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The group of self-distributivity is bi-orderable

Patrick Dehornoy

Abstract. We prove that the group of left self-distributivity, a cousin of Thompson's group F
and of Artin's braid group B1 that describes the geometry of the identity x(yz) xy)(xz),
admits a bi-invariant linear ordering. To this end, we de ne a partial action of this group on
nite binary trees that preserves a convenient linear ordering.
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There exists a close connection between Thompson's group F of [22], [17] and [1],
and the associativity identity. Indeed, F acts on bracketed expressions by moving
the brackets, i.e., by applying associativity, and, conversely, every application of
associativity comes from the action of an element of F. Thus, F can be called
the geometry group of associativity, as it captures a number of speci c geomet-rical

properties of that identity, in particular those expressed in the well-known
MacLane{Stashe pentagon relation [6] [16].

When we replace the associativity identity x(yz) xy)z with the left self-distributivity

identity x(yz) xy)(xz), Thompson's group F is no longer rele-vant,

but there exists another group GLD that similarly captures the geometrical
aspects of the identity. The group GLD happens to be an extension of Artin's braid
group B1, of which it can be seen as a sort of tree version, a relation that explains
the deep connection between braids and the self-distributive law. In the recent
years, several new results about braids, in particular the existence of a linear or-dering

compatible with the product, have been discovered by projecting results
initially established in GLD [4], leading in turn to a number of further develop-ments

[7], [15], [10], [21]|see [13]. Thus the group GLD which will be de ned by
an explicit presentation below) may appear as an interesting object of study.

Order properties have been recently established for various groups connected
with topology: besides the orderability of braid groups alluded to above, the or-derability

of the mapping class groups of surfaces with a nonempty boundary [20],
the bi-orderability of the pure braid groups [14], the fact that Artin's braid groups
are not bi-orderable in a strong sense [19]. Let us also mention work in progress by
D. Rolfsen and B. Wiest about the orderability of knot groups. As for Thompson's
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group F, it can be realized as a group of di eomorphisms of a real interval [12],
and, as such, it acts on the reals, which easily implies that it is orderable, and
even bi-orderable as shows the explicit form of the action [1].

As the group GLD is closely connected both with Thompson's group F and
with Artin's braid group B1, the question of whether it is bi-orderable, like F, or
not bi-orderable, like B1, appears natural. It had been shown in [4] that GLD is
equipped with a linear left-invariant preordering which projects on the canonical
left-invariant linear ordering of the braids). However, this preordering is not an
ordering, and it is not right invariant, so it does not answer the above question.
In this paper, we shall prove that, as for orderability, GLD is similar to F, and not
to B1:

Proposition. The group GLD is bi-orderable, i.e., there exists a linear ordering
on GLD that is compatible with product on both sides.

Our proof consists in de ning an action of GLD that is reminiscent of the action of F
on the reals. However, due to an essential technical di erence between associativity
and self-distributivity, namely the fact that the variable x is repeated twice in the
right-hand term of the identity x(yz) xy)(xz), there is no natural way to let GLD
act on the reals via di eomorphisms. Instead we shall let GLD act on nite binary
rooted trees and observe that this action preserves some linear ordering of such
trees. A similar approach is also possible in the case of Thompson's group F, in
which case one essentially re-obtains the action of F on R, and, more generally, in
the case of analog groups that can be associated with algebraic identities preserving
the order of the variables [9].

The organization of the paper is as follows. In Section 1, we recall the de nition
of the group GLD and introduce its partial action on nite binary trees and, more
generally, on terms, which are nite binary trees with labeled leaves. In Section 2,
we construct a linear ordering of terms connected with their coding by words
using the left Polish form. In Section 3, we show that the action of GLD on terms
preserves the previous ordering, and we deduce a bi-invariant ordering on GLD
Finally, in Section 4, we deduce from the action of GLD on nite trees an action of
the positive part of GLD|a certain submonoid of GLD of which GLD is the groupe
of fractions|on the Cantor line and on the reals.

1. The action of GLD on terms

In this preliminary section, we recall the de nition of the group GLD and its
connections with the left self-distributivity identity, with Thompson's group F,
and with Artin's braid group B1. We also de ne a partial action of GLD on terms
connected with the left self-distributivity identity.
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The group GLD

The group GLD is a countable group that describes, in some sense explained below,
the geometry of the left self-distributivity identity

x(yz) xy)(xz): LD)

We shall de ne GLD using an explicit presentation. The generators are in one-to-

one correspondence with the vertices in a complete binary rooted tree: so we
can specify a generator by using a nite sequence of 0's and 1's describing the
path from the root to the considered vertex. Such nite sequences will be called
addresses; we use A for the set of all addresses, and o for the empty address, i.e.,
the address of the root Figure 1.1). For ; 2 A, denotes the concatenation
of and We say that two addresses ; are orthogonal, written if there
exists an adress such that 0 is a pre x of and 1 is a pre x of or vice
versa.

0100 1010

000 111

00 1101 10

0 1

f

Figure 1.1. Binary addresses.

De nition. We denote by GLD the group hfg ; 2 Ag ; RLDi, whereRLD consists
of the following ve families of relations:

g g g g for ; type

g 0 g g g 10 g 00 ; type 0)

g 10 g g g 01 ; type 10)

g 11 g g g 11 ; type 11)

g 1 g g 1 g 0 g g 1 g : type 1)

Let us recall that Artin's braid group B1 can be de ned as the group generated
by an in nite sequence 1, 2, : : : subject to the relations

i j j i for ji- jj 2; type i)
i+1 i i+1 i i+1 i: type ii)
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Then, from the presentation, it is obvious that the mapping

pr : g 7!
i for 1i-1 i.e., 1 repeated i- 1 times);

1 if contains at least one 0

de nes a surjective homomorphism of GLD onto B1: B1 is what remains from GLD
when we collapse every generator associated with a vertex of the complete binary
tree not lying on the right branch. As B1 is not nitely generated, GLD is not
either nitely generated. The kernel of the projection of GLD onto B1 is large
and complicated): if Hi denotes the parabolic subgroup of GLD generated by all

generators g with beginning with 1i0, then, by type relations, the elements
of Hi and Hj commute for i 6= j, and Ker(pr) includes the direct product H0
H1 It can then be shown that, for every i, the mapping g 7! g1i0 induces
an isomorphism of GLD onto Hi. More generally, a parabolicity theorem asserts
that, for every address mapping g to g de nes an isomorphism of GLD onto
the subgroup of GLD generated by those generators g such that begins with

The syntactic form of the relations RLD de ning GLD is reminiscent of the Cox-eter

relations that de ne Artin groups, though they do not preserve the length
and are not symmetric. It is proved in [4] and [5] that most of the tools developed
by Garside in his study of braid groups [11] can be extended to groups de ned
by such generalized Coxeter relations. The speci c case of GLD is made di cult
by the fact that, in contradistinction to B1, GLD is not the inductive limit of an
increasing family of groups of nite type. However, by introducing local counter-parts

to Garside's fundamental braids n, one can extend some of the results,
and, in particular, prove that GLD is a group of fractions:

Proposition 1.1. [4], [8] Let G+
LD

be the submonoid of GLD generated by the
elements g with 2 A. Then every element of GLD can be written as ab-1 with
a; b 2 G+

LD

We claim nothing about the presentation of the monoid G+
LD: whetherG+

LD admits,
as a monoid, the above presentation of GLD is currently unknown.

Terms and trees

Terms will play a central role in the sequel. Several equivalent de nitions are
possible. For our current purpose, it will be convenient to consider terms as nite
trees.

De nition. Let x1; x2; : : : be a xed sequence of variables letters); a term is
de ned to be a nite binary rooted tree whose leaves i.e., vertices of degree 1)
wear labels in fx1; x2; : : : g. We write T1 for the set of all terms, and T1 for the
subset of T1 consisting of those terms where all leaves are labeled x1.
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Thus,

x1 x3

x2

x1x3

x1

x1 x1 x1 x1

are typical terms in T1. The latter belongs to T1. In the case of T1 we can of
course forget about the labels, and identify a term with an unlabeled tree.

Terms are equipped with a natural product, namely the operation that asso-ciates

with two terms t0; t1 the term, denoted t0 t1, consisting of a root with two
successors, a left one which is t0, and a right one which is t1:

t0 t1
t0 t1

·

Then, provided we identify the variable xi with the tree consisting of a single
vertex labeled xi, T1; is a free magma based on fx1; x2; : : : g, and T1; is a
free magma based on fx1g.

Each vertex in a nite binary rooted tree can be speci ed by an address in A
describing the path from the root to that vertex. For t a term, we de ne the
outline of t to be the collection of all addresses of leaves in the tree associated
with) t, and the skeleton of t to be the collection of the addresses of vertices in t:
thus, for instance, the outline of the term x3 x1) x2 is the set f00; 01; 1g, while
its skeleton is f00; 01; 0; 1; og, as t comprises three leaves and two inner vertices.

For t a term, and an address in the skeleton of t, we have the natural notion
of the -subterm of t, denoted sub(t; : this is the subtree of t whose root lies at
address This amounts to de ning inductively

sub(t;
8

<>
:

t if t is a variable or holds,

sub(t0; fort= t0 t1 and 0

sub(t1; fort= t0 t1 and 1

For instance, the 0-subterm of the term x3 x1) x2 is the term x3 x1, its 01-subterm
is the term x1, while its 010-subterm is not de ned. Observe that the outline of a
term t is the set of those addresses such that sub(t; is a variable.
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The action of GLD on terms

We shall now describe the connection between the group GLD and the left self-distributivity

identity by means of a partial actions of GLD on terms.
In the sequel, a set equipped with a left self-distributive operation will be called

an LD-system the names LD-magma and LD-groupoid have also been used occa-sionally).

Let us say that two terms t, t0 in T1 are LD-equivalent, denoted t LD t0,

if we can transform t to t0 by repeatedly applying Identity LD). By standard ar-guments,

the quotient structure T1==LD is a free LD-system based on fx1;x2; : : : g,
and studying free LD-systems amounts to studying LD-equivalence of terms.

Applying the left self-distributivity identity to a term t consists in replac-ing

some subterm of t which has the form t1 t2 t3) with the corresponding
term t1 t2) t1 t3), or vice versa. Having de ned the -subterm of a term pre-cisely,

we can take into account the position, i.e., the address, of the subterm
where the identity is applied. This leads to de ning a partial action on T1 of the
free monoid A [A-1) generated by A and a disjoint copy A-1 of A comprising
a formal inverse -1 for each address

De nition. i) For t a term, and an address such that the -subterm of t exists
and can be written as t1 t2 t3), we de ne t) to be the term obtained from t by
replacing the -subterm with the corresponding term t1 t2) t1 t3).

ii) For t a term, and an address, we de ne t) -1 to be the unique term t0

verifying t t0) when it exists.
iii) For t a term, and w a word on A[A-1, say w e1

1 : : : ep
p with i 2 A

and ei 1, we de ne t)w to be (: : : t) e1
1

e2
2 : : : ep

p when it exists.

Thus t) is the term obtained by expanding t at using left self-distributivity:

t0

t0

t0

t1t1 t2t2

t at

aa

Example 1.2. Let t x1 x2 x3 x4|here, and everywhere in the sequel, we take
the convention that missing brackets are to be added on the right, so, for instance,
the previous expression stands for x1 x2 x3 x4))|then the only addresses for
which t) exists are and 1, and we have t)=o x1 x2) x1 x3 x4), and t)1

x1 x2 x3) x2 x4).
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By construction, the term t) is de ned if and only if the address 10 belongs to
the skeleton of t, and that t) -1 exists if and only if the addresses 00 and 10
belong to the skeleton of t, and, in addition, sub(t; 10) sub(t; 00) holds.

We thus have obtained a partial right action of the free monoid A[A-1) on
the set T1. By construction, we have:

Lemma 1.3. Two terms t; t0 in T1 are LD-equivalent if and only if t0 t)w
holds for some word w in A[A-1)

The previous action is partial, i.e., not everywhere de ned, in essence. In partic-ular,

there exist words w such that t)w is de ned for no term t: this happens

for instance for w o 1 o-1, as, by construction, no term of the form t)=o 1 may
have equal subterms at 00 and 10, hence be eligible for the action of o-1. This
situation is unpleasant, but|in contradistinction to easier cases like the case of
associativity|there exists no way of avoiding it by using a convenient quotient or
subset, or by replacing groups by groupoids small categories with inverse).

By de nition, the group GLD is a quotient of the free group generated by
the g 's, 2 A, hence of the free monoid A[A-1) : forw a word on A[A-1, we
denote by w the image of w in GLD under the homomorphism that maps to g
and -1 to g-1

The connection between GLD and left self-distributivity comes from the fact that
the partial action of A[A-1) on terms described above factors through GLD and
the resulting action is faithful in the following sense:

Proposition 1.4. [4] Assume that w; w0 are words on A [A-1 and there exists
at least one term t such that both t)w and t)w0 are de ned Then the following
are equivalent:

i) There exists at least one term t satisfying t)w t)w0;

ii) For every term t such that t)w and t)w0 exist, we have t)w t)w0;

iii) The words w and w0 represent the same element of GLD
In the particular case when w and w0 are words on A, the condition that there exists
at least one term t such that both t)w and t)w0 are de ned is always satis ed.

The previous statements may appear convoluted, but, because there exist words w
such that t)w is de ned for no t, there is no way to obtain a simpler statement:
the action of -1 is not an exact inverse of the action of as t) -1 t holds
only if t) is de ned. The proof of Proposition 1.4 is delicate: as one can expect,
it is not very di cult to check that iii) implies ii), i.e., that the action factors
through GLD but proving that i) implies iii), i.e., that the factorized action is
faithful, requires a nontrivial argument.

Owing to the previous result, we obtain a well-de ned partial action of GLD
on T1: for t a term, and a in GLD we de ne t)a to be t)w where w is any word
on A [A-1 that represents a and is such that t)w exists, if such a word exists.
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The action is partial, as there exist some elements a of GLD like g=og1g-1o
such

that t)w exist for no expression w of a, but it is well-de ned in the sense that, if
w and w0 are distinct expressions of some element a such that both t)w and t)w0

exist, then the latter terms are equal.
Lemma 1.3 and Proposition 1.4 immediately yield:

Proposition 1.5. For every term t, the LD-equivalence class of t is the orbit
of t under the partial) action of GLD and this action is faithful: we have t0 LD t
if and only if t0 t)a holds for some a in GLD and, in this case, the involved
element a is unique.

This statement should make it natural to call GLD the geometry group of Iden-tity

LD).

The connection between GLD and Thompson's group F

A similar approach can be developed when left self-distributivity is replaced with
associativity. This amounts to considering an alternative action, here denoted
of the free monoid A[A-1) on terms, namely the action obtained by replacing
the basic instance

t1 t2 t3)) o t1 t2) t1 t3)

with
t1 t2 t3)) o t1 t2) t3:

Studying the -action leads to introducing new relations, and, therefore, to a new
group.

De nition. We denote by GA the group hfg ; 2 Ag ; RAi, where RA consists
of

g g g g for ; type

g 0 g g g 00 ; type 0)

g 10 g g g 01 ; type 10)

g 11 g g g 1 ; type 11)

g 1 g g 0 g g : type 1)

It can now be proved that the partial) action of A [ A-1) on T1 factors
through GA and, if we say that two terms are A-equivalent if we can transform
the rst into the second using asociativity, we have the following counterpart to
Proposition 1.5:
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Proposition 1.6. [6] For every term t, the A-equivalence class of t is the orbit
of t under the partial) action of GA and this action is faithful: the term t0 is
A-equivalent to t if and only if t0 t) a holds for some a in GA and, in this case,
the involved element a is unique.

Thus, the group GA is an exact counterpart to the group GLD From a technical
point of view, the results and the proofs are much easier in the case of associativity
because the action is never empty in the latter case.

Proposition 1.7. The group GA is isomorphic to) Thompson's group F.

Proof. sketch) One of the standard presentations of F is [1]

hX0; X1; X2; : : : ; X-1
k XnXk Xn+1 for k < ni:

Let us consider the elements g1i in GA An induction on the number of 0's in
shows that, for every address g belongs to the subgroup of GA generated
by the g1i 's, i.e., the elements g1i generate GA Moreover, for k < n, we have

g1k-1g1ng1k g1n+1 by type 11 relations. Hence the mapping Xi 7! g1i induces
a surjective morphism of F onto GA Conversely, for each address we de ne an
element Y in F inductively on the number of 0's in by Y Xi for 1i, and

Y Y -1Y -1
1 Y 1k-1Y -1

1kY -1
1k+1Y

2
1kY 1k-1 Y 1Y

for 01k. The elements Y satisfy the relations RA so g 7! Y induces a
surjective morphism of GA onto F, which is the inverse of the above morphism
of F onto GA

Let us mention that a similar approach can be developed for every family of
algebraic identities, and refer to [9], where studying the associated group leads
to a solution of the word problem of the identity x(yz) xy)(yz).

2. A linear ordering on nite binary trees

Terms i.e., nite labeled binary trees) can be equipped with several orderings.
Here we consider the linear ordering on T1 that uses the left height as a discrimi-nant,

the latter being de ned as the length of the leftmost branch in the associated
tree. To make the de nition precise, we encode every term by a word and then
use a lexicographical ordering.

De nition. For t a term, the left Polish form of t is the word [[t]] over the alphabet

fx1; x2; : : : ; g de ned by the following inductive clauses:

[[t]]
t if t is a variable,

[t1]][[t2]] for t t1 t2.
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For instance, the left Polish form of the term x1 x2 x3 x4) x5 is the word
x1 x2 x3x4x5. When the term t is viewed as a tree, the word [[t]] is obtained by

enumerating the variables of t from left to right and letting each occurrence of a
variable be preceded by as many letters as there are nal 0's in the corresponding
address. For w a word over the alphabet fx1; x2; : : : ; g, we denote by #x w) and
# w) the number of letters xi and of letters in w respectively. By standard
arguments, we have the following characterization:

Lemma 2.1. Assume that w is a word over the alphabet fx1; x2; : : : ; g. Thenw is
the left Polish form of a well formed term if and only if we have #x

w) # w)+1,
and #x u) # u) for every proper pre x u of w.

De nition. Assume that t1, t2 are terms in T1. We say that t1 <L t2 holds if
the word [[t1]] precedes the word [[t2]] in the lexicographical extension of the linear
ordering x1 < x2 < <

By construction, the relation <L is a linear ordering on T1, and x1 is minimal
for <L If htL t) denotes the left height of the term t, the word [[t]] begins with
htL t) letters followed by a variable. So, htL t1) < htL t2) implies t1 <L t2.

Lemma 2.2. The inequality t1 <L t2 implies t1 t3 <L t2 t4 for all terms t3, t4.

Proof. Lemma 2.1 implies that a proper pre x of the left Polish form of a term is
never the left Polish form of a well formed term. Hence t1 <L t2 holds if and only
if the words [[t1]] and [[t2]] have a variable clash of the type \variable vs. " Then
the words [[t1 t3]] and [[t2 t4]], i.e., [t1]][[t3]] and [t2]][[t4]], have a similar clash.

We deduce several equivalent characterizations of <L

Lemma 2.3. Assume that t1, t2 are terms in T1. If t1 is a variable, say xi, then
t1 <L t2 holds unless t2 is a variable xj with j < i. If t1 is not a variable, then
t1 <L t2 holds if and only if either sub(t1; 0) <L sub(t2; 0) holds, or sub(t1; 0)
sub(t2; 0) and sub(t1; 1) <L sub(t2; 1) hold.

Proof. Assume t1 <L t2, and neither t1 nor t2 are variables. Three cases are pos-sible.

For sub(t1; 0) <L sub(t2; 0), Lemma 2.2 implies t1 <L t2. For sub(t1; 0) >L
sub(t2; 0), we obtain t1 >L t2 symmetrically. Finally, for sub(t1; 0) sub(t2; 0),
t1 <L t2 is equivalent to sub(t1; 1) <L sub(t2; 1) by de nition.

In order to state the next result, we need the easy notion of the left edge of an
address.

De nition. For an address, the left edge of is the nite sequence
10; : : :; p0), where 1, : : : p are those pre xes of such that 11, : : :

p1 are pre xes of enumerated in increasing order.
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For instance, the left edge of 010011 is the sequence 00; 01000; 010010). As an
induction shows, the length of the left edge of the address is the number of 1's
in

Lemma 2.4. Assume that t1, t2 are terms in T1. Then the following are equiv-alent:

i) The relation t1 <L t2 holds;
ii) There exists an address in the skeletons both of t1 and of t2 such that

sub(t1; sub(t2; holds for every in the left edge of and sub(t1; <L
sub(t2; holds.

iii) There exists an address both in the outline of t1 and in the skeleton of t2
such that sub(t1; sub(t2; holds for every in the left edge of and either
sub(t2; is a variable larger than var(t1; or it is not a variable.

Proof. An induction on shows that, if belongs to the skeleton of the term t
and 1; : : : ; p) is the left edge of then the word [[t]] begins with

k1 [[sub(t; 1)]] k2 [[sub(t; 2)]] : : : kp[[sub(t; p)]] k[[sub(t; ]]; 2.1)

where ki is the number of nal 0's in i and k is the number of nal 0's in The
result is obvious for o, and, otherwise, it follows from an easy induction on t.
Then, by de nition of a lexicographical ordering, it follows from 2.1) and from
the fact that a proper pre x of a left Polish form is never the left Polish form of
a well formed term that ii) implies i).

By construction, iii) implies ii). Finally, assuming i), and letting be the
address of the rst position where the words [[t1]] and [[t2]] disagree, we obtain iii)
using the explicit expansion of 2.1).

For the next result, we introduce another preordering on terms.

De nition. Assume that t1, t2 are terms. We say that t1 v t2 holds if and only
if t1 is an iterated left subterm of t2, i.e., t1 sub(t2; 0k) holds for some k 0.
We say that t1 vLD t2 holds if there exist two terms t01, t02 satisfying t01 LD t1,
t02 LD t2, and t01 v t02.

It is known [4] that the relation vLD induces an ordering on T1==LD whose re-striction

to T1==LD is linear.

Lemma 2.5. Assume that t1, t2 are vLD-comparable terms in T1. Then the
following are equivalent:

i) The relation t1 <L t2 holds;

ii) There exists an address in both in the outline of t1 and in the skeleton
of t2 such that sub(t1; sub(t2; holds for every in the left edge of and
sub(t2; is a term of left height at least 1 whose leftmost variable is var(t1;
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Proof. Assume i). Then there exists an address satisfying the conditions
of Lemma 2.4(iii). We claim that sub(t2; cannot be a variable. Indeed, as-sume

sub(t1; xi and sub(t2; xj with j > i. Let 1; : : : ; q) de-note

the left edge of Let us consider for a while the right Polish form
of terms: for t a term, we denote by [t] the word inductively de ned by:
[t] t if t is a variable, and [t] [t1][t2] for t t1 t2. Then, the
word [t1] begins with [sub(t1; 1)] : : : [sub(t1; q)]xi, while the word [t2] begins
with [sub(t1; 1)] : : : [sub(t1; q)]xj By the results of [4], this is known to contra-dict

the hypothesis that t1 and t2 are vLD-comparable. So the only possibility is
that sub(t2; is not a variable, and that its leftmost variable is xi. This gives ii).
That ii) implies i) follows from Lemma 2.4.

The left ordering of terms satis es several invariance properties. Let us de ne a
substitution to be a mapping of fx1; x2; : : : g into T1. If h is a subtitution and t is a
term in T1, we denote by th the term obtained from t by replacing each variable xi
occurring in t with the corresponding term h(xi). Note that the mapping t 7! th
is an endomorphism of the free magma T1; and that every endomorphism
of T1; has this form.

Proposition 2.6. Assume that t1, t2 are terms in T1 and h is a substitution
of T1. Assume in addition that at least one of the following conditions holds:

i) We have h(xi) <L h(xi+1) and htL h(xi)) htL h(xi+1)) for every i;
ii) The terms t1 and t2 are vLD-comparable.

Then t1 <L t2 holds if and only if th1 <L th2 does.

Proof. As <L is a linear ordering, it su ces that we show that t1 <L t2 implies
th1 <L th2 So assume t1 <L t2. By Lemma 2.4, there exists an address such
that sub(t1; sub(t2; holds for every in the left edge of sub(t1; is a
variable say xi, and sub(t2; is either a variable xj with j > i, or it is a term
that is not a variable. When Condition ii) holds, by Lemma 2.5, we can assume
in addition that sub(t2; is a term with leftmost variable xi and left height at
least 1. Applying the substitution h, we obtain sub(th1; sub(th2; for every
in the left edge of Then we have sub(th1; h(xi). Three cases are to be
considered.

If Condition i) holds and we have sub(t2; xj with j > i, we obtain
sub(th2; h(xj) >L h(xi) sub(th1; If Condition i) holds and sub(t2;
is not a variable, the hypothesis on h implies htL sub(th2; > htL sub(th1;
hence sub(th1; <L sub(th2; Finally, if Condition ii) holds and sub(t2; is
a term with leftmost variable xi and left height k 1, we nd htL sub(th1;
htL h(xi)), and htL sub(th2; htL h(xi)) + k, hence sub(th1; <L sub(th2;
So, sub(th1; <L sub(th2; holds in every case. By Lemma 2.4, this implies
th1 <L th2

De nition. For t a term in T1, we denote by ty the projection of t in T1, i.e.,
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the image of t under the substitution that maps every variable to x1.

Corollary 2.7. i) Every substitution of T1 preserves the ordering <L
ii) If t1 and t2 are vLD-comparable terms, t1 <L t2 is equivalent to ty1 <L ty2.

Other characterizations of the linear ordering <L can be mentioned. For instance,
if we assume that t, t1, t2 are terms and the outline of t is included in the skeleton
of t1 and t2, then, letting 1; : : : ; p) be the left{right enumeration of the outline
of t, t1 <L t2 holds if and only if the sequence sub(t1; 1); : : : ; sub(t1; p)) precedes
the sequence sub(t2; 1); : : : ; sub(t2; p)) in the lexicographical extension of <L
to T

1In the special case of T1, it can also be checked that t1 <L t2 holds if and only
if the left{right increasing enumeration of the outline of t1 precedes the left{right
increasing enumeration of the outline of t2 with respect to the lexicographical
extension of the pre x ordering of addresses to A

3. The linear ordering on GLD

We use now the partial action of the group GLD on the linearly ordered set T1;<L
to de ne a linear ordering on GLD The ordering so de ned has nice properties,
in particular it is compatible with multiplication on both sides, so GLD is a bi-orderable

group.
The rst step is to prove that the action of GLD on T1 preserves the ordering <L

Proposition 3.1. For all terms t1, t2 in T1, and every a in GLD such that t1)a
and t2)a exist, t1 <L t2 holds if and only if t1)a <L t2)a does.

Proof. As GLD is generated by the elements g with 2 A, it su ces to prove
the result for the latter elements, i.e., to prove that, if is an address, and t1,
t2 are terms then t1 <L t2 is equivalent to t1) <L t2) when the latter terms
are de ned. As the action of is injective, it su ces to prove that t1 <L t2 im-plies

t1) <L t2) We use induction on Assume rst that is the empty ad-dress.

The hypothesis that t1)=o and t2)=o exist implies that sub(te; 0), sub(te; 10),
and sub(te; 11) exist for e 1; 2, and we have the explicit decompositions

[[te]] [sub(te; 0)]] [sub(te; 10)]][[sub(te; 11)]];

and
[[(te) ] [sub(te; 0)]][[sub(te; 10)]] [sub(te; 0)]][[sub(te; 11)]]:

By Lemma 2.3, only three cases are possible, namely
- sub(t1; 0) <L sub(t2; 0), or
- sub(t1; 0) sub(t2; 0) and sub(t1; 10) <L sub(t2; 10), or
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- sub(t1; 0) sub(t2; 0), sub(t1; 10) sub(t2; 10) and sub(t1; 11) <L
sub(t2; 11),
and the result is clear in each case.

Assume now 0 Then we have te) sub(te; 0) sub(te; 1). Two
cases are possible. For sub(t1; 0) <L sub(t2; 0), by induction hypothesis, we
have sub(t1; 0) <L sub(t2; 0) and, therefore, t1) <L t2) For sub(t1; 0)
sub(t2; 0) and sub(t1; 1) <L sub(t2; 1), we have sub(t1; 0) sub(t2; 0) and,
again, t1) <L t2)

Assume nally 1 Thenwe have te) sub(te; 0) sub(te; 1) Two cases

are possible again. For sub(t1; 0) <L sub(t2; 0), we deduce t1) <L t2) directly.
For sub(t1; 0) sub(t2; 0) and sub(t1; 1) <L sub(t2; 1), the latter inequality implies
sub(t1; 1) <L sub(t2; 1) by induction hypothesis, and we deduce t1) <L t2)
again.

Lemma 3.2. Assume that a belongs to G+
LD n f1g. Then t <L t)a holds whenever

t)a is de ned.

Proof. It su ces to consider the case of a single address If is the empty
address, the result follows from the equality htL t)=o) htL t) + 1. Otherwise, we
use an induction on or simply resort to Lemma 2.4: by the previous argument,
we have sub(t; <L sub((t) ; and, by construction, sub(t; sub((t) ;
holds for every in the left edge of

The next step consists in using the action of the submonoid G+
LD of GLD on T1 to

order G+
LD For each element a of G+

LD we shall need a characterization of those
terms t for which t)a is de ned. Let us say that a term t is canonical if the list
of all variables that occur in t, enumerated from left to right ignoring repetitions,
is an initial segment of x1; x2; : : : The following result is proved in [3] in a
general framework).

Proposition 3.3. Assume that a1; : : : ; ak are elements of G+
LD Then there

exists a unique canonical term tL a1; : : : ; ak) such that, for every term t, the
terms t)a1; : : : ; t)ak all are de ned if and only if t tL a1; : : : ; ak)h holds for
some substitution h.

Lemma 3.4. For a; b 2 G+
LD

the following are equivalent:
i) There exists a term t in T1 such that t)a <L t)b holds;
ii) The inequality tL a; b))a <L tL a; b))b holds;
iii) For every term t in T1 such that t)a and t)b exist, t)a <L t)b holds.

Proof. That ii) implies i) and iii) implies ii) is clear. So assume i). By con-struction,

there exists a substitution h satisfying t tL a; b)h, and our hypothesis
is the inequality tL a; b)h)a <L tL a; b)h)b, i.e., tL a; b))a)h <L tL a; b))b)h.
The terms tL a; b))a and tL a; b))b are LD-equivalent, hence, by Proposition 2.6,
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the previous inequality is equivalent to tL a; b))a <L tL a; b))b, which gives ii),
and, then, to tL a; b))a)g <L tL a; b))b)g for every substitution g, which
gives iii).

De nition. For a; b 2 G+
LD

we say that a < b holds if the equivalent conditions
of Lemma 3.4 are satis ed.

Proposition 3.5. The relation < is a linear ordering on the monoid G+
LD that is

compatible with multiplication on both sides; it admits 1 as a minimal element.

Proof. That the relation < is irreflexive is clear as <L is an ordering on terms.
Assume a < b < c, and let t be a term such that t)a, t)b, and t)c are de ned, for
instance t tL a; b; c). By Lemma 3.4, a < b implies t)a <L t)b, and b < c implies
t)b <L t)c. We deduce t)a <L t)c, which in turn gives a < c by Lemma 3.4. So

< is an ordering on G+
LD and it is linear as <L is a linear ordering on T1.

Assume now a < b, and let c be an arbitrary element of G+
LD Let t be a term

such that both t)ca and t)cb exist. By construction, we have t)ca t)c)a and
t)cb t)c)b, so the hypothesis a < b implies t)c)a <L t)c)b, which in turn

implies ca < cb by de nition. With the same hypotheses, assume that t)ac and
t)bc are de ned. Then t)a < t)b holds by hypothesis, and, by Proposition 3.1,

this implies t)a)c <L t)b)c, which in turn implies ac < bc by de nition. Finally,
assume a 6= 1. By Lemma 3.2, t <L t)a holds, so, by de nition, we have 1 < a.

It is now easy to extend the ordering of G+
LD to the whole of GLD

Lemma 3.6. For a; b; a0; b0 2 G+
LD satisfying ab-1 a0b0-1, a < b is equivalent

to a0 < b0.

Proof. By Proposition 1.1, there exist c, c0 in G+
LD satisfying ac a0c0 and bc b0c0.

Assume a < b. Using the compatibility of the order with multiplication on the
right, we deduce ac < bc, i.e., a0c0 < b0c0, hence a0 < b0.

De nition. For c; d 2 GLD we say that c < d holds if cd-1 ab-1 holds for
some a; b in G+

LD satisfying a < b.

Proposition 3.7. The relation < is a linear order on the group GLD that extends
the order < on G+

LD This order is compatible with multiplication on both sides,
and, therefore, it is compatible with conjugacy.

Proof. For a, b in G+
LD 1 ab-1 implies a b, hence a 6<b, hence, for every c

in GLD c < c is impossible. Assume c < d < e in GLD There exist a1, b1, a2, b2

in G+
LD satisfying cd-1 a1b-1

1 de-1 a2b-1
2 a1 < b1, and a2 < b2. Let a3, b3

be elements of G+
LD satisfying a2b3 b1a3. We nd

ce-1 a1b-1
1 a2b-1

2 a1a3)(b2b3)-1:
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The hypothesis a1 < b1 implies a1a3 < b1a3, the hypothesis a2 < b2 implies
a2b3 < b2b3. By hypothesis, we have b1a3 a2b3, so we deduce a1a3 < b2b3, and,
therefore, c < e. Hence the relation < is an ordering on GLD

Assume a; b 2 G+
LD and a < b holds in the sense of G+

LD Then ab-1 is an
expression of ab-1 with a, b in G+

LD and a < b, i.e., a < b in the sense of GLD holds.
Thus the order < on GLD extends the previous order < on G+

LD
Assume now c; d; e 2 GLD and c < d. By de nition, there exist a, b in G+

LD
satisfying cd-1 ab-1 and a < b. Then we have ce)(de)-1 ab-1, so ce < de
holds as well. On the other hand, let us express e as a0b-1

0 with a0, b0 in G+
LD There

exist a1, b1, a2, b2, a3, b3 in G+
LD satisfying b0a1 aa2, b0b1 bb2, a2a3 b2b3

Figure 3.1). Then, we nd

ec)(ed)-1 a0b-1
0 ab-1b0a-10 a0a1a3)(a0b1b3)-1: 3.1)

The hypothesis a < b implies b0a1a3 aa2a3 < ba2a3 bb2b3 b0b1b3, whereas
we deduce a1a3 < b1b3, and, therefore, a0a1a3 < a0b1b3 using compatibility with
multiplication on the left twice. By 3.1), this gives ec < ed.

a0

a

b

e

d

c

e

a0

a1

a2 a3

b0

b0

b1

b2 b3

Figure 3.1. Compatibility of order with multiplication on the left.

We thus have proved our main result, namely that GLD is a bi-orderable group.
By general results [18], we deduce

Corollary 3.8. The group GLD is torsion free, the group algebra CGLD admits no
zero divisor, and it embeds in a skew eld.

The action of the group GLD on terms is a partial action. In particular, some
elements of GLD do not act, i.e., the domain of the associated operator is empty.
Hence, we cannot compare all elements of GLD using their action on terms directly.
However, using the action gives a su cient condition when it is de ned.

Proposition 3.9. i) Assume c; d 2 GLD and there exists a term t such that t)c
and t)d are de ned. Then c < d holds in GLD if and only if t)c <L t)d holds
in T1.
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ii) Assume c 2 GLD and there exists at least one term t such that t)c exists.
Then c > 1 holds in GLD if and only if t)c >L t holds for any term t such that t)c
exists.

Proof. i) Assume that t is a term and t)c and t)d are de ned. By Proposition 1.1,
there exist a and b in G+

LD satisfying c-1d ab-1, hence ca db. We cannot
claim that t)ca is de ned in general, but, as a belongs to G+

LD the only possible
obstruction for t)ca to be de ned is the skeleton of t)c being too small. Now, for
every substitution h, the termth is eligible for the action of c as well as t is, and we
can choose h such that the skeleton of th)c is arbitrary large. Then th)ca exists,
so does th)db, and we have th)ca th)db. Assume now c < d, hence a > b.
We deduce t)cb <L t)ca t)db, and, therefore, t)c <L t)d. The argument is
symmetric for c > d.

Point ii) follows by taking d 1 in i).

4. Action of G+
LD on the Cantor space and the reals

We conclude the paper with the observation that the previous action of the
monoid G+

LD on nite binary trees induces an action on the Cantor space, viewed
as a line at in nity for the set A of all binary addresses.

We rst introduce a partial action of G+
LD

on addresses by using the origin
function. The idea is that, if a is an element of G+

LD
and t is a term large enough

to make sure that t)a exists, then every address in the skeleton of t)a has a
well-de ned origin in the skeleton of t. A direct de nition can be posed easily.

De nition. Assume that are addresses. The origin of under is
de ned by

8

>><>

>>:

if holds or 11 is a pre x of

0 for 00 and 10

10 for 01

unde ned if is a pre x of 1.

Lemma 4.1. i) De ning 1 : : : k( to be 1(: : : p( : : : induces a partial
left action of G+

LD on A.
ii) For a 2 G+

LD denote by a( the image of under the action of a, when it
exists. Then a( is de ned if and only if some pre x 0 of lies in the outline
of the term tL a), and, in this case, we have a( a( 0) where is 0

iii) If t is a term with pairwise distinct variables, then, for every address
in the skeleton of t)a, the address a( is the unique address in the skeleton of t
such that the variable occurring at in t)a is the variable occurring at a( in t.
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The easy veri cations are left to the reader.

Remark. We have switched from a right action to a left action here because
the origin function actually goes backwards: we could have considered instead
the inheriting function that associates with every address in the skeleton of a
term t its heirs in the term t)a. Inheriting corresponds to a right action, but,
in contradistinction to the case of associativity, it does not de ne a function on
addresses, as a given address may have several heirs: for instance, the heir of the
address 0 under the action of o consists of the two addresses 00 and 10, since the
variable x in x(yz) has two copies at 00 and 10 respectively in xy)(xz). However,
inheriting is injective, and we obtain a function by considering its inverse, which
is the current origin function.

The action of G+
LD on A is partial: by Lemma 4.1(ii), for each a in G+

LD a( is
de ned only when is long enough, i.e., it does not lie in some neighbourhood of o
for the topology T on A associated with the distance de ned by d( ; 2-n if

6= holds and n is the length of the greatest common pre x of and Now,
by Lemma 4.1(ii) again, the action is T -continuous on A, so we can extend it into
an everywhere de ned action on the T -boundary of A, which is the Cantor line

b
A

consisting of all N-indexed sequences of 0's and 1's.

De nition. For s 2
b
A and a 2 G+

LD the element a(s) of
b
A is de ned to be a( s0,

where is the unique pre x of s lying in the outline of tL a) and s= s0 holds.

By Lemma 4.1, the previous action is de ned everywhere. The reader can eas-ily

check the equalities g=o 000 g=o
100 000 g=o 00111

g=o 10111 0111 g=o 01000 1000 More generally, the action
of g=o on

b
A is displayed on Figure 4.1.

gf
A

Â

Figure 4.1. Action of G+
LD on the Cantor set.

Let us equip
b
A with the lexicographical ordering, which corresponds to the

usual ordering of dyadic numbers, and with the associated topology.

Proposition 4.2. For every a in G+
LD the action of a on

b
A is surjective, it is

continuous on the right, and it admits nitely many left discontinuities.
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Proof. The result is clear for every generator and it is preserved under multi-plication.

The linear order of G+
LD can be de ned in terms of the action of G+

LD on the Cantor
line

b
A:

Proposition 4.3. The action of G+
LD

on
b
A preserves the order in the sense that

a < b holds in G+
LD if and only if there exists s0 in

b
A such that a(s) b(s) holds

for s s0, but a(s) < b(s) holds for s > s0, s close enough to s0.

Proof. Assume a < b in G+
LD Let t be a term with pairwise distinct variables such

that t)a and t)b exist. By Lemma 3.4, we have t)a < t)b, hence, as t)a and
t)b are LD-equivalent, Lemma 2.5 tells us that there exists an address such

that lies in the outline of t1 and in the skeleton of t2, sub((t)a; sub((t)b;
holds for every in the left edge of hence for every on the left of such that
the considered subterms exist), sub((t)a; is a variable say xi, and sub((t)b;
is a term of size at least 2 whose leftmost variable is xi. Let s0 be 000 By
construction, a(s) b(s) holds for s s0. In particular, we have a(s0) b(s0)

000 where is the address where xi occurs in t. Let q be the left height of
the term sub((t)b; For p q, we have

a( 0p1000 0p1000 ; and b( 0p1000 0p-q1000

Hence we have a(s) < b(s) for points s arbitrarily close on the right of s0. As the
action is continuous on the right, this is enough to conclude.

Finally, we can copy the previous left action of G+
LD on

b
A into an action on the real

interval [0; 1) using the dyadic expansion. This amounts to associating with every
element a of G+

LD
a piecewise a ne mapping fa of [0; 1) into itself. For instance,

f=o is de ned by

f=o x)
8

>><>>>:

2x for 0 x < 1=4,

x + 1=4 for1=4 x < 1=2,

2x- 1 for1=2 x < 3=4,

x for 3=4 x < 1.

In Figure 4.2 we have displayed the function f=o associated with the action of
left self-distributivity at o, i.e., at the root of the tree, and its counterpart when
associativity replace self-distributivity when compared with the diagrams of [12],
the current diagram is inversed because we consider the origin function). Similarly,
we have represented in Figure 4.3 the rectangle diagrams associated with a few
positive words both in the case of associativity, as in [1], and left self-distributivity.
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0 01/2 1/23/4 3/41 1

1 1

3/4 3/4

1/2 1/2

1/4 1/4

Figure 4.2. Left self-distributivity vs. associativity: action at o on the reals.

action of :f

action of :f·f

action of 1:

action of 0:

Figure 4.3. Left self-distributivity vs. associativity: rectangle diagrams.

Using Proposition 4.3, we deduce:

Proposition 4.4. The relation a < b holds in G+
LD if and only if there exists a

real x0 satisfying a(x) b(x) for x x0 and a(x0 + ") < b(x0 +") for " small
enough.

In the case of associativity, using the previous approach amounts to de ning the
action of Thompson's group F on the reals considered in [12]. Then the map-pings

fa are bijections, the action is de ned on the group, and not only on the
monoid, the counterpart of Proposition 4.4 is straightforward, and we obtain a
linear ordering on F trivially. In the case of self-distributivity, the result is not so

easy, for some form of the nontrivial result expressed in Lemma 2.5 is required.
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