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The group of self-distributivity is bi-orderable

Patrick Dehornoy

Abstract. We prove that the group of left self-distributivity, a cousin of Thompson’s group F
and of Artin’s braid group Bo that describes the geometry of the identity z(yz) = (zy)(xz),
admits a bi-invariant linear ordering. To this end, we define a partial action of this group on
finite binary trees that preserves a convenient linear ordering.
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There exists a close connection between Thompson’s group F' of [22], [17] and [1],
and the associativity identity. Indeed, F' acts on bracketed expressions by moving
the brackets, i.e., by applying associativity, and, conversely, every application of
associativity comes from the action of an element of F. Thus, F' can be called
the geometry group of associativity, as it captures a number of specific geomet-
rical properties of that identity, in particular those expressed in the well-known
MacLane—Stasheff pentagon relation [6] [16].

When we replace the associativity identity z(yz) = (ay)z with the left self-
distributivity identity z(yz) = (zy)(zz), Thompson’s group F' is no longer rele-
vant, but there exists another group G, that similarly captures the geometrical
aspects of the identity. The group G, happens to be an extension of Artin’s braid
group By, of which it can be seen as a sort of tree version, a relation that explains
the deep connection between braids and the self-distributive law. In the recent
years, several new results about braids, in particular the existence of a linear or-
dering compatible with the product, have been discovered by projecting results
initially established in Gy [4], leading in turn to a number of further develop-
ments [7], [15], [10], [21]—see [13]. Thus the group Grp (which will be defined by
an explicit presentation below) may appear as an interesting object of study.

Order properties have been recently established for various groups connected
with topology: besides the orderability of braid groups alluded to above, the or-
derability of the mapping class groups of surfaces with a nonempty boundary [20],
the bi-orderability of the pure braid groups [14], the fact that Artin’s braid groups
are not bi-orderable in a strong sense [19]. Let us also mention work in progress by
D. Rolfsen and B. Wiest about the orderability of knot groups. As for Thompson’s
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group F', it can be realized as a group of diffecomorphisms of a real interval [12],
and, as such, it acts on the reals, which easily implies that it is orderable, and
even bi-orderable as shows the explicit form of the action [1].

As the group Gpp is closely connected both with Thompson’s group F' and
with Artin’s braid group B, the question of whether it is bi-orderable, like F', or
not bi-orderable, like B,,, appears natural. It had been shown in [4] that G, is
equipped with a linear left-invariant preordering (which projects on the canonical
left-invariant linear ordering of the braids). However, this preordering is not an
ordering, and it is not right invariant, so it does not answer the above question.
In this paper, we shall prove that, as for orderability, G, is similar to F', and not
to By:

Proposition. The group Gip is bi-orderable, i.e., there exists a linear ordering
on Gyp that is compatible with product on both sides.

Our proof consists in defining an action of GG, that is reminiscent of the action of F’
on the reals. However, due to an essential technical difference between associativity
and self-distributivity, namely the fact that the variable x is repeated twice in the
right-hand term of the identity z(yz) = (zy)(xz), there is no natural way to let Grp
act on the reals via diffeomorphisms. Instead we shall let G, act on finite binary
rooted trees and observe that this action preserves some linear ordering of such
trees. A similar approach is also possible in the case of Thompson’s group F', in
which case one essentially re-obtains the action of F' on R, and, more generally, in
the case of analog groups that can be associated with algebraic identities preserving
the order of the variables [9].

The organization of the paper is as follows. In Section 1, we recall the definition
of the group G, and introduce its partial action on finite binary trees and, more
generally, on terms, which are finite binary trees with labeled leaves. In Section 2,
we construct a linear ordering of terms connected with their coding by words
using the left Polish form. In Section 3, we show that the action of G;, on terms
preserves the previous ordering, and we deduce a bi-invariant ordering on Gp.
Finally, in Section 4, we deduce from the action of G, on finite trees an action of
the positive part of Grp—a certain submonoid of Gy, of which Gy, is the groupe
of fractions—on the Cantor line and on the reals.

1. The action of G,, on terms

In this preliminary section, we recall the definition of the group G, and its
connections with the left self-distributivity identity, with Thompson’s group F,
and with Artin’s braid group B.,. We also define a partial action of Gy, on terms
connected with the left self-distributivity identity.



Vol. 76 (2001) The group of self-distributivity is bi-orderable 163
The group G,p

The group Gy, is a countable group that describes, in some sense explained below,
the geometry of the left self-distributivity identity

2(yz) = (zy)(z2). (LD)

We shall define G, using an explicit presentation. The generators are in one-
to-one correspondence with the vertices in a complete binary rooted tree: so we
can specify a generator by using a finite sequence of 0’s and 1’s describing the
path from the root to the considered vertex. Such finite sequences will be called
addresses; we use A for the set of all addresses, and ¢ for the empty address, i.e.,
the address of the root (Figure 1.1). For o, 8 € A, a3 denotes the concatenation
of « and 3. We say that two addresses «, 3 are orthogonal, written «c L 3, if there
exists an adress v such that 40 is a prefix of o and 1 is a prefix of 3, or vice
versa.

000 111

f f

0100 1010
Figure 1.1. Binary addresses.

Definition. We denote by Gy, the group ({go; o € A}; Rup), where Ry, consists
of the following five families of relations:

9o - 98 =98 " Yo for o L 3, (type 1)

9008 * Yo = Jo * 9o103 - o003 (type 0)

9a108 " o = Ja - 9al13, (type 10)

9all1p - o = o - Galls, (type 11)

9ol Yo~ ol - Jab = Jo - Jal * Jor- (type 1)

Let us recall that Artin’s braid group B can be defined as the group generated
by an infinite sequence o1, 09, ... subject to the relations

0,0, =0;0; for |i — j| > 2, type (i)
Oitl  0i Oip]l = 0; ~ Oyl O type (ii)
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Then, from the presentation, it is obvious that the mapping

{ o; for a =11 (i.e., 1 repeated i — 1 times),
pr: gat— . .
1 if « contains at least one 0
defines a surjective homomorphism of Gy, onto By.: B, is what remains from G,
when we collapse every generator associated with a vertex of the complete binary
tree not lying on the right branch. As B, is not finitely generated, G, is not
either finitely generated. The kernel of the projection of Gy, onto B, is large
(and complicated): if H; denotes the parabolic subgroup of G, generated by all
generators g, with a beginning with 1?0, then, by type L relations, the elements
of H; and H; commute for ¢ # j, and Ker(pr) includes the direct product Hp X
Hq x---. It can then be shown that, for every ¢, the mapping g, — g1:0,, induces
an isomorphism of G., onto H;. More generally, a parabolicity theorem asserts
that, for every address v, mapping g, to gyo defines an isomorphism of G, onto
the subgroup of G, generated by those generators gz such that 3 begins with ~.
The syntactic form of the relations R, defining G, is reminiscent of the Cox-
eter relations that define Artin groups, though they do not preserve the length
and are not symmetric. It is proved in [4] and [5] that most of the tools developed
by Garside in his study of braid groups [11] can be extended to groups defined
by such generalized Coxeter relations. The specific case of G, is made difficult
by the fact that, in contradistinction to B.,, Gp is not the inductive limit of an
increasing family of groups of finite type. However, by introducing local counter-
parts to Garside’s fundamental braids A,,, one can extend some of the results,
and, in particular, prove that G, is a group of fractions:

Proposition 1.1. [4], [8] Let Gt be the submonoid of Grp generated by the
elements g, with o € A. Then every element of Gyp can be written as ab~1 with
a,be G

We claim nothing about the presentation of the monoid G;Y,: whether G;I admits,
as a monoid, the above presentation of GGy is currently unknown.

Terms and trees

Terms will play a central role in the sequel. Several equivalent definitions are
possible. For our current purpose, it will be convenient to consider terms as finite
trees.

Definition. Let z1,z9,... be a fixed sequence of variables (= letters); a term is
defined to be a finite binary rooted tree whose leaves (i.e., vertices of degree 1)
wear labels in {z1,z9,...}. We write 1%, for the set of all terms, and T for the
subset of 1%, consisting of those terms where all leaves are labeled z1.
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Thus,

/\ .

X X3,
2! x
R N T

are typical terms in 1..,. The latter belongs to 1. In the case of T, we can of
course forget about the labels, and identify a term with an unlabeled tree.

Terms are equipped with a natural product, namely the operation that asso-
ciates with two terms {g,%1 the term, denoted g-t1, consisting of a root with two
successors, a left one which is ¢g, and a right one which is ¢1:

Then, provided we identify the variable z; with the tree consisting of a single
vertex labeled z;, (1%,-) is a free magma based on {z1,z92,...}, and (71,-) is a
free magma based on {z1}.

Each vertex in a finite binary rooted tree can be specified by an address in A
describing the path from the root to that vertex. For ¢ a term, we define the
outline of t to be the collection of all addresses of leaves in (the tree associated
with) ¢, and the skeleton of ¢ to be the collection of the addresses of vertices in ¢:
thus, for instance, the outline of the term (x3-z1)-zg9 is the set {00,01,1}, while
its skeleton is {00,01,0,1, ¢}, as ¢ comprises three leaves and two inner vertices.

For t a term, and « an address in the skeleton of ¢, we have the natural notion
of the a-subterm of ¢, denoted sub(¢, «): this is the subtree of ¢ whose root lies at
address «. This amounts to defining inductively

t if ¢ is a variable or o = A holds,
sub(t,a) = ¢ sub(tg,3) fort=+tpt; and a =04,
sub(tq,8) fort=tpt; and o = 18.

For instance, the O-subterm of the term (z3-x1)-x2 is the term x3-21, its 01-subterm
is the term z1, while its 010-subterm is not defined. Observe that the outline of a
term ¢ is the set of those addresses « such that sub(¢, ) is a variable.
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The action of G, on terms

We shall now describe the connection between the group G, and the left self-
distributivity identity by means of a partial actions of G, on terms.

In the sequel, a set equipped with a left self-distributive operation will be called
an LD-system (the names LD-magma and LD-groupoid have also been used occa-
sionally). Let us say that two terms ¢, ¢’ in I, are LD-equivalent, denoted ¢t =, t/,
if we can transform ¢ to ¢ by repeatedly applying Identity (L D). By standard ar-
guments, the quotient structure T, /=y, is a free LD-system based on {z1,z3, ... },
and studying free LD-systems amounts to studying LD-equivalence of terms.

Applying the left self-distributivity identity to a term ¢ consists in replac-
ing some subterm of ¢ which has the form #1-(t2-t3) with the corresponding
term (t1-t9)-(t1-t3), or vice versa. Having defined the a-subterm of a term pre-
cisely, we can take into account the position, i.e., the address, of the subterm
where the identity is applied. This leads to defining a partial action on T, of the
free monoid (AU A‘l)* generated by A and a disjoint copy A1 of A comprising
a formal inverse a ! for each address a.

Definition. (i) For ¢ a term, and « an address such that the a-subterm of ¢ exists
and can be written as t1-(t2-t3), we define (t)« to be the term obtained from ¢ by
replacing the a-subterm with the corresponding term (¢1-t2)-(¢1-t3).

(ii) For ¢ a term, and a an address, we define (¢)a—! to be the unique term #’
verifying ¢ = (¢')a, when it exists.

(iii) For ¢ a term, and w a word on AUA~!, say w = aft-. .. g’ , with a; € A
and e; = £1, we define (£)w to be (... ((t)a]!)as? ... )ay", when it exists.

Thus (¢)e is the term obtained by expanding ¢ at o using left self-distributivity:

t (Ha

A

Example 1.2. Let ¢t = z{-z9-x3-z4—here, and everywhere in the sequel, we take
the convention that missing brackets are to be added on the right, so, for instance,
the previous expression stands for z1-(z2-(z3-24))—then the only addresses « for
which (¢)a exists are A and 1, and we have (¢)¢ = (z1-x3)-(z1-z3-24), and (¢)1 =
z1-(xg-x3)-(z2-24).
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By construction, the term () is defined if and only if the address a10 belongs to
the skeleton of ¢, and that (t)a! exists if and only if the addresses @00 and a10
belong to the skeleton of ¢, and, in addition, sub(¢, «10) = sub(¢, @00) holds.

We thus have obtained a partial right action of the free monoid (A UAfl)* on
the set 1.,. By construction, we have:

Lemma 1.3. Two terms t,t' in T are LD-equivalent if and only if # = (t)w
holds for some word w in (AU A~1)*

The previous action is partial, i.e., not everywhere defined, in essence. In partic-
ular, there exist words w such that (¢)w is defined for no term ¢: this happens
for instance for w = ¢5~1~¢571, as, by construction, no term of the form (¢)¢-1 may
have equal subterms at 00 and 10, hence be eligible for the action of 515_1. This
situation is unpleasant, but—in contradistinction to easier cases like the case of
associativity—there exists no way of avoiding it by using a convenient quotient or
subset, or by replacing groups by groupoids (small categories with inverse).

By definition, the group G.p is a quotient of the free group generated by
the g.’s, o € A, hence of the free monoid (AUA_l)*: for w a word on AUA~!, we
denote by w the image of w in G, under the homomorphism that maps a to g,
and a1 to g7 1.

The connection between G, and left self-distributivity comes from the fact that
the partial action of (AUA~1)* on terms described above factors through Gy, and
the resulting action is faithful in the following sense:

Proposition 1.4. [4] Assume that w,w' are words on AU A" and there exists
at least one term t such that both (t)w and (t)w' are defined Then the following
are equivalent:
(1) There ezists at least one term t satisfying (t)w = (¢)w';
(ii) For every term t such that (t)w and (t)w' erist, we have (t)w = (t)w';
(#i) The words w and w' represent the same element of Gyp.
In the particular case when w and w' are words on A, the condition that there exists

at least one term t such that both (t)w and (t)w' are defined is always satisfied.

The previous statements may appear convoluted, but, because there exist words w
such that (¢)w is defined for no ¢, there is no way to obtain a simpler statement:
the action of o1 is not an exact inverse of the action of o, as (t)e-a™! = ¢ holds
only if (¢)a is defined. The proof of Proposition 1.4 is delicate: as one can expect,
it is not very difficult to check that (iii) implies (ii), i.e., that the action factors
through Gyp, but proving that (i) implies (iii), i.e., that the factorized action is
faithful, requires a nontrivial argument.

Owing to the previous result, we obtain a well-defined partial action of Gy,
on T: for ¢ a term, and a in Gyp, we define (¢)a to be (¢)w where w is any word
on AU A1 that represents a and is such that (t)w exists, if such a word exists.
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The action is partial, as there exist some elements a of Gy, like g¢glg;1, such
that (¢)w exist for no expression w of a, but it is well-defined in the sense that, if
w and w' are distinct expressions of some element a such that both (¢)w and (¢)w’
exist, then the latter terms are equal.

Lemma 1.3 and Proposition 1.4 immediately yield:

Proposition 1.5. For every term t, the LD-equivalence class of t is the orbit
of t under the (partial) action of Gip, and this action is faithful: we have t' =t
if and only if t' = (t)a holds for some a in Gip, and, in this case, the involved
element a is unique.

This statement should make it natural to call G, the geometry group of Iden-
tity (LD).

The connection between G, and Thompson’s group F

A similar approach can be developed when left self-distributivity is replaced with
associativity. This amounts to considering an alternative action, here denoted .,
of the free monoid (AU A*I)* on terms, namely the action obtained by replacing
the basic instance

(t1-(to-t3))p= (t1-t2) - (t1-t3)
with
(t1-(t2-t3))ep = (t1-t2) - t3.

Studying the s-action leads to introducing new relations, and, therefore, to a new
group.

Definition. We denote by G, the group ({go; @ € A}; R,), where R, consists
of

9o 98 = 9p 9o  fora 1l g, (type 1)

9008 * o = Yo - Ga00B (type 0)
95108 9o = o - 9a015, (type 10)
9ol1p - 9o = Yo - Galp) (type 11)
9ol 9o 9o = o * Gor- (type 1)

It can now be proved that the (partial) action « of (AU A~1)* on T, factors
through G,, and, if we say that two terms are A-equivalent if we can transform
the first into the second using asociativity, we have the following counterpart to
Proposition 1.5:



Vol. 76 (2001) The group of self-distributivity is bi-orderable 169

Proposition 1.6. [6] For every term t, the A-equivalence class of t is the orbit
of t under the (partial) action of G, and this action is faithful: the term t' is
A-equivalent to t if and only if t' = (t)ea holds for some a in G4, and, in this case,
the involved element a is unique.

Thus, the group G, is an exact counterpart to the group Gyp. From a technical
point of view, the results and the proofs are much easier in the case of associativity
because the action is never empty in the latter case.

Proposition 1.7. The group G, is (isomorphic to) Thompson’s group F.

Proof. (sketch) One of the standard presentations of F' is [1]
(X0, X1, X2, ... ; X; 1 X0 Xy, = X q1 for k < ).

Let us consider the elements gy: in G,. An induction on the number of 0’s in «
shows that, for every address «, g, belongs to the subgroup of G, generated
by the gyi’s, i.e., the elements g1: generate G,. Moreover, for kK < n, we have
glkilglnglk = gyn+1 by type 11 relations. Hence the mapping X; — g¢1: induces
a surjective morphism of F' onto G,. Conversely, for each address «;, we define an
element Y, in F inductively on the number of 0’s in o by Y, = X, for o = 1%, and

Yo=Y, V' Yo Vo Vot Vi Yo - Yor¥p

for = 01%. The elements Y, satisfy the relations R,, so g, — Y, induces a

surjective morphism of G, onto F', which is the inverse of the above morphism
of F onto G,. O

Let us mention that a similar approach can be developed for every family of
algebraic identities, and refer to [9], where studying the associated group leads
to a solution of the word problem of the identity z(yz) = (zy)(yz).

2. A linear ordering on finite binary trees

Terms (i.e., finite labeled binary trees) can be equipped with several orderings.
Here we consider the linear ordering on T, that uses the left height as a discrimi-
nant, the latter being defined as the length of the leftmost branch in the associated
tree. To make the definition precise, we encode every term by a word and then
use a lexicographical ordering.

Definition. For ¢ a term, the left Polish form of ¢ is the word [t] over the alphabet

{z1,x9,...,e} defined by the following inductive clauses:
] - t if ¢ is a variable,
| eftq]ta]  for t =ty to.
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For instance, the left Polish form of the term zy-(xzg-x3-x4)-z5 is the word
exjeergexszryxs. When the term ¢ is viewed as a tree, the word [t] is obtained by
enumerating the variables of ¢ from left to right and letting each occurrence of a
variable be preceded by as many letters e as there are final 0’s in the corresponding
address. For w a word over the alphabet {x1,z9,... 0}, we denote by # (w) and
#,(w) the number of letters z; and of letters o in w respectively. By standard
arguments, we have the following characterization:

Lemma 2.1. Assume that w is a word over the alphabet {z1,z9,...,e}. Thenw is
the left Polish form of a well formed term if and only if we have # (w) = #,(w)+1,

and 4 (u) < #,(u) for every proper prefix u of w.

Definition. Assume that ¢1, to are terms in T,,. We say that ¢; <, to holds if
the word [[¢1] precedes the word [¢2] in the lexicographical extension of the linear
ordering z1 < z9 < --- < e,

By construction, the relation <, is a linear ordering on T, and z1 is minimal
for <. If ht,(¢) denotes the left height of the term ¢, the word [¢] begins with
ht; (¢) letters o followed by a variable. So, ht; (¢1) < hty(¢2) implies ¢1 <, 2.

Lemma 2.2. The inequality t1 <g to implies t1-ts <g to-tq4 for all terms i3, t4.

Proof. Lemma 2.1 implies that a proper prefix of the left Polish form of a term is
never the left Polish form of a well formed term. Hence t1 <; t9 holds if and only
if the words [[¢t1] and [t2] have a variable clash of the type “variable vs. ¢”. Then
the words [t1-t3] and [ta-t4], i.e., o[¢t1][t3] and e[t2][t4], have a similar clash. O

We deduce several equivalent characterizations of <.

Lemma 2.3. Assume that t1, to are terms in Ty If t1 is a variable, say x;, then
t1 <g to holds unless to is a variable x; with j < i. Ifty is not a variable, then
t1 <g to holds if and only if either sub(tq,0) <, sub(ty,0) holds, or sub(ty,0) =
sub(tg,0) and sub(ty,1) <, sub(te,1) hold.

Proof. Assume t1 <, t9, and neither ¢ nor t9 are variables. Three cases are pos-
sible. For sub(¢1,0) <, sub(tg,0), Lemma 2.2 implies ¢ <, t3. For sub(¢1,0) >,
sub(tg,0), we obtain ¢1 >, to symmetrically. Finally, for sub(¢1,0) = sub(¢9,0),
t1 <g tg is equivalent to sub(tq,1) <, sub(to, 1) by definition. O

In order to state the next result, we need the easy notion of the left edge of an
address.

Definition. For o an address, the left edge of a is the finite sequence
(010,...,a,0), where aq, ..., op are those prefixes of « such that oq1, ...,
apl are prefixes of a, enumerated in increasing order.
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For instance, the left edge of 010011 is the sequence (00,01000,010010). As an
induction shows, the length of the left edge of the address « is the number of 1’s
in a.

Lemma 2.4. Assume that t1, to are terms in 1. Then the following are equiv-
alent:

(i) The relation t1 <g to holds;

(i) There erists an address « in the skeletons both of t1 and of ty such that
sub(t1, 3) = sub(tg, 3) holds for every 3 in the left edge of o, and sub(t1,a) <,
sub(tg, a) holds.

(i4i) There exists an address a both in the outline of t1 and in the skeleton of tg
such that sub(ty, 3) = sub(te, 3) holds for every [ in the left edge of «, and either
sub(tg, ) is a variable larger than var(ty,«), or it is not a variable.

Proof. An induction on « shows that, if « belongs to the skeleton of the term ¢
and (o,...,0p) is the left edge of «, then the word [t] begins with

oF1[sub(t, oy )]e*2 [sub(t, ag)] . .. "7 [sub(t, cv, ) |F [sub(t, )], (2.1)

where k; is the number of final 0’s in a; and k is the number of final 0’s in . The
result is obvious for o = ¢, and, otherwise, it follows from an easy induction on ¢.
Then, by definition of a lexicographical ordering, it follows from (2.1) and from
the fact that a proper prefix of a left Polish form is never the left Polish form of
a well formed term that (ii) implies (i).

By construction, (iii) implies (ii). Finally, assuming (i), and letting « be the
address of the first position where the words [[t1] and [to] disagree, we obtain (iii)
using the explicit expansion of (2.1). O

For the next result, we introduce another preordering on terms.

Definition. Assume that ¢1, t9 are terms. We say that ¢ C ¢o holds if and only
if ¢1 is an iterated left subterm of to, i.e., t; = sub(tg,0%) holds for some & > 0.
We say that t1 T, t9 holds if there exist two terms t{, t satisfying ¢} =, t1,
ty =p to, and t] C t5.

It is known [4] that the relation C,,, induces an ordering on T, /=5, whose re-
striction to T /=.p is linear.

Lemma 2.5. Assume that t1, to are C.p-comparable terms in T.,. Then the
following are equivalent:

(i) The relation t1 < to holds;

(i) There erists an address o in both in the outline of t1 and in the skeleton
of tg such that sub(ty, 3) = sub(tg, 3) holds for every (3 in the left edge of o, and
sub(te, o) is a term of left height at least 1 whose leftmost variable is var(ty, «).
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Proof. Assume (i). Then there exists an address « satisfying the conditions
of Lemma 2.4(iii). We claim that sub(¢9,a) cannot be a variable. Indeed, as-
sume sub(t1,a) = z; and sub(t2,a) = z; with j > 4. Let (ay,...,0q) de-
note the left edge of a. Let us consider for a while the right Polish form
of terms: for ¢ a term, we denote by [{] the word inductively defined by:
[(] = ¢ if t is a variable, and [t] = [t1][te]e for ¢ = ¢149. Then, the
word [¢1] begins with [sub(¢1, )] ... [sub(¢1, ag)|z;, while the word [t2] begins
with [sub(t1,aq)]. .. [sub(t1, aq)]z;. By the results of [4], this is known to contra-
dict the hypothesis that ¢; and ¢9 are C,,-comparable. So the only possibility is
that sub(tg, ) is not a variable, and that its leftmost variable is z;. This gives (ii).
That (ii) implies (i) follows from Lemma 2.4. O

The left ordering of terms satisfies several invariance properties. Let us define a
substitution to be a mapping of {z1,z9,...} into T If h is a subtitution and ¢ is a
term in T, we denote by ¢” the term obtained from ¢ by replacing each variable z;
oceurring in ¢ with the corresponding term h(z;). Note that the mapping ¢ — ¢*
is an endomorphism of the free magma (T.,-), and that every endomorphism
of (1%, -) has this form.

Proposition 2.6. Assume that t1, to are terms in Ty, and h is a substitution
of Th. Assume in addition that at least one of the following conditions holds:

(i) We have h(z;) <, h(z;41) and hty (h(x;)) = hty (h(ziq1)) for every i;

(i) The termsty and to are Cp-comparable.
Then t1 <g to holds if and only z'ft’f <z t’é‘ does.

Proof. As <, is a linear ordering, it suffices that we show that 1 < t9 implies
t’f < tg‘ So assume t1 <; t9. By Lemma 2.4, there exists an address a such
that sub(t1,3) = sub(¢e,3) holds for every /3 in the left edge of a, sub(tq, @) is a
variable say x;, and sub(t9,«) is either a variable z; with 7 > 4, or it is a term
that is not a variable. When Condition (ii) holds, by Lemma 2.5, we can assume
in addition that sub(tg, @) is a term with leftmost variable z; and left height at
least 1. Applying the substitution h, we obtain sub(t}, 3) = sub(t%, 8) for every 3
in the left edge of a. Then we have sub(t?,a) = h(z;). Three cases are to be
considered.

If Condition (i) holds and we have sub(tg,a) = x; with j > 4, we obtain
sub(th, o) = h(z;) >, h(z;) = sub(t},a). If Condition (i) holds and sub(tz, )
is not a variable, the hypothesis on h implies ht,(sub(t%,a)) > ht, (sub(t},)),
hence sub(t?, o) <, sub(t%, ). Finally, if Condition (ii) holds and sub(tg,a) is
a term with leftmost variable z; and left height k& > 1, we find ht, (sub(t?, a)) =
ht, (h(2;)), and ht, (sub(t3, a)) = ht, (h(z;)) + k, hence sub(t}, o) <, sub(t}, o).
So, sub(t},a) <, sub(th,a) holds in every case. By Lemma 2.4, this implies
th < 5. O

Definition. For ¢ a term in .., we denote by t! the projection of ¢ in 77, i.e.,
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the image of ¢ under the substitution that maps every variable to z1.

Corollary 2.7. (i) Every substitution of T| preserves the ordering <y .
(i) If t1 and to are Crp-comparable terms, t1 <g tg s equivalent to tJ{ <z t;.

Other characterizations of the linear ordering <; can be mentioned. For instance,
if we assume that ¢, ¢1, to are terms and the outline of ¢ is included in the skeleton
of ¢t1 and ¢9, then, letting (a1, ..., a;) be the left-right enumeration of the outline
oft, t1 < t9 holds if and only if the sequence (sub(t1, aq),...,sub(t1, ap)) precedes
the sequence (sub(tg, cq),...,sub(ts, op)) in the lexicographical extension of <
to TX.

In the special case of T, it can also be checked that 1 <; 2 holds if and only
if the left—right increasing enumeration of the outline of ¢{ precedes the left—right
increasing enumeration of the outline of ¢9 with respect to the lexicographical
extension of the prefix ordering of addresses to A*.

3. The linear ordering on G,

We use now the partial action of the group Gy, on the linearly ordered set (15, <;)
to define a linear ordering on G.,. The ordering so defined has nice properties,
in particular it is compatible with multiplication on both sides, so G, is a bi-
orderable group.

The first step is to prove that the action of Gy, on Ty, preserves the ordering <.

Proposition 3.1. For all terms t1, to in I, and every a in Grp such that (t1)a
and (t9)a exist, t1 < to holds if and only if (t1)a <, (t2)a does.

Proof. As Gyp is generated by the elements g, with o € A, it suffices to prove
the result for the latter elements, i.e., to prove that, if « is an address, and ¢,
to are terms then t1 < to is equivalent to (¢t1)a < (t2)a when the latter terms
are defined. As the action of « is injective, it suffices to prove that ¢ <, to im-
plies (t1)a <, (t2)c. We use induction on «. Assume first that ¢ is the empty ad-
dress. The hypothesis that (¢1)¢ and (¢3)¢ exist implies that sub(t.,0), sub(t., 10),
and sub(t., 11) exist for e = 1,2, and we have the explicit decompositions

[te] = e[sub(t.,0)]e[sub(t., 10)][sub(t., 11)],

and
[(te)A] = ee[sub(te,0)][sub(te, 10)]e[sub(t.,0)][sub(t., 11)].

By Lemma 2.3, only three cases are possible, namely
- sub(¢1,0) < sub(ta,0), or
- sub(t1,0) = sub(tg,0) and sub(¢1, 10) <, sub(¢g, 10), or
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- sub(¢1,0) = sub(f2,0), sub(t1,10) = sub(¢y,10) and sub(¢y,11) <
sub(tg, 11),
and the result is clear in each case.

Assume now o = 03. Then we have (t.)a = sub(t.,0)F-sub(t.,1). Two
cases are possible. For sub(¢1,0) <, sub(tz,0), by induction hypothesis, we
have sub(t1,0)8 <. sub(ta,0)83, and, therefore, (¢1)a <, (t3)a. For sub(ty,0) =
sub(tg,0) and sub(tq,1) <, sub(¢e,1), we have sub(¢1,0)3 = sub(te,0)s3, and,
again, (t1)a < (t2)c.

Assume finally o = 13. Then we have (¢.)a = sub(¢.,0)-sub(t., 1)3. Two cases
are possible again. For sub(¢1,0) <, sub(te,0), we deduce (¢1)a <, (t2)a directly.
For sub(¢1,0) = sub(tg,0) and sub(t1, 1) <, sub(tg,1), the latter inequality implies
sub(t1,1)3 <. sub(te, 1)3 by induction hypothesis, and we deduce (¢1)a <, (t2)c
again. O

Lemma 3.2. Assume that a belongs to G5\ {1}. Thent <, (t)a holds whenever
(t)a is defined.

Proof. Tt suffices to consider the case of a single address a. If « is the empty
address, the result follows from the equality ht, ((¢)4) = hty (¢) + 1. Otherwise, we
use an induction on «, or simply resort to Lemma 2.4: by the previous argument,
we have sub(¢,«) < sub((¢)e, ), and, by construction, sub(¢, 3) = sub((¢)a, 3)
holds for every 3 in the left edge of a. O

The next step consists in using the action of the submonoid GLJ; of Gyp on T to
order G5, For each element a of G5, we shall need a characterization of those
terms t for which (¢)a is defined. Let us say that a term ¢ is canonical if the list
of all variables that occur in ¢, enumerated from left to right ignoring repetitions,
is an initial segment of (z1,z9,...). The following result is proved in [3] (in a

general framework).

Proposition 3.3. Assume that ai,...,a; are elements of G;-. Then there
erists a unique canonical term t.(ay,...,ar) such that, for every term t, the
terms (t)ay, ..., (t)ag all are defined if and only if t = t,(ay,...,ax)" holds for
some substitution h.

Lemma 3.4. For a,b € Gf, the following are equivalent:
(i) There exists a term t in I3 such that (t)a < (t)b holds;
(ii) The inequality (t;(a,b))a <, (t,(a,b))b holds;
(i11) For every term t in T such that (t)a and ()b erxist, (t)a < (t)b holds.

Proof. That (ii) implies (i) and (iii) implies (ii) is clear. So assume (i). By con-
struction, there exists a substitution A satisfying ¢ = ¢,(a,b)", and our hypothesis
is the inequality (t,(a,b)")a <, (t.(a,b)")b, ie., ((t(a,0))a)? <o ((t.(a,b))b)".
The terms (#(a,b))a and (¢ (a, b))b are LD-equivalent, hence, by Proposition 2.6,
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the previous inequality is equivalent to (¢, (a,b))a <, (t.(a,b))b, which gives (ii),
and, then, to ((t(a,b))a)? <. ((tz(a,b))b)? for every substitution g, which
gives (iii). O

Definition. For a,b € G5, we say that a < b holds if the equivalent conditions
of Lemma 3.4 are satisfied.

Proposition 3.5. The relation < is a linear ordering on the monoid G\, that is
compatible with multiplication on both sides; it admits 1 as a minimal element.

Proof. That the relation < is irreflexive is clear as <, is an ordering on terms.
Assume a < b < ¢, and let ¢ be a term such that (¢)a, ()b, and (t)c are defined, for
instance t = #(a, b, c). By Lemma 3.4, a < b implies (t)a < (¢)b, and b < ¢ implies
()b < (t)e. We deduce (t)a <, (¢)c, which in turn gives a < ¢ by Lemma 3.4. So
< is an ordering on GLJE, and it is linear as < is a linear ordering on T5..
Assume now a < b, and let ¢ be an arbitrary element of GLJBA Let ¢ be a term
such that both (¢)ca and (¢)cb exist. By construction, we have (t)ca = ((t)c)a and
(t)eb = ((t)c)b, so the hypothesis a < b implies ((¢)c)a < ((¢)c)b, which in turn
implies ca < ¢b by definition. With the same hypotheses, assume that (¢t)ac and
(t)bc are defined. Then (t)a < (¢)b holds by hypothesis, and, by Proposition 3.1,
this implies ((¢)a)e <, ((¢)b)e, which in turn implies ac < be by definition. Finally,
assume a # 1. By Lemma 3.2, ¢ <, (¢)a holds, so, by definition, we have 1 < a. O

It is now easy to extend the ordering of G;1 to the whole of Gi,.

Lemma 3.6. For a,b,d’,b € GY satisfying ab=1 = a’b’ﬂl, a < b is equivalent
toa’ <b.

Proof. By Proposition 1.1, there exist ¢, ¢’ in G satisfying ac = a/¢’ and be = b'¢’.
Assume a < b. Using the compatibility of the order with multiplication on the
right, we deduce ac < be, i.e., a’c’ < b'c, hence a’ < V. O

Definition. For ¢,d € Gy, we say that ¢ < d holds if ed~! = ab~! holds for
some a,b in Gt satisfying a < b.

Proposition 3.7. The relation < is a linear order on the group Gip that extends
the order < on Gi5. This order is compatible with multiplication on both sides,
and, therefore, it is compatible with conjugacy.

Proof. For a, bin G, 1 = ab~1 implies a = b, hence a # b, hence, for every c
in Gp, ¢ < ¢ is impossible. Assume ¢ < d < e in Gyp. There exist ay, by, a9, by
in G, satisfying ed ! = a1by!, de ™' = agby !, ag < by, and ag < by. Let as, bs
be elements of GL‘; satisfying aobg = bjas. We find

ce™l = albl_lagbgl = (a1a3)(b2b3)_1.
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The hypothesis a; < by implies ajas < biag, the hypothesis ap < by implies
agbg < babs. By hypothesis, we have bias = aabz, so we deduce ajas < babs, and,
therefore, ¢ < e. Hence the relation < is an ordering on Gip,.

Assume a,b € Gt and a < b holds in the sense of G, Then ab~! is an
expression of ab—1 with a,bin Gif, and a < b, i.e., a < b in the sense of Gy, holds.
Thus the order < on G, extends the previous order < on G;;.

Assume now ¢, d,e € Gyp and ¢ < d. By definition, there exist a, b in G}
satisfying cd 1 = ab~! and @ < b. Then we have (ce)(de) ' = ab~1, so ce < de
holds as well. On the other hand, let us express e as apby ! with ag, bp in G, There
exist a1, by, ag, by, ag, by in G satisfying bpay = aag, boby = bby, asag = babs
(Figure 3.1). Then, we find

(ec)(ed) ™ = agby Lab~tbgag ! = (agajag)(agbibs) L. (3.1)

The hypothesis a < b implies bgajas = aagsas < bagsag = bbobg = bgb1bs, Whereas
we deduce a1ag < b1bs, and, therefore, agajag < agb1bs using compatibility with
multiplication on the left twice. By (3.1), this gives ec < ed. O

Figure 3.1. Compatibility of order with multiplication on the left.

We thus have proved our main result, namely that G, is a bi-orderable group.
By general results [18], we deduce

Corollary 3.8. The group G.p is torsion free, the group algebra CGp admits no
zero divisor, and it embeds in a skew field.

The action of the group Gy, on terms is a partial action. In particular, some
elements of G, do not act, i.e., the domain of the associated operator is empty.
Hence, we cannot compare all elements of G, using their action on terms directly.
However, using the action gives a sufficient condition when it is defined.

Proposition 3.9. (i) Assume ¢, d € Gyp and there exists a term t such that (t)c
and (t)d are defined. Then ¢ < d holds in Gy if and only if (t)c <, (t)d holds

in Tas.
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(it) Assume ¢ € Gyp and there exists at least one term t such that (t)c exists.
Then ¢ > 1 holds in Gyp if and only if (t)c >, t holds for any term t such that (t)c
exists.

Proof. (i) Assume that ¢ is a term and (¢)c and (¢)d are defined. By Proposition 1.1,
there exist a and b in G;FD satisfying ¢1d = ab~1, hence ca = db. We cannot
claim that (#)ca is defined in general, but, as a belongs to G;t,, the only possible
obstruction for (¢)ca to be defined is the skeleton of (¢)c being too small. Now, for
every substitution A, the term ¢" is eligible for the action of ¢ as well as ¢ is, and we
can choose h such that the skeleton of (¢*)c is arbitrary large. Then (t")ca exists,
so does (t")db, and we have (t")ca = (¢t")db. Assume now ¢ < d, hence a > b.
We deduce (t)cb <, (t)ca = (t)db, and, therefore, (t)c <, (t)d. The argument is
symmetric for ¢ > d.

Point (ii) follows by taking d = 1 in (i). O

4. Action of G}, on the Cantor space and the reals

We conclude the paper with the observation that the previous action of the
monoid G5 on finite binary trees induces an action on the Cantor space, viewed
as a line at infinity for the set A of all binary addresses.

We first introduce a partial action of G on addresses by using the origin
function. The idea is that, if a is an element of G}, and ¢ is a term large enough
to make sure that (¢)a exists, then every address /3 in the skeleton of (¢)a has a
well-defined origin in the skeleton of ¢. A direct definition can be posed easily.

Definition. Assume that «, 8 are addresses. The origin o) of 5 under « is
defined by

Jo] if 8 1L « holds or «l1 is a prefix of 3,
(8) = al~y for = a00v and 3 = al10~,
S al0y for B = all~y,

undefined if § is a prefix of al.

Lemma 4.1. (i) Defining aq-...-0(8) to be ay(...(ap(B)...) induces a partial
left action of G, on A.

(ii) For a € G, denote by a(3) the image of 3 under the action of a, when it
erists. Then a(3) is defined if and only if some prefix 3 of B lies in the outline
of the term t,(a), and, in this case, we have a(B) = a(B')y where 3 is ('y.

(12) If t is a term with pairwise distinct variables, then, for every address (3
in the skeleton of (t)a, the address a([3) is the unique address in the skeleton of t
such that the variable occurring at 8 in (t)a is the variable occurring at a(3) in t.
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The easy verifications are left to the reader.

Remark. We have switched from a right action to a left action here because
the origin function actually goes backwards: we could have considered instead
the inheriting function that associates with every address in the skeleton of a
term ¢ its heirs in the term (¢)a. Inheriting corresponds to a right action, but,
in contradistinction to the case of associativity, it does not define a function on
addresses, as a given address may have several heirs: for instance, the heir of the
address 0 under the action of ¢ consists of the two addresses 00 and 10, since the
variable z in z(yz) has two copies at 00 and 10 respectively in (zy)(zz). However,
inheriting is injective, and we obtain a function by considering its inverse, which
is the current origin function.

The action of G;f, on A is partial: by Lemma 4.1(ii), for each a in Git,, a(B) is
defined only when f3 is long enough, i.e., it does not lie in some neighbourhood of ¢
for the topology 7 on A associated with the distance defined by d(a, 8) = 27" if
o # 3 holds and n is the length of the greatest common prefix of « and 3. Now,
by Lemma 4.1(ii) again, the action is 7-continuous on A, so we can extend it into
an everywhere defined action on the 7-boundary of A, which is the Cantor line A
consisting of all N-indexed sequences of 0’s and 1’s.

Definition. For s € A and a € G5, the element a(s) of A is defined to be a(f)so,
where 3 is the unique prefix of s lying in the outline of ¢, (a) and s = (sg holds.

By Lemma 4.1, the previous action is defined everywhere. The reader can eas-
ily check the equalities g4(000---) = g4(100--.) = 000---, g4(00111---) =
g4(10111---) = 0111---, g4(01000---) = 1000---. More generally, the action

of g4 on Ais displayed on Figure 4.1.

1A AN

r - T T T

Figure 4.1. Action of G ''p on the Cantor set.

Let us equip A with the lexicographical ordering, which corresponds to the
usual ordering of dyadic numbers, and with the associated topology.

Proposition 4.2. For every a in G, the action of a on A is surjective, it is
continuous on the right, and it admits finitely many left discontinuities.
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Proof. The result is clear for every generator ~,, and it is preserved under multi-
plication. O

The linear order of G;f can be defined in terms of the action of G;f, on the Cantor
line A:

Proposition 4.3. The action of G5, on A preserves the order in the sense that
a < b holds in G5 if and only if there exists sq in A such that a(s) = b(s) holds
for s < sp, but a(s) < b(s) holds for s > sg, s close enough to sg.

Proof. Assume a < b in Gj;. Let ¢ be a term with pairwise distinct variables such
that (¢)a and (¢)b exist. By Lemma 3.4, we have (t)a < (¢)b, hence, as (t)a and
(t)b are LD-equivalent, Lemma 2.5 tells us that there exists an address « such
that « lies in the outline of ¢; and in the skeleton of to, sub((t)a, 3) = sub((t)b, 3)
holds for every 3 in the left edge of « (hence for every 3 on the left of a such that
the considered subterms exist), sub((¢)a, ) is a variable say z;, and sub((¢)b, )
is a term of size at least 2 whose leftmost variable is z;. Let sg be «000---. By
construction, a(s) = b(s) holds for s < sg. In particular, we have a(sg) = b(sg) =
~000 - - -, where v is the address where z; occurs in ¢. Let ¢ be the left height of
the term sub((¢)b, «). For p > ¢, we have

a(@0P1000 - -) =~40P1000---, and  b(a0P1000---) = ~0P 91000 - -

Hence we have a(s) < b(s) for points s arbitrarily close on the right of sg. As the
action is continuous on the right, this is enough to conclude. O

Finally, we can copy the previous left action of G;t, on A into an action on the real
interval [0, 1) using the dyadic expansion. This amounts to associating with every
element a of G;5 a piecewise affine mapping f, of [0,1) into itself. For instance,
f4 1s defined by

Do for 0 <z <1/4,
+1/4 for1/4<z<1/2,
2¢ —1 for 1/2 <z < 3/4,
z for 3/4 <z < 1.

fy(x) =

In Figure 4.2 we have displayed the function f; associated with the action of
left self-distributivity at @, i.e., at the root of the tree, and its counterpart when
associativity replace self-distributivity (when compared with the diagrams of [12],
the current diagram is inversed because we consider the origin function). Similarly,
we have represented in Figure 4.3 the rectangle diagrams associated with a few
positive words both in the case of associativity, as in [1], and left self-distributivity.
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Figure 4.2. Left self-distributivity vs. associativity: action at ¢ on the reals.

action of ¢:

action of 1:

action of 0:

action of ¢-¢:
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Figure 4.3. Left self-distributivity vs. associativity: rectangle diagrams.

Using Proposition 4.3, we deduce:

CMH

Proposition 4.4. The relation a < b holds in G, if and only if there exists a
real xo satisfying a(x) = b(x) for x < xg and a(zg + ) < blxg + €) for € small

enough.

In the case of associativity, using the previous approach amounts to defining the
action of Thompson’s group I on the reals considered in [12]. Then the map-
pings f, are bijections, the action is defined on the group, and not only on the
monoid, the counterpart of Proposition 4.4 is straightforward, and we obtain a
linear ordering on F' trivially. In the case of self-distributivity, the result is not so
easy, for some form of the nontrivial result expressed in Lemma 2.5 is required.
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