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Algebraic convergence of function groups

Gero Kleineidam and Juan Souto

Abstract. We give a sufficient condition for a sequence of convex cocompact hyperbolic struc-
tures on a fixed compression body to have an algebraically convergent subsequence. This extends
a result of Otal. Further if the manifold is a handlebody we show that certain laminations play
a similar role in deformation space as binding curves in Teichmiiller theory.

Mathematics Subject Classification (2000). 30F40, 20E08, 57M50.
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1. Introduction

A compression body N is a compact 3-manifold which is the connected sum along
the boundary on a closed ball of solid tori and trivial interval bundles over closed
surfaces of genus at least 2. Throughout the paper, we only consider the case that
the fundamental group 71 (V) splits as a non-trivial free product. Equivalently, we
rule out that N is a trivial interval bundle over a closed surface or a solid torus. In
particular, the boundary 0N has a unique compressible component which is called
the exterior boundary d./N. For more on the topology of compression bodies see
Bonahon [Bon83, Appendix B].

Using Klein-combination one can construct a convex cocompact representation
po of m(N) into PSLy C such that H?/po(71(N)) is homeomorphic to the interior
of the compression body N [MT98]. Such a representation is said to uniformize
N. The exterior boundary 9.V is covered by a connected component of the dis-
continuity domain €,, C €, which is invariant under po(71(N)). Kleinian groups
having an invariant component of the discontinuity domain are called function
groups. The quotient of H? by any convex cocompact function group is homeo-
morphic to the interior of a compression body. See Maskit [Mas88] for more on
function groups.

Due to a theorem of Marden [And98, MT98]|, every quasi-conformal deforma-
tion of py uniformizes N, too. By Ahlfors-Bers theory, QH(po), the space of
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quasi-conformal deformations of pg up to conjugation by an element of PSLy C, is
parameterized by the Teichmiiller space 7 (0N). More precisely, there is a normal
covering, called the Ahlfors—Bers map

T(ON) — QH(po)

whose deck transformation group is the group of isotopy classes of diffeomorphisms
of N which are homotopic to the identity (see [MT98]). Note that the Teichmiiller
space 7(ON) can be identified with 7(0.N) x T(01N) x -+ x T(9yN) where
O:N,01N,...,0pN are the boundary components of N. As homeomorphisms of
N preserve 9. N, the deck transformation group of the Ahlfors—Bers map acts on
T(9.N).

The space QH (pg) is contained in the deformation space of m1(N), the space
of PSLs C-conjugacy classes of discrete and faithful representations of w1 (/N) into
PSLs €. The compact-open topology on it is the so-called algebraic topology. With
respect to this topology, QH (pg) is open in deformation space. For more on the
deformation theory of Kleinian groups, see [And98, MT98].

Since deformation space is not compact, it is an interesting question to deter-
mine when a divergent sequence in QH (pg) converges in deformation space.

Canary [Can91] showed that for all compact subsets K C 7 (9.N) the image
under the Ahlfors—Bers map of K X7 (91 N) x ---x 7T (95 N) has compact closure in
deformation space. The goal of this paper is to study sequences of quasi-conformal
deformations of py such that the corresponding sequences in 7 (9, N) diverge.

Thurston [FLP79] compactified Teichmiiller space via PML, the space of pro-
jective classes of measured laminations. Masur [Mas86] and Otal [Ota88] studied
the dynamics of the mapping class group of the compression body N on the space
of projective classes of measured laminations on the exterior boundary d.N and
described an open set O C PML on which the action is properly discontinuous.
The set O is called the Masur domain. Otal [Ota88] analyzed further geometric
properties of laminations in O. In particular, he proved that given a convex co-
compact representation uniformizing NV, every lamination A in the Masur domain
is realized by a pleated surface.

We will say that a sequence (p;) in QH (po) converges into the Masur domain if
it is parameterized under the Ahlfors—Bers map by a sequence (S¢, S}, ..., SF); C
T (9ON) such that (Sf); converges to a measured lamination A € O. We impose no
restrictions on the conformal structures on the incompressible boundary compo-
nents. By abuse, we will say that the sequence (p;) C QH (po) converges to A € O.

Conjecture (Thurston). Let py be a convexr cocompact representation uniformiz-
ing a compression body N. If (p;): is a sequence in QH (po) converging to a lami-
nation in the Masur domain, then it has o convergent subsequence in deformation
space.

Canary [Can93] proved the conjecture under the extra assumption that N is a
handlebody and that there is an identification of N with the trivial interval bundle
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over a surface Y with boundary 93 such that the lengths of the geodesics in the
free homotopy classes of 9% remain bounded with respect to the representations p;.

In case N is the connected sum along the boundary of two trivial bundles over
closed surfaces, Ohshika [Ohs97] gave a partial answer to the above conjecture.

Otal [Ota94] proved that the conjecture holds for handlebodies of genus two
and laminations with simply connected complementary regions. Such laminations
are also called minimal arational. We follow the strategy of Otal’s proof and show
for general compression bodies.

Theorem 1. Let pg be a convex cocompact representation uniformizing a compres-
sion body N. If (p;); is a sequence in QH(pg) converging to a minimal arational
lamination in the Masur domain, then it has a convergent subsequence in defor-
mation space.

Further, we prove that laminations in the Masur domain play a similar role
for handlebodies as binding curves do in Teichmiiller theory. This generalizes
Theorem 6.1 in Canary [Can93].

Theorem 2. Let N be a handlebody and A a measured lamination in the Masur
domain. The set of conver cocompact representations p uniformizing N such that
[,(X), the length of X with respect to p, is less than a constant C > 0 is precompact
in deformation space.

The proofs of Theorem 1 and Theorem 2 follow the same lines. We restrict
ourselves to a brief outline of the proof of Theorem 1.

Seeking for a contradiction, let (p;) be a sequence in QH (pg) which converges
to a minimal arational lamination A € O but does not contain any convergent
subsequence in deformation space.

By Theorems of Thurston [FLP79] and Canary [Can91], convergence to A im-
plies that there is a sequence of curves (;) on 9. N converging to A in PML such
that the ratios of the translation lengths in H® of p;(v;) and po(v;) tend to 0.

By a Theorem of Morgan and Shalen [MS84], divergence in deformation space
implies that a subsequence of (p;), say the whole sequence, converges in an appro-
priate sense to a minimal and small action of 771 (V) on an R-tree 7T'. The lamination
A is said to be realized in T if there is a continuous equivariant map from 5\7 the
lift of A to H?, to T which is injective on each leaf of A. Otal [Ota94] proved that if
A is realized in T, then for every sequence of curves (v;) converging to A in PML,
the ratios of the translation lengths in H? of p;(;) and po(7;) tend to co.

Hence, we obtain the desired contradiction by proving that every minimal ara-
tional lamination in the Masur domain is realized in every R-tree which admits a
minimal small action of m1(N). This was previously established by Otal [Ota94]
in the case of the handlebody of genus 2. He made use of a Theorem of Culler
and Vogtmann [CV91] which gives a geometric description of all small actions on
R-trees of the free group of rank 2. It is known that such a characterization is not
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possible in general, not even for free groups of higher rank [GL95].

Our approach is different. Suppose that a minimal arational lamination A € O
and an R-tree T' that admits a small action of 7 (V) are given. We show that there
is a measured lamination p on the exterior boundary d.N and a morphism from
the dual tree T}, to T such that the composition of the projection H> — T}, with
the morphism 7, — 7' is monotone and non-constant on every leaf of A. Due to
a result of Otal [Ota94], such a map can be homotoped to a realization of A in 7.

The existence of p ensues from a detailed study of morphisms from dual trees
to T'. This part is motivated by ideas of Skora [Sko96].

The paper is structured as follows: In section 2, we review some facts about
trees, laminations, and divergence of representations. In Section 3, we reduce
Theorem 1 and Theorem 2 to statements on realizations of laminations in R-trees.
Section 4 is devoted to the analysis of laminations on the exterior boundary of N.
The techniques are motivated by earlier work of Otal [Ota88]. In section 5, we
study morphisms from dual trees to R-trees which admit a minimal small action
of w1 (N). In section 6, we construct the desired realizations using the results of
section 4 and section 5.

The authors would like to express their special gratitude to Professor Ursula
Hamenstadt and Professor Jean-Pierre Otal for their patience, their encourage-
ment and the fruitful discussions with them. There is no doubt that the present
paper would not have been possible without Otal’s fundamental work on this topic.
The first author wants to thank Professor Frédéric Paulin for his invitation to a
two-month-stay in Orsay.

We thank the referee for a careful reading and useful suggestions.

2. Preliminaries

In this section, we review some facts about trees, laminations and divergence of
representations.

Let N be a compression body. After the choice of a basepoint * on the exterior
boundary d.N, we have a surjective homomorphism

@: T (0N, %) — T (N, %)

which we call compression homomorphism. If there is no risk of confusion, we will
use the symbol « for elements in m1(0.N, ) as well as for their images under ¢.
Further for simplicity, we often write 71(9.N) and mq(N).

Later it will be useful to view every action 71(N) ~ X of m1(IN) on a space X
as a 71(0.N)-action, too:

T (0 N) x X = X, (g,2) — #(g)z

All actions on metric spaces (X, dx) will be isometric. The translation length
of an isometry g of a metric space X is defined to be inf{dx(z,gz)|x € X}. The
metric spaces we are going to work with are H?, H> and R-trees.
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2.1. R-trees

An R-tree T is a path metric space such that any two points p, ¢ can be joined by
a unique arc.

There is a classification of the isometries of an R-tree T'. An isometry g: T — T
has either translation length lr(g) = 0 and has a fixed point or I7(g) > 0 and there
is a unique invariant geodesic line in T, the axis of g.

An action G ~ T is called minimal if there is no proper invariant subtree.
An action G ~ T is called small if the stabilizer of every non-degenerate arc is
virtually abelian. More about R-trees can be found in Kapovich [Kap00].

Morgan and Shalen [MS84] used R-trees to compactify the deformation space.
They use algebraic methods, for a more geometric approach see Bestvina [Bes88]
and Paulin [Pau8§].

Compactness Theorem (Morgan—Shalen). Let G be a finitely generated group
containing a free group of rank 2 and let p; : G — PSLo C be a sequence of discrete
and faithful representations. Then after passing to a subsequence either

(1) (pi) converges in the deformation space of G, or

(2) there is a minimal small action G ~ T on an R-tree and a sequence of
real numbers ¢; — 0 with

lilm €ilp,(v) = lr(v)

for all v € G, where l,,(7) is the translation length of p;(7y) in HA.

We remark that a minimal small action of such a group GG on a tree is charac-
terized by the translation lengths of the elements of G [Kap00]. This allows us to
say that the sequence (p;); converges to the action G ~ T.

We will apply the Compactness Theorem to the case that G is the fundamental
group of a compression body.

2.2. Laminations

A lamination on a closed hyperbolic surface S is a compact subset of S which
can be decomposed as a disjoint union of simple geodesics, called leaves. The
sets of laminations with respect to two hyperbolic structures on the same surface
can be naturally identified (see [CB88]); so a lamination can be considered as a
topological object. A lamination is called minimal if every half-leaf is dense. Each
lamination can be decomposed as a union of finitely many connected minimal
laminations, called minimal components, and finitely many non-compact isolated
leaves. The set of laminations is compact with respect to the topology induced by
the Hausdorff distance. We will refer to this topology as the Hausdorff topology.
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A train-track T in S is a finite union of rectangles with “long” horizontal sides
which are foliated by “short” vertical geodesic segments and which meet only at
non-degenerate segments contained in the vertical sides. The horizontal sides of
the rectangles are called rails, the vertical segments ties and the intersections of
two rectangles switches. A lamination is carried by 7 if it is contained in 7 and
transverse to the ties. If A is carried by 7, then the set of laminations carried by
7 forms a neighbourhood of A with respect to the Hausdorff topology [Ota96].

A measured lamination is a lamination with a transverse measure of full sup-
port. The support of a measured lamination is a finite union of minimal compo-
nents, in particular it does not contain any isolated non-compact leaf. A minimal
lamination is called minimal arational if its complementary regions are simply-
connected.

There is a topology on the set ML of measured laminations which is induced by
the intersection form i: ML x ML — Ry [Ota96, FLP79]. Rescaling the measure
provides an action of Ry on ML. The quotient with the quotient topology is the
space of projective measured laminations and is denoted PML. 1t is compact. If
a sequence of projective measured laminations converges to a projective measured
lamination A in PML and to a lamination Ay in the Hausdorff topology, then A
— or more precisely the support of A — is contained in Ay.

The Teichmiller space of a closed surface S is denoted by 7(S5). Thurston
[Thu86] studied the length function on the space of measured laminations on S.
It is the unique continuous function

TS)x ML —Ry, (0,A)—1;(N)

which extends the function that associates to a point o € 7(S) and to a weighted
simple closed geodesic a - v, a > 0, the length of v in ¢ multiplied by a.

The Teichmiiller space 7(S) can be compactified by the space PML of pro-
jective measured laminations on S [FLP79]. This compactification reflects the
geometric behaviour of divergent sequences in 7(S). In particular, if a sequence
(Si) C T(S) converges to A € PML, then there is a sequence (v;) of simple closed
curves converging to A in PML and such that

lSi ('Yi)/lSo ('Yz) — 0 for 1 — o0.

However this does not imply that the lengths lg,(\) tend to 0. Indeed, take an
element of 7 (5) and iterate a Dehn twist about a fixed curve  on it. The resulting
sequence tends to v, seen as an element of PML, but the length of v is constant
during the sequence.

Given a hyperbolic structure on the compression body N, a pleated surface
is a length preserving map f : S — N from a hyperbolic surface S € 7(9.N)
to N homotopic to the inclusion d.N — N and such that each point p € S is
contained in a geodesic segment which is mapped isometrically. A lamination A
on the exterior boundary d.N is realized by a pleated surface if there is a pleated
surface that maps each leaf of A\ to a geodesic in N. Notice that a realization of
a lamination A by a pleated surface induces a map from A to the projectivized
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tangent bundle of N.

If p is a representation of 71 (V) into PSLg C uniformizing N and X is a mea-
sured lamination on the exterior boundary that is realized by a pleated surface,
we can define [,()), the length of A with respect to p, to be its length with respect
to the hyperbolic structure of the pleated surface realizing A.

See Otal [Ota96, Appendix] for more about laminations and measured lamina-
tions and Fathi-Laudenbach—Poénaru [FLP79] for a detailed exposition of
Thurston’s compactification of Teichmiiller space. Pleated surfaces are discussed
in [Thu86, Ota88, Kap00].

2.3. Dual trees

For a measured lamination x on a surface S, we denote by [ its lift to H?. If u
does not have atoms, the semidistance on H? induced by integrating the transverse
measure ji along paths is continuous with respect to the usual topology of H?. The
support of an atom is a closed geodesic, therefore it is possible to avoid atoms by
replacing closed leaves in by annuli foliated by parallel closed curves. Denote by
F,. the measured partial foliation that we obtain by this process and by J%u the lift
of F, to H?. The quotient of H? under the semi-distance induced by F, depends
only on g, it is denoted T),, and the projection 7z, : H? — T, is continuous. T}, is
an R-tree, called the dual tree of p. The fundamental group of the surface S acts
on T}, and the action is small and minimal. Dual trees are discussed in detail by
Otal [Ota96] and Kapovich [Kap00].

Using dual trees, Skora [Sko96] established a 1-1-correspondence between min-
imal small actions of the fundamental group of a closed surface S and measured
laminations on S.

Theorem (Skora). Let m1(S) ~ T be a minimal and small action of m1(S) on an
R-tree T, then there is a unique p € ML and an equivariant isometry T, — T.

Skora’s ideas will be used in section 5 where we study certain maps from trees
dual to laminations on the exterior boundary of a compression body N to a given
R-tree with a minimal small action of 71 (N).

3. Main Theorems

The goal of this section is to reduce Theorem 1 and Theorem 2 to a property
of minimal small actions of the fundamental group of a compression body N on
R-trees.

A simple closed curve m on the exterior boundary d.N which is homotopically
trivial in N but not in 0. is called a meridian. Note that by Dehn’s Lemma
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[Jac80] every meridian bounds an embedded disk in V. Recall that we use the
symbol v for elements in 71 (9. N) as well as for their images under the compression
homomorphism ¢ : 71 (9. N) — 7 (N).

A meridian may be seen as an element of PML, too. The set of projective
classes of weighted multicurves of meridians in PML will be denoted by M and
its closure in PML by M’ (see Otal [Ota88]).

N is a small compression body if it is the connected sum along the boundary of
either two trivial interval bundles over closed surfaces or an interval bundle over
a closed surface and a solid torus. For a small compression body, set

O :={XePML| i\ pn) >0 for all p € PML such that
there is v € M’ with i(u,v) = 0}

If N is not a small compression body, set
O ={AePML|i(\p) >0 forall pe M'}

The set O is called the Masur domain and is open by continuity of the intersection
form and compactness of PML. We will say that A € ML isin O (resp. M’) if
its projective class is in O (resp. M’).

Otal [Ota88] proved (see also Ohshika [Ohs])

Theorem on pleated surfaces (Otal). Let N be a compression body with a
convez cocompact hyperbolic structure. Every lamination X C .N containing the
support of a measured lamination in the Masur domain is realized by a pleated
surface in N.

Moreover, the induced map from X to the projectivized tangent bundle of N is
a homeomorphism onto ils image Pa.

The image in Py of a leaf of A is the trace of a geodesic and is equally called a
leaf. Denote by Py the preimage of Py in the projectivized tangent bundle of H3.
The following definition is due to Otal [Ota94]:

Definition. Let N be a compression body with a convex cocompact hyperbolic
structure and 71(N) ~ T an action on an R-tree 7. A lamination A C 9.N is
realized in T if there is a continuous 7 (IV)-equivariant map

<I>:75A—>T

which is injective when restricted to any leaf.

As A is mapped homeomorphically onto 75>\, this definition is equivalent to the
definition of realization given in the introduction.

The following Theorem was proved by Otal [Ota94] in the case that N is a
handlebody, but a careful checking of the proof shows that it holds for compression
bodies as well.
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Continuity Theorem (Otal). Let (p;) be a sequence in the deformation space
of m(N) converging to a non-trivial minimal small action 71(N) ~ T and (v;)
a sequence of simple closed curves on 0,N converging in PML to a minimal
arational measured lamination X in O which is realized inT'. Then for all N >0
there is iy > 0 such that

los (vi) 2 N lpo(%) forall © > in
where ,(v) denotes the translation length of p(p(7y)) in H3.

Remark. It seems to be a delicate issue to extend the theorem to all sequences of
curves (vy;) converging in PML to an arbitrary lamination A in O which is realized
in the tree T'.

On the other hand, the conclusion of the theorem is valid for an arbitrary
sequence of curves (v;) provided every Hausdorff limit of (v;) is realized in T.
Indeed, the latter condition is the only one used in the proof of the theorem, and
it is weaker than the one stated in the theorem (see [Ota94]).

In the last section we will prove

Theorem 3. Let i (N) ~ T be a non-trivial minimal small action on an R-tree
T and A a minimal arational measured lamination in the Masur domain, then A
is realized in T'.

Next, we reduce Theorem 1 to Theorem 3 (see Otal [Ota94]).

Theorem 1. Let pg be a convex cocompact representation uniformizing a compres-
sion body N. If (pi); is a sequence in QH(pg) converging to a minimal arational
lamination in the Masur domain, then it has a convergent subsequence in defor-
mation space.

Proof. Seeking a contradiction, suppose that (p;); converges to a minimal and small
action w1 (N) ~ T on an R-tree. By definition, there is a sequence (8¢, S}, ..., SF)C
T(ON) which is mapped to (p;) under the Ahlfors-Bers map and such that the
sequence (S¢) C 7(9.N) converges to A. Then there is a sequence (v;) of simple
closed curves on the exterior boundary d,N converging to A in PML with

le('Yi)/ng('Yi) — 0 for i — oo. (1)

On the other hand, for all A > 0 there is some i4 such that lsc(m) > A for all
i > ia and all meridians m. Then by a Theorem due to Canary [Can91] there is
K > 0 such that for all ¢ > iy

Lo (vi) < K lse(vi) (2)

where [, (7;) is the translation length of p;(¢(v;)) in H®. Combining equation (1)
and equation (2) we deduce with the same arguments as Canary [Can93] in the
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handlebody case that
bps (’Yi)/lpo () — 0 for i — 0.

By the Continuity Theorem, A is not realized in T', contradicting Theorem 3. O
In the case that N is a handlebody we will show in section 6

Corollary 3. Let N be a handlebody and m(N) ~ T be a non-trivial minimal
small action on an R-tree T. At least one minimal component of every measured
lamination in the Masur domain is realized in T.

We reduce Theorem 2 to Corollary 3.

Theorem 2. Let N be a handlebody and A\ a measured lamination in the Masur
domain. The set of convexr cocompact representations p uniformizing N such that
[,(X), the length of A with respect to p, is less than a constant C > 0 is precompact
in deformation space.

Proof. Suppose again that there is a sequence (p;) of convex cocompact representa-
tions uniformizing N with [,,(X) < C that converges to some non-trivial minimal
small action m1(N) ~ T on an R-tree. The length of any minimal component Ag
of A is also bounded by C for all 7.

By Otal’s Theorem on pleated surfaces, the lamination X is realized by a pleated
surface in H?/p;(71(N)) for all i. Hence in each neighbourhood of Ao with respect
to the Hausdorff topology we find a simple closed curve ~; with [, (v;) < C l,, ().

By a diagonal argument, we can assume that the sequence (;) converges to Ag
in the Hausdorff topology.

The Continuity Theorem applies to this sequence by the remark after it; thus,
the lamination Ag cannot be realized in T'. As Ao was arbitrary this contradicts
Corollary 3. [l

4. Laminations on the exterior boundary

Let po: w1 (IN) — PSLy C be a convex cocompact representation uniformizing the
compression body N. The image of pg is a function group. Following Otal’s
[Ota88] notation, S’ ¢ C denotes the invariant component of the discontinuity
domain of the action of pg(w1(N)). It is a normal planar covering of the exterior
boundary d.N with deck transformation group po(71(N)). Since po(71(N)) is a
function group, the limit set A,, of the action of pg(7i(N)) on € coincides with
the boundary of 5" in C [Mas88].
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4.1. Treelike structure of S’

We recall that a meridian is a simple closed curve which is nullhomotopic in N but
not in d.N. By Dehn’s Lemma, a meridian bounds an embedded disk in N. So,
every maximal disjoint union of non-parallel meridians cuts N into smaller pieces.
On the level of groups, this means that (V) is a graph of groups whose edge
groups are trivial and correspond to the meridians. The universal cover of the
graph is a tree and there is a 71 (/N)-equivariant map from S’ to the tree. Such a
map maps geodesics in S’ to paths in the tree. In general, the paths can be fairly
arbitrary, in particular not monotone.

Definition. Let m be a meridian. An m-wawve is an arc on d,N with endpoints
on m which is homotopic in N relative endpoints, but not in d.N to a subarc of m.

For example, if two meridians intersect, then each of them contains a wave with
respect to the other.

Definition. A curve v : R — 9.N (resp. v : Ry — 9.N) is in tight position
with respect to m if v does not contain m-waves and the image under « of every
unbounded interval intersects m.

Lemma 1. Ifv: R, — d.N is a curve which is in tight position with respect to a
meridian m, then every lift of v to S’ has a well-defined endpoint in the limit set
A,, of the action of po(7w1(N)) on C.

Proof. Let v/ : Ry — S’ be a lift of v to S’. There is a sequence (m;(y’)) of
lifts of m which are intersected by +" and indexed by the ordering in . Observe
that every lift of m to S’ separates S’ and denote by K; the closure in C of the
connected component of C — m; (') that does not contain mg(y’). Since « is in
tight position with respect to m, K,y is contained in the interior of K; for all ¢
and the diameter of K; tends to zero (compare [Ota88, 1.9, 1.14]). O

The following lemma establishes a kind of continuity for the map which asso-
ciates to lifts of curves v: Ry — 0.N which are in tight position with respect to
a common meridian their endpoints in A,, C C. Notation as in the proof of the
last lemma.

Lemma 2. For j =1,...,00 let v; : Ry — 0.N be curves which are all in tight
position with respect to a meridian m. Let mo and ~j be lifts of m and ~; to S’
with mqg = mo(v;) for all j =1,...,00. Then the endpoints of v; converge to the
endpoint of y., if and only if for all i there is jo such that for all § > jo

mi(75) = mi(Veo) O
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So far, we considered general curves on d./N, we now turn our attention to
laminations.

Definition. A lamination is in tight position with respect to a meridian m if every
half-leaf is.

Notice that a minimal lamination A is in tight position with respect to a merid-
ian m if and only if some half-leaf in X is since every half-leaf is dense. On the
other hand, if a lamination consists of several minimal components each being
in tight position with respect to a meridian, it is not clear if there is a common
meridian with respect to which all components are in tight position. We prove

Lemma 3. Let u be a measured lamination with the property that every component
is in tight position with respect to some meridian. Then there is a meridian m
intersecting p and such that v does not contain any m-wave.

Proof. Let 1 be a component of o and let my be a meridian with respect to
which i is in tight position. We claim that the set of those homotopy classes of
mi-waves (rel mq) that are represented by a subsegment of a leaf of y is a finite
number N,,,, (). For this, remark that there are leaves l5, . .., [ which are dense in
o — py. This implies that every mi-wave in u can be represented, up to homotopy
(rel m1), by a segment in one of the leaves lo, ..., {;. Recall that each of the leaves
la, ..., i is in tight position with respect to some meridian. It follows from lemma
1 that there are, up to homotopy, only finitely many mq-waves in lo, ..., l. We
have proved that N, (1) < co.

We will inductively reduce this number until we obtain a meridian m with
Np(p) = 0. We assume that Np,,(u) > 0; hence, there is an mi-wave [a, b]
contained in one of the leaves lo, ..., [l such that (a,b) Nm; = 0. By surgery of
my along [a,b] we obtain meridians mq, m5 with the following properties:

(i) w1 is in tight position with respect to one of the meridians msq, mb, say
with respect to mo, and

(i) N, () < Ny (1) — 1.

If 1« contains my-waves, we repeat the process with ms. After finitely many steps,
we are done. O

We finish this section with two results of Otal [Ota88]. In the next subsection,
we give complete proofs of more precise statements in the case that N is a han-
dlebody. So, we skip the proofs even though Otal’s thése d’Etat is unfortunately
unpublished.

Lemma 4. [Ota88, 1.3] Every minimal component of a lamination X € O is in
tight position with respect to some meridian. O

Definition 1. A leaf [ : R — 9.NN of a lamination on 9. is called homoclinic if
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there are two sequences z;,y; € R and a lift I/ of [ to S’ such that |z; — y;| — o©
but the distances between I’(z;) and ’(y;) are bounded in 5.

Otal proved (see the proof of [Ota88, 2.10])

Lemma 5. A lamination X in the Masur-domain is not contained in a lamination
with a homoclinic leaf. |

4.2. The handlebody case

This subsection is devoted to a more detailed analysis of laminations on the bound-
ary of the handlebody. As remarked above, the proofs are inspired by the argu-
ments in [Ota88].

Notice that it is a topological property for a lamination to be an element of O.
Denote by Mj,, the set of those laminations in PAML which have same support as
laminations in M’. The main result of this section is the next Proposition which
is a slightly stronger version of Lemma 5 in the handlebody case.

Proposition 1. If N is a handlebody and u C 0.N is a lamination containing a
homoclinic leaf, then every minimal component of u is an element of Mt’Op.

On the other hand, every Hausdorff-limit of meridians contains a leaf which is
homoclinic (see Casson-Long [CL85] or Otal [Ota88]).

Corollary 1. Every minimal component of a Hausdorff-limit of meridians on the
boundary of a handlebody is an element of Mt/op' (Il

The proof of Proposition 1 occupies the rest of this section. First, we give three
lemmas which help to identify a lamination as an element of Mj,,.
If p C 9N is a minimal lamination, we denote the smallest compact subsurface

of d.N containing p by S(u). It is unique up to isotopy.

Lemma 6. [Ota88, 1.3.2] If u 4s a minimal lamination on the boundary of a han-
dlebody N and 9. N — S(p) is compressible, then € Mj,,.
Proof. By Dehn’s Lemma [Jac80], 9. N — S() contains a meridian which bounds
a disk in N. If the disk is separating, it cuts N into two handlebodies and p is
contained in one of them, hence there is also a non-separating meridian disjoint
from p. So we assume that m is non-separating. Cut d.N along m and join the
two resulting boundary components by an embedded arc x. The boundary of a
regular neighbourhood of mU k in d.N is a meridian. Since x can be chosen as
close to p as wanted, we deduce p € M/,,. d
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The proof of Lemma 6 fails to generalize to laminations on the boundary of a
general compression body and constitutes the main difference between the han-
dlebody case and the general case in the present context.

By Lemma 4, every component of a measured lamination in O is in tight
position with respect to some meridian. On the other hand we have

Lemma 7. Let p be a minimal arational lamination on the boundary of a handle-
body. If p is not in tight position with respect to any meridian, then
w€ Mi,,.
Proof. Let m be a meridian and [ a leaf of ;. As seen before, if | contains only
finitely many homotopy classes (rel m) of m-waves, then we can find a meridian
mg with respect to which [ is in tight position. The minimality of x then implies
that p is in tight position with respect to my.

If | contains infinitely many homotopy classes (rel m) of m-waves, it is homo-
clinic. So, we find sequences (z;), (y;) C R such that I(z;),{(y;) € m and the
segments [[z;, y;] are m-waves. We may suppose that [(z;) and [(y;) converge. Fix
a transverse measure on p. For all € > 0 we can find ¢, 5 such that the measure
of the small subsegments [{(x;),!(z;)] C m and [l(y;),{(y;)] C m is less than e.
The union of these two segments and the m-waves [z;,y;] and [z, y;] is a com-
pressible curve. By the Loop Theorem [Jac80], we find nearby a meridian m, with
i(p, me) < 2e. Taking limits we obtain a lamination v € M’ with ¢(u, v) = 0 which
implies that p and v have same support as p is minimal arational. (Il

We now consider the case that u is only minimal. If some component of 95(u)
is a meridian, Lemma 6 shows that p € Mt’op. If this is not the case, a relative
version of the proof of Lemma 7 yields the following Lemma which is essentially a

special case of Theorem 1.6 in Otal [Ota88].

Lemma 8. If a minimal lamination v on the boundary of a handlebody is not in
tight position with respect to any meridian, then S(p) 4s compressible and p €
M, O

top-
We deduce from Lemma 8 and Lemma 6

Corollary 2. If a minimal component of a lamination u on the boundary of a
handlebody is not in tight position with respect to any meridian, then every minimal
component of p is in My,,. O

Proof of Proposition 1. A similar argument as in the proof of Lemma 7 shows that
every e-neighbourhood of a homoclinic leaf [: R — 9. N in p contains a meridian.
Lemma 6 implies that every minimal component disjoint from the closure of [ is
in M/

top*
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From now on, we assume that [ is dense in . So p has one or two minimal
components. If one of them is not in tight position with respect to some meridian,
we are done by Corollary 2. Assume that they are in tight position with respect
to some meridian. Since a homoclinic leaf is not in tight position with respect to
any meridian, the leaf [ must be isolated and non-closed. Further, every lift I" of /
to S’ has endpoints in the limit set A,, C C which coincide since { is homoclinic.
If 1o contains two minimal components, then every meridian with respect to which
one is in tight position intersects the other. Thus, Lemma 3 provides a meridian
m with respect to which every minimal component of u is in tight position.

In particular, we find 25 < yg € R such that the segment {[zo, yo] is an m-wave
and such that the half-leaves [|{;<,,} and {|{;>y,} are in tight position with respect
tom. Let zg > 1 > xz9 > ... and yo < y1 < y2 < ... be the sequences of all
points with {(z;) € INm and I(y;) € L N'm. We have for all i < j:

(1) The segment {[x;,y;] is an m-wave,

(2) the tangent vectors %l y; and —%l «; point to the same side of m, and

(3) the curves {[z;,z;] and [[y;,y;] represent the same element in w1 (N, D)
where D is a disk with 9D = m.

We will first treat the case that ¢ has only one minimal component . For every
train track 7 carrying g = po Ul we will construct a simple closed curve in M’
carried by 7. As [ is not contained in the support of any measured lamination this
will prove that pg € Mj,,.

Suppose first that d({(z;),{(y;)) > € > 0 for all 4. After refining 7, we may
assume that every component of 7 N m is shorter than e. If two points a,b are
contained in the same component of 7 N m we denote by [a, b] the subsegment of
this component bounded by a and b. There are ¢ < j such that one of the following
two cases occurs.

Case I:

(1) Each of the pairs {l(x;),{(z;)} and {{(y;),{(y;)} is contained in a compo-
nent of 7 N'm,

(2) the tangent vectors —<£/|,, and —<£I|,, point to the same side of m, and

(3) there is no k € {i +1,...,7 — 1} such that I(z}) or I(y;) belongs to
(), {(z;)].

Case II:

(1) Each of the pairs {l(x;),{(y;)} and {{(vs),{(x;)} is contained in a compo-
nent of 7 N'm,

(2) the tangent vectors —Z1
(3) there is no k € {i +1,...,7 — 1} such that I(zy) or l(yx) belongs to
[((:), Ly;)].
Both cases are represented in Figure 1.
If Case I holds, there is no k such that I(z;) and l(yy) belong to [{(y;), [(y;)]
because d(l(xr),l(yx)) > €. Together with the fact that lifts of [ to S’ do not

«; and %Hyj point to the same side of m, and
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Case | Case 11
Figure 1
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intersect and can be compactified to Jordan curves in C this implies that there is
noke{i+1,...,5—1} such that {(zy) or {(ys) lies in [{(y;),{(y;)]. So, the curves

Yo = lzs, 23] U [l(z), Wzz)], 10 = Uy, w51 U [L(ws), L(y;)]
are homotopic to simple closed geodesics carried by 7. They belong to M’ since a
boundary component of a regular neighbourhood of v, Un, Ul[z;, y;] is a meridian
disjoint from =, and 7.
In Case II, we deduce as in Case I that thereisno ke {t+1,...,57 — 1} such
that {(z1) or {(yr) belongs to [I(y;),l(z;)]. As above this implies that the curve

Yo = Ui, 23] U [H{z5), Wya)] U lys, y;] U [y;), L]
is homotopic to a simple closed geodesic carried by 7 and belongs to M’ because it
is disjoint from the boundary component of a neighbourhood of v, Ul[z;,y;] which
is a meridian.

The arguments are valid for any train track 7. We conclude that the minimal
component of y is in M, if d({(z;),{(y;)) > € > 0 for all i.

Continuing with the assumption that p contains only one minimal component
o, suppose that inf d(i(z;),{(y;)) = 0. In particular, ! contains m-waves whose
endpoints are close and we cannot directly apply the same arguments as before.
Fix i such that {(x;),(y;) are contained in the same component of 7 Nm. If there
is no j > i with {(z;),l(y;) € [l(z:),{(y;)] we finish the proof by Lemma 6 as
{zi, yi] U [U(z;), {(y;)] is compressible and disjoint from . Otherwise, let j > ¢
be minimal for the property that I(z;) and {(y;) belong to [{(x;),1(y:)]. Figure 2
represents the four possible cases.

By the choice of 7,5 and the fact that lifts of / to S’ do not intersect and can
be compactified to Jordan curves in C, the Cases I and 11 can be treated as above.
The same argument shows in Case III that a boundary component of a regular
neighbourhood of

Uz, 23] U [Hzy), Laa)] U i, 3] U lys, yi] U [Hy;), L)l
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is homotopic to a simple closed geodesic carried by 7. It is even a meridian
since the segments {[x;, z;] and {[y;, y;] represent the same element in 71(N, D).
Similary, in Case IV, the curve 4 which is the concatenation of the segments
l[xi7xj]7 [l(xJ)J(yl)]? Uyi, zil, [l(xl)J(yj)]? l[yj7yi] and I[y;, z;] is homotopic to a
meridian carried by 7. As before, we conclude that the minimal component of p
is in M{,,.

The remaining case that p has two minimal components can be reduced to the
discussion of Case I because there is obviously some ¢ > 0 such that d(I(z;), {(y;)) >
€ > 0 for all 4, 5. Notice that each of the curves ~, and 7, constructed above ap-
proximates one of the minimal components of y and is in M’. This implies that
both minimal components of y are in M. O

5. Morphisms

This chapter is the central part of the proofs of Theorem 3 and Corollary 3. A
large part is inspired by ideas of Skora [Sko96].

N is again a compression body and py is a convex cocompact representation of
71(N) which uniformizes N.

Definition. Let 77,7 be R-trees. A morphism from T to T is a map
.7 —T

with the property that every non-degenerate arc [p,q] C 71" contains a non-
degenerate subarc [p, r] C [p, g] which is mapped isometrically onto ®[p,r] C T.
A morphism is said to fold at a point p € T and p is a folding point, if there are

non-degenerate arcs [p, ql, [p,¢'] C 1", [p, q| N [p,q'] = {p} with ®[p,q] = ®[p,¢].

5.1. Morphisms from dual trees

In section 2, we discussed trees which are dual to measured laminations. If y €
ML, the dual tree T, can be seen as the leaf space of a measured partial foliation
JF,, enlarging p and we denote the projection by 7z, : H? — T,,. A morphism from
a dual tree T, to another tree T' is said to fold only at complementary regions if
the only folding points are projections of complementary regions of ]?,L C H?.

The existence of such morphisms is fundamental in the proof of Skora’s The-
orem. The following theorem is essentially a special case of the main result in
[MO93] (see also [Ota96, chapter 8]).

Theorem (Morgan-Otal). Let (cv1,...,a35-3) be a collection of simple closed
curves which define a pants decomposition of a closed surface S and let w1 (S) ~T
be an action on an R-tree T. Then there is a measured lamination p € ML and
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an equivariant morphism

®: 7T, —T
with ly(a;) = I, (ag) for alli. Moreover, ® folds only at complementary regions.

Remark. Notice that if {7(c;) > 0, then ® maps the axis of a; in 7}, isometrically
to the axis of o in T' [Kap00].

The second step in the proof of Skora’s Theorem is to study equivariant mor-
phisms from dual trees T),, u € ML, to a tree with a minimal small action of the
fundamental group of a closed surface which fold only at complementary regions.
Skora proves that such a morphism is an isometry, and in particular g is unique.
In the present situation, the actions we will consider are not even effective because
they factor through the compression homomorphism ¢ : 71(9.N) — 71(N). We
prove

Proposition 2. Let N be a compression body with exterior boundary surface 0. N .
Let mi(N) ~T be a minimal small action and let p be a measured lamination on
0N such that there is an equivariant morphism ® : T, — T that folds only at
complementary regions. Then p is not in the Masur domain O.

Moreover, if N is a handlebody, then every minimal component of wu is an
element of Mj,,.

Proof. If some component of x is not in tight position with respect to any merid-
ian, then p ¢ O by Lemma 4. Moreover, if N is a handlebody we are done by
Corollary 2.

We assume from now on that every component of y is in tight position with
respect to some meridian. Then by Lemma 3, there is a meridian m intersecting
1 such that p does not contain any m-wave. By definition, every component of 1
intersecting m is in tight position with respect to m.

We will show that we can extend p to a lamination with a homoclinic leaf. In
this case, Lemma 5 shows that u & O. Moreover, Proposition 1 proves that every
component of g is in Mj,, if N is a handlebody.

Lemma 9. ® folds along m: for a lift m of m to H? there are segments L, Lcm
intersecting in a single point x such that ® maps 7z, (I1) and 7z, (I2) isometrically
onto a non-degenerate segment J in T.

Proof. Let & be a point on a lift m of m to H?. The geodesic m is invariant under
some m € m1(0.N) which is trivial in 71 (N). By equivariance

®(mr, (mz)) = S(7r,(x))
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The morphism @ folds the non-degenerate segment 7z, (x), 7z, ()] only finitely

many times. So we can find small segments I, Ir C (z,mz) such as in the state-
ment. (Il

Remark. Note that the claim is true for every meridian which intersects p.

We continue with the proof of Proposition 2 and choose a transverse orientation
on m. For a point z € m N p we use the symbol i} for the half-leaf of p starting
at z with positive direction. By definition, ] is in tight position with respect to
m. The following Proposition will be proved at the end of this section.

Proposition 3. For every pair of intervals (11, Is) as in Lemma 9, there are z; €
Linp (4 =1,2) such that the lifts to S’ of “zt and ;th have the same endpoints

in the limit set A,, of po(m1(N)) in C.

We fix a pair of intervals (f g ,fg ) as in Lemma 9. As & folds only at comple-
mentary regions, the point x lies in a complementary region C, of fu' After the
collapse of F, to u, C, can be seen as a complementary region of [, too. There
are two well determined boundary leaves fi1, 1o of Cy with f; N f? # (). They are
different because separated by the complementary region C,. Up to reversing the
orientation, we may assume that ﬁf and /ZQL are not asymptotic. Next we show
that the endpoints in A,, of their projections to S’ are equal.

We choose a sequence of nested intervals (f 8 I}“) ken as in Lemma 9 such that
z(ff,]?u) = z(jéf,]?u) > 0 tends to zero. By Proposition 3, for every £ € N and
i=1,2 we get zF € IF N p such that the lifts to S’ of “j{c and “jlg have the same
endpoint in the limit set A, .

Since for + = 1,2 and k — oo the sequence i(INfN’E”) tends to zero, the
sequence (Mj};)keN tends to M;ﬂ the projection to .N of the boundary half-leaf

& . By Lemma 2, the lifts of ¢ and p to S’ have the same endpoint in A,,.

Now let [ be the geodesic in H? joining the endpoints in 8H? of i and fij . The
projection to 9. N of Ul is a geodesic lamination py and [ projects to a homoclinic
leaf, since the endpoints of the projection to S’ coincide. So, u is contained in a
lamination with a homoclinic leaf. This finishes the proof of Proposition 2. (Il

The rest of this section is devoted to the proof of Proposition 3.

5.2. Skora’s argument

We use the same notation as above, ®: T, — T'is the morphism of Proposition 2,
F,. is an enlargement of 1, m is a meridian with i(m, ) > 0 and such that every
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component of 1 intersected by m is in tight position with respect to it and I 1, I~27 *
are as in Lemma 9. Denote the projections to the surface d.N by Iy, I, . Recall
that % is in a complementary region C, of fu C H?.
Fix a transverse orientation on m. Take the oriented first return maps of 7,
[Ota96, Sko96]
Ai :Iiﬂfuqfiﬁfﬂ fori:172.

Aj; induces an interval exchange transformation on 7, (l;) C T,. Conjugating
Ay, Ay by ® one obtains two interval exchange transformations By, By on J =
(Pormz,)(I1) = (Porms,)(l2) C T [Sko96].

Let C denote the free semi-group generated by two letters ci,cy and B the
semi-group generated by the maps By, By. There is an obvious homomorphism

0:C— B, c=cq ... ¢, —>0(c) =B o...0B .

n

The set of boundary leaves of ﬁu is countable [Ota96]. A point z € T such
that none of its preimages under & is represented by a boundary leaf of ]?ﬂ is
called regular. If z € J is a regular point, we denote by 2; for ¢« = 1,2 the point
ILn (Po 7T}*H)71(Z). The projection of Z; to 9. N is denoted z;.

A regular point z € J and a letter ¢, € {c1,co} determine a closed curve
Vz,e C 0N which is the concatenation of

(1) the subsegment of I. from x to z,

(2) the subsegment of the half-leaf of F,, from z, to A.z, in positive direction,

and

(3) the subsegment of I, from Aczc to *.

Let z € J be regular such that for all B € B, Bz is regular, too. For ¢ =

Cey v - .. Ce, € C we define the closed curve w,(¢) in 9. N to be the concatenation
of the curves Ye1,2yVez2,Bey 23+« + 3 Ven,Be, _,0...0Be; (2)1 that is
wz(c) = Yey,z * 762,36121 ko ,)/EMBEH,IO---OBel (=) - (3)

Recall that F, is obtained from p by blowing up closed leaves of p to fibered
collars. After collapsing the collars back to closed leaves of u, we denote the image
of the curve w,(¢) by w,(c) as well. After a small homotopy near m this curve and
m can be made transverse. Moreover, it is in tight position with respect to m.

The element in 71 9.V, x) represented by w,(c) will be denoted [w,(c)]. The
map [w,(-)]: C — 71(0.N, ) is injective because x is in a complementary region
[Sko96]. It is not a homomorphism but we have the following equation, which
follows from the definition:

[wa(a - b)] = [wz(a)] * [wo(ay=(b)] for all a,b e C. (4)

The action of ¢([w,(¢)]) € w1 (N) on the tree T is related to the interval exchange
map 6(c) by (see [Sko96])

0(c) = ¢([wz(c)]) on a small neighbourhood of z in J. (5)
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Lemma 10. For every pair of intervals (11, I2) as in Lemma 9 and every k there

is a reqular point 2% € J and a¥ = & - ... ak =& ... € C such that the curves

w,k (@), w,x (ak) represent the same element in 71 (N, ).

The proof of this Lemma is essentially the proof of Proposition 3.1 in [Sko96].
We refer to it for a more detailed exposition.

Proof. Let z € J be regular such that for all B € B, Bz is regular, too. We fix
k € N. Let CF C C denote the words of length n in the letters ¢f =¢; ... ¢y and
ck =cy ... cy. Cardinality of CF is 27. As in [Sko96], the cardinality of the sets
0(CF)(z) only grows polynomially in n. So, for fixed k there is a sequence of sets
(DF),,, with DE C CF such that:

(1) for fixed n any two elements of #(DF) map z to the same point in J and

(2) the cardinality of DF has exponential growth in n.

We fix d¥ € DE. For fixed n, k the elements of the set (0(d%))"100(DE) are interval
exchange maps on J which fix a common segment around z.

By smallness of the action 7(N) ~ T and equation (5), the set ¢(|w,(DF)] *
[w,(dk)]~1) is contained in a cyclic subgroup ZF C 71(N) [Sko96]. The subgroups
can be chosen to satisfy

zkczh  c..

but such a sequence stabilizes and we find a cyclic subgroup Z* C 71(N) such
that for all n

l[w:(Dp)] * lwa(dy)] ™) € 2
As in [Sko96], the cardinality of ¢([w, (DF)]* [w, (df)]~1) has at most linear growth
in n. So there is n depending on k and there are different words b¥, b5 € D c CF
with
Pl[w= (b)) = @([w= (b5)])
The words bf, b5 € CF are different but may coincide at the beginning. Without
loss of generality we can assume that

h=af ... . =aoF.df
k_ k. k _ k. Kk
by =a"-cy-...=a" - ay

with o being a word in ¢¥, c§ of length less than n. By equation (4)

[w:(01)] = [w ()] * [wo(ar)-(ad)]

1
w2 (05)] = [wa ()] * [wo(ar)(ad)]

We set 2% = 0(a*)z and we are done. O
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Recall that we have fixed a transverse orientation on m and that for a point
x € m N p the half-leaf p} of p starting at = with positive direction is in tight
position with respect to m.

Proof of Proposition 3. Notation as in Lemma 10. For ¢ = 1,2 let zf € In ﬁu be
the unique point which is mapped to z* € J by ® o 7, and 2F the projection to
0N . After collapsing the collars of F,, back to closed leaves of i we denote the
images of zF by zF again (compare above).

In the proof of Lemma 1, we defined the sequence (my;) of lifts of m to S’ for
curves which are in tight position with respect to a common meridian. The curves
w,k(ak) and w,x (a}) provided by Lemma 10 are in tight position with respect to
the meridian m. Since they represent the same element in 71 (N, %)

(o (a)) = my(wor (ab)) for all j, k (6)
By construction of the curves w,x (a¥), we have (i = 1,2)
my(w,r(af)) = mj(ujf) forall kand j=1,...,k (7)
Equations (6) and (7) imply
mj(ujf) = mj(“jlg) forall kand j=1,...,k
By compactness of I; N u, we can suppose that the sequence (zF); converges to

some z; € I; N p. By Lemma 2, the lifts of 4} and pf to S’ have the same
endpoint in the limit set A,,. O

6. Realizations

Let N be a compression body with a convex cocompact hyperbolic structure.
Recall that every lamination A in O is realized by a pleated surface with respect
to po and that the induced map from A to the projectivized tangent bundle of N
is a homeomorphism onto its image Py.

By definition, the lamination A € O is realized in a tree T if there is a continuous
and equivariant map from 73>\7 the lift of Py to the projectivized tangent bundle
of H?, to the tree T which is injective when restricted to any leaf.

Since A is mapped homeomorphically onto P, it suffices to find a continuous
and 71(9.N)-equivariant map from 5\7 the lift of A to H?, to the tree T which is
injective when restricted to any leaf. By abuse, if such a map exists we will also
say that A is realized in T.

Theorem 3. Let 71 (N) ~ T be a non-trivial minimal small action on an R-tree
T and A a minimal arational measured lamination in the Masur domain, then A
is realized in T.
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The idea of the proof is to show that there is a measured lamination x on the
exterior boundary d.N and a morphism ®, : T;, — 7" such that the composition
of the projection H? — T, with ®, can be deformed to a realization of A in T

Proof. We choose a sequence of simple closed curves (v;); converging to A with
respect to the Hausdorff topology. By Morgan’s and Otal’s Theorem, for all i, there
is a measured lamination p; with i(p;,v;) = lr,, (v:) = lp(v;) and a morphism

&, T, —T

Now let us show that lp(v;) > 0 for large 4. Up to choice of a subsequence, we may
assume that the supports of the laminations p; converge in the Hausdorff topology
to a lamination wy. By Proposition 2, the measured laminations p; are not in
the Masur domain O. This implies that the Hausdorff limit g9, cannot contain a
lamination in O. In particular, the minimal arational lamination A intersects fe7;.
So, for all but finitely many 4, say for all, one has

lr(vi) = i(pi, vi) > 0. (8)
Remark that the morphism &®,, maps isometrically the axis of every element in
the conjugacy class represented by ~;.

For all ¢, we choose an enlargement F,,, of y; in order to obtain a continuous and
equivariant projection 7, H? — T,,. We may assume that the enlargements
F.; converge in the Hausdorfl topology to the lamination pug.

The map @, 0wz, is continuous, equivariant and, by equation (8), it is mono-
tone on every lift of v; to H?. Here, a map from an interval to a tree is monotone
if the preimage of every point is at most a bounded interval [Ota96].

Lemma 11. There is a train track T which carries A such that, for large i, the
map ®,, oy, satisfies:
(i) It is constant on ties, and monotone and non-constant on the rails of every
lift Ej C H? of every rectangle R;Cr.
(ii) The images of any two rectangles Ej, Ry C H? which meet in vertical sides
intersect in exactly one point.

Proof. Since X intersects pqy, the construction in [Ota96, chapter 3| yields a train
track 7 carrying A such that, for large 4, the projection 7, H? — T,,, is constant

on ties, and monotone and non-constant on the rails of every lift Z:?j C H2 of every
rectangle R; C 7.

We may assume that 7 carries A minimally, i.e. for any two rectangles §j7 Ry C
H? which meet in vertical sides one has }~?j N fik N £ (. For large 7, the train
track 7 carries the curve +; minimally, too. We are going to show that for all such
i, the map @, oy, satisfies (i) and (ii).

Given a rectangle Ej, there is a lift 7; C H? of ~; crossing Ej; hence, we can
homotope along ties the rails of Ej into the lift ;. As remarked above, the map
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&, o mr,, is monotone on ¥;, and thus on the rails of ]?Bj. It is not constant

because WfM(Rj) is a non-degenerate segment and ®,, is a morphism. Property
(i) follows.

Given two rectangles R;, Ry C H? which meet in vertical sides there is a lift
F; C H? of ~; with ; N Ej N Ry # 0. Again, since ®,,, o mF,, 1s monotone on 7,
property (ii) follows. O

For 7 and 4 as in lemma 11, it follows from [Ota96, 3.1.5, 3.1.6] that the map
P, oy, can be homotoped to a realization in 7' of every lamination carried by
7, in particular of X\. This concludes the proof of Theorem 3. (Il

In the particular case that N is a handlebody we obtain

Theorem 4. Let N be a handlebody and 71(N) ~ T a non-trivial minimal small
action on an R-tree T'. Further let Ao be a minimal component of a lamination A
in the Masur domain.

Fither \g is realized in T or there is a train track 79 carrying Ao and a contin-
uous and equivariant map $o: 7o — T that maps every connected component of Ty
to a point.

Proof. If Ao is a simple closed geodesic, then there is nothing to prove. So suppose
it is not.

As above choose a sequence of simple closed curves (v;); converging to A\g with
respect to the Hausdorff topology. Again, for all i, there is a measured lamination
i with (g, vi) = lt,, (i) = l7(v;) and a morphism

R

Suppose that the laminations w; converge in the Hausdorff topology to a lam-
ination wy. Every minimal component of p9; is contained in the Hausdorff limit
of components of u;, thus by Proposition 2 in a Hausdorff limit of laminations
in Mt/ap and so in a Hausdorff limit of meridians. By Corollary 1, every minimal
component of py is an element of M;, .

So either Ag is transverse to py or disjoint from py. In the first case we
conclude as in the proof of Theorem 3. If A\g N py = O, choose a train track 7o
carrying A\p and disjoint from pqy. For i large enough, there is a partial foliation
Fu; enlarging the measured lamination p; such that 7o is also disjoint from F,,,.
This implies that the image of every connected component of 7, is mapped by
mg,, to apoint in Ty, Define ®q to be ¢, o7y, . O
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Corollary 3. Let N be a handlebody and mi(N) ~ T be a non-trivial minimal
small action on an R-tree T'. At least one minimal component of every measured
lamination in the Masur domain is realized in T .

Proof. Suppose the claim is false. By Theorem 4, every minimal component A;
(7 =1,...,k) of X is carried by a train track 7; and there is a continuous and
equivariant map ®;: 7, — T that maps every connected component of 7; to a
single point. After refining the train tracks, we may assume that they are pairwise
disjoint.

Since O is open there are simple closed curves n; carried by 7; such that the
multicurve 7 = i1 U - -+ U g is in the Masur domain. By Morgan’s and Otal’s
Theorem, we find a measured lamination p and a morphism ®,: T;, — T' such
that 0 = l7(n;) = lp,(n;) = i(p,m;) for all j =1,..., k. This contradicts the fact
that by Proposition 2 every minimal component of yx is an element of Mt/op whence
i(p,m) > 0. O
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