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Marked length rigidity for symmetric spaces

Francoise Dal’Bo and Inkang Kim!

Abstract. We give conditions under which a homomorphism between two Zariski dense sub-
groups of connected semisimple Lie groups G and G’ without compact factors and with trivial
center can be extended to a continuous isomorphism between G and G’. In particular we prove
the marked length rigidity and the marked translation vector rigidity. This last result was mo-
tivated by a Margulis’s question.
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Introduction

Let G, G’ be connected semisimple Lie groups without compact factors and with
trivial center. The motivation of this paper is to give conditions under which a
homomorphism between two Zariski dense subgroups of G and G’ can be extended
to a continuous isomorphism between G and G’. Much study of lattices has been
done, yet the study of general co-infinite volume groups is relatively less carried
out. Fix a closed Weyl chamber AT included in the Lie algebra of G. The trans-
lation vector v(g) of g € G, is, by definition, the unique a € A" such that e® is
conjugate to the hyperbolic part of the Jordan decomposition of g (see section 1).
The Euclidean norm of v(g) is denoted £(g) and is called the length of g. If X is a
symmetric space associated to G, one has: £(g) = }g)f(d(:m g(z)). In the particular

case where G = PSL(n,R) and A" is the set of diagonal matrices diag (ay,- - ,ay)
with aqy > -+ > ayp, one has: v(g) = diag (Log|A1], - Log|A,|) where X; is the
it" complex eigenvalue of g. Let I' C G, the limit cone, £(T"), associated to I is,
by definition, the smallest closed cone in A" containing all v(y) for v € I'. An
important result due to Y. Benoist [1] says that the interior of £L(T') is not empty, if
I' is a Zariski dense group. The originality of this paper is to explore this property
to obtain strong rigidity results in a short and elementary way.
Let us give the main results.

1Partially supported by the KOSEF interdisciplinary grant 1999-2-101-5.
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Theorem A. Let I' C G, 1V C G’ be Zariski dense subgroups. If ¢ is a surjective
homomorphism between T' and T such that €(v) = €(¢(7)) for any v € T then ¢
can be extended to a continuous isomorphism between G and .

Following the way of A. Parreau [15], we give applications of Theorem A to the
space of representations of an abstract group into G.

Theorem A is already known for symmetric spaces of rank 1 ([4], [11]) and
their products ([12]). For simple Lie groups it is shown in ([6]). Along this line,
Besson, Courtois, Gallot and Hamenstadt ([2], [9]) showed that, if M is a nega-
tively curved locally symmetric compact manifold and N is an arbitrary negatively
curved manifold which has the same marked length spectrum with M, then they
are isometric. Actually it is conjectured that two negatively curved compact man-
ifolds with the same marked length spectrum are isometric. This conjecture is
proved in dimension 2 ([14]).

The following theorem gives a positive answer to a Margulis’s question raised
during the rigidity conference at Paris in June 1998.

Theorem B. Suppose G = G’ and rank G > 2. Let I',T” be Zariski dense sub-
groups of G. If ¢ is a surjective homomorphism between I' and I such that for all
v €T there exists k() € R* such that v(p(v)) = k(vy)v(y), then ¢ can be extended
to a continuous automorphism of G.

We first study the simple case where G and G’ are simple. Using a criterion
of conjugacy proved in [6] we give a family of conditions (including conditions
of Theorems A and B) under which a surjective homomorphism between Zariski
dense subgroups can be extended.

1. Benoist’s theorem for limit cone

An element g of a real reductive connected linear group can be uniquely written
g = ehu where e si elliptic (all the eigenvalues have modulus 1), u is unipotent (u-
Id is nilpotent), h is hyperbolic (all the eigenvalues are real positive), and all three
commute. This decomposition is called the Jordan decomposition of g. If G =KAN
is any Iwasawa decomposition of a connected semisimple Lie group G, then e is
conjugate to an element in K, h is conjugate to an element in A and w is conjugate
to an element in N (1], [7]). Fix a closed Weyl chamber A" in the Lie algebra of G,
there exists a unique @ € AT, called the translation vector of g and denoted v(g),
such that A is conjugate to e*. Geometrically, if X is a symmetric space associated
to G, then |lv(g)|| = €(g) where £(g) = gg)f(d(@g(x)) (see [15] for an interpretation

of v(g)). Let T" be a subgroup of G, one defines the limit cone of ", denoted L(T"),
as the smallest closed cone in A containing v(I'). If G =PSL(2,R)x PSL(2,R) and

AT = {(riM,roM) /11,79 € RT} where M = (é _?), then £(I") is the closure
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of {(ré(v1)M,rl(v2)M)/r € RT, (y1,72) € T'} where £(;) = 0 if ~; is elliptic or
parabolic and £(;) > 0 is the displacement of ; if +; is hyperbolic. The following
result, due to Y. Benoist, plays a key role in this paper.

Theorem 1.1 [1]. If T is a Zariski dense subgroup of G then L(I') is conver and
has nonempty interior.

In the particular case where I' is a Zariski dense subgroup of PSL(2,R)x
PSL(2,R) associated to the diagonal action of two isomorphic Fuchsian groups

5(71) . .
————— v €'y p is an interval [a,b] C
Uty !

[0,00] with a # b. This property was already remarked in the context of rank 1
semisimple groups by M. Burger [4] (see also [5]).

'y —2 - T,, this theorem says that {

2. Rigidity results for simple groups

In this section one supposes that G' and G’ are connected, noncompact, simple
Lie groups with trivial center. Let ¢ : I' — I be a homomorphism between two
subgroups of G and G’. One defines the graph group 'y, € G x G’ by T'y, =
{(v;¢(7))/v € T'}. The following result is proved in [6].

Criterion of conjugacy 2.1 [6]. Let ¢ be a surjective homomorphism between
two Zariski dense subgroups I, T included in connected non compact simple Lie
groups, G and G', with triwial center. The following properties are equivalent:

1) ¢ can be extended to a continuous isomorphism between G and G’
2) Ty, is not Zariski dense in G x G'.

This criterion is false if G a G’ are not simple. Take for example G =PSL(2,R)
and G’ = G x G. Denote AT the closed Weyl chamber of G defined by AT =
{rM/r € Rt} where M = (1) _(1)
non conjugate and non elementary Fuchsian groups. The groups I'y and I'y,
are Zariski dense subgroups respectively of G and G’. Consider the isomorphism
¥ : Ty — T'y, defined by ¥(y) = (v,¢(v)). The limit cone of the graph group
associated to ¥ is included in {(rM,rM,sM)/r,s € RT} C AT x AT and hence
has empty interior. According to Benoist’s theorem (section 1), I'1y is not Zariski
dense. On the other hand ¥ cannot be extended.

One deduces from the previous criterion the following corollary.

. Let ¢ : T'y — I'y be an isomorphism between

Corollary 2.2. Let Ad be the adjoint representation. If there exists an algebraic
relation satisfied by all (Ad (7)), Ad (¢(v)) with v € T, then ¢ can be extended to
a continuous isomorphism between G and G'.
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In the case where G =PSL(n,R), G’=PSL(n’,R) and ¢ preserves the trace,
Corollary 2.2 is proved in [16].

Remark that the condition () = ¢(¢(v)) for each v € I is not in general
an algebraic condition. But in this case, since [|[v(7)|| = [|[v(e(7))]| for v € T, the
limit cone of the graph group has empty interior. Applying Benoist’s theorem, one
concludes that I'y, is not Zariski dense and hence that ¢ can be extended. More
generally, one has the following result.

Corollary 2.3. If the interior of L(T',) is empty then ¢ can be extended to a
continuous isomorphism between G and G'.

Let us give three different conditions under which I',, is not Zariski dense and
hence ¢ can be extended:

1) £(7y) = £(p(v)) for any y € T.

2) v(y) and v(¢p(y)) are colinear for any y € I.

3) The largest modulus of the complex eigenvalue or Ad () equals the largest
one of Ad (¢(v)) for any v € I.

Conditions 1) and 2) correspond to Theorems A and B when G and G’ are
simple. Contrary to the conditions 1) and 2), if ¢ satisfies condition 3) and G
and G’ are not simple, ¢ cannot be necessarily extended. For example, fix two
isomorphic Schottky groups p: T' — I in PSL(2,R). Suppose that £(v) > €(p(v))
for each v € T' (see [5] for the construction of such groups). Consider the iso-
morphism ¢ : I' — T', defined by ¢(v) = (v, p(v)). The groups I',T', are Zariski
dense respectively in PSL(2,R) and PSL(2,R)x PSL(2,R) and the condition 3) is
satisfied but ¢ cannot be extended.

3. Proofs of Theorems A and B

In this section G and G’ denote connected semisimple groups with trivial center
and without compact factor. Such a group can be decomposed into a product of
connected noncompact simple groups with trivial center.

Lemma 3.1. Let T, TV be Zariski dense subgroups of G and G'. Suppose that ¢
is a surjective homomorphism between T and I and set T, = {(~, ¢(v))/v € T}.
The projections of the identity component of the Zariski closure of I'y into G and
G’ are surjective.

Proof. The Lie algebra G of G can be decomposed into a direct sum of simple
ideals G = F1 + --- + F,,. Moreover each ideal of G is a direct sum of certain F;
([10] corollary 11.6.3). Let G; be the connected Lie subgroup in G associated to F;.
Since G has trivial center, G = Gy x - - - x G,,. Let H be the identity component of
the Zariski closure of I',. Denote p the projection of H into &' and T, its tangent
map at identity. The image, F, of the Lie algebra of H by T'p is a non trivial
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subalgebra of G normalized by I'. Since I' is Zariski dense, F is an ideal and hence
F=Fi +-+F,, k<n. This implies that p(H) = G;; X --- x G;,. Since the
index of H in the Zariski closure of T, is finite and I" is Zariski dense, p(H) is
also Zariski dense. This proves that £ = n and thus that p is surjective. Since ¢
is surjective, the same argument holds for the projection of H into G’. |

Proof of Theorem A. Denote H the identity component of the Zariski closure of
I', and H its Lie algebra. We want to prove that the projection p (resp. p’) of H
into G (resp. ') is injective. Let us first show that H is semisimple. Consider its
solvable radical R C H. The image of R by the tangent map T'p of p at identity
is normalized by I". Since I' is Zariski dense in G, T'p(R) is a solvable ideal. The
semi simplicity of G implies that T'p(R)is trivial. Since ¢ is surjective, the same
argument holds for p’. This shows that R is trivial. Fix a Cartan decomposition
H =P"+T" of H, since G x G’ is semisimple, there exists a Cartan decomposition
P+T of the Lie algebra of G x G’ such that P/ C P and 7" C T ([10] VI exercise
8(i)). Choose a Weyl chamber W C P’ since P” C P one has W C A x A
where A and A’ are Cartan subalgebras of the Lie algebra G, G’ of G and G’. Let
us analyze Kerp. This group is normalized by IV because ¢ is surjective. Since
I’ is Zariski dense and the center of G’ is trivial, either Kerp = {Id} or Kerp
is a normal non trivial Lie subgroup of G’. In the last case, denote 7 the Lie
algebra of the identity component of Kerp. One has 7T =77 + --- + IIQ where I;
are noncompact simple ideals of G’ such that G =77 + - -- +Z; with k& > p ([10]
corollary 11.6.3). It follows that W/ contains an element o = (0,w) € A x A" with
lw|| # 0. Since I', N H is Zariski dense in H, according to Benoist’s theorem, the
interior of its limit cone, EW(FLP N H), relatively to W, is not empty. Moreover
LY(T,NH) is included in S = {(u,u) € Ax A'/|Ju|| = ||u’||} because ¢ preserves
the translation length and £(I', N H) is included in the image of the limit
cone of T'y, N H relatively to AT x A by the Weyl group. Let b = (u,u’) an
element of the interior of LY(T', N H) C W. One can suppose ||u| = ||«/| = 1.
Since the interior of EW(Fg, N H) in W is not empty, the intersection of the
plane generated by a and b with EW(FS@ N H) contains an open disc. There is
a contradiction with the fact that the intersection of this plane with S is the
curve {aa + Bb/2a3 (', w) + a?|w||? = 0}. In conclusion p is injective. The same
argument holds for p/, because ¢ is surjective. Applying the lemma 3.1, one obtains
that p and p’ are bijective. Consider now the projections g (resp. ¢') of the Zariski

closure Fi of T'y, into G (resp. ). The maps ¢ and ¢ are surjective. Let us prove
that they are injective. Take g € Ker ¢, for any h € H one has q(ghg 'h~1) =Id.
Since H is normalized by f; and p is injective, gh = hg. Using the fact that p’
is surjective one obtains p/'(g)g’ = ¢'p’(g) for any ¢’ € G’. Because the center of
G’ is trivial, g = Id. The same argument also holds for p’. Consider the map
f=7p op 1, it is a continuous isomorphism between G and G’ whose restriction
to I' coincides with . |
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Proof of Theorem B. The proof is similar to the previous one. Let us just adapt the
end of the proof of Theorem A, when we suppose that Ker p is nontrivial. Under
this assumption one obtains that W contains an element a = (0,w) € A x A with
w # 0. Since v(y) = k()v(p(y)) for each € T, the limit cone LA AT (T,NH)is
included in T = {(u,v') € AT x A" /u and «’ are colinear} and hence £V (T', N H)

is included in VL\J] 1 gT where Weyl is the Weyl group of A x A. The interior of
g€ Wey

EW(DP N H) in W is not empty according to Benoist’s theorem. It follows that
for some g € Weyl, the interior I of ¢(7) is not empty in W. Let b = (u,v’) € I.
Since rank G > 2 one can assume that «’ is not colinear to w. The intersection
of the plane P generated by a and b with I contains an open disc. There is a
contradiction with the fact that the intersection of T with g—'(P) is a line. O

4. Applications of Theorem A to the space of representations

Fix a connected semisimple Lie group GG without compact factor and with trivial
center, and a symmetric space X associated to G. A subgroup of G is said parabolic
if it fix a point of the geometric boundary, X, of X.

Proposition 4.1. Let I be a nonparabolic subgroup of G and H the identity
component of its identity component. If H # G then H fiz a totally geodesic
submanifold Y G X.

Proof. We thank P. Eberlein for helpful arguments.

The group H is reductive or parabolic ([3] corollaire 3.3). The last case cannot
happens because H is normalized by I" which does not fix any point in 0.X. Let
H = ST be the Levi decomposition of H where S is a connected semisimple group
and T is a torus, corresponding to the identity component of the center of H. If
T # 1d there exists a flat totally geodesic submanifold 7' C X such that T leaves
F invariant and F/T is compact ([8]). Let C be the union of all totally geodesic
submanifolds which are parallel to F'. Then C is invariant under H and is isometric
to ' x N for some closed convex subset N of X ([7] proposition 1.6.7). The set
C is a totally geodesic submanifold possible with boundary. Let Y be a complete
totally geodesic submanifold of X with dim Y = dim C. Since H leaves C invariant
and C contains an open subset of Y, the group H leaves Y invariant. Remark
that Y # X, because Y contains an Euclidean factor. If T = {Id} then H is
semisimple, and there exists z € X such that Hz is a totally geodesic submanifold

([13] lemma 7.21). By the assumption H # G hence Hz # X. O

Let T" be an abstract group and p : I' — G be a faithful representation. One
always supposes that the Zariski closure, H,, of p(I') is connected and that the
representation p is nonparabolic (i.e. p(I') is nonparabolic). In this case H, is
reductive (proof of proposition 4.1). Let H, = ST be the Levi decomposition
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of H,. The representation p is noncompact if S is a semisimple group without
compact factor and with trivial center. Under this assumption H, stabilizes a
totally geodesic submanifold of X isometric to N x I’ where N is a symmetric space
on which S acts transitively and F'is a flat on which 7" acts by translation with
compact quotient (proof of the proposition 4.1). Two faithful, nonparabolic and
noncompact representations p and p’ of I' are equivalent if there exists a isometry
f between N x F and N’ x F’ such that fop(vy) = p/(v)o f for any v € T'. If
F and F’ are empty, then p and p’ are equivalent if and only if g’ o p~! can be
extended to a continuous isomorphism between S and S’ ([7] proposition 3.9.11).
Denote R fnpne/ ~ the space of faithful nonparabolic,noncompact representations
of I into G, up to the equivalence relation. The following result is an application
of Theorem A to the context of representations.

Proposition 4.2. The map L: Rjppne/ ~— RY defined by L([p])(v) = €(p(7)) is
ingective.

Proof. Let p1,p2 € Rynpne. Suppose L(p1) = L(p2). For i = 1,2 set I'; =
pi(l'), H; = Hp; and H; = S;T;.

a) Suppose S; = S = {e}, then T; acts by translation on the flat (F5, (),) and
F;/T; is compact. Let us identify p;() with its translation vector. Choose a basis,
p1(m1),- -, p1(ym) of Fi, such a basis exists because I'y is Zariski dense in 77. For
v €T, write pi1(y) = 37—y aip1(vi) and pa(vy) = 3271 bipa(vi) + w where w is
orthogonal to each ps(yy). Since [lo1 ()]l — [l one has (p1(v), p1 (7)), —
{(p2(7); p2(7)), for any v,7" € T Put ¢i; = (p1(m); p1(5)1 = (p2(%i)s p2(75)) -
One has (p1(7),p1(7)); = iy aiciy and {(p2(7), p2(75)); = D04, bici; hence
St (a; —bi)e;; = 0 for any 1 < j < n. This proves that a; = b;. Moreover
le1(M]l = [lp2(7)|| hence w = 0. One thus obtains pa(y) = >.; | a;p2(7;) and dim
F5 = n because I'y is Zariski dense in T5. The linear map f : F; — F, defined by
flp1(7:)) = p2(7:) is an isometry satisfying fopi(y) = pa(v) o f, hence [p1] = [p2].

b) Suppose S1 # {e}, then Sy # {e}. Decompose S; into a product of non-
compact simple factors with trivial center S; = S;1 X - -+ X S, and denote p;,
the projection of S; into S;s. Since I'; is Zariski dense in S; x T; then p;(T") is
Zariski dense in S;s. Set D = [[',T'] and D; = p;(D). The group D; is normalized
by I'; and is included in S;, hence one can suppose that the Zariski closure of
D; equals S;1 X -+ X Sip, with n; < k;. Moreover n; = k; because p;s(D;) is
normalized by p;s(I") which is Zariski dense in S;s and the center of S;; is trivial.
In conclusion D; is Zariski dense in S;. By assumption ¢(p1(d)) = €(p2(d)) for
any d € D. One deduces from Theorem A that the restriction of ps o pl_l to Dy
can be extended to a continuous isomorphism ¢ between S; and S5. Up to ¢,
one can suppose S1 = Sz and pi(d) = pa(d) for any d € D. Let v € T, since
p1(ydy™t) = pa(ydy™?) and pi(d) = pa(d), the projection of py ' (y)p1(y) into Sy
commutes with all p;(d) Since D, is Zariski dense and the center of S is trivial,
the projection of py '(v)p1(7y) into S; is trivial. Consider now the projection p; of
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T'; into T;. One has £(p1 o p1(v)) = €(pa © p2(7)), moreover p;(T;) is Zariski dense
in T;. Using arguments developped in a), one obtains the existence of a isometry
[ Fy — Fy such that fo (p1opi(vy)) =p2 0 pa(7y) o f, hence [p1] = [p2]. O

The following part is inspired by the section 5 of A. Parreau’s thesis ([15]).
Let us consider the particular case where I' is an infinite group of finite type. Fix
a finite set, S, of generators. One associates to a representation p : I' — G its
minimal displacement, A(p) = ;g{ (Sup d(z, p(s)(x)). If A(p) = 0 there exists a

seS

sequence (z,)n>1 in X such that lim d(z,,, p(s)(xy,)) = 0 for any s € S. Up to a
n
subsequence one can suppose that (z,,),>1 converges in XUJX. If imz, =z € X
n

then p(s)(z) = = for any s € S and hence p(I') belongs to a compact subgroup.
Otherwise limz,, = £ € 9X and p(s)(§) = £ for any s € S. In this case p is

parabolic. In conclusion, if p € Rfppne then X(p) > 0. Let us consider the map

%: R fnpne/ ~— R defined by L([p])(v) = % This map is continuous ([15]

propositions V.2.3 and V.3.8) and its image is included in a compact set ([15]
proposition V.4.1). One deduces from these properties and from the proposition
4.2 the following result.

B
Corollary 4.3. The map X Rnpne/ ~— RY is injective, continuous and its

image is included in a compact set.
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