as a contraction in J1 ¡ @J1 or that µ g
acts as an expansion in J1 ¡ @J1 This ¯nishes the proof of Lemma 6 6 ¤

We will now show that option B does not occur

Proposition 6 7 Suppose that M is orientable and F is transversely orientable
There is a leaf of D¡ intersecting a leaf of D+ transversely

Proof Suppose that this is not true Then option B holds and it implies that no
leaf of G¡ transversely intersects a leaf of G+ If G¡ or G+ is a foliation then

G¡ is minimal for a non-trivial sublamination would have complementary regions

in leaves of
eF

which are ¯nite sided ideal polygons and could not be ¯lled with a
foliation by geodesics This also implies

G¡; G+ are equal In this case all of the

laminations

G¡; G+; Gm

¡
and Gm

+
are the same
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If none of G¡; G+ are foliations then a complementary region of V m
¡ is a ¯nite

sided ideal polygon Q in F ¤ Since Gm
+

does not intersect Gm

¡
transversely then V m

+
cannot intersect @Q transversely So any intersection of V m

+ with Q is a geodesic in
the interior of Q There are only ¯nitely many such geodesics and these would be

isolated contradicting minimality of Gm
+

Hence Gm
+

does not intersect the interior
of Q and so Gm

+
is contained in Gm

¡
Similarly Gm

¡
is contained in Gm

+
and so they

are equal These arguments also show that in general Gm

¡
and Gm

+
are uniquely

de¯ned laminations In any case we proved:

Fact In option B then Gm

¡
is equal to Gm

+

This is the fact that will lead to a contradiction
Suppose ¯rst that G¡ and G+ are not foliations Then Gm

¡
; Gm

+
are also not

foliations Let C1 be a complementary region of V m
¡ and s0 a boundary leaf of C1

Let g be non-trivial in ¼1 M with µ g ¯xing all points in @1C1 and let J1 be a
component of U ¡@1C1 with endpoints the ideal points of s0 Since s0 is a leaf of
V m
¡ the ¯rst part of Lemma 6 6 shows that µ g acts as a contraction in J1 As

Gm¡
is equal to Gm

+
then s0 is also a leaf of V m

+ The second part of Lemma 6 6

implies that µ g¡1 acts as a contraction in J1
These two conclusions are contradictory so we obtain that D¡ and D+ not

intersecting transversely is impossible when at least one of G¡ or G+ is not a
foliation

The next proposition shows that none of G¡; G+; G can be foliations so this
¯nishes the proof of Proposition 6 7 ¤

Proposition 6 8 The lamination G¡ or G+ cannot be a foliation in M

Proof This is presented separately because here we do not a priori assume that
D¡ and D+ have no transversal intersection It will be used later as well see

remark 1 Also no orientability conditions here

Suppose that say G¡ is a foliation in M Then as seen before
G¡ is minimal

hence Gm

¡
G¡ Since

V¡ eG¡ \ F

is a foliation by geodesics in F ¤ then its leaf space is Hausdor® and hence home-
omorphic to the reals We analyse this in detail Fix q0 in F ¤ let s0 be the leaf of
V¡ through q0 Let ° be a ¯nite transversal to V¡ in F ¤ starting at q0 and look at
all geodesics of V¡ through ° Suppose one is asymptotic to s0 in the direction of
the ray r0 of s0 Then all leaves between these two are also asymptotic to s0 and
hence in any case there is a direction so no nearby leaf is asymptotic to s0 the

opposite direction to r0 if there is r0 As points in s0 escape in that direction their
distance to nearby leaves grows without bound For any natural n there are points

qn in these nearby leaves of V¡ which are centers of balls Bn of F ¤ of radius n so

that all leaves in Bn will eventually intersect a subsegment of ° of length less than
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1 n Up to subsequence choose fn in ¼1 M with fn qn converging to q0 and q0

in a leaf L of
eF

Let s be the leaf through q0 of the lamination
eG¡\L of L Let v

another leaf of this lamination If s and v are not asymptotic there is a minimum
distance between them which is achieved in a ¯xed distance from starting points

Pairs of geodesics limiting on s and v will also have a minimum distance between
them close to this distance contradiction to the construction

Conclusion All leaves of
eG¡ \ L are asymptotic in L de¯ning a unique ideal

point in S1

1
L

As G¡ is a universal geodesic lamination the same holds for all leaves of
eF

and
let u in S1

1
F ¤ be the distinguished ideal point in F ¤ Hence leaves of

eG¡ are

described exactly as s¤ £R where s¤ is an arbitrary geodesic in F ¤ with one ideal
point u Every point in S1

1
F ¤ is an ideal point of some leaf in V¡We claim that this implies that G¡ and G+ are equal Let l¤ be a leaf of V+

Then l¤ is asymptotic to a leaf l0 of V¡ so the angle between l¤; l0 converges to 0

Take a limit in M and obtain F in
eF

and a common leaf of
eG¡\F and

eG+\F so a
common leaf of

eG+ and
eG¡ As

G¡ is minimal then G¡ is contained in G+ which
implies that G¡ is equal to G+ because G¡ is a foliation Hence all laminations

G¡; G+; Gm

¡
and Gm

+
are equal and they are foliations In that case let V0 be V¡ same as V+ and so
on

The proof now is similar to arguments in Lemma 6 6 However in that situation
there were complementary regions of V¡ and these naturally produced covering

translations acting freely on H and leaving invariant the complementary region
and one needs to ¯rst ¯nd appropriate g acting freely in H First lift to a ¯nite

regular cover so that the manifold is orientable and all foliations are transversely
oriented and for simplicity in this proof we assume they are the original M; G¡; G+
Notice G¡; G+ are still minimal since they are foliations Notice U is still the same

and the action of ¼1 M on U is still not uniformly quasisymmetric because of
compactness of the ¯nite cover

Let ³1 be a leaf of V¡ Then ³1 is the limit of bottoms Ri of a shrinking sequence

of distortion parallelepipeds with cross ratios of Ri converging to 0 There are 2
points in @Ri very close to the distinguished point u of U

Suppose ¯rst that u is in the interior of the small interval of U with these end-
points We split the quadrilateral into thinner quadrilaterals: cover the quadrilat-
eral Ri by two thin quadrilaterals Q1; Q2 both of which have ideal point in u and
another in v see Fig 10 a There are two corresponding parallelepipeds V1; V2
with tops S1; S2 in a leaf L of

eF
For simplicity we omit the dependence of L on

i We now choose the point v carefully so that at least one of S1; S2 has cross

ratio very close to 1 Let u0
1; u0

2; u0; v0 be the points in S1

1
L corresponding to

u1; v1; u; v respectively under the universal circle U see Fig 10 b The top of
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Figure 10 a Splitting a thin quadrilateral in two The added sides to Q1; Q2 are
shown in dashed lines

b The picture on a leaf of
eF

containing the top of the parallelepiped We can choose v0

so that in this case S2 will be very thin in the other direction Going down to F¤ using
the universal circle we choose the associated v in S1

1
F ¤

the original parallelepiped is a quadriletaral S very thin in the other direction see

Fig 10 b If for example u0 is not very near either of u0
1; u0

2 then choose v0 very
close to one of the other ideal points of T see Fig 10 b Then one of S1 or S2 is
thin in the other direction in the picture S2 is thin Conversely if u0 is very near
u0

1 or u0
2 choose v0 in the middle between the other ideal points of T Regardless

one obtains a thin quadrilateral in the other direction
If on the other hand the small interval from u1 to u2 does not contain u then

enlarge Ri to include u For high enough i the new Ri will still have cross ratio
very close to 0 But clearly the top of the associated parallelepiped is an ideal
quadrilateral which is even thinner so its cross ratio is even closer to 1

A priori this process has changed G¡; G+ so let us consider this carefully The

splitting or enlarging does not distort the bottoms Ri substantially so G¡ is not
changed Therefore G¡ is still a foliation Since

G¡ is a foliation then regardless

of what the new D+ is the ¯rst part of the proof implies that G+ is equal to G¡Hence G+ is not changed either This fact will be used in the arguments below

Conclusion Any leaf of V¡ is a limit of bottoms Ri of a shrinking sequence of
distortion parallepipeds with all ideal quadrilaterals Ri having a vertex in u

In order to mimic the proof of Lemma 6 6 we ¯rst construct a suitable g in
¼1 M with at least 3 ¯xed points in U Put any orientation in U Let ideal points
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Figure 11 a Action of g on a particular quadrilateral near ³1 Here u0i µ g ui
b Forcing the contraction in a certain interval

of Ri as positively oriented in U be denoted by

u1; u2; u3; u4;

where u1 is equal to u Up to subsequence and choosing orientation to U assume

u2 is very close to u1 see Fig 11 a We are still using the ¯xed leaf ³1 introduced
before The points uj are ¯xed in this proof

Now choose a leaf ³2 of V+ having an ideal point in the interval de¯ned by u2
and u3 not containing u and not near u2 or u3 see Fig 11 a This is possible
since

G+ is equal to G¡ The tops Si of the sequence of distortion parallepipeds

have cross ratio very close to 1 For i big enough there is a covering translation
g so that µ g Ri is very close to ³2 and with cross ratio very close to 1 This is
because ³2 is a leaf of G+ The element g depends on ³1 ³2 and i Notice that
µ g ¯xes u1 and preserves the orientation in U The fact that µ g Ri is very
close to ³2 and has cross ratio very close to 1 together with µ g u1 being equal
to u1 implies the following:

¡ µ g u4 is very close to u1

¡ µ g moves u4 counterclockwise as seen in Fig 11 a ;

¡ µ g u2 ; µ g u3 are very close to the ideal point of ³2 the other one

besides u1 and

¡ µ g moves u2 counterclockwise moves u3 clockwise see Fig 11 a

This implies there are at least 3 ¯xed points of µ g in U : u1 plus one ¯xed
point near u3 and one near µ g u3 Hence g acts freely in H Assume it is
decreasing in H

Once the suitable g is found the argument follows the analysis in the proof of
Lemma 6 6 We only sketch the main ideas The element g is ¯xed here Let ³3
be another a leaf in V¡ invariant under µ g with an ideal point u5 not equal to u
and u5 near u3 u3 de¯ned above Let J be the interval of U ¡fu1; u5g containing
µ g u2 By the above there is a ¯xed point of µ g in J There is a sequence of
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ideal quadrilaterals which are bottoms of distortion parallelepipeds for simplicity
still denoted by Ri so that Ri converges to ³3 and Ri has ideal points u; v2; v3; v4
positively circularly oriented in U and v2; v3; v4 all in J v2; v3; v4 depend on i
This is possible because u2 in the prior construction was chosen in J and using
covering translates we can map ³3 to arbitrarily near ³4 with ideal point in J
Going up transversely to

eF
using the universal circle we obtain quadrilaterals Si

with cross ratios very close to 1 and map back by gn n positive

We check the action of µ gn in J : ¯rst of all it ¯xes the boundary of J Notice

µ gn has a ¯xed point in J hence µ gn cannot map v2 very near u5 and cannot
map v3; v4 very near u Hence the arguments in Lemma 6 6 show that µ gn moves

v2; v3; v4 close together In the limit one obtains that the action of µ g in J is a
contraction with a single ¯xed point

Using the same arguments with ³3 a leaf of G+ that is ³3 being the limit of
tops of a sequence of distortion parallelepipeds we obtain µ g acts as an expansion
in J

This is contradiction and shows that G¡ or G+ cannot be a foliation This
¯nishes the proof of Proposition 6 8 ¤

These results imply the following:

Corollary 6 9 Suppose that M is orientable and F transversely orientable Nei-
ther G¡ nor G+ can be a foliation Also by Proposition 6 7 there is a leaf of D¡intersecting a leaf of D+ transversely This shows that option C in step 5 of The-
orem 5 1 occurs As seen in the proof of Theorem 5 1 this implies that both D¡and D+ have no transverse self intersections This means that option A occurs

for both of them Therefore G¡ is cl ¼ D¡£R Similarly G+ is cl ¼ D+ £R
In addition there is positive r1 so that for every G in

eG¡ F in
eF

and p in the

intersection l of G and F there is a point in the intersection of
eG+ and l at most

r1 distant from p in l Otherwise taking limits we ¯nd one such l not intersecting

eG+ and a leaf of
eG¡ not intersecting

eG+ which was disallowed Finally if l0 is a

leaf of the intersection of
eG+ and F and l0 intersects l in q then the angle between

l; l0 in F ¤ at q is bounded away from 0 and ¼ Similarly for
eG

m

¡ ;
eG

m
+

To sum up what we have obtained so far:

Corollary 6 10 Suppose that F is an R-covered foliation with hyperbolic leaves

M is atoroidal and not a Seifert ¯bered space Suppose that F is transversely
oriented and M orientable Let G¡ and G+ be the universal geodesic laminations

constructed in the previous section Then neither G¡; G+ is a foliation They are
transverse to each other and with solid torus complementary components

Remark At this point it is useful to make the following remark: In some situa-
tions it may seem at ¯rst that the main theorem is trivial: Consider ' an Anosov
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°ow so that its stable foliation F
s is R-covered and transversely orientable there

are many examples [Fe2] The °ow ' is tangent to F
s and since F

s is trans-
versely orientable one can perturb ' slightly to a new °ow '0 transverse to F

s

By Anosov's fundamental results '0 is also an Anosov °ow [An] However if in
addition M is atoroidal then the °ow © transverse to F

s which will be constructed
here is not a perturbation of ' as above It has substantially di®erent properties

In particular © is not an Anosov °ow ¡ it has singularities This is because © is
obtained by blowing down complementary regions of G¡; G+ and the solid torus

complementary components will produce singularities In fact this is the key prop-
erty that implies the weak hyperbolization conjecture for M Also the °ow © will
be regulating for G: every orbit of the °ow

e
© in fM intersects every leaf of

eF
and

vice versa as opposed to what happens for small perturbations of the Anosov °ows

above [Fe2 Fe5]

We now relate
eG¡ and

eG+

Proposition 6 11 For every complementary region Q of V¡ there is an unique

associated complementary region Q0 of V+ having the same number of sides as Q
Let g in ¼1 M ; non-trivial with µ g ¯xing all points in @1Q Suppose that g acts
as a decreasing homeomorphism in H Then the ¯xed point set of µ g in U is
exactly the union of @1Q and @1Q0; the points in @1Q are repelling ¯xed points
those in @1Q0 are attracting and they alternate in U There is a unique compact
complementary region of the union of Q and Q0 in F ¤ which is a compact ¯nite
sided polygon

Proof First we will prove this result for the minimal sublaminations Gm

¡
Gm

+
of

G¡; G+ Then we show that G¡; G+ are minimal that is Gm

¡
is equal to G¡ proving

the result for G¡ and G+ as well
Let Q be a complementary region of V m

¡ which is the intersection of
eG

m

¡ with
F¤ and j the number of ideal points of Q The proof of Lemma 6 6 shows that
the action of µ g on each component of

U ¡ @1Q

is a contraction with a single ¯xed point This is because each component of the

boundary of Q a geodesic in F ¤ is a leaf of V m
¡ This shows that there are exactly

2j ¯xed points of µ g in U Let l1 be a boundary leaf of Q and l2 another leaf
asymptotic to it de¯ning the common ideal point w1 ¡ a repelling ¯xed point of
µ g see Fig 12 Let J1 be the complementary interval of @1Q in U de¯ned by
l1 and similarly de¯ne J2 Let

pj in l1 \ V m
+ with pj w1:

Let °j be the leaves of V m
+ through pj Since the angle between °j and l1 is

bounded away from 0 and ¼ the endpoints of °j are eventually in the union of J1
and J2 and close to w1 Let ° be one such leaf Then µ gn ° is a leaf of V m

+
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Figure 12 How one lamination forces the structure in the other lamination For
viewing purposes the sides of Q0 are dashed

and as n converges to +1 the endpoints of µ gn ° converge to the ¯xed points

y1; y2 of µ g in J1; J2 respectively see Fig 12 As V m
+ is a lamination in F ¤ this

produces s1 a leaf of V m
+ with ideal points y1; y2 Also µ g s1 is equal to s1

In the same way associated to any ideal point wj of Q we ¯nd sj leaf of V m
+

Consecutive sj 's are asymptotic creating a ¯nite sided ideal polygon Q0 with the

same number of sides as Q and Q0 invariant under µ g If there is any leaf of
V m

+ in the interior of Q0 it would be isolated in V m
+ contradiction Hence Q0 is

a complementary region of V m
+ This proves the conclusion of of Lemma 6 11 for

V m
¡ and V m

+
This analysis implies that G¡ is minimal and so equal to Gm

¡
Otherwise there

is Q complementary region of V m
¡ left invariant under µ g with g non-trivial in

¼1 M and l a leaf of V¡ in the interior of Q Hence Q has at least 4 ideal points

Let Q0 be the associated complementary region of V m
+ ¡ by construction it has at

least two ideal points on each component of U ¡ l let p1; p2 in one component and
p3; p4 in the other component The pj are all ¯xed by µ g Consider a sequence

of ideal quadrilaterals Ri converging to l which are the bottoms of a sequence of
distortion parallepipeds Then one can show that the associated tops Si have cross

ratio bounded away from 1 ¡ the ¯xed points p1; p2 and p3; p4 of µ g in @1Q0

keep the quadrilateral Si from being too thin in the other direction The Si are

trapped between two walls

p1p2 £ R and p3p4 £ R :

These walls are invariant under g so the cross ratios with the correct order
cannot get too close to 1 This contradiction shows that Gm

¡
is equal to G¡ that

is G¡ is a minimal lamination
Similarly G+ is minimal As we already proved the results for Gm

¡
and Gm

+
this

¯nishes the proof of Proposition 6 11 ¤
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Before producing the transversal °ow we check the non-orientable situations:

Proposition 6 12 Suppose that F is transversely oriented and R-covered with
hyperbolic leaves and that M is homotopically atoroidal Then there are lamina-
tions by geodesics G+; G¡ transverse to F and transverse to each other and which
satisfy the conclusions of Lemma 6 11

Proof The di®erence here is that M may be non-orientable The covering trans-
lations reversing orientation in M are exactly those which reverse orientation in
U because F is transversely orientable If M is orientable previous results apply
Otherwise let M2 be the orientable double cover so ¼1 M2 is a normal subgroup
of index 2 in ¼1 M Using that M2 is homotopically atoroidal construct the lam-
inations

G
¤¡; G

¤+ in M2 as before Let f in ¼1 M which is orientation reversing

It induces an involution f2 of M2 so that M M2 f
We claim that f leaves invariant the laminations

eG
¤

¡;
eG

¤
+ Lift F to F2 in M2

Notice that the universal circle is the same for F and F2 Let

V¡ eG
¤

¡ \ F ¤; V+ eG
¤
+ \ F ¤

as before Suppose that µ f V¡ is not equal to V¡ Since V¡ is a minimal
lamination in F ¤ with no isolated leaves and ¯nite sided complementary regions

then µ f V¡ has some transverse intersection with V¡ Let Q be a complemen-
tary region of V¡ with a boundary leaf l and a leaf l0 of µ f V¡ intersecting l
transversely Let g be a non-trivial covering translation in ¼1 M2 with µ g Q
equal to Q and ¯xing all ideal points of Q Assume that g acts as a decreasing
homeomorphism of H The arguments in the proof of Proposition 6 11 show that
the sequence of geodesics µ gn l0 converges to a geodesic l" which is asymptotic
to a leaf r of V+ This is because the ideal points of l" are attracting ¯xed points

of µ g so the rays in l" are asymptotic to leaves in V+ We do not know a priori
that l00 is a leaf of V+ it could be a diagonal in a complementary component of
V+

But since ¼1 M2 is normal in ¼1 M then for any h in ¼1 M2 it follows that
hf fh0 for some h0 in ¼1 M2 Hence

hf eG
¤

¡ fh0

eG
¤

¡ f eG
¤

¡ :

So ¼1 M2 preserves f eG
¤

¡ and therefore µ ¼1 M2 preserves f V¡ Hence

µ gn l0

2 f V¡ and l" 2 f V¡
also Since r in V+ and l" in µ f V¡ are asymptotic then taking limits this
implies that µ f V¡ and V+ share a leaf But f G

¤¡ and G
¤+ are minimal so

µ f V¡ is equal to V+ However leaves in µ f V¡ are still limits of bottoms

of sequences of distortion parallelepipeds As in the proof of Proposition 6 7 this
contradicts the properties of leaves of V+ that is they are limits of tops of sequences
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of distortion parallelepipeds because µ f V¡ is equal to V+ We conclude that
µ f V¡ V¡; µ f V+ V+; so f eG

¤

¡ eG
¤

¡; f eG
¤
+ eG

¤
+:

Therefore G
¤¡; G

¤¡ are invariant under f2 and induce laminations G¡; G+ in M
which are transverse to F and to each other and satisfy the properties of Lemma
6 11 This ¯nishes the proof of Lemma 6 12 ¤

Remark 1 By Proposition 6 8 the lamination G¡ is never a foliation Also in
the atoroidal case the complementary regions of G¡ are solid tori or solid Klein
bottles Therefore

G¡ is a an essential lamination [Ga-Oe] and it is a genuine

lamination [Ga-Ka] that is complementary regions are not I-bundles

A theorem of Gabai and Kazez [Ga-Ka] then implies that:

Corollary 6 13 If M is aspherical and has an R-covered foliation then M satis-
¯es the weak hyperbolization conjecture: either there is a Z © Z subgroup of ¼1 M
or ¼1 M is Gromov negatively curved

Since M is irreducible [Ro] there are many important consequences for the

geometry of M In particular M is conjecturally hyperbolic [Th4]

Remark 2 The ¯nal case to be considered is F not transversely orientable Lift
to double cover M 0 so that the lifted F

0 is transversely orientable Using the

Proposition 6 12 produce laminations
G¡; G+ in M 0 Let B be ¼1 M 0 and f in

¼1 M ¡ B Then f reverses orientation in H Hence leaves of f V¡ are now
the limit of thin quadrilaterals which get distorted when moving down transverse

to
eF

The same arguments as in the previous proposition show that
µ f V¡ V+ and µ f V+ V¡;

that is f switches the invariant laminations This is because f reverses the ori-
entation to H so something which is limit of bottoms of sequences of distortions

parallelepipeds has image under µ f which is the limit of tops of sequences of
distortion parallelepipeds This would produce a non-orientable line ¯eld in the

intersection of the two laminations in M which is tranverse to F We think this
situation in fact cannot occur but at this point we cannot rule it out In any case

M has a ¯nite regular cover M 0 with an essential lamination G¡ Remark 1 shows

that ¼1 M 0 is negatively curved in the large and so is ¼1 M because ¼1 M 0 has

¯nite index in ¼1 M [Gr]

Remark 3 If there is a Z © Z subgroup of ¼1 M it can be represented by
an immersed incompressible torus T which is in general position with respect to
F Following classical ideas of Thurston [Th1] Roussarie [Rou] and more recently
Gabai [Ga5] it follows that T can be put in tight position with respect to F As F
is R-covered and Reebless it follows that F is taut [Fe5 Go] Given that F is taut
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Gabai [Ga5] showed that T can be homotoped to be either contained in a leaf of F
or transverse to F here T may fail to be embedded Taut is used to avoid circles

of tangency In the ¯rst case not all leaves of F are hyperbolic In the second
case T represents a region in leaves whose geometry is only boundedly distorted
moving tranversely to the foliation ¡ this explains the dichotomy mentioned in
the introduction

7 The transverse pseudo-Anosov °ow

Here F is a transversely oriented R-covered foliation with hyperbolic leaves; M
homotopically atoroidal By section 6 there are universal laminations by geodesics

G+; G¡ transverse to F and to each other We use the notations and constructions

from the previous sections A complementary region Q of V¡ is an ideal polygon
and has associated complementary region Q0 of V+ producing a complementary
region

P Q \Q0 of F ¤ ¡ V+ [ V¡
with compact closure This region has at least 6 boundary sides see Fig 13 a;
and there is g in ¼1 M with µ g leaving both Q and Q0 invariant hence also

leaving their intersection invariant In M these produce complementary regions of
G+ [ G¡ which are solid tori or solid Klein bottles They are homeomorphic to

P £ I ´;

where ´ is a homeomorphism of P All other complementary regions P 0 of V¡[V+
are in \cusps" of V¡ and V+ hence are relatively compact quadrilaterals in F ¤

Up to the action of ¼1 M there are ¯nitely many complementary components of
V¡ [ V+ in F ¤ with 6 sides or more

There is a °ow transverse to F de¯ned in the intersection of G+ and G¡: just
consider the orientable line ¯eld which is the intersection of leaves of G+; G¡ Now
collapse the complementary regions of G+ [ G¡ along leaves of F to produce 2
invariant singular foliations in M In F ¤ each closure of complementary region of
V¡ [ V+ collapses to a point This produces a °ow © in M which is transverse

to F The collapsing of G+ produces the singular foliation F
u unstable and G¡produces F

s stable This operation of collapsing along leaves was described in
great detail in Mosher's articles [Mo1 Mo2] A complementary region of V¡ with
p sides see Fig 13 a blows down to a p-prong singular leaf of

eF
s in F ¤ see Fig

13 b These complementary regions are periodic under some µ g with g in ¼1 M
and therefore produce closed orbits of © in M The local cross section is given
in Figure 13 b All other points in M are topologically non-singular for the °ow
© and foliations F

s; F
u The °ow lines of © are \tangent" to F

u; F
s Since the

laminations G¡; G+ are minimal it follows that all leaves of F
s and F

u are dense

in M There is a homotopy equivalence » : M M preserving leaves of F and
sending G+ to F

u
G¡ to F

s There is a lift
e
» : fM fM preserving leaves of

eF
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a) b)

blow down

Figure 13 a Complementary regions of the laminations b They blow down to the the
standard picture of periodic singular leaves

and moving points a bounded distance

We now show that © is a pseudo-Anosov °ow

De¯nition 7 1 topological pseudo-Anosov A °ow ' in a manifold N3 is a topo-
logical pseudo-Anosov °ow if there are no point orbits of ' and orbits of ' are

contained in two possibly singular foliations
E

s; E
u stable and unstable satisfying:

1 ¡ All °owlines in a leaf of E
s are forward asymptotic all °ow lines in a leaf

of E
u are backward asymptotic

2 ¡ The topological singularities of E
s; E

u are all of p-prong type The sin-
gular locus is a ¯nite union of closed orbits of ' and p-local leaves of E

s about this
singular orbit and similarly for E

u

3 ¡ The foliations E
s; E

u are transverse to each other and intersect exactly
along the °ow lines of '

The °ow © constructed above is transverse to F and its °ow lines are contained
in leaves of F

s; F
u Under a small perturbation so that © is still transverse to F we

can assume that: the orbits of © are C1 and leaves of F
s; F

u are C1 submanifolds

in the complement of the singularities and in the singularities we have a standard
topological p-prong picture We stress that is not clear whether these °ows can be

made \smooth" pseudo-Anosov as de¯ned by Mosher in [Mo2] In particular it is
not clear whether one can de¯ne the strong stable/unstable foliations associated
to the °ow

Notice that for any g in ¼1 M µ g acts on V¡ and V+ hence acts on the

points of the intersection This action is still denoted by µ g A leaf of F
s or

eF
s

is periodic if it contains a periodic orbit of © or the lift of a periodic orbit Given
x 2 M let W s x be the leaf of F

s containing x and likewise de¯ne W u x Let

eF
s;

eF
u;

e
© be the lifts to fM If y 2 fM de¯ne fWu y ;fW s y similarly to the above
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Proposition 7 2 topological hyperbolicity For any two points x; y in a leaf E
of

eF
s their orbits are asymptotic in future time In negative time the distance

between orbits converges to in¯nity in the intrinsic metric of E The opposite
behavior occurs in leaves of F

u

Proof The dynamics of © is entirely encoded by the dynamics of the orientable
line ¯eld G+ \ G¡ This is what is going to be used here We ¯rst analyse the

case that ¼ E contains a singular orbit of © Then E is a blow down of p leaves

of
eG¡ in fM Let L in

eG¡ be one of them The intersection l of L and F ¤

is in the boundary a complementary region Q of V¡ and there is an associated
complementary region Q0 of V+ There is g in ¼1 M non-trivial with g acting as

a decreasing homeomorphism of H and µ g ¯xing only @1Q @1Q0 in S1

1
F ¤

so that points in @1Q0 are attracting and points in @1Q are repelling This
dynamics of µ g is the fundamental point here There are two boundary leaves of
Q0 intersecting L let s be one of them Let

S s £ R ;
e
® S \ L and z S \L \ F¤ s \ l:

Also

l ½ @Q is a leaf of V¡; s ½ @Q0 is a leaf of V+; s \ l 6 ;:

Then µ g s s and g S S The map g is associated to the closed orbit
® ¼

e
® in ¼ L Orbits of

e
© in L correspond to leaves of

eG+ intersecting L so
let

H 2 eG+ with H \ L
e
°;

orbit of the °ow Start with the intersection a0 of H and L at level F ¤ { which
is a point in l Go up to g¡1 F ¤ along the °ow line

e
° Mapping the intersection

of
e
° and g¡1 F ¤ down by g produces a point a1 in l { this is like the ¯rst return

map associated to the closed orbit ® The action of µ g in S1
1

F ¤ moves the

ideal points of of H \F ¤ closer to the ideal points of s because the ideal points of
s are in @1Q0 and are attracting for µ g This implies that a1 is closer to z than
a0 is This is exactly the same argument as in step 7 of the proof of Theorem 5 1
Iterating this procedure the images in l converge to z that is

an gn

e
° \ g¡n F ¤

converges to z Hence in fM the orbit
e
° is asymptotic to the orbit

e
® in the forward

direction as one moves up All orbits in L on that side of S are asymptotic to
the orbit

e
® Orbits through the corners of Q \Q0 collapse to a single orbit in the

blow down Hence all orbits are asymptotic to the closed orbit in ¼ E after the

collapsing This proves the result for singular leaves The key is the action of µ g
in U

If now ³ is any periodic orbit of © which is non-singular then
e
³ is the inter-

section of two leaves of
eF

s and of
eF

u which come from unique leaves

L of
eG¡ and S of

eG+:
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Figure 14 If °ow lines do not forward converge together there is a lack of explosion in
the backward direction

Let
l L \ F ¤; s S \ F ¤;

e
® S \ L

and let b1; b2 the ideal points of l Let g in ¼1 M non-trivial with g
e
® equal to

e
® so that g leaves both components of L ¡ S invariant Then µ g has at least
4 ¯xed points and therefore acts freely in H assume as a decreasing homeomor-
phism Given that use an analysis similar to the proof of Lemma 6 6: let Ri be

quadrilaterals converging to a leaf l0 of V¡ near but not equal to l The analysis
of Lemma 6 6 shows that

µ g is a contraction in that interval of U ¡ fb1; b2g:

Therefore µ g has exactly 4 ¯xed points in U which are the ideal points of l and
s Then the same analysis as in the singular case yields that all orbits in L are

forward asymptotic to
e
® so after collapse all orbits are forward asymptotic to

e
³

This takes care of periodic leaves of
eF

s;
eF

u We now deal with general leaves

Notation: if x; y are in the same leaf of the intersection of
eF

and
eF

s let d0 x; y
be their distance along that leaf Consider x; y in the same leaf F \E where F is
a leaf of

eF
and E a leaf of

eF
s If the orbits of

e
© through x; y are not asymptotic

in future time we can ¯nd positive a0 so that

e
©ti x ;

e
©si y 2 Fi 2 eF

; d0

e©tixi; e©siy > a0 and ti; si +1:

Hence we can ¯nd segments ¯i in the intersection of leaves of
eF

s with leaves of
eFwith endpoints xi; yi in leaves of

eF
which have length of ¯i converging to a0 and

so that

e
©¡ti xi ;

e
©¡si yi 2 F; and d0

e
©¡ti xi ;

e
©¡si yi < a1; for some ¯xed a1 > 0:

Up to subsequence there are covering translations hi with hi ¯i converging to ¯0
Since a periodic leaf of F

u is dense in M let ° orbit of
e
© with ¼ ° periodic and

non-singular so that fW u ° intersects ¯0 see Fig 7 Hence for i big fW u ° and
hi ¯i intersect Making ¯i; ¯0 smaller if necessary we may assume that: for any
p in hi ¯i the leaf fW u p does not intersect a singular orbit between fW s hi ¯i
and fW s ° Equivalently fW u p intersects fW s ° Now °ow back The points
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in ¯0 °ow back very near fWs ° and from then on always near fW s ° see Fig
14 So for i big hi ¯i also does Flowing backwards in fW s ° the segments

which intersect ° in the interior blow up because all orbits in fW s ° are forward
asymptotic to ° and fW s ° is periodic ¡ hence the lengths will blow up past 2a1
and will never again be smaller than 2a1 Therefore nearby segments obtained
°owing back pieces of hi ¯i will also have big length But the segments hi ¯i
°ow back to segments of length smaller than a1 for arbitrarily long time when i is
big ¡ hence this is a contradiction Hence orbits in E are forward asymptotic

The same argument shows that °owing in the negative direction blows up
distance along stable leaves without bound ¡ because this happens in periodic
leaves and then use the argument above of the intersection with fW u ° This
¯nishes the proof of the proposition ¤

Finally we get the metric pseudo-Anosov property for the °ow ©

Proposition 7 3 metric hyperbolic For every positive a2 there is positive a3
so that: let ¯ be a segment in the intersection of a leaf of

eF
with a leaf of

eF
u of

length at least a2 Flow forward every point of ¯ to obtain another segment ¯0 in
another leaf of

eF
If every point of ¯ moves at least a3 °ow length then the length

of the ¯nal segment is at least double the length of ¯
Proof Otherwise get segments ¯i so that there are longer and longer times so that
length of °ow of ¯i is smaller than 2a2 Call these segments in leaves Fi of

eF
to be

³i Then the ³i have length less than 2a2 and it takes longer and longer for them
in the negative direction to decrease to length a2 The arguments in the previous

proposition disallow this This ¯nishes the proof ¤

Remark A very important question is to analyse geometric properties of the

transverse °ow © For instance is the °ow quasigeodesic That means °ow lines

of
e
© are uniformly e±cient in measuring distance [Fe2] This has several im-

portant consequences for instance the continuous extension property for leaves

of
eF

[Ca-Th] When G is an uniform foliation it is very easy to see that © is
quasigeodesic because © is regulating [Th7] In general this is an open question
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