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Algebraic convergence of function groups

Gero Kleineidam and Juan Souto

Abstract We give a su±cient condition for a sequence of convex cocompact hyperbolic struc-
tures on a ¯xed compression body to have an algebraically convergent subsequence This extends

a result of Otal Further if the manifold is a handlebody we show that certain laminations play
a similar role in deformation space as binding curves in TeichmÄuller theory

Mathematics Subject Classi¯cation 2000 30F40 20E08 57M50
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R-trees

1 Introduction

A compression body N is a compact 3-manifold which is the connected sum along

the boundary on a closed ball of solid tori and trivial interval bundles over closed
surfaces of genus at least 2 Throughout the paper we only consider the case that
the fundamental group ¼1 N splits as a non-trivial free product Equivalently we

rule out that N is a trivial interval bundle over a closed surface or a solid torus In
particular the boundary @N has a unique compressible component which is called
the exterior boundary @eN For more on the topology of compression bodies see

Bonahon [Bon83 Appendix B]
Using Klein-combination one can construct a convex cocompact representation

½0 of ¼1 N into PSL2 C such that H3 ½0 ¼1 N is homeomorphic to the interior
of the compression body N [MT98] Such a representation is said to uniformize

N The exterior boundary @eN is covered by a connected component of the dis-
continuity domain ­½0 ½ Ĉ

which is invariant under ½0 ¼1 N Kleinian groups

having an invariant component of the discontinuity domain are called function
groups The quotient of H3 by any convex cocompact function group is homeo-
morphic to the interior of a compression body See Maskit [Mas88] for more on
function groups

Due to a theorem of Marden [And98 MT98] every quasi-conformal deforma-

tion of ½0 uniformizes N too By Ahlfors{Bers theory QH ½0 the space of

The authors were partially supported by the Sonderforschungsbereich 256
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quasi-conformal deformations of ½0 up to conjugation by an element of PSL2 C is
parameterized by the TeichmÄuller space T @N More precisely there is a normal
covering called the Ahlfors{Bers map

T @N QH ½0

whose deck transformation group is the group of isotopy classes of di®eomorphisms

of N which are homotopic to the identity see [MT98] Note that the TeichmÄuller
space T @N can be identi¯ed with T @eN £ T @1N £ ¢ ¢ ¢ £ T @kN where

@eN; @1N; : : : ; @kN are the boundary components of N: As homeomorphisms of
N preserve @eN; the deck transformation group of the Ahlfors{Bers map acts on

T @eN
The space QH ½0 is contained in the deformation space of ¼1 N the space

of PSL2 C-conjugacy classes of discrete and faithful representations of ¼1 N into
PSL2 C The compact-open topology on it is the so-called algebraic topology With
respect to this topology QH ½0 is open in deformation space For more on the

deformation theory of Kleinian groups see [And98 MT98]
Since deformation space is not compact it is an interesting question to deter-

mine when a divergent sequence in QH ½0 converges in deformation space

Canary [Can91] showed that for all compact subsets K ½ T @eN the image

under the Ahlfors{Bers map of K£T @1N £ ¢ ¢ ¢£T @kN has compact closure in
deformation space The goal of this paper is to study sequences of quasi-conformal
deformations of ½0 such that the corresponding sequences in T @eN diverge

Thurston [FLP79] compacti¯ed TeichmÄuller space via PML the space of pro-
jective classes of measured laminations Masur [Mas86] and Otal [Ota88] studied
the dynamics of the mapping class group of the compression body N on the space

of projective classes of measured laminations on the exterior boundary @eN and
described an open set O ½ PML on which the action is properly discontinuous

The set O is called the Masur domain Otal [Ota88] analyzed further geometric
properties of laminations in O In particular he proved that given a convex co-
compact representation uniformizing N every lamination ¸ in the Masur domain
is realized by a pleated surface

We will say that a sequence ½i in QH ½0 converges into the Masur domain if
it is parameterized under the Ahlfors{Bers map by a sequence Se

i ; S1
i ; : : : ; Sk

i i ½
T @N such that Se

i i converges to a measured lamination ¸ 2 O We impose no
restrictions on the conformal structures on the incompressible boundary compo-
nents By abuse we will say that the sequence ½i ½ QH ½0 converges to ¸ 2 O

Conjecture Thurston Let ½0 be a convex cocompact representation uniformiz-
ing a compression body N If ½i i is a sequence in QH ½0 converging to a lami-
nation in the Masur domain then it has a convergent subsequence in deformation
space

Canary [Can93] proved the conjecture under the extra assumption that N is a
handlebody and that there is an identi¯cation of N with the trivial interval bundle
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over a surface § with boundary @§ such that the lengths of the geodesics in the

free homotopy classes of @§ remain bounded with respect to the representations ½i
In case N is the connected sum along the boundary of two trivial bundles over

closed surfaces Ohshika [Ohs97] gave a partial answer to the above conjecture

Otal [Ota94] proved that the conjecture holds for handlebodies of genus two
and laminations with simply connected complementary regions Such laminations

are also called minimal arational We follow the strategy of Otal's proof and show
for general compression bodies

Theorem 1 Let ½0 be a convex cocompact representation uniformizing a compres-
sion body N If ½i i is a sequence in QH ½0 converging to a minimal arational
lamination in the Masur domain then it has a convergent subsequence in defor-
mation space

Further we prove that laminations in the Masur domain play a similar role
for handlebodies as binding curves do in TeichmÄuller theory This generalizes

Theorem 6 1 in Canary [Can93]

Theorem 2 Let N be a handlebody and ¸ a measured lamination in the Masur
domain The set of convex cocompact representations ½ uniformizing N such that
l½ ¸ the length of ¸ with respect to ½ is less than a constant C > 0 is precompact
in deformation space

The proofs of Theorem 1 and Theorem 2 follow the same lines We restrict
ourselves to a brief outline of the proof of Theorem 1

Seeking for a contradiction let ½i be a sequence in QH ½0 which converges

to a minimal arational lamination ¸ 2 O but does not contain any convergent
subsequence in deformation space

By Theorems of Thurston [FLP79] and Canary [Can91] convergence to ¸ im-
plies that there is a sequence of curves °i on @eN converging to ¸ in PML such
that the ratios of the translation lengths in H3 of ½i °i and ½0 °i tend to 0

By a Theorem of Morgan and Shalen [MS84] divergence in deformation space

implies that a subsequence of ½i say the whole sequence converges in an appro-
priate sense to a minimal and small action of ¼1 N on an R-tree T The lamination

¸ is said to be realized in T if there is a continuous equivariant map from ~¸ the

lift of ¸ to H2 to T which is injective on each leaf of ~¸ Otal [Ota94] proved that if
¸ is realized in T then for every sequence of curves °i converging to ¸ in PML
the ratios of the translation lengths in H3 of ½i °i and ½0 °i tend to 1Hence we obtain the desired contradiction by proving that every minimal ara-
tional lamination in the Masur domain is realized in every R-tree which admits a
minimal small action of ¼1 N This was previously established by Otal [Ota94]
in the case of the handlebody of genus 2 He made use of a Theorem of Culler
and Vogtmann [CV91] which gives a geometric description of all small actions on
R-trees of the free group of rank 2 It is known that such a characterization is not
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possible in general not even for free groups of higher rank [GL95]
Our approach is di®erent Suppose that a minimal arational lamination ¸ 2 O

and an R-tree T that admits a small action of ¼1 N are given We show that there

is a measured lamination ¹ on the exterior boundary @eN and a morphism from
the dual tree T¹ to T such that the composition of the projection H2 T¹ with
the morphism T¹ T is monotone and non-constant on every leaf of ~¸ Due to
a result of Otal [Ota94] such a map can be homotoped to a realization of ¸ in T

The existence of ¹ ensues from a detailed study of morphisms from dual trees

to T This part is motivated by ideas of Skora [Sko96]
The paper is structured as follows: In section 2 we review some facts about

trees laminations and divergence of representations In Section 3 we reduce

Theorem 1 and Theorem 2 to statements on realizations of laminations in R-trees

Section 4 is devoted to the analysis of laminations on the exterior boundary of N
The techniques are motivated by earlier work of Otal [Ota88] In section 5 we

study morphisms from dual trees to R-trees which admit a minimal small action
of ¼1 N In section 6 we construct the desired realizations using the results of
section 4 and section 5

The authors would like to express their special gratitude to Professor Ursula
HamenstÄadt and Professor Jean-Pierre Otal for their patience their encourage-
ment and the fruitful discussions with them There is no doubt that the present
paper would not have been possible without Otal's fundamental work on this topic
The ¯rst author wants to thank Professor Fr¶ed¶eric Paulin for his invitation to a

two-month-stay in Orsay
We thank the referee for a careful reading and useful suggestions

2 Preliminaries

In this section we review some facts about trees laminations and divergence of
representations

Let N be a compression body After the choice of a basepoint on the exterior
boundary @eN we have a surjective homomorphism

' : ¼1 @eN; ¼1 N;

which we call compression homomorphism If there is no risk of confusion we will
use the symbol ° for elements in ¼1 @eN; as well as for their images under 'Further for simplicity we often write ¼1 @eN and ¼1 N

Later it will be useful to view every action ¼1 N y X of ¼1 N on a space X
as a ¼1 @eN -action too:

¼1 @eN £ X X; g; x 7 ' g x
All actions on metric spaces X; dX will be isometric The translation length

of an isometry g of a metric space X is de¯ned to be inffdX x; gx jx 2 Xg The

metric spaces we are going to work with are H2; H3 and R-trees
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2 1 R-trees

An R-tree T is a path metric space such that any two points p; q can be joined by
a unique arc

There is a classi¯cation of the isometries of an R-tree T An isometry g : T T
has either translation length lT g 0 and has a ¯xed point or lT g > 0 and there

is a unique invariant geodesic line in T the axis of g
An action G y T is called minimal if there is no proper invariant subtree

An action G y T is called small if the stabilizer of every non-degenerate arc is
virtually abelian More about R-trees can be found in Kapovich [Kap00]

Morgan and Shalen [MS84] used R-trees to compactify the deformation space

They use algebraic methods for a more geometric approach see Bestvina [Bes88]
and Paulin [Pau88]

Compactness Theorem Morgan{Shalen Let G be a ¯nitely generated group
containing a free group of rank 2 and let ½i : G PSL2 C be a sequence of discrete
and faithful representations Then after passing to a subsequence either

1 ½i converges in the deformation space of G or
2 there is a minimal small action G y T on an R-tree and a sequence of

real numbers ²i 0 with

lim
i ²i l½i ° lT °

for all ° 2 G where l½i ° is the translation length of ½i ° in H3

We remark that a minimal small action of such a group G on a tree is charac-
terized by the translation lengths of the elements of G [Kap00] This allows us to
say that the sequence ½i i converges to the action G y T

We will apply the Compactness Theorem to the case that G is the fundamental
group of a compression body

2 2 Laminations

A lamination on a closed hyperbolic surface S is a compact subset of S which
can be decomposed as a disjoint union of simple geodesics called leaves The

sets of laminations with respect to two hyperbolic structures on the same surface

can be naturally identi¯ed see [CB88] ; so a lamination can be considered as a

topological object A lamination is called minimal if every half-leaf is dense Each
lamination can be decomposed as a union of ¯nitely many connected minimal
laminations called minimal components and ¯nitely many non-compact isolated
leaves The set of laminations is compact with respect to the topology induced by
the Hausdor® distance We will refer to this topology as the Hausdor® topology
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A train-track ¿ in S is a ¯nite union of rectangles with \long" horizontal sides

which are foliated by \short" vertical geodesic segments and which meet only at
non-degenerate segments contained in the vertical sides The horizontal sides of
the rectangles are called rails the vertical segments ties and the intersections of
two rectangles switches A lamination is carried by ¿ if it is contained in ¿ and
transverse to the ties If ¸ is carried by ¿ then the set of laminations carried by
¿ forms a neighbourhood of ¸ with respect to the Hausdor® topology [Ota96]

A measured lamination is a lamination with a transverse measure of full sup-
port The support of a measured lamination is a ¯nite union of minimal compo-
nents in particular it does not contain any isolated non-compact leaf A minimal
lamination is called minimal arational if its complementary regions are simply-
connected

There is a topology on the set ML of measured laminations which is induced by
the intersection form i : ML£ML R+ [Ota96 FLP79] Rescaling the measure

provides an action of R+ on ML The quotient with the quotient topology is the

space of projective measured laminations and is denoted PML It is compact If
a sequence of projective measured laminations converges to a projective measured
lamination ¸ in PML and to a lamination ¸H in the Hausdor® topology then ¸
{ or more precisely the support of ¸ { is contained in ¸H

The TeichmÄuller space of a closed surface S is denoted by T S Thurston
[Thu86] studied the length function on the space of measured laminations on S
It is the unique continuous function

T S £ML ¡ R+; ¾;¸ 7 l¾ ¸
which extends the function that associates to a point ¾ 2 T S and to a weighted
simple closed geodesic a ¢ ° a > 0 the length of ° in ¾ multiplied by a

The TeichmÄuller space T S can be compacti¯ed by the space PML of pro-
jective measured laminations on S [FLP79] This compacti¯cation re°ects the

geometric behaviour of divergent sequences in T S In particular if a sequence

Si ½ T S converges to ¸ 2 PML then there is a sequence °i of simple closed
curves converging to ¸ in PML and such that

lSi °i lS0 °i ¡ 0 for i ¡ 1:

However this does not imply that the lengths lSi ¸ tend to 0 Indeed take an
element of T S and iterate a Dehn twist about a ¯xed curve ° on it The resulting
sequence tends to ° seen as an element of PML but the length of ° is constant
during the sequence

Given a hyperbolic structure on the compression body N a pleated surface

is a length preserving map f : S N from a hyperbolic surface S 2 T @eN
to N homotopic to the inclusion @eN N and such that each point p 2 S is
contained in a geodesic segment which is mapped isometrically A lamination ¸
on the exterior boundary @eN is realized by a pleated surface if there is a pleated
surface that maps each leaf of ¸ to a geodesic in N Notice that a realization of
a lamination ¸ by a pleated surface induces a map from ¸ to the projectivized
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tangent bundle of N
If ½ is a representation of ¼1 N into PSL2 C uniformizing N and ¸ is a mea-

sured lamination on the exterior boundary that is realized by a pleated surface

we can de¯ne l½ ¸ the length of ¸ with respect to ½ to be its length with respect
to the hyperbolic structure of the pleated surface realizing ¸

See Otal [Ota96 Appendix] for more about laminations and measured lamina-
tions and Fathi{Laudenbach{Po¶enaru [FLP79] for a detailed exposition of
Thurston's compacti¯cation of TeichmÄuller space Pleated surfaces are discussed
in [Thu86 Ota88 Kap00]

2 3 Dual trees

For a measured lamination ¹ on a surface S we denote by ~¹ its lift to H2 If ¹
does not have atoms the semidistance on H2 induced by integrating the transverse

measure ~¹ along paths is continuous with respect to the usual topology of H2 The

support of an atom is a closed geodesic therefore it is possible to avoid atoms by
replacing closed leaves in ¹ by annuli foliated by parallel closed curves Denote by

F¹ the measured partial foliation that we obtain by this process and by
eF¹ the lift

of F¹ to H2 The quotient of H2 under the semi-distance induced by F¹ depends

only on ¹ it is denoted T¹ and the projection ¼F¹ : H2 T¹ is continuous T¹ is
an R-tree called the dual tree of ¹ The fundamental group of the surface S acts

on T¹ and the action is small and minimal Dual trees are discussed in detail by
Otal [Ota96] and Kapovich [Kap00]

Using dual trees Skora [Sko96] established a 1-1-correspondence between min-
imal small actions of the fundamental group of a closed surface S and measured
laminations on S

Theorem Skora Let ¼1 S y T be a minimal and small action of ¼1 S on an
R-tree T then there is a unique ¹ 2 ML and an equivariant isometry T¹ T

Skora's ideas will be used in section 5 where we study certain maps from trees

dual to laminations on the exterior boundary of a compression body N to a given
R-tree with a minimal small action of ¼1 N

3 Main Theorems

The goal of this section is to reduce Theorem 1 and Theorem 2 to a property
of minimal small actions of the fundamental group of a compression body N on
R-trees

A simple closed curve m on the exterior boundary @eN which is homotopically
trivial in N but not in @eN is called a meridian Note that by Dehn's Lemma
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[Jac80] every meridian bounds an embedded disk in N Recall that we use the

symbol ° for elements in ¼1 @eN as well as for their images under the compression
homomorphism ' : ¼1 @eN ¼1 N

A meridian may be seen as an element of PML too The set of projective

classes of weighted multicurves of meridians in PML will be denoted by M and
its closure in PML by M 0 see Otal [Ota88]

N is a small compression body if it is the connected sum along the boundary of
either two trivial interval bundles over closed surfaces or an interval bundle over
a closed surface and a solid torus For a small compression body set

O : f¸ 2 PMLj i ¸;¹ > 0 for all ¹ 2 PML such that
there is º 2 M 0 with i ¹;º 0g

If N is not a small compression body set

O : f¸ 2 PMLj i ¸;¹ > 0 for all ¹ 2 M 0

g

The set O is called the Masur domain and is open by continuity of the intersection
form and compactness of PML We will say that ¸ 2 ML is in O resp M 0 if
its projective class is in O resp M 0

Otal [Ota88] proved see also Ohshika [Ohs]

Theorem on pleated surfaces Otal Let N be a compression body with a
convex cocompact hyperbolic structure Every lamination ¸ ½ @eN containing the

support of a measured lamination in the Masur domain is realized by a pleated
surface in N

Moreover the induced map from ¸ to the projectivized tangent bundle of N is
a homeomorphism onto its image P¸

The image in P¸ of a leaf of ¸ is the trace of a geodesic and is equally called a

leaf Denote by
eP¸ the preimage of P¸ in the projectivized tangent bundle of H3

The following de¯nition is due to Otal [Ota94]:

De¯nition Let N be a compression body with a convex cocompact hyperbolic
structure and ¼1 N y T an action on an R-tree T A lamination ¸ ½ @eN is
realized in T if there is a continuous ¼1 N -equivariant map

© :
eP¸ T

which is injective when restricted to any leaf

As ¸ is mapped homeomorphically onto
eP¸ this de¯nition is equivalent to the

de¯nition of realization given in the introduction
The following Theorem was proved by Otal [Ota94] in the case that N is a

handlebody but a careful checking of the proof shows that it holds for compression
bodies as well
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Continuity Theorem Otal Let ½i be a sequence in the deformation space

of ¼1 N converging to a non-trivial minimal small action ¼1 N y T and °i
a sequence of simple closed curves on @eN converging in PML to a minimal
arational measured lamination ¸ in O which is realized in T Then for all N > 0
there is iN > 0 such that

l½i °i ¸ N l½0 °i for all i ¸ iN
where l½ ° denotes the translation length of ½ ' ° in H3

Remark It seems to be a delicate issue to extend the theorem to all sequences of
curves °i converging in PML to an arbitrary lamination ¸ in O which is realized
in the tree T

On the other hand the conclusion of the theorem is valid for an arbitrary
sequence of curves °i provided every Hausdor® limit of °i is realized in T
Indeed the latter condition is the only one used in the proof of the theorem and
it is weaker than the one stated in the theorem see [Ota94]

In the last section we will prove

Theorem 3 Let ¼1 N y T be a non-trivial minimal small action on an R-tree

T and ¸ a minimal arational measured lamination in the Masur domain then ¸
is realized in T

Next we reduce Theorem 1 to Theorem 3 see Otal [Ota94]

Theorem 1 Let ½0 be a convex cocompact representation uniformizing a compres-
sion body N If ½i i is a sequence in QH ½0 converging to a minimal arational
lamination in the Masur domain then it has a convergent subsequence in defor-
mation space

Proof Seeking a contradiction suppose that ½i i converges to a minimal and small
action ¼1 N y T on an R-tree By de¯nition there is a sequence Se

i ; S1
i ; : : : ; Sk

i ½
T @N which is mapped to ½i under the Ahlfors{Bers map and such that the

sequence Se
i ½ T @eN converges to ¸ Then there is a sequence °i of simple

closed curves on the exterior boundary @eN converging to ¸ in PML with
lSei °i lSe

0 °i ¡ 0 for i ¡ 1: 1

On the other hand for all A > 0 there is some iA such that lSei m > A for all
i ¸ iA and all meridians m Then by a Theorem due to Canary [Can91] there is
K > 0 such that for all i ¸ iA

l½i °i · K lSei °i 2

where l½i °i is the translation length of ½i ' °i in H3 Combining equation 1
and equation 2 we deduce with the same arguments as Canary [Can93] in the
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handlebody case that

l½i °i l½0 °i ¡ 0 for i ¡ 1:

By the Continuity Theorem ¸ is not realized in T contradicting Theorem 3 ¤

In the case that N is a handlebody we will show in section 6

Corollary 3 Let N be a handlebody and ¼1 N y T be a non-trivial minimal
small action on an R-tree T At least one minimal component of every measured
lamination in the Masur domain is realized in T

We reduce Theorem 2 to Corollary 3

Theorem 2 Let N be a handlebody and ¸ a measured lamination in the Masur
domain The set of convex cocompact representations ½ uniformizing N such that
l½ ¸ the length of ¸ with respect to ½ is less than a constant C > 0 is precompact
in deformation space

Proof Suppose again that there is a sequence ½i of convex cocompact representa-
tions uniformizing N with l½i ¸ < C that converges to some non-trivial minimal
small action ¼1 N y T on an R-tree The length of any minimal component ¸0
of ¸ is also bounded by C for all i

By Otal's Theorem on pleated surfaces the lamination ¸ is realized by a pleated
surface in H3 ½i ¼1 N for all i Hence in each neighbourhood of ¸0 with respect
to the Hausdor® topology we ¯nd a simple closed curve °i with l½i °i < C l½0 °i

By a diagonal argument we can assume that the sequence °i converges to ¸0

in the Hausdor® topology
The Continuity Theorem applies to this sequence by the remark after it; thus

the lamination ¸0 cannot be realized in T As ¸0 was arbitrary this contradicts

Corollary 3 ¤

4 Laminations on the exterior boundary

Let ½0 : ¼1 N PSL2 C be a convex cocompact representation uniformizing the

compression body N The image of ½0 is a function group Following Otal's
[Ota88] notation S0

½ Ĉ
denotes the invariant component of the discontinuity

domain of the action of ½0 ¼1 N It is a normal planar covering of the exterior
boundary @eN with deck transformation group ½0 ¼1 N Since ½0 ¼1 N is a

function group the limit set ¤½0 of the action of ½0 ¼1 N on
Ĉ

coincides with
the boundary of S0 in

Ĉ
[Mas88]
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4 1 Treelike structure of S0

We recall that a meridian is a simple closed curve which is nullhomotopic in N but
not in @eN By Dehn's Lemma a meridian bounds an embedded disk in N So
every maximal disjoint union of non-parallel meridians cuts N into smaller pieces

On the level of groups this means that ¼1 N is a graph of groups whose edge

groups are trivial and correspond to the meridians The universal cover of the

graph is a tree and there is a ¼1 N -equivariant map from S0 to the tree Such a
map maps geodesics in S0 to paths in the tree In general the paths can be fairly
arbitrary in particular not monotone

De¯nition Let m be a meridian An m-wave is an arc on @eN with endpoints

on m which is homotopic in N relative endpoints but not in @eN to a subarc of m

For example if two meridians intersect then each of them contains a wave with
respect to the other

De¯nition A curve ° : R @eN resp ° : R+ @eN is in tight position
with respect to m if ° does not contain m-waves and the image under ° of every
unbounded interval intersects m

Lemma 1 If ° : R+ @eN is a curve which is in tight position with respect to a
meridian m then every lift of ° to S0 has a well-de¯ned endpoint in the limit set
¤½0 of the action of ½0 ¼1 N on

Ĉ

Proof Let °0 : R+ S0 be a lift of ° to S0 There is a sequence mi °0 of
lifts of m which are intersected by °0 and indexed by the ordering in °0 Observe

that every lift of m to S0 separates S0 and denote by Ki the closure in
Ĉ

of the

connected component of
Ĉ ¡ mi °0 that does not contain m0 °0 Since ° is in

tight position with respect to m Ki+1 is contained in the interior of Ki for all i
and the diameter of Ki tends to zero compare [Ota88 1 9 1 14] ¤

The following lemma establishes a kind of continuity for the map which asso-
ciates to lifts of curves ° : R+ @eN which are in tight position with respect to
a common meridian their endpoints in ¤½0 ½ Ĉ

Notation as in the proof of the

last lemma

Lemma 2 For j 1; : : : ;1 let °j : R+ @eN be curves which are all in tight
position with respect to a meridian m Let m0 and °

0j
be lifts of m and °j to S0

with m0 m0 °
0j

for all j 1; : : : ;1 Then the endpoints of °
0j

converge to the

endpoint of °
0

1
if and only if for all i there is j0 such that for all j ¸ j0

mi °0j mi °01
¤
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So far we considered general curves on @eN we now turn our attention to
laminations

De¯nition A lamination is in tight position with respect to a meridian m if every
half-leaf is

Notice that a minimal lamination ¸ is in tight position with respect to a merid-
ian m if and only if some half-leaf in ¸ is since every half-leaf is dense On the

other hand if a lamination consists of several minimal components each being

in tight position with respect to a meridian it is not clear if there is a common
meridian with respect to which all components are in tight position We prove

Lemma 3 Let ¹ be a measured lamination with the property that every component
is in tight position with respect to some meridian Then there is a meridian m
intersecting ¹ and such that ¹ does not contain any m-wave

Proof Let ¹1 be a component of ¹ and let m1 be a meridian with respect to
which ¹1 is in tight position We claim that the set of those homotopy classes of
m1-waves rel m1 that are represented by a subsegment of a leaf of ¹ is a ¯nite
number Nm1 ¹ For this remark that there are leaves l2; : : : ; lk which are dense in
¹¡¹1 This implies that every m1-wave in ¹ can be represented up to homotopy
rel m1 by a segment in one of the leaves l2; : : : ; lk Recall that each of the leaves

l2; : : : ; lk is in tight position with respect to some meridian It follows from lemma
1 that there are up to homotopy only ¯nitely many m1-waves in l2; : : : ; lk We

have proved that Nm1 ¹ < 1We will inductively reduce this number until we obtain a meridian m with
Nm ¹ 0 We assume that Nm1 ¹ > 0; hence there is an m1-wave [a; b]
contained in one of the leaves l2; : : : ; lk such that a; b \ m1 ; By surgery of
m1 along [a; b] we obtain meridians m2; m0

2 with the following properties:
i ¹1 is in tight position with respect to one of the meridians m2; m0

2
say

with respect to m2 and
ii Nm2 ¹ · Nm1 ¹ ¡ 1

If ¹ contains m2-waves we repeat the process with m2 After ¯nitely many steps

we are done ¤

We ¯nish this section with two results of Otal [Ota88] In the next subsection
we give complete proofs of more precise statements in the case that N is a han-
dlebody So we skip the proofs even though Otal's thµese d'Etat is unfortunately
unpublished

Lemma 4 [Ota88 1 3] Every minimal component of a lamination ¸ 2 O is in
tight position with respect to some meridian ¤

De¯nition 1 A leaf l : R @eN of a lamination on @eN is called homoclinic if
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there are two sequences xi; yi 2 R and a lift l0 of l to S0 such that jxi ¡ yij 1but the distances between l0 xi and l0 yi are bounded in S0

Otal proved see the proof of [Ota88 2 10]

Lemma 5 A lamination ¸ in the Masur-domain is not contained in a lamination
with a homoclinic leaf ¤

4 2 The handlebody case

This subsection is devoted to a more detailed analysis of laminations on the bound-
ary of the handlebody As remarked above the proofs are inspired by the argu-
ments in [Ota88]

Notice that it is a topological property for a lamination to be an element of O
Denote by M 0top the set of those laminations in PML which have same support as

laminations in M 0 The main result of this section is the next Proposition which
is a slightly stronger version of Lemma 5 in the handlebody case

Proposition 1 If N is a handlebody and ¹ ½ @eN is a lamination containing a
homoclinic leaf then every minimal component of ¹ is an element of M 0top

On the other hand every Hausdor®-limit of meridians contains a leaf which is
homoclinic see Casson-Long [CL85] or Otal [Ota88]

Corollary 1 Every minimal component of a Hausdor®-limit of meridians on the

boundary of a handlebody is an element of M 0top ¤

The proof of Proposition 1 occupies the rest of this section First we give three

lemmas which help to identify a lamination as an element of M 0top
If ¹ ½ @eN is a minimal lamination we denote the smallest compact subsurface

of @eN containing ¹ by S ¹ It is unique up to isotopy

Lemma 6 [Ota88 1 3 2] If ¹ is a minimal lamination on the boundary of a han-
dlebody N and @eN ¡ S ¹ is compressible then ¹ 2 M 0top

Proof By Dehn's Lemma [Jac80] @eN ¡ S ¹ contains a meridian which bounds

a disk in N If the disk is separating it cuts N into two handlebodies and ¹ is
contained in one of them hence there is also a non-separating meridian disjoint
from ¹ So we assume that m is non-separating Cut @eN along m and join the

two resulting boundary components by an embedded arc · The boundary of a

regular neighbourhood of m [ · in @eN is a meridian Since · can be chosen as

close to ¹ as wanted we deduce ¹ 2 M 0top ¤
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The proof of Lemma 6 fails to generalize to laminations on the boundary of a
general compression body and constitutes the main di®erence between the han-
dlebody case and the general case in the present context

By Lemma 4 every component of a measured lamination in O is in tight
position with respect to some meridian On the other hand we have

Lemma 7 Let ¹ be a minimal arational lamination on the boundary of a handle-
body If ¹ is not in tight position with respect to any meridian then

¹ 2 M 0top

Proof Let m be a meridian and l a leaf of ¹ As seen before if l contains only
¯nitely many homotopy classes rel m of m-waves then we can ¯nd a meridian
m0 with respect to which l is in tight position The minimality of ¹ then implies

that ¹ is in tight position with respect to m0

If l contains in¯nitely many homotopy classes relm of m-waves it is homo-
clinic So we ¯nd sequences xi ; yi ½ R such that l xi ; l yi 2 m and the

segments l[xi; yi] are m-waves We may suppose that l xi and l yi converge Fix
a transverse measure on ¹ For all ² > 0 we can ¯nd i; j such that the measure

of the small subsegments [l xi ; l xj ] ½ m and [l yi ; l yj ] ½ m is less than ²
The union of these two segments and the m-waves l[xi; yi] and l[xj ; yj ] is a com-
pressible curve By the Loop Theorem [Jac80] we ¯nd nearby a meridian m² with
i ¹;m² < 2² Taking limits we obtain a lamination º 2 M 0 with i ¹; º 0 which
implies that ¹ and º have same support as ¹ is minimal arational ¤

We now consider the case that ¹ is only minimal If some component of @S ¹
is a meridian Lemma 6 shows that ¹ 2 M 0top If this is not the case a relative

version of the proof of Lemma 7 yields the following Lemma which is essentially a
special case of Theorem 1 6 in Otal [Ota88]

Lemma 8 If a minimal lamination ¹ on the boundary of a handlebody is not in
tight position with respect to any meridian then S ¹ is compressible and ¹ 2
M 0top ¤

We deduce from Lemma 8 and Lemma 6

Corollary 2 If a minimal component of a lamination ¹ on the boundary of a
handlebody is not in tight position with respect to any meridian then every minimal
component of ¹ is in M 0top ¤

Proof of Proposition 1 A similar argument as in the proof of Lemma 7 shows that
every ²-neighbourhood of a homoclinic leaf l : R @eN in ¹ contains a meridian
Lemma 6 implies that every minimal component disjoint from the closure of l is
in M 0top
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From now on we assume that l is dense in ¹ So ¹ has one or two minimal
components If one of them is not in tight position with respect to some meridian
we are done by Corollary 2 Assume that they are in tight position with respect
to some meridian Since a homoclinic leaf is not in tight position with respect to
any meridian the leaf l must be isolated and non-closed Further every lift l0 of l
to S0 has endpoints in the limit set ¤½0 ½ Ĉ

which coincide since l is homoclinic
If ¹ contains two minimal components then every meridian with respect to which
one is in tight position intersects the other Thus Lemma 3 provides a meridian
m with respect to which every minimal component of ¹ is in tight position

In particular we ¯nd x0 < y0 2 R such that the segment l[x0; y0] is an m-wave

and such that the half-leaves ljft·x0g
and ljft¸y0g

are in tight position with respect
to m Let x0 > x1 > x2 > : : : and y0 < y1 < y2 < : : : be the sequences of all
points with l xi 2 l \m and l yi 2 l \m We have for all i < j:

1 The segment l[xi; yi] is an m-wave

2 the tangent vectors d
dt ljyi and ¡ d

dt ljxi point to the same side of m and
3 the curves l[xi; xj ] and l[yi; yj ] represent the same element in ¼1 N; D

where D is a disk with @D m
We will ¯rst treat the case that ¹ has only one minimal component ¹0 For every
train track ¿ carrying ¹ ¹0 [ l we will construct a simple closed curve in M 0

carried by ¿ As l is not contained in the support of any measured lamination this
will prove that ¹0 2 M 0top

Suppose ¯rst that d l xi ; l yi ¸ ² > 0 for all i After re¯ning ¿ we may
assume that every component of ¿ \ m is shorter than ² If two points a; b are

contained in the same component of ¿ \m we denote by [a; b] the subsegment of
this component bounded by a and b There are i < j such that one of the following

two cases occurs

Case I:
1 Each of the pairs fl xi ; l xj g and fl yi ; l yj g is contained in a compo-

nent of ¿ \m
2 the tangent vectors ¡ d

dt ljxi and ¡ d
dt ljxj point to the same side of m and

3 there is no k 2 fi + 1; : : : ; j ¡ 1g such that l xk or l yk belongs to
[l xi ; l xj ]

Case II:
1 Each of the pairs fl xi ; l yj g and fl yi ; l xj g is contained in a compo-

nent of ¿ \m
2 the tangent vectors ¡ d

dt ljxi and d
dt ljyj point to the same side of m and

3 there is no k 2 fi + 1; : : : ; j ¡ 1g such that l xk or l yk belongs to
[l xi ; l yj ]

Both cases are represented in Figure 1

If Case I holds there is no k such that l xk and l yk belong to [l yi ; l yj ]
because d l xk ; l yk ¸ ² Together with the fact that lifts of l to S0 do not
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xixi yi yixjxj yj yj

Case I Case II
Figure 1

xixixixi yiyiyiyi xjxjxjxj yjyjyjyj

Case I Case II Case III Case IV
Figure 2

intersect and can be compacti¯ed to Jordan curves in
Ĉ

this implies that there is
no k 2 fi+ 1; : : : ; j¡1g such that l xk or l yk lies in [l yi ; l yj ] So the curves

°a l[xi; xj ][ [l xi ; l xj ]; ´a l[yi; yj ] [ [l yi ; l yj ]

are homotopic to simple closed geodesics carried by ¿ They belong to M 0 since a
boundary component of a regular neighbourhood of °a[´a [ l[xi; yi] is a meridian
disjoint from °a and ´a

In Case II we deduce as in Case I that there is no k 2 fi + 1; : : : ; j ¡ 1g such
that l xk or l yk belongs to [l yi ; l xj ] As above this implies that the curve

°b l[xi; xj ] [ [l xj ; l yi ] [ l[yi; yj ] [ [l yj ; l xi ]

is homotopic to a simple closed geodesic carried by ¿ and belongs to M 0 because it
is disjoint from the boundary component of a neighbourhood of °b[ l[xi; yi] which
is a meridian

The arguments are valid for any train track ¿ We conclude that the minimal
component of ¹ is in M 0top if d l xi ; l yi ¸ ² > 0 for all i

Continuing with the assumption that ¹ contains only one minimal component
¹0 suppose that inf d l xi ; l yi 0 In particular l contains m-waves whose

endpoints are close and we cannot directly apply the same arguments as before

Fix i such that l xi ; l yi are contained in the same component of ¿ \m If there

is no j > i with l xj ; l yj 2 [l xi ; l yi ] we ¯nish the proof by Lemma 6 as

l[xi; yi] [ [l xi ; l yi ] is compressible and disjoint from ¹0 Otherwise let j > i
be minimal for the property that l xj and l yj belong to [l xi ; l yi ] Figure 2

represents the four possible cases

By the choice of i; j and the fact that lifts of l to S0 do not intersect and can
be compacti¯ed to Jordan curves in

Ĉ
the Cases I and II can be treated as above

The same argument shows in Case III that a boundary component of a regular
neighbourhood of

l[xi; xj ] [ [l xj ; l xi ] [ l[xi; yi] [ l[yi; yj ][ [l yj ; l yi ]
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is homotopic to a simple closed geodesic carried by ¿ It is even a meridian
since the segments l[xi; xj ] and l[yi; yj ] represent the same element in ¼1 N;D
Similary in Case IV the curve °d which is the concatenation of the segments

l[xi; xj ] [l xj ; l yi ] l[yi; xi] [l xi ; l yj ] l[yj ; yi] and l[yi;xi] is homotopic to a
meridian carried by ¿ As before we conclude that the minimal component of ¹
is in M 0top

The remaining case that ¹ has two minimal components can be reduced to the

discussion of Case I because there is obviously some ² > 0 such that d l xi ; l yj ¸² > 0 for all i; j Notice that each of the curves °a and ´a constructed above ap-
proximates one of the minimal components of ¹ and is in M 0 This implies that
both minimal components of ¹ are in M 0top ¤

5 Morphisms

This chapter is the central part of the proofs of Theorem 3 and Corollary 3 A
large part is inspired by ideas of Skora [Sko96]

N is again a compression body and ½0 is a convex cocompact representation of
¼1 N which uniformizes N

De¯nition Let T 0; T be R-trees A morphism from T 0 to T is a map

© : T 0 ¡ T

with the property that every non-degenerate arc [p; q] ½ T 0 contains a non-
degenerate subarc [p; r] ½ [p; q] which is mapped isometrically onto ©[p; r] ½ T

A morphism is said to fold at a point p 2 T and p is a folding point if there are

non-degenerate arcs [p; q]; [p; q0] ½ T 0; [p; q] \ [p; q0] fpg with ©[p; q] ©[p; q0]

5 1 Morphisms from dual trees

In section 2 we discussed trees which are dual to measured laminations If ¹ 2
ML the dual tree T¹ can be seen as the leaf space of a measured partial foliation

F¹ enlarging ¹ and we denote the projection by ¼
F¹ : H2 T¹ A morphism from

a dual tree T¹ to another tree T is said to fold only at complementary regions if
the only folding points are projections of complementary regions of

eF¹ ½ H2

The existence of such morphisms is fundamental in the proof of Skora's The-
orem The following theorem is essentially a special case of the main result in
[MO93] see also [Ota96 chapter 8]

Theorem Morgan{Otal Let ®1; : : : ; ®3g¡3 be a collection of simple closed
curves which de¯ne a pants decomposition of a closed surface S and let ¼1 S y T
be an action on an R-tree T Then there is a measured lamination ¹ 2 ML and
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an equivariant morphism

© : T¹ ¡ T

with lT ®i lT¹ ®i for all i Moreover © folds only at complementary regions

Remark Notice that if lT ®i > 0 then © maps the axis of ®i in T¹ isometrically
to the axis of ®i in T [Kap00]

The second step in the proof of Skora's Theorem is to study equivariant mor-
phisms from dual trees T¹ ¹ 2 ML to a tree with a minimal small action of the

fundamental group of a closed surface which fold only at complementary regions

Skora proves that such a morphism is an isometry and in particular ¹ is unique

In the present situation the actions we will consider are not even e®ective because

they factor through the compression homomorphism ' : ¼1 @eN ¼1 N We

prove

Proposition 2 Let N be a compression body with exterior boundary surface @eN
Let ¼1 N y T be a minimal small action and let ¹ be a measured lamination on
@eN such that there is an equivariant morphism © : T¹ ¡ T that folds only at
complementary regions Then ¹ is not in the Masur domain O

Moreover if N is a handlebody then every minimal component of ¹ is an
element of M 0top

Proof If some component of ¹ is not in tight position with respect to any merid-
ian then ¹ 2 O by Lemma 4 Moreover if N is a handlebody we are done by
Corollary 2

We assume from now on that every component of ¹ is in tight position with
respect to some meridian Then by Lemma 3 there is a meridian m intersecting

¹ such that ¹ does not contain any m-wave By de¯nition every component of ¹
intersecting m is in tight position with respect to m

We will show that we can extend ¹ to a lamination with a homoclinic leaf In
this case Lemma 5 shows that ¹ 2 O Moreover Proposition 1 proves that every
component of ¹ is in M 0top if N is a handlebody

Lemma 9 © folds along m: for a lift
e
m of m to H2 there are segments ~I1; ~I2 ½

e
m

intersecting in a single point ~
such that © maps ¼F¹

~I1 and ¼
F¹

~I2 isometrically
onto a non-degenerate segment J in T

Proof Let x be a point on a lift
e
m of m to H2 The geodesic

e
m is invariant under

some m 2 ¼1 @eN which is trivial in ¼1 N By equivariance

© ¼
F¹ mx © ¼F¹ x
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The morphism © folds the non-degenerate segment [¼F¹ x ; ¼F¹ mx ] only ¯nitely
many times So we can ¯nd small segments ~I1; ~I2 ½ x; mx such as in the state-
ment ¤

Remark Note that the claim is true for every meridian which intersects ¹
We continue with the proof of Proposition 2 and choose a transverse orientation

on m For a point x 2 m \ ¹ we use the symbol ¹+
x

for the half-leaf of ¹ starting
at x with positive direction By de¯nition ¹+

x
is in tight position with respect to

m The following Proposition will be proved at the end of this section

Proposition 3 For every pair of intervals I1; I2 as in Lemma 9 there are zi 2
Ii \ ¹ i 1; 2 such that the lifts to S0 of ¹+

z1
and ¹+

z2
have the same endpoints

in the limit set ¤½0 of ½0 ¼1 N in
Ĉ

We ¯x a pair of intervals ~I0
1 ; ~I0

2 as in Lemma 9 As © folds only at comple-
mentary regions the point ~ lies in a complementary region C of

eF¹ After the

collapse of F¹ to ¹ C can be seen as a complementary region of ~¹ too There

are two well determined boundary leaves ~¹1; ~¹2 of C with ~¹i \ ~I0
i 6 ; They are

di®erent because separated by the complementary region C Up to reversing the

orientation we may assume that ~¹+
1

and ~¹+
2

are not asymptotic Next we show

that the endpoints in ¤½0 of their projections to S0 are equal
We choose a sequence of nested intervals ~Ik

1 ; ~Ik
2 k2N as in Lemma 9 such that

i ~Ik
1 ;

eF¹ i ~Ik
2 ;

eF¹ > 0 tends to zero By Proposition 3 for every k 2 N and

i 1; 2 we get zk
i 2 Ik

i \ ¹ such that the lifts to S0 of ¹+
zk

1
and ¹+

zk
2

have the same

endpoint in the limit set ¤½0

Since for i 1; 2 and k ¡ 1 the sequence i ~Ik
i ;

eF¹ tends to zero the

sequence ¹+
zki k2N tends to ¹+

i the projection to @eN of the boundary half-leaf
~¹+
i By Lemma 2 the lifts of ¹+

1
and ¹+

2
to S0 have the same endpoint in ¤½0

Now let l be the geodesic in H2 joining the endpoints in @H2 of ~¹+
1

and ~¹+
2

The

projection to @eN of ~¹[ l is a geodesic lamination ¹l and l projects to a homoclinic
leaf since the endpoints of the projection to S0 coincide So ¹ is contained in a

lamination with a homoclinic leaf This ¯nishes the proof of Proposition 2 ¤

The rest of this section is devoted to the proof of Proposition 3

5 2 Skora's argument
We use the same notation as above © : T¹ T is the morphism of Proposition 2

F¹ is an enlargement of ¹ m is a meridian with i m;¹ > 0 and such that every
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component of ¹ intersected by m is in tight position with respect to it and ~I1; ~I2; ~
are as in Lemma 9 Denote the projections to the surface @eN by I1; I2; Recall
that ~ is in a complementary region C of

eF¹ ½ H2

Fix a transverse orientation on m Take the oriented ¯rst return maps of F¹
[Ota96 Sko96]

Ai : Ii \ F¹ Ii \ F¹ for i 1; 2:

Ai induces an interval exchange transformation on ¼F¹
~Ii ½ T¹ Conjugating

A1; A2 by © one obtains two interval exchange transformations B1; B2 on J
© ± ¼F¹

~I1 © ± ¼F¹
~I2 ½ T [Sko96]

Let C denote the free semi-group generated by two letters c1; c2 and B the

semi-group generated by the maps B1;B2 There is an obvious homomorphism

µ : C ¡ B; c c²1 ¢ : : : ¢ c²n 7¡ µ c B²n ± : : : ± B²1 :

The set of boundary leaves of
eF¹ is countable [Ota96] A point z 2 T such

that none of its preimages under © is represented by a boundary leaf of
eF¹ is

called regular If z 2 J is a regular point we denote by ~zi for i 1; 2 the point
~Ii \ © ± ¼F¹ ¡1 z The projection of ~zi to @eN is denoted zi

A regular point z 2 J and a letter c² 2 fc1; c2g determine a closed curve

°z;² ½ @eN which is the concatenation of
1 the subsegment of I² from to z²
2 the subsegment of the half-leaf of F¹ from z² to A²z² in positive direction

and
3 the subsegment of I² from A²z² to

Let z 2 J be regular such that for all B 2 B Bz is regular too For c
c²1 ¢ : : : ¢ c²n 2 C we de¯ne the closed curve z c in @eN to be the concatenation
of the curves °²1;z; °²2;B²1 z ; : : : ; °²n;B²n¡1±:::±B²1 z that is

z c °²1;z ¤ °²2;B²1z ¤ : : : ¤ °²n;B²n¡1±:::±B²1 z : 3

Recall that F¹ is obtained from ¹ by blowing up closed leaves of ¹ to ¯bered
collars After collapsing the collars back to closed leaves of ¹ we denote the image

of the curve z c by z c as well After a small homotopy near m this curve and
m can be made transverse Moreover it is in tight position with respect to m

The element in ¼1 @eN; represented by z c will be denoted [ z c ] The

map [ z ¢ ] : C ¼1 @eN; is injective because
~ is in a complementary region

[Sko96] It is not a homomorphism but we have the following equation which
follows from the de¯nition:

[ z a ¢ b ] [ z a ] ¤ [ µ a z b ] for all a; b 2 C: 4

The action of ' [ z c ] 2 ¼1 N on the tree T is related to the interval exchange

map µ c by see [Sko96]

µ c ' [ z c ] on a small neighbourhood of z in J: 5
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Lemma 10 For every pair of intervals I1; I2 as in Lemma 9 and every k there
is a regular point zk

2 J and ak
1

ck
1 ¢ : : : ; ak

2
ck
2 ¢ : : : 2 C such that the curves

zk ak
1

; zk ak
2

represent the same element in ¼1 N;

The proof of this Lemma is essentially the proof of Proposition 3 1 in [Sko96]
We refer to it for a more detailed exposition

Proof Let z 2 J be regular such that for all B 2 B Bz is regular too We ¯x
k 2 N Let Ck

n ½ C denote the words of length n in the letters ck
1

c1 ¢ : : : ¢ c1 and
ck

2
c2 ¢ : : : ¢ c2 Cardinality of Ck

n
is 2n As in [Sko96] the cardinality of the sets

µ Ck
n

z only grows polynomially in n So for ¯xed k there is a sequence of sets

Dk
n n with Dk

n ½ Ckn
such that:

1 for ¯xed n any two elements of µ Dk
n

map z to the same point in J and

2 the cardinality of Dk
n

has exponential growth in n
We ¯x dk

n 2 Dkn
For ¯xed n; k the elements of the set µ dk

n ¡1
±µ Dk

n
are interval

exchange maps on J which ¯x a common segment around z
By smallness of the action ¼1 N y T and equation 5 the set ' [ z Dk

n
] ¤

[ z dk
n ]¡1 is contained in a cyclic subgroup Zk

n ½ ¼1 N [Sko96] The subgroups

can be chosen to satisfy
Zk

n ½ Zk
n+1 ½ : : :

but such a sequence stabilizes and we ¯nd a cyclic subgroup Zk
½ ¼1 N such

that for all n

' [ z Dk
n

] ¤ [ z dk
n ]¡1

½ Zk

As in [Sko96] the cardinality of ' [ z Dk
n

]¤ [ z dk
n ]¡1 has at most linear growth

in n So there is n depending on k and there are di®erent words bk
1
; bk

2 2 Dkn½ Cknwith

' [ z bk
1

] ' [ z bk
2

]

The words bk
1
; bk

2 2 Ckn
are di®erent but may coincide at the beginning Without

loss of generality we can assume that
bk

1
®k

¢ ck
1 ¢ : : : ®k

¢ ak
1

bk
2

®k
¢ ck

2 ¢ : : : ®k
¢ ak

2
with ®k being a word in ck

1
; ck

2
of length less than n By equation 4

[ z bk
1

] [ z ®k ] ¤ [ µ ®k z ak
1

]

[ z bk
2

] [ z ®k ] ¤ [ µ ®k z ak
2

]

We set zk µ ®k z and we are done ¤
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Recall that we have ¯xed a transverse orientation on m and that for a point
x 2 m \ ¹ the half-leaf ¹+

x
of ¹ starting at x with positive direction is in tight

position with respect to m

Proof of Proposition 3 Notation as in Lemma 10 For i 1; 2 let ~zk
i 2

~Ii \ eF¹ be

the unique point which is mapped to zk
2 J by © ± ¼F¹ and zk

i the projection to
@eN After collapsing the collars of F¹ back to closed leaves of ¹ we denote the

images of zk
i by zk

i again compare above

In the proof of Lemma 1 we de¯ned the sequence mj of lifts of m to S0 for
curves which are in tight position with respect to a common meridian The curves

zk ak
1

and zk ak
2

provided by Lemma 10 are in tight position with respect to
the meridian m Since they represent the same element in ¼1 N;

mj zk ak
1

mj zk ak
2

for all j; k 6

By construction of the curves zk ak
i

we have i 1; 2

mj zk ak
i

mj ¹+
zki

for all k and j 1; : : : ; k 7

Equations 6 and 7 imply

mj ¹+
zk

1
mj ¹+

zk2
for all k and j 1; : : : ; k

By compactness of Ii \ ¹ we can suppose that the sequence zk
i k converges to

some zi 2 Ii \ ¹ By Lemma 2 the lifts of ¹+
z1

and ¹+
z2 to S0 have the same

endpoint in the limit set ¤½0 ¤

6 Realizations

Let N be a compression body with a convex cocompact hyperbolic structure

Recall that every lamination ¸ in O is realized by a pleated surface with respect
to ½0 and that the induced map from ¸ to the projectivized tangent bundle of N
is a homeomorphism onto its image P¸

By de¯nition the lamination ¸ 2 O is realized in a tree T if there is a continuous

and equivariant map from
eP¸ the lift of P¸ to the projectivized tangent bundle

of H3 to the tree T which is injective when restricted to any leaf
Since ¸ is mapped homeomorphically onto P¸ it su±ces to ¯nd a continuous

and ¼1 @eN -equivariant map from ~¸ the lift of ¸ to H2 to the tree T which is
injective when restricted to any leaf By abuse if such a map exists we will also
say that ¸ is realized in T

Theorem 3 Let ¼1 N y T be a non-trivial minimal small action on an R-tree

T and ¸ a minimal arational measured lamination in the Masur domain then ¸
is realized in T
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The idea of the proof is to show that there is a measured lamination ¹ on the

exterior boundary @eN and a morphism ©¹ : T¹ T such that the composition
of the projection H2 T¹ with ©¹ can be deformed to a realization of ¸ in T

Proof We choose a sequence of simple closed curves °i i converging to ¸ with
respect to the Hausdor® topology By Morgan's and Otal's Theorem for all i there

is a measured lamination ¹i with i ¹i; °i lT¹i °i lT °i and a morphism
©¹i : T¹i T :

Now let us show that lT °i > 0 for large i Up to choice of a subsequence we may
assume that the supports of the laminations ¹i converge in the Hausdor® topology
to a lamination ¹H By Proposition 2 the measured laminations ¹i are not in
the Masur domain O This implies that the Hausdor® limit ¹H

cannot contain a

lamination in O In particular the minimal arational lamination ¸ intersects ¹H
So for all but ¯nitely many i say for all one has

lT °i i ¹i; °i > 0: 8

Remark that the morphism ©¹i maps isometrically the axis of every element in
the conjugacy class represented by °i

For all i we choose an enlargement F¹i of ¹i in order to obtain a continuous and
equivariant projection ¼F¹i : H2 T¹i We may assume that the enlargements

F¹i converge in the Hausdor® topology to the lamination ¹H
The map ©¹i ± ¼

F¹i is continuous equivariant and by equation 8 it is mono-

tone on every lift of °i to H2 Here a map from an interval to a tree is monotone

if the preimage of every point is at most a bounded interval [Ota96]

Lemma 11 There is a train track ¿ which carries ¸ such that for large i the

map ©¹i ± ¼F¹i
satis¯es:

i It is constant on ties and monotone and non-constant on the rails of every

lift
e
Rj ½ H2 of every rectangle Rj ½ ¿

ii The images of any two rectangles
e
Rj ;

e
Rk ½ H2 which meet in vertical sides

intersect in exactly one point

Proof Since ¸ intersects ¹H the construction in [Ota96 chapter 3] yields a train
track ¿ carrying ¸ such that for large i the projection ¼F¹i : H2 T¹i is constant
on ties and monotone and non-constant on the rails of every lift

e
Rj ½ H2 of every

rectangle Rj ½ ¿

We may assume that ¿ carries ¸ minimally i e for any two rectangles
e
Rj ; e

Rk ½
H2 which meet in vertical sides one has

e
Rj \ e

Rk \ ~¸ 6 ; For large i the train
track ¿ carries the curve °i minimally too We are going to show that for all such

i the map ©¹i ± ¼
F¹i

satis¯es i and ii
Given a rectangle

e
Rj there is a lift ~°i ½ H2 of °i crossing

e
Rj ; hence we can

homotope along ties the rails of
e
Rj into the lift ~°i As remarked above the map
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©¹i ± ¼F¹i is monotone on ~°i and thus on the rails of
e
Rj It is not constant

because ¼F¹i e
Rj is a non-degenerate segment and ©¹i is a morphism Property

i follows

Given two rectangles
e
Rj ; e

Rk ½ H2 which meet in vertical sides there is a lift
~°i ½ H2 of °i with ~°i \ e

Rj \ e
Rk 6 ; Again since ©¹i ± ¼

F¹i is monotone on ~°i
property ii follows ¤

For ¿ and i as in lemma 11 it follows from [Ota96 3 1 5 3 1 6] that the map
©¹i ± ¼

F¹i can be homotoped to a realization in T of every lamination carried by
¿ in particular of ¸ This concludes the proof of Theorem 3 ¤

In the particular case that N is a handlebody we obtain

Theorem 4 Let N be a handlebody and ¼1 N y T a non-trivial minimal small
action on an R-tree T Further let ¸0 be a minimal component of a lamination ¸
in the Masur domain

Either ¸0 is realized in T or there is a train track ¿0 carrying ¸0 and a contin-
uous and equivariant map ©0 : ~¿0 T that maps every connected component of ~¿0
to a point

Proof If ¸0 is a simple closed geodesic then there is nothing to prove So suppose

it is not
As above choose a sequence of simple closed curves °i i converging to ¸0 with

respect to the Hausdor® topology Again for all i there is a measured lamination

¹i with i ¹i; °i lT¹i °i lT °i and a morphism

©¹i : T¹i T :

Suppose that the laminations ¹i converge in the Hausdor® topology to a lam-
ination ¹H Every minimal component of ¹H is contained in the Hausdor® limit
of components of ¹i thus by Proposition 2 in a Hausdor® limit of laminations

in M 0top and so in a Hausdor® limit of meridians By Corollary 1 every minimal
component of ¹H is an element of M 0top

So either ¸0 is transverse to ¹H
or disjoint from ¹H In the ¯rst case we

conclude as in the proof of Theorem 3 If ¸0 \ ¹H ; choose a train track ¿0
carrying ¸0 and disjoint from ¹H For i large enough there is a partial foliation

F¹i enlarging the measured lamination ¹i such that ¿0 is also disjoint from F¹i
This implies that the image of every connected component of ~¿0 is mapped by
¼F¹i to a point in T¹i De¯ne ©0 to be ©¹i ± ¼F¹i ¤
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Corollary 3 Let N be a handlebody and ¼1 N y T be a non-trivial minimal
small action on an R-tree T At least one minimal component of every measured
lamination in the Masur domain is realized in T

Proof Suppose the claim is false By Theorem 4 every minimal component ¸j
j 1; : : : ; k of ¸ is carried by a train track ¿j and there is a continuous and

equivariant map ©j : ~¿j T that maps every connected component of ~¿j to a
single point After re¯ning the train tracks we may assume that they are pairwise

disjoint
Since O is open there are simple closed curves ´j carried by ¿j such that the

multicurve ´ ´1 [ ¢ ¢ ¢ [ ´k is in the Masur domain By Morgan's and Otal's
Theorem we ¯nd a measured lamination ¹ and a morphism ©¹ : T¹ T such
that 0 lT ´j lT¹ ´j i ¹; ´j for all j 1; : : : ; k This contradicts the fact
that by Proposition 2 every minimal component of ¹ is an element of M 0top whence

i ¹;´ > 0 ¤
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