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Commentarii Mathematici Helvetici

A new holomorphic invariant and uniqueness of
KÄahler{Ricci solitons

Gang Tian¤ and Xiaohua Zhu¤¤

Abstract In this paper a new holomorphic invariant is de¯ned on a compact KÄahler manifold
with positive ¯rst Chern class and nontrivial holomorphic vector ¯elds This invariant generalizes

the Futaki invariant We prove that this invariant is an obstruction to the existence of KÄahler{
Ricci solitons In particular using this invariant together with the main result in [TZ1] we solve
completely the uniqueness problem of KÄahler{Ricci solitons Two functionals associated to the

new holomorphic invariant are also discussed The main result here was announced in [TZ2]

Mathematics Subject Classi¯cation 2000 Primary 53C25; Secondary 32J15 53C55
58E11

Keywords New holomorphic invariant KÄahler{Ricci soliton holomorphic vector ¯eld

0 Introduction

The purpose of this paper is to introduce a new holomorphic invariant and apply it
to studying the uniqueness of KÄahler{Ricci solitons on compact KÄahler manifolds

Let M be an n-dimensional compact complex manifold with positive ¯rst Chern
class c1 M > 0 Let

g X gijdzi ­ dzj
be a KÄahler metric on M with its KÄahler form

g

p¡1

2¼ Xgijdzi ^ dzj

representing c1 M Since the Ricci-form Ric g of g also represents c1 M
there is a smooth function hg such that

Ric g ¡ g

p¡1

2¼
@@hg :
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Let ´ M be the Lie algebra which consists of all holomorphic vector ¯elds on
M Then for any holomorphic vector ¯eld X on M by the Hodge Theorem there

is a unique smooth complex-valued function µX g of M such that

iX g
p¡1
2¼

@µX g

RM eµX g n
g RM

n
g ;

where
n
g

n
g^¢¢¢^ g

n is the volume form of g We de¯ne a linear functional from

´ M into C by

FX v Z
M

v hg ¡ µX g eµX g n
g ; v 2 ´ M :

We will ¯rst show that this functional de¯nes a holomorphic invariant on M cf
Proposition 1 1

The invariant FX ¢
can be de¯ned for any holomophic vector ¯eld X on M In

particular if X ´ 0 the invariant is just the Futaki invariant in [F1] The excellent
reference for extensive discussions of the Futaki invariant can be found in Futaki's
book [F2] It is well-known that there are compact KÄahler manifolds M with
c1 M > 0 and nonvanishing Futaki invariant for example CP n#CP n does have

nonvanishing Futaki invariant [KS] The new holomorphic invariant FX ¢
can

compensate this defect somehow For example on each CP n#kCP n 1 · k · n
there exists a unique holomorphic vector ¯eld X such that the invariant FX ¢

vanishes cf Proposition 2 2
The invariant FX ¢ is an obstruction to the existence of KÄahler{Ricci solitons

cf Proposition 3 1 just as the Futaki invariant is an obstruction to the existence

of KÄahler{Einstein metrics With help of this observation we can solve completely
the uniqueness problem of KÄahler{Ricci solitons It was proved in [TZ1] that the

KÄahler{Ricci soliton is unique modulo a reductive subgroup of the holomorphic
automorphism group for a ¯xed holomorphic vector ¯eld on any compact KÄahler
manifold

A KÄahler metric g on a compact complex manifold M is called a KÄahler{Ricci
soliton if there is a holomorphic vector ¯eld X on M such that the KÄahler form

g of g satis¯es

Ric g ¡ g LX g;
where LX denotes the Lie derivative along X In particular if X 0 g is a
KÄahler{Einstein metric Ricci solitons have been studied extensively in recent
years [H1] [C2] [T2] [TZ1] [Zh] etc One motivation is that they are very
closely related to the limiting behavior of solutions of PDE which arise from the

geometric analysis such as the Hamilton's Ricci °ow equation [H2] and certain
complex Monge{Ampµere equations associated to KÄahler{Einstein metrics [T2]
Ricci solitons extend naturally Einstein metrics Examples of nontrivial KÄahler{
Ricci solitons not KÄahler{Einstein metrics were found on certain KÄahler mani-
folds by N Koiso for compact case [Ko] and H Cao [C1] and H Pedersen
C Tonnesen-Friedman and G Valent [PTV] for noncompact case
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Our main theorem can be stated as follows cf Theorem 3 2

Uniqueness Theorem There is at most one KÄahler{Ricci soliton on a compact
complex manifold M modulo the identity component Aut± M of holomorphic au-
tomorphisms group Aut M of M more precisely if g and g0 are two KÄahler{Ricci
solitons with respect to two holomorphic vector ¯elds X and X 0 on M respectively
then there exists an element ¾ 2 Aut± M such that

g ¾¤ g0 and X ¾¡1
¤ X 0 :

The above theorem extends Bando and Mabuchi's theorem on the uniqueness

of KÄahler{Einstein metrics with positive ¯rst Chern class [BM] Note that the

uniqueness of KÄahler{Einstein metrics was proved by E Calabi in 50's on KÄahler
manifolds with non-positive ¯rst Chern class

The organization of this paper is as follows In Section 1 we introduce the new
holomorphic invariant cf Proposition 1 1 In Section 2 another version of new
holomorphic invariant is discussed In Section 3 we ¯rst show that the new holo-
morphic invariant is an obstruction to the existence of KÄahler{Ricci solitons cf
Proposition 3 1 then we complete the proof of the uniqueness theorem of KÄahler{
Ricci solitons cf Theorem 3 2 In Section 4 we revisit a class of the compact-
i¯cations of C¤-bundles over compact KÄahler{Einstein manifolds and prove that
the vanishing of the new holomorphic invariant is a su±cient and necessary con-
dition for the existence of KÄahler{Ricci solitons on these manifolds In Section 5
we introduce two functionals associated to the new holomorphic invariant and
prove that these two functionals are bounded from below on any compact complex
manifold which admits a KÄahler{Ricci soliton cf Theorem 5 1 As a corollary
we derive an inequality of the Moser{Trudinger type on such compact complex
manifold In the appendix another proof of the uniqueness theorem is given

The main result was announced in [TZ2]

Acknowledgments Authors would like to thank the referee for many useful
comments on improving the previous version of the paper The second author also

thank professor Mabuchi for his interest

1 A new holomorphic invariant
In this section we introduce a new holomorphic invariant This contains the Futaki
invariant as a special case [F1]

Let M be an n-dimensional compact complex manifold with positive ¯rst Chern
class c1 M > 0 Let g be a KÄahler metric on M with the KÄahler form g 2 c1 M
In local coordinates g is given by fgijg and

g

p¡1

2¼ X gijdzi ^ dzj :
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Since the Ricci-form

Ric g ¡
p¡1

2¼
@@log det gij

also represents c1 M there is a smooth function hg such that

Ric g ¡ g

p¡1

2¼
@@hg : 1 1

Let X be a holomorphic vector ¯eld on M De¯ne a 0; 1 -form iX g by

iX g u X; u ;

where u is any smooth complex-valued vector ¯eld on M Note that iX g is @-
closed Since c1 M > 0 there are no nontrivial harmonic 0 1 -forms By the

Hodge Theorem there is a unique smooth complex-valued function µX g of M
such that

iX g
p¡1
2¼

@µX g

RM eµX g n
g RM

n
g :

1 2

Let ´ M be the complex Lie algebra which consists of all holomorphic vector
¯elds on M For a given KÄahler form g 2 c1 M we de¯ne a linear functional
from ´ M into C as follows

FX v Z
M

v hg ¡ µX g eµX g n
g ; v 2 ´ M ; 1 3

where hg is the smooth real-valued function de¯ned by 1 1 and µX g is the

smooth complex-valued function de¯ned by 1 2 respectively This functional
FX ¢

can be de¯ned for any holomophic vector ¯eld X on M In particular if
X ´ 0 the functional is just the Futaki invariant [F1] The following proposition
shows that this functional de¯nes a holomorphic invariant on M

Proposition 1 1 The functional FX ¢
de¯nes a holomorphic invariant on M

i e it is independent of the choice of g with the KÄahler form g 2 c1 M

Proof Let g0 be another KÄahler metric with its KÄahler form g0 2 c1 M Then
there is a smooth real-valued function Á on M such that

g0 g +
p¡1

2¼
@@Á:

Let µX g0 be a smooth complex-valued function on M de¯ned by 1 2 associated
to the metric g0 Then

µX g0 µX g + X Á + c;
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for some constant c We claim

µX g0 µX g + X Á :

Let
gs g + s ¡ 1

p¡1

2¼
@@Á 1 · s · 2 1 4

be a family of KÄahler forms on M Then a direct computation shows

d
ds

Z
M

eµX g + s¡1 X Á n
gs

Z
M 4sÁ + X Á eµX g + s¡1 X Á n

gs

¡ Z
M

div eµX g + s¡1 X Á @Á n
gs

0;

where 4s denote the Laplacian operators associated to KÄahler forms gs It follows

Z
M

eµX g + s¡1 X Á n
gs

Z
M

eµX g n
g ;

and consequently
µX gs µX g + s¡ 1 X Á ; 1 5

where µX gs are smooth complex-valued functions de¯ned by 1 2 associated to
metrics gs In particular

µX g0 µX g2 µX g + X Á :

The claim is proved
Let hg0 be a smooth real-valued function de¯ned by 1 1 associated to the

metric g0 Then one can check

hg0 hg ¡ log
n
g0

n
g ¡ Á + const

Now we shall prove

Z
M

v hg ¡ µX g eµX g n
g

Z
M

v hg0 ¡ µX g0 eµX g0 n
g0 ; 8 X; v 2 ´ M :

1 6

Let
hs hg ¡ log

n
gs
n
g ¡ s ¡ 1 Á; 1 · s · 2: 1 7
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Then hs satis¯es

Ric gs ¡ gs

p¡1

2¼
@@hs; 1 8

and
dhs

ds ¡ 4sÁ + Á : 1 9

De¯ne

f s Z
M

v hs ¡ µX gs eµX gs n
gs:

Observe that

iv gs

p¡1

2¼
@Ã

for some smooth complex-valued function Ã Then by using 1 5 and 1 9 we

have

df s
ds

Z
M

v ¡4sÁ¡ Á ¡X Á eµX gs n
gs

+ Z
M 4sÁ + X Á ¢ v hs ¡ µX gs eµX gs n

gs:

Taking integration by parts we get

df s

ds ¡ Z
M

< @Ã; @ 4sÁ + X Á > gs
eµX gs n

gs

¡ Z
M

< @Ã; @Á > gs
eµX gs n

gs

+ Z
M 4sÁ + X Á v hs ¡ µX gs eµX gs n

gs

Z
M 4sÁ + X Á 4sÃ + v µX gs eµX gs n

gs

+ Z
M

Ã 4sÁ + X Á eµX gs n
gs

+ Z
M 4sÁ + X Á v hs ¡ µX gs eµX gs n

gs

Z
M 4sÁ + X Á 4sÃ + Ã + v hs eµX gs n

gs :

1 10

On the other hand for the ¯xed metric g gs and any point x 2 M one can
choose a local coordinate near x such that gij ±ij at x Let

p 4sÃ + Ã + v hs :
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Then by using the Ricci identity and 1 8 we get
pj x

Ãii + Ã + Ãi hs i j
Ãiij + Ãj + Ãi hs ij
Ãiji ¡ ÃkRkj + Ãj + Ãi Rij ¡ gij
0;

and consequently
@p x 0: 1 11

By using the integration by parts together with 1 11 we get from 1 10

df s
ds ¡ Z

M
< @p; @Á > gs

eµX gs n
gs ´ 0:

This shows f 1 f 2 so 1 6 is true Proposition 1 1 is proved ¤

2 Another formation of the holomorphic invariant
In this section we give another formulation of the holomorphic invariant de¯ned in
last section by which we will prove that there exists a unique holomorphic vector
¯eld such that the corresponding holomorphic invariant vanishes on the reductive

Lie algebra generated by holomorphic vector ¯elds We will keep the notations in
last section

First we notice that µX µX g de¯ned by 1 2 satis¯es compared with
1 11

@ ¢µX + X hg + µX 0;
where 4 denotes the Laplacian operator associated to the KÄahler form g Then
we can renormalize µX to be ~µX by adding a constant such that

~µX ¡¢~µX ¡X hg : 2 1

Clearly this new normalization is equal to the condition

Z
M

~µXehg n
g 0:

Lemma 2 1 Let g0 g + p¡1
2¼

@@Á 2 c1 M > 0 be a KÄahler form on M
and hg0 be de¯ned by 1 1 in Section 1 associated to g0 Let ~µX g0 be a smooth
complex-valued function de¯ned by

iX g0

p¡1
2¼

@ ~µX g0

RM
~µX g0 ehg0 n

g0
0:

2 2

Then ~µX g0 ~µX + X Á



304 G Tian and X Zhu CMH

Proof Let gs
1 · s · 2 and hs 1 · s · 2 be a family of KÄahler forms and

functions de¯ned by 1 4 and 1 7 in Section 1 respectively Let ~µX gs be

a family of smooth complex-valued functions de¯ned by 2 2 associated to gs
Then

~µX gs
~µX + s ¡ 1 X Á + cs

for some constants cs 1 · s · 2 and satisfy 2 1 associated to KÄahler forms gs
Let

G s Z
M

~µX + s¡ 1 X Á + cs ehs n
gs :

Then by 1 7 we have

G s Z
M

~µX + s¡ 1 X Á + cs e¡ s¡1 Á+hg n
g :

Di®erentiating the above on s and integrating by parts we get

dG s

ds
Z

M ³X Á + d

ds
cs ¡ ~µX + s ¡ 1 X Á + cs Á´e¡ s¡1 Á+hg n

g

Z
M ³X Á + d

ds
cs ¡ ~µX gs Á´ehs n

gs

³
d
ds

cs´ Z
M

ehs n
gs :

Since G s ´ 0 we conclude cs ´ const and consequently cs ´ 0 Hence

~µX g0 ~µX g2
~µX + X Á : ¤

Let Z 2 ´ M and ~µZ be a smooth complex-valued function de¯ned by 2 2
with respect to Z We introduce a functional on ´ M by

f Z Z
M

e
~µZ n

g : 2 3

Since

Z
M

e
~µZ+Z Á n

Á

Z
M

e
~µZ n

g + Z
1

0
Z

M 40Á + Z Á e
~µZ+tZ Á n

tÁ ^ dt;

then by using integration by parts we have

Z
M

e
~µZ+Z Á n

Á Z
M

e
~µZ n

g ;
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where 40 are the Laplacian operators associated to KÄahler forms tÁ g +
p¡1
2¼

@@ tÁ It follows from the above and Lemma 2 1 that f Z is independent
of choices of KÄahler metrics with the KÄahler class c1 M

Let F
0X

v be the di®erential of f ¢
at X with respect to v 2 ´ M Then

F
0X

v Z
M

~µve
~µX n

g : 2 4

This is clearly independent of choices of KÄahler metrics with the KÄahler class

c1 M and so a holomorphic invariant Moreover using 2 1 for function ~µv and
integration by parts we deduce

F
0X

v ¡ Z
M

v hg ¡ ~µX e
~µX n

g : 2 5

Since ~µX is the same as µX modulo const we see that F
0X ¢ is just a multiple of

the holomorphic invariant FX ¢
de¯ned in Section 1 In particular FX ¢ vanishes

on ´ M if and only if F
0X ¢ ´ 0 on ´ M

The new version F
0X ¢

of FX ¢
will give us more information We recall

some notation Let K be a maximal compact subgroup of the identity component
Aut± M of holomorphic automorphisms group Aut M Then the Chevalley de-
composition allows us to write Aut± M as a semidirect product [FM]

Aut± M Autr M / Ru; 2 6

where Autr M is a reductive algebraic subgroup of Aut± M and the complexi¯-
cation of K and Ru is the unipotent radial of Aut± M Let ´ M ; ´r M ; ´u M
and · M be the Lie algebras of Aut M ; Autr M ; Ru and K respectively From
the decomposition 2 6 we obtain

´ M ´r M + ´u M : 2 7

Lemma 2 2 There exists a unique holomorphic vector ¯eld X 2 ´r M with
Im X 2 · M such that

F
0X

v 0; 8 v 2 ´r M ;

where Im X denotes the imaginary part of X

Proof Since F
0X ¢ is a linear functional on ´r M we may choose a K-invariant

KÄahler metric g and v 2 ´r M with Im v 2 · M to compute F
0X

v Let
Z 2 ´r M with Im Z 2 · M Then

LZ g

p¡1

2¼
@@ ~µZ
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and

LZ g

p¡1

2¼
@@ ~µZ :

It follows p¡1

2¼
@@ ~µZ ¡ ~µZ LZ¡Z g 0:

This shows that ~µZ is a real-valued function and consequently f Z is a convex
functional on ´r M ; R Since F

0X ¢ is the di®erential of f at X it su±ces to
prove that f Z is proper i e f Z diverges to in¯nity as Z tends to 1Let Zi 2 ´r M with Im Zi 2 · M ; i 1; : : : ; m; be a base of ´r M ; R and

fZlg a sequence of holomorphic vector ¯elds in ´r M ; R so that
RM jZlj

2
g

n
g

+1 as l 1 Then there are m sequences of numbers ftilg such that Zl

P
m
i 1 ti

l
Zi Without loss of generality we may assume that there is a subsequence

flkg such that
jt1lk j ¸ jtilk j; i 2; : : : m; and jt1

lk j 1;

and n jtilk j
jt1
lk jo

are all convergent for any i 2; : : : ; m as lk 1 Furthermore we

may also assume tilk > 0; i 1; : : : ; m since we can use ¡Zi to replace Zi if
necessary Then it follows that

Z1 +
m

Xi
2

tilk
t1
lk

Zi Z0; as lk 1
for some holomorphic vector ¯eld Z0 2 ´r M ; R

Let ~µZ0
be a smooth function de¯ned by 2 2 with respect to Z0 Then we see

that ~µZ0 is real-valued and there is an open set U ½ M such that ~µZ0 > 0 on U
It follows

~µZ1 +
m

Xi
2

tilk
t1
lk

~µZi > " > 0; on U; 2 8

as lk are su±ciently large where ~µZi ; i 1; : : : ; m are all real-valued functions

de¯ned by 2 2 with respect to Zi Hence we get

f Zlk Z
M

exp³
m

Xi
1

tilk
~µZi´ n

g

Z
M

expµt1lk³
~µZ1 +

m

X
i 2

tilk
t1
lk

~µZi´¶ n
g

¸ Z
U

e"t1
lk n

g 1; as lk 1:

This shows that f Z is proper since the sequence fZlg is arbitrary and conse-
quently it has a unique critical point X 2 ´r M ; R such that F

0X ¢ ´ 0 on
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´r M ; R Therefore there is a unique holomorphic vector ¯eld X 2 ´r M with
Im X 2 · M such that F

0X ¢ ´ 0 on ´r M ¤

Proposition 2 1 There exists a unique holomorphic vector ¯eld X 2 ´r M with
Im X 2 · M such that the holomorphic invariant FX ¢ de¯ned in Section 1
vanishes on ´r M Moreover X is either zero or an element of the center of
´r M and

FX [u; v] 0; 8 u 2 ´r M and v 2 ´ M : 2 9

In particular FX ¢ is a Lie character on ´r M

Proof The proof in the ¯rst part of proposition comes from Lemma 2 2 and 2 5
immediately For the remaining part of the proposition we consider the following

two cases separately
1 Suppose that the center of ´r M is zero Then ´r M [´r M ; ´r M ]

Since the Futaki invariant F ¢ is a character of ´ M we get F v 0 for any
v 2 ´r M [F1] By the uniqueness result in the ¯rst part we see that X
must be zero and consequently the holomorphic invariant FX ¢ is just the Futaki
invariant In particular 2 9 is true The proposition is completed

2 Suppose that the center ´c M of ´r M is not zero We consider the

functional f Z restricted on ´c M Then as in the proof of Lemma 2 2 one

can prove that there exists a unique holomorphic vector ¯eld X 0 2 ´c M with
Im X 0 2 · M such that the holomorphic invariant FX0 ¢ vanishes on ´c M
Now we claim that the invariant FX0 ¢

satis¯es 2 9

Let v 2 ´ M and ¾t be one parameter subgroup generated by Re v Then
by using the fact X 0 2 ´c M for any ¿ 2 Autr M we have

Z
M

¿ ¢
¾t ¢ ¿¡1 ¤ hg ¡ µX0 eµX0 n

g

Z
M

hg ¡ µX0 ¿ ¢ ¾t ¢ ¿¡1 ¡1 ¤ eµX0 n
g

Z
M

hg ¡ µX0 ¿ ¢ ¾t ¡1 ¤ ¿ ¤ eµX0 n
g

Z
M

¿ ¢
¾t ¤ hg ¡ µX0 ¿ ¤ eµX0 n

g

Z
M

¾t ¤ ¿ ¤ hg ¡ µX0 ¿¤ eµX0 n
g

Z
M

¾t ¤ ¿ ¤hg ¡ µX0 ¿ ¤ g eµX0 ¿¤ g ¿ ¤ g
n;

2 10

where µX0 is a smooth function de¯ned by 2 2 with respect to X0 Di®erentiating
2 10 at t 0 and using Proposition 1 1 we get

FX0 Ad¿ v FX0 v : 2 11
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Let u 2 ´r M with Im u 2 · M and ¿ ¿s be one parameter subgroup
generated by Re u Then di®erentiating 2 11 at s 0 we have

FX0 [u; v] 0; 8 u 2 ´r M and v 2 ´ M : 2 12

The claim is proved
From 2 12 we see that FX0 ¢ vanishes on ´r M Then by the uniqueness

we conclude X X 0 Hence FX ¢ also satis¯es 2 9 and in particular FX ¢ is
a Lie character on ´r M ¤

In general the Futaki invariant may not vanish on a compact KÄahler manifold
with c1 M > 0 for example CP n#CPn is such a manifold [KS] By using

Proposition 2 1 we can prove

Proposition 2 2 Let Mk CP n#kCP n 1 · k · n be the blowing-up of CP n

at generic k points Here k points are called generic if such points could not be

belonged to a k ¡ 2 -dimensional subplane of CP n: Then there exists a unique

holomorphic vector ¯eld X 2 ´r Mk with Im X 2 · Mk such that the corre-
sponding holomorphic invariant FX ¢

vanishes on ´ Mk

Proof By Proposition 2 1 we see that there exists a unique holomorphic vector
¯eld X 2 ´r Mk with Im X 2 · Mk such that the holomorphic invariant FX ¢

vanishes on ´r Mk Thus it su±ces to prove FX v 0 for any v 2 ´u Mk by
the decomposition 2 7

Let

g Mk f aij 2 gl n + 1; C jaij 0; j 6 i; j 1; : : : ; kg;

gr Mk f aij 2 g Mk j aij 0; i 1; : : : ; k; j k + 1; : : : ; n + 1g;

and
gu Mk f aij 2 g Mk j aii 0; i 1; : : : ; k

aij 0; i; j k + 1; : : : ; n + 1g;

be three Lie subalgebras of gl n+1; C : Then it is easy to see ´ Mk » g Mk C¤

´r Mk » gr Mk C¤ and ´u Mk » gu Mk C¤

Let Aij akl 2 gu Mk such that akl 1 if k i and l j and akl 0
otherwise Then fAijg is basis of gu Mk Moreover

[B; Aij ] ¸i ¡ ¸j Aij ;

where B diag ¸1; : : : ; ¸n+1 2 gr Mk with ¸i 6 ¸j for any i 6 j Hence we

can choose a basis fvigi 1;:::;¤ of ´u Mk and an element u 2 ´r Mk such that

[u; vi] aivi; 8 i 1; : : : ;¤; 2 13
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where ai 6 0 are some complex-valued numbers

By 2 13 and 2 9 in Proposition 2 1 we have

FX vi
1

ai
FX [u; vi] 0; 8 i 1; : : : ; ¤;

and consequently
FX v 0; 8 v 2 ´u Mk :

The proposition is proved ¤

Problem 2 1 Let M be a compact KÄahler manifold with c1 M > 0 and

´ M 6 0 Does there always exist a unique holomorphic vector ¯eld X contained

in a reductive Lie subalgebra of ´ M such that the corresponding holomorphic
invariant FX ¢

vanishes on ´ M

3 Uniqueness of KÄahler{Ricci solitons

In this section we solve completely the uniqueness problem of KÄahler{Ricci soli-
tons by using the new holomorphic invariant introduced in Section 1 In our
previous paper [TZ1] we prove the uniqueness of KÄahler{Ricci soliton for a ¯xed
holomorphic vector ¯eld

First we shows that the new holomorphic invariant provides an obstruction to
the existence of KÄahler{Ricci solitons

Let g be a KÄahler{Ricci soliton with respect to a holomorphic vector ¯eld X
on M Then by de¯nition the KÄahler form g satis¯es the following

Ric g ¡ g LX g; 3 1

where LX denotes the Lie derivative along X

Proposition 3 1 If M admits a KÄahler{Ricci soliton g with respect to a holo-
morphic vector ¯eld X Then the corresponding holomorphic invariant FX ¢

de-
¯ned by 1 3 in Section 1 vanishes i e

FX v 0; 8 v 2 ´ M : 3 2

Proof By Proposition 1 1 it su±ces to prove that FX ¢ vanishes under the choice

of the KÄahler{Ricci soliton g Let hg be a smooth real-valued function and µX g
a smooth complex-valued function de¯ned by 1 1 and 1 2 in Section 1 respec-
tively Since

LX g @iX g ;
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then

LX g

p¡1

2¼
@@µX g : 3 3

By the maximal principle together with 3 1 we get

hg ¡ µX g const : 3 4

Now 3 2 follows from the de¯nition of the integral in 1 3 immediately ¤

From 3 1 we see that if g is a KÄahler{Ricci soliton with respect to a holomor-
phic vector ¯eld X then the 1 1 -form LX g is real-valued i e LIm X g 0

where Im X denotes the imaginary part of X Therefore Im X generates a one-
parameter family of isometries of M; g Let K be a maximal compact subgroup
of the identity component Aut± M of Aut M containing such a one-parameter
family of isometries and Autr M ½ Aut± M be the complexi¯cation of K Then
Autr M is a reductive algebraic subgroup of Aut M with a reductive Lie sub-
algebra ´r M of ´ M Clearly X 2 ´r M and Im X 2 · M where · M is
the Lie algebra of K

In [TZ1] we proved the following uniqueness theorem of KÄahler{Ricci solitons

for a ¯xed holomorphic vector ¯eld by solving certain complex Monge{Ampµere

equations

Theorem 3 1 [TZ1] Let X 2 ´r M Then the KÄahler{Ricci soliton on M
with respect to X is unique modulo Autr M Precisely if g and g0 are two KÄahler{
Ricci solitons with respect to the holomorphic vector ¯eld X then there exists an
element ¾ 2 Autr M such that

g ¾¤ g0 :

Theorem 3 2 Uniqueness Theorem There is at most one KÄahler{Ricci soli-
ton on M modulo Aut± M more precisely if g and g0 are two KÄahler{Ricci soli-
tons on M with respect to two holomorphic vector ¯elds X and X 0 respectively
then there exists a holomorphic automorphism ¾ 2 Aut± M such that

g ¾¤ g0 and X ¾¡1
¤ X 0 :

Proof Let g and g0 be two KÄahler{Ricci solitons with respect to two holomorphic
vector ¯elds X and X 0 on M respectively Then both Im X and Im X 0 generate
a one-parameter family of isometries of M; g and M; g0 Let K and K 0 be

two maximal compact subgroup of the identity component Aut± M of Aut M
containing each one-parameter family of isometries respectively Since K0 is con-
jugate to K [Iw] there exists a holomorphic automorphism ¿1 2 Aut± M such



Vol 77 2002 A new holomorphic invariant 311

that ¿¡1
1 ¤ X 0 Ad

¿¡1
1

X 0 2 ´r M where Ad
¿¡1

1
is the adjoint action on

´ M induced by ¿¡1 Clearly ¿¤1 g0 is still a KÄahler{Ricci soliton with respect
to Y ¿¡1

1 ¤ X 0 and Im Y is contained in · M Hence by Proposition 3 1
we see that both FX ¢

and FY ¢ vanish on ´ M By using the uniqueness result
about the holomorphic vector ¯eld in Proposition 2 1 we prove

X Y Ad
¿¡1
1

X 0 : 3 5

On the other hand by Theorem 3 1 we see that there exists a holomorphic
automorphism ¿2 2 Autr M such that

g ¿1 ¢ ¿2 ¤ g0 :

Since Ad
¿¡1
1

Y is contained in the center of ´r M by Proposition 2 1 see also

Lemma 2 2 in [TZ1] then by 3 5 we also have

X Ad
¿¡1

2
Ad

¿¡1
1

X 0 Ad ¿1¿2 ¡1 X 0 ¿1¿2 ¡1
¤ X 0 :

Let ¾ ¿1¿2 Then the theorem is proved ¤

4 Remark on the Koiso's examples

In this section we discuss the existence and uniqueness of KÄahler{Ricci solitons on
a class of compacti¯cations of C¤-bundles over compact KÄahler{Einstein manifolds

in terms of our new holomorphic invariant These manifolds were ¯rst studied by
E Calabi [Ca] for extremal metrics in 1982 and by Koiso and Sanake for KÄahler{
Einstein metrics in 1986 [KS] and lately by Koiso for KÄahler{Ricci solitons in
1990 [Ko] We ¯rst recall some notations which can be found in either [KS] or
[Ko]

Let p : L M be a holomorphic line bundle over a compact KÄahler{Einstein
manifold M with positive ¯rst Chern class c1 M and a Hermitian metric h on

L Denote by ±L the open subset L n f0 ¡ sectiong Let r 2 C1 ±L be de¯ned by

r l log klkh l 2 ±L where k:kh is the norm induced by h
Let t r be a smooth monotone increasing function with respect to r so that

min t < 0 < max t For any one-parameter family of Riemannian metrics gt on M
we consider a Riemannian metric on ±L

of the form

~g dt2 + dt ¢
~J 2 + p¤gt; 4 1

where ~J is the standard almost complex structure of L
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Let H be the real vector ¯eld on ±L
corresponding to R¤-action on ±L De¯ne

u t 2 ~g H; H and U t Z
t

0
u s ds:

Then by a result in [KS] one sees that ~g is a KÄahler metric if only if g0 is KÄahler
and gt g0 ¡ U t B where B is the curvature of L with respect to h

Throughout this section we assume that
1 g0 is a KÄahler{Einstein metric of M so that its KÄahler form g0 2 c1 M

and the eigenvalues of B with respect to g0 are constant on M ;

2 ~L is a compacti¯cation of ±L
and ~g denotes the restriction of a KÄahler metric

~g still denoted by the same symbol of ~L to ±L
;

3 the KÄahler form of ~g of ~L represents the ¯rst Chern class of ~L

Lemma 4 1 [KS] Let X H ¡ p¡1 ~JH Then there exists a KÄahler{Ricci
soliton of the form 4 1 with respect to the holomorphic vector ¯eld aX on ~L if
and only if

f a Z
maxU

min U
e2aU Q U UdU 0; 4 2

where
Q U q t det I ¡ U t g¡1

0 B > 0: 4 3

Lemma 4 2 Let X H ¡p¡1 ~JH Then there exists a KÄahler{Ricci soliton of
the form 4 1 with respect to the holomorphic vector ¯eld aX on ~L if and only if
the corresponding holomorphic invariant FaX ¢

de¯ned by 1 3 vanishes i e

FaX v 0; 8 v 2 ´ M : 4 4

Proof By Proposition 3 1 and Lemma 4 1 it su±ces to prove that 4 2 is equiv-
alent to

FaX X 0:

Let ~g be a KÄahler metric of the form 4 1 and µX µX ~g a complex-valued
function de¯ned by 1 2 in Section 1 associated to the metric ~g Since

iX ~g X
p¡1

2¼
~g00dz0

^ dz0 X; X
p¡1

2¼
2u2 ;

we have

X u t
d

dt ¡p¡1u t ~J
d

dt
;
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and
H µX X µX X µX @µX X 2u2: 4 5

It follows

µX 2U + c 4 6

for some constant c In particular µX is a real-valued function
Let h h~g be the smooth function de¯ned by 1 1 in Section 1 associated to

~g Then by a result in [KS] we have

d

dU
Á + Á

Q
d

dU
Q + 2U + H h 0; 4 7

where Á Á U u2 Q Q U is de¯ned in 4 3
Since µaX aµX + ca for some constants ca by using 4 5 4 6 and 4 7

one can compute

FaX X eca Z

L̂
X h¡ aµX eaµX n

~g

Vol M; g0 eca Z
max t

min t
H h¡ aµX eaµX uqdt

Vol M; g0 eca Z
max U

min U
H h¡ aµX eaµX QdU

¡Vol M; g0 eca Z
max U

min U ³
d

dU
Á + Á

Q
d

dU
Q + 2U + aH µX ´eaµXQdU

¡Vol M; g0 eca Z
max U

min U ³
d

dU
ÁQ + 2aÁQ + 2UQ´eaµXdU

¡Vol M; g0 eca Z
max U

min U ³
d

dU
e2aU ÁQ + 2e2aU UQ´eaµX¡2aU dU

¡2Vol M; g0 eac+ca Z
max U

min U
e2aUUQdU:

4 8

This shows that FaX X 0 if and only if 4 2 is true Lemma 4 2 is proved ¤

Remark 4 1 From 4 2 we see

df a
da

2 Z
max U

min U
e2aUQ U U2dU > 0:

This shows that there exists only one a0 such that f a0 0 By Proposition
3 1 and Lemma 4 2 FaX : ´ 0 if and only if a a0 Furthermore there exists
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a KÄahler{Einstein metric on ~L if and only if a0 0 i e the Futaki invariant
vanishes

Combining Lemma 4 2 Proposition 3 1 and Proposition 2 1 we prove

Proposition 4 1 Let ~L
be a compacti¯cation of C¤-bundle satisfying the assump-

tions 1 2 and 3 Then there exists a KÄahler{Ricci soliton with respect to a
holomorphic vector ¯eld X on ~L if and only if X is contained in a reductive Lie
subalgebra of ´ ~L

with Im X generating a compact one-parameter subgroup of
Aut ~L and the corresponding holomorphic invariant FX ¢

vanishes

Example 4 1 CP n+1#CP n+1:

Let H be the hyperplane line bundle over CP n and H¡1 be its dual line bundle
Then L H¡1

© I is a two-dimensional holomorphic vector bundle and ~L
P L is a CP1-projective bundle over CP n Let S0 and S1 be f0 ¡ sectiong
and f1¡sectiong of H¡1 respectively Then ±H¡1 H¡1

n S0 » Cn+1
n 0 and

~L ±H¡1[S0[S1; and consequently ~L » CP n+1#CPn+1: Hence by Lemma 4 2
Remark 4 1 and Theorem 3 2 there exists a unique KÄahler{Ricci soliton metric
modulo the holomorphic transformations group on CP n+1#CP n+1 with respect

to some holomorphic vector ¯eld induced by the ¯ber of P L

Example 4 2 ~L P L © I where L p¤1Hk1 ­ p¤2Hk2

Let n1 and n2 be two positive integers Let Hi be the hyperplane line bundle
over CP ni i 1; 2 Denote by pi : CP n1 £ CP n2 CP ni the projection to i-th
factor Let L be the holomorphic line bundle over CP n1 £ CP n2 given by

L p¤1Hk1 ­ p¤2Hk2 ;

where jk1j · n1 and jk2j · n2 are integers Put ~L the total space of projective

bundle P L © I Then c1 ~L > 0 and ´ ~L » gl n1 + 1; C + gl n2 + 1; C + c cf
[F2] where c is generated by the holomorphic vector ¯eld X H ¡p¡1 ~JH as

before Hence by Lemma 4 2 Remark 4 1 and Theorem 3 2 there exists a unique

KÄahler{Ricci soliton metric with respect to aX for some a on ~L modulo Aut± ~L

5 Two functionals associated to the holomorphic invariant
In this section we introduce two functionals which integrate the new holomorphic
invariant de¯ned in Section 1 then by using the arguments in the proof of unique-
ness theorem in [TZ1] we prove both functionals are bounded from below if the

underlying manifold admits a KÄahler{Ricci soliton
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Let g be a K-invariant KÄahler metric and X be a holomorphic vector ¯eld of
M Let hg and µX µX g are two smooth real-valued functions de¯ned by 1 1
and 1 2 in Section 1 respectively Set

MX g fÁ 2 C1 M j Á g +
p¡1

2¼
@@Á > 0; Im X Á 0g:

We recall the following functional on MX g from [Zh] and [TZ1]

F g Á J Á ¡
1

V
Z

M
ÁeµX n

g ¡ log µ
1

V
Z

M
ehg¡Á n

g ¶

¡
1

V
Z

1

0
Z

M
_ÁteµX+X Át n

Át ^ dt¡ log µ
1

V
Z

M
ehg¡Á n

g ¶;

5 1

where J g Á 1
V R

1
0 RM _Át eµX n

g ¡ eµX+X Át n
Át ^ dt and Át 0 · t · 1 is a

path connecting 0 to Á in MX g Note that F g Á is independent of the choice

of path Át Moreover one can check that for any two Á and Ã in MX g the

following cocycle condition is satis¯ed

F g Ã F g Á + F Á Ã ¡ Á ; 5 2

where

F Á Ã ¡ Á

¡
1

V
Z

1

0
Z

M
_Áte

µX+X Át n
Át ^ dt¡ log µ

1

V
Z

M
eh Á¡ Ã¡Á n

Á¶:

Here Át 0 · t · 1 is a path connecting Á to Ã in MX g and h Á is a smooth
real-valued function de¯ned by 1 1 in Section 1 associated to the KÄahler form

Á
The next functional can be regarded as a generalization of Mabuchi's K-energy

which integrates the holomorphic invariant FX ¢ [Ma]

¹ g Á

¡
1

V
Z

1

0
Z

M
_Át[R Át ¡ n¡ tr Át r ÁtX

+ X h Át ¡ µX Át ]eµX Át n
Át ^ dt

p¡1

2¼V
Z

1

0
Z

M
@ h Át ¡ µX Át ^ @Áte

µX Át n¡1
Át ^ dt;

5 3

where µX Át µX + X Át and R Át is the scalar curvature of Át and Át
0 · t · 1 is a path connecting 0 to Á in MX g One can show that ¹ g Á is

well-de¯ned in fact it can be represented by F g Á
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Lemma 5 1 We have the following identity

¹ g Á

F g Á ¡
1

V
Z

M
h Á ¡ µX ¡X Á eµX+X Á n

Á +
1

V
Z

M
hg ¡ µX eµX n

g ;

where h Á is normalized by

Z
M

eh Á n
Á V:

It follows that

¹ g Á ¸ F g Á ¡ C:

Proof The argument is originally due to [DT] see also [T2] We can rewrite 5 3
as follows

¹ g Á

¡
n
V

Z
1

0
Z

M
_ÁthRic Át ¡ Ric g ¡

p¡1

2¼
@@X Át

+
p¡1

2¼
@ h Át ¡X Át ¡ hg + Át ^ @µX Át ieµX Át n¡1

Át ^ dt

¡
n
V

Z
1

0
Z

M
_ÁthRic g ¡ g ¡

p¡1

2¼
@@µX

+
p¡1

2¼
@ hg ¡ µX ^ @µX Át ieµX Át n¡1

Át ^ dt

¡
n
V

Z
1

0
Z

M
_Áth g ¡ Át ¡

p¡1

2¼
@Át ^ @µX Át ieµX Át n¡1

Át ^ dt:

Note that

h Át ¡ hg ¡ log ³
n
Át
n
g
´¡ Át + const : 5 4

Then integrating by parts we can get
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¹ g Á

¡
1

V
Z

1

0
Z

M
log³

eµX n
g

eµX+X Á n
Át
´

d

dt
eµX+X Át n

Át

¡
1

V
Z

1

0
Z

M
hg ¡ µX

d
dt

eµX+X Át n
Át

¡
1

V
Z

1

0
Z

M
Át

d

dt
eµX+X Át n

Át

1

V
Z

M
log³

eµX+X Á n
Á

eµX n
g

´eµX+X Á n
Á ¡ I Á ¡ J Á

+
1

V
Z

M
hg ¡ µX eµX n

g ¡ eµX+X Á n
Á :

Using the fact

h Á ¡ hg ¡ log ³
n
Á
n
g ´¡ Á ¡ log µ

1

V
Z

M
ehg¡Á n

g ¶;

we derive

¹ g Á

¡
1

V
Z

M
ÁeµX+X Á n

Á ¡ I Á ¡ J Á ¡ log µ
1

V
Z

M
ehg¡Á n

g ¶

+
1

V
Z

M
hg ¡ µX eµX n

g ¡
1

V
Z

M
h Á ¡ µX ¡X Á eµX+X Á n

Á

F g Á +
1

V
Z

M
hg ¡ µX eµX n

g ¡
1

V
Z

M
h Á ¡ µX ¡X Á eµX+X Á n

Á :

5 5
On the other hand

Z
M

eh Á n
Á V;

and eµX+X Á is uniformly bounded cf [TZ1] we have

1

V
Z

M
eh Á¡µX¡X Á n

Á · C 0:

Then it follows from the concavity of logarithmic function

1

V
Z

M
h Á ¡ µX ¡X Á n

Á · ln C0: 5 6

Inserting 5 6 into 5 5 we get

¹ g Á ¸ F g Á ¡ C:
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The lemma is proved ¤

In the following we assume that there exists a KÄahler{Ricci soliton KS with
respect to X on M Let ¾ 2 Autr M Then ¾¤ KS is still a KÄahler{Ricci soliton
with respect to X on M Since there is a path in Autr M from the identity to ¾

then by the de¯nition 5 3 the background metric g is replaced by KS one

can show

¹ KS Á¾ ´ 0; 8 ¾ 2 Autr M ;

where Á¾ is de¯ned by ¾¤ KS KS + p¡1
2¼

@@Á¾ It follows from Lemma 5 1

F KS Á¾ ´ 0; 8¾ 2 Autr M : 5 7

The following theorem is our main result in this section

Theorem 5 1 Let M be a compact complex manifold which admits a KÄahler
Ricci soliton KS with respect to X Then both functionals F g Á and ¹ g Á are
bounded from below on MX g

Theorem 5 1 generalizes a result in [DT] in case of a compact KÄahler{Einstein
manifold with positive scalar curvature To prove it we shall introduce certain
complex Monge{Ampµere equations In [TZ1] we considered the following complex
Monge{Ampµere equations with parameter t 2 [0; 1]:

det gij + Áij det gij expfhg ¡ µX ¡X Á ¡ tÁg
gij + Áij > 0:

5:8 t

One can check that Á g + p¡1
2¼

@@Á is a KÄahler{Ricci soliton if and only if
Á + c is a solution of 5:8 t at t 1 where c is some constant

Lemma 5 2 Let Ás be solutions of 5:8 s for s · t · 1 and

F̂ g Át J g Át ¡
1

V
Z

M
Áte

µX n
g :

Then

F̂ g Át ¡
1

t
Z

t

0
I g Ás ¡ J g Ás ds < 0;

where
I g Át

1

V
Z

M
Át eµX n

g ¡ eµX+X Át n
Át :

Proof First from the proof of Lemma 3 2 in [TZ1] we can obtain
d

dt I g Át ¡ J g Át ¡
1

V
Z

M
Át

d

dt
eµX+X Át n

Át

¡
1

V
Z

M
Át 40

_Át + X _Át eµX+X Át n
Át :

5 9
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On the other hand by di®erentiating 5:8 t on t we have

40
_Át + X _Át ¡ t _Át + Át : 5 10

Inserting 5 10 into 5 9 and using 5:8 t we get

d
dt I g Át ¡ J g Át

1

V
Z

M
Át t _Át + Át ehg¡tÁt n

g

1

V

d

dtµ
Z

M ¡Át ehg¡tÁt n
g ¶ +

1

V
Z

M
_Áte

hg¡tÁt n
g

1

tV
d

dt
µ Z

M
t ¡Át ehg¡tÁt n

g ¶
1

tV
d

dt
µ Z

M
t ¡Át eµX+X Át n

Át¶:

It follows
d
dt t I g Át ¡ J g Át ¡ I g Át ¡ J g Át

1

V

d

dtµ
Z

M
t ¡Át eµX Át n

Át¶:

Integrating the above inequality from 0 to t and then dividing t on both sides

we get
F̂ g Át ¡

1

V
Z

M
ÁeµX+X Át n

t ¡ I g Át ¡ J g Át

¡
1

t
Z

t

0
I g Ás ¡ J g Ás ds:

Since

I g Á ¡ J g Á > 0

for any Á 2 MX g cf [TZ1] we have F̂ g Át < 0 ¤

Proof of Theorem 5 1 By Lemma 5 1 it su±ces to prove that F g Á is bounded

from below Let Á0 2 MX g such that g KS ¡
p¡1
2¼

@@Á0 In [TZ1] it was

proved that there is an element ¾ 2 Autr M such that

0

KS ¾¤ KS Á +
p¡1

2¼
@@

e
Ã

KS +
p¡1

2¼
@@

e
Ã + Á ¡ Á0
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and the following complex Monge{Ampµere equations

det gij + Ãij det gij expfh Á ¡ µX Á ¡X Ã ¡ tÃg
gij + Ãij > 0

5:11 t

are solvable for any t 2 [0; 1] while Ã1
e
Ã + const is a solution of 5:11 t on

t 1 where the initial KÄahler form g is replaced by Á and µX Á is a smooth
real-valued function de¯ned by 1 2 in Section 1 associated to the KÄahler form

Á
Let Ãt be solutions of 5:11 t Since

Z
M

eh Á¡Ã1 n
Á Z

M
eµX Á +X Ã1 n

Ã1
V;

by Lemma 5 2 we have

F 0KS ¡e
Ã ¡F Á Ã1 ¡F̂ Á Ã1

Z
1

0
I Ãt ¡ J Ãt dt > 0:

Hence by using the cocycle condition 5 3 and 5 7 we prove

F g Á F KS Á ¡ Á0 + F g Á0

F KS
e
Ã + Á ¡ Á0 + F 0KS ¡ e

Ã + F g Á0

¸ F g Á0 C:
¤

As a consequence of Theorem 5 1 we obtain the following Moser{Trudinger
type inequality on a compact complex manifold with admitting a KÄahler{Ricci
soliton

Corollary 5 1 Let M be a compact complex manifold which admits a KÄahler{
Ricci soliton with respect to X Then there is a uniform constant C such that for
any Á 2 MX g

Z
M

e¡Á n
g · C exp³J g Á ¡

1

V
Z

M
Á n

g ´: 5 12

Lemma 5 3 For any Á 2 MX g there is a uniform constant C such that

sup
M

Á ·
1

V
Z

M
ÁeµX n

g + C: 5 13
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Proof By Yau's Theorem for Calabi's conjecture [Ya] we see that there is a

KÄahler potential function Ã such that Ã solves the complex Monge{Ampµere equa-
tion

8<

:

³ g + p¡1
2¼

@@Ã´
n

n
Ã eµX n

g ;

g + p¡1
2¼

@@Ã > 0:
Since

4 Ã Á ¡ Ã ¸ ¡n;

using the Green formula associated to the KÄahler form Ã we get

sup
M

Á ¡ Ã ·
1

V
Z

M
Á¡ Ã n

Ã + C

1

V
Z

M
Á¡ Ã eµX n

g + C

·
1

V
Z

M
ÁeµX n

g + C:

Hence 5 13 follows from the above inequality directly ¤

Proof of Corollary 5 1 By Theorem 5 1 we have

Z
M

e¡ÁeµX n
g · C expµJ g Á ¡

1

V
Z

M
ÁeµX n

g ¶;

for some uniform constant C: Then 5 12 follows from Lemma 5 3 immediately ¤

Remark 5 1 In a later paper [CTZ] we will prove a stronger version of Moser{
Trudinger type inequality on a compact complex manifold with admitting a KÄahler{
Ricci soliton Such a stronger inequality is a su±cient and necessary condition for
the existence of KÄahler{Ricci solitons

Appendix Another proof of Theorem 3 2

In [TZ2] we gave a sketch of proof of Theorem 3 2 The original proof is di®erent
to one appeared in Section 3 in this paper For completeness we give that proof
in details in this appendix The proof is independent of Proposition 2 1

The following lemma can be found in [TZ1] see also Theorem 2 4 3 in [F2]
Corollary 2 148 in [Be]

Lemma A Let g be a KÄahler{Ricci soliton with respect to a holomorphic vector
¯eld X 2 ´r M on Mn Let L be a linear elliptic operator on C1 M; C de¯ned
by

L Ã 4gÃ + X Ã + Ã; Ã 2 C1 M; C :
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Then the correspondence

@ : Ker L ´ M ;

Ã
7

n

Xi;j 1

gijÃj
@

@zi ;

is one-to-one

Another proof of Theorem 3 2 Let g and g0 be two KÄahler{Ricci solitons with
respect to two holomorphic vector ¯elds X and X 0 on M respectively Then by a

result of Iwasawa [Iw] we can ¯nd a holomorphic automorphism ¾ 2 Aut± M
such that Ad¾¡1 X 0 2 ´r M Clearly ¾¤ g0 is a KÄahler{Ricci soliton with
respect to ¾¡1

¤ X 0 Ad¾¡1 X 0 Hence by Theorem 3 1 we su±ce to prove

that
X ¾¡1

¤ X 0 :

For simplicity we may assume that ¾ Id and X; X 0 2 ´r M In particular
Im X 0 2 · M

On the contrary we assume that X 0
6 X Let µX µX g and µX0 µX0 g

are two smooth complex-valued functions de¯ned by 1 2 in Section 1 with respect
to X and X0 respectively Clearly µX is a real-valued function since LX g is a
real-valued 1 1 -form Since g is K-invariant by a result in Appendix in [TZ1]
LX0 g is also a real-valued 1 1 -form Hence µX0 is also a real-valued function
on M Furthermore by Lemma A there are ~µX µX + c1 and ~µX0 µX0 + c2 for
some constants c1 and c2 such that

~µX 6
~µX0 ; A 1

4g
~µX + X ~µX + ~µX 0; A 2

and

4g
~µX0 + X ~µX0 + ~µX0 0: A 3

Let hg be a smooth real-valued function de¯ned by 1 1 in Section 1 We

de¯ne a function on [0; 1] as follows:

F1 a Z
M

X hg ¡ a~µX ¡ 1 ¡ a ~µX0 ea~µX+ 1¡a ~µX0 n
g : A 4

Then by Proposition 3 1 it is clear

F1 1 ec1 Z
M

X hg ¡ µX eµX n
g 0: A 5
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Moreover by Proposition 1 1 and 3 1 we have

F1 0 ec2 Z
M

X hg ¡ µX0 eµX0 n
g

ec2 Z
M

X hg0 ¡ µX0 g0 eµX0 g0 n
g0

0;

A 6

where hg0 and µX0 g0 are two smooth real-valued functions de¯ned by 1 1 and
1 2 respectively in Section 1 associated to the KÄahler{Ricci soliton g0

Since

hg ¡ µX const ;

we have

F1 a Z
M

1¡ a X ~µX ¡ ~µX0 ea~µX+ 1¡a ~µX0 n
g : A 7

By using integration by parts and A 2 one can compute

dF1 a

da

Z
M

[¡X ~µX ¡ ~µX0 + 1 ¡ a ~µX ¡ ~µX0 ¢ X ~µX ¡ ~µX0 ]ea~µX+ 1¡a ~µX0 n
g

Z
M

~µX ¡ ~µX0 4
~µX + aX + 1 ¡ a X0 ~µX ea~µX+ 1¡a ~µX0 n

g

+ Z
M

1 ¡ a ~µX ¡ ~µX0 ¢ X ~µX ¡ ~µX0 ea~µX+ 1¡a ~µX0 n
g

Z
M

~µX ¡ ~µX0 4
~µX + X ~µX ea~µX+ 1¡a ~µX0 n

g

Z
M ¡ ~µX ¡ ~µX0

~µXea~µX+ 1¡a ~µX0 n
g :

A 8
Similar to A 4 we de¯ne

F2 a Z
M

X 0 hg ¡ a~µX ¡ 1 ¡ a ~µX0 ea~µX+ 1¡a ~µX0 n
g :

Then the above argument shows

F2 0 F2 1 0 A 9

and

dF2 a
da

Z
M

~µX ¡ ~µX0 4
~µX0 + X ~µX0 ea~µX+ 1¡a ~µX0 n

g

¡ Z
M

~µX ¡ ~µX0
~µX0ea~µX+ 1¡a ~µX0 n

g :

A 10
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The last inequality follows from A 3
Combining A 8 and A 10 we get

d

da
F2 a ¡ F1 a Z

M

~µX ¡ ~µX0
2ea~µX+ 1¡a ~µX0 n

g > 0:

Then by A 6 and A 9 it follows

F2 a ¡ F1 a > 0; 8 a > 0;

in particular
F2 1 ¡ F1 1 > 0;

which is impossible since F1 1 0 and F2 1 0 by A 5 and A 9 The

contradiction shows that Theorem 3 2 is true ¤
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