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Some properties of locally conformal symplectic structures
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Abstract We show that the d -cohomology is isomorphic to a conformally invariant usual de

Rham cohomology of an appropriate cover We also prove a Moser theorem for locally conformal
symplectic lcs forms We point out a connection between lcs geometry and contact geometry
Finally we show the connections between ¯rst kind second kind essential inessential local and
global conformal symplectic structures through several invariants
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1 Preliminaries

A locally conformal symplectic lcs form on a smooth manifold M is a non-
degenerate 2-form  such that there exists an open cover U Ui and smooth
positive functions ¸i on Ui such that

i ¸i jUi

is a symplectic form on Ui If for all i ¸i 1 the form  is a symplectic form
Lee [15] observed that the 1-forms fd ln ¸i g ¯t together into a closed 1-form
such that

d ¡ ^: 1

Such 1-form is uniquely determined by  and is called the Lee form of 
Conversely if a non-degenerate 2-form  satis¯es 1 and U U i is an open

cover with contractible open sets then jUi d ln¸i for some positive function

¸i on Ui and ¸ijUi is symplectic
Two lcs forms  0 on a smooth manifold M are said to be conformally

equivalent if 0 f for some positive function f on M
A locally conformal symplectic lcs structure S on a smooth manifold M is an

equivalence class of lcs forms
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The couple M; S is called a lcs manifold If  is a representative of S we

write  2 S If 0 in the de¯nition above then  is a symplectic form In that
case the lcs structure S is said to be a global conformal symplectic gcs structure

and we write S O
Let M; S be a lcs manifold and let  2 S and its Lee form If 0 ¸ for

some positive function ¸ then an immediate calculation shows that the Lee form
of 0 is 0 ¡ d ln ¸

Hence the cohomology class [ ] 2 H1 M; R is an invariant LS
of S we call

the Lee class of S Clearly S O i® LS
0

Locally conformal symplectic forms were introduced by Lee [15] and have been
extensively studied by Vaisman [18] [19] The ¯rst properties of their automor-
phism groups were established by Lefebvre [16]

We will assume that all manifolds considered are connected but not necessarily
compact and have dimension at least 4 In dimension 2 a lcs form is simply a

volume-form and the corresponding structure is an orientation
For any closed 1-form on a smooth manifold M the operator d which assigns

to a p-form ° the p + 1 -form

d ° d° + ^ °

is a coboundary operator i e d ± d 0

The cohomology of di®erential forms with this coboundary operator will be

denoted by H¤ M and will be called the d -cohomology For more information
on this cohomology see [11] or [19]

A lcs form  is precisely a non-degenerate d closed 2-form where is the

Lee form
This cohomology is \almost" an invariant of the lcs structure S []: given

0 2 S there is an isomorphism between H M and H 0 M 0 the Lee form
of 0 depending on the choice of ¸ such that 0 ¡ d ln¸ More precisely the

isomorphism is given by ®
7 ¸®

In section 3 we show that the cA cohomology constructed in [5] [6] is isomor-
phic to H M This shows that the d cohomology which is a sort of twisted de

Rham cohomology of M is a conformally invariant usual de Rham cohomology of
an appropiate cover of M

Let Di®
S M be the group of all automorphisms of a lcs structure S on a

smooth manifold M It is clear that for any representative  2 S then Di®S M
is the set of all di®eomorphisms Á of M such that Á¤ fÁ where fÁ is a
nowhere zero positive smooth function on M

We also may choose or ¯x an underlying  2 S and consider the group
G M of di®eomorphisms of M which preserve the form  This is a non-
invariant subgroup of Di®S M

The Lie algebra XS M of in¯nitesimal automorphisms of S consists of vector
¯elds X on M such that LX u X  where u X is a smooth function on
M Here LX stands for the Lie derivative in the direction X We denote XS M c
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the subalgebra of compact supported automorphisms We will also consider the

subalgebra X M of XS M consisting of vector ¯elds X such that LX 0

De¯nition A lcs form  on M is said to be of the ¯rst kind if there exists
X 2 X M with X 6 0 where is the corresponding Lee form Otherwise

it is said to be of the second kind [18]
A lcs structure S on M is said to be of the ¯rst kind if there is a representative

 2 S of the ¯rst kind The lcs structure S is said to be of the second kind
otherwise

Warning Vaisman [18] observed that a ¯rst kind lcs structure admits represen-
tatives which are second kind lcs forms

For X 2 X M and M connected X is a constant number since:

0 dLX LXd LX ¡ ^ ¡ LX ^ + ^ LX ¡ di X ^ 
and  is non-degenerate

Hence if  is a ¯rst kind lcs form with Lee form the condition:

There is X 2 X M with X 6 0

is equivalent to saying that there a 1-form µ such that

 dµ + ^ µ

Indeed just normalize X as above so that X 1 and set µ i X  First kind
lcs forms are d exact

2 Examples

We describe here a few examples of lcs forms The reader can consult the book
[9] for more examples

2 1 Examples connected with Contact Geometry

A contact form ® on a 2n+1 dimensional manifold N is a 1-form ® such that
® ^ d® n is everywhere non-zero Two contact forms ® and ®0 are equivalent
if there is a smooth positive function f on N such that ®0 f® The contact
structure

C ® determined by ® is the equivalence class of ®
Consider the cartesian product M N £S1 and the projections p1 : M N

p2 : M S1 Let ¯ be the canonical 1-form on S1 with integral 1 If we set
µ p¤1® and p¤2¯ then

 dµ + ^ µ
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is non-degenerate and d ¡ ^dµ ¡ ^ ¡ ^µ ¡ ^+ ^ ^µ ¡ ^
Hence the conformal class of  is a lcs structure on M we denote S ® This
structure is of the ¯rst kind

The following result will be proved in section 4

Theorem 1 The lcs structure S ® depends only on the contact structure C ®

In fact there is a well de¯ned mapping from the group Di®
C ® M of automor-

phisms of the contact structure C ® the group of contact di®eomorphisms of
M; ® to the group Di®

S ® M £ S1

2 2 Deformations of lcs structures

If we add a 2-form ´² C0 close to 0 to a lcs form  the resulting form ² +´²
is again non-degenerate An immediate calculation gives:

d² ¡ ^ ² + d´² + ^ ´² ¡ ^ ² + d ´²:

Hence if ´² is d closed then ² is a lcs form with as Lee form For instance

take ´² d °² where °² is C1 close to zero
To construct general deformations of a lcs form  with Lee form we may

look for 2-forms ´² C0 closed to zero and closed 1-forms ½ not necessarily small
such that d² ¡ + ½ ^² In that connection we note that if Lcs M is the

set of all lcs forms on a smooth manifold M and F¤ M the space of di®erential
forms both with the C1 topology Lcs M is not an open subset of F¤ M

Note that if the lcs form  is of ¯rst kind and we add to it a non-d -exact
form the resulting lcs form is not d -exact hence of the second kind

We have the following fact:

Theorem 2 Let M; S be a compact lcs manifold and let  2 S be a represen-
tative with Lee form Then for any d exact 2-form ´² C0 close to zero the

lcs form ² + ´² represents a lcs structure equivalent to S

Hence the non-trivial deformations of lcs structures are parametrized by ele-
ments of the second cohomology group H2 M

2 3 Lcs on cotangent bundles [12]

Let M T ¤ N be the total space of the cotangent bundle ¼ : T ¤ N N over a
smooth manifold N Let ¤N be the Liouville 1-form on M and ® a closed 1-form
on N then

® d ¤N

where ¼¤® is a lcs form on M The conformal structure de¯ned by this lcs

form depends only on the cohomology class of ®
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3 The cA -cohomology and the d -cohomology

For any closed 1-form on a smooth manifold M the operator d which assigns

to a p-form ° the p + 1 -form

d ° d° + ^ °

is a coboundary operator i e d ± d 0

The cohomology of di®erential forms with this coboundary operator will be

denoted by H¤ M and will be called the d -cohomology For more information
on this cohomology see [11] or [19] For instance it was proved in [19] that the

groups Hp M are isomorphic to the cohomology groups of M with coe±cients in
the sheaf F M of germs of smooth functions f on M such that d f 0

In this section we give another interpretation of the d cohomology
One associates with a closed 1-form on a smooth manifold M the minimum

regular cover ¼ : ~M M over which the 1-form pulls back to an exact 1-
form The manifold ~M is a connected component of the sheaf of germs of smooth
functions f on M such that df [10]

Let ¸ : ~M R be a positive function on ~M
such that

¼¤ d ln¸ :

It is well known that the group A of automorphisms of the covering ~M is
isomorphic to the group of periods of [10] We will need the following:

Lemma 1 [6] For any ¿ 2 A the function

¸ ± ¿ ¸
is a constant we denote c¿ independent of the choice of ¸ and

¿
7

c¿

is a group homomorphism c from A to the multiplicative group R+ of positive real
numbers

For the convenience of the reader we give here the proof [6]

Proof Clearly if ¸0 a¸ for some constant a ¸0
± ¿ ¸0 ¸ ± ¿ ¸

For any ¿ 2 A we have:

d ln ¸ ± ¿ ¡ ln¸ ¿ ¤¼¤ ¡ ¼¤ ¼¿ ¤ ¡ ¼¤ ¼¤ ¡ ¼¤ 0:

Hence ln ¸ ± ¿ ¸ K a constant and ¸ ± ¿ ¸ eK c¿
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If ¿; ¿ 0 2 A:

c¿ ¿ 0 ¸ ± ¿ ¿ 0 ¸ ¸ ± ¿ ¿ 0 ¸ ± ¿ 0 : ¸ ± ¿ 0 ¸
¸ ± ¿ ¸ ± ¿ 0 : ¸ ± ¿ 0 ¸ ¸ ± ¿ ¸ : ¸ ± ¿ 0 ¸ c¿ :c¿ 0 : ¤

The set F¤cA M of all di®erential forms ® on ~M
such that ¿ ¤® c¿ ® for all

¿ 2 A is a subcomplex of the de Rham complex of ~M We denote its cohomology
by H¤cA M and call it the conformally A-invariant cohomology of M Clearly if
the cohomology class of is trivial then H¤cA M coincides with the de Rham
cohomology of M

Remark 1 For any di®erential form ® on M then U® ¸¼¤® 2 F¤cA M
Indeed for any ¿ 2 A

¿ ¤U® ¸ ± ¿ ¢ ¿ ¤¼¤® ¸ ± ¿

¸ ¢ ¸ ¢ ¼ ± ¿ ¤® c¿ ¸¼¤® c¿ U®: ¤

Lemma 2 For any di®erential form ® d ® 0 if and only if d ¸¼¤® 0

Proof Suppose d ® 0 Then: d ¸¼¤® d¸^ ¼¤® + ¸¼¤ ¡ ^ ® d¸^ ¼¤®¡¸d ln ¸ ^ ¼¤® 0
Suppose now d ¸¼¤® 0 and compute:

¸¼¤ d ® ¸¼¤d® + ¸¼¤ ^ ¼¤® ¸¼¤d® + ¸d ln ¸ ^ ¼¤® d ¸¼¤® 0
Since ¸ is a positive function and ¼ is a local di®eomorphism d ® 0 ¤

Theorem 3 H¤cA M is non-canonically isomorphic with H
¤ M

Proof The natural homomorphism

H¤ M H¤
cA M [®]

7

[¸¼¤®]

is onto: indeed let ¯ be a form such that d¯ 0 and ¿ ¤¯ c¿¯ for all ¿ 2 A
Then:

¿ ¤ ¯ ¸ ¿ ¤¯ ¸ ± ¿ c¿ :¯ ¸ : ¸ ¸ ± ¿ ¯ ¸
for all ¿ 2 A Hence ¯ ¸ is basic i e there is a form ® on M such that ¯ ¸ ¼¤®
Since ¯ ¸¼¤® is closed ® is d closed by Lemma 2

It is also one-to-one: suppose d ® 0 and ¸¼¤® d½ with ¿ ¤½ c¿ ½ for all
¿ 2 A Then: rewriting the equations above with ¯ replaced by ½ we see that ½ ¸
is basic i e there is a form° on M such that ½ ¸ ¼¤°

Let us now compute: ¼¤ d ° ¼¤ d° + ^ ° d ½ ¸ + d ln ¸ ^ ½ ¸
d½ ¸¡ d¸ ¸ 2

^ ½ + d¸ ¸ ^ ½ ¸ d½ ¸ ¼¤®
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Since ¼ is a covering map ® d ° ¤

In [5] [6] we had already observed that HcA M is a quotient of H M
We deduce the following well known fact [11]

Corollary If is a non-exact 1-form on a smooth manifold M H0 M 0

Proof An element of H0 M ¼ H0
cA M is represented by a constant K such that

K ± ¿ K c¿ K for all ¿ 2 A Since is not exact there is a ¿ 2 A with c¿ 6 1

Hence K 0 ¤

Let M; S be a lcs manifold  2 S a representative with Lee form Let
¼ : ~M M be the minimum regular covering of M associated with the 1-form
and let ¸ : ~M R be a positive function on ~M

such that
¼¤ d ln¸ :

Then ~ ¸ ¼¤ is a symplectic form on ~M
and its conformal class ~

S is inde-
pendent of the choice of  2 S and of ¸

Note that given a lcs  2 S with Lee form the cohomology classes [] 2
H2 M and [¸¼¤] 2 H2

cA M are not invariants of the lcs structure S
The cohomology groups H¤cA M and the d cohomology are \almost" invari-

ants of the lcs structure: since if and 0 ¡ d ln ¸ are two Lee forms then
H M is isomorphic to H 0 M by the isomorphism ® ¸® which unfortu-
nately depends on the choice of ¸ Two such ¸'s di®er by a constant

4 Equivalence of lcs structures

We have the following Moser type result:

Theorem 4 Let t be a smooth family of lcs forms on a compact manifold M
Suppose that for all t the Lee form of t is the same 1-form and that ¤tt ¡0 is d - exact then there exist a smooth family of di®eomorphisms Át with
Á0 id and a smooth family of functions ft such that Á

¤tt ft0

Remark 2 If the smooth family of lcs forms t has a smooth family t of
corresponding Lee forms and we write t 0+d ln ut for some positive functions

ut see the beginning of the proof of Theorem 5 then 0t utt has 0 as Lee

form for all t Hence assuming ¤0t 0t ¡ 0
0 to be d 0-exact yields that t

represent equivalent lcs structures for all t

Proof By assumption @ @t t is d exact for all t A result of [12] Lemma 1 9
asserts that there exists a smooth family of 1-forms ´t such that

@ @t t d ´t:
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The argument used to ¯nd a smooth lifting of d -coboundaries is the same as in
[1] Lemma II 2 2 which is an application of Grothendieck's theory of nuclear
topological vector spaces This replaces the Hodge{de Rham theorem in Moser's
theorem for symplectic forms [17]

Let ~t ¸¼¤t where ¼ : ~M M is the minimum regular cover and ¸ is
such that ¼¤ d ln¸ We de¯ne a smooth family of vector ¯elds Xt on ~M by:

i Xt ~t ¡¸¼¤´t
Since d ¸¼¤´t ¸¼¤d ´t we have:

LXt ~t + @ @t ~t 0:

We claim that Xt is complete Hence it de¯nes a smooth family of di®eomorphisms

Ãt of ~M
such that Ã¤t ~t ~0

This argument is Moser's standard path method [17]
To prove that Xt is complete it is enough to show that it is basic i e there is

a family of vector ¯elds Yt on M such that ¼
¤Xt Yt Since M is compact Yt is

integrable and so will be Xt
For any ¿ 2 A we easily see that:

¿ ¤ ~t c¿ ~t;

and
¿ ¤ ¸¼¤´t c¿ ¸¼¤´t :

We therefore have:

¡c¿ i Xt ~t ¿ ¤ ¸¼¤´t ¡¿ ¤ i Xt ~t ¡i ¿ ¡1
¤Xt ¿ ¤ ~t

¡i ¿ ¡1
¤Xt c¿ ~t ¡c¿ i ¿ ¡1

¤Xt ~t :

Hence

c¿ i ¿ ¡1
¤Xt ~t c¿ i Xt ~t :

Since c¿ 6 0 we have: i ¿ ¡1
¤Xt ~t i Xt ~t Therefore ¿ ¡1

¤Xt Xt
Let now Át be the family of di®eomorphisms of M covered by Ãt i e ¼ ± Ãt

Át ± ¼ then Ã¤t ~t ¸t ± Ãt :¼¤ Á
¤tt ¸0¼¤0 Hence ¼¤ Á

¤tt ¸0 ¸t ±
Át ¼¤0 For all ¿ 2 A we have:

¸0 ¸t ± Át ¼¤0 ¼¤ Á
¤tt ¿ ¤¼¤ Á¤tt ¸0 ¸t ± Át ± ¿ ¼¤0:

Therefore ¸0 ¸t ± Át is invariant by all ¿ 2 A hence ¸0 ¸t ± Át ft ± ¼

for some function ft on M We thus get that ¼¤ Á
¤tt ¼¤ ft0 and hence

Á
¤tt ft0:

This ¯nishes the proof of Theorem 4 ¤
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Exactly like in Moser's theorem in Symplectic Geometry [17] there are ex-
amples in which we get smooth liftings of the coboundaries ¤t without using the

deep lemma which is an application of Grothendieck's theory of topological vector
spaces The most trivial example is provided by Theorem 2: if ´² d °² then
¤t d t°²

In the following situation we also have an immediate smooth lifting of the

coboundaries ¤t

Theorem 5 Let t be a smooth family of lcs forms on a compact manifold M
with a smooth family t of Lee forms having a ¯xed de Rham cohomology i e

[ 0] [ t]; 8t and such that there exists a smooth family µt with t dµt+ t^µt
then the lcs forms t de¯ne equivalent lcs structures

Proof There is a smooth family of positive functions ut on M with t 0 +
d ln ut and u0 1 Indeed since @ @t t is exact there is a smooth family of
positive functions vt such that @ @t t d ln vt Use for instance the Hodge{
de Rham decomposition theorem Now integrate both side and set ut R

t
0 vs ds

Let ¼ : ~M M be the minimum cover associated with 0 and let ¸0 : ~M R
be a positive function such that ¼¤ 0 d ln¸0 Then ¼¤ t d ln ¸0+d ln ut±¼

d ln¸t with ¸t ¸0: ut ± ¼ We have:

~t ¸t¼¤t ¸t¼¤ dµt + ¸td ln ¸t ^ ¼¤µt d ¸t¼¤µt :

Setting @ @t ¸t¼¤µt ½t we de¯ne a smooth family of vector ¯elds Xt on ~Mby:

i Xt ~t ¡½t:

We have:
LXt ~t + @ @t ~t 0:

We claim that Xt is complete Hence it de¯nes a smooth family of di®eomorphisms

Ãt of ~M
such that Ã¤t ~t ~0

From here proceed like in the proof of Theorem 3 ¤

Remark 3 Let ut be a smooth family of positive functions such that t
0 + d ln ut Then 0t utt has 0 as Lee form for all t Moreover setting

µ
0t

utµt we have:

d 0 µ
0t utdµt +

dut
ut ^ utµt + 0 ^utµt ut dµt + d ln ut + 0 ^µt utt 0

t:

Hence 0t d 0 µ
0t

The coboundary ¤0t 0t ¡ 0
0 has the smooth lifting

d 0 µ
0t ¡ µ

00

Proof of Theorem 1 Theorem 1 is a consequence of Theorem 5 since two contact
forms ®; ®0 de¯ne the same contact structure if ®0 w® with w a smooth positive
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function Now set ®t exp t ln w ® The family of lcs forms is t dµt + ^ µt
with µt p¤1®t

The mapping ½ : Di®
C ® M Di®

S ® M £ S1 comes from the proof For
h 2 Di®

C ® M h¤® w:® then the di®eomorphism Á1 above obtained using

t dµt + ^ µt with µt p¤1®t and ®t exp t: ln w ® takes 1 to a0
Taking a path from h® to ® which does not reverse the ¯rst one for instance

®
0t t + 1¡ t h ® µ

0t p¤1®
0t

and 0t dµ
0t
+ ^ µ

0t
get a di®eomorphism Á1

taking 0 back to a multiple of 1 Now set ½ h Á1 ± Ã1 ¤

5 Invariants of lcs structures

Given a lcs manifold M; S we have considered the following objects attached
to S :

1 The cohomology class of the Lee form of any representative lcs form  2 S
We saw that this is an invariant LS

we called the Lee class of S The group A of
periods of is an object depending only on the conformal class S

2 We considered the minimum cover of M which has a group of deck transfor-
mations isomorphic with the group A of periods of as group of automorphisms

and the cA cohomology
In Proposition 1 we gather other invariants built using the automorphisms of

the lcs structure

If G is a Lie algebra and K is a G-module we denote by H¤ G; K the coho-
mology of G with coe±cients in K [14] This is the cohomology of the complex
C¤ G; K ; ± where p-cochains are p-linear alternating mappings on G with values

in K and the coboundary operator is given by:

@f X1; : : : ; Xp+1 Xi ¡1 i+1Xi ¢ f X1; : : : ; X̂i; : : : Xp+1

+
Xi·j ¡

1 i+jf [Xi; Xj]; : : : ;X̂i; : : : X̂j ; : : : :

We also consider the cohomology H¤ G; K of an abstract group G into a

G-module K [13] The p-cochains now are mappings from Gp to K and the

coboundary operator ± is given by

±g a0; : : : ; ap a0 ¢ c a1; : : : ; ap ¡ ³Xi ¡1 ic a0; : : : ; aiai+1; : : : ap ´
+ ¡1 p+1c a0; : : : ; ap¡1 :

H1 G; K is the quotient of derivations 1-cocycles by inner derivations co-
boundaries Recall that derivations are maps d : G K such that d gh
g:d h + dg and an inner derivation is a map v : G K such that there exists

k 2 K such that v g g:k ¡ k
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H1
G; K is the quotient of the space of linear maps v : G K such that

u [X; Y ] X:u Y ¡ Y:u X 1-cocycles modulo the coboundaries consisting
of linear maps v such that there exists k 2 K with v X X:k for all X; Y 2 G

Proposition 1 Let S be a lcs structure on M and  2 S with Lee form
1 The map D : Di®

S M C1 M Á
7

ln fÁ¡1 if Á¤ fÁ is a

1-cocycle on Di®
S M whose cohomology class aS 2 H1 Di®

S M ; C1 M is
independent of the choice of  2 S i e an invariant of S

2 The map d : XS M C1 M X 7 u X where LX u X 
is a 1-cocycle whose cohomology class b

S 2 H1
XS M ; C1 M is independent

of the choice of  2 S i e an invariant of S
3 The map ^ : XS M C1 M X 7 X is a 1-cocycle whose cohomol-

ogy class cS 2 H1
XS M ; C1 M is independent of the choice of  2 S i e an

invariant of S
4 The sum d + ^ is a 1-cocycle on XS M with values in R hence a homo-

morphism l called the extended Lee homomorphism an invariant of S
5 Suppose M is compact and ¯x a riemannian metric For each h 2 Di®

S M
not even homotopic to the identity h¤ ¡ is an exact 1-form Let uh be the

unique function provided by the Hodge decomposition of h¤ ¡ such that h¤ ¡duh
For h;h0 2 Di®S M :

h; h0
7 uh ± h0 + uh0 ¡ uhh0

is a 2-cocycle K with values in R Its cohomology class in H2 Di®S M ; R is
an invariant KS

of S

Statements 1 and 2 have been observed in [2] The statement 3 is obvious

since the coboundary operator in the Gelfand{Fucks cohomology cohomology on
Lie algebras of vector ¯elds is the same as in the de Rham cohomology

The class cS
may be called the Gelfand{Fucks class of S

Statement 4 was proved by Vaisman [18] See also [6]
Statement 5 was proved in [8] The Hodge{de Rham theory gives a smooth

lifting of de Rham coboundaries: i e any exact p-form µ determines uniquely a

p ¡ 1 -form ® such that µ d® as follows: let ± be the codi®erential and G
the Green operator de¯ned by a riemannian metric then ® ±G µ Here the

function uh is uh ± G h¤ ¡ See for instance [3]

Remark 4 We can de¯ne similar invariants using objects with compact support
and denote them by ac

S
bc

S
cc

S

De¯nition The structure S is called inessential if there exists ¤ 2 S such that
G¤

M Di®
S M The structure S is called essential otherwise

The following fact was observed in [4]:
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Proposition 2 Let M; S be a lcs manifold Then S is inessential i® aS
0

The connection between these invariants and the problem of essentiality and
globality of locally conformal structure is given by the following:

Theorem 6 Let M; S be a lcs manifold
1 If aS

0 then S O Furthermore the Lee homomorphism is trivial and
the structure S is of the second kind Thus inessential structures are of the second
kind This also says that if S is of the ¯rst kind then aS 6

0
2 If M is compact then S O implies that aS

0
3 The Gelfand{Fucks class cS

vanishes i® the Lee class LS
does

4 If M is compact the vanishing of one of the four classes aS
b

S cS LS
implies the vanishing of the remaining three classes

We will need the following \local transitivity" result Lefebvre's [16] proved it
away from the zeros of the Lee form Since for any point the lcs structure can be

represented by a lcs form with Lee form not vanishing at that point Lefebvre's
argument applies For the convenience of the reader we rewrote it in our style

Theorem 7 Let M; S be a lcs manifold of dimension 2n For each x 2 M
there exist 2n vector ¯elds V xj 2 XS M with arbitrarily small compact support
in an open neighborhood of x and such that fV xj x gj 1;:::;2n form a basis of the

tangent space TxM

Proof 1 For each point x 2 M there is  2 S with Lee form such that
x 6 0 Indeed if the Lee form of  2 S vanishes at x consider a contractible

neighborhood U of x at which jU d ln ¸ and choose a smooth positive function
½ constant outside of U with d½ x 6 0 and d ln ¸ 6 d ln ½ on a neighborhood of
x The form ½ 2 S and has Lee form 0 ¡ d ln ½ The new Lee form does

not vanish at x and in a neighborhood
2 Any function u on an open set U where fjU is symplectic de¯nes a vector

¯eld Xu on U by the equation:

i Xu fjU d fu :

A direct calculation shows that LXujU ¡Xu ¢ ln f  [18]
3 The form  2 S above has a Lee form not vanishing on an open neigh-

borhood V ½ U of x Hence there are local coordinates x1; : : : xn; y1; : : : ; yn
de¯ned on a smaller neighborhood V1 of x such that y1 6 0 and

jU1 y1³
n

X
k 1

dxk ^ dyk´:

Let ¹ be a smooth function supported in V2 and which is equal to 1 on a closed
neighborhood F of x where F ½ V2 ½ V1



Vol 77 2002 Some properties of locally conformal symplectic structures 395

We de¯ne 2n vector ¯elds by:

i Y1 ³
1

y1
jV1´ d³¹y2

1
y1

´ d ¹y1

and for j 2; : : : ; n

i Yj ³
1

y1
jV1´ d³¹yj

y1
´:

For j 1; : : : ; n de¯ne Xj by:

i Xj ³
1

y1
jV1´ d³¹xj

y1
´:

Then Xi; Yi are smooth vector ¯elds on M with compact support in V1 which all
belong to XS M c

Let us note ej @ @xj and e0j @ @yj then on F we have

Y1 e1; Yj
1

y1ej¡yjy2
1

e1; j 2; : : : ; n

Xj ¡
1

y1
e0j ¡

xj
y2

1
e1; j 1; : : : ; n:

Writing that P
n
i 1 aiXi + biYi 0 gives immediately that bi 0 and ai 0

i e these vector ¯elds are linearly independent near x ¤

Proof of Theorem 6 1 Suppose that aS
0 that is S is inessential Proposition

2 Let ¤ 2 S with Di®S M G¤
M and let ¤

be the corresponding Lee

form It follows that
XS M c X¤

M c:

Let us now show that ¤
0

For each x 2 M and any tangent vector » 2 TxM we want to show that
¤ x » 0 By Theorem 7 » P

2n
j 1 cj x V xj x Extend now the coe±cients

cj x into smooth functions cj with compact support near x We get a smooth
vector ¯eld with compact support V P

2n
j 1 cjV xj which coincides with » at

x 2 M Therefore

¤ x »
¤ x V x ¤ V x

2n

X
j 1

cj ¤ V xj x :

Since V xj 2 XS M c X¤
M c ¤ V xj is a constant function see Remark 5 3

with compact support and hence identically zero This proves that ¤ x 0

This implies that S O
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Since the Lee homomorphism can be computed using ¤
and

¤
we see that

l ^
¤

0:

This implies that the structure is of the second kind Indeed if  is any represen-
tative of S with Lee form and X 2 X M then l X X 0

2 If S O there is a symplectic form  2 S If Á 2 Di®S M then Á¤ f
By the classical theorem of Libermann see [6] f is a constant provided that the

dimension of M is at least 4 which is assumed here and if M is compact this
constant must be 1 This follows from the fact that RM Á¤n fn

RM n and by
the formula of change of variable we have equality with RM n Hence f 1 and
therefore aS

0
3 It is clear that [ ] 0 implies that [^ ] 0 Conversely suppose there exists

a smooth function u such that X X:u du X for all X 2 XS M We

show that indeed » du » for all vector ¯elds » i e that du For each
point x 2 M we need to show that » x du » x

As above we consider the vector ¯eld V P
2n
j 1 cjV xj which is equal to »

at x Then like above: » x P
2n
j 1 cj V xj x P

2n
j 1 cjdu x V xj

du x P
2n
j 1 cjV xj du x V du x » Therefore the de Rham class of is

trivial
4 In the compact case aS

0 S O and aS
0 b

S
0

We also have that in general S O LS
0 and c

S
0 LS

0
Putting these facts together yields the last assertion of Theorem 5 ¤

Remarks 1 If M is not compact S 0 does not imply that aS
0 Take

for instance the global conformal symplectic structure de¯ned by the standard
symplectic form on R2n and more generally non-compact manifolds with complete

Liouville vector ¯elds like Stein manifolds [4]
2 The vanishing of the compactly supported invariant ac

S
also implies that

S 0 This was proved in [12]

6 Concluding remarks and questions

1 The mapping L : Lcs M F
1 M assigning to a lcs form its Lee form is not

continuous in the C0 topology Indeed if u is a smooth function which is C0 close

to 1 and C1 far from 0 then the Lee forms of u and  are far apart How about
the continuity for the C1 topology

If M has a complex structure J and a hermitian metric g such that the lcs form
 is given by  X; Y g X; JY M is said to be a locally conformal Kaehler
manifold then L is continuous for the C1 topology Indeed in that case we have

an explicit formula for L  [9]:

L  1

n¡ 1
± ± J :
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Here ± is the codi®erential with respect to the metric g and 2n is the dimension
of M

2 The Lee homomorphism l : XS M R can be integrated into a homomor-
phism L : Di®

S M + R ¢ where ¢ is some countable subgroup of R and
Di®S M + is the group of automorphisms of S which admit a lift to the minimal
regular cover ~M [6]

If ® is a contact form on a compact manifold M we constructed in Theorem
1 a map ½ : Di®

C ® M Di®
S ® M £ S1 + Composing ½ with the extended

global Lee homomorphism we get a map:

¹ L ± ½ : Di®
C ® M R ¢:

This map is not a group homomorphism This allows us to de¯ne a 2-cocycle ´
on the the group Di®

C ® M :

´ Á; Ã ½ Á :½ Ã : ½ ÁÃ ¡1

for all Á; Ã 2 Di®
C ® M

What is the meaning of that cocycle
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