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Some properties of locally conformal symplectic structures

Augustin Banyaga

Abstract. We show that the d,,-cohomology is isomorphic to a conformally invariant usual de
Rham cohomology of an appropriate cover. We also prove a Moser theorem for locally conformal
symplectic (lcs) forms. We point out a connection between lcs geometry and contact geometry.
Finally, we show the connections between first kind, second kind, essential, inessential, local, and
global conformal symplectic structures through several invariants.
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1. Preliminaries

A locally conformal symplectic (Ics) form on a smooth manifold M is a non-
degenerate 2-form ) such that there exists an open cover U = (U;) and smooth
positive functions A; on U; such that

Qi = M(Qu,)

is a symplectic form on U;. If for all 4, A\; = 1, the form Q is a symplectic form.
Lee [15] observed that the 1-forms {d(In \;)} fit together into a closed 1-form w
such that

dQ = —w A Q. (1)

Such 1-form is uniquely determined by Q and is called the Lee form of €.

Conversely, if a non-degenerate 2-form € satisfies (1), and U = (U); is an open
cover with contractible open sets, then wyy, = dInA;, for some positive function
A; on U; and )\iQ‘Ui is symplectic.

Two les forms Q, ' on a smooth manifold M are said to be (conformally)
equivalent if Q' = fQ, for some positive function f on M.

A locally conformal symplectic (lcs) structure S on a smooth manifold M is an
equivalence class of les forms.
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The couple (M, S) is called a lcs manifold. 1f Q) is a representative of S, we
write Q0 € S. If w = 0 in the definition above, then € is a symplectic form. In that
case the les structure S is said to be a global conformal symplectic (ges) structure
and we write S = O.

Let (M, S) be a lcs manifold, and let Q@ € S and w its Lee form. If (' = AQ for
some positive function A, then an immediate calculation shows that the Lee form
of ' is w’ = w — dIn(A).

Hence the cohomology class [w] € H'(M,R) is an invariant £s of S, we call
the Lee class of §. Clearly, S = QO iff Ls = 0.

Locally conformal symplectic forms were introduced by Lee [15], and have been
extensively studied by Vaisman [18], [19]. The first properties of their automor-
phism groups were established by Lefebvre [16].

We will assume that all manifolds considered are connected, but not necessarily
compact, and have dimension at least 4. (In dimension 2, a lcs form is simply a
volume-form, and the corresponding structure is an orientation.)

For any closed 1-form w on a smooth manifold M, the operator d,, which assigns
to a p-form « the (p + 1)-form

dyy=dy+wAvy

is a coboundary operator, i.e. d, od, = 0.

The cohomology of differential forms with this coboundary operator will be
denoted by H} (M) and will be called the d,,-cohomology. For more information
on this cohomology, see [11] or [19].

A les form Q is precisely a non-degenerate d,, closed 2-form (where w is the
Lee form).

This cohomology is “almost” an invariant of the les structure & = [Q]: given
V' € S, there is an isomorphism between H,, (M) and H, (M), (w’ the Lee form
of €), depending on the choice of A such that w’ = w — dIn A. More precisely the
isomorphism is given by a — Aa.

In section 3, we show that the c.4 cohomology constructed in [5], [6], is isomor-
phic to H,,(M). This shows that the d,, cohomology (which is a sort of twisted de
Rham cohomology of M) is a conformally invariant usual de Rham cohomology of
an appropiate cover of M.

Let Diffs(M) be the group of all automorphisms of a les structure S on a
smooth manifold M. It is clear that for any representative Q € S, then Diffs(M)
is the set of all diffecomorphisms ¢ of M such that ¢*Q = f,Q, where f; is a
nowhere zero (positive) smooth function on M.

We also may choose (or fix) an underlying @ € S, and consider the group
Gq(M) of diffeomorphisms of M which preserve the form Q. This is a non-
invariant subgroup of Diffs(M).

The Lie algebra Xs(M) of infinitesimal automorphisms of S, consists of vector
fields X on M such that LxQ = (uq (X)), where uq(X) is a smooth function on
M. Here Lx stands for the Lie derivative in the direction X. We denote Xs(M ).
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the subalgebra of compact supported automorphisms. We will also consider the
subalgebra Xq (M) of Xs(M) consisting of vector fields X such that Lx€ = 0.

Definition. A lcs form Q on M is said to be of the first kind if there exists
X € Ag(M), with w(X) # 0, where w is the corresponding Lee form. Otherwise
it 1s said to be of the second kind [18].

A les structure S on M is said to be of the first kind if there is a representative
Q € S of the first kind. The les structure S is said to be of the second kind
otherwise.

Warning. Vaisman [18] observed that a first kind les structure admits represen-
tatives which are second kind les forms.

For X € Xq(M), and M connected, w(X), is a constant number since:
0=dLxQ=LxdQ=Lx(—wAQ)=—((Lxw) ANQ+wA LxQ)=—(di(X)w) AQ

and ) is non-degenerate.
Hence if Q is a first kind lcs form with Lee form w, the condition:

There is X € Xo(M), with w(X) #0
is equivalent to saying that there a 1-form 6 such that
Q=do+wAb

Indeed just normalize X as above so that w(X) = 1 and set 8 = (X )Q. First kind
les forms are d,, exact.

2. Examples

We describe here a few examples of lcs forms. The reader can consult the book
[9] for more examples.

2.1. Examples connected with Contact Geometry

A contact form « on a (2n+1) dimensional manifold N is a 1-form « such that
a A (da)™ is everywhere non-zero. Two contact forms « and o' are equivalent
if there is a smooth positive function f on N such that o’ = fa. The contact
structure C(a), determined by « is the equivalence class of a.

Consider the cartesian product M = N x S1, and the projections p; : M — N,
pa : M — S1. Let 8 be the canonical 1-form on S! with integral 1. If we set
0 = pja and w = p3 3, then

Q=d0+wAn?b
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is non-degenerate and dQ} = —wAdf = —wWA(Q—wA8) = —wWAQ+wAWAD = —wASD.
Hence the conformal class of Q is a lcs structure on M, we denote S(c«). This
structure is of the first kind.

The following result will be proved in section 4.

Theorem 1. The lcs structure S(a) depends only on the contact structure C(c).
In fact there is a well defined mapping from the group Diffc(a)(M) of automor-
phisms of the contact structure C(c) (the group of contact diffeomorphisms of
(M, a)) to the group Diffg(,)(M x g3,

2.2. Deformations of les structures

If we add a 2-form 7. 9 close to 0 to a les form Q, the resulting form Q. = Q+ 7.
is again non-degenerate. An immediate calculation gives:

dQe = —w A Qe + (dne +w Ane) = —w A Qe + dye.

Hence if 5, is d,, closed, then €. is a lecs form with w as Lee form. For instance
take ne = d,v. where v, is C! close to zero.

To construct general deformations of a les form Q, with Lee form w, we may
look for 2-forms 7. C° closed to zero, and closed 1-forms p (not necessarily small)
such that dQ2. = —(w + p) A Q.. In that connection, we note that if £.s(M) is the
set of all les forms on a smooth manifold M, and F*(M) the space of differential
forms, both with the C*® topology, L.s(M) is not an open subset of F*(M).

Note that if the les form € is of first kind and we add to it a non-d,-exact
form, the resulting les form is not d,-exact, hence of the second kind.

We have the following fact:

Theorem 2. Let (M,S) be a compact lcs manifold, and let Q € S be a represen-
tative, with Lee form w. Then for any d,, exact 2-form n., CO close to zero, the
les form Qe = Q + ne represents a les structure equivalent to S.

Hence the non-trivial deformations of lcs structures are parametrized by ele-
ments of the second cohomology group H2(M).

2.3. Lcs on cotangent bundles [12]

Let M =T*(N) be the total space of the cotangent bundle = : T*(N) — N over a
smooth manifold N. Let Ax be the Liouville 1-form on M and « a closed 1-form
on N, then

Qo =du,AN

where w = 7*«, is a les form on M. The conformal structure defined by this les
form depends only on the cohomology class of «.
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3. The cA -cohomology and the d,-cohomology

For any closed 1-form w on a smooth manifold M, the operator d, which assigns
to a p-form « the (p + 1)-form

dyy=dy+wA~y

is a coboundary operator, i.e. d, od, = 0.

The cohomology of differential forms with this coboundary operator will be
denoted by H}(M) and will be called the d,-cohomology. For more information
on this cohomology, see [11] or [19]. For instance, it was proved in [19] that the
groups HE (M) are isomorphic to the cohomology groups of M with coefficients in
the sheaf F, (M) of germs of smooth functions f on M such that d,, f = 0.

In this section, we give another interpretation of the d,, cohomology.

One associates with a closed 1-form w on a smooth manifold M the minimum
regular cover w : M — M over which the 1-form w pulls back to an exact 1-
form. The manifold M is a connected component of the sheaf of germs of smooth
functions f on M such that w = df [10].

Let A : M — R be a positive function on M such that

7w = d(In ).

It is well known that the group A of automorphisms of the covering M, is
isomorphic to the group of periods of w [10]. We will need the following:

Lemma 1 [6]. For any 7 € A, the function
(AoT)/A

is a constant, we denote c,, independent of the choice of A and
T Cr

is a group homomorphism c from A to the multiplicative group RT of positive real
numbers.

For the convenience of the reader, we give here the proof [6].

Proof. Clearly if X = aX for some constant a, A’ o 7/X = Ao 7/A.
For any 7 € A, we have:

dn(Ao7)—InA)) =7"7"w — 7w = (77)'w —7T'w=71"w — 7w = 0.

Hence In(A o 7/\) = K, a constant and Ao 7/\ =X = c,.
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Ifr,7 € A:
Crrr = Ao ) /A= (Ao (77"))/(Ao7")).(Ao7)/A

=(Aon)/ N o) .((Aor)/A) = ((NoT)/N)((AoT)/A) = cr.cpr. O

The set F},(M) of all differential forms « on ]\Z~ such that 7" = ¢, a for all
T € A, is a subcomplex of the de Rham complex of M. We denote its cohomology
by H (M) and call it the conformally A-invariant cohomology of M. Clearly, if
the cohomology class of w is trivial, then H},(M) coincides with the de Rham
cohomology of M.

Remark 1. For any differential form o on M, then U, = Ar*ac € Ff 4 (M)
Indeed, for any 7 € A,

AoT

A

T*Uy=AoT -Tr'1*a =

A (o) a=cr(M*a) = ¢;U,. O

Lemma 2. For any differential form, o, d,a =0 if and only if d(A7*a) = 0.

Proof. Suppose d,a = 0. Then: d(M*a) = dAAT*a+In* (—wAa) = dAA 75—
Ad(InA) Ar*a = 0.

Suppose now d(Ar*a) = 0, and compute:

A*(d, ) = Ar*da + Ar*w A a = Ar*da + Ad(In\) A 7*a = d(An*a) = 0.

Since A is a positive function and « is a local diffeomorphism, d,a = 0. (Il
Theorem 3. H},(M) is (non-canonically) isomorphic with H} (M)
Proof. The natural homomorphism
HG(M) — Hop(M) o] = [Ar*al

is onto: indeed, let 8 be a form such that d3 = 0 and 73 = ¢, 3 for all 7 € A.
Then:

THB/A) =T B/ Ao T = (e B/A).(A/AoT) = B/A

for all 7 € A. Hence 3/ is basic, i.e. there is a form e on M such that 5/\ = 7*a.
Since § = An*« is closed, « is d,, closed, by Lemma 2.

It is also one-to-one: suppose d, = 0 and An*a = dp with 7%p = ¢, p for all
7 € A. Then: rewriting the equations above with 3 replaced by p, we see that p/\
is basic, i.e. there is a formy on M such that p/A = 7*.

Let us now compute: 7*(d,v) = 7*(dy + w Ay) = d(p/A) + dIn A A p/X =
dp/X — dN/ (N2 A p+ (dNX) A p/X = dp/ X\ = T*a.
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Since 7 is a covering map, « = d,v. (Il

In [5], [6], we had already observed that H.4(M) is a quotient of H,(M).
We deduce the following well known fact ([11])

Corollary. If w is a non-exact 1-form on a smooth manifold M, HO(M) = 0.

Proof. An element of HO(M) ~ H? '1(M) is represented by a constant K such that
Kor =K =c¢;K for all 7 € A. Since w is not exact, there is a 7 € A with ¢, # 1.
Hence K =0. O

Let (M,S) be a lcs manifold, Q € S a representative, with Lee form w. Let
71 M — M be the minimum regular covering of M associated with the 1-form w
and let A : M — R be a positive function on M such that

7w = d(In \).
Then Q = A(7*Q) is a symplectic form on M and its conformal class S is inde-
pendent of the choice of ) € § and of A.

Note that given a les Q € S, with Lee form w, the cohomology classes [)] €
H2(M) and [A7*Q] € H2,(M) are not invariants of the lcs structure S.

The cohomology groups H} (M) and the d, cohomology are “almost” invari-
ants of the les structure: since if w and W’ = w — dIn X are two Lee forms, then
H, (M) is isomorphic to H,.(M), by the isomorphism o — Ac, which unfortu-
nately depends on the choice of A\. Two such A’s differ by a constant.

4. Equivalence of Ics structures
We have the following Moser type result:

Theorem 4. Let Q; be a smooth family of les forms on a compact manifold M.
Suppose that for all t, the Lee form of € is the same 1-form w and that Ay =
Q; — Qg is d,- exact, then there exist a smooth family of diffeomorphisms ¢; with
¢o = id and a smooth family of functions fi such that ¢7Q = f:€.

Remark 2. If the smooth family of lcs forms ; has a smooth family w; of
corresponding Lee forms, and we write w; = wg+d In u; for some positive functions
uz (see the beginning of the proof of Theorem 5), then Q) = w;Q; has wy as Lee
form for all ¢. Hence assuming A} = Q; — € to be d, -exact, yields that Q,
represent equivalent lcs structures for all t.

Proof. By assumption, 8/9t(€};) is d,, exact for all t. A result of [12], (Lemma 1.9)
asserts that there exists a smooth family of 1-forms 7, such that

8/at(ﬂt) = Gt
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The argument used to find a smooth lifting of d -coboundaries is the same as in
[1], (Lemma I1.2.2), which is an application of Grothendieck’s theory of nuclear
topological vector spaces. This replaces the Hodge—de Rham theorem in Moser’s
theorem for symplectic forms [17].

Let Q; = Ar*€, where 7 : M — M is the minimum regular cover and A is
such that 7*w = dIn A\. We define a smooth family of vector fields X; on M by:

Z(Xt)ﬂt = —)\7T*77t
Since d(An*n:) = An*d,n:, we have:
Lx,Q: + 9/0t(Q;) = 0.

We claim that X, is complete. Hence it defines a smooth family of diffeomorphisms
¢y of M such that ¢FQ; = Q.

This argument is Moser’s standard path method [17].

To prove that X; is complete, it is enough to show that it is basic, i.e., there is
a family of vector fields Y; on M such that 7, X, = Y;. Since M is compact, Y; is
integrable, and so will be X;.

For any 7 € A, we easily see that:

T*Qt = CTQt7
and
AT ) = er (A ).

‘We therefore have:

(X)) = 7 () = —r (X)) = —i((1) 1) X ) (r6hy)

= —i((1) e Xe)(ers) = —eri((1) X))

Hence ~ B
cri((T) e X0) () = cri(Xe) ).

Since ¢, # 0, we have: i((7)" 1), X,)(€) = i(X;)Q. Therefore ((7) 1), X:) = X,

Let now ¢; be the family of diffeomorphisms of M covered by vy, i.e. m o), =
¢ o, then ¢ = (A, o b)) 7w* (95 Q) = Xom*Qo. Hence 7* (7€) = (Ag/(A¢ 0
&) Q. For all 7 € A, we have:

(Ao/(As0 @) Qo = 7 (¢ Q) = 757" (67 2%) = ((Mo/ (At 0 @) 0 T) 7" Q.

Therefore, (Ag/A: © ¢¢) is invariant by all 7 € A, hence (Ag/At o0 ¢y) = from
for some function f; on M. We thus get that 7*(¢5€;) = 7*(f:0), and hence
¢ = fifdo.

This finishes the proof of Theorem 4. O
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Exactly like in Moser’s theorem in Symplectic Geometry [17], there are ex-
amples in which we get smooth liftings of the coboundaries A; without using the
deep lemma (which is an application of Grothendieck’s theory of topological vector
spaces). The most trivial example is provided by Theorem 2: if 5. = dy~., then
A = dy(tve)

In the following situation, we also have an immediate smooth lifting of the
coboundaries A;.

Theorem 5. Let Q; be a smooth family of les forms on a compact manifold M,
with a smooth family wy of Lee forms having a fired de Rham cohomology, i.e.
[wo] = [wi], VE, and such that there exists a smooth family 6;, with Q; = d0;+w Ny,
then the les forms €y define equivalent les structures.

Proof. There is a smooth family of positive functions «, on M with w;, = wp +
dIn(us) and wg = 1. Indeed, since (9/0t)(w:) is exact, there is a smooth family of
positive functions v; such that (8/9t)(w:) = dIn(v;). Use for instance the Hodge—
de Rham decomposition theorem. Now integrate both side and set u; = fot (vs)ds.

Let 7 : M — M be the minimum cover associated with wo, and let Ag : M—R
be a positive function such that 7*wg = dIn A\g. Then 7*w; = dIn A\g+d In(uzom) =
dIn X, with Ay = Xg.(us o). We have:

Qt = )\tﬂ'*Qt = Aﬂr*(d@t) -+ )\tdln )\t A 7T*0t = d()\t’ﬂ'*et)

Setting 0/0t(A7*0;) = p;, we define a smooth family of vector fields X; on M
by:

Z(Xt)Qt = —pP¢.
‘We have: ~ ~
Lx, Q4+ 9/0t(82;) = 0.

We claim that X, is complete. Hence it defines a smooth family of diffeomorphisms
iy of M such that 7, = Q.
From here proceed like in the proof of Theorem 3. ([l

Remark 3. Let w; be a smooth family of positive functions such that w; =
wo + dInwu;. Then Q) = w:£; has wp as Lee form for all . Moreover setting
0, = u.0;, we have:

du
dwo(ﬂg):utth + u—t i (utﬂt) =+ wo N tht:ut(th =+ (dln Ut +w0) A Ot) :’Utht:ny
t

Hence Q) = d,,(#;). The coboundary A} = Q) — € has the smooth lifting
uso (61 = 6p)-

Proof of Theorem 1. Theorem 1 is a consequence of Theorem 5 since two contact
forms ¢, o’ define the same contact structure if o/ = we, with w a smooth positive
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function. Now set oy = exp(tIn(w))a. The family of les forms is Q; = df; +w A 6,
with Ht = p’{at.

The mapping p : Diffp(,y (M) — Diffg (M x S1) comes from the proof. For
h € Diffe() (M), h*a = w.a, then the diffeomorphism ¢, above obtained using
Q = df; +w A 8, with §; = pja; and oy = exp(t. In(w))a, takes Q1 to aflp.
Taking a path from ha to o, which does not reverse the first one, for instance
a; = (t+ (1 =t)h)a, 0; = pio; and Q) = df, +w A 0}, get a diffeomorphism ¢
taking Qg back to a multiple of 1. Now set p(h) = ¢1 0 9y. O

5. Invariants of lcs structures

Given a les manifold (M,S), we have considered the following objects attached
to S:

1. The cohomology class of the Lee form w of any representative les form Q € S.
We saw that this is an invariant Lg, we called the Lee class of S. The group A of
periods of w is an object depending only on the conformal class S.

2. We considered the minimum cover of M which has a group of deck transfor-
mations isomorphic with the group A of periods of w as group of automorphisms,
and the cA cohomology.

In Proposition 1, we gather other invariants built using the automorphisms of
the lcs structure.

If G is a Lie algebra and K is a G-module, we denote by H*(G, K), the coho-
mology of G with coefficients in K [14]. This is the cohomology of the complex
(C*(G, K), 6) where p-cochains are p-linear alternating mappings on G with values
in K and the coboundary operator is given by:

A

Of (X1, ., Xpp1) = D _(-1TXG - f(Xn, o, X Xpy)
+ ) (DX X, X Xy )

i<j

We also consider the cohomology H*(G, K) of an (abstract) group G into a
G-module K [13]. The p-cochains now are mappings from GP to K and the
coboundary operator § is given by

dg(an, ...,ap) =ag - clar,...,ap) — (Z(—l)ic(ao, B e T T ap))

(1 e(ap, .. ., ap-1).

H'Y(G, K) is the quotient of derivations (1-cocycles) by inner derivations (co-
boundaries). Recall that derivations are maps d : G — K such that d(gh) =
g.d(h) + dg and an inner derivation is a map v : G — K such that there exists
k € K such that v(g) = g.k — k.
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Hl(g, K) is the quotient of the space of linear maps v : § — K such that
w([X,Y]) = Xau(Y) — You(X) (I-cocycles), modulo (the coboundaries) consisting
of linear maps v such that there exists k € K with v(X) = X .k, for all X,Y € G.

Proposition 1. Let S be a les structure on M, and Q@ € S with Lee form w.

L. The map Dq : Diffs(M) — C®(M), ¢ = In(fy-1), if §*Q = f4Q is a
1-cocyele on Diffs(M) whose cohomology class as € HYDiffs(M),C®(M)) is
independent of the choice of Q € S, i.e. an invariant of S.

2. The map dg : Xs(M) — C®(M), X — uq(X), where LxQ) = (uq(X))Q,
is a 1-cocycle, whose cohomology class bs € HY(Xs(M),C>®(M)) is independent
of the choice of Q) € S, i.e., an invariant of S.

3. The map & : Xs(M) — C®(M), X — w(X) is a 1-cocycle, whose cohomol-
ogy class cs € HY(Xs(M),C®(M)) is independent of the choice of Q € S, i.e. an
tnvariant of S.

4. The sum do + & is a 1-cocycle on Xs(M) with values in R, hence a homo-
morphism , called the extended Lee homomorphism, an invariant of S.

5. Suppose M is compact and fix a riemannian metric. For each h € Diffs(M)
(not even homotopic to the identity) h*w — w is an exact 1-form. Let up be the
unique function provided by the Hodge decomposition of h*w—w such that h*w—w =
duh.

For h,h' € Diffg(M):

(h, h/) — Up, O h/ + URp — URh!

is a 2-cocycle K,, with values in R. Its cohomology class in H?*(Diffs(M),R) is
an invariant s of S.

Statements 1, and 2 have been observed in [2]. The statement 3 is obvious,
since the coboundary operator in the Gelfand—Fucks cohomology (cohomology on
Lie algebras of vector fields) is the same as in the de Rham cohomology.

The class ¢s may be called the Gelfand—Fucks class of S.

Statement 4 was proved by Vaisman [18]. See also [6].

Statement 5 was proved in [8]. The Hodge-de Rham theory gives a smooth
lifting of de Rham coboundaries: i.e. any exact p-form # determines uniquely a
(p — 1)-form « such that # = da as follows: let § be the codifferential, and G
the Green operator defined by a riemannian metric, then oo = dG(6). Here the
function uy, is up, = §(G(h*w — w)). See for instance [3].

Remark 4. We can define similar invariants using objects with compact support,
and denote them by a%, bg, c%.

Definition. The structure S is called inessential if there exists Q) € S such that
Gq, (M) = Diffs(M). The structure S is called essential otherwise.

The following fact was observed in [4]:
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Proposition 2. Let (M,S) be a lcs manifold. Then S is inessential iff as = 0.

The connection between these invariants, and the problem of essentiality, and
globality of locally conformal structure is given by the following:

Theorem 6. Let (M, S) be a lcs manifold.

1. Ifas =0, then S = O. Furthermore, the Lee homomorphism is trivial, and
the structure S is of the second kind. Thus inessential structures are of the second
kind. This also says that if S is of the first kind, then as # 0.

2. If M is compact, then S = O implies that as = 0.

3. The Gelfand—Fucks class cs vanishes iff the Lee class Ls does.

4. If M is compact, the vanishing of one of the four classes as, bs, cs, Ls,
implies the vanishing of the remaining three classes.

We will need the following “local transitivity” result. Lefebvre’s [16] proved it
away from the zeros of the Lee form. Since for any point, the lcs structure can be
represented by a lcs form with Lee form not vanishing at that point, Lefebvre’s
argument applies. For the convenience of the reader, we rewrote it in our style.

Theorem 7. Let (M,S) be a les manifold of dimension 2n. For each z € M,
there exist 2n vector fields V' € Xs(M) with arbitrarily small compact support
in an open neighborhood of x and such that {V*(x)}j=1, . 2n form a basis of the
tangent space T, M.

Proof. 1. For each point x € M, there is Q0 € S, with Lee form w such that
w(z) # 0. Indeed, if the Lee form w of & € S vanishes at x, consider a contractible
neighborhood U of z at which w|y = dIn(A), and choose a smooth positive function
p, constant outside of U with dp(z) # 0 and dIn A # dIn p on a neighborhood of
z. The form pf2 € § and has Lee form ' = w — dIn(p). The new Lee form does
not vanish at = (and in a neighborhood).

2. Any function » on an open set U where fQy; is symplectic defines a vector
field X, on U by the equation:

i(X)fYU) = d(fu).

A direct calculation shows that Lx, QU) = (=X, -In f)Q [18].

3. The form © € & above has a Lee form w not vanishing on an open neigh-
borhood V' C U of z. Hence, there are local coordinates (z1,...2n,y1,...,Yn)
defined on a smaller neighborhood V; of x such that y; # 0, and

Qu, = w1 (Zn: dzy A dyk>-
k=1

Let p be a smooth function, supported in V5 and which is equal to 1 on a closed
neighborhood F' of x, where F' C Vo C V).
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We define 2n vector fields by:

2

i(Yﬂ(iQm) = d(uz—i) = d(py1)

and for j =2,... n,
1 Yi
i) (=0, ) = d(u2).
2 TS g
For j =1,...,n define X; by:

06 (L) —a(s2).

Then X;,Y; are smooth vector fields on M with compact support in Vq, which all
belong to Xs(M)..
Let us note e; = 9/0z; and e; = 9/0y;, then on F, we have

1 Y .
Ve, ¥ te-Ya, joo
1 Y1
1 i .
Xj:—_e;‘__;eh j:17...7n.
Y1 Y1

Writing that Y. ;(a; X; +b;Y;) = 0, gives immediately that b; = 0 and a; = 0,
i.e. these vector fields are linearly independent near . (Il

Proof of Theorem 6. 1. Suppose that as = 0, that is S is inessential (Proposition
2). Let ©Q, € S with Diffs(M) = Gq, (M), and let w, be the corresponding Lee
form. It follows that

Xs(M). = Xq,(M)..

Let us now show that w, = 0.
For each z € M, and any tangent vector £ € T, M, we want to show that
we(x)(§) = 0. By Theorem 7, £ = E?Zl cj(z)V;*(z). Extend now the coefficients

¢;(z) into smooth functions ¢; with compact support near x. We get a smooth

vector field with compact support V = Z?Zl c;V", which coincides with ¢ at

x € M. Therefore,

2n

wi(2)(€) = wi(@)(V(2)) = (e (V))(@) = D _(gun(V]")(2)-

=1

Since V¥ € Xs(M). = Xq, (M), wi(V}")) is a constant function (see Remark 5.3)
with compact support, and hence identically zero. This proves that w,(z) = 0.
This implies that S = O.
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Since the Lee homomorphism can be computed using €, and w,, we see that
l=a&,=0.

This implies that the structure is of the second kind. Indeed, if €2 is any represen-
tative of S with Lee form w and X € Xq(M), then {(X) = w(X) =0.

2. If § = O, there is a symplectic form Q € S. If ¢ € Diffs(M), then ¢*Q = fQ.
By the classical theorem of Libermann (see [6]), f is a constant, provided that the
dimension of M is at least 4, (which is assumed here) and if M is compact, this
constant must be 1. This follows from the fact that [, ¢*Q" = f [, Q" and by
the formula of change of variable, we have equality with [ o §V". Hence f =1 and
therefore as = 0.

3. It is clear that [w] = 0 implies that [©] = 0. Conversely, suppose there exists
a smooth function w such that w(X) = X.u = du(X) for all X € Xs(M). We
show that indeed w(§) = du(g) for all vector fields &, i.e that w = du. For each
point z € M, we need to show that w(&)(z) = (du(§)(x)).

As above, we consider the vector field V = 23221 ¢; V", which is equal to §

at z. Then, like above: w(€)(z) = 37 (cw(VP)(x) = 7 (cjdu(@)(VF)) =
du(x)(Z?zl c; V') = du(z)(V) = du(z)(§). Therefore the de Rham class of w is
trivial.

4. In the compact case (as =0) < (S = 0) and (as =0) < (bs =0).

We also have that in general, (§ = O & (Ls =0) and (¢s =0) & (Ls = 0)

Putting these facts together, yields the last assertion of Theorem 5. (Il

Remarks. 1. If M is not compact, S = 0 does not imply that as = 0. Take
for instance the global conformal symplectic structure defined by the standard
symplectic form on R?", and more generally non-compact manifolds with complete
Liouville vector fields, like Stein manifolds [4].

2. The vanishing of the compactly supported invariant a$g also implies that
& = 0. This was proved in [12].

6. Concluding remarks and questions

1. The mapping L : L.,(M) — F1(M) assigning to a lcs form its Lee form is not
continuous in the C? topology. Indeed if u is a smooth function which is C? close
to 1 and C! far from 0, then the Lee forms of €2 and Q, are far apart. How about
the continuity for the C* topology?

If M has a complex structure .J and a hermitian metric g such that the lcs form
Q is given by Q(X,Y) = g(X, JY) (M is said to be a locally conformal Kaehler
manifold), then L is continuous for the C* topology. Indeed in that case we have
an explicit formula for L(2) [9]:

LQ) — 11®Qoﬂ.

n —
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Here § is the codifferential with respect to the metric g, and 2n is the dimension
of M.

2. The Lee homomorphism [ : Xs(M) — R can be integrated into a homomor-
phism £ : Diffs(M)4+ — R/A (where A is some countable subgroup of R), and
Diffs (M) is the group of automorphisms of S which admit a lift to the minimal
regular cover M [6].

If « is a contact form on a compact manifold M, we constructed in Theorem
1 a map p : Diffp(,) (M) — Diffg(,y(M X SN, . Composing p with the extended
global Lee homomorphism, we get a map:

p=Lop:Diffe) (M) — R/A.

This map is not a group homomorphism. This allows us to define a 2-cocycle n
on the the group Diffy ) (M):

(b, %) = p(¢).p(¥)-(p(¢1))

for all ¢,v € Diff(,)(M).
What is the meaning of that cocycle?

References

[1] A. Banyaga, Sur la structure du groupe de diffeomorphismes qui preservent une forme
symplectique, Comment. Math. Helv. 53 (1978), 174-227.

[2] A. Banyaga, Invariants of contact structures and transversally oriented foliations, Annals
of Global Analysis and Geometry 14 (1996), 427-441.

[3] A. Banyaga, The structure of classical diffeomorphism groups, Mathematics and its appli-
cations no 400, Kluwer Academic Publisher, 1997.

[4] A. Banyaga, On essential conformal groups and a conformal invariant, Journal of Geometry
68 (2000), 10-15.

[5] A. Banyaga, Quelques invariants des structures localement conformement symplectiques,
C. R. Acad. Sci. Paris 332 Serie 1 (2001), 29-32.

[6] A. Banyaga, A geometric integration of the extended Lee homomorphism, Journal of Ge-
ometry and Physics 39 (2001), 30-44.

[7] A. Banyaga, An introduction to symplectic geometry, in: M. Audin, J. Lafontaine (eds),
Holomorphic Curves in symplectic geometry, Progress in Math 117, Birkhauser, 1994, 17—
40.

[8] A. Banyaga and R. Urwin, Sur la cohomologie du groupe des diffeomorphismes, C. R. Acad.
Sci. Paris 294 (1982), 625-627.

[9] S. Dragomir and L. Ornea, Locally conformal Kaehler geometry, Progress in Math. 155,
Birkhauser, 1998.

[10] C. Godbillon, Elements de topologie algebriques, Hermann, Paris, 1971.

[11] F. Guerida and A. Lichnerowicz, Geometrie des algebres de Lie locales de Kirillov, J. Math.
Pures et Appl. 63 (1984), 407—484.

[12] S. Haller and T. Rybicki On the group of diffeomorphisms preserving a locally conformal
symplectic structure, Ann. Global Anal. and Geom. 17 (1999) 475-502.

[13] P. Hilton and U. Stammback, A course in homological algebra, Springer Graduate Texts in
Math., Springer, 1971.



398

[14]
(15]

[16]

[17]
(18]

[19]

A. Banyaga CMH

G. Hochschild and J.-P. Serre, Cohomology of Lie algebras, Ann. Math. 57 (2)(1953), 591—
603.

H. C. Lee, A kind of even-dimensional differential geometry and its application to exterior
calculus, Amer. J. Math. 65 (1943), 433-438.

J. Lefebvre, Propriétés du groupe de transformations conformes et du groupe des automor-
phismes d’une variété localement conformement symplectique, C. R. Acad. Sci. Paris 268
Serie A (1969), 717-719.

J. Moser, On the volume element of a manifold, Trans. Amer. Math. Soc. 120 (1965),
286—-294.

I. Vaisman, Locally conformal symplectic manifolds, Inter. J. Math. and Math. Sci. 8 no
3 (1983), 521-536.

I. Vaisman, Remarkable operators and commutation formulas on locally conformal Kaehler
manifolds, Compositio Math. 40 (1980), 227-259.

Augustin Banyaga

The Pennsylvania State University
Department of Mathematics

225 Mc Allister Building
University Park

PA 16803

U.S.A.

e-mail: banyaga@math.psu.edu

(Received: May 28, 2001)

To access this journal online:
http://www.birkhauser.ch




	Some properties of locally conformal sympletic structures

