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Geometric lattice actions, entropy and fundamental groups

David Fisher! and Robert J. Zimmer?2

Abstract. Let I' be a lattice in a noncompact simple Lie Group G, where R — rank(G) > 2.
Suppose ' acts analytically and ergodically on a compact manifold M preserving a unimodular
rigid geometric structure (e.g. a connection and a volume). We show that either the I' action is
isometric or there exists a “large image” linear representation ¢ of m1(M). Under an additional
assumption on the dynamics of the action, we associate to ¢ a virtual arithmetic quotient of full
entropy.

Mathematics Subject Classification (2000). 57520, 53C24, 22F50.
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1. Introduction

Suppose G is a noncompact simple Lie group and G acts analytically on a com-
pact manifold M preserving a unimodular rigid geometric structure, for example
either a connection and a volume form or a pseudo-Riemannian metric. As-
suming the action is ergodic, Gromov [G] constructed a linear representation
o :m (M) — GL,(R) such that the Zariski closure of o(m1(M)) contains a group
locally isomorphic to G. One cannot hope for an analogous result for lattices in all
semi-simple groups, since lattices in rank 1 groups often admit homomorphisms to
Z, and many counterexamples can be constructed for Z actions. In addition, even
for lattices in higher rank simple groups, there exist isometric actions on mani-
folds with finite fundamental group. Here we prove a form of Gromov’s theorem
for lattices, which shows that for actions of higher rank lattices either the action
is isometric or there exists a representation like Gromov’s. More precisely:

Theorem 1.1. Let I' < G be a lattice, where G is a simple group and R —
rank(G) > 2. Suppose I acts analytically and ergodically on a compact manifold
M preserving a unimodular rigid geometric structure. Then either

1Partially supported by NSF grant DMS-9902411.
2Partially supported by NSF grant.
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i) the action is isometric and M = K/C where K 4s a compact Lie group and
the action is by right translation via p : I'— K, a dense image homomorphism, or

ii) there exists an infinite 4mage linear representation o : m (M) — GL,R,
such that the algebraic automorphism group of the Zariski closure of O’(?Tl(M)>
contains a group locally isomorphic to G.

To prove the theorem, one first applies Gromov’s result to the induced G action
on (G x M)/I to obtain a linear representation o of A = 71 ((Gx M)/T"). However,
71(M) is a normal subgroup of A, and in fact, if 71 (G) is trivial, we have a short
exact sequence:

l—m(M)— A —T—1.

To show that the restriction of o to w1(M) is trivial only when the I' action is
isometric, we use the techniques of [Z5] to compare the entropy of the G action on
(G x M)/T" with the image o(A). If @ is not simply connected, let 7 : G — G be
the universal cover and ' — T the pre-image of I' under the covering map =. The
exact sequence above now holds with I" in place of I'. By viewing the I" action as
a I action via the homomorphism I' — I', we can always assume that our lattice
I is a lattice in a simply connected group G = G. We will make this assumption
throughout this paper.

There is one earlier result along these lines for lattice actions. In [Z3], the
second author shows that, under the assumptions of Theorem 1.1, if we assume
71 (M) is trivial, then the action is isometric. As a corollary, we obtain the follow-
ing generalization of this fact:

Corollary 1.2. Let I' act on M as in Theorem 1.1. Further assume there are
no infinite image linear representation of w1 (M). Then the T' action on M is
isometric and wy (M) is finite.

An ergodic action of G on M is said to be engaging if any lift of the action
to a finite cover of M is still ergodic. In [LZ], given an engaging action on M of
a simple group G, R — rank(G) > 2, the authors associate a virtual arithmetic
quotient to any linear representation of 71 (M). Using the explicit construction
of Gromov’s representation o, the second author has shown that for G actions
which are analytic and preserve a rigid geometric structure, the associated virtual
arithmetic quotient has the same entropy as the original G action [Z5]. Using the
results of [F], we prove the following analogous result here:

Theorem 1.3. Assume I' acts on M as in Theorem 1.1. Further assume the
action is engaging. Then either

i) The I action is isometric and is described as in Theorem 1.1, or

ii) For some finite index subgroup I" < T' and some finite cover, M’ of M,
there is a measurable T equivariant map ¢ : M’ — K\L/Lg. If h_ is the entropy
Junction of the relevant I action, we have hy(7y) = hg\p/r,(v) for all v € T".
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Here the T action on K\L/Lz is a generalized affine action.

We recall that an affine diffeomorphism f of a homogeneous space A/B is
simply one that is covered by a diffeomorphism f of A, where f is the composition
of a group automorphism L and left translation by an element of A. For this to
make sense it is clear that L(B) = B. A group action on a homogeneous space is
said to be affine if every element in the group acts by an affine diffeomorphism. The
generalized affine action of Theorem 1.3. refers to the fact that we are not acting
on a homogeneous space. Instead the action is on a quotient of the homogeneous
space by a compact group of affine diffeomorphisms via diffeomorphisms covered
by affine diffeomorphisms of the homogeneous space. More precisely:

Definition 1.4. Let A/B be a homogeneous space and D and F' two commuting
groups of affine diffeomorphisms of A/B, with D compact. The we call the F
action on D\ A/B a generalized affine action.

The proof of Theorem 1.3. gives a more detailed description of the action. The
action is shown to be arithmetic in the sense of Definition 3.2. of [F]. That any
generalized affine action of a lattice in a higher rank simple group is arithmetic
is also a straightforward exercise from Margulis’ superrigidity theorem and the
structure theory of algebraic groups.

Note that two frequently studied examples of generalized affine actions of higher
rank lattices are actions by left translations on homogeneous spaces and affine
actions on nilmanifolds. In the latter case the affine diffeomorphisms considered
generally have no translational part (at least on a subgroup of finite index). In
general, one can construct actions that fall into neither of these two categories, i.e.
affine actions where group elements act by compositions of non-trivial translations
and non-trivial automorphisms.

We now sketch the proof of Theorem 1.1. For ease of exposition, we assume
that A = 71 ((G x M)/T') = I';xmr (M), i.e. that the extension above is split. In
order to apply Gromov’s result to the G action on (GxM)/T" we need to produce
a rigid geometric structure w invariant under this action. This will be locally a
product of the given structure on M with the natural pseudo-Riemannian structure
along the G orbits given by the Killing form on g. In fact, there does not seem to
be a definition in the literature of a product of geometric structures in the sense
of Gromov or a proof that a product of rigid structures is rigid. In the case of
Cartan’s geometric structures of finite type this is classical, and we will give the
analogous definitions and proofs for the more general setting in Section 3.

An important property of this particular geometric structure on (GxM)/T’
is that we can explicitly identify a Lie algebra g of local Killing fields of the
structure commuting with the G action. These come from lifting the structure w
to a structure @ on the universal cover Gx M and then differentiating the right G
action on G, which preserves the structure by construction.
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Gromov’s representation o is constructed on all Killing fields V' of @ commuting
with the lift of the G action. Ideally, one would like to be able to say that V splits
as the sum of g above and a collection of Killing fields W tangent to the M
fibers in (GxM)/T. This would immediately give a representation of x1(M) on
W. Regrettably, it is not clear how to construct such Killing fields in a natural
way that would allow one to show that this representation is non-trivial, and
one must approach the problem indirectly. It follows from the structure of the
71 ((G x M)/T) action on Gx M (as described in [F]) that o(m1(M)) acts trivially
on the Lie algebra g of Killing fields constructed above and that o(T") acts via the
adjoint representation of G. What remains to be shown is that if o (71 (M)) is not
infinite, then the action is isometric.

To do this, we compare the entropies of various actions and representations.
First, in Section 2, we observe that the entropy of the induced action is the sum
of the entropy of the " action on M and the entropy of the G action on G/T.
(This is precisely true if we induce and then restrict to the I' action. A stronger
statement will be made precise in Section 2.)

From this it follows that if the entropy of the induced action equals the entropy
of the G action on G/T, the I" action must have zero entropy. An adaptation of
standard arguments then shows that actions preserving a rigid geometric structure
and having zero entropy are isometric.

To complete the proof, we show that unless the o(m(M)) has large Zariski
closure, the entropy of the induced action is indeed equal to the entropy of the
G action on G/T". This is done using an estimate from [Z5]. Gromov has shown
that the Lie algebra, [, of the Zariski closure of o(my ((G’ X M)/F)) has a natural
structure as a G module. In [Z5], the second author shows that the entropy of this
module is an upper bound on the entropy of the G action. (The notion of entropy
of a module is made precise in Section 4.) The Lie algebra of the Zariski closure
of o(n1(M)) is a G submodule of [. If the entropy of this submodule is zero, then
the entire entropy of [ comes from the Lie algebra of the Zariski closure of o(T).
An explicit analysis of the construction of Gromov’s representation shows that the
entropy of this module is equal to the entropy of the G action on G/I". This analysis
uses the existence of our explicitly constructed Lie algebra g of Killing fields along
the G orbits in (GxM)/T". This shows that the Lie algebra of the Zariski closure
of o(m(M)) is a non-trivial G module unless the I action is isometric, and we are
done.

To prove Theorem 1.3 we use a similar analysis of Gromov’s representation
for induced actions to adapt the arguments of [F] and [Z5] to the present setting.
We first show that the induced action has a full entropy quotient and then use
techniques of [F] to show that this quotient has the structure of an induced action.
The techniques of [F] produce an arithmetic quotient Y of the I' action, and show
that the quotient for the induced action on (GxM)/T" is actually the induced
action on (GxY)/T". Theorem 2.3 then tells us that the " entropy on Y must
equal the I" entropy on M.
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2. Computing entropy

In this section, we discuss the computation of entropy for actions of lattices and
the relation to the entropy of the induced action. The basic tool is the use of
superrigidity to linearize the derivative cocycle. Let P — M be a principal H
bundle where H is a connected real algebraic group. Assume a group G acts on
P by automorphisms preserving a finite measure on M. Let ¢ : G — H be a
homomorphism. We say that a measurable section s : M — P is o-simple if there
exists a cocycle ¢: M x G — K where K < Zy(o(G)) is compact and
s(gm) = gs(m)o(g) ' e(m, g)

for all g € G and almost all m € M. Let G be a simple Lie group, R — rank(G) >
2, let M be a compact space and assume the G action on M is ergodic and
continuous. Superrigidity for cocycles implies that there exists a finite ergodic
extension X — M, so that for the action on P’, the pullback of P to X, there
exists a representation o : G — H and a o-simple section s. In fact, we need not
assume that M is compact but only that the cocycle defined by the G action on P is
quasi-integrable, a boundedness condition that will hold in all situations of interest
here (see [Z6] for details). We will refer to o as the superrigidity representation. If
I' < G is a lattice and we have an action of I" on P which is ergodic on M (with no
G action) then we have a very similar conclusion. Either, for some finite ergodic
extension there is a linear representation ¢ : G — H and a o-simple section or the
algebraic hull of the I' action on P is compact. Here again we require either M
compact or the cocycle defined by the I' action quasi-integrable.

Applying superrigidity to the derivative action on the frame bundle, we can
compute the entropy directly via Pesin’s formula as in the following two theorems

from [Z1]:

Theorem 2.1. Suppose G is a simple Lie group with R—rank(G) > 2. Suppose G
acts ergodically on a manifold M by diffeomorphisms preserving a C? volume form
such that the volume of M is finite. Further assume that the derivative cocycle is
quasi-integrable. For each g € G, let h(g) be the entropy. Leto : G — SL,R be the
superrigidity representation for the action on the frame bundle of M, n = dim M.
Then h(g) = Llogt || A||, where X runs over all eigenvalues of o(g).

Theorem 2.2. Suppose "’ < G is a lattice, G as above. Suppose I" acts ergodically
by diffeomorphisms on a compact manifold M preserving a C? volume form. For



Vol. 77 (2002) Geometric lattice actions, entropy and fundamental groups 331

each v € T' let h(y) be the entropy. Let o : G — SL,R be the superrigidity
representation for the action on the frame bundle of M, n =dim M. Then h(vy) =
Ylogt |\, where X runs over all eigenvalues of o(v), or the algebraic hull of the
derivative cocycle is compact and h(v) =0 for ally € T'.

The proof of this is essentially in [Z1], though there M is always assumed to
be compact in Theorem 2.1. Compactness is used to be able to apply Pesin’s
formula which is often only stated for actions on compact manifolds, but which
holds whenever the action preserves a finite volume and the derivative cocycle
is quasi-integrable [P1, P2]. We apply Theorem 2.1 to the derivative cocycle of
the G action on (G x M)/T". Though (G x M)/T’ is not compact when I" is not
cocompact, the derivative cocycle is still quasi-integrable by the results in [L] if G
is algebraic and by results in Section 7 of [F] if G is not algebraic.

Suppose I acts on M by C?2 diffeomorphisms preserving volume. The induced
G action on (G x M)/T" is also C? and volume preserving, and the G action
clearly preserves the decomposition 7'((G x M)/T") = T(&) x TM where T(®) is
the tangent space to the GG orbits and the direct product is given by the fact that
(G x M)/T is a flat fiber bundle over G/I" with fiber M, i.e. locally a product
of G/T" with M. Let hyy, hgr and h(GxM)/F be the entropy functions for the
actions of I" on M and G on G/I" and (G x M)/T respectively. Note that since
hys is given as in Theorem 2.2, hy; is defined for all g € G, even though we only
have an action of I'. By showing that the superrigidity representation preserves
the direct sum decomposition of T'((G x M)/I'), we prove the following formula:

Theorem 2.3. hig, () = hayr(y) + har(v)

Proof. Since the G action preserves the splitting T((G' x M)/T") = T(&) x TM,
we can view the derivative cocycle as taking values in the bundle P(&) x P(M)
of frames respecting this decomposition. The cocycle into P(®) is given by the
adjoint action of G, exactly as in the case of G acting on G/I". We are therefore
reduced to studying the G' action on the bundle (G x P(M))/T" — (G x M)/I.

Applying superrigidity for cocycles as described above, we see that possibly
after passing to a finite ergodic extension of (G x M)/I", there is a measurable
section s : (GxM)/I' = (GxP(M))/I and alinear representation 7 : G — SL,R,
where n = dim M such that

s(gz) = gs(z)m(g)~"e(z, g)
for all g € G and almost every z € (G x M)/T", where ¢ is a cocycle taking values
in a compact group which commutes with 7(G). Note that = being trivial is
equivalent to the algebraic hull of the cocycle being compact. This shows us that
to compute the entropy of the G action on (G x M)/I" we can take 0 = Ad & «
and compute as in Theorem 2.1. To complete the proof, we need only see that =
can also be used via Theorem 2.2, to compute the entropy of the I' action on M.
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Let [g] € G/T, then gI'g~! acts on the M fiber over [g] in (G x M)/T" via
translation to the fiber over the identity, the given I' action on M, and then
translation back. Since s is defined for almost all z € (Gx M)/T", writing z = [g, m|
and applying Fubini’s theorem, we see that for almost all [go] € G/T, s is defined
for almost every [gg, m| in the M fiber over [gg]. Possibly after conjugating the
action by g5, we can therefore assume that s is defined for almost every m € M
in the fiber over [e]. Restricting s to [e, m] and looking only at v € T', the formula
above implies that

s(vle,m]) = ys(le,m)a— (V)e(le,m]), 7)

for all v € I' and almost every m € M. This shows that if we use the restriction
of s to trivialize P(M) — M we can compute the Lyapunov exponents of the
derivative cocycle via those of 7~ 1(v)e(m, ) and since the image of ¢ is compact,
we can compute the entropy of the I' action on M via the eigenvalues of the
representation . [l

Remark. We have actually proved more than just the formula. We have shown
that, for the derivative cocycle, the superrigidity representation for the induced
action is cohomologous to the direct sum of the superrigidity representation for
the I" action and the representation Adg.

Corollary 2.4. Suppose I' acts on a compact manifold M preserving a unimod-
ular Tigid geometric structure. Assume further that the action is ergodic and that
h(GxM)/F(g) = hgr(g), for allg € G. Then the action is Riemannian isometric.

Proof. By Theorem 2.3, this implies that hpr(y) = 0 for all v € T'. Either by
looking at the proof of that theorem or via Theorem 2.2, this implies the algebraic
hull of the derivative cocycle is compact. By the proof of Theorem 4.5 from [Z4]
this implies that there is a I" invariant finite measure on P*(M), the k' order
frame bundle, for any k. In fact this measure is the volume on a (measurable) K
bundle over M, where K is a compact subgroup of the higher order frame group.
However, Gromov has observed that any closed subgroup of the isometry group
of a rigid geometric structure is proper and free on P*(M) for k large enough [G,
Section 0.4]. Since the closure of I' acts properly on a finite measure space, the
closure of T" in the automorphism group of the structure is compact (see [Z4] proof
of Theorem 5.2 for more details) and therefore the action is isometric.

3. Products of geometric structures

In this section we will develop the ideas we need concerning geometric structures,
particularly products of structures on (local) products of manifolds. Throughout
D: will denote the group of s-jets of diffeomorphisms of R™ fixing 0 and P*(M)
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will be the s order frame bundle of the manifold M. This is a D2 principal
bundle where n = dim M.

Definition 3.1. A geometric structure, w, on a manifold M, with dim M = n,
consists of:

a) an algebraic variety V on which D2 acts for some s

b) a map w : P*(M) — V which is D} equivariant.

The structure is said to be of order s and is C" (C%) when the map w is C"(C*).
The structure is called unimodular if it defines a volume form on M.

If V.= D:/H where H < D? is an algebraic subgroup, this reduces to the
notion of a H structure. Note that Gromov calls w as above a rigid A-structure
and defines a more general notion of rigid geometric structure.

Given w, let Isol (z) be the set of r-jets of diffeomorphisms of M fixing the
point z, and fixing w up to order r at zx.

Definition 3.2. A geometric structure is called rigid of order r + 1 if the natural
map Iso"t1(z) — Iso" () is injective, for all z € M. If we are not concerned with
the order, we simply call the structure rigid.

Example 3.3. a) A pseudo-Riemannian metric is rigid of order 1, since it deter-
mines a total framing of P'(A).

b) Let G be a simple Lie group, I' < G a lattice. Since the G action on G/T’
preserves the Killing form on T'(G/T"), it preserves a rigid geometric structure: the
pseudo-Riemannian metric defined by the Killing form.

Let V' be a smooth manifold of dimension n and let P2V be the space of s-jets
of diffeomorphisms of (R™,0) into V. If D7 acts on V then D715 acts on P3V.
Furthermore if V' is an algebraic variety, then so is P3V and the D7 1T* action
is algebraic if the D] action is. Given a geometric structure w : P"(M) — V,
we have a naturally defined map w® : P"T5(M) — P:(V) which we call the s
prolongation of the geometric structure. It is easy to verify that w?® is a geometric
structure and if w is rigid so is w®. (See [Fe] or [G] for details).

Let M and N be differentiable manifolds of dimension m and n respectively.
Suppose a : P"1(M) — Vi and b : P"2(N) — V;, are geometric structures. By
passing to a prolongation of the structure of lower order, we may assume r| = ra.
To produce a geometric structure on M x N, we begin with the map

axb:P " (M)x P"(N)— V] xVj

e
m~+n?

(axb)" : (D} x PT(M) x PT(N))/(D;, x D},) = (D] 4y x Vi x V2) /(D7 X D7)

n+m

and, using the inclusion D] x D] < D induce this to a map

Given an action of a closed subgroup H < L on a space X, we can define the
induced action of L. The space acted upon is (LxX)/H where the H action we



334 D. Fisher and R. J. Zimmer CMH

divide by is given by (I, 2)h = (Ih, h~'z). The L action on the space is defined by
the left L action on the first factor, which is well-defined on the quotient since it
commutes with the H action defined above. Note that this definition only works
for left actions of H on X, analogous definitions allow us to induce right actions to
right actions. If the action of H on X is algebraic and H is an algebraic subgroup
of an algebraic group L, then the induced action is an algebraic action on an
algebraic variety. Also note that (D], x P"(M) x P"(N))/(D;, x Dy,) with the
induced action is canonically isomorphic to P"(M x N). Therefore (a x b)’ is in
fact a map

(axb) :P"(MxN)—=V

where V' = (D], x V1 x Va)/(D}, x D},) is an algebraic variety with an algebraic
action of D}, . for which (a x b)" is equivariant.

Proposition 3.4. Ifa: P"(M) — V) and b : P*(M) — Va5 are rigid geometric
structures, then the product structure (a x b)Y : PMXTs)(M x N) — V is also
rigid.

Proof. By passing to a prolongation of one structure, it suffices to consider r =
s. A k-jet of a diffeomorphism fixing a point z leaves (a X b) invariant if and
only if it leaves (a x b)’ | P"(M) x P"(N) invariant. This restriction is exactly
axb:P"(M)x P"(N)— V) x Va. Direct computation of derivatives shows that
Iso? .., = Isol, xIso}, where we view an r-jet, 57 (f) (resp. j"(g)) of a diffeomorphism
of N at zo (resp. M at z1) as an r-jet of M x N at (z1,22) = x as j7(Id x f)

(resp. 5" (g x Id)).

If a structure w is rigid of order 7, it follows that Iso’,t9 — Isol, is injective
for all 7 > 1 (see [G, remark on page 68] or [Fe, Proposition 3.1]). Therefore, it
follows that (a x b)’ is rigid (and that it is rigid of the same order as whichever of
a and b has the higher order of rigidity). (Il

Corollary 3.5. Let G be a semisimple Lie group, I' < G a lattice. Suppose T acts
on M preserving a rigid geometric structure 1b. Then the G action on (G x M)/T
also preserves a rigid geomelric structure.

Proof. The pseudo-Riemannian metric defined by the Killing form on G is bi-
invariant and so defines a G x G invariant structure a : P1(G) — V. By the
proposition above, (a x ) is a rigid geometric structure on G x M which is
invariant under the right and left G actions and the I' action on M. Therefore it
descends to a G invariant geometric structure ¢ on (G x M)/T". Since (a x )’ is
rigid so is ¢, since rigidity is a local property. Il
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4. Proofs

The proof of Theorem 1.1 now follows from Corollary 2.4 and an estimate of
the “entropy” of Gromov’s representation computed in [Z5]. Given any finite
dimensional G module D, we can define the entropy of the G action by hp(g) =
Ylogt | A|| where the sum is taken over eigenvalues for the action of g on D.

Assume G is a simple non-compact Lie group and G acts on a compact manifold
X preserving a volume form and a rigid geometric structure w. Let G be the
universal cover of G. The action on X lifts to a G action on X, the universal cover
of X. Let & be the lift to X of the geometric structure. Then G clearly preserves .
In [G] Gromov constructs a linear representation o of w1(X) on the set of Killing
fields V of & centralizing the G action i.e. a representation o : 71(X) — Aut(V).
Let H be the Zariski closure of o(71(X)). Gromov proves that H contains a group
G’ locally isomorphic to G, making h = Lie(H) into a G’ module via the restriction
of Ady to G'. For an accessible presentation of the proof see [Z3]. In this context,
Lemma 5.1 of [Z5] shows that:

hy(g) =2 hx(g)  VgeG. (%)

Proof of Theorem 1.1. As discussed in the introduction, we apply Gromov’s result
discussed above to the G action on (G x M)/T’, assuming G is simply connected.
The rigid structure, w, on (G x M)/T" is as described in Corollary 3.5. Let A =
71 ((G x M)/T") and recall that

1-m(M)—-AST -1

By Proposition 6.1 of [F], A is isomorphic to the group of lifts of the I' action on M
to M and the action on G x M is given by (g, m)A = (gp(A\)~!, Am). We will also
need one obvious fact about the lift of our rigid structure w to G x M. Since here it
is G bi-invariant by construction, the Lie algebra of vector fields, g, generating the
right G action on G (i.e. the left invariant vector fields) are Killing fields of @ that
centralize the lift of our G action from (G x M)/T". These vector fields are clearly
invariant under the 71 (M) action on G x M. In Gromov’s construction of o, the
group G’ < H is described quite explicitly. It’s Lie algebra g’ is a Lie algebra of
Killing fields of & commuting with the action of G. Even more is true. Let n be
the algebra of Killing fields of @ normalizing the G action. Then n = g & V where
V is the algebra of Killing fields commuting with the G action, and g is the algebra
of Killing fields which are derivatives of the G action. For a point zg € X, Gromov
proves that there exists a Lie algebra go < n such that 1) elements of ga fix zg
and 2) g is isomorphic to g and is, in fact, the graph of a isomorphism 7 : g — V.
Then g’ is the image 7(g) < V. Conditions 1) and 2) above canonically define ga
and g’. In our situation, we can realize ga as those Killing fields at zg = ([go], m)
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generated by the action of gg o AdG o g, I and g’ as the vector fields generating
the right G action on G x M.

The representation o of A is defined on all Killing fields of © commuting with
the left G action, and so contains as a subrepresentation the representation ¢’ on
the Lie algebra g’ of left invariant vector fields on G. Since 71 (M) acts trivially
on these vector fields, it is easy to see that this representation is just (Adg) II‘ op.
In particular, the Zariski closure of o/(A) is a group locally isomorphic to G.

Let H be the Zariski closure of o(A) and L <t H be the Zariski closure of
o(mi(M)). Recall that H and L are subgroups of Aut(V) where V is the Lie
algebra of Killing fields of w commuting with the & action on G x M.

Let h = Lie(H), ¢ = Lie(L). Then £ < b is an ideal and is also a G’ submodule
for the G” action on  given by (Adg) |,,. To prove Theorem 1.1, it suffices to
see that if £ is a trivial G module, then the I' action is isometric.

If ¢ is a trivial G’ module, then hb(g) — hb/f(g) Vge G Letn: H— H/L
be the natural projection. Then 7 o ¢ is a homomorphism of I" into an algebraic
group, which has Zariski dense image, since H is the Zariski closure of o(A). Now
7 oo contains 7 o o’ as a subhomomorphism. Clearly m1(M) acts trivially on the
subspace g’ of Killing fields on which ¢’ is defined, so L acts trivially there as well.
(Acting trivially is an algebraic condition.) This means that ¢/(A) N L is trivial,
so the Zariski closure of w0 o/(A) is also a group locally isomorphic to G.

Now 7 o ¢ factors through a homomorphism of I', a lattice in simple Lie group
with R — rank(G) > 2, so the Zariski closure of 7 o o(A) is, by Margulis’ Super-
rigidity Theorem, locally isomorphic to a product of G with a compact semi-simple
group. Therefore it is a compact extension of the Zariski closure of 7 o ¢’(A). So
h/¢ as a G'-module is just g €, where £ is a compact semi-simple Lie algebra that
is necessarily trivial as a G’ module. Therefore hh/e(g) = hg@é(g) = hg(g), and
furthermore hb(g) = hg(g),Yg € G. But by (x) above and Theorem 2.3

hy(9) = haxaryr(9) = har(g) + ha(g) = hg(g) + hau(g)

for all g € G. Since hb(g) = hg(g),VYg € G, we see that h(GxM)/F(g) = hgr(g),
Vg € G, so by Corollary 2.4 the I" action on M is isometric.

In the equation above, we refer to hps(g) where only T', and not G, acts on
M. However, the equation still makes sense, since the entropy of the I' action
on M is really computed, as described in Theorem 2.2 via the eigenvalues of a
linear representation of G. So by hjs(g) here, we really mean the entropy of this
linear representation, or 0, if the representation is trivial. The equation is formally
justified by the remark following Theorem 2.3. (Il

In [Z5], the second author proves:

Theorem 4.1. Let X be a compact real analytic manifold with a real analytic
unimodular rigid geometric structure. Let G be a connected simple Lie group with
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R — rank(G) > 2 and suppose G acts analytically and ergodically on X preserving
the structure. Further assume the action is engaging. Then there is a finite ergodic
extension X' of X and a measurable G equivariant map ¢ : X' — K\H/A where
G < Zg(H) and K is compact. Furthermore hx(g) = hy\m/a(g) for all g € G.

The quotient ¢ : X' — K\H/A is constructed using the techniques of [LZ]
from Gromov’s representation of 71(X). Our Theorem 1.3 follows by combining
the theorem above, the entropy results for induced actions of Section 2, and results
of [F] on constructing quotients of lattice actions and induced actions.

First, we recall some of the ideas used to prove Theorem 4.1. Let o : m1(X) —
GL,(R) be Gromov’s representation discussed above. Let A be the finitely gen-
erated Q algebra such that o(v) € GL(n, A) for all v € m1(X). Let Q denote the
algebraic integers. In [LZ], a specialization ¢ : A — Q is constructed such that the
map induced by ¢ on GL,,(A) is an isomorphism when restricted to o (7 (X)) and
i oo(m (X)) is an s-arithmetic subgroup of a perfect Q-group H. Furthermore
poo(r(X))N Hz = A is of finite index in Hz and is a lattice in H. Lubotzky
and Zimmer also show that there is a finite ergodic extension X’ of X such that
there is a measurable map ¢ : X’ — K\H/A. The key idea of [Z5] is to use the
way in which ¢ and v are constructed to see that the entropies are equal.

Proof of Theorem 1.3. We apply Theorem 4.1 to the action of G on (Gx M)/T". We
can do this despite the fact that (G x M)/T" is not compact, since this is only used
to show that certain cocycles are quasi-integrable. (See the discussion following
Theorem 2.2 for entropy considerations and the derivative cocycle and Section 7 of
[F] for cocycles coming from representations of the fundamental group.) Letting
6 = 1 oo, as discussed above, the proof of the main theorem of [LZ] implies
that 6(m((G x M)/T')) is s-arithmetic in an algebraic Q-group H, and if A =
6(m((GxM)/T"))N Hz, that we have a map from a finite extension X of (Gx M )/T’
to K\ H/Hy that is G equivariant.

As in the proof of Theorem 1.1, let L’ be the Zariski closure of o(71(M)) and let
H’ be the Zariski closure of o (71 ((Gx M)/T")). As above let o’ be the subrepresen-
tation of o defined on the vector fields g given by differentiating the right action of
G on Gx M. Recall that o/ (71 ((Gx M)/T))NL =, and since o' (7 ((G x M)/T"))
is virtually isomorphic to T, it follows that [o(m(M)) : o(71((G x M)/T))] = o0,
unless o (w1 (AM)) is finite and the I" action on M is isometric. Since the specializa-
tion ¢ is an isomorphism on o (71 ((G x M)/T')), it is immediate that [6(w(M)) :
6(m((Gx M)/T))] = oo as well. It is clear from the discussion above of the proof
of Theorem 4.1 that H is the Zariski closure of 6(m ((G x M)/T")). Let L <t H be
the Zariski closure of &(m(M)).

By Theorem 8.1 of [F], we see that H = (G x C)x L and o(m((G x M)/T")) =
I'x A (up to finite index) where A = LNo (7w ((G x M)/T) and C is compact. We
have a measurable map ¢ : X — K\H/A and X, as a finite extension of (Gx M )/T,
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is (G x M")/T” where M’ is finite (possibly disconnected) cover of M and IV < T'
is of finite index. (See [F], proof of Lemma 4.3, for details.) Let Ao = AN Ly.
Then by Theorem 8.5 of [F], we see that K\H/A = K\(G x C) x L/T" x A, and
that ¢ takes almost every M’ fiber of X to a K\C x L/A fiber in K\ H/A.
The G action on K\(G x C) x L/T' x Ay is isomorphic to the G action
induced from the T action on K\C x L/A.. So by Theorem 2.3 above, the
entropy function for the I'V action on M’ and for the I action on K\C x L/A
must be equal, since by Theorem 4.1, the entropy functions for the induced actions

are equal. (Il
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