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Cubic surfaces and Borcherds products

Daniel Allcock* and Eberhard Freitag

Abstract. We apply Borcherds’ methods for constructing automorphic forms to embed the
moduli space M of marked complex cubic surfaces into CPY. Specifically, we construct 270
automorphic forms on the complex 4-ball B4, automorphic with respect to a particular discrete
group I". We use the identification from [ACT2] of M with the Baily—Borel compactification of
By4/T. Our forms span a 10-dimensional space, and we exhibit the image of M in CP° as the
intersection of 270 cubic hypersurfaces. Finally, we interpret the pairwise ratios of our forms as
the original invariants of cubic surfaces, the cross-ratios introduced by Cayley. It turns out that
this model of M was found by Coble [C] in an entirely different way; see [vG].

Mathematics Subject Classification (2000). 14J15, 11F55, 20E40.
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1. Introduction

The moduli space M of marked cubic surfaces can be identified with the Baily—
Borel compactification of B,/T", where By denotes the complex 4-ball and T is a
certain arithmetic reflection group. (See [ACT2] and also [ACT1].) In this paper
we use the methods of R. Borcherds to construct automorphic forms on B4. We
will obtain an embedding of M into the 9-dimensional projective space P°(C),
whose image is the intersection of 270 explicitly known cubic 8-folds. This map is
compatible with the actions of the Weyl group W (Es) on M and P°. The former
action arises because W (FEg) permutes the markings of cubic surfaces, and the
latter action arises from the unique irreducible 10-dimensional representation of
W (FEs). Furthermore, the cubic 8-folds are all equivalent under W (FEg).

The 10-dimensional linear system associated to this map into P°(C) contains
270 automorphic forms with known zeros, which play a central role in our investi-
gation. In particular, there is a direct connection between them and the classical
invariants of cubic surfaces introduced by Cayley. He considered the 27 lines on a
smooth cubic surface and a certain configuration of 45 planes that they determine.
By considering 4-tuples of these planes that meet along one of the 27 lines, Cayley

*Partially supported by NSF grant DMS 0070930.
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constructed 270 cross-ratios, and showed that these allow one to recover the orig-
inal surface. We show that Cayley’s cross-ratios coincide not with our Borcherds
products but rather with the quotients of certain pairs of them. This relies on
work of Naruki [Na] and is the main part of our proof that our map of M into P*
is an embedding.

We are grateful to R. Borcherds, B. van Geemen, and R. Vakil for helpful
discussions.

2. The complex reflection group

Let
1 +/-3
be the ring of Eisenstein integers. We consider the lattice

A=ght

which is the £&-module £° equipped with the hermitian form of signature (1,4)
given by
<(17b> = agbg — a1by — -+ — ayby . (21)

Let Aut(A) be the unitary group of this lattice, i.e., the group of £&-module auto-
morphisms which preserve the hermitian form. Complex conjugation acts as the
identity on the residue field

Fs = &/V/—3€,

which has order 3, so the hermitian form induces a F3-valued quadratic form on the
5-dimensional Fz-vector space V = A/y/—3 A. We denote the orthogonal group of
V by O(5, 3) and define T" to be the kernel of the action of Aut(A) on V. We have
the exact sequence

1 —T — Aut(A) — O(5,3) — 1.

That is, T is the congruence subgroup of Aut(A) of level v/—3. For future reference
we mention that V' contains 242 nonzero elements, of which 80 have norm 0, 90
have norm 1 and 72 have norm —1. Nonzero vectors in V' are equivalent under
0O(5, 3) if and only if they have the same norm. The subgroup of O(5, 3) generated
by the reflections in the norm —1 vectors is isomorphic to the Weyl group W (FEjg),
and O(5,3) = W(FEgs) x {£1}. Furthermore, W(Es) contains a simple subgroup
of index 2 and order 25 920.

A lattice vector a € A is called primitive if it cannot be divided in A by a
non-unit of £. Also, a is called

sotropic (or null) if (a,a) =0,
a short root if {a,a)=—1, or
a long root if {a,a) =—2.
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The roots are important because Aut(A) contains reflections in them. If a is a
short root and ¢ is a unit of £ (a sixth root of unity) then the map

{a,0)
(a,a)
is an automorphism of A. (In the special case { = £1 this is also true if a is a
long root.) This automorphism fixes the orthogonal complement of ¢ and maps a
to Ca. We call this automorphism a reflection if ( # 1. The order of a reflection
is two, three or six, and we sometimes call reflections of these orders biflections,
triflections and hexaflections. The third roots of unity are congruent to 1 mod
v/=3, and therefore the triflections belong to the congruence group I'. We remark
that these triflections actually generate I' [ACT?2]|, although we will not need this
fact.

We need some information about the orbit structure of A with respect to I'. If
a,b € A are in the same I'-orbit, then their images in V' coincide. In some special
cases the converse is true:

vi— v — (1 =) a

Proposition 2.1. Let a and b be two primitive isotropic vectors, or two short
roots, or two long roots. Then a and b are equivalent under I" if and only if their
images in V coincide. The number of I'-orbits of lines Ca, where a is a primitive
isotropic vector, a short root or a long root, is 40, 36 or 45, respectively.

Proof. The “only if” part is trivial. To prove the converse, we use the fact that
Aut(A) acts transitively on primitive isotropic vectors, on short roots, and on long
roots (see Theorems 7.21 and 11.13 of [ACTZ2]). It is a general fact that if a group
G acts transitively on a set X, N is a normal subgroup, and = € X has stabilizer
G, in G, then the orbits of N on X are in 1-1 correspondence with the cosets in
G/N of the image therein of G,. We apply this with G = Aut(A), N =T, and
z a primitive isotropic vector, short root or long root of A. Then the number of
I-orbits into which the Aut(A)-orbit of z splits is equal to the index in O(5, 3) of
the reduction modulo /=3 of Aut(A),. We will now compute these reductions.
We first take z to be a primitive null vector. According to paragraph 7.8
of [ACT?2], its stabilizer in Aut(A) contains as a normal subgroup a Heisenberg
group with center Im(€) and central quotient £2, and the stabilizer modulo this
Heisenberg group is the isometry group (Z/6)3 : Ss of the lattice £2. (The notation
“” is ATLAS notation [Co] for a semidirect product.) By considering the matrices
for these transformations, it is easy to see that the center of the Heisenberg group
acts trivially on V, that £ acts as £2/(/—3E&%) = (Z/3)>, that (Z/6)> acts as
(Z/2)3, and that S3 acts faithfully. The image of the stabilizer in O(5,3) is a
group 3%:23: S3, which has index 80 in O(5, 3). Next we take z to be a short root
of A, say (0,0,0,0,1), and Z to be its image in V. Then the stabilizer of Z is the
orthogonal group of Z, which is generated by the reflections in the nonisotropic
elements of Z+. One can enumerate these vectors and check that each is the image
of a root of . The biflections in these roots reduce to reflections of V, proving
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that the stabilizer of z in Aut(A) surjects to the stabilizer of Z, which has index 72
in O(5,3). Exactly the same argument applies if z is a long root, say (0,0,0,1,1),
yielding an index of 90.

We have shown that there are 80 (resp. 72, 90) orbits of primitive isotropic
vectors (resp. short roots, long roots) in A, which is the same as the number
of nonzero elements of V' of norm 0 (resp. —1, 1). Since the map from I'-orbits of
such lattice vectors to the corresponding set of vectors in V' is onto, it is bijective.
This proves the first claim of the theorem, and the second follows immediately.

O

3. The ball quotient

The group I' acts on a complex 4-ball in the projective space of C1* = A ®¢ C.
We will describe this in some generality, for convenience in later sections. Let o
be an order in an imaginary quadratic number field. An o-lattice L is a finitely
generated projective o-module equipped with a Hermitian pairing (,) on L that
takes value in the field of fractions of 0. We take such pairings to be antilinear in
the first and linear in the second variable. We say that L is Lorentzian when its
signature is (1,n) with n > 1. A point of the projective space P(L ®, C) is called
positive if it is represented by a vector of positive norm. When L is Lorentzian,
the positive points form an open n-ball B(L) in projective space, which is also
called the complex hyperbolic space of L. Aut(L) acts properly discontinuously
on B(L), and there is a natural compactification of the quotient, due to Baily and
Borel [BB]. A cusp is an element of P(L ®, C) that can be represented by an
isotropic lattice vector. The cusps are the rational boundary points of B(L), and
there are only finitely many orbits under Aut(L). We denote by B*(L) the union
of B(L) with the set of all cusps. The group Aut(L) acts on this extension, and
the quotient of B*(L) by any finite-index subgroup of Aut(L) carries the structure
of a projective algebraic variety.

In our setting we have 0 = £ and L = A. The hermitian form on C'* = A®¢ C
is given by (2.1), and the identification of B(A) with the complex 4-ball is easy.
Namely, any element of B(A) has a unique representative z € C“* whose z-
component is 1. Considering the remaining coordinates identifies B(A) with the
set of all (21,...,24) € C* satisfying

|le2+...+lz4|2<1, (3.1)

We will write By for B(A). We are interested in the quotient X of B by I' C
Aut(A). By Prop. 2.1, there are forty I™-orbits of cusps in B}, so the boundary of
the Baily—Borel compactification of B, /T" consists of 40 points.

If a € A has negative norm then the orthogonal complement a' of a in P(CH*)
meets B4 nontrivially, and we can also consider the intersection a' N B} and its
image in X. It is known that the image is an algebraic subvariety of codimension
one. We are particularly interested in this construction for a a root of A; in this
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case we call a~ N B} a mirror (of B}). The terminology derives from the fact that
the mirror is the fixed-point set of the reflection(s) in a, and we call the mirror
short or long according to whether a is short or long. The image in X of a short
(long) mirror is called a short (long) mirror of X. For convenience we sometimes
call a vector in V' a short (resp. long) vector if it has norm —1 (resp. 1). Note
that 2 = —1 in F3. The short (long) vectors in V are exactly the images of the
short (long) roots of A. The short (long) mirrors in X correspond to the 36 (45)
pairs {£a} of short (long) vectors of V. We will need some results about the
intersection behavior of mirrors. Orthogonality of mirrors in B} is defined in the
obvious way, and we call two mirrors in X orthogonal if the corresponding vectors
in V are orthogonal. If two mirrors in B} are orthogonal then so are their im-
ages in X. In fact we could take this as the definition of orthogonality of mirrors
in X.

Lemma 3.1. Two short mirrors in By are either orthogonal or disjoint.

Proof. We take z and y to be short roots whose mirrors are the given mirrors.
If the mirrors meet in B* then a point of the intersection represents a positive-
definite one-dimensional subspace of C1*. Its orthogonal complement is negative
definite and contains x and y. Hence the Gram matrix of z,y must have positive
determinant, so (z,z){y,y) — [{z,y)|* > 0, so |{z,y)|> < 1. Since (z,y) € £ we
must have (z,y) = 0. O

We now introduce the notion of a cross. This is fundamental for the paper
because the automorphic forms we will construct vanish exactly along the points
of a cross in B;. The word “cross” is meant to suggest mutual orthogonality.

Definition 3.2. A cross in V is a set of 5 pairwise orthogonal pairs *a;, one pair
consisting of long vectors and the others consisting of short vectors. The associated
cross in X is the union of the mirrors of the ta;; it follows that a cross in X is a
set of 5 pairwise orthogonal mirrors, one long and 4 short. The associated cross
in B} is the preimage of the cross in X. A point of B} lies in this cross just if it
s orthogonal to a root whose projection to V is one of the ta,.

Since the three types of cross are in natural bijection, we will pass between
them without comment.

Lemma 3.3. There are 135 crosses, three containing each of the 45 long mirrors
of X, and the 185 crosses are all equivalent under O(5,3). More precisely, if £ is a
long mirror in X then the 12 short mirrors orthogonal to £ decompose in a unique
way into three sets of 4 mirrors which are pairwise orthogonal, and the stabilizer
of € in O(5,3) permutes these sets transitively.

Proof. The transitivity of O(5,3) on crosses in V is obvious, and the rest is just a
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calculation. By symmetry it suffices to check this for a single long vector a, say
(1,0,0,0,0). Then the three classes are

{:l:(()? 17 07 07 0)7 :t(07 07 17 070)7 :b(07 07 07 170)7 :f:(O,O7 07 07 1)}7
{x(0,-1,1,1,1), £(0,1,—-1,1,1), =£(0,1,1,-1,1), =£(0,1,1,1,—1)},
{:l:(()? 17 17 17 1)) :i:(()? 17 17 —'17 —'1)7 :i:(()? 1) —17 1) —1)7 :l:(()) 11 _17 _17 1)} g

O

The purpose of the following theorem is to allow us to prove in section 4 that
the automorphic forms we construct there have no common zeros.

Theorem 3.4. No point of X lies on all 135 crosses. Suppose p is the point of By
represented by (1,0,0,0,0) € A and p is its image in X. Then p is the only point
of X that lies on all the crosses containing p. Finally, for each boundary point b
of X, b is the only point of X that lies on all the crosses containing b.

In order to prove the theorem we will need to understand the I'-orbits of points
of B, that, like p, lie on four short mirrors. If ¢ is such a point, then ¢ is a copy of
the unimodular lattice £%*, and it follows that g is represented by a lattice vector
of norm 1, and indeed by six such vectors. The images in V of these vectors and
of the short roots of ¢ form a cross, which we call the cross associated to g.

Lemma 3.5. The map just defined, which associates a cross to each point of By
that lies on 4 short mirrors, defines a bijection from the set of I'-orbits of such
points to the set of crosses. If each of p, q € Ba lies on four short mirrors, and the
images in V of the short roots of p- coincide with the images of the short roots of
g, then p and q are T-equivalent.

Proof. For the first claim one uses the argument of Prop. 2.1. The essential facts
are that Aut(A) acts transitively on such points of B4 and that the stabilizer in
Aut(A) of such a point of By is (Z/6) x (Z/6)* : Sy, which reduces modulo /—3 to
(Z/2)° : S4, of index 135 in O(5,3). (The transitivity statement follows from the
fact that such points in B4 correspond bijectively to the decompositions of A as a
direct sum £ @ £%4.) The second claim is a consequence of the first: the short
vectors of a cross determine the cross uniquely, so the crosses associated to p and
q coincide. (Il

Proof of Theorem 3.4. Most of the proof consists of computer calculations con-
cerning combinatorics in V'; we will describe the ideas in sufficient detail for them
to be reproduced easily.

One can enumerate the roots orthogonal to p, and their images in V. A cross
contains p just if it contains one of these images. One can compute the set C of
crosses satisfying this condition, and one finds |C| = 69 < 135. In particular, p
does not lie on all 135 crosses. Now we will show that p is the only point of B4 (up
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to T-equivalence) that lies on all the crosses containing p. Suppose g € By lies on
every cross of C; we will show that ¢ is I'-equivalent to p. First we will show that
q lies on 4 short mirrors. Otherwise, the short roots orthogonal to ¢ project into
some triple T' of mutually orthogonal antipodal pairs of short vectors of V. If ¢
lies on every cross in C then there is a way to choose a root in ¢ for each C € C,
such that the image in V' of the root is one of the vectors of C. In particular, there
is a way to choose an element v € C for each C € C, such that (1) if v is short
then v € T, and (2) the span of all the v’s has dimension at most 4. For each of
the 540 possibilities for T one can count the number of ways to choose vectors v
satisfying (1) and (2). It turns out that there are no ways to make such a choice,
and it follows that ¢ cannot lie on only 3 (or fewer) short mirrors.

We have shown that the short roots of gt project onto some quadruple of
mutually orthogonal antipodal pairs of short vectors of V', which we will denote
by T'. As in the previous paragraph, there is a way to choose an element v € C' for
each C € C, such that (1) and (2) are satisfied. For each of the 135 possibilities for
T, one can count the number of ways to make such a set of choices. It turns out
that for only one quadruple is there a way to do this, and this quadruple consists
of £(0,1,0,0,0),...,4(0,0,0,0,1). Therefore the images in V of the short roots
of ¢t are these 8 vectors. Since these are also the images of the short roots of pt,
the I'-equivalence of p and ¢ follows from Lemma 3.5.

Now we turn to the boundary points of X. If b is a boundary point of B} then
we may represent it by a primitive isotropic lattice vector w, and a cross contains
b just if it contains the image in V of a root orthogonal to w. One can check
that every nonisotropic element of V' that is orthogonal to the image w of w in
V is the image of a root in w'. (This is easy to check for any given w, and the
result follows for general w because of the transitivity of Aut A.) It follows that
the set of crosses Cp containing b consists of the crosses which contain a vector of
V orthogonal to w. It is easy to compute the sets Cp for each of the 40 orbits of
boundary points, and to check that no Cy is a subset of C. This proves the second
claim of the theorem. The first claim then follows, because no point of X except
for the image of p lies on every cross in C, and this point lies on only 69 of the 135
Crosses.

Now we show that no point of By lies on all the crosses in Cp, for any boundary
point b. By symmetry it suffices to treat just one C,, and the proof is almost
identical to the one used above. If ¢ € By, then the short roots of ¢ project into
some quadruple T' of mutually orthogonal short vectors of V. If g lies on every
cross in Cp then there is a way to choose an element v € C for each C € Cp, such
that (1) and (2) are satisfied. An enumeration shows that there is no way to make
such a choice, and the claim follows. Finally, it is easy to compare the Cp’s with
each other as b varies over the (I'-orbits of) boundary points, and check that none
of the Cp’s contains any other. It follows that for each boundary point b of X, b is
the only point of X that lies on all the crosses containing b. This completes the
proof.
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We verified the enumerations with a computer program written in C++, which
ran to completion in less than a minute. Repeatedly checking condition (2) re-
quired more than 4 x 108 row-reduction operations, and we did this efficiently by
enumerating the 3% elements of V and preparing a lookup table of all 3°2 possible
row-reductions. O

4. Automorphic forms on the ball

Borcherds has given two constructions for automorphic forms on O(2, n), which we
will use to build automorphic forms on the 4-ball. Here we will use his additive lift
[Bol, §14], which generalizes correspondences of Shimura, Doi-Naganuma, Maass,
Gritsenko, and others. In the next section we will discuss his other construction,
which uses infinite products.

We begin in the setting of section 3, with 0 an order in an imaginary quadratic
number field, L an o-lattice of signature (1,n), B(L) the associated ball in pro-
jective space, and B*(L) the union of the ball with the cusps. We assume that L
is integral (all inner products lie in o) and that n > 1, so that L has dimension
at least 3. We define B(L) and B*(L) to be the preimages of B(L) and B*(L)
in L ®, C. If G is a subgroup of Aut(L) and v : G — S' C C* = C — {0} is a
character of GG then an automorphic form of weight k € Z with respect to G and
v is a holomorphic function f : B(L) — C satisfying

fltz) =t7%f(2) for t € C*

and
flyz) =v(v)f(z) for y € G.

(If n were 1, so that B(L) were one-dimensional, then we would impose an addi-
tional condition of regularity at the cusps.) We denote the space of all such forms
by [G, k,v], or by |G, k| if v is trivial.

One can extend an automorphic form f : B(L) — C to B*(L) in a natural
way, providing boundary values for f. If a is an isotropic element of g*(L), SO
that it represents a cusp, then by the non-degeneracy of (-,-) we may choose
b e L ®, C satisfying (b,a) # 0. For all 7 € C with sufficiently large imaginary
part, 7a + 2i(b, a)b has positive norm. The limit

fla) = _lim f(ra+ 2i(b, a)b)
exists and is independent of the choice of b. This follows from the Fourier Jacobi
expansion of f at a cusp; we refer to [Sh| for more details.

An automorphic form f € [G, k,v] is of course not a function on B(L) unless
k = 0. But it is clear that the zero-locus of f is preserved by G and scalar
multiplication, so the set of zeros of f in B*(L)/G is well-defined. It is a closed
algebraic subvariety of pure codimension one.
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Now we will discuss Borcherds’ additive lift. We consider the Z-lattice M
underlying L, which is the underlying Z-module equipped with the even integral
bilinear form

(a,b) :== {(a,b) + (b,a) ,
which has signature (2,2n). The dual lattice with respect to (-, -) is denoted M’,
and M’'/M is a finite group. We remark that if o, 8 € M'/M then (a,a) and
(5, B) are well-defined modulo 2, while («, 3) is well-defined modulo 1. The group
SL(2,Z) acts on the group ring C[M’/M] by means of the Weil representation oay,
which is defined in terms of the standard generators

T— (é }) and S = (? _01>
om(T)ea = exp(mi(a, a))ea,

in— 1
om(S)eq = T Z exp(—2mi(a
Vi / BEM//M
(We denote the standard generators of the group ring C[M’/M] by e,, with «
varying over M’/M.) The Weil representation factors through SL(2, Z/NZ), where
N is the smallest natural number such that & (a, a) is integral for all a € M'.
The inputs of Borcherds’ additive lift are vector valued modular forms f : H —

C[M'/M] on the usual upper half plane H with respect to the Weil representation.
More precisely, we require that f = (fo)acar/m satisfy

fa (T+1) =@ f (1),

1 )
fa _ 2\ L ktlen —Qﬂl(a,ﬂ)f , d
( ) T — BE%M 3(7), an

f is holomorphic at the cusp infinity.

by

:B))es

The weight of f is the exponent k 4+ 1 — n of 7 in the second condition. While
Borcherds’ additive lift allows inputs which have poles at the cusps, we do not
need this extension. But even in the case of modular forms which are regular
at the cusps, Borcherds extended previous constructions because he imposes no
restriction on the weight of f, and does not require that f be a cusp form.

The additive lift is a linear map ¥ from the space of such f into a certain space
of automorphic forms on B(L). We give its important properties in the following
theorem, which is a specialization of Theorem 14.3 in [Bol] to U(1,n) C O(2, 2n).

Theorem 4.1. Let G be the subgroup of Aut(L) that acts trivially on M’'/M.
There erists a linear map V (the additive lift) from the space of elliptic modular
forms with the properties 1-8 above into the space |G, k] of automorphic forms of
weight k with respect to G and the trivial character. This lifting is equivariant
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with respect to the action of Aut(L). (Aut(L) acts on |G, k] because G is normal
in Aut(L), and on the space of elliptic modular forms via its action on M'/M.)

Furthermore, Borcherds shows how to compute the values of W(f) at the cusps
of B*(L) from the Fourier coefficients of f.

We now turn to the case of interest, with 0 = & and L = A. The Z-lattice
underlying the 1-dimensional lattice £ is the Ay root lattice (the hexagonal lattice
in the plane with minimal norm 2), which has index 3 in its dual. From the
definition of A as a direct sum, we see that M’/M has order 3°. Indeed more is
true: M’ coincides with (v/=3)"!A, so that M’/M is canonically isomorphic to
the Fs-vector space V = A/v/=3 A introduced in section 2. In particular, G is the
congruence subgroup I'. One can check that if o, 5 € M’/M then (e, 3) is 0, 2/3
or —2/3 (modulo 1) according to whether the corresponding elements of V' have
inner product 0, 1 or —1 (in F3). Similarly, if « € M’'/M then (o, &) is 0, 2/3 or
—2/3 (modulo 2) according to whether the corresponding element of V' has norm
0, 1 or —1. It follows from this that the level of the Weil representation is N = 3,
so that the representation factors through SL(2,Fs). We will usually write V in
place of M’/M to lighten the notation.

We apply Theorem 4.1 in the simplest case, where f is a modular form of
weight 0, hence a constant, which is to say an element of C[V]3*2F3) The weight
being 0 means that 1 — k +mn = 0, so that K = n — 1 = 3. Therefore Borcherds’
additive lift gives a linear map

C[V]SLFs) [, 3] .

We remark that since I contains the cube roots of unity acting as scalars, every
automorphic form on By for I', with trivial character has weight divisible by 3.
Our first task is to find some elements of C[V]34(2Fs),

Lemma 4.2. Let ap,...,aq be an orthogonal basis for V' consisting of one long
vector and four short vectors, and let C = (Cy)acv € C[V] be defined by the
condition that Cy, is the complex number 1, 0 or —1 according to whether [[;(c, a;)
is the element 1, 0 or —1 of F3. Then C is invariant under the Weil representation.
Furthermore, C' changes sign under reflection in any of the a;, and is characterized
in C[V], up to a scalar, by this property.

To avoid the impression that the C’s were discovered by clever guesswork, we
should mention that we found this construction quite late, following extensive
computer work.

Proof. The behavior of C' under the reflections is obvious, and the invariance under
SL(2, F3) may be checked by a computer calculation. To see the last claim, suppose
D = (D,) € C[V] has the stated property. If a is orthogonal to one of the a; then
we have D, = —D, by the transformation rule, so that D, = 0. The remaining o
fall into a single orbit of size 32 under the group (Z/2)° generated by the reflections
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in the a;, so all the remaining D, are determined by any one of them. (Il

It is easy to work this out explicitly in an example: if ag, ..., a4 are (1,0,...,0),
..,(0,...,0,1) then C is supported on those « of the form (£1,...,%1), with
C, = +1 or —1 according to whether there are an even or odd number of minus
signs. Note that C is supported on the isotropic vectors in V', which is not imme-
diately obvious from the construction. It follows from the lemma and Theorem 4.1
that to each cross there is associated an automorphic form on By, well-defined up
to sign. We will see below that the zero-locus of this form is exactly the associated
cross in By. To resolve the sign ambiguity it is convenient to introduce the notion
of a signed cross. This is just a basis {ag, ..., a4} as in the lemma, modulo the
equivalence relation that {aq, ..., a4} ~ {af, ..., a}y} if the of differ from the a; by
a permutation and evenly many sign changes. It is clear that there are two signed
crosses for every cross, and that the lemma assigns an element of C[V] to each of
the 270 signed crosses.

Lemma 4.3. The space
(C[M//M]SL(Q,Z) _ C[v]SL(?,Fs)

has dimension 10 and is spanned by the elements of C[V] associated to the signed
erosses. The group O(5, 3) acts irreducibly on this space, with W (FEg) acting by its
unique 10-dimensional irreducible representation and the central involution acting
by —1. The multiplicity of this representation in C[V] is one.

Proof. It is easy to make a computer construct the elements C of C[V] associated
to the signed crosses and check that their complex span Z is 10-dimensional.
Consulting the character table shows that any 10-dimensional representation of
W(Fs) is either trivial, or the irreducible representation in 10 dimensions, or
else the sum of the (unique) irreducible 6-dimensional representation and a 4-
dimensional trivial one. These may be distinguished by the trace of almost any
group element, say a short reflection R, which has ATLAS [Co] conjugacy class
2C. The fixed space of R in Z is spanned by the vectors C + R(C) where C is as
above. It is easy to check that this space has dimension 5, so that R has trace 0,
so that W (Ejg) acts irreducibly on Z. It is obvious that each C' changes sign under
the central involution of O(5,3). If the multiplicity of this O(5, 3)-representation
in C[V] were more than one, then the subspace of C[V] that changed sign under
the reflections of each vector in a cross would have dimension > 1, contrary to
Lemma 4.2.

To see that Z is all of C[V]|54(2F3) suppose C' = (C,)acv is an element of
C[V]SL(Q*IF s). Invariance under 7' means that C is supported on the 81 isotropic
elements. Invariance under S?2 = —J means C_, = —C,. Invariance under S
can be read as a linear equation in 40 indeterminates, and it is easy to make
a computer check that the space of solutions has only 10 dimensions. If one
is prepared to do more work with group characters, one can of course find the
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complete decomposition of C[V] under SL(2,F3) x O(5, 3); this is done in [Fr]. O

We will write W for the image of Borcherds’ additive lift C[V]3:(2Fs) — [T, 3].
Our next theorem asserts that the automorphic forms we have constructed are
nontrivial:

Proposition 4.4. Borcherds’ additive lift
C[V]SLEFs) W c [I, 3]
is an O(5, 3)-equivariant embedding.

Proof. The O(5, 3)-equivariance is part of Theorem 4.1. To prove injectivity, we
construct an inverse by using the boundary values of the automorphic forms.
Namely, if f € [I', 3] then we define C = (Cy,)acv by taking C, = 0 if « is zero or
nonisotropic, and C, = f(&) otherwise, where & is any primitive isotropic vector
in A representing «. This definition is independent of the choice of & because
f is I'-invariant and all the primitive isotropic preimages of « are I'-equivalent
(Prop. 2.1). The irreducibility of C[V]3*(>Fs) as an O(5,3)-module and the fact
that its multiplicity in C[V] is one imply that the composition

C[V]SL(27]F3) additive lift W C [1_,7 3] boundary values (C[V]

is a scalar. The problem is to show that this scalar is nonzero. This is a straightfor-
ward but tedious calculation using Borcherds’ formulae for the Fourier expansions
of additive lifts ([Bol], 14.3) and the explicit embedding of B, into the hermitian
symmetric space of O(2,8). The latter space consists of two-dimensional positive
definite real subspaces of M @z R. Every positive definite complex line in A ®¢ C
(i.e. a point in By) defines such a subspace. One has to express this embedding in
the coordinates which Borcherds uses in his theorem 14.3. Details of this calcula-
tion can be found in section 6 of [Fr]. O

Lemma 4.3 shows that our 270 automorphic forms satisfy many linear equa-
tions. Some of these are easy to see, and those treated in the following lemma will
receive a geometric interpretation in section 7. To formulate the lemma we note
that there is an O(5, 3)-invariant inner product on W, which is unique up to scale
by the irreducibility of the representation.

Lemma 4.5. Let v be a long vector of V.. Then the automorphic forms associated
to the siz signed crosses involving v lie in a 2-dimensional subspace of W, and
form a scaled copy of the Ay root system, i.e., the vertices of a reqular heragon
centered at 0.

Proof. One can check this by computing the inner products of the 6 elements of
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C[V], using the restriction of the inner product

((Coz)7 (Doz)) = Z CoDo

acV

which is obviously O(5, 3)-invariant and therefore the natural inner product. But
here is a conceptual argument. The reflection R in v is not in the simple subgroup
of W(FEg), but —R is, and has conjugacy class 24 in ATLAS notation. Consulting
the character table shows that —R has trace —6, so that the subspace Z of W that
R negates has dimension 2. Lemma 4.2 associates to each of the three crosses a
one-dimensional subspace of Z. Therefore the six signed crosses define a hexagon
in Z, and symmetry considerations force it to be regular. (Il

We recall the notion of the divisor of an automorphic form. Let Y C X be
an irreducible subvariety of codimension one. We denote by ey the ramification
degree with respect to the natural projection = : By — X (counted as 1 if 7
is unramified along Y). If Y is a short mirror this ramification degree is three,
because the triflections are contained in I'. For any other Y, such as a long mirror,
it is one. If I is a nonzero automorphic form for I and the trivial character, then
the vanishing order of I along 7~ 1(Y) is divisible by ey. We call the quotient of
this vanishing order by ey the order of F' along Y and denote it by ny (F'). The
divisor of F' in X is the finite sum

(F):= > ny(F)Y .
YicX
We consider a cross in X as a divisor with multiplicity one at all 5 of its mirrors.
A fundamental result for this paper is

Theorem 4.6. Let F' # 0 lie in the one dimensional space of automorphic forms
associated to a cross. Then the divisor of F' in X is exactly this cross. The 270
automorphic forms associated to the signed crosses have no common zeros in Bj.

To prove this we will need a result whose proof we postpone to the next section.
We remark that the form x4 given here was first discovered by Borcherds [Bo3].

Theorem 4.7. There is an automorphic form x4 € [Aut(A),4,v] for some char-
acter v of Aut(A), whose divisor in By is the sum of all the short mirrors, each
with multiplicity one. Similarly, there erists xrs5 € [Aut(A), 75,v'] for some char-
acter v' of Aut(A), whose divisor in By is the sum of all the long mirrors, each
with multiplicity one.

Proof of Theorem 4.6. Suppose the cross is {taq,...,Las} C V. If a is a root
of A representing any of the +a;, and R is the biflection in a, then the relation
F o R = —F (which follows from the construction of F') implies that F' vanishes
along the mirrors of a. Furthermore, if @ is a short root then F' is invariant
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under the triflection in a, so that the multiplicity in By is divisible by 3. It
follows that the divisor of I’ in B4 contains the short mirrors of the cross with
multiplicity 3, plus the long mirrors of the cross. To prove the theorem it suffices
to show that this is the full divisor of F. To see this we construct the product
P of all 270 automorphic forms, and divide P by x3°x%, where x4 and yr4 are
as in Theorem 4.7. The quotient is holomorphic because P vanishes to order at
least 6 along each long mirror in B4 and least 270 - 3 - 4/36 = 90 along each short
mirror. The quotient has weight 270 -3 — 90 -4 — 75 - 6 = 0, so is constant. It is
nonzero because each I is nonzero. Therefore the divisor of P is the same as that
of x3°x%x; since this is also the sum of the “known” divisors of the various F, the
first statement of the theorem follows. The second follows immediately from this
and Theorem 3.4. (Il

5. Borcherds products and the proof of Theorem 4.7

We recall some facts about automorphic forms on O(2,n), where O(2,n) is the
orthogonal group of a real vector space V with a symmetric bilinear form (-,-)
of signature (2,n). Let H,, denote the hermitian symmetric space associated to
O(2,n). It can be realized as an open subset of the quadric defined by (z,z) =0
in the projective space P(V(C)), where we extend (-,-) to a C-bilinear form on
V(C). Namely, it is one of the two connected components of the open subset
defined by (z,z) > 0. A subgroup O'(V) of index two of the orthogonal group
O(V) acts biholomorphically on H,,. Let 7:[n denote the inverse image of H,, in
V(C). We restrict henceforth to the case n > 2 for convenience. If M is an even
integral Z-lattice in V, then a meromorphic automorphic form of weight k£ € Z
with respect to a subgroup G of finite index in

O'(M)=0(M)NO'(V)
and a character v of G is a meromorphic function f on H,, with the properties

f(vz) =v(v)f(2) for all v € G, and
ftz) =t % f(2) for all t € C°.

We next recall the notion of a Heegner divisor: let m be a negative rational
number and let o be an element of M’/M, where M’ denotes the dual lattice.
The Heegner divisor H(a, m) C H,, is the union of the orthogonal complements
vt NH,, where v runs through all elements of M’ satisfying

v=amod M and (v,v)=2m.

We consider H(«, m) as a divisor on ‘H,, by attaching multiplicity 1 to all compo-
nents. It is obvious that H(«, m) = H(—a, m), so that the divisor depends only
on m and the image of o in (M’/M)/ £ 1.

Borcherds introduced in [Bol] a method for constructing automorphic forms
on H,, whose divisors are sums of Heegner divisors. Then, in [Bo2], he constructed
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a ‘space of obstructions’ to the use of this technique for constructing automorphic
forms with divisor equal to some given sum of Heegner divisors. This space consists
of all elliptic modular forms of weight

k= (24n)/2

with respect to the dual ¢* := g}, of the Weil representation. We restrict to the
case of even n since the Weil representation simplifies and this is the only case
we need. Such a form (fs)aecnr/as is required to be holomorphic at the cusp at
infinity and satisfy the transformation laws

falr+1)= e*”““v“)fam

24+n
Z 27r1(oz,ﬂ)f )
; /7 /3
\/T ﬁEM’/M

As in section 4 we note that (o, ) is well-defined modulo 2 and (a, 3) is well-
defined modulo 1, so that these formulas make sense.

Elements of the space of obstructions can be constructed by means of Eisenstein
series, as follows. We write R for the group ring C[M’/M] and Ry for the subspace
on which (—1)%o*(—I) acts trivially. Since (—1)#o*(—I) acts by exchanging e,, and
€_o, Where the e, form the standard basis of R as « varies over M'/M, a basis
for Ry is given by the elements

e+ €—a, ae (M/M)/+1.

(11
0 (0 1)55

then (cr + d)~%p*(Q)~'¢ remains unchanged if one replaces @ by PQ, where
P ==+ (}%) lies in the stabilizer SL(2,Z)o of 0o and @ = (%) € SL(2,Z). This
lets us define the Eisenstein series

Ee(r) = > (er +d)*o"(Q) ¢,

Q:< 3 g) €SL(2,2)00\ SL(2,2)

If ¢ € Ry satisfies

which is a modular form of weight £ with respect to o*, so it lies in the space of
obstructions. Furthermore,

lim FEe(r)=¢.

Imr—o0

In particular, if £ # 0 then Eg is not a cusp form.

Remark 5.1. Under our assumption » > 2 we have k > 2, and in this case the
space of Eisenstein series of weight k& and with respect to ¢* is isomorphic the
space of all £ € Vj; with

o (p1)e=¢  (ndo-De= -1k
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Using Remark 5.1 one can reformulate a fundamental result of Borcherds [Bol],
[Bo2] as follows.

Theorem 5.2. Suppose D is a finite Z-linear combination

Z C(ay,m)H (a, m)
ac(M’/M)/£1, m<0
of Heegner divisors and G is the subgroup of O'(M) that acts trivially on M’ /M.
Then D is the divisor of a meromorphic automorphic form on H, with respect to
some character of G if for every cusp form f in the space of obstructions, say

falT) = D ag(m)exp(2rim7), (5.1)

meQ

the relation

Yo aa(-m)Cla,m) = (5.2)

m<0,0eM’ /M

holds. The weight of such an automorphic form is

S ba(m)C(a,—m),

meQ, acM’ /M

where by, (m) denotes the Fourier coefficients of the (unique) Eisenstein series with

constant term
—1/2 ifa=0,
0 otherwise.

We want to apply this theorem to our lattice A = £, or rather to its un-
derlying Z-lattice M. The obstructions have weight & = (2 + 8)/2 = 5, and if
the space of obstructions vanished then the existence of the forms of Theorem 4.7
would follow easily from Theorem 5.2 by restriction from Hg to By. There are
obstructions, and even cuspidal obstructions, but we will show that there are no
O’(M)-invariant cusp forms in the space of obstructions, and this turns out to be
enough to establish Theorem 4.7. Here, O'(M) acts via its action on M’/M.

Theorem 5.3. For M equal to the Z-lattice underlying A = E%*, the space of
O/ (M)-invariant obstructions has dimension two and is spanned by Fisenstein
series. The space of invariant cuspidal obstructions vanishes.

Proof. The O'(M )-invariant part of C[M’/M] has dimension 4, because O'(M)
acts with 4 orbits (or ‘types’) on M'/M. The type of an element o € M'/M is
defined as 00 if o is the zero element and as ¢ € {0, 1,2} if o is different from
zero and (a, a) = 2¢/3 mod 2. There are 1, 80, 90 and 72 elements of M’/M of
types 00, 0, 1 and 2, respectively. We will express an invariant obstruction h as
(hoo, ko, b1, ha), where each hy is the sum of the h, as o varies over the elements
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of M'/M of type t. A calculation allows one to determine the action of SL(2,
with respect to this basis. It turns out that the standard generators T' = (}
and S = ({ ') act by

zZ)
1)

1 11 1 1

o |1 cien 1 |80 -1 8 —10
4 (T)* w? and o (S)* 35/2 90 9 —9 0
w 72 -9 0 9

Borcherds [Bo2] gives a formula for the dimension of the space of elliptic modu-
lar forms of given weight that transform according to some given representation
of SL(2,Z), in terms of the eigenvalues of certain elements of SL(2,Z). Ap-
plying this formula to the 4-dimensional representation above shows that the
space of obstructions has dimension 2. On the other hand, the space of Eisen-
stein series is also 2-dimensional, because another calculation shows that the sub-
space of C[M'/M]° M) whose elements satisfy the conditions of Remark 5.1 is
2-dimensional. Since a cuspidal Eisenstein series vanishes identically, the theorem
follows. O

Corollary 5.4. With M as in Theorem 5.8, every divisor D as in Theorem 5.2
that is O'(M)-invariant is the divisor of a form on Hg that is automorphic with
respect to some character of O'(M).

Proof. Since D is O'(M )-invariant it satisfies condition (5.2) for all f as in (5.1) if
and only if it satisfies the condition for all such f that are also O’( M )-invariant.
Therefore the theorem assures us of the existence of an automorphic form for
G C O/(M) with divisor D, and since D is O’(M )-invariant the form must be
automorphic with respect to some character of O'(M) itself. O

In order to find the weights of the forms constructed in this way, we need the
Eisenstein series with constant term b,(0) = —1/2 for & = 0 and b,(0) = 0 for
other .. To compute this series we construct a basis for the space of Eisenstein
series and then take a suitable linear combination. The Weil representation fac-
tors through SL(2,Z/37Z), so our Eisenstein series are linear combinations of the
classical elliptic Eisenstein series of level 3, namely

/ 1
Gk(T;C7d7N) = miz m 5
n;; mod N
where the level N is 3 and the weight k is 5. We write F, F,, F3 and E, for the
four classical Eisenstein series corresponding to the values (¢,d) = (0,1), (1,0),
(1,1) and (1,2). We will continue to use the notation introduced in the proof of
Theorem 5.3.

Proposition 5.5. With M as in Theorem 5.3, a basis for the space of O'(M)-
tnvariant obstructions consists of the Fisenstein series f and g given by
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iv3 1
Joo = FEl = E(EQ + E3 + Ey)

5iv/3 5
Jfo=-— 9 E1+§(E2+E3+E4)
fi=0
fo=Ey +w?Es + wEy
" 3E+1(E + Es + Ey)
goo = 18 1 18 2 3 4
4iV/3 4
90=—5 E1+§(E2+E3+E4)

g1 = Ey +wEs +W?E,
gos — O

Proof. If h = (hoo, ho, h1, ha) is an O'(M )-invariant Eisenstein series then each
component of A is a C-linear combination of 1, ..., F/4. The manner in which the
E;’s transform into each other under SL(2,Z) is known, and the transformation
laws of h with respect to ¢* reduce to a set of linear conditions on the coefficients
of the E;’s. One then solves the system of linear equations. (Of course, once one
has the answer one can simply check it.) (Il

The Fourier coefficients of the Eisenstein series can be found in many text
books, for example [He, no. 24, section 1] or [Fr]. This lets one find the Fourier
expansions for f and g; once these are known then one can find the unique ob-
struction h whose Fourier coefficients b, (m) have constant term as in Theorem 5.2.
The answer turns out to be given by

hoo = —1/2 4+ 12q+ 225 4% + 1092 ¢> 4+ 2892 ¢* + . ..
ho = 1080 ¢ + 16200 ¢> + 87480 ¢> + 260280 ¢* + 673920 ¢° + ...
hi = 225 ¢*/3 + 9360 ¢°/% + 57825 ¢°/3 4 219600 ¢'1/3 + 540450 ¢**/> + . ..
he = 12¢"/3 + 2892 ¢*/3 + 28824 ¢7/3 + 112320 ¢*%/ + 342744 ¢'3/3 ... .

Proposition 5.6. With M as in Theorem 5.3, there exists an automorphic form
on Hg for O'(M), of weight 12 (resp. 225), whose zeros are the orthogonal comple-
ments of the vectors v € M’ satisfying (v,v) = —2/3 (resp. (v,v) = —1/3). The
vanishing order is one.

Proof. This follows from Theorems 5.2 and 5.3. For the form of weight 12 (resp. 225)
we take D to be the sum of the H(a, m) where m = —1/3 (resp. m = —2/3) and
« varies over the type 2 (resp. type 1) elements of (M'/M)/ £ 1. O
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We note that the form of weight 12 was found by Borcherds in [Bo3].

Proof of Theorem 4.7. We use the natural embedding U(1,4) — O’(2,8) and a
compatible holomorphic embedding B; < Hg. The short (resp. long) mirrors in
By are the intersections of the divisors described in Prop. 5.6. The orthogonal
complements in Prop. 5.6 occur in triples having the same intersection with By,
since if 7 is a root of A then 7, wr and w?r are roots with the same orthogonal
complement in By but different orthogonal complements in Hg. Therefore the
vanishing order of the restriction to B4 along each short (resp. long) mirror is
three. Taking a cube root yields a form of weight 12/3 =4 (resp. 225/3 = 45). O

6. A model for the moduli space of marked cubic surfaces

Recall the ten dimensional space W of automorphic forms for I'; the congruence
subgroup of level v/—3 in Aut(A). We know from Theorem 4.6 that these forms
have no common zero. Therefore, by choosing a basis for W we obtain an every-
where holomorphic map

B: X =BT — PO .
This map is algebraic by Chow’s theorem. By a result of Hilbert it is a finite map.

Hence the image is a projective algebraic variety ¥ C PY of dimension 4. In fact
more is true:

Theorem 6.1. The map B : X — V is birational.

After proving this theorem we will introduce a family of cubic 8-folds, each
of which contains V. Then we will sketch a proof that these cubic equations
actually define V. Our proof of Theorem 6.1 uses only our automorphic forms.
In section 7 we will prove that 3 is actually an embedding, but this relies heavily
on the very extensive calculations and involved arguments of [Na]. Theorem 6.1
follows immediately from the lemma:

Lemma 6.2. Let p be the point of By represented by (1,0,0,0,0) € A, and let
P denote its image in X. Then p is the only point of X mapping to B(p), and
B: X —V is a local diffeomorphism at p.

Proof. The first claim is a consequence of the second part of Theorem 3.4. In
order to prove the second claim we will find four elements of W, the sum of whose
divisors in X is a normal crossing divisor at p. For this we will need coordinates
around p. Coordinates around p € B4 may be taken to be z1,...,24 € €%, with
>, 1zi|* < 1 asin formula (3.1). The stabilizer I', of p, which is generated (modulo
scalars) by the triflections in the short roots

(07 1707 07 0)7 (07 07 17 07 0)7 (07 07 07 170) and (07 07 07 07 1)7
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acts by multiplying the z; by cube roots of unity. It follows that local coordinates
for X near p are given by the functions w; = z7. The four short mirrors of X
passing through p are given by the equations w; = 0. The long mirrors in B, that
pass through p are the mirrors of the 216 roots (0, a1, ..., as), where two of the a;
are zero and the others are sixth roots of unity. To work out their images in X it
suffices to treat the case where the nonzero a; lie in {£1}, since the orbit of these
under I';, is the entire set of 216. It is easy to check that the mirror z; = £z2; in
B, projects to the mirror w; = fw; in X. It follows that in our local coordinates
in X, the 12 long mirrors through p are given by the equations w; = fw; for the
various pairs ¢ # j.

We claim that for each long mirror m of X passing through p, there is a cross
C' containing it whose short mirrors do not pass through p. To see this, consider
the three crosses containing m. Because only two of the short mirrors passing
through p are orthogonal to m, one of the three crosses contains neither of these
mirrors. Since it cannot contain either of the other short mirrors, it has the
desired property and we take it to be C. Now, it is easy to find four long mirrors
mi, ..., myq Whose sum is a normal crossing divisor at p, for example those given
by w1 = Fws and w3 = twy. We let C; be crosses associated to the m; as above,
and f; be automorphic forms associated to the C;. Then the f; are necessarily
linearly independent, and we extend them to a basis fi,..., fio of W. Of course,
one of the f;, say fi0, does not vanish at p, and then f1/f1o,..., fo/fio are affine
coordinates near 3(p) € P°. It follows from the implicit function theorem and
the fact that f; (¢ = 1,...,4) has only a simple zero along m; that £ is a local
diffeomorphism as p. (Il

Next we will find some cubic relations satisfied by our automorphic forms; these
define cubic 8-folds in P?(C) which contain V. It is easy to explain the origin of
these relations: it can happen that there are three crosses Ci, Cy and C3, and
another three crosses C1, C} and Cj3, such that as divisors in X they satisfy

Ci1+Cy+ C3=C) + Ch+ Ci. (6.1)

If F; and F/ are nonzero automorphic forms in the one-dimensional subspaces of
W associated to the C; and C, then the divisors of Fy Fy F3 and F{FjF§ are equal
and therefore the two products coincide up to a scalar. This relation would be
trivial if the C] were obtained by permuting the C;, but nontrivial relations do
arise and can be found by studying the geometry of V. Here are some nontrivial
cubic relations, which turn out to be the only ones. (Only trivial relations can be
found if one plays the same game with pairs rather than triples of crosses.)

Lemma 6.3. Let (a1, as,as,bi,bs) be an ordered orthonormal basis of V, i.e., an
orthogonal basis of norm 1 wectors. Let S; be the signed cross given by the basis
{a;, a;1£b1, a;i—1£by}, and S| be the signed cross given by {a;, a;y1+ba, a;_1+b1},
where the subscript of a;11 should be read modulo 3. Writing F; and F] for the
automorphic forms associated to S; and S], we have F1FyF3 = F{FFy.
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Proof. We write C; and C] for the crosses underlying S; and S/. It is easy to check
that (6.1) holds, and it follows that FyF5F5 is a constant multiple of F|Fj}Fj.
To determine the constant, let o be the isotropic vector aq + as + a3 € V and
let & be any primitive isotropic element of A representing «. Using the product
formula of Lemma 4.2, it is easy to see that the element of C[V]S4(*Fs) associated
to each S; and S| has component 1 at a. By the relationship between the values
of elements of W at cusps of B} and at the corresponding elements of V' (see
the proof of Prop. 4.4), all the F; and F/ take the same value at &. Therefore
FiFyF5(a) = FiFjF3(&), and so FyFyFs = F{FJF;. O

Remarks. We will discuss coincidences among these relations, and the fact that
they account for all the relations arising from crosses C;, C/ satisfying (6.1). If
(ay, a9, as, 131, 132) is another ordered orthonormal basis for V', then the relations
given by the two bases are essentially the same if

{+ay, £as, tas} = {+a1, £ao, +as} and {£by, £bo} = {&by, £by}.  (6.2)

By “essentially the same” we mean that each relation implies the other. There
are |O(5,3)]/2° 312! = 270 equivalence classes of ordered orthonormal bases under
the relation (6.2), yielding 270 cubic relations. It is easy to make a computer
enumerate all nontrivial pairs of triples of crosses C; and C/ satisfying (6.1) and
check that every one is a case of our construction. Therefore we have found all
the relations arising from equalities of sums of triples of crosses. For convenience
in enumerating the 270 relations, we remark that they are in 1-1 correspondence
with the unordered triples of mutually orthogonal long mirrors in X. To find the
relation associated to such a triple of mirrors, let a1, as and as be long vectors of
V' associated to the mirrors, extend them to an orthonormal basis of V, and apply
the lemma.

Theorem 6.4. The variety V is the intersection of the cubic eightfolds defined by
the relations of Lemma 6.3.

Proof sketch. Using one of the computer algebra systems MACAULAY or SINGU-
LAR, it is easy to see that the dimension of the intersection V' of the 270 cubics has
dimension 4. With either system it is possible to compute a projective resolution
of R/J, where R = Q[Yy, ..., Ys], Yo,..., Yo are a basis for W, and J the ideal
generated by the 270 cubic relations. The projective dimension of R/.J turns out
to be 5, by a calculation that takes a few minutes in SINGULAR but several hours
in MACAULAY. As a consequence, V' contains no component of dimension < 4.
It is more involved to prove that V' is irreducible. In principle one can simply
ask the machine, but this seems to be too much for the computer. Instead, we
consider the intersection of V' with a hyperplane corresponding to a cross. If V’
is irreducible then the intersection should consist of 5 irreducible components. It
is not hard to prove that in our situation the converse is also true. The hyper-
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plane section is defined by a certain ideal a C C[Yy, ..., Yo]. In principle one can
ask the computer for the components of the ideal (e.g. by using “decompose” in
MACAULAY), but again this does not work. Instead, one finds directly five ideals
dag, . .., 04 containing a that come from the five mirrors of the cross and are con-
structed in an obvious way. After the ideals a; have been constructed, one can
verify @ = ag N -+ - N aq by means of MACAULAY or SINGULAR. The problem now
is to prove that the varieties of the a; are irreducible. This means that we face a
similar problem in a lower dimension, which can be treated in a similar manner.
During this procedure several very interesting ball quotients of smaller dimension
occur. This will be treated in a separate paper, where more details about the ideal
J C C[Yy, ..., Ys] and the hyperplane sections will be given.

We also intend to include proofs of the facts that J is prime and that R/J
is normal. This has the important consequence that W generates the ring of all
automorphic forms on I' with trivial multipliers. The normality can be used to
give an alternate proof of Corollary 7.3 (that 3 is an embedding). We will also
give the Hilbert function of R/.J. O

7. Cross-ratios

In this section we will relate our automorphic forms to the original invariants of
a cubic surface, the cross-ratios of Cayley. These are rational functions on the
moduli space of marked cubic surfaces that encode the manner in which the 27
lines on a cubic surface lie in P3. We will show below that Cayley’s cross-ratios
are ratios of certain pairs of our 270 automorphic forms. Then we will use this to
prove that the map 3 : M — PY of section 6 is an embedding.

Suppose that A and B are two crosses with the same long mirror m. By the
proof of Lemma 4.5, the subspace of W that changes sign under reflection in m is
2-dimensional, and the automorphic forms coming from the six signed crosses of
m form a regular hexagon in this plane, centered at 0. Now, A and B define two
diameters of this hexagon, and we choose an endpoint F' (resp. G) of the diameter
associated to A (resp. B), such that F' and G are adjacent vertices of the hexagon.
There is a unique way to do this, up to simultaneously negating F' and G, so the
rational function F'/G does not depend on the choice made. We call this the cross-
ratio A/ B. The reason for the name is Theorem 7.2 below, which identifies these
rational functions with Cayley’s cross-ratios. It is a happy and genuine accident of
terminology that Cayley’s cross-ratios may be regarded as ratios of crosses. There
are 270 cross-ratios, six for each of the 45 long mirrors. To identify our cross-ratios
with Cayley’s we will need to describe the divisor of A/B:

Lemma 7.1. If m is a long mirror in X and A, B and C are its three crosses,
then the divisor of the cross-ratio A/B consists of the four short mirrors
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of A with multiplicity 1 (simple zeros) and the four short mirrors of B with multi-
plicity —1 (simple poles). Furthermore, A/ B takes the constant value 1 along the
short mirrors of C.

Proof. If I and G are automorphic forms chosen as in the discussion above, then
their divisors in X are the crosses A and B, respectively. Since the long mirrors of
A and B coincide and the short mirrors are distinct, the identification of the divisor
of A/B is complete. Finally, H = F' — G is an endpoint of the third diameter of
the hexagon, so that it lies in the 1-dimensional subspace of W associated to C,
and in particular it vanishes on the short mirrors of C. That is, F' = G on the
mirrors of C' and so A/B = 1 along the short mirrors of C. O

Now we discuss Cayley’s cross-ratios; our basic reference is Naruki’s extensive
study of them and a compactification C of the moduli space M of marked smooth
cubic surfaces that they define [Na]. The biregular action of W (Fg) on M extends
to a biregular action on C, and the complement of M in C' has 76 components,
which fall into orbits of size 40 and 36 under W (FEg). The components in the
orbit of size 40 are all disjoint and can be blown down to points. The variety
C' obtained by this blowing-down is the standard Geometric Invariant Theory
(GIT) compactification of M, with its natural W (FEg)-action. Now, M is also
W ( Es)-equivariantly isomorphic to the complement in X of the short mirrors, and
the inclusion of this space into X is also the standard GIT compactification. It
follows that X is W (Fg)-equivariantly isomorphic to C, with the 36 short mirrors
corresponding to the images in C' of the remaining 36 components of C' — M.

Naruki describes M in terms of a maximal torus T' of the simple Lie group
Dy of adjoint type. He writes A for the union of the subtori which are the fixed-
point sets of the 12 reflections of W (D,), and realizes M as the blowup of T" at
the identity element, minus the proper transforms of the 12 components of A. He
introduces multiplicative characters A, u, v and p of T, which provide a coordinate
system for T, and describes the action of W(FEg) on M by giving explicit rational
self-maps of T' in terms of these coordinates. This group W(FEs) contains the
obvious group W (Dy).

Naruki introduces 45 divisors in M which W (FEg) permutes transitively. One
of these, dy, is the exceptional divisor lying over the identity of T', and the rest
are given by explicit equations in A, p, v and p. We claim that these 45 divisors
correspond to our long mirrors. This follows because each of [Na] and [ACT2]
proves that its set of 45 divisors represent the marked cubic surfaces that have an
Eckardt point.

The passage from T to C involves compactifying T and then performing a
sequence of blowings-up and blowings-down. All that matters to us is that the
identity of T is blown up, and that the 12 components of A (or rather their
transforms in C ) are among the the 36 components of C — M. Naruki calls these
12 divisors the Ai-hypersurfaces.
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Finally, Naruki’s table 2 gives 45 of Cayley’s cross-ratios explicitly as rational
functions of A, p, v and p. The full set of Cayley’s 270 cross-ratios is obtained by
following these functions by the 6 projective linear transformations of P! = CU
{oo} that preserve {0, 1, 00}. Of course, Cayley had much more explicit geometric
concepts in mind when defining his cross-ratios; for details see Naruki’s paper.

Theorem 7.2. Cayley’s cross-ratios coincide with ours.

Proof. The idea is to check that the divisors coincide and that Cayley’s cross-
ratios satisfy the normalization condition of lemma 7.1. By Cayley’s geometric
considerations ([Na], §3), his cross-ratios do not take any of the values 0, 1 and oo
in M, so their divisors consist of short mirrors with some multiplicities. For the
short mirror S given by p = 1 in Naruki’s coordinates, simple substitution reveals
the behavior along S of the 45 cross-ratios given in Naruki’s table. Namely, exactly
7 vanish along it, exactly 7 have poles along it, and just one takes the constant
value 1. Since the full set of Cayley’s cross-ratios is obtained by following these
by the 6 linear fractional transformations preserving {0, 1, 0o}, we see that exactly
2. (74 7+ 1) = 30 of Cayley’s cross-ratios vanish along S, another 30 take the
constant value 1, and a further 30 have poles along S. (Working with the full
set of 270 restores the symmetry between 0, 1 and oo that Naruki’s choice of
45 conceals.) Now, by the transitivity of W(Es) on Cayley’s cross-ratios, each
vanishes along the same number, say k, of short mirrors. By transitivity on the
short mirrors, each short mirror lies in the zero-locus of exactly 30 of Cayley’s
cross-ratios. These transitivities also show that 270 - £ = 36 - 30, so that k = 4
and each of Cayley’s cross-ratios vanishes along exactly 4 short mirrors. The same
argument, also shows that each has poles along exactly 4 short mirrors.
Now we consider Cayley’s cross-ratio r(w), given in Naruki’s coordinates by

r(w) = Ao —1)(pp — (wvp —HAprp—1)

(mvp —1)(Avp = 1)(App — 1)(p — 1)

We will write simply r for r(w). The sets x = 1, where yx is one of the characters
Ap, pp, vp and Auvp (resp. pvp, Avp, Aup and p) appearing in the numerator
(resp. denominator) are among Naruki’s A;-hypersurfaces, so r has a simple zero
(resp. simple pole) along these four short mirrors. By the argument above, these
constitute the entire divisor of . Furthermore, the short mirrors along which r
vanishes (resp. has a pole) are orthogonal, in the sense that the reflections across
them commute. To see this we do not even need to perform a calculation, because
Naruki (p. 20) has already organized his twelve A;-hypersurfaces into three sets
each consisting of four mutually orthogonal divisors. Finally, all 8 of these short
mirrors are orthogonal to the long mirror Jy, because their reflections obviously
commute with the negation map of T'. It follows that dy together with the four
short mirrors coming from the numerator (resp. denominator) of r form a cross C,,
(resp. Cy). Therefore r has the same divisor as our cross-ratio C,,/Cy. To show
that r = C,,/Cyq it now suffices to show that » = 1 along the short mirrors of the
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third cross associated to dg. Consulting again the table on Naruki’s p. 20, we see
that these mirrors are given by x = 1, where  varies over the characters A, u, v
and Apvp?. Simple calculation verifies the condition, so r = C,,/Cy. Since one of
Cayley’s cross-ratios coincides with one of ours, and W(FEg) acts transitively on
both sets of cross-ratios, the theorem follows. |

Remark. B. van Geemen [vG] has also obtained this theorem, as a byproduct
of a larger investigation. His idea is to construct and study the linear system on
Naruki’s model of the moduli space that comes from our space W of automorphic
forms. After one understands this linear system (van Geemen identifies it with
one introduced by Coble [C] long ago), the result above follows immediately. His
approach also has the advantage of allowing one to relate the moduli space M to
the variety V over fields other than C. (Note that V is defined over Z.)

Corollary 7.3. The map 3: X — P° of section 6 is an embedding.

Proof. We write 0X for m — B4/T, the set of 40 cusp points. One of Naruki’s
main results is that the 270 cross-ratios, a priori defined as maps M — (P! —
{0,1, 00}), extend to regular maps (X —9X) — P! that embed X —9X in (P1)?7.
Since the cross-ratios are quotients of the elements of W, 5 must embed X — 0.X
in P°. Unfortunately, this argument cannot be extended to show that 8 embeds
all of X into P?; the problem is that one must blow up the points of X in order
for the rational map from X to (P)?7 to become regular. In order to prove the
theorem we will first show that § is injective as a map of sets, and then that 3 is
a local embedding at each point of 0.X.

The injectivity has essentially already been proven: Theorem 3.4 shows that
for each z € 8X, z is the only point of X that lies on all the crosses containing
z. It follows that no point of X is identified under 8 with any other point of X.
Since (3 is already known to be injective on X — dX, 3 is injective.

Now we prove that 3 is a local embedding at each point of 0.X; we will use
Naruki’s explicit description (see [Na], section 12) of these singularities. Namely,
his T-equivariant compactification 7' of T" adjoins 48 divisors, 24 of which he then
blows down to obtain 24 of the points of 9.X. Focusing on one of these divisors,
which he denotes by p = 0 and we will denote by D, he gives 8 characters of 7' which
extend to regular functions z1, ..., 2s on a neighborhood U of D in T, and which
vanish along D. According to his theorem 12.1, the induced map U — C® gives
the blowing-down of D and thus embeds a neighborhood of the resulting singular
point = € 8X into C¥. Furthermore, he explicitly describes the singularity as the
cone on the Veronese embedding of P! x P! x P! in P". This makes it a simple
matter to see that the divisor of each z; near = has exactly three components, and
these components meet each other away from z as well as at z. Since each z; is
the extension of a character of T', its divisor can consist only of the components of
X — M, which is to say, short mirrors. Since short mirrors that meet each other
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in X —dX must be orthogonal, we have shown that the divisor of each z; near X
consists of three mutually orthogonal short mirrors. For each i =1, ..., 8, we will
find an automorphic form ; € W whose divisor near = coincides with that of z;.
We may also choose ¢’ € W whose divisor misses z entirely. Then the evaluation
of ¥1/¢’, ..., ¥g/y provides essentially the same map (of some neighborhood of
x) into C?® as Naruki’s. It follows that 3 must embed a neighborhood of  into P°.

All that remains is to show that if x € 3X and my, mo and ms are any three
mutually orthogonal short mirrors that all meet z, then there exists ¢» € W whose
divisor near X is just the sum of the m;. We choose a primitive null vector v € A
representing z, and short roots 7; € v whose mirrors represent the m;. Denoting
the images of these vectors in V' by z and 7;, we may choose coordinates in V' so
that the inner product is given by

(a,b) = agbg — aiby — -+ — asby ,

and 7, = (0,0,1,0,0), 7o = (0,0,0,1,0), 73 = (0,0,0,0,1) and v = (1,1,0,0,0).
The standard cross, given by the pairs (£1,0,0,0,0),...,(0,0,0,0,+1), is the di-
visor of one of our Borcherds products, which we take to be . It is obvious that
the divisor of ¥ contains the m;. To show that the other components of the divisor
miss x, we observe that these components correspond to the orthogonal comple-
ments of the roots of A whose images in V are (+1,0,0,0,0) or (0,41,0,0,0). Any
such root has inner product Z 0 (mod 3) with v, so its mirror cannot contain v.
O
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