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On the first Laplacian eigenvalue and the center of gravity
of compact hypersurfaces

Alain R. Veeravalli

Abstract. For a closed hypersurface in a space form, this work provides some sharp upper
bounds for its first positive Laplacian eigenvalue. These bounds are extrinsic as they rely on the
mean curvatures and center(s) of gravity of the hypersurface.
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1. Notations, introduction and the result

Let (M = M,,41(k),g = {-,-)) be a space form, that is a connected simply con-
nected Riemannian manifold of dimension n + 1 > 2, with constant sectional
curvature k € R, d its Riemannian distance, dv its volume element, V its Levi-
Civita connection, V2 its Hessian, A = —trace V2 its Laplacian, exp its exponen-
tial map and U,M the unit sphere of the tangent space T,M of M at a point p.
If M is a closed (compact without boundary) connected hypersurface of M, we
endow M with the induced metric, also denoted by (-,-}. The induced volume
element, connection, Hessian and Laplacian are denoted by dv, V, V2 and A re-
spectively. We recall that its mean curvatures are the functions (H;)o<;<y defined
by TTi (L+ Xki) =300 o (1) Hi X® where (k;)1<<,, are the principal curvatures
of M. By the generalized Jordan theorem, M is orientable and divides M into two
connected components, one of which, say €, is relatively compact and has M as
its oriented boundary. We introduce the function sn, solution of the differential
equation § + ky = 0 with the initial conditions (y(0),4(0)) = (0,1)) and its prim-
itive h, which vanishes at 0. A center of gravity of M is a critical point of the
smooth function £ : M — R :p+— [ o Pw 0 dp - dv. This definition differs slightly
from the one commonly used. The introduction of h, has an immediate utility:
the distance function d, may be non smooth at some points but, thanks to h,, &€
is nevertheless smooth on the whole manifold M. Center(s) of gravity has several
applications: for example, we recall that it can be used to prove that any compact



156 A. R. Veeravalli CMH

group of isometries in an Hadamard manifold has a fixed point. In this paper, we
will use center(s) of gravity to provide some sharp upper bounds for the first pos-
itive Laplacian eigenvalue involving the mean curvatures of M. The method used
here is to apply the min-max principle to a collection of appropriate functions and
goes back to Bleecker and Weiner [2]. Their work, with the generalization given
by Reilly [3], dealt with Euclidean submanifolds. The author was naturally led to
expect similar results for space form submanifolds. This attempt has been possible
by the introduction of center(s) of gravity. The proof will show that the function
h. will make possible the use of generalized Hsiung-Minkowski formulae. For sake
of simplicity, this work concerns only hypersurfaces but for higher codimension,
similar formulae can be derived. Our result is the following one (the case k = 0 is
the one studied by the authors quoted above):

Theorem. Let M be a closed connected hypersurface of M, A\ the first positive
etgenvalue of the Laplacian of M and ¢ a center of gravity of M.
1) If K is non-negative, then we have the following inequalities:

/\1/ sn? od, - dv < nVolM (1)
M
2
Al (/ Hishﬂodc~dz/> gnVOZM/ HZ - dv (2)
M M
2
Ai(n+1)2 (/ shﬁodc-dﬁ) < nVol®M (3)
Q

for any i € [0,n — 1] where VolM denotes the volume of M. FEquality occurs in
one of these three inequalities if and only if M is a geodesic sphere centered at c.
In this case, A\ = n/sngr, r being the radius of this geodesic sphere.

i) If Kk is negative, then

)\1/ sn?od, -dv<nVolM —r | sn?od,-dv (4)
M M

For negative s, inequality (4) is non sharp unfortunately (see the final remark)
and this means that the min-max principle has to be applied to “better” functions.
Before going further, the problem of the existence of a center of gravity has to
be studied: while for positive x, two centers of gravity, at least, exist by the
compactness of M, the question for non-positive & is solved by the following result:

Proposition 1. The function hy o d, satisfies:
V2(h, o d,) = (shyod,) g

If K is non-positive, M admits a unique center of gravity.
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2. Proof
2.1. Preliminaries

We first prove proposition 1: the claim is trivial for x = 0. For non-zero &, it is well-
known that if we equip the space R"t2 with the pseudo-metric {z,y) = exoyo +
Z?Jrll z;y; where ¢ = signk and its associated Levi-Civita pseudo-Riemannian
connection D, then, a model space for M is the sphere S"T1(1/y/k) = {z €
R"+2/(x, z) = 1/} for positive x and the upper hyperboloid H*t1(—1/y/—r) =
{z € R"t2/(z,2) = 1/r and 2o > 0} for negative s, with the induced metric,
which is Riemannian. The announced formula follows then from two elementary
facts: the distance of two points = and y of M is d(z,y) = si; '(x(z,y)) which
implies that h, od, is the restriction to M of the linear form —(p,-)+1/x on R"+2.
On a second hand, (DxY), = (ﬁxY)q —k(X,Y)q for any point ¢ € M and vector
fields X,Y on M We deduce immediatly that if ~ is a 1-time speed geodesic of M,

then (£0v)"(t) = [}, V2(hyod, a)y(1) (V(E), ¥(2)) -dv(q = [ (sheodg)(v(t))-dv(q) >
0, which shows the strict convexity of £ and proves the assertion.

As ¢ is a critical point of £, we note that 0 = (VE(c) fM V(hi o dg)(c), ) -
dv(q) for any u € UM and the key point is the followmg

Lemma. Let v and v be unit vectors tangent to M at ¢ and q respectively, q being
arbitrary in M. Then the smooth function F., : M — R : g — (V(hs 0 dy)(c),u)
satisfies:

| PR@) - du = w2 dea) Q
/ (V@) 0)? - du = wn i1 {1 = (0, Vdo(@))?hsn2(de(a) ) (6)
UM

where du is the canonical measure of UM and wy11 the volume of the unit ball of
R™H.

Formula (5) follows from the classical trick on quadratic forms:

Proposition 2. LetB : VxV — R be a bilinear form on a real (n+1)-dimensional
inner product space V and (S, du) the unit sphere of V' endowed with its canonical
measure du. Then

B(u,u) - du = wyy1 - trace B
s

To prove (6), we introduce for convenience the function p(t) = snxt/t and we set
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¢ =d(c,q). Then we can write I, ,(q) = —pux(£)(exp, ! ¢, u) and

(VF,u(0),0) = —(€){Vd.(q), v} (exp,  q,u) — 1, (0)(VJ(0), u)

where J : [0,1] — TM is the unique Jacobi vector field along the geodesic v :
[0,1] = M : ¢ s exp,(texp,!¢) in M joining ¢ to ¢ with the initial conditions
(J(0), J(1)) = (0,v). Let us write v = v + v+ where vT = (v, Vd.(¢))Vd.(q) =
(v, %(1))%(1)/£? is the tangential component of v relatively to the geodesic speed
vector ¥(1). Solving the differential equation satisfied by J, one easily obtains that

J(t) (1), Vdc(q» t"y(t) + Snﬁ(tg) PL (t)

sn,/

where P is the unique parallel vector field along ~ with P+ (1) = v*. This implies
that

@Fe(ao) = = ({0 + 242 | 0, Fa)300) + P00

=~ (0 T30 + PO )

As P+ is parallel along the geodesic v and perpendicular to the geodesic at ¢ =
1, Pt is of constant norm |v| and always perpendicular to the geodesic. By
proposition 2 and the straightforward relation s'nit + msnzt = 1, one obtains that

1
Wn41

/ (VF,u(q),0)% - du= o7 25020+ o> = 1 — [oT|?ksn?l O
UM

2.2. Proof of the theorem

Let n be the outward smooth unit vector field normal to M, that is the one pointing
in the opposite direction to D). The previous lemma, the Green formula which by

proposition 1is: [, (V(hxod.),n) -dv = [ A(hyod.)-di = (n+1) [sh,od,-dv
and the generalized Hsiung-Minkowski formulae [1]: [, {H;snxode+ Hiqq (V(hyo
d.),n) }-dv =0 for any i € [0, n—1] show formulae (2) and (3) as easy consequences
of (1). Formulae (5) et (6) prove (1): indeed, if we denote by f. , the restriction

of I, to M, then |Vfc,u|2 = WFCM2 — <%Fc7u777>2 and we deduce immediatly
from (6) that
1
Wp+1

/ IV fo|? - du=n — (1 — {n, %dc>2) rksn2 o d, (7)
UM
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The definition of ¢ imply that the integrals of the functions (f. «)uev,m on M all
vanish. By the Rayleigh min-max principle, the first positive Laplacian eigenvalue
of M satisfy A [}, fgu~dy <[4y IV feul?-dv for any vector u € UM and equality is
achieved if and only if f. , is an eigenfunction, that is Af., = A1 f .. Integrating
this last inequality on U.M, using Fubini theorem, (5) and (7), we obtain

A1 /M sn od, - dv < /M {n - (1 —(n, ﬁdcﬁ) ksn2 o dc} - dy

If k is negative, inequality (4) is immediate. For non-negative &, the right term is
bounded from above by nVol M and we arrive to the announced inequality (1).

If k is zero and equality holds, then Af,, = A1 f. . for any vector w. In order to
be self-contained, we recall the classical argument [4] which concludes the proof:
it is an easy result that Af,, = nH(n,uv) where Hy is the 1-mean curvature of

M. This implies that nHin = —)q%(hn od.). We choose a local orthonormal
basis (X;)1<i<n of principal vectors in 7'M associated to the principal curvatures
(ki)1<i<n and we differentiate this last equation by X;. Using Weingarten equation
and proposition 1, we obtain n(X;H;)n — nHk; X; = —X\1X;. Taking its scalar
product with X; and summing the relations obtained for all 7, we deduce that
Al =nH 12 This shows that M is of constant 1-mean curvature and by this way,
included in a geodesic sphere centered at ¢ with radius y/n/A1. As this geodesic
sphere is also n-dimensional and connected, we deduce by the compactness of M
that M coincides with this geodesic sphere.

If & is positive and equality holds, this means that n = +Vd,. Therefore, the gradi-
ent of (hsod.)| s satisfy (V((hxode)|ar), §) = (V(hgod,), &) = (snxod.)(Vd,, &) =0
for any vector field € on M. As M is connected, the function h, o d, is then con-
stant on M, i.e. M is included in a geodesic sphere centered at c¢. As this geodesic
sphere is also n-dimensional and connected, we deduce by the compactness of M
that M coincides with this geodesic sphere.

For negative x, we note at last that equality cannot hold in (4): indeed, equality
would imply that (n, Vd.) = 0 on M and this is in contradiction with the first gen-

eralized Hsiung-Minkowski formulae which says that 0 = [, {sh. od.+ H{(V(h«o
de)ym)} - dv = [, {shx o de+ Hy -sn, 0 de (Vde, )} - dv. O
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