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Commentarii Mathematici Helvetici

Central extensions of Lie superalgebras

Kenji Iohara and Yoshiyuki Koga

Abstract. For a commutative algebra A over a commutative ring k satisfying certain con-ditions,

we construct the universal central extension of gk

LUX=338.880LUY=523.660ROX=345.488ROY=537.532

k A regarded as a Lie superalgebra
over k where gk denotes a basic classical Lie superalgebra over k To consider basic classical
Lie superalgebras over an ring k we also show the existence of their Chevalley basis. Our results
contain not only the descriptions of the untwisted a ne Lie superalgebras but also those of the
toroidal Lie superalgebras.

Mathematics Subject Classi cation 2000). 17B05, 17B55, 19D55.

Keywords. Lie superalgebras, Central extensions, Cyclic homology.

1. Introduction

The universal central extensions UCE for short) of a simple Lie algebra over
commutative rings were studied in [Gar] and [KL]. To be precise, let g be a
simple nite dimensional Lie algebra over the eld of complex numbers C. It is
known that the UCE of the Lie algebra g

LUX=311.630LUY=327.300ROX=319.410ROY=344.650

C[t 1] is a one-dimensional central
extension, and this is just an a ne Lie algebra [Gar]. More generally, let A be
a commutative algebra over a commutative ring k satisfying

1

2 k and let gk
be a simple nite dimensional Lie algebra over k in the sense of [Che]. Then
the kernel of the UCE of the Lie algebra gk

LUX=318.720LUY=279.540ROX=326.500ROY=296.890

A is

LUX=353.880LUY=286.640ROX=361.100ROY=298.830

1
A=k dA the A -module of

Kähler di erentials over k modulo exact forms, which was obtained by C. Kassel
and J.-L. Loday [KL] see also [Kas]).

Representation theories of a ne Lie superalgebras have been developed recently
e.g. [KW]. Moreover, the Serre relations of a ne Lie superalgebras were obtained
by H. Yamane [Ya]. Although it might be known to the experts, it seems that
there is no literature in which an a ne Lie superalgebra is realized as the UCE
of the Lie superalgebra g

LUX=236.510LUY=195.780ROX=244.290ROY=213.130

C[t 1] where g is the underlying nite dimensional
simple Lie superalgebra. In this paper, we address ourselves to the description of
the UCE of the Lie superalgebra gk

LUX=281.040LUY=171.900ROX=288.820ROY=189.250

k A in the case when gk is a basic classical
Lie superalgebra, viz. a Lie superalgebra which has a non-degenerate, even, super-symmetric,

invariant bilinear form, classi ed by Kac [Kac1], [Kac2]. Namely, we
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rst construct a Z -basis of g a la Chevalley [Che] Theorem 3.9), and de ne the
Lie superalgebra gk After that, we compute the UCE of the Lie superalgebra
gk

LUX=135.120LUY=635.700ROX=142.900ROY=653.050

A
The main result of this paper can be stated as follows Theorem 4.7): Let k

be a commutative ring satisfying certain conditions, and let A be a commutative
algebra over k Let g be a basic classical Lie superalgebra. Then the UCE gk(A)
of gk

LUX=148.440LUY=587.820ROX=156.220ROY=605.170

A is given by

gk(A) '
8

<>
:

gk

LUX=221.160LUY=562.020ROX=228.940ROY=579.370

A

LUX=250.800LUY=569.120ROX=258.020ROY=581.310

1
A=k dA if g is not of type A(n; n) 8n

dk

LUX=221.160LUY=548.700ROX=228.940ROY=566.050

A

LUX=250.680LUY=555.800ROX=257.900ROY=567.990

1
A=k dA if g is of type A(1; 1)

sl(n + 1; n+ 1)k

LUX=251.520LUY=535.260ROX=259.300ROY=552.610

A

LUX=281.040LUY=542.360ROX=288.260ROY=554.550

1
A=k dA ifgis of type A(n; n) 9n > 1

;

where d is the Lie superalgebra of type \D(2; 1;-1) " see x2:4 In particular,
for k := C and A := C[t 1] if g is not of type A(n; n) for any n then the
UCE is just the one-dimensional central extension as in the non-super case.

Let us explain our approach to the proof of Theorems 3.9 and 4.7. Basically,
we follow the lines due to [Che] and [Gar]. That is, we rst consider the rank
1 super-subalgebras of a basic classical Lie superalgebra, i.e., sl2 osp(1; 2) and
sl(1; 1) and then we consider the rank 2 subalgebras. But technical di culties
arise owing to the following reasons:

1. There exists roots of length 0

2. sl(1; 1) is not perfect.

The rst di culty appears, when we de ne a Lie superalgebra gZ over Z. To de-
ne it, it is necessary to introduce the coroots appropriately. The second di culty

appears, when we reduce the proof to the rank one case. We will resolve these
problems in x2:5 and x4:3 respectively. Finally we remark that the UCE of gk
is gk i.e., as opposed to the non-super case, the UCE of gk does not necessarily
coincide with itself.

This paper is organized as follows: In Section 2 we will collect some fundamen-tal

concepts for basic classical Lie superalgebras, e.g. Dynkin diagrams, Cartan
matrices and root systems. Further we will recall the classi cation theorem due
to V.G.Kac and the realizations of these Lie superalgebras. Since the Killing form
vanishes in some cases, in x2:4 we will describe an even supersymmetric invariant
bilinear forms on basic classical Lie superalgebras. And in x2:5 we will de ne
the coroots and study their properties. In Section 3 we will show the existence
of a Chevalley type base Theorem 3.9). In Section 4 will rst summarize the
de nitions and basic properties of central extensions in x4:1 In x4:2 we state
the main result of this paper Theorem 4.7), and x4:3 is devoted to its proof. In
the appendix, we will list some data for the basic classical Lie superalgebras, for
the sake of readers convenience.
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2. Basic classical Lie superalgebras

In this section, we recall the de nition of basic classical Lie superalgebras and
their fundamental properties. Through this section, we will work over the complex
number eld C

2.1. De nitions

We rst list some notation for Z2 -graded vector spaces. Let V V
0

V
1

be a
Z2 -graded vector space. For 2 Z2 we say that a vector v 2 V is homogeneous
of degree if v 2 V We set

jvj := :

Let Cmjn be the m + n) -dimensional Z2 -graded vector space such that

Cmjn)
0 ' Cm; Cmjn)

1 ' Cn:

We note that for Z2 -graded vector spaces V and W, HomC(V; W) is Z2 -graded
via

HomC(V;W) : M
2Z2

HomC(V ; W + ; 2Z2:

Let g := g
0

g
1

be a Lie superalgebra over C i.e., there exists a bilinear map
[ ; ] : g g! g such that

1. [g ; g 0 ] g + 0

2. [a; b] -(-1)jajjbj[b; a]

3. [a; [b; c]] [[a; b]; c] + (-1)jajjbj[b; [a; c]]

where ; 0 2 Z2 and a; b; c 2 g are homogeneous elements.
In this paper, we mainly deal with a class of Lie superalgebras called basic

classical Lie superalgebras. To recall the de nition, we introduce the following
concepts:

De nition 2.1. For a bilinear form F : g g! C, we say that

1. F is even if g ; g 0) 0 for 6= 0

2. F is supersymmetric if a; b) (-1)jajjbj(b; a)
3. F is invariant if ([a; b]; c) a; [b; c])
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We de ne a basic classical Lie superalgebra as follows [Kac2]:

De niton 2.2. A nite dimensional Lie superalgebra g is called a basic classi-cal

Lie superalgebra if
D1. g is a simple Lie superalgebra i.e. has no non-trivial Z2 -graded ideal,
D2. g

0
is a reductive Lie algebra,

D3.there exists a non-degenerate even supersymmetric invariant bilinear form on
g

The classi cation of the basic classical Lie superalgebras was carried out in
[Kac1]. Let us recall the classi cation.

Theorem 2.3. The following list exhausts the basic classical Lie superalgebras
over C :
1. simple Lie algebras,
2. simple Lie superalgebras of type

A(m; n) m; n 0 and m+ n 1
B(m; n) m 0 and n 1

C(n) n 3

D(m; n) m 2 and n 1

D(2; 1; a) a 6= 0;-1
F(4)
G(3)

Realizations of Lie superalgebras of type A(m;n) B(m; n) C(n) and D(m; n)
will be described in the following subsections. Here we only make two remarks.

Remark 2.2.4. A(1; 1) ' C(2) and D(2; 1; a) ' D(2; 1; b) if and only if a and
b lie in the same orbit of the group generated by the transformations a 7! -a-1
and a 7! 1=a which is isomorphic to S3

Remark 2.2.5. g is said to be classical if the conditions D1 and D2 hold
[Kac1]. There are two series P(n) n 3 and Q(n) n 2 of classical
Lie superalgebras, which are not basic classical. Note that Q(n) has an odd
supersymmetric invariant form.

2.2. Examples

In this subsection, we will explicitly realize the Lie superalgebras of type A(m; n)
B(m; n) C(n) and D(m; n) as subalgebras of the general linear Lie superalge-bras.
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To do this, we rst recall the general linear Lie superalgebra gl(m; n) We put

gl(m;n) := HomC(Cmjn; Cmjn)

and regard it as a Lie superalgebra with the commutator

[a; b] := ab- (-1)jajjbjba:

In the sequel, we x a basis fe1; ; em; em+1; ; em+ng such that

Cmjn)
0

m

Mi=1

Cei and Cmjn)
1

n

Mi=1

Cem+i:

For an element a 2 gl(m; n) let

A B
C D

be the matrix representation of a with respect to the above basis. We de ne the
supertrace of a by

str a := trA- trD:

Moreover we set

sl(m; n) := fa 2 gl(m; n)j str a 0g;

and call it a special linear Lie superalgebra. Notice that the identity matrix I2n is
an element of sl(n; n) moreover CI2n is the center of sl(n; n)

Example 2.6. The Lie superalgebra of type A(m; n) is de ned by

A(m; n) := sl(m + 1;n+ 1) if m 6= n
sl(m + 1;n+ 1)=CI2n+2 if m n :

Next we recall the Lie superalgebras of type B(m; n) C(n) and D(m; n) For
this purpose, we introduce the ortho-symplectic Lie superalgebra osp(m; n) We
set
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osp(2m+ 1; 2n) :=

8>>>>>>>><>

>>>>>>>:

0BBBB@

A B u
xx2C -tA v

yy2-tv -tu 0
zz2ty2tx2tz2D E

-ty1-tx1-tz1F -tD

1CCCCA

gm
gm
g1
gn
gn

|{z}m |{z}m |{z}1 |{z}n |{z}n

;

B; C are
skew-symmetric

matrices;
E; F are

symmetric matrices

9>
>>>>>>>=>

>>>>>>>;

;

osp(2m; 2n) :=

8>>>>>><>

>>>>>:

0BB@

A B
xx2C -tA

yy2ty2tx2D E

-ty1-tx1F -tD

1CCA

gm
gm
gn
gn

|{z}m |{z}m |{z}n |{z}n

;

B; C are
skew-symmetric

matrices;
E; F are

symmetric matrices

9>>>>>>=>

>>>>>;

:

Example 2.7. The Lie superalgebras of type B(m; n) C(n) and D(m; n) are
de ned by

B(m; n) := osp(2m + 1; 2n) m 0; n 1);

D(m;n) := osp(2m; 2n) m 2; n 1);

C(n) := osp(2; 2n- 2) n 3):

2.3. Contragradient Lie superalgebras

In this subsection, we will de ne all basic classical Lie superalgebras as contragra-dient

Lie superalgebras.

We start with the de nition of contragradient Lie superalgebras. The contra-gradient

Lie superalgebras are de ned from the following data:

Let I be the index set f1; 2; ; ng and a subset of I Let A ai;j i;j2I
be a complex n n matrix of rank l Let ~hbe a 2n- l) -dimensional C -vector
space and ~Q

the free abelian group of rank n with basis ~ : f~iji 2 Ig ~h
We can choose a subset f~hiji 2 Ig of ~h

such that
1. f~hiji 2 Ig is linearly independent,
2. ~i(~

hj) aj;i for any i j 2 I
Using this data, we de ne the contragradient Lie superalgebra.
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De nition 2.8. The contragradient Lie superalgebra ~g is the Lie superal-gebra

which satis es the following conditions:
C1. ~g M

~2 ~Q

~g~ : ~Q -graded.

C2.There exist generators f~ei; ~fi; ~hji 2 I; h2 ~hg such that

~g0 ~h; ~g~i C~ei; ~g-~i C ~fi; j~hj := 0; j~eij j
~
fij 1 if i 2 ;

0 if i 62 ;
;

and satisfy commutation relations

[~h; ~h0] 0 (~h; ~h0 2 ~h); [~ei; ~fj] i;j~hi;

[~h; ~ei] ~i(~h)~ei; [~h; ~fi] -~i(~h
~fi:

C3.Every ~Q
-graded ideal r of ~g such that r \ ~h f0g is zero.

The matrix A is called the Cartan matrix of ~g. We set ~Q
+ := Pi2I Z 0 ~i

and
~ : n~ 2 ~Qn f0gj~g~ 6= f0go;
~

+ := n~ 2 ~Q
+

n f0gj~g~ 6= f0go;

~ + : n~ 2 ~Q
+

n f0gj~g \ ~g~ 6= f0go:
It is easy to see that ~g has a triangular decomposition

~g ~n
+

~h ~n-
0

~n
: M

~2~ +

~g~

1

;

and hence ~ ~+ t(-~+ Furthermore, by de nition, we have ~
+

~ +
0 t

~ +
1

disjoint union):
On the simplicity of a contragradient Lie superalgebra, we have the following

proposition [Kac1]

Proposition 2.9. Let ~g be a contragradient Lie superalgebra with the Cartan
matrix A ai;j) and let ~g0 be the derived subalgebra [~g; ~g] of ~g. We denote
the center of ~g by C Then we have
1. C

fPi2I cihijci 2 C such that
Pi2I ai;jci 0 8j 2 I)g ~g0

2. ~g0=C is graded simple in the ~Q
-grading if and only if A is indecomposable.

The following theorem due to V.G. Kac tells us which Cartan matrix corre-sponds

to a basic classical Lie superalgebra.

Theorem 2.10. [[Kac1]] The Lie superalgebra g := ~g0=C with a Cartan ma-trix

whose Dynkin diagram is one of those in Appendix A is a basic classical Lie
superalgebra.
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Corollary 2.11. Let A be a Cartan matrix of a basic classical Lie superalgebra.
Then we have

C ChP
n
i=1

i(~
hi - ~h2n+2-i)- n + 1)~

hn+1i if A is of type A(n; n) 9n)

f0g otherwise
:

In the sequel, we will need the following notation. We denote the canonical
projection ~g0 g by We set h := ~g0 \ ~h

and call it a Cartan subalgebra of
g Let us denote the image of ~x 2 ~g0 under the map by x The dual of the
map j~

h\~g0
de nes an inclusion : h !(~h \ ~g0) Similarly, we de ne the map

: ~h ~h \ ~g0) as the dual of the natural inclusion ~h \ ~g0,!~
h

Since ~jC 0
for any ~ 2 ~Q

we can regard ~Q Im Therefore, for ~ 2 ~Q
we de ne

2 h by : -1 )(~ and set Q:= -1
~Q

We also de ne

: -1 ~ ; + := -1
~

+); + : -1
~ + :

We call i := -1 )(~i) resp. hi := ~hi) i 2 I the i -th simple root resp.
simple coroot), and set : f iji 2 Ig. For ~ 2 ~Q we also set g : ~g~ :

Here we notice that, from Corollary 2.11, in the case of A(n;n) we have

n

Xi=1

i( i + 2n+2-i) + n + 1) n+1 0: 1)

Let us recall some properties of the root systems of the basic classical Lie
superalgebras. The following proposition is known:

Proposition 2.12. [[Kac1]] If g is a basic classical Lie superalgebra which is not
of type A(1; 1) then dim g 1 for any 2

The triangular decomposition of ~g yields

g n+ h n-

0

n : M
2 +

g

1

;

and hence + t (- + Furthermore, + +
0 t +

1
holds. Hence, in

the sequel, we denote the parity of g by j j

Remark 2.2.13.
1. For the basic classical Lie superalgebra g of type A(1; 1) the relations 1 +

2 2+ 3 0 and hence 1+ 2 - 2- 3 1+ 2+ 3 - 2 hold. These
roots are distinguished in the corresponding contragradient Lie superalgebra
~g Namely, we have dim ~g~ 1 for any ~ 2

~

2. In the case of A(n; n) for n22Z>0 Q h itself is not Z2 -graded. Never-theless,

we can de ne the Z2 -gradation on
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2.4. Non-degenerate even supersymmetric bilinear form

In this subsection, we will describe even supersymmetric invariant bilinear forms
on the basic classical Lie superalgebras explicitly.

Let g be one of sl(m; n) and osp(m;n) We de ne ; : g g! C by

a; b) := str(ab) a; b 2 g);

where we regard g as a subalgebra of gl(m;n) By de nition, we immediately
see that

Proposition 2.14. ; is an even supersymmetric invariant bilinear form on
g

As a corollary, we have

Corollary 2.15. The radical of the form ; is a Z2 -graded ideal of g

Therefore, in addition if g is a simple Lie superalgebra, then rad( ; f0g.
Notice that, in the case where g sl(n + 1; n + 1) g is not simple. But in this
case we have

Lemma 2.16. Suppose that g sl(n+1; n+1) Then we have CI2n+2 rad( ;
and hence ; de nes an even supersymmetric bilinear form on A(n; n) := sl(n+
1;n + 1)=CI2n+2

Accordingly we have

Proposition 2.17. Let g be a basic classical Lie superalgebra of type A(m; n)
B(m; n) C(m; n) or D(m; n) The pairing ; : g g! C de ned by a; b) :=
str(ab) gives a non-degenerate even supersymmetric invariant bilinear form on g

Proof. Since g is simple, it follows from Corollary 2.15 that rad( ; f0g.
Hence ; is non-degenerate.

Hence the supertrace gives a non-degenerate even supersymmetric bilinear form
on g if g is of type A(m;n); B(m; n); C(m; n) or D(m; n) Generically, the
Killing form de ned below gives such a form on g

De nition 2.18. Let g be a nite dimensional Lie superalgebra over C. The
bilinear form F : g g! C such that F(a; b) := str(ad(a) ad(b)) is called the
Killing form on g

By de nition, the Killing form is an even supersymmetric invariant bilinear
form on g In the case where g is a basic classical Lie superalgebra, the Killing
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form is non-degenerate if g is not of type A(n; n) D(n + 1; n) and D(2; 1; a)
Hence if g is of type F(4) or G(3) then the Killing form gives an even super-symmetric

bilinear form.
Since non-degenerate even supersymmetric bilinear forms on A(n; n) and D(n+

1;n) are given by the supertrace as above, it is enough to describe it for D(2; 1; a)
Here let us discuss an even supersymmetric bilinear form on D(2; 1; a) At

the same time, we consider the case of D(2; 1;-1) which is not a simple Lie
superalgebra, but D(2; 1;-1) gives the universal central extension of A(1; 1) To
give an explicit even supersymmetric invariant bilinear form ; on D(2; 1; a)
we x its root vectors. For the Cartan matrix and the root system of D(2; 1; a)
see Appendix A. From now on, let us assume that a 6=0. We set

X 1 := e1; X 2 := e2; X 3 := e3;

X- 1 := f1; X- 2 := f2; X- 3 := f3;
X 1+ 2 := [X 1 ; X 2]; X- 1- 2 := [X- 2 ;X- 1 ];
X 2+ 3 := [X 3 ; X 2]; X- 2- 3 := [X- 2 ;X- 3 ];
X 1+ 2+ 3 := [X 1 ; X 2+ 3 ]; X- 1- 2- 3 := [X- 2- 3 ;X- 1 ];

X 1+2 2+ 3) :=
1

a+1 [X 1+ 2+ 3); X 2 ] if a6=-1

[X 1+ 2+ 3); X 2 ] if a=-1
:

2)

The bilinear form ; on D(2; 1; a) is explicitly given by

h1; h1) 2; h1; h2) 1; h1; h3) 0;
h2; h2) 0; h2; h3) 1; h3; h3) 2

a ;
X 1 ;X- 1 1; X 2;X- 2 -1; X 3 ; X- 3

1
a ;

X 1+ 2 ;X- 1- 2 -1; X 2+ 3 ;X- 2- 3 -1;

X 1+ 2+ 3 ;X- 1- 2- 3 -1;

X 1+2 2+ 3 ;X- 1-2 2- 3 (- 1
a+1 if a 6= -1

0 if a=-1
:

3)

Notice that if a 6= -1 then ; is non-degenerate on D(2; 1; a)
For later use, we introduce Lie superalgebras d and g. Let d be the Lie

superalgebra of type D(2;1;-1): From the commutation relations of d it is easy
to see that the vectors X 1+2 2+ 3) are central elements of d and further

0 -! M1

CX 1+2 2+ 3) -! d -! sl(2; 2) -! 0 4)

is exact. Moreover, for a basic classical Lie superalgebra g we introduce the Lie
superalgebra g by

g :=
8><>:

g if g is not of type A(n; n) 8n)
d if g is of type A(1; 1)
sl(n + 1; n + 1) if g is of type A(n; n) 9n > 1)

;

and denote the canonical projection g -! g by Then we have an exact
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sequence
0 -! C m -! g -! g -! 0; 5)

where

m :=
8

<>
:

0 ifgis not of type A(n; n) 8n)
3 ifgis of type A(1; 1)
1 ifgis of type A(n; n) n 2)

:

By abuse of notation, we will sometimes use the same symbols to denote root
vectors of g and g

Remark 2.2.19. As was seen in this subsection, g has an even supersymmet-ric

invariant bilinear form ; and further by Corollary 2.15 and 3), we have
Rad( ; ker

2.5. Coroots

In this subsection, we will de ne the coroot H for each 2 and study their
property.

Let A := ai;j i;j2I be the Cartan matrix of a basic classical Lie superalgebra g
and let D := diag("i)i2I and B := bi;j i;j2I be diagonal and symmetric matrices
such that A DB We see that

"jai;j "iaj;i: 6)

In the sequel, we will x the Dynkin diagrams as in Appendix A. Hence an odd
simple root is unique, and is denoted by i0 We set

W := hriji 2 I n fi0gi;
where ri denotes the i -th simple reflection. Note that W is a subgroup of the
Weyl group W of g i.e., the Weyl group of g

0For each 2 let us de ne

" :

8<:

2

;
if ; 6=0

"i0 if ; 0
:

By the Weyl group invariance of ; we have

"w " ; 8 2 ; 8 2 W: 7)

Now we de ne the coroots as follows:

De nition 2.20. For
Pi2I ki i 2 we set

H : " X
i2I

ki"-1
i hi; 8)
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where hi is the i -th simple coroot. We call H the coroot associated with a
root

By de nition, we have

H- -H 9)

and H i hi Moreover, the following proposition holds:

Proposition 2.21. For any 2 and w 2 W, we have

wH Hw :

Proof. Suppose that j 2
+ \ and set : Pi ki i Then, one has

rj( Xki( i - aj;i j)

X
i6= j

ki i -
0

kj +X
i6= j

kiaj;i

1

j :

On the other hand, it follows from 6), 7), and the de nition of H 8) that

rjH " Xi
ki"-1

i H i - ai;jH j

"rj

8<:

X
i6= j

ki"-1
i H i - "-1

j kj + X
i6= j

kiaj;i)H j

9=;

:

Thus we have rjH Hrj and the proposition is proved for w 2 W. Next let
us prove the proposition for a generator say r of W that is not an element of
W. In particular, we can choose the root as follows:

type of g
B(m; n) 2 n 2 n + 2 n+1 + + 2 m+n
D(m;n) 2 n 2 n + 2 n+1 + + 2 m+n-2 + m+n-1 + m+n

D(2; 1 : a) 2 2 1 + 2 2 + 3

F(4) 1 2 1 + 3 2 + 2 3 + 4

G(3) 2 1 2 1 + 4 2 + 2 3

We remark that the cases A(m; n) and C(n) are excluded, since the group W
coincides with the group W. From the above computation and 7), we have only
to check

" H i "i i(H :

This can be done through case-by-case calculation.
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Lemma 2.22. For any 2
+ such that ; 0 we have 2 W i0

Proof. Suppose that
Pi2I ki i 2

+ such that ; 0. We set ht :

Pi2I ki We prove the lemma by induction on ht If ht 1, then i0
Hence we may assume that ht > 1 Since

rs( -
2( ; s)

s; s)
s;

it su ces to show that there exists s 2 I n fi0g such that ht > ht(rs i.e.,

2( ; s)

s; s) > 0:

Here let us take i; j as in Appendix A. For each 2
+ we may choose the

simple root s as follows:

type of g 2 s.t. ; 0 simple root s

A(m; n) i - j i; j) 6= m+ 1; 1)) i - i+1 i 6= m + 1)

j-1 - j j 6= 1)

B(m; n) i + j j - j+1 j 6= m)
m j m)

m 6=0) i - j i; j) 6= n; 1)) i - i+1 i 6= n)

j-1 - j j 6=1)

C(n) 1 + i i - i+1 i 6= n- 1)
2 n-1 i n- 1)

1 - i i 6= 1) i-1 - i(i 6= 1)

D(m; n) i + j j - j+1 j 6= m)

m-1 + m j m)

i - j i; j) 6= n; 1)) i - i+1 i 6= n)

j-1 - j j 6=1)
D(2; 1; a) 2 + 1 3 2 1

2 - 1 + 3 2 3

F(4)
1

1 - 1 2 3) - 1

12
1 + 1 - 2 3) 1 - 2

12
1 + 1 + 2 - 3) 2 - 3

G(3) 1 - 1, 1 + 2, 1 - 3 2

1 - 2, 1 + 3, 3 - 2

Notice that B(0; n) has no root of length zero. Thus we complete the proof.

Lemma 2.23. For 2 we have

H
2 if ; 6=0

0 if ; 0
:
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Proof. By 9), we may assume that 2
+ If 2 W(

0 \ then the lemma
follows from Proposition 2.21. If ; 0 then the lemma is a consequence
of Proposition 2.21 and Lemma 2.22. If 2 +

1
such that 2 2 +

0
i.e.,

; 6= 0 then one can check that 2 2 +
0 n W(

0 \ Hence it is enough

to prove the lemma for 2 +
0 n W(

0 \Now let us x as in the proof of Proposition 2.21. Then it is easy to see

that 2 W and hence the lemma again follows from Proposition 2.21, since in
these cases, one can easily check that H 2

3. Chevalley basis of basic classical Lie algebras

In this section, we will show the existence of a Chevalley basis of the basic clas-sical

Lie superalgebras g in a way similar to [Che]. In the case of A(1; 1) we
once consider the contragradient Lie superalgebra ~g instead of g and take the
projection of its derived subalgebra.) For later use, we also present a Chevalley
bases of g

For
Pi2I ki i 2 we set

: -1 if 2 - +
11 otherwise ; 10)

and by de nition we have

- (-1)j j : 11)

For each 2 choose a root vector X 2 g so that they satisfy

[X ;X- ] H ; 12)

then we have for these root vectors, we de ne N ; 2 C ; 2 by

N ; :
the coe cient of X + in [X ; X ] if + 2
0 if + 62

13)

By direct calculation, we have

Lemma 3.1. For each 2 we take a non-zero numbers u 2 C and set

X0 : u X Using fX0g, we de ne the structure constants fN0 ; g as in
13). Suppose that [X0 ; X0- ] H Then we have u u- 1 and N0 ;

u u u-1
+ N ;

This lemma says that N ; N- ;- does not depend on the choice of the root
vectors that satisfy the condition 12). Thus we rst compute N ; N- ;-We x ; 2 Here we consider the following three cases:

Case 1: 2 0
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Case 2: 2 1
such that ; 6=0.

Case 3: 2 1
such that ; 0.

Let p and q be positive integers such that

+ i 2 t f0g if and only if - p i q:

Lemma 3.2. In the above three cases, we have

Case 1: N ; N- ; + q(p + 1)

Case 2: N ; N- ; + -q if p 0 mod 2)
p + 1 if p 1 mod 2) :

Case 3: N ; N- ; + H 2)
p;0 where

2)
p;0

1 if p 0 mod 2)
0 if p 1 mod 2) :

Proof. By the Jacobi identity

[[X ; X- ]; X ] [X ; [X- ; X ]] + (-1)j jj j[[X ; X ];X- ];

we have

H N ; - N- ; + (-1)j jj jN ; N + ;- : 14)

Using 14), we will show the lemma in each case.
For Case 1, 14) can be written as

H + N ; - N ;- N ; N + ;- :

Replacing to - i for 0 i p we consider the following summation:

pX
i=0 - i H + N ; - i+1) N -i ;-

pX
i=0

N ; -i N - i-1) ;- :

By direct computation, we obtain

p + 1) H -
1

2
p(p + 1) H + N ; - p+1) N -p ;- N ; N + ;- :

Notice that H p- q and - p+ 1) 62 i.e. N ; - p+1) : 0 Hence
the lemma follows from Lemma 2.23 for Case 1

For Case 2, 14) can be written as

H + (-1)j jN ; - N ;- (-1)j jN ; N + ;- :

Similarly to Case 1, we consider the following summation:

pX
i=0

(-1)i n - i H + (-1)j -i jN ; - i+1) N -i ;- o

pX
i=0

(-1)j -i j+iN ; -i N - i-1) ;- :
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Then we have

pX
i=0

(-1)i( - i H + (-1)j jN ; - p+1) N -p ;- (-1)j jN ; N + ;- :

By Lemma 2.23, we obtain

pX
i=0

(-1)i( - i H -q if p 0 mod 2)
p + 1 if p 1 mod 2) ;

and hence we have the desired result.
For Case 3, by the same argument as in Case 2, we have

pX
i=0

(-1)i( - i H (-1)j jN ; N + ;- :

Thus Lemma 2.23 implies the conclusion for Case 3 and completes the proof.

Lemma 3.3.

N- ; + (-1)j j + " +
" N- ;-

Proof. The Jacobi identity

[[X- ; X- ]; X + ] [X- ; [X- ; X + ]] + (-1)j j(j j+j j)[[X- ; X + ]; X- ]

implies that

N- ;- - - H- - N- ; + - H- + (-1)j j(j j+j j)N- ; + H :

Combining 11) and 9), we have

(-1)j jj j+j j+j jN- ;- + H + -(-1)j jN- ; + H
+(-1)j j(j j+j j)N- ; + H :

15)
On the other hand, by de nition, we have

"-1
+ H + "-1H + "-1H 16)

for ; ; + 2
In the case where H and H are linearly independent, substituting H +

in 15) by 16) and comparing the coe cients of H we obtain the conclusion.
In the case where H and H are linearly dependent, if ; ; + 2

then - 1
2 or -2 From the facts that

1

" 1
2 " 4"2 and

12
H12 H 2H2 the lemma is proved.

Lemma 3.4. Suppose that ; 2 such that + 2 Then we have
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L1.Case: 2 0
or 2 0

N ; N- ;- +
p + 1)2: 17)

L2.Case: ; 2 1
such that ; 6=0 or ; 6= 0,

N ; N- ;- - +
p + 1)2: 18)

L3.Case: ; 2 1
such that ; 0 and ; 0, we have

N ; N- ;- - +
H 2: 19)

Proof. If and are linearly dependent, then the lemma follows from the proof
of Lemma 3.3. Hence we may assume that and are linearly independent.
Since certain combinations of the roots and form the root system of a rank
two basic classical Lie superalgebra, we can reduce the proof of these formulas to
the rank two cases. The following lemma completes the proof.

Lemma 3.5. Let g be a rank two basic classical Lie superalgebra rank two Lie
algebras A2 B2 and G2 are included) and the root system of g Then for

; 2 such that + 2 the formulas 17), 18) or 19) hold.

Proof. Since in the case of A2, B2 and G2 the lemma is proved in [Che], we
may assume that g is not of type A2, B2 and G2

First we notice that in the case of L1 resp. L2 we may assume that

2 0
resp. 2 1

such that ; 6= 0 without loss of generality. Under
this assumption, we will show that

L1. N- ; +
+ q(p + 1)-1N- ;- :

L2. N- ; + (-1)p + q(p + 1)-1N- ;- :

L3. N- ; + - + H -1N- ;- :

As in [Che], we can reduce to the following cases:

L1. 2 \ 0
and 2

+ such that + 2
L2. 2 \ 1

such that ; 6=0 and 2 +
1

such that + 2
L3. 2 \ 1

and 2 +
1

such that ; 0 ; and + 2
The following table shows the complete list of such and :
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Dynkin f" j 2
+

g ;

1

h
2

N " 1 1, " 2 " 1+ 2 1; 2)

1

N
2

N " 1 " 2 " 1+ 2 1. 1; 2)

1

h(=
2

N1 " 1 2, " 2 "2 1+ 2 -1,

" 1+ 2 -2, "2 1+2 2 -1
2

1; 2), 1; 1 + 2),
2; 2 1 + 2)

1

x(=
2

N-1 " 1 -2, " 2 "2 1+ 2 -1,

" 1+ 2 2, "2 1 - 1
2

1; 2)

1

h=)
2

x " 1 " 1+2 2 1, " 2 " 1+ 2 2,

"2 2 "2 1+2 2
1

1; 2), 1; 1 + 2 2),
1; 2 2), 2; 1 + 2)

Now the above formula can be shown by case by case checking and the lemma
follows from Lemma 3.2.

Remark 3.3.6. For each basic classical Lie superalgebra g in the above proof
is given as follows:

type of g type of g
A(m; n) 1 D(2; 1; a) -1; a+ 1;-a

C(n) -1; -2 F(4) -1; -2; 3
B(m; n) 1; 2 G(3) - 1

2 ; - 3
2 ; 2

D(m;n) 1; -2

Let : g g be an anti-involution of g such that g g- and let c

2 be a non-zero constant such that X c X-
Lemma 3.7. We have jh idh and c c- 1 for any 2

Proof. We rst show the rst assertion. For H 2 h by applying to [H; X ]
H)X we obtain

[ X ; H] H) X :

Since X 2 g- we conclude that H H
Next we show the second assertion. By applying to [X ;X- ] H we

have

[ X- ; X ] c c- [X ;X- ] H :
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Thus we obtain c c- 1.

In the sequel, for each 2 let us take a non-zero constant u 2 C as

u2 c if 2 0

-p-1 c if 2 1

; and u u- 1:

Lemma 3.8. If we set ~X : u-1X for each 2 then we have

~X
~X- if j j 0

p-1 ~X- if j j 1
: 20)

Proof. For 2 0
we have

~X u-1c X- u X- u-1

- X- ~X- :

For 2 1
we have

~X u-1c X- p-1 u X- p-1 u-1

- X- p-1 ~X- :

Hence we have proved the lemma.

From Lemma 3.8, we may assume that the root vectors fX g satisfy the
formulas 20). Applying to the both sides of [X ; X ] N ; X + we have

-1) 1 j j+j j)N- ;- X- - (-1) 1 j + jN ; + X- - :

Hence we have

N- ;- (-1) 1 j + j-j j-j j) + N ; :

Combining this formula with Lemma 3.4, we obtain the main result of this section,
that can be stated as follows:

Theorem 3.9.
1. Let g be a basic classical Lie superalgebra over C. For each 2 we de ne

and H as in 10) and 8). Then there exist root vectors fX 2 g j 2 g
such that

I) [X ;X- ] H
II) [X ; X ] N ; X +

where the structure constants fN ; g satisfy the following conditions:

i) If 2 0
or 2 0

we assume that 2 0
and + 2 then

N2; p + 1)2:

ii) If ; 2 1
satisfy ; 6=0 or ; 6= 0 we assume that ; 6=

0) and + 2 then

N2; p + 1)2: 21)
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iii) If ; 2 1
satisfy ; 0 and ; 0 and + 2 then

N2; H 2:

Here p := maxfij - i 2 g

2. Let fX0 j 2 g be another set of root vectors satisfying the above conditions
and fN0 ; j ; 2 g be their structure constant de ned as 13). Then there
exist fu j 2 g f 1g such that u u- 1 and

N0 ; u u u-1
+ N ; ;

for any ; 2

Proof. The second assertion can be proved by the same argument as in [Che].

In the sequel, we call the set fH ; X j 2 g a Chevalley basis of g if it
satis es the conditions in Theorem 3.9.

From the Appendix, we obtain

Corollary 3.10. Let g be a basic classical Lie superalgebra over C. In the case
where g is of type D(2; 1; a) we assume that a 2 Z n f0;-1g. Then there exists
a Z -form gZ of g

Thus for a basic classical Lie superalgebra g satisfying the conditions in Corol-lary

3.10, we can de ne the Lie superalgebra gk over an arbitrary commutative
ring k by

gk := k

LUX=303.000LUY=354.780ROX=310.780ROY=372.130

Z gZ:

Here we remark on rank two subalgebras of basic classical Lie superalgebras.

Remark 3.3.11. There exist the following isomorphisms of corresponding Lie
superalgebras gZ over Z :

h N ' h N- ' N N ' N N-
Finally, we de ne a Chevalley basis of the Lie superalgebra g for type A(n;n)

In the case where g sl(n + 1; n + 1) for n 2 from the proof of Theorem
3.9, there exists a Chevalley basis, i.e., coroots fH j 2 g and root vectors

fX j 2 g which satisfy the conditions in Theorem 3.9. As stated before, we
use the same notation to denote a Chevalley basis of g and g In the case where
g d for the basis of d de ned as in 2), the structure constants are integers.
Though it does not satisfy the conditions in Theorem 3.9, we also call this basis
the Chevalley basis of d. We have
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Lemma 3.12. Let g be a basic classical Lie superalgebra of type A(n; n) for
some n Then there exists a Z -form gZ of the Lie superalgebra g

For a commutative ring k we also de ne the Lie superalgebra gk over k by

gk := k

LUX=303.000LUY=606.180ROX=310.780ROY=623.530

Z gZ:

4. Universal central extensions

4.1. General remarks

In the rst subsection, we collect de nitions and general properties of central
extensions of Lie superalgebras.

Let k be a commutative ring and a a Lie superalgebra over k From now on,
we assume that

1

2 k
To de ne the universal central extension of a we recall some de nitions. We

say that a Lie superalgebra a is perfect if a [a; a] A short exact sequence of
Lie superalgebras

0 -! c -! u - a -! 0 22)

is called a central extension of a by c if c is a commutative Lie algebra over k
i.e. c

1 f0g and [c; u] 0. c is called the kernel of the central extension 22).
We sometimes denote the above central extension by : u a

Next we introduce an equivalence relation between central extensions. Let V
be a k -module. Two central extensions

0 -! V -! a1 -! a -! 0;
0 -! V -! a2 -! a -! 0

are said to be equivalent if there exists a homomorphism of Lie superalgebras from
a1 to a2 such that the diagram

0
/

/

V
/

/

a1
/

/

a
/

/

0

0
/

/

V
/

/

a2
/

/

a
/

/

0

commutes. The set of equivalence classes of such central extensions are known to
be parameterized by the second cohomology group H2(a; V) To be precise, we
rst introduce Z2(a; V) and B2(a; V) as follows. Set

Z2(a; V) :=

8<:

f : a a V
i) f(x; y) -(-1)jxjjyjf(y; x)
ii) f(x; [y; z])- f([x; y]; z)

-(-1)jxjjyjf(y; [x; z]) 0
8x; y; z 2 a)

9=;

and

B2(a; V) := f : a a V f(x; y) g([x; y])
for some k-linear map g : a V :
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Lemma 4.1. Let V be a k -module. The second cohomology group H2(a; V) :=
Z2(a; V)=B2(a;V) are in one-to-one correspondence with the set of the equivalence
classes of the central extensions of a by V

Proof. First we notice that for each central extension 0 V a1 a 0 one
may associate a two cocycle F 2 Z2(a; V) Indeed, for x; y 2 a if we set

F(x; y) := [(x;0); y; 0)]- ([x; y]; 0) 2 a1;

then we have F(x; y) 2 V and F satis es the 2 -cocycle conditions.
Conversely, for each f 2 Z2(a; V) one can de ne a central extension

0 -! V -! af -! a -! 0;

by

[(x; v); y; w)]f := ([x; y]; f(x; y));

where x; y 2 a and u;w 2 V
Let f and g be elements of Z2(a; V) such that f - g 2 B2(a; V) i.e. f -g)(x; y) h([x; y]) where h : a V is some k-linear map. Now we prove that

the extensions de ned by f and g are equivalent. Let us de ne : af ag by

x; v)) := x; v - h(x)):

It is clear that is bijective. Let us check that is a homomorphism of Lie
superalgebras. We have

[ x; v)); y; w))]g [(x; v - h(x)); y; w - h(y))]g

([x; y]; g(x;y))
([x; y]; f(x;y)- h([x; y]))

([x; y]; f(x;y)))
[(x; v); y;w)]f ):

Next we show that for f; g 2 Z2(a; V) such that the central extensions af a
and ag a are equivalent, we have f-g 2 B2(a;V) Let be a homomorphism
of Lie superalgebras such that

0
/

/

V
/

/

af
/

/

a
/

/

0

0
/

/

V
/

/

ag
/

/

a
/

/

0

commutes. We can express x; v) x; v - h(x)) for some k -linear map h :
a V Then we have

[(x;v); y; w)]f ([x; y]; f(x;y)))
([x; y]; f(x;y)- h([x; y]));

[ x; v)); y; w))]g [(x; v - h(x)); y; w - h(y))]g

([x; y]; g(x;y));



132 K. Iohara and Y. Koga CMH

and thus f - g)(x; y) h([x; y]) i.e., f - g 2 B2(a; V) We have completed the
proof.

Now we de ne the universal central extension of a Lie superalgebra a

De nition 4.2. The central extension 22) of a is called the universal central
extension if the following conditions hold.
1. u is perfect.
2. For any central extension : b a there exists : u b such that the

following diagram commutes:

u //

5

5
55

55
5

a

b

D

D

Remark 4.4.3. From the second condition, a universal central extension is
unique up to isomorphism of Lie superalgebras.

The following proposition for Lie algebras is proved e.g. in [Gar], [MP].

Proposition 4.4. A Lie superalgebra a admits the universal central extension
if and only if a is perfect.

Proof. Suppose that : u a is the universal central extension. By de nition,
u is perfect, and hence

a u) [u; u]) [ u); u)] [a; a]:

Next let us suppose that a is perfect. We set

W0 :=

2^

a := a

LUX=251.160LUY=297.060ROX=258.940ROY=314.410

a)=hx

LUX=286.680LUY=297.060ROX=294.460ROY=314.410

y + (-1)jxjjyjy

LUX=360.840LUY=297.060ROX=368.620ROY=314.410

xjx; y 2 aik:

We remark that W0 ' V
2

a
0

a
0 V

a
1

S2a
0

as a k -module. Furthermore, we
set

I := B2(a; k)

:= Dx ^ [y;z]- [x; y] ^ z - (-1)jxjjyjy ^ [x; z]jx; y; z 2 aE
k

and W := W0=I Let : W0 W be the canonical projection. It is clear that

2 Z2(a; W) We consider the central extension

0 -! W -! a! -! a -! 0;

de ned by Using this central extension, we construct the universal central
extension of a Let V be an arbitrary k -module and f 2 Z2(a; V) Since
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f(x; y) -(-1)jxjjyjf(y; x) we have a k -linear map

0 : W -! V such that x; y) 7! f(x;y):

Let us de ne 0 : a! af by

0((x; u)) := x; 0(u)):

Then it is clear that the diagram

a!
/

/

0

9

99
99

99
a

af

C

commutes. Now, let us set

â := [a!; a!]:
Since a is perfect, it follows that

â + W a! This implies that â is perfect
since

â [â+ W;â+ W] [â;â]:

Furthermore, if we set

c := W\ â;

then we have a central extension

0 -! c -! â -! a -! 0

such that â is perfect. Now, if we de ne as the restriction of 0 to the
subalgebra

â
then the following diagram commutes:

â
jâ

/

/

6

6
66

6
66

a

af

C

Therefore,
â a is the universal central extension and the proof is completed.

As a corollary, we have the following description of the kernel of the universal
central extension. For a Lie superalgebra over k let us de ne

Z2(a; k) := Xi
xi ^ yi 2 2a Xi

[xi; yi] 0):

In the sequel, we assume that a is k -free. Under this assumption, from the proof
of Proposition 4.4 we obtain

c := W\ â Xi
xi;yi) Xi xi ^ yi 2 Z2(a;k)),B2(a; k):
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Thus the following lemma holds.

Corollary 4.5. Suppose that a Lie superalgebra a over k is k -free and perfect.
Let c be the kernel of the universal central extension of a Then we have

c ' H2(a; k)

where H2(a;k) := Z2(a; k)=B2(a;k)

Let A be a commutative k -algebra that is a k -free module at the same time.
As we will see in the next subsection, if a gk

LUX=336.000LUY=544.980ROX=343.780ROY=562.330

k A g is a basic classical Lie
superalgebra), then H2(a; k) is related with the cyclic homology of A Here we
recall the de nition of the cyclic homology.

For n 2 Z 0 we set

Cn(A) :=

8<:

k if n 0
A ifn 1
A

LUX=291.240LUY=470.043ROX=297.491ROY=482.174

n=In if n > 1
;

where In is the k -submodule of A

LUX=279.120LUY=448.083ROX=285.371ROY=460.214

n generated by

a1

LUX=188.160LUY=420.060ROX=195.940ROY=437.410

a2

LUX=210.120LUY=420.060ROX=217.900ROY=437.410 LUX=233.880LUY=420.060ROX=241.660ROY=437.410

an + (-1)na2

LUX=304.560LUY=420.060ROX=312.340ROY=437.410 LUX=328.440LUY=420.060ROX=336.220ROY=437.410

an

LUX=351.240LUY=420.060ROX=359.020ROY=437.410

a1; ai 2 A):

Let us de ne the complex

C A) : - Cn(A) d-! Cn-1(A) -! - C0(A) -! 0;

d :Cn(A) -! Cn-1(A)

as follows: For n 0; 1 we set d := 0 and for n > 1

d(a1

LUX=148.080LUY=309.420ROX=155.860ROY=326.770

a2

LUX=169.920LUY=309.420ROX=177.700ROY=326.770 LUX=193.800LUY=309.420ROX=201.580ROY=326.770

an) :=
n

Xi=2
(-1)ia1

LUX=284.520LUY=309.420ROX=292.300ROY=326.770 LUX=308.280LUY=309.420ROX=316.060ROY=326.770

ai-1ai

LUX=347.760LUY=309.420ROX=355.540ROY=326.770 LUX=371.640LUY=309.420ROX=379.420ROY=326.770

an - a2

LUX=416.400LUY=309.420ROX=424.180ROY=326.770 LUX=440.160LUY=309.420ROX=447.940ROY=326.770

ana1:

Then it turns out that d is well-de ned and d2 0. The n-th homology group
of this complex C A) is denoted by HCn(A) and is called the n -th cyclic
homology of A

The following proposition is well-known cf. [Lod]):

Proposition 4.6. Suppose that A is commutative. The following isomorphism
exists:

HC2(A) '

LUX=303.600LUY=192.080ROX=310.820ROY=204.270

1
A=k dA;

where

LUX=153.240LUY=168.920ROX=160.460ROY=181.110

1
A=k dA is the module of Kähler di erentials of A over k modulo exact

forms.
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4.2. Main result

In this subsection, we will state our main result i.e. the universal central extension
of gk

LUX=146.640LUY=623.940ROX=154.420ROY=641.290

kA Let us rst notice that the Lie superalgebra gk

LUX=379.320LUY=623.940ROX=387.100ROY=641.290

kA over k is perfect
and hence has the universal central extension

0 -! c -! gk(A) -! gk

LUX=329.760LUY=594.420ROX=337.540ROY=611.770

k A -! 0:

Our main theorem can be described as follows:

Theorem 4.7. Let k be a commutative ring and let A be a k -free commutative
k -algebra. Let gk be a basic classical Lie superalgebra over k as was de ned in
Section 3. Suppose that

12 2 k if g is of type A(m; n) C(n) and D(m; n)

12

;
1

2 k if g is of type B(m; n) F(4) and G(3)

12

; 1
a ; 1

a+1 2 k if g is of type D(2; 1; a)
Now let us de ne the Lie superalgebra gk as follows:

gk :=

8<:

gk if g is not of type A(n; n) 8n
dk if g is of type A(1; 1)

sl(n + 1;n+ 1)k if g is of type A(n; n) 9n > 1
:

Then the following hold:
1. gk(A) ' gk

LUX=189.720LUY=409.740ROX=197.500ROY=427.090

k A

LUX=224.280LUY=416.840ROX=231.500ROY=429.030

1
A=k dA:

2. The bracket of gk(A) is given by

[X

LUX=231.000LUY=378.780ROX=238.780ROY=396.130

a; Y

LUX=260.880LUY=378.780ROX=268.660ROY=396.130

b] [X;Y ]

LUX=319.800LUY=378.780ROX=327.580ROY=396.130

ab + X; Y bda;

a; b 2 A; X; Y 2 gk;

where ; is an even supersymmetric invariant bilinear form on gk which
is described in Section 2.4, d : A

LUX=300.710LUY=332.480ROX=307.930ROY=344.670

1
A=k is the di erential and :

LUX=441.840LUY=332.480ROX=449.060ROY=344.670

1
A=k

LUX=137.160LUY=318.440ROX=144.380ROY=330.630

1
A=k dA is the projection.

Remark 4.4.8. If g is of type B(m; n) or G(3) then g has a root 2 1such that ; 6= 0 i.e., g contains osp(1; 2) as a subalgebra. In these cases,
we have to assume that 3 is invertible in k See the proof of Lemma 4.13.)

In particular, in the case where k C and A C[t; t-1] we have

Corollary 4.9. Set ~g := gC(A)
1. ~g ' gC

LUX=170.280LUY=200.460ROX=178.060ROY=217.810

C C[t; t-1] Cc:
2. The bracket of gC(A) is given by

[X

LUX=213.960LUY=171.540ROX=221.740ROY=188.890

tr; Y

LUX=246.480LUY=171.540ROX=254.260ROY=188.890

ts] [X; Y ]

LUX=309.120LUY=171.540ROX=316.900ROY=188.890

tr+s + X; Y r r+s;0c;

r;s 2 Z; X; Y 2 gC;
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where ; is an even, supersymmetric invariant bilinear form on gC

Moreover, from Theorem 4.7, we have

Proposition 4.10. Under the assumption of Theorem 4.7, we have

H2(gk

LUX=177.600LUY=578.940ROX=185.380ROY=596.290

k A; k) '
8

<>
:

HC2(A) if g is not of type A(n; n) 8n
HC2(A) A 3 if g is of type A(1; 1)

HC2(A) A if g is of type A(n; n) 9n > 1

:

4.3. Proof

We rst show the next proposition.

Proposition 4.11. Suppose that g sl2 or osp(1; 2). Let Z be a free k -
module and

0 -! Z -! g0k A) - gk

LUX=332.280LUY=447.180ROX=340.060ROY=464.530

k A -! 0

a central extension of gk

LUX=234.120LUY=430.380ROX=241.900ROY=447.730

k A Then the bracket of g0k A) can be described as

[X

LUX=219.240LUY=413.460ROX=227.020ROY=430.810

a; Y

LUX=249.120LUY=413.460ROX=256.900ROY=430.810

b] [X;Y ]

LUX=308.040LUY=413.460ROX=315.820ROY=430.810

ab + X; Y fa; bg;
where ; is a non-degenerate even supersymmetric invariant bilinear form on
gk f ; g : A A! Z which satis es

i) fu; vg -fv; ug;
ii) fuv; wg + fwu; vg + fvw; ug 0:

23)

To prove the proposition, we prepare some notation. Let

0 -! Z -! u - a -! 0;

be a central extension. Notice that, for x; y 2 a and x0; y0 2 u such that x0) x
and y0) y, the commutator [x0; y0] does not depend on the choice of the
inverse images x0 and y0 Hence, in the sequel, we denote [x0; y0] by [x; y]0

We rst consider the case of sl2 : Let us x a basis of sl2 as follows:

gk kX+ kH kX- such that [X+;X-] H; [H;X ] 2X :

A non-degenerate even supersymmetric bilinear form on sl2 is given by

H; H) 2; X+;X-) 1:

Lemma 4.12. For a 2 A if we set

X

LUX=247.080LUY=162.780ROX=254.860ROY=180.130

a)0 :=
1

2
[H

LUX=314.280LUY=162.780ROX=322.060ROY=180.130

1; X

LUX=350.760LUY=162.780ROX=358.540ROY=180.130

a]0;

H

LUX=241.200LUY=147.540ROX=248.980ROY=164.890

a)0 := [X+

LUX=299.040LUY=147.540ROX=306.820ROY=164.890

1; X-

LUX=335.520LUY=147.540ROX=343.300ROY=164.890

a]0;
24)



Vol. 76 2001) Central extensions of Lie superalgebras 137

then there exists a pairing f ; g with the condition 23), and the following holds:

[(X

LUX=207.360LUY=643.020ROX=215.140ROY=660.370

a)0; Y

LUX=247.800LUY=643.020ROX=255.580ROY=660.370

b)0] ([X; Y ]

LUX=317.280LUY=643.020ROX=325.060ROY=660.370

ab)0 + X; Y fa; bg;
where ; is the above invariant form of gk X; Y 2 gk and a; b 2 A

Proof. Since [(H

LUX=213.360LUY=602.460ROX=221.140ROY=619.810

a)0; H

LUX=255.960LUY=602.460ROX=263.740ROY=619.810

b)0]) [H

LUX=314.760LUY=602.460ROX=322.540ROY=619.810

a; H

LUX=346.800LUY=602.460ROX=354.580ROY=619.810

b] 0; we see that [(H

LUX=469.560LUY=602.460ROX=477.340ROY=619.810

a)0; H

LUX=154.560LUY=590.580ROX=162.340ROY=607.930

b)0] 0 mod Z) Hence we set

fa; bg :=
1

2
[(H

LUX=298.920LUY=569.220ROX=306.700ROY=586.570

a)0; H

LUX=340.320LUY=569.220ROX=348.100ROY=586.570

b)0]:

To show this lemma, it su ces to show the following formulas:
F1. [(H

LUX=157.080LUY=537.540ROX=164.860ROY=554.890

a)0; X

LUX=204.480LUY=537.540ROX=212.260ROY=554.890

b)0] 2(X

LUX=275.280LUY=537.540ROX=283.060ROY=554.890

ab)0

F2. [(X+

LUX=162.960LUY=526.980ROX=170.740ROY=544.330

a)0; X-

LUX=210.360LUY=526.980ROX=218.140ROY=544.330

b)0] H

LUX=262.440LUY=526.980ROX=270.220ROY=544.330

ab)0 + fa; bg
[(H

LUX=157.080LUY=515.700ROX=164.860ROY=533.050

a)0; H

LUX=198.600LUY=515.700ROX=206.380ROY=533.050

b)0] 2fa; bg
F3. [(X

LUX=163.080LUY=505.020ROX=170.860ROY=522.370

a)0; X

LUX=210.360LUY=505.020ROX=218.140ROY=522.370

b)0] 0
We prove F1. By de nition we have

[(H

LUX=165.360LUY=475.500ROX=173.140ROY=492.850

a)0; X

LUX=212.760LUY=475.500ROX=220.540ROY=492.850

b)0]

1

2
[(H

LUX=184.920LUY=454.740ROX=192.700ROY=472.090

a)0; [(H

LUX=229.200LUY=454.740ROX=236.980ROY=472.090

1)0; X

LUX=276.360LUY=454.740ROX=284.140ROY=472.090

b)0]]

1
2f[[(H

LUX=192.720LUY=430.740ROX=200.500ROY=448.090

a)0; H

LUX=234.240LUY=430.740ROX=242.020ROY=448.090

1)0]; X

LUX=284.040LUY=430.740ROX=291.820ROY=448.090

b)0] + [(H

LUX=337.920LUY=430.740ROX=345.700ROY=448.090

1)0; [(H

LUX=381.840LUY=430.740ROX=389.620ROY=448.090

a)0; X

LUX=429.240LUY=430.740ROX=437.020ROY=448.090

b)0]]g

Since

[(H

LUX=173.280LUY=394.860ROX=181.060ROY=412.210

a)0; H

LUX=214.800LUY=394.860ROX=222.580ROY=412.210

1)0] 0 mod Z)
[(H

LUX=173.280LUY=379.980ROX=181.060ROY=397.330

a)0; X

LUX=220.680LUY=379.980ROX=228.460ROY=397.330

b)0] [H

LUX=271.680LUY=379.980ROX=279.460ROY=397.330

a; X

LUX=308.520LUY=379.980ROX=316.300ROY=397.330

b]0 2(X

LUX=375.480LUY=379.980ROX=383.260ROY=397.330

ab)0 mod Z);

we have F1.
The second formula in F2 is nothing but the de nition of f ; g. By F1, we

have

[(X+

LUX=171.480LUY=322.860ROX=179.260ROY=340.210

a)0; X-

LUX=218.880LUY=322.860ROX=226.660ROY=340.210

b)0]

1

2
[[(H

LUX=175.800LUY=302.100ROX=183.580ROY=319.450

a)0; X+

LUX=223.080LUY=302.100ROX=230.860ROY=319.450

1)0]; X-

LUX=273.000LUY=302.100ROX=280.780ROY=319.450

b)0]

1
2f[[(H

LUX=180.840LUY=278.100ROX=188.620ROY=295.450

a)0; X-

LUX=228.240LUY=278.100ROX=236.020ROY=295.450

b)0]; X+

LUX=277.320LUY=278.100ROX=285.100ROY=295.450

1)0] + [(H

LUX=331.800LUY=278.100ROX=339.580ROY=295.450

a)0; [(X+

LUX=381.840LUY=278.100ROX=389.620ROY=295.450

1)0; X-

LUX=429.000LUY=278.100ROX=436.780ROY=295.450

b)0]]g

Since by the de nition of H

LUX=252.830LUY=258.180ROX=260.610ROY=275.530

b)0 and F1

[(H

LUX=234.840LUY=241.500ROX=242.620ROY=258.850

a)0; X-

LUX=282.240LUY=241.500ROX=290.020ROY=258.850

b)0] -2(X-

LUX=352.920LUY=241.500ROX=360.700ROY=258.850

ab)0;

[(X+

LUX=240.600LUY=226.620ROX=248.380ROY=243.970

1)0; X-

LUX=287.640LUY=226.620ROX=295.420ROY=243.970

b)0] H

LUX=339.840LUY=226.620ROX=347.620ROY=243.970

b)0;

the rst formula in F2 is proved.
We prove F3. Since [(X

LUX=253.200LUY=198.060ROX=260.980ROY=215.410

a)0; X

LUX=300.600LUY=198.060ROX=308.380ROY=215.410

b)0] 0 mod Z) we have

0 =[(H

LUX=178.080LUY=181.500ROX=185.860ROY=198.850

1)0; [(X

LUX=228.000LUY=181.500ROX=235.780ROY=198.850

a)0; X

LUX=275.400LUY=181.500ROX=283.180ROY=198.850

b)0]]

=[[(H

LUX=180.960LUY=166.500ROX=188.740ROY=183.850

1)0; X

LUX=228.000LUY=166.500ROX=235.780ROY=183.850

a)0]; X

LUX=278.160LUY=166.500ROX=285.940ROY=183.850

b)0] + [(X

LUX=337.920LUY=166.500ROX=345.700ROY=183.850

a)0; [(H

LUX=382.080LUY=166.500ROX=389.860ROY=183.850

1)0; X

LUX=429.240LUY=166.500ROX=437.020ROY=183.850

b)0]]

4[(X

LUX=201.240LUY=151.620ROX=209.020ROY=168.970

a)0; X

LUX=248.520LUY=151.620ROX=256.300ROY=168.970

b)0]:



138 K. Iohara and Y. Koga CMH

Since
1

2 k we obtain F3.
Finally let us check 23). i) is clear from the de nition of f ; g. We prove

ii). By F1 and F2, we have

[(H

LUX=223.080LUY=617.220ROX=230.860ROY=634.570

a)0; [(X+

LUX=273.120LUY=617.220ROX=280.900ROY=634.570

b)0; X-

LUX=319.560LUY=617.220ROX=327.340ROY=634.570

c)0]] 2fa; bcg;

and

[(H

LUX=164.520LUY=580.140ROX=172.300ROY=597.490

a)0; [(X+

LUX=214.560LUY=580.140ROX=222.340ROY=597.490

b)0; X-

LUX=261.000LUY=580.140ROX=268.780ROY=597.490

c)0]]

[[(H

LUX=180.600LUY=565.260ROX=188.380ROY=582.610

a)0; X+

LUX=227.880LUY=565.260ROX=235.660ROY=582.610

b)0]; X-

LUX=277.080LUY=565.260ROX=284.860ROY=582.610

c)0] + [(X+

LUX=336.600LUY=565.260ROX=344.380ROY=582.610

b)0; [(H

LUX=379.920LUY=565.260ROX=387.700ROY=582.610

a)0; X-

LUX=427.320LUY=565.260ROX=435.100ROY=582.610

c)0]]

2fab; cg+ 2fb; acg:

Since
1

2 k using i) we obtain ii).

Next we consider the case of osp(1; 2) : Let us x a basis of osp(1; 2) as follows:

gk osp(1; 2) kX+ kx+ kH kx- kX-;
such that

[H; X ] 4X ; [X+;X-]
1

2H; X
1

4
[x ;x ];

[H; x ] 2x ; [x+; x-] H; [X ; x ] -x :

We remark that this gives the Chevalley basis for osp(1; 2) A non-degenerate
even supersymmetric bilinear form on osp(1; 2) is given as follows:

H; H) 2; x+;x-) 1; X+;X-)
1

4
:

Lemma 4.13. For a 2 A if we set

X

LUX=247.080LUY=330.780ROX=254.860ROY=348.130

a)0 :=
1

4
[H

LUX=314.280LUY=330.780ROX=322.060ROY=348.130

1; X

LUX=350.760LUY=330.780ROX=358.540ROY=348.130

a]0;

x

LUX=244.560LUY=310.740ROX=252.340ROY=328.090

a)0 :=
1

2
[H

LUX=311.640LUY=310.740ROX=319.420ROY=328.090

1; x

LUX=345.720LUY=310.740ROX=353.500ROY=328.090

a]0;

H

LUX=241.200LUY=295.620ROX=248.980ROY=312.970

a)0 := [x+

LUX=296.400LUY=295.620ROX=304.180ROY=312.970

1; x-

LUX=330.480LUY=295.620ROX=338.260ROY=312.970

a]0;

25)

then there exists a pairing f ; g such that

[(X

LUX=207.360LUY=258.420ROX=215.140ROY=275.770

a)0; Y

LUX=247.800LUY=258.420ROX=255.580ROY=275.770

b)0] ([X; Y ]

LUX=317.280LUY=258.420ROX=325.060ROY=275.770

ab)0 + X; Y fa; bg;

where ; is the above invariant form of gk X; Y 2 gk and a; b 2 A

Proof. Similarly to sl2 case, we see that [(H

LUX=320.760LUY=216.060ROX=328.540ROY=233.410

a)0; H

LUX=361.200LUY=216.060ROX=368.980ROY=233.410

b)0] 0 mod Z): Hence
we set

fa; bg :=
1

2
[(H

LUX=298.920LUY=183.420ROX=306.700ROY=200.770

a)0; H

LUX=340.320LUY=183.420ROX=348.100ROY=200.770

b)0]:

To show this lemma, it su ces to show the following formulas:

F1'. [(H

LUX=157.080LUY=148.020ROX=164.860ROY=165.370

a)0; Y

LUX=197.520LUY=148.020ROX=205.300ROY=165.370

b)0] H)(Y

LUX=271.560LUY=148.020ROX=279.340ROY=165.370

ab)0 where Y 2 g
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F2'. [(x+

LUX=160.320LUY=659.580ROX=168.100ROY=676.930

a)0; x-

LUX=205.200LUY=659.580ROX=212.980ROY=676.930

b)0] H

LUX=257.280LUY=659.580ROX=265.060ROY=676.930

ab)0 + fa; bg
[(H

LUX=157.080LUY=647.940ROX=164.860ROY=665.290

a)0; H

LUX=198.600LUY=647.940ROX=206.380ROY=665.290

b)0] 2fa; bg
F3'. [(x

LUX=160.440LUY=636.660ROX=168.220ROY=654.010

a)0; x

LUX=205.320LUY=636.660ROX=213.100ROY=654.010

b)0] 4(X

LUX=276.000LUY=636.660ROX=283.780ROY=654.010

ab)0

F4'. [(X

LUX=163.080LUY=625.260ROX=170.860ROY=642.610

a)0; x

LUX=207.840LUY=625.260ROX=215.620ROY=642.610

b)0] -(x

LUX=271.080LUY=625.260ROX=278.860ROY=642.610

ab)0

F5'. [(X+

LUX=162.960LUY=609.300ROX=170.740ROY=626.650

a)0; X-

LUX=210.360LUY=609.300ROX=218.140ROY=626.650

b)0]
1

2 H

LUX=269.760LUY=609.300ROX=277.540ROY=626.650

ab)0 +
1
4fa; bg

F6'. [(X

LUX=163.080LUY=594.540ROX=170.860ROY=611.890

a)0; x

LUX=207.840LUY=594.540ROX=215.620ROY=611.890

b)0] 0,
[(X

LUX=163.080LUY=582.900ROX=170.860ROY=600.250

a)0; X

LUX=210.360LUY=582.900ROX=218.140ROY=600.250

b)0] 0
The proofs of F1' and F2' are similar to those of F1 and F2 in the sl2 -case

respectively.
We prove F3'. Notice that [(x

LUX=286.800LUY=546.060ROX=294.580ROY=563.410

a)0;(x

LUX=332.760LUY=546.060ROX=340.540ROY=563.410

b)0] 4(X

LUX=407.160LUY=546.060ROX=414.940ROY=563.410

ab)0 mod Z):
Hence we have

[(H

LUX=153.240LUY=516.780ROX=161.020ROY=534.130

1)0; [(x

LUX=200.520LUY=516.780ROX=208.300ROY=534.130

a)0; x

LUX=245.400LUY=516.780ROX=253.180ROY=534.130

b)0]] 4[(H

LUX=315.840LUY=516.780ROX=323.620ROY=534.130

1)0; X

LUX=362.880LUY=516.780ROX=370.660ROY=534.130

ab)0] 16(X

LUX=436.200LUY=516.780ROX=443.980ROY=534.130

ab)0:

On the other hand, by the Jacobi identity,

[(H

LUX=179.400LUY=482.220ROX=187.180ROY=499.570

1)0; [(x

LUX=226.680LUY=482.220ROX=234.460ROY=499.570

a)0; x

LUX=271.560LUY=482.220ROX=279.340ROY=499.570

b)0]]

=[[(H

LUX=182.160LUY=467.220ROX=189.940ROY=484.570

1)0; x

LUX=226.680LUY=467.220ROX=234.460ROY=484.570

a)0]; x

LUX=274.320LUY=467.220ROX=282.100ROY=484.570

b)0] + [(x

LUX=331.440LUY=467.220ROX=339.220ROY=484.570

a)0; [(H

LUX=375.720LUY=467.220ROX=383.500ROY=484.570

1)0; x

LUX=420.240LUY=467.220ROX=428.020ROY=484.570

b)0]]

4[(x

LUX=199.920LUY=452.340ROX=207.700ROY=469.690

a)0; x

LUX=244.680LUY=452.340ROX=252.460ROY=469.690

b)0]:

Hence the condition
1

2 k ensures F3'.
The proof of F4' is similar to that of F3'.
We prove F5'. By F2', F3' and F4', we have

[(X+

LUX=169.440LUY=392.700ROX=177.220ROY=410.050

a)0; X-

LUX=216.840LUY=392.700ROX=224.620ROY=410.050

b)0]

1

4
[[(x+

LUX=177.000LUY=371.940ROX=184.780ROY=389.290

1)0; x+

LUX=221.520LUY=371.940ROX=229.300ROY=389.290

a)0]; X-

LUX=271.680LUY=371.940ROX=279.460ROY=389.290

b)0]

1
4f[[(x+

LUX=182.040LUY=348.060ROX=189.820ROY=365.410

1)0; X-

LUX=229.080LUY=348.060ROX=236.860ROY=365.410

b)0]; x+

LUX=275.640LUY=348.060ROX=283.420ROY=365.410

a)0] + [(x+

LUX=333.600LUY=348.060ROX=341.380ROY=365.410

1)0; [(x+

LUX=380.880LUY=348.060ROX=388.660ROY=365.410

a)0; X-

LUX=428.160LUY=348.060ROX=435.940ROY=365.410

b)0]]g:

Since

[(x+

LUX=244.920LUY=310.740ROX=252.700ROY=328.090

1)0; X-

LUX=291.960LUY=310.740ROX=299.740ROY=328.090

b)0] x-

LUX=347.400LUY=310.740ROX=355.180ROY=328.090

b)0;

[(x+

LUX=244.920LUY=295.740ROX=252.700ROY=313.090

a)0; X-

LUX=292.320LUY=295.740ROX=300.100ROY=313.090

b)0] x-

LUX=347.760LUY=295.740ROX=355.540ROY=313.090

ab)0;

by F4', we obtain

[(X+

LUX=220.920LUY=261.180ROX=228.700ROY=278.530

a)0; X-

LUX=268.320LUY=261.180ROX=276.100ROY=278.530

b)0]

1
4f[(x-

LUX=230.760LUY=240.420ROX=238.540ROY=257.770

b)0; x+

LUX=274.560LUY=240.420ROX=282.340ROY=257.770

a)0] + [(x+

LUX=332.520LUY=240.420ROX=340.300ROY=257.770

1)0; x-

LUX=377.040LUY=240.420ROX=384.820ROY=257.770

ab)0]
g

1

4 f(H

LUX=226.320LUY=216.420ROX=234.100ROY=233.770

ab)0 + fa; bg + H

LUX=315.960LUY=216.420ROX=323.740ROY=233.770

ab)0 + f1; abgg:

Here we notice that if we take u ab; v w 1 in 23), then f1; abg 0.
Hence we have the conclusion.

By using the condition
1

;
1

2 k we can prove F60 in a way similar to F3 in
the sl2 -case.
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To show Theorem 4.7, we need the following preliminary lemma.

Lemma 4.14. Let be the root system of a basic classical Lie superalgebra g
1. If 2 +

1
such that ; 0, then there exists 2 such that H

1
2. If ; 2 and + 6=0, then there exists 2 such that + H -1

2
k where we exclude the case ~+ ~ ~1+2~2+~3) for A(1; 1) see Remark
2.13 in x2:3

Proof of 1. By Lemma 2.22, we may assume that i0 We see that if
the Dynkin diagram contains the following type subdiagrams

j
h

i0

N;

then we may choose : - j Note that if the Dynkin diagram of g does not
contain the above type subdiagrams, then g is of type B(0; n) or B(1; 1) and
further B(0; n) does not have a root of length 0 In the case of B(1; 1) we can
easily check the lemma.

Proof of 2. We rst consider the case where and are linearly dependent.
In this case, we distinguish the following cases:

Case1. ; 6=0.
Case2. ; 0.

For Case 1, 2 ; ; 1
2 Lemma 2.23 says that if we choose : then

+ H -1
2 k For Case2 the rst assertion implies that there exists 2

such that H 1 Since we may choose :
Next we consider the case where and are linearly independent. Let us

put : \ Z Z In this case, we distinguish the following subcases:

Case1 : a rank two system,
Case2 : the disjoint union of two rank one systems.

In Case1 we can choose the simple roots of such that is one of the
simple roots and become a positive root. Then is of type A2, B2, G2 or
one of the rank two root systems listed in the proof of Lemma 3.5. For each case,
the value of is given as in Remark 3.6. Now the lemma follows from case by
case checking.

In Case2 we also consider the following subcases:

Case2:1. ; 6=0 or ; 6= 0.
Case2:2. ; 0 and ; 0.
In Case2:1 we may assume that ; 6= 0 without loss of generality. Since

; 0 in this case, by Lemma 2.23, if we take : then the lemma holds.
Finally we prove the lemma in Case2:2 By Lemma 2.22, we may assume that

i0 Note that ; i0 0 in this case. Since 2 1
satis es ; 0,
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k i0 6= k and ; i0 0 from the data of the root systems in Appendix
A, the cases where g is of type A(m; 0) A(0; n) B(0:n) B(1; n) B(m; 1)
C(n) D(m; 1) D(2; 1; a) F(4) and G(3) are excluded. Hence we have to
check the cases where g is of type A(m; n) m;n 1 and B(m; n) D(m; n)

m;n 2 In these cases, if there exists j 2 fi0 1g such that H j 0,
then i0 + H j 2 f 1g and thus we may choose : j For the rest of
the case, i.e., the case when H i0 1

6= 0 are given by the following table:

type of g i0
A(1; 1) 2 1 - 2

A(m;n) m;n 1)

m + n 3) m+1 m - 2 m-1 m 2)

m+3 n 2)

m+1 - 2

m - 1
m+1

B(m; n)
D(m; n)

m; n 2) n n-1 - 2 n+2

n-1 + 2 n+1

n 2

n-1 1
n

The rst case is excluded in this lemma, and for the other cases, we may choose
as in the table.

Remark 2.19 implies that a non-degenerate even supersymmetric invariant bi-linear

form of gk is induced from an invariant form of gk Hence to prove our
main theorem Theorem 4.7), we show the following proposition:

Proposition 4.15. Suppose that g is a basic classical Lie superalgebras which
is not of type A(1; 1). Let Z be a free k -module and

0 -! Z -! g0k A) - gk

LUX=332.280LUY=291.780ROX=340.060ROY=309.130

k A -! 0

be a central extension of gk

LUX=244.680LUY=275.820ROX=252.460ROY=293.170

k A Then the bracket of g0k A) can be described as

[(X

LUX=207.360LUY=259.740ROX=215.140ROY=277.090

a)0; Y

LUX=247.800LUY=259.740ROX=255.580ROY=277.090

b)0] ([X; Y ]

LUX=317.280LUY=259.740ROX=325.060ROY=277.090

ab)0 + X; Y fa; bg;
where ; is a non-degenerate even supersymmetric invariant bilinear form on
gk and f ; g : A A! Z satis es the condition 23).

Proof. Let fX ; H j 2 g be a Chevalley basis as in Section 3. For 2 +
0such that

1

62
we set

X

LUX=236.280LUY=173.220ROX=244.060ROY=190.570

a)0 :=
1

H
[H

LUX=323.400LUY=173.220ROX=331.180ROY=190.570

1;X

LUX=358.560LUY=173.220ROX=366.340ROY=190.570

a]0;

H

LUX=236.280LUY=151.620ROX=244.060ROY=168.970

a)0 := [X

LUX=303.960LUY=151.620ROX=311.740ROY=168.970

1; X-

LUX=345.360LUY=151.620ROX=353.140ROY=168.970

a]0;
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and

~g( := fkX kH kX- g

LUX=354.960LUY=641.340ROX=362.740ROY=658.690

k A;
~g0( := -1(~g( ):

For 2 +
1

such that 2 2 we set

X

LUX=236.280LUY=581.580ROX=244.060ROY=598.930

a)0 :=
1

H
[H

LUX=323.400LUY=581.580ROX=331.180ROY=598.930

1;X

LUX=358.560LUY=581.580ROX=366.340ROY=598.930

a]0;

H

LUX=236.280LUY=559.860ROX=244.060ROY=577.210

a)0 := [X

LUX=303.960LUY=559.860ROX=311.740ROY=577.210

1; X-

LUX=345.360LUY=559.860ROX=353.140ROY=577.210

a]0;

; 2 and

~g( := fkX2 kX kH kX- kX-2 g

LUX=393.600LUY=523.260ROX=401.380ROY=540.610

k A;
~g0( := -1(~g( ):

Notice that from Proposition 4.11, we see that, for 2 such that ; 6=0,
there exists f ; g : A A! Z such that

[(X

LUX=205.920LUY=458.580ROX=213.700ROY=475.930

a)0; Y

LUX=246.240LUY=458.580ROX=254.020ROY=475.930

b)0] ([X; Y ]

LUX=315.720LUY=458.580ROX=323.500ROY=475.930

ab)0 + X;Y fa; bg

holds for any X

LUX=200.280LUY=440.340ROX=208.060ROY=457.690

a)0 and Y

LUX=262.920LUY=440.340ROX=270.700ROY=457.690

b)0 2 ~g0(

For each 2 1
such that 2

62 i.e. ; 0, we x 2 as in
Lemma 4.14, and set

X

LUX=236.880LUY=394.020ROX=244.660ROY=411.370

a)0 :=
1

H
[H

LUX=322.800LUY=394.020ROX=330.580ROY=411.370

1; X

LUX=358.080LUY=394.020ROX=365.860ROY=411.370

a]0;

H

LUX=236.880LUY=371.940ROX=244.660ROY=389.290

a)0 := [X

LUX=304.440LUY=371.940ROX=312.220ROY=389.290

1; X-

LUX=345.960LUY=371.940ROX=353.740ROY=389.290

a]0

:
For simplicity, we introduce the following notation:

:= if ; 6=0
if ; 0 ;

where is taken as above. From now on, we will divided the proof of Proposition
4.15 to several steps Lemma 4.16 { 4.21).

Lemma 4.16. For ; 2 we have

[(H

LUX=231.840LUY=240.300ROX=239.620ROY=257.650

a)0; X

LUX=277.920LUY=240.300ROX=285.700ROY=257.650

b)0] H X

LUX=362.400LUY=240.300ROX=370.180ROY=257.650

ab)0:

Proof. We can prove this lemma in a way similar to F1 in Lemma 4.12.

Lemma 4.17. For each 2 we set : and

fa; bg : [(H

LUX=231.360LUY=153.300ROX=239.140ROY=170.650

a)0; H

LUX=277.680LUY=153.300ROX=285.460ROY=170.650

b)0]; fa; bg :=
X ;X- fa; bg ;
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where is de ned as in 11). Then f ; g is independent of the choice of and

[(X

LUX=194.640LUY=640.140ROX=202.420ROY=657.490

a)0; X-

LUX=247.200LUY=640.140ROX=254.980ROY=657.490

b)0] H

LUX=315.600LUY=640.140ROX=323.380ROY=657.490

ab)0 + X ;X- fa; bg;
[(H

LUX=194.640LUY=625.260ROX=202.420ROY=642.610

a)0; H

LUX=240.720LUY=625.260ROX=248.500ROY=642.610

b)0] H ; H fa; bg:

Proof. By Lemma 4.16 we have

[(X

LUX=160.200LUY=574.500ROX=167.980ROY=591.850

a)0; X-

LUX=212.760LUY=574.500ROX=220.540ROY=591.850

b)0]

[[(H

LUX=175.680LUY=559.500ROX=183.460ROY=576.850

a)0; X

LUX=222.000LUY=559.500ROX=229.780ROY=576.850

1)0]; X-

LUX=277.080LUY=559.500ROX=284.860ROY=576.850

b)0]

[(H

LUX=172.920LUY=544.620ROX=180.700ROY=561.970

a)0; [(X

LUX=222.000LUY=544.620ROX=229.780ROY=561.970

1)0; X-

LUX=274.320LUY=544.620ROX=282.100ROY=561.970

b)0]] - [(X

LUX=335.760LUY=544.620ROX=343.540ROY=561.970

1)0; [(H

LUX=384.000LUY=544.620ROX=391.780ROY=561.970

a)0; X-

LUX=436.560LUY=544.620ROX=444.340ROY=561.970

b)0]]

[ H

LUX=184.320LUY=529.620ROX=192.100ROY=546.970

a)0; H

LUX=230.640LUY=529.620ROX=238.420ROY=546.970

b)0] + [(X

LUX=289.320LUY=529.620ROX=297.100ROY=546.970

1)0; X-

LUX=341.520LUY=529.620ROX=349.300ROY=546.970

ab)0]

H

LUX=182.040LUY=514.740ROX=189.820ROY=532.090

ab)0 + fa; bg :

On the other hand,

[(H

LUX=151.080LUY=475.860ROX=158.860ROY=493.210

a)0; H

LUX=197.160LUY=475.860ROX=204.940ROY=493.210

b)0]

[ H

LUX=175.440LUY=460.860ROX=183.220ROY=478.210

a)0; [(X

LUX=224.280LUY=460.860ROX=232.060ROY=478.210

1)0; X-

LUX=276.240LUY=460.860ROX=284.020ROY=478.210

b)0]]

f[[(H

LUX=183.240LUY=445.980ROX=191.020ROY=463.330

a)0; X

LUX=229.200LUY=445.980ROX=236.980ROY=463.330

1)0]; X-

LUX=284.040LUY=445.980ROX=291.820ROY=463.330

b)0] + [(X

LUX=342.360LUY=445.980ROX=350.140ROY=463.330

1)0; [(H

LUX=391.200LUY=445.980ROX=398.980ROY=463.330

a)0; X-

LUX=443.400LUY=445.980ROX=451.180ROY=463.330

b)0]g
H f(H

LUX=194.160LUY=430.980ROX=201.940ROY=448.330

ab)0 + fa; bg - H

LUX=293.760LUY=430.980ROX=301.540ROY=448.330

ab)0 - f1; abg g
H fa; bg :

Similarly, we obtain

[(H

LUX=241.200LUY=377.220ROX=248.980ROY=394.570

a)0; H

LUX=287.280LUY=377.220ROX=295.060ROY=394.570

b)0]

[[(X

LUX=257.160LUY=362.340ROX=264.940ROY=379.690

1)0; X-

LUX=309.480LUY=362.340ROX=317.260ROY=379.690

a)0]; H

LUX=358.320LUY=362.340ROX=366.100ROY=379.690

b)0]

H fa; bg :

Hence

H fa; bg H fa; bg :

Since

H ; H H ; [X ;X- ] H X ;X- H X ;X- ;

we see that

fa; bg :=
X ;X- fa; bg

is independent of the choice of Moreover, we have

[(H

LUX=238.200LUY=186.780ROX=245.980ROY=204.130

a)0; H

LUX=284.280LUY=186.780ROX=292.060ROY=204.130

b)0] H ; H fa; bg

and

[(X

LUX=195.480LUY=148.020ROX=203.260ROY=165.370

a)0; X-

LUX=248.040LUY=148.020ROX=255.820ROY=165.370

b)0] H

LUX=316.440LUY=148.020ROX=324.220ROY=165.370

ab)0 + X ;X- fa; bg:
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Now we complete the proof.

Lemma 4.18. ; 2 such that + 6=0.

[(X

LUX=229.680LUY=612.900ROX=237.460ROY=630.250

a)0; X

LUX=275.640LUY=612.900ROX=283.420ROY=630.250

b)0] N ; X +

LUX=364.560LUY=612.900ROX=372.340ROY=630.250

ab)0;

where N ; are de ned as in 13).

Proof. For ; 2 we take 2 as in Lemma 4.14. Notice that

[(X

LUX=209.280LUY=543.540ROX=217.060ROY=560.890

a)0; X

LUX=255.360LUY=543.540ROX=263.140ROY=560.890

b)0] N ; X +

LUX=344.280LUY=543.540ROX=352.060ROY=560.890

ab)0 mod Z):

Thus we have

[(H

LUX=176.760LUY=498.060ROX=184.540ROY=515.410

1)0; [(X

LUX=225.600LUY=498.060ROX=233.380ROY=515.410

a)0; X

LUX=271.680LUY=498.060ROX=279.460ROY=515.410

b)0]] N ; + H X +

LUX=416.160LUY=498.060ROX=423.940ROY=515.410

ab)0;

and

[(H

LUX=166.200LUY=452.580ROX=173.980ROY=469.930

1)0; [(X

LUX=214.920LUY=452.580ROX=222.700ROY=469.930

a)0; X

LUX=261.000LUY=452.580ROX=268.780ROY=469.930

b)0]]

[[(H

LUX=182.160LUY=437.580ROX=189.940ROY=454.930

1)0; X

LUX=228.240LUY=437.580ROX=236.020ROY=454.930

a)0]; X

LUX=277.080LUY=437.580ROX=284.860ROY=454.930

b)0] + [(X

LUX=335.760LUY=437.580ROX=343.540ROY=454.930

a)0; [(H

LUX=383.520LUY=437.580ROX=391.300ROY=454.930

1)0; X

LUX=429.240LUY=437.580ROX=437.020ROY=454.930

b)0]]

+ H [(X

LUX=233.640LUY=422.700ROX=241.420ROY=440.050

a)0; X

LUX=279.600LUY=422.700ROX=287.380ROY=440.050

b)0]:

Since f( + H g-
1

2 k we obtain the conclusion.

Lemma 4.19. For 2

H-

LUX=269.520LUY=341.340ROX=277.300ROY=358.690

a)0 -(H

LUX=332.520LUY=341.340ROX=340.300ROY=358.690

a)0:

Proof. We may assume that 2
+ By Lemma 4.17, we have

H-

LUX=217.800LUY=283.860ROX=225.580ROY=301.210

a)0 - [ X-

LUX=299.520LUY=283.860ROX=307.300ROY=301.210

1)0; X

LUX=345.600LUY=283.860ROX=353.380ROY=301.210

a)0]

-(-1)j j - [ X

LUX=331.920LUY=266.940ROX=339.700ROY=284.290

a)0; X-

LUX=384.480LUY=266.940ROX=392.260ROY=284.290

1)0]

-f(H

LUX=285.720LUY=251.940ROX=293.500ROY=269.290

a)0 + fa; 1g g

-(H

LUX=280.680LUY=237.060ROX=288.460ROY=254.410

a)0:

Lemma 4.20. For ; 2 such that + 2 we have

H +

LUX=225.120LUY=153.660ROX=232.900ROY=171.010

a)0
" +
" H

LUX=304.080LUY=153.660ROX=311.860ROY=171.010

a)0 + " +
" H

LUX=381.600LUY=153.660ROX=389.380ROY=171.010

a)0:
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Proof. By Lemma 4.18, we have

N- ;- - - H- -

LUX=262.200LUY=640.140ROX=269.980ROY=657.490

a)0

[[(X-

LUX=207.840LUY=625.260ROX=215.620ROY=642.610

1)0; X-

LUX=259.800LUY=625.260ROX=267.580ROY=642.610

1)0]; X +

LUX=319.680LUY=625.260ROX=327.460ROY=642.610

a)0]

[(X-

LUX=205.080LUY=610.260ROX=212.860ROY=627.610

1)0; [(X-

LUX=259.800LUY=610.260ROX=267.580ROY=627.610

1)0; X +

LUX=316.920LUY=610.260ROX=324.700ROY=627.610

a)0]]

+ (-1)j jj + j[[(X-

LUX=278.160LUY=593.340ROX=285.940ROY=610.690

1)0; X +

LUX=335.280LUY=593.340ROX=343.060ROY=610.690

a)0]; X-

LUX=390.240LUY=593.340ROX=398.020ROY=610.690

1)0]

N- ; + - H-

LUX=258.120LUY=576.420ROX=265.900ROY=593.770

a)0 + (-1)j jj + jN- ; + H

LUX=412.920LUY=576.420ROX=420.700ROY=593.770

a)0:

Here we notice that, from Theorem 3.9 and the data of the root systems in Ap-pendix

A, we see that N-1
; 2 k for any ; 2 Hence by using 11), the

de nition of N ; in 13), Lemma 3.3 and Lemma 4.19, the lemma is proved.

Lemma 4.21. f ; g : A A! Z satis es

i) fu; vg -fv; ug
ii) fuv; wg + fwu; vg + fvw; ug 0.

Proof. We show the rst assertion. For 2 such that H ; H 6= 0, we have

[(H

LUX=236.520LUY=421.380ROX=244.300ROY=438.730

a)0; H

LUX=282.960LUY=421.380ROX=290.740ROY=438.730

b)0] H ; H fa; bg:

Hence we have proved i).
We prove ii). For 2 such that H 6= 0 by Lemma 4.16 { 4.20, we

have

[(H

LUX=200.160LUY=358.620ROX=207.940ROY=375.970

a)0; [(X

LUX=249.240LUY=358.620ROX=257.020ROY=375.970

b)0; X-

LUX=300.840LUY=358.620ROX=308.620ROY=375.970

c)0]] H ;H fa; bcg;

and

[(H

LUX=160.320LUY=319.740ROX=168.100ROY=337.090

a)0; [(X

LUX=209.400LUY=319.740ROX=217.180ROY=337.090

b)0; X-

LUX=261.000LUY=319.740ROX=268.780ROY=337.090

c)0]]

[[(H

LUX=176.280LUY=304.860ROX=184.060ROY=322.210

a)0; X

LUX=222.720LUY=304.860ROX=230.500ROY=322.210

b)0]; X-

LUX=277.080LUY=304.860ROX=284.860ROY=322.210

c)0] + [(X

LUX=335.760LUY=304.860ROX=343.540ROY=322.210

b)0; [(H

LUX=383.880LUY=304.860ROX=391.660ROY=322.210

a)0; X-

LUX=436.440LUY=304.860ROX=444.220ROY=322.210

c)0]]

H X ;X- fab; cg + (- H X ; X- fb; acg:

Since

H ; H H ; [X ;X- ] ([H ; X ];X- H X ; X- ;

using i) we obtain ii).

Remark 4.4.22. In the case where g is of type A(1; 1) Lemma 4.16, 4.17, 4.19
and 4.21 can be proved by the same argument as above. For Lemma 4.18, it
holds except for the case of ; 2 such that ~ + ~ ~1 + 2~2 + ~3)
since this cases are excluded in Lemma 4.14. Moreover, Lemma 4.20 holds, since

~1 + 2~2 + ~3) 62 ~ In the case of A(1; 1) the following holds:
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Lemma 4.23. For a; b; c; d 2 A such that ab cd we have

[(X 1+ 2)

LUX=267.840LUY=642.180ROX=275.620ROY=659.530

a)0; X 2+ 3)

LUX=345.720LUY=642.180ROX=353.500ROY=659.530

b)0]

-[(X 2

LUX=267.480LUY=627.180ROX=275.260ROY=644.530

c)0; X 1+ 2+ 3)

LUX=359.520LUY=627.180ROX=367.300ROY=644.530

d)0]:

Proof. By using Lemma 4.18 for A(1; 1) we have

[(X 1+ 2)

LUX=245.880LUY=580.500ROX=253.660ROY=597.850

a)0; X 2+ 3)

LUX=323.760LUY=580.500ROX=331.540ROY=597.850

b)0]

[[(X 1

LUX=248.280LUY=565.500ROX=256.060ROY=582.850

a)0; X 2

LUX=304.800LUY=565.500ROX=312.580ROY=582.850

1)0]; X 2+ 3)

LUX=385.080LUY=565.500ROX=392.860ROY=582.850

b)0]

[[(X 1

LUX=248.280LUY=550.620ROX=256.060ROY=567.970

a)0; X 2+ 3)

LUX=326.160LUY=550.620ROX=333.940ROY=567.970

b)0]; X 2

LUX=384.360LUY=550.620ROX=392.140ROY=567.970

1)0]

-[(X 1+ 2+ 3)

LUX=282.120LUY=535.620ROX=289.900ROY=552.970

ab)0; X 2

LUX=342.840LUY=535.620ROX=350.620ROY=552.970

1)0]:

On the other hand, from Lemma 4.16 we have

[(X 2

LUX=222.600LUY=500.820ROX=230.380ROY=518.170

c)0; X 1+ 2+ 3)

LUX=314.640LUY=500.820ROX=322.420ROY=518.170

d)0]

[[(H1

LUX=235.080LUY=485.940ROX=242.860ROY=503.290

c)0; X 2

LUX=290.640LUY=485.940ROX=298.420ROY=503.290

1)0]; X 1+ 2+ 3)

LUX=386.160LUY=485.940ROX=393.940ROY=503.290

d)0]

[ X 2

LUX=243.600LUY=470.940ROX=251.380ROY=488.290

1)0; [(H1 c)0; X 1+ 2+ 3)

LUX=383.400LUY=470.940ROX=391.180ROY=488.290

d)0]]

[(X 1+ 2+ 3)

LUX=272.400LUY=455.940ROX=280.180ROY=473.290

cd)0; X 2

LUX=333.120LUY=455.940ROX=340.900ROY=473.290

1)0]:

Hence we have proved the lemma.

Before proving the main theorem, we consider the case where A k

Proposition 4.24. The Lie superalgebra gk is the universal central extension
of gk

Proof. Let 0 Z ak!gk 0 be the universal central extension of gk
First we consider the case where g is not of type A(n; n) By setting A := k
and a; b := 1 in Proposition 4.15, we have ak ' gk Hence we have proved the
proposition in this case.

Next we consider the case where g is of type A(n; n) for some n 2 In this
case, we have to check whether ak inherits the additional relation

n

Xi=1

i(hi - h2n+2-i)- n + 1)hn+1 0;

viz., we have to check two possibilities ak ' gk or ak ' gk ' sl(n + 1jn + 1)
Since the short exact sequence 5) does not split, we conclude that ak ' gk

Finally, we consider the case where gk is of type A(1; 1) Similarly to the
above case, from Remark 4.22 and Lemma 4.23, we see that one of the Lie super-algebras

gk sl(2; 2) and d gives the universal central extension of gk Since the
sequence 4) and 5) do not split, we obtain the conclusion.

Let us prove our main theorem Theorem 4.7) by using Proposition 4.15. First
we assume that g is not of type A(n; n) for any n. Let be the map A A
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HC2(A) de ned by a; b) 7! a

LUX=254.160LUY=659.580ROX=261.940ROY=676.930

b Since the Lie superalgebra gk

LUX=401.880LUY=659.580ROX=409.660ROY=676.930

kA is perfect, it
has a universal central extension by Proposition 4.1. By the de nition of HC2(A)
and Proposition 4.15, for any central extension

0 -! Z -! g0k A) -! gk

LUX=332.280LUY=616.140ROX=340.060ROY=633.490

k A -! 0

there exists : HC2(A) Z such that the following diagram commutes

A A f ; g
/

/

#

#F
FFFFFFFF

Z

HC2(A)

~~~~~~~~

Hence the central extension

0 -! HC2(A) -! gk(A) -! gk

LUX=347.280LUY=489.180ROX=355.060ROY=506.530

k A -! 0

satis es the property of De nition 4.2, 2. Since is surjective, gk(A) is perfect.
Hence the above central extension is a universal central extension.

Next we consider the case of A(n;n) In this case, the above argument is
insu cient, since there is a degeneration in h as well as in h i.e.,

n

Xi=1
i fhi - h2n+2-ig- n + 1)hn+1 0;

n

Xi=1

i( i + 2n+2-i) + n + 1) n+1 0

hold in gk To determine gk(A) we consider the following commutative diagram:

0 0

0
/

/

A mn
/

/

A mn
/

/

0

0
/

/

HC2(A) // gk(A) //

0

gk

LUX=360.720LUY=233.580ROX=368.500ROY=250.930

k A // 0

0 // HC2(A) // gk(A)A A
/

/ gk

LUX=360.720LUY=191.820ROX=368.500ROY=209.170

k A // 0

0 0 0

26)
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where the mn are de ned by

mn :=
3 ifn= 1

1 if n > 1
:

Note that each short sequence is exact. From this diagram, we obtain

0 -! HC2(A) A mn -! gk(A) -! gk

LUX=365.040LUY=589.620ROX=372.820ROY=606.970

k A-! 0:

Moreover, the sequence of the second row in 26) does not split, because if there
exists 0 : gk(A) gk(A)A such that ~

0 0 id, then : gk

LUX=402.720LUY=559.980ROX=410.500ROY=577.330

k A gk

LUX=454.680LUY=559.980ROX=462.460ROY=577.330

k A
de ned by x) := 0 -1

A x) x 2 gk

LUX=323.280LUY=547.980ROX=331.060ROY=565.330

k A is well-de ned and satis es

id. From the Lie superalgebra structures of gk and gk we see that the
sequence of the third row in 26) does not split. This is a contradiction and thus
gk(A)A is not the universal central extension.

On the other hand, it is easy to see that gk(A) is perfect and further it enjoys
universality by Proposition 4.15. Now we can conclude that

gk(A) ' gk

LUX=249.120LUY=470.460ROX=256.900ROY=487.810

k A HC2(A) as a k-module)

gives the universal central extension of gk

LUX=309.240LUY=452.820ROX=317.020ROY=470.170

k A

A. Data of basic classical Lie superalgebras

In this appendix, we will collect some data e.g. Dynkin diagrams, Cartan matrix
and root systems) of the basic classical Lie superalgebras.

Before giving these data, we explain how to recover the Cartan matrix from
a given Dynkin diagram. Let us take one of the Dynkin diagrams listed below.
We de ne the Cartan matrix A := ai;j) associated with the diagram as follows:
The set I is given by the index set of all vertices and is given by the subset
corresponding to the vertices of type xand The matrix elements ai;j are
given by

ai;i :=
0 if icorresponds to
2 if icorresponds to or x ;

and for i 6= j
ai;j := 0

if the vertices corresponding to i and j are not connected, and

aj;i := if j corresponds to

-1 if j corresponds to or x ;

ai;j := if i corresponds to

-k if i corresponds to or x
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for i j such that

j k-fold
+

3

i ;

where denotes xor
The following list contains a Dynkin diagram, a Cartan matrix, the set of the

positive even or odd roots and simple roots. We remark that for a basic classical
Lie superalgebra, the Dynkin diagram is not determined uniquely, if it contains a
vertex of type The Dynkin diagrams given here correspond to the choice of
simple roots in the same list.
1. A(m; n) case:

1 m+1 m+n+1

1 -1
2 -1

-1

-1

-1 2 -1
1 0 -1

-1 2 -1

-1

-1

-1 2

8>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

1

1

-1

-1

-1

8>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

2 -1

-1

-1

-1 2 -1

-1 0 1

1-2 1
1

1

1-2

8>
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>
>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

+0 f i- j; k - lj1 i < j m+ 1; 1 k < l n+ 1g:

+
1 f i - jj1 i m+ 1; 1 j n + 1g:

f 1- 2; ; m - m+1; m+1 - 1; 1 - 2; ; n - n+1g;

where f i; jj1 i m + 1; 1 j n + 1g is an orthogonal basis such that
i; i) 1 and j; j) -1

2. B(m; n) m6= 0) case:

1 n m+n

-1 1
+

3
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2 -1

-1

-1

-1 2 -1

-1 0 1

-1 2-1

-1

-1

-1 2-1

-2 2

8>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

1

1

1

-1

-1

-2

8>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

2-1

-1

-1

-1 2-1

-1 0 1

1-21
1

1

1-2 1

1-1

8>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

+0 f i j; i0; k l; 2 k0j1 i < j m; 1 i0 m;
1 k < l n; 1 k0 ng:

+
1 f i; k l; j1 i; k n; 1 l mg:

f 1- 2; ; n-1 - n; n - 1; 1 - 2; ; m-1 - m; mg;

where f i; jj1 i m; 1 j ng is an orthogonal basis such that m 6= 0)
i; i) -1 and j; j) 1

3. B(0; n) case:

1

h h h h=)
n

x
2 -1

-1

-1

-1 2 -1

-2 2

8>>>>>>>>>>>>>>>>>>>: 9>
>>>>>>>>>>>>>>>>>>;

1

1

2

8>
>>>>>>>>>>>>>>>>>>>:

9>
>>>>>>>>>>>>>>>>>>>;

2 -1

-1

-1

-1 2 -1

-1 1

8>
>>>>>>>>>>>>>>>>>>:

9>
>>>>>>>>>>>>>>>>>>;



Vol. 76 2001) Central extensions of Lie superalgebras 151

+
0 f i j ; 2 i0 j1 i < j n; 1 i0 ng:

+
1 f ij1 i ng:

f 1- 2; ; n-1 - n; ng;

where f ij1 i ng is an orthogonal basis such that j; j) 1

4. C(n) case:

1 n

1 k

0 1

-1 2 -1

-1

-1

-1 2 -2

-1 2

8>
>>>>>>>>>>>>>>>>>>>>>>:

9>
>>>>>>>>>>>>>>>>>>>>>>;

-1

1

1

12

8>
>>>>>>>>>>>>>>>>>>>>>>>:

9>
>>>>>>>>>>>>>>>>>>>>>>>;

0 -1

-1 2 -1

-1

-1

-1 2 -2

-2 4

8>
>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>;

+0 f i j; 2 i0j1 i < j n- 1; 1 i0 n- 1g:

+
1 f 1 ij1 i n- 1g:

f 1- 1; 1 - 2; ; n-2 - n-1; 2 n-1g;

where f 1; ij1 i n - 1g is an orthogonal basis such that 1; 1) -1
and j; j) 1

5. D(m; n) case:

m+n-1

1 n

1 -1 @
@

@

m+n
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2 -1

-1

-1

-1 2 -1
1 0-1

-1 2-1

-1

-1

-1 2-1-1

-1 2

-1 2

8>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

1

1

-1

-1

-1

-1

-1

8>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

2-1

-1

-1

-1 2-1

-10 1

1-21
1

1

1-2 1 1

1-2
1 -2

8>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

+0 f i j; k l; 2 k0j1 i < j m; 1 k < l n; 1 k0 ng:

+
1 f i j ; j1 i n; 1 j mg:

f 1- 2; ; n-1 - n; n - 1; 1 - 2; ; m-1 - m; m-1 + mg;

where f i; jj1 i m; 1 j ng is an orthogonal basis such that i; i)

-1 and j; j) 1

6. D(2; 1; a) case: 1 2 3

1 a

2 -1

1 0 a

-1 28>>>>>>>>>>: 9>>>>>>>>>>;

1

-1
1
a8>>>>>>>>>>>: 9>>>>>>>>>>>;

2 -1

-1 0 -a

-a 2a8>>>>>>>>>>: 9>>>>>>>>>>;



Vol. 76 2001) Central extensions of Lie superalgebras 153

+
0 f2 1; 2 2; 2 3g:

+
1 f 2 1 3g:

f2 1; 2 - 1 - 3; 2 3g;

where f 1; 2; 3g is an orthogonal basis such that 1; 1)
1

2; 2)

- 1a- 1 and 3; 3)
1

a.
7. F(4) case: 1 2 3 4

1
ks

0 1

-1 2 -2

-1 2 -1

-1 2
8>>>>>>>>>>>>>>>: 9>>>>>>>>>>>>>>>;

-1

1

12
1
2

8>
>>>>>>>>>>>>>>>>>:

9>
>>>>>>>>>>>>>>>>>;

0 -1

-1 2 -2

-2 4 -2

-2 4
8>>>>>>>>>>>>>>>: 9>>>>>>>>>>>>>>>;

+0 f 1;- i;- k lj1 i 3; 1 k < l 3g:

+
1 f 1 1 1 2 3)g:

f 1 1+ 1+ 2+ 3);- 1; 1 - 2; 2 - 3g;

where f 1; 1; 2; 3g is an orthogonal basis such that i; i) 2 and 1; 1)

-6

8. G(3) case: 1 2 3

12
_jt

0
1

-1 2 -3

-1 2
8>>>>>>>>>>>>>:

9>>>>>>>>>>>>>;

-1
2

1

13
8>>>>>>>>>>>>>>: 9>>>>>>>>>>>>>>;

0 -1

-1 2 -3

-3 68>>>>>>>>>>: 9>>>>>>>>>>;

+0 f2 1;- 1; 2; 3; i - jj1 i < j 3g:

+
1 f 1; 1 ij1 i 3g:

f 1+ 1; 2;- 2 + 3g;

where f 1; 1; 2; 3g are elements of Li C i C 1)=C( 1+ 2+ 3) such that
i; i) 2 i; j) -1 i 6= j) i; 1) 0 and 1; 1) -2
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