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Commentarii Mathematici Helvetici

On the triple points of singular maps

Tobias Ekholm and Andr¶as Sz}ucs

Abstract The number of triple points mod 2 of a self-transverse immersion of a closed 2n-
manifold M into 3n-space are known to equal one of the Stiefel{Whitney numbers of M This
result is generalized to the case of generic i e stable maps with singularities Besides triple
points and Stiefel{Whitney numbers a certain linking number of the manifold of singular values

with the rest of the image is involved in the generalized equation which corrects an erroneous

formula in [9]
If n is even and the closed manifold is oriented then the equations mentioned above make

sense over the integers Together the integer- and mod 2 generalized equations imply that a
certain Stiefel{Whitney number of closed oriented 4k-manifolds vanishes This Stiefel{Whitney
number is in fact the ¯rst in a family which vanish on such manifolds

Mathematics Subject Classi¯cation 2000 57R20 57R45 58K30

Keywords Stable map linking number triple point Stiefel{Whitney number orientable 4k-
manifold

1 Introduction

In his classical paper [10] of 1946 Whitney showed that the number of double
points of a self-transverse immersion of an n-manifold into 2n-space is related to
the Euler number of its normal bundle Since then many results of a similar nature

have been found This paper deals with a generalization of one of these results

the Herbert{Ronga formula [5] which expresses the number of triple points of a
self-transverse immersion of a closed 2n-manifold into 3n-space in terms of one of
its characteristic numbers More precisely the Herbert{Ronga formula is extended
to singular generic i e stable maps of 2n-manifolds into 3n-space In this paper
all manifolds and maps are assumed to be C1-smooth unless otherwise explicitly
stated To state the formula some notation is needed:

Let M be a closed 2n-manifold and let f : M R3n be a generic map If
¢ f ½ R3n denotes the set of double points of f then ¢ f is an immersed n-
dimensional submanifold with boundary The self-intersection points of ¢ f are

the triple points of f The boundary of ¢ f is § f the set of singular values

of f
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De¯ne t2 f 2 Z2 as the mod 2-number of triple points of f Let §0 f denote
the n ¡ 1 -dimensional submanifold of R3n which is obtained by shifting § f
slightly along its outward normal vector ¯eld in ¢ f Then §0 f \ f M ;De¯ne l2 f 2 Z2 as the mod 2-linking number of the cycles f M and §0 f in
R3n If i1 + ¢ ¢ ¢ + im 2n then let ¹wi1 : : : ¹wim [M ] 2 Z2 denote the product of
the normal Stiefel{Whitney classes of M in dimensions i1; : : : ; im evaluated on the

fundamental homology class of M

Theorem 1 Let M be a closed manifold of dimension 2n and let f : M R3n

be a generic map Then

t2 f + l2 f ¹w2
n
[M ] + ¹wn+1 ¹wn¡1[M ] 1

Theorem 1 is proved in Section 2 It corrects the erroneous theorem on the

second page of [9] in which the second term in the right hand side of Equation 1
is missing

For closed oriented 4k-manifolds Equation 1 can be lifted to an integer equa-
tion: If n 2k is even and M is oriented then there is an induced orientation
on ¢ f as well as on the triple points of f De¯ne t f 2 Z as the algebraic
number of triple points of f The orientation of ¢ f induces an orientation of its

boundary § f which in turn induces an orientation of §0 f De¯ne l f 2 Z as

the linking number of the oriented cycles f M and §0 f in R6k Let ¹pk[M4k] de-
note the kth normal Pontryagin number of M The following theorem is Lemma 4

in [1]

Theorem 2 Let M be a closed oriented manifold of dimension 4k and let f : M
R6k be a generic map Then

3t f ¡ 3l f ¹pk [M ]: 2

Equation 2 turned out to be very useful: It is used in the derivation of a
geometric formula for Smale invariants of immersions of spheres see [1] and [2]
and in the study of geometric features of the regular homotopy classi¯cation of
immersions of 3-manifolds in 5-space see [7]

If M is a closed oriented 4k-manifold then the mod 2-reduction of ¹pk [M ] equals
¹w2

2k[M ] Hence Theorems 1 and 2 together imply that
¹w2k+1 ¹w2k¡1[M ] 0 3

for any closed oriented 4k-manifold M In fact ¹w2k+1 ¹w2k¡1[M ] is the ¯rst in a se-
quence of Stiefel{Whitney numbers which vanish on closed oriented 4k-manifolds

More precisely

Theorem 3 Stong If M is an oriented 4k-manifold and 2k1 + 1 + ¢ ¢ ¢ +
2kr + 1 4k then

¹w2k1+1 : : : ¹w2kr+1[M ] 0:
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This theorem was communicated by R Stong to the second author together
with a proof of the ¯rst case 3 A proof of Theorem 3 is presented in Section 3

2 Proof of Theorem 1

Fix a generic map f : M R3n of a closed 2n-manifold Let ~§ ½ M denote the

n¡ 1 -dimensional submanifold of singular points of f and let § f ~§ Then

f maps ~§ di®eomorphically to §
Let ~¢ ½ M denote the closure of the preimages of multiple points of f Then

~¢ is an immersed closed n-dimensional manifold with transverse double points at
the preimages of triple points of f Let ~¢res denote the resolution of ~¢ and let
~¶ : ~¢res M denote the natural immersion with image ~¢ ½ M

There is a natural involution T : ~¢res ~¢res such that f ± ~¶ ± T f ± ~¶ Since

no triple point of f is singular we have a natural embedding ~§ ½ ~¢res and ~§ is
the ¯x point set of T

Let º ~¶ denote the normal bundle of the immersion ~¶ and let º denote its

restriction to ~§ Since º is an n-dimensional vector bundle over an n¡1 -manifold
there exists a non-zero section Let ~s be such a section

A standard transversality argument allows us to extend ~s to a section ~S of º ~¶
which is transverse to the 0-section and which satis¯es the following two conditions:

² If x is a double point of ~¶ then ~S x 6 0

² If ~S x 0 then ~S T x 6 0

Let ¢ ½ R3n denote the closure of the double points of f Then ¢ is an
immersed submanifold with boundary § and ¢ has triple points at the triple
points of f Let ¢res denote the resolution of ¢ and let ¶ : ¢res R3n denote
the natural immersion with image ¢ Let º ¶ denote the normal bundle of the

immersion ¶ Note that there is a natural map ¦ : ~¢res ¢res which is a double
cover of ¢res¡§ when restricted to ~¢res¡ ~§ and which maps ~§ di®eomorphically
onto §

De¯ne the section S of º ¶ as follows:

S y

df ~S y1 + df ~S y2 if y 2 ¢res ¡ § where y1 6 y2 ¦ y1 ¦ y2 y;
2df ~S y1 if y 2 § where ¦ y1 y:

Let C § ½ ¢res be a small open collar on the boundary § of ¢res Let ¢00

denote the image of the immersion y 7 ¶ y + ²S y y 2 ¢res ¡ C § for some

small ² > 0 Then if ² and the collar C § are small enough ¢00 is a chain
with boundary @¢00 §00 satisfying §00 \ f M ; If lk2 denotes the mod 2-
linking number ² denotes the mod 2-intersection number and ] F denotes the

mod 2-number of elements in the ¯nite set F then

lk2 §00; f M ¢00 ² f M ] ~S¡1 0 + t2 f ; 4
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Figure 1 A piece of f M represented by a 2-sphere and a piece of a plane with the double
point set ¢ fat lines its normal ¯eld S and singularity set § dots with its outward

normal ¯eld V in ¢

since near each zero z of ~S there is a unique intersection point of ¢00 and f M
near f z and near each triple point of f there are exactly three such intersection
points

The homology class of the cycle ~¢ in M is Poincar¶e dual to nth normal Stiefel{
Whitney class ¹wn of M see [6] Thus

¹w2
n
[M ] ~¢²

~¢ ] ~S¡1 0 ; 5

since the image of a slight shift of the immersion ~¶ along ~S intersects ~¢ near each
zero of ~S and in two points near each double point of ~¶

Equations 4 and 5 imply
lk2 §00; f M ¹w2

n
[M ] + t2 f : 6

Recall that §0
½ R3n is the submanifold which results when § is shifted slightly

along its unit outward normal vector ¯eld V in ¢ and that §0 \ f M ; We

compare the linking numbers lk2 §00; f M and lk2 §0; f M :
Let ~§0 ½ M be the submanifold which results when ~§ is shifted a small distance

along ~S Let §0 f ~§0 and for p 2 § let p0 f ~p0 where ~p0 is the point in
~§0 corresponding to ~p 2 ~§ with f ~p p

For small ² > 0 and p 2 § let lp ² be the segment of the straight line through

p + ²V p and p0 of length 2² and centered at p0 For ² > 0 and the shifting of ~§in M small enough

¡ [p2§
lp ²

is a submanifold of R3n If the collar C § is chosen small enough and if the
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shifting distance along S is small enough then the boundary @¡ of ¡ is isotopic to
§0 [ §00 in R3n ¡ f M Thus

lk2 §0; f M lk2 §0; f M + ¡ ² f M lk2 §00;f M + ¡ ² f M : 7

We compute ¡²f M : The intersection ¡\f M is a clean intersection That
is ¡ \ f M §0 is a manifold and the tangent bundle

T§0 Tf M \ T¡ ½ T R3n; 8

where all bundles in the left hand side are restricted to §0

l p e

V(p) S’

¶’’G
'

S00p

p+eS

V(p)

C(
D’’

¶’G’’S

'

p
'

S

Figure 2 The normal space of § in R3n at p 2 § In the ¯gure the boundary of ¡ is the union
of @ 0¡ isotopic to §0 in R3n ¡ f M and @00¡ isotopic to §00 in R3n ¡ f M

As in [4] we ¯nd

¡ ² f M wn¡1 » ;

where » is the so called excess bundle over §0:

» T R3n T¡ + Tf M ;

where all bundles are restricted to §0
To ¯nish the proof it remains to calculate wn¡1 » Note that

T¡j§0 T§0 © ²1;

where ²1 is the trivial line bundle directed along the intervals lp ² Thus by 8

» © Tf M j§0 © ²1 T R3n
j§0: 9

The bundle Tf M j§0 is identi¯ed with TM j~§0 by the di®erential of f Hence if
i0 : ~§0 M denotes the inclusion then w » i¤0¹w M Therefore if FV denotes
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the fundamental homology class of the manifold V and PD denotes the Poincar¶e
duality operator

hwn¡1 » ; F§0 i ­
i¤0¹w M ; F~§0

® ­
¹w M ; i0¤ F~§0

®
h ¹w M ; PD ¹wn+1 M i

h ¹w M [ ¹wn+1 M ; FM i ¹wn¡1 ¹wn+1[M ]: 10

Here the third equality follows from the well-known formula PD ¹wn+1 M i¤F~§where i : ~§ M denotes the inclusion together with i¤F
~§ i0¤F

~§0
Equa-

tions 6 7 and 10 prove the theorem ¤

3 Proof of Theorem 3

Let N¤ ­¤
and ­U

¤

denote the cobordism ring the oriented cobordism ring and
the complex cobordism ring respectively Note that there are natural forgetting

homomorphisms

­U
¤ ¡¡¡¡ ­¤ ¡¡¡¡ N¤

:

For a manifold M let [M ] denote its cobordism class

Using some facts from cobordism theory which can all be found in Chapter 4
of Stong's book [8] we show that it is enough to prove the theorem for oriented
4k-manifolds M such that either

a [M ] 2 ­4k maps to a square [N £ N ] 2 N4k or
b [M ] is a torsion element of ­4k in fact [M ] torsion implies 2

¢ [M ] 0 :

Let Tors ­¤
denote the torsion subgroup of ­¤ The homomorphism ­U

¤
­¤

induces an epimorphism

­U

¤ ¡¡¡¡ ­¤ Tors ­¤
:

and the image ­U

¤
N¤

consists of squares of elements in N¤
Hence if M is any oriented 4k-manifold then there exists some oriented 4k-

manifold V such that [V ] is torsion in ­4k and [M ] + [V ] [N £ N ] in N4k This
implies that the theorem follows once it is proved for manifolds satisfying a or
b above

First consider a : let M N £ N Then ¹w M ¹w N £ ¹w N and hence

¹w2k+1 M Xi+j 2k+1

¹wi N £ ¹wj N :

Thus

h ¹w2k1+1 M : : : ¹w2kr+1 M ; FM i
X h ¹wi1 N : : : ¹wir N ; FN i ¢ h ¹wj1 N : : : ¹wjr N ; FNi : 11

Since is + js is odd for all is; js there is a ¯xed point free involution T acting on
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the set of the terms in the sum in 11 such that i1 + ¢ ¢ ¢ + ir 2k j1 + ¢ ¢ ¢ + jr:
T : h ¹wi1 N : : : ¹wir N ;FN i ¢ h ¹wj1 N : : : ¹wjr N ; FN i

7 h ¹wj1 N : : : ¹wjr N ; FN i ¢ h ¹wi1 N : : : ¹wir N ; FNi :

Thus the terms in the left hand side of 11 which does not vanish for dimensional
reasons cancel in pairs and hence ¹w2k1+1 : : : ¹w2kr+1[M ] 0

Next consider b : let u: N4k Z2 denote the homomorphism induced by
the product of odd-dimensional normal Stiefel{Whitney classes ¹w2k1+1 : : : ¹w2kr+1

P
2kj + 1 4k Odd-dimensional Stiefel{Whitney classes are mod 2-reductions

of twisted integer classes see [3] p 140 Hence a product of an even number of
such classes is an integer class so the map

­4k
¼

¡¡¡¡ N4k
u¡¡¡¡ Z2

lifts to a homomorphism

­4k
U

¡¡¡¡ Z:
Thus U and therefore u ± ¼ is zero on any torsion element of ­4k ¤
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