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On symplectically harmonic forms on six-dimensional nil-
manifolds

R. Ibdnez, Yu. Rudyak, A. Tralle and L. Ugarte

Abstract. In the present paper we study the variation of the dimensions hj of spaces of
symplectically harmonic cohomology classes (in the sense of Brylinski) on closed symplectic
manifolds. We give a description of such variation for all 6-dimensional nilmanifolds equipped
with symplectic forms. In particular, it turns out that certain 6-dimensional nilmanifolds possess
families of homogeneous symplectic forms wg for which numbers hy(M,w;) vary with respect
to t. This gives an affirmative answer to a question raised by Boris Khesin and Dusa McDuff.
Our result is in contrast with the case of 4-dimensional nilmanifolds which do not admit such
variations by a remark of Dong Yan.

Mathematics Subject Classification (2000). 53D05, 57R17.
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Introduction

Given a symplectic manifold (M?™ w), we denote by [w] € H?(M) the de
Rham cohomology class of w. Here the notation M?™ means that M is a 2m-
dimensional manifold. Furthermore, we denote by L, : Q¥(M) — QFF2(M) the
multiplication by w and by Ly, : H¥(M) — H*™(M) the induced homomor-
phism in the de Rham cohomology H*(M) of M. Asusual, we write L instead of
L, or Lj, if there is no danger of confusion. We say that a symplectic manifold
(M?™, w) satisfies the Hard Lefschetz condition if, for every k , the homomorphism

LF . H™ R (M) — H™ (M)

is surjective. In view of the Poincaré duality, for closed manifolds M it means
that every L* is an isomorphism.

In 1988 Brylinski [2] introduced the concept of symplectically harmonic forms,
defined for any symplectic manifold, see 1.2 for the definition. Further he conjec-
tured that on compact symplectic manifolds, every de Rham cohomology class has
a symplectically harmonic representative. In fact, this conjecture asks about the
possibility of constructing of a symplectic Hodge theory.
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Brylinski proved that this conjecture is true for compact Kahler manifolds.
However, it is not true in general, as it was shown in [5, 11, 16]. Mathieu [11] proved
the following theorem, which applies to an arbitrary (not necessarily compact)
symplectic manifold.

Theorem ([11]). A symplectic manifold (M*™,w) satisfies the Brylinski conjec-
ture if and only if it satisfies the Hard Lefschetz condition. In other words, the
following assertions are equivalent:

(i) every de Rham cohomology class has a symplectically harmonic representa-
tive;

(i) for every k < m, the homomorphism LF : H™=¥(M) — H™tF(M) is
surjective.

Mathieu’s proof involves the representation theory of quivers and Lie superal-
gebras. An alternative and nice proof can be found in the paper of Yan [16], who
studies a special type of infinite dimensional sl(2) -representation and, basing on
this, proves a duality theorem for symplectically harmonic forms which, in turn,
implies the theorem.

Given a symplectic manifold (M?™, w), let QF (M) = QF (M,w) denote the
subspace of symplectically harmonic forms of QF(M). The form « is called
symplectically harmonic if da =0 = da, where

§ = (1)L« dx
and * is the symplectic star operator, see Section 1. We set
Hy:,(M) = Hi, (M, w) = Qi (M)/(Im d 1 Qf, (M)
and
he(M) = hi(M, w) == dim HF (M, w).

Since every symplectically harmonic form is closed, H}’fr(M) is a subgroup of
Hk(M) and hp < by, .

Of course, the above definition of the numbers hj is not symmetric: one can
also consider the “dual” numbers

hp(M) = R} (M, w) :=dim (Qf,/Im 6N Qf,).
It turns out that the duality isomorphism * : Qﬁ*k — Qﬂfk yields the equal-
ity hpm_i = h;‘nM , see Section 6.

Relating with the study of symplectically harmonic forms, we are interested in
the following question raised by Boris Khesin and Dusa McDuff, see Yan [16].

Question. Which compact manifolds M possess a continuous family w; of sym-
plectic forms such that hyi(M,w;) varies with respect to ¢ 7

This question, according to Khesin, is probably related to group theoretical
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hydrodynamics and geometry of diffeomorphism groups. Some indirect indications
for an existence of such relations can be found in [1].

Since we want to consider manifolds as in the question, it makes sense to
give them a certain name. So, let us call a closed smooth manifold M flexi-
ble if M possesses a continuous family of symplectic forms wy, t € [a,b], such
that hip(M,w,) # hi(M,wp) for some k. So, the above question asks about the
existence of flexible manifolds.

Yan [16] has studied the case of closed 4 -manifolds. He proved that 4-dimensio-
nal nilmanifolds are not flexible. (For the definition of nilmanifolds, see Section
4). He has also found examples of flexible 4-manifolds. Actually, one step in this
proof of the existence is wrong, but the whole proof can easily be repaired, and
hence the existence result holds. See Section 3 for details.

So, passing to higher dimensions, we have the following question:

Question. Do there exist flexible nilmanifolds of dimension > 67

Related with this question, we show that some 6 -dimensional nilmanifolds are
flexible, see Theorem 4.1.

Some words about tools. First, in order to prove the flexibility, we must be
able to compute the symplectically harmonic Betti numbers. It turns out that, for
every closed symplectic manifold (M?™ w) and k =1 or 2 we have

hom—x(M,w) = rank (L7 HY(M) — H*™*(M)),
see 2.2 and 2.4. So, a purely cohomological information is enough in order to
compute ho,,_j . Furthermore, if hop (M, wi) # hopm—x(M,ws), k=1,2, then
M is flexible, see 1.11 and 2.2.

In general, not only symplectically harmonic forms but also Poisson harmonic
forms (see 1.3) are of great interest in different areas of mathematics and physics,
[3].
We use the sign in order to indicate the end of a proof. However, if
we formulate a claim without proof, we put the sign O in the end of the claim.

1. Symplectically harmonic forms

Given a C* function f: M — R on a symplectic manifold (M*™,w), we define
X to be the vector field on M such that w(Xy,§) = —df(§) for every vector
field £. We define the Poisson bracket {—, —} on M by setting

{f9} =w(Xy, Xy),  f9€CT(M).

(See [9, 15] for the definition of the Poisson bracket.) This (as well as any other)
Poisson bracket yields a covariant skew-symmetric tensor field of type (2,0)

II: M — A’TM
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determined by the condition
i(IN)(df A dg) = {f, g}-

Here i(—) denotes the interior product.
The Koszul differential

§:QFM) —— QFL(M)
is defined for symplectic manifolds, and more generally, for Poisson manifolds as
§ = [i(IT), d].

Here and everywhere [—, —| denotes the Lie bracket.

Brylinski have proved in [2] that the Koszul differential is a symplectic codiffer-
ential of the exterior differential, with respect to the symplectic star operator. We
choose the volume form associated to the symplectic form, that is, vy = w™/ml!.
Then we define the symplectic star operator

1 QF (M) — Q2™F (M)

by the condition
B A (xa) = AF(ID)(B, a)om (1.1)
for all «, 3 € QF(M). The symplectic star operator satisfies the identities
¥ =id, 0= (=1 Txds, and i(II)=L*:=—*Lx.

The first two equalities are proved in [2, Lemma 2.1.2 and Theorem 2.2.1], the
third one can be found in [16, Lemma 1.5].

Furthermore, if M is a symplectic manifold then the operators L., d, 6 and
L* (acting on the algebra Q*(M) ) satisfy the following commutator relations:

[Ld =0, [Ld=—d [L56=0, [L*d=—0. (1.2)

These relations are proved in [16, Lemma 1.2 and Corollary 1.3].

Remark 1.1. The symplectic star operator was first considered by Libermann in
her Thesis, see [8, 9] as
s = i(p La)uy, (1.3)

where (¢ is the canonical isomorphism between the exterior algebras of vector fields
and forms. She has also introduced and studied the operators & = (—1)*1 % dx
and L* = —«Lx . In particular, she has proved (using the Lepage decomposition)
that

{a e Q" FM)|LFla =0} = {a € " F(M) |L*a = 0}. (1.4)

(See [16] for a proof using the theory of s[(2)-representations.)

One can prove that equalities (1.1) and (1.3) define the same operator *. This
can be proved by using the Darboux coordinates or the equality IT = —p '(w).
We do not give the details because we work with the definition (1.1) only and do
not use the above mentioned equivalence.
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Definition 1.2. A k-form «a on the symplectic manifold M is called symplec-
tically harmonic if doa = da = 0. We denote the space of harmonic k-forms by
Q. (M)

It is clear from (1.2) that the form w A« is symplectically harmonic whenever
a is. Hence, for every k we have the mapping L : QF (M) — OﬁjQ(M) )
We set

HE (M) = Qf (M)/Im dn QF (M) and hy, = hy(M,w) = dim HE.(M).

So, for every symplectic manifold M, its de Rham cohomology H*(M) contains
the subspace H} (M). We say that a de Rham cohomology class is symplectically
harmonic if it contains a symplectically harmonic representative, i.e. if it belongs
to the image of the inclusion Hf (M) C H*(M). Finally, we say that a manifold
M is flexible if M possesses a continuous family of symplectic forms wy, ¢ € [a, b],
such that hg(M,w,) # hip(M, wp) for some k.

Remark 1.3. In the general case of a (degenerate) Poisson manifold (M, {—, —}),
we say that a k-form « is Poisson harmonic if dao = 0 = d«. Notice that for
a Poisson manifold, in particular for a symplectic manifold, A = dé + dd = 0,
contrarily to the Riemannian case.

Remark 1.4. Recall that a symplectomorphism between two symplectic mani-
folds (M, wq) and (IV,ws) is a diffeomorphism ¢ : M — N such that ¢¥(ws) =
wy . It is easy to see that

¢*(Hb(N)) = Hg,(M).

where ¢* : H¥(N) — HF(M) is the induced homomorphism in the de Rham
cohomology. In other words, H} (—) is a symplectic invariant. In particular, if
hie (M, w1) # hp(M,wq) for two symplectic forms wi, wy on M then w; and ws
are not symplectomorphic.

We do not know whether a smooth map (not a diffeomorphism) ¢ with
7wy = wy induces a map of symplectically harmonic cohomology.

Proposition 1.5. ([16]) For every symplectic manifold (M,w) , the homomor-
phism
LE : QP 5(M) — Q5 (M)

is an isomorphism. O
Corollary 1.6. The homomorphism
L Hm K (M) — H™ TR (M)

s an epimorphism. In particular, hpm_p > byt - O
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Corollary 1.7. Let (M*™,w) be a symplectic manifold. Then
H (M) = Im{L* - B~ F (M) — H™ (M)} € H™ (M),

Proof. 1t is a direct consequence of the commutativity of the diagram

m— L* m
Qhr k(M) — QhrJrk(l\/[)

l l (L.5)

m— L* m
Hhr k(M) E— Hhr+k(M)

since the top map LF is an isomorphism by 1.5 and both vertical maps are the
epimorphisms. QED

Corollary 1.8. Let (M>™, w) be a closed symplectic manifold, and let k> 0. If

Proof. Because of 1.6 and Poincaré duality, hpm—r > hmit = bmsr = b >
Roiri b QED

Corollary 1.9. Let (M,w) be a symplectic manifold. If by,(M) = 0 for some
k<m, then hom_i(M,w) =0 for i <k with k—i even.

Proof. 1t follows from 1.7, since the homomorphism
L™ HY (M) — H*™H(M)
passes through the trivial group H*(M). QED

Lemma 1.10. Let L be the space of all linear maps R* — R' . Then the follow-
ing holds:
(i) for every r the set

{AE]L‘rankAgr}

is an algebraic subset of L. ( Here we regard L as the space RF' of Ixk -matrices
whose entries are regarded as the coordinates) ;
(i) for every m < min{k,l} the set {A el ’ rank A > m} is open and dense
in L,
(iii) let A,B € L be two linear maps such that rank A < rank B. Then the
set
A={)eR ‘ rank (A + AB) > rank B}

is an open and dense subset of R.

Proof. (i) This claim follows, because the rank of a matrix is equal to the order of
the largest non-zero minor.
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(ii) This claim follows from (i).

(iii) By (i), the set R\ A is an algebraic subset of R. So, it suffices to prove
that A = (). But, by (ii), rank (B + pA) > rank A for g small enough, and so
AA£D. QED

Corollary 1.11. Let wy and wi be two symplectic forms on a manifold M*™ .
Suppose that, for some k >0, hp_p(wo) = hm—i(w1), but hpmig(wo) < hmer(wi).
Then, for every € > 0, there exists A\ € (0,g) such that hpyyp(wo + Awy) >
Pt (wo) . Moreover, M is flexible provided that it is closed.

Proof. The existence of A follows from 1.7 and 1.10(iii). The flexibility of M
follows, since wg +twy is a symplectic form for ¢ small enough. Indeed, if we set
wr = wo + twy,t € [0, )\] , then hm+k(w0) < hm—}—k(wk) . QED

Corollary 1.12. Let (M>™,wq) be a closed symplectic manifold. Fix any k with
0 < k < m and suppose that hy, (M, w) = b, (M) for every symplectic form
w on M. Furthermore, suppose that there exists x € H*(M) such that

rank {L* : ™% (M) —» H™ (M)} > By e (M, wo).
Then M is flexible.

Proof. Take a closed 2-form « which represents . Then wy+ta is a symplectic
form for ¢ small enough. Furthermore, by 1.7 and 1.10(iii), there exists arbitrary
small A such that hp,(wo+ Aa) > hyyr(wo) . Now the result follows from 1.11.
QED
We set

Qsympl(M) = {w € Q*(M) | w is a symplectic form on M}
and define Q(b, k) = {w € Qgympi(M) | hi(M, w) = b} .

Corollary 1.13. Let M>™ be a manifold that admits a symplectic structure.
Suppose that, for some k > 0, hy_(M,w) does not depend on the symplectic
structure w on M. Then the following three conditions are equivalent:

(i) the set Q(b,m+ k) is open and dense in Qsympi(M) ;

(i) the interior of the set Q(b,m + k) in Qgymp(M) is non-empty;

(iii) the set Q(b,m + k) is non-empty and hyr(M,w) < b for every w €
Qgymp1(M) .

Proof. (i) = (ii). Trivial.

(ii) = (iii). Suppose that there exists wg with hpyyp(M,wp) > b. Take w
in the interior of Q(b,m + k). Then, in view of 1.10, there exists an arbitrary
small A such that h,, ;(w+ Awg) > b, i.e. w does not belong to the interior of
Q(b,m + k) . This is a contradiction.
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(iii) = (i). This is true because of 1.10(ii). QED
So, the family {Q(b,m+k)|b=0,1,...} gives us a stratification of Qgympi(M)
where the maximal stratum is open and dense.

Lemma 1.14. Let (M?>™,w) be a closed symplectic manifold, and set
Pkl = rank {Lm72k71 :HZIH»I(M) s H2m72k71(M)}7

m—1
=)

Then pag1 ts an even number. Furthermore, hopm_ o1 < part1 < bogy1, and
pars1 = bagy1 if and only if L 2R—1 0 H2RHI(M) — HP™26—1(M) is surjec-
tive.

Proof. Let p: H*1(M)® H*™?#~1(M) — R be the usual non-singular pairing
given by

p(lod, ) :/Maw

for [o] € H?*T1 (M) and [y] € H?>™ 2k~1(M) . Define a skew-symmetric bilinear
form (—, =) : H*+*1(M) ® H**t1(M) — R via the formula

{[al, [8]) = p ([o], L™ 1(3])

for [a], [8] € H**1(M). It is easy to see that the rank of (—,—), which must be
an even number 2! with 0 <20 < by, is equal to pagy1 .

The inequality hom_or—1 < pag+1 follows from 1.7.

The last claim holds, because bag11(M) = bay,—2r—1(M) in view of the Poincaré
duality. QED

Remark 1.15. Lemma 1.14 yields the following well-known fact: if the manifold
M in 1.14 satisfies the Hard Lefschetz condition, then all odd-dimensional Betti
numbers are even.

Corollary 1.16. Let (M?™ w) be a closed symplectic manifold. If bog.1(M)
is odd then hom_ok—1 < bam—_9k—1 = baks1 . In particular, if bopy1 = 1 then
hom—ok—1 =0. O

Corollary 1.17. If byp12(M) = 1 then papi1 does mot depend on symplectic
structure on M .

m—2k—1

Proof. Because of the Poincaré duality, baym—ax—2 = 1. So, [w] , and hence

Lm72k71 :H2k+1(M) — % H2m72k71(M)

?

is determined uniquely up to non-zero multiplicative constant. QED
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2. The numbers h; and hg,,—r for k£ small

Proposition 2.1. Let (M,w) be a symplectic manifold, and let k be a non-
negative integer number such that the following holds:

(i) LA2 . gm=k=2(M) — H™TET2(M) is surjective;

(ii) the linear subspaces H™ " "2(M) and Ker{L : H™ *=2(M) — H™ *(M)}
of H™ *k=2(M) generate the whole linear space H™ *~2(M).

Then every cohomology class in H™*(M) is symplectically harmonic.

Proof. Here we use some ideas from [16]. It follows from (i) that
H™ M) =Im L+ P, 4,
where P, = {a € H"*(M)|L¥*'a = 0} . Indeed, if a € H™*(M) then there
exists b€ H™F=2(M) such that L*"1a = L¥*2b. Therefore, a—bA[w] € Py,
and
a=bAw]+(a—bA[w]) elm L+ Pyy_y.

Because of (ii), every class in Im L is symplectically harmonic. So, it suffices
to prove that any cohomology class a € P, is symplectically harmonic.

Let a = [a] € Pp_p with a € Q™ (M) closed. Since L¥tla = 0 €
H™TFE2(M) | there exists f € Q™TFTL(M) such that o A Wt = dp. It is
known [9] that LEFL: Qm=k=1(M) — QmTETL(M) is surjective. So, there exists
v € QmkF=L(M) with 8= AwFt!, and hence (a —dy) Aw*tl =0. So, if we
take @ = a —dy, then [@] = a and L*"'& = 0. But the equality L*"'a =0
implies that L*& =0 in view of (1.4). Now, because of (1.3),

da=—-L*da+dlL*a=0,
and thus @ is symplectically harmonic. QED

Corollary 2.2. ([16]) Let (M,w) be an arbitrary symplectic manifold. Then
every cohomology class in HF(M), k= 0,1,2, is symplectically harmonic. (Il

Recall that a symplectic manifold (M?™ w) is called a manifold of Lefschetz
type, if the map
L: H' (M) — H*™ (M)

is surjective. Notice that, similarly to 1.15, b;(M) is even for every closed manifold
M of Lefschetz type.

Corollary 2.3. Let (M?™ w) be a manifold of Lefschetz type. Then every coho-
mology class in H*(M) is symplectically harmonic. |

Corollary 2.4. For every symplectic manifold (M*™ w) and every k =0,1,2,
HX=F(M) =Im{L™* : H*(M) — H*™ *(M)} c H*™*(M).
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Furthermore, if M is a Lefschetz type manifold then
H™3(M) = Im{L™ 2 : H3(M) — H*™ 3(M)} C H*™3(M).

Proof. This follows from 1.7 because of 2.2 and 2.3. QED

Corollary 2.5. For every closed symplectic manifold (M*™, w) the number
hom—1(M?™ W) is even. Furthermore, if by =1 then the number hop_1(M*™, w)
does not depend on w .

Proof. Tt follows from 1.14 and 1.17 since, by 2.4, p; = hop, 1. QED

Corollary 2.6. If (M?™ w) is a symplectic manifold that is not a manifold of
Lefschetz type, then hopy, 1 < by — 1. In particular, if by =2, then hoy, 1 =0.
O

This is the case for compact non-toral nilmanifolds (see [15] and the table of
the classification of 6-dimensional compact nilmanifolds in Section 4).

3. Yan’s result on flexibility in dimension 4

According to Yan [16], 4-dimensional compact nilmanifolds are not flexible. In-
deed, by 2.2, only hs may vary, but it turns out that hs is constant. Namely,
based on certain results from [4], Yan [16] noticed the following relation for closed
4-dimensional nilmanifolds:

(1) if bl(M) = 2, then hg = 0,

(2) if b1(M) =3 (therefore, by(M) =4), then hg =2,

(3)if by(M) =4 (ie. M=T*), then hs =4.

On the other hand, Yan [16] has found closed 4-dimensional flexible manifolds,
although his arguments need a certain correction (see below). Namely, he formu-
lated without proof the following proposition, where M is assumed to be a closed
4-dimensional manifold.

Proposition 3.1. [16, Proposition 4.1] The following assertions are equivalent:

(i) There exists a family w; of symplectic forms such that hs wvaries.

(ii) There exist two symplectic forms wy and wy such that Im Ly,,; # Im Ly, ,
where Ly, is the Lefschetz map respect to [w;], (i=1,2).

(iii) There exists a symplectic form w on M and a class a € H*(M) such
that Im L, ¢ Im L[w] .

(iv) There erists a symplectic form w on M such that Im Ly, is not equal to

the image of the cup product pairing H* (M) ® H*(M) — H3(M). O

Concerning to this proposition, it is true that (i) = (i) = (iii) = (iv), but the
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Kodaira—Thurston manifold satisfies (iv) and does not satisfy (i). The Kodaira—
Thurston manifold is obtained by taking the product of the Heisenberg manifold
and the circle (this manifold is a compact nilmanifold). Its Sullivan minimal model
has the form

(A(z1,z9,23,24),d) with dzy = dze =dxy =0, dzg = z129,

where deg x; = 1 for ¢ = 1,2,3,4 and the generators z1,x9,x3 come from the
Heisenberg manifold. The cohomology class of the symplectic form is then given
by the element w = z124+ z9x3. Now, from a direct computation we obtain that
Im Ly, is generated by the non-zero classes of z1zo23 and zyz3zy and that the
image of the cup product H'(M) ® H*(M) — H?3(M) is generated by xizsx3,
z1zazy and zoxszy , so condition (iv) is satisfied. Moreover, it is easy to see that
the Kodaira—Thurston manifold satisfies the condition (ii).

But, because of what we have said in the beginning of the section, any 4-
dimensional nilmanifold (and hence the Kodaira-Thurston manifold) does not sat-
isfy condition (i).

Yan’s construction of flexible closed 4-dimensional manifolds is based on the
following proposition.

Proposition 3.2. [16, Corollary 4.2] Let (M*,w) be a closed symplectic manifold
which satisfies the following conditions:

(i) the homomorphism Ly, : HY(M) — H3*(M) is trivial;

(ii) the cup product H'(M)® H*(M) —s H*(M) is non-trivial.

Then M is flexible. [l

Yan regards this proposition as a corollary of his Proposition 4.1. As we have
seen, the last one is wrong. However, Proposition 3.2 is correct because it is a
special case of our Corollary 1.12.

Finally, Gompf [7, Observation 7] proved the existence of 4-manifolds as in 3.2.

4. Symplectically harmonic forms in homogeneous spaces

From the previous section we know that none 4-dimensional nilmanifold is flexible.
The goal of this section is to demonstrate the existence of 6-dimensional flexible
nilmanifolds.

A compact nilmanifold is a homogeneous space of the form G/T", where G is
a simply connected nilpotent Lie group and I' is a discrete co-compact subgroup
of G, i.e. a lattice (co-compact means that G/I' is compact). Recall that I" is
determined by G uniquely up to an isomorphism. In greater detail, if I' and T
are two lattices in G then there exists an automorphism ¢ : G — G with ¢(I") =
I'7, see [13]. Moreover, I' determines G uniquely up to an isomorphism. In
particular, the compact nilmanifold G/T" determines and is completely determined
by G.
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Three important facts in the study of compact nilmanifolds are (see [15]):

1. Let g be a nilpotent Lie algebra with structural constants ¢ with respect

to some basis, and let {aq,...,a,} be the dual basis of g*. Then in the
Chevalley—Eilenberg complex (A*g*,d) we have
doy, = Z o Aoy (4.1)
1<i<j<k

2. Let g be the Lie algebra of a simply connected nilpotent Lie group G. Then,
by Malcev’s theorem [10], G admits a lattice if and only if g admits a basis
such that all the structural constants are rational.

3. By Nomizu’s theorem, the Chevalley—FEilenberg complex (A*g*,d) of g is
quasi-isomorphic to the de Rham complex of G/T". In particular,

H*(G/T) = H*(A*g*, d) (4.2)

and any cohomology class [a] € H*(G/T") contains a homogeneous represen-
tative «. Here we call the form « homogeneous if the pullback of o to G is
left invariant.

Theorem 4.1. There exist at least five 6 -dimensional flexible nilmanifolds.

To prove this theorem we run our fingers over all 34 6-dimensional compact
nilmanifolds. The results are contained in the table below. The proofs take all the
remained part of the section.

It follows from Corollary 2.2 that dim HF.(M) = dim H*(M), for k # 3,4,5.
Therefore, we should study the behavior of h; = dim Hf (M) for degrees k =
3,4,5. We were not able to compute hs, but we have found 5 manifolds with
hy and/or hs varying. So, by 1.11, there are at least five 6-dimensional flexible

nilmanifolds.

It turns out that every 6-dimensional real nilpotent Lie algebra admits a basis
with rational structural constants. So, by what we said above, the 6-dimensional
compact nilmanifolds are in a bijective correspondence with the 6-dimensional
simply connected nilpotent Lie groups, and hence with the 6-dimensional nilpotent
Lie algebras.

We use the classification of nilpotent Lie algebras given by Salamon [14]. It
is based on the Morozov classification of 6-dimensional nilpotent Lie algebras
[12]. We have added to Salamon’s classification the symplectically harmonic Betti
numbers hy(M) for k=4,5.

In the table Lie algebras appear lexicographically with respect to the triple
(b1, ba,6 —s) . The first two columns contain the Betti numbers b; and by (notice
that bg = 2(by —by + 1) because of the vanishing of the Euler characteristic). The
next column contains 6 — s, where s is the step length.

T There are some reasons to conjecture that hz = b3 for all closed 6-dimensional manifolds.
So, if it is true then we have exactly five 6-dimensional flexible nilmanifolds.
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The fourth column contains the description of the structure of the Lie algebra
by means of the expressions of the form (4.1) in the Chevalley-Eilenberg complex.
In view of 4.2, it means that, say, for the compact nilmanifold M from the second
row, there exists a basis {a;}?_; of homogeneous 1-forms on M such that

doy =0 = das, das = a1 N ag,  dog = a1 A as,

dos = a A oy, doag = ag A ayg + as A as.

The column headed @ indicates the dimensions of the irreducible subalgebras
in case g is not itself irreducible.

The next columns show the dimensions h; for k= 4,5. So, the column, say,
hy contains all possible values of h4(M,w) which appear when w runs over all
symplectic forms on M. The sign “~” at a certain row means that the correspond-
ing Lie algebra (as well as the compact nilmanifold) does not admit a symplectic
structure.

For completeness, in the last columns we list the dimension dimg S(g) of the
moduli space of symplectic structures.

Conventions 4.2. (a) In future we say that a compact nilmanifold G/T" has
type, say (0,0,12,13,14,15) if the corresponding Lie algebra has the structure
(0,0,12,13,14,15) (i.e. in our case, sits in the third row).

(b) From now on we write ;... instead of a; Aoy A~ Aay.

Proof of Theorem 4.1

We prove the theorem via considering case by case. Namely, we study in more
detail the cases which are proclaimed to be flexible. In view of 1.11, they are
precisely the cases of compact nilmanifolds with varying symplectically harmonic
Betti numbers hy . Here the main tool for computing hy is Corollary 2.4. In
order to find symplectic structures on M, we use the following proposition.

Proposition 4.3. Let M*" be a compact manifold of the form G/T" where T' is
a discrete subgroup of a Lie group G, and let w € Q*(M) be a closed homogeneous
2 -form such that [w]™ # 0. Then w is a symplectic form on M.

Proof. Since [w]™ # 0, we conclude that the linear form w|T,M is non-degenerate
for some point z € M. So, w” is non-degenerate since it is homogeneous. Thus,
w is non-degenerate. QED

Proposition 4.4. The nilmanifold M of the type (0,0,12,13,23,14 — 25) s
flexible.
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Six-dimensional real nilpotent Lie algebras
b1 | by | 6—35 Structure ® ha hs | dimrS(g)
2 1 2] 1 |(0,0121314+2334+52) - -
2 | 2 1 (0,0,12,13,14,34+52) - | - -
21 3| 1 (0,0,12,13,14,15) 31 0 7
2 | 3| 1 |(00,12,13,14+2324+15) 2 | o 7
2 13| 1 (0,0,12,13,14,23+15) 21 0 7
2| 4| 2 (0,0,12,13,23,14) 4|0 8
21 4| 2 (0,0,12,13,23,14425) 4 | o0 8
34| 2 (0,0,0,12,14-23,15+34) 2 | o 7
35| 2 (0,0,0,12,14,15+23) 4| 2 8
315 | 2 (0,0,0,12,14,15+23+24) 34 | 0.2 8
35| 2 (0,0,0,12,14,15+24) 145 4| 2 8
315 | 2 (0,0,0,12,14,15) 145 4 | 2 8
35| 3 (0,0,0,12,13,14+35) = | = -
35| 3 (0,0,0,12,23,14-+35) g —
35| 3 (0,0,0,12,23,14-35) B - -
35| 3 (0,0,0,12,14,24) 145 — | = -
315 | 3 | (0,00,12,13+42,14423) 3]0 8
35| 3 (0,0,0,12,14,13+42) 3|0 8
35| 3 (0,0,0,12,13+14,24) 23] 0 8
36| 3 (0,0,0,12,13,14+23) 3| o0 9
36| 3 (0,0,0,12,13,24) 5 1 0 9
36| 3 (0,0,0,12,13,14) 4] 0 9
38| 4 (0,0,0,12,13,23) 78| 0 9
46| 3 (0,0,0,0,12,15+34) -1 - —
4| 7] 3 (0,0,0,0,12,15) 1444 3 | 2 9
4| 7| 3 (0,0,0,0,12,14-+25) 145 3 | 2 9
418 4 (0,0,0,0,134+42,14+23) 7| 2 10
48| 4 (0,0,0,0,12,14-+23) 6 | 2 10
48] 4 (0,0,0,0,12,34) 343 7| 2 10
49| 4 (0,0,0,0,12,13) 145 78| 2 11
519 4 (0,0,0,0,0,12+34) 145 = | = -
5 111 | 4 (0,0,0,0,0,12) W3 | 9 | 4 12
6 15| 5 (0,0,0,0,0,0) 14+---+1] 15 | 6 15
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Proof. According to our assumption about the type of M, there exists a basis
{a;}2_, of homogeneous 1-forms on M such that

doy = dog = 0, dog = a2, doy = o3, das = ass, dog = g — aos.

Since the de Rham cohomology of the nilmanifold is isomorphic to the Chevalley-
Eilenberg cohomology of the Lie algebra, we conclude that

H'M) = {[oa], [az]},
H*M) = {[oua], [ous + o24], [oras — 34], [org6 — i35]}-
In particular, by 4.3, a 2-form w on M is symplectic if and only if
[w] = Alais] + Blas + agy] + Clans — azq] + Dlaigs — ass),
where ACD —B(C? +D?)#£0, A,B,C,DcR.

Claim 4.5. Let w be a symplectic form on M. Then the following holds:
(i) if C? £D?, then hy =4
(i) if C2 =D? and A% # 4B?, then hy=3;
(iii) if C? =D? and A? =4B?, then hy =2.

Furthermore, hs =0 for every symplectic form w on M.

Proof. 1t follows from the Poincaré duality that H*(M) = R*. Hence, by (4.2)

H*Y(M) = {[ev1246), [ev1256], [01356], [cv1346 + cvoase] }
since the four cohomology classes from above are linearly independent. Further-
more, for every w the image of the mapping L : H>(M) — H*(M) is
ImL = {-Claizs]+ Dlaisse], 2D[a1246] — 2C[ar1256],
—Alaa46] — 2Blaiase] — 2C[aisss] — D[oiasas + 2356,
2B[a1246] + Alaiose] — 2D[ai3ss] — Claizas + a23s6)},

which has dimension 4 for C? # D?, dimension 3 for C? = D? and A? +#£ 4B?,
and dimension 2 for €2 =D? and A? =4B?. The result follows from Corollary
2.4. QED

Now, the proof of the proposition follows from 1.11. QED

Proposition 4.6. The nilmanifold of the type (0,0,0,12,14,15 + 23 + 24) s
flexible.

Proof. According to our assumption about the type of M, there exists a basis
{a;}%_, of homogeneous 1-forms on M such that

dOLl = daz = dag = 07 ClOL4 = (¥192, ClOL5 = (14, dCM6 = Q15 + Q93 + Qa94.
The cohomology groups of degrees 1, 2 are:
H' (M) = {[oa], [a], [ea]},
H*M) = {[ous], [a1s), [oas], [os + s — asal, [oos — aus]}.
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In particular, if w is a symplectic form on M then
[w] = Alays] + Blais] + Claas] + Dlaig + ass — asa] + Elaag — aus),

where AE? + BDE — CDE — D3 #£0.
The following claim can be proved similarly to 4.5.

Claim 4.7. Let w be a symplectic form on M. Then the following holds:
(i) of ELO0, then hay =4, hs =2;

(i) if E=0, then hy—3, hs—0. 0
Now, by 1.11, M is flexible. m

We hope that now it is clear how to run over all the three remaining cases.
So, below we omit the details while indicate the main steps of the corresponding
calculations.

Proposition 4.8. The compact nilmanifolds of types
(0,0,0,12,13 + 14,24), (0,0,0,12,13,23) and (0,0,0,0,12,13)

are flexible.

Proof. Case (0,0,0,12, 13+ 14,24) :

H*(M) = {[as], 5], [or2s], [e16 + aos + ), [ans]},
and the 2-form w on M is symplectic if and only if
[w] = Alaz] + Blais] + Clawa] 4 Dlaie + azs + as4] + E[aag],

where D(BE — D?) £ 0. Furthermore, if EB + 3D? # 0 then hy = 3; otherwise,
hy = 2. Finally, hs =0 for every w.

Case (0,0,0,12,13,23):

HQ(M) = {[a1a]; [as], [e16 + 5], [one — 4], [a24], [cva], [ass], [ase]},
and the 2-form w on M is symplectic if and only if
[w] = Ala1s] +  Blags] + Claus + aas] + Dlais — as4]
+  Elags] + Flags] + Glass| + H|azss),
where
ACH — AFG — BDF — BEH + DC? + CEG + CD? + DEG # 0.

Furthermore, if C? 4 CD +D? —BF —EG + AH # 0, then hy = 8; otherwise,
hy = 7. Finally, hs =0 for every w.

Case (0,0,0,0,12,13):
The second de Rham cohomology group is given by

H*(M) = {[a1d], [, [eas], [eas], [aaa], [oas], [eraa], [eas + cuss], [eras] ;-
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The 2-form w on M is symplectic if and only if

[w] = Alaa] +  Blaus] + Claie] + D[aas] + Efag4] + Flaos]
+  Glasg] + H|ogs + azs] + I[ase],
where —AFI+H?A+BEI-BGH —CEH +CFG +# 0. Furthermore, if H2—FI # 0,
then hys = 8; otherwise, hy = 7. Finally, hs =2 for every w.

Notice that in this last case the nilpotent Lie algebra (so the compact nilman-
ifold) is reducible of type (1+5). QED

Comment 4.9. Here we want to say more about flexibility of manifolds appeared
in 4.4 and 4.6.
(a) Consider the manifold from 4.4 and the family

+ 1
wy = _Q(t—3)a14 + Z(tz — 5t +4) (a5 + aza)
t
_ 5(t —3) (s — a34) + a1 — 35

of closed 2-forms on M . The form w; is symplectic if
% — 1145 + 39t — 45¢% + 4% — 20t + 16 # 0.

This polynomial has two real roots, and both of them lie out of the interval
(1 —&,4). So, because of 4.5

h4(w2) =2, h4(w1) = hy (me) =

and hy(w;) =4 for all other ¢t € (1 —£,4).
(b) Consider the manifold from 4.6 and the family

wp = (1 —t)os —t(ais + ans — ama) + (1 — t) (s — aas)

of closed 2-forms. Since the polynomial AE? + BDE — CDE — D3 =3t -3t + 1
has no real roots, we conclude that w; is a family of symplectic structures and
1. h4(w1):37 h5(w1):0;

2. h4(wt):4, h5(wt):2 for t#l

Remark 4.10. Minding Theorem 4.1, it is natural to ask whether there exist
flexible nilmanifolds of dimension greater than 6. Taking into account the results
of the next section, we see that the answer is affirmative. However, the question
remains open for irreducible compact nilmanifolds of dimension greater than 6.

Remark 4.11. We have also considered the 6-dimensional compact completely
solvable manifold M constructed by Ferndndez—de Leén—Saralequi [6]. This com-
pact manifold does not satisfy the Hard Lefschetz condition (although it is of
Lefschetz type). We have

b1 (M) = bs(M) = 2, by(M) = bs(M) = 3, b3(M) = 4.
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Furthermore, h3(M,w) =4 and hy(M,w) = hs(M,w) = 2 for every symplectic
form w on M. We do not explain the details because M is not flexible.

The following question also seems to be interesting.

Question. Is there a Nomizu’s type result for compact nilmanifolds (more gener-
ally, homogeneous spaces) and the symplectically harmonic cohomology Hy (M) 7
In another words, does a symplectically harmonic de Rham cohomology class con-
tain a homogeneous symplectically harmonic representative (if we are considering
homogeneous symplectic structures)?

The answer is affirmative for degrees & <2 and k > 2m —2. Indeed, let G/’
be a 2m-dimensional compact nilmanifold with a homogeneous symplectic form
w, and let g be the Lie algebra of G . Since the image of a homogeneous form
under each of the operators x, d and L is homogeneous, the (finite dimensional)
subspaces Af (g*) and A*(g*) are sl(2)-submodules of Q*(G/I"). Therefore,
obvious analogues of Proposition 1.5, Corollaries 2.2 and 2.4 hold for g* and the
result follows from the Nomizu’s theorem.

5. Product formula for symplectically harmonic cohomology

Let (M?™ w;) and (N?",ws) be two symplectic manifolds. Consider the sym-

plectic product manifold (M x N,w) where w = pfwl +p72#w2 and

p - MxN—=M, po:MxN-—=N

are the projections. Given two forms o € QP?(M) and S € Q4(N), consider the
form
aR® B = (p]a) A (p] B) € QTIM x N).

Proposition 5.1. ([2])
x(al B) = (=1)P(x10) B (+2/3).

0
Corollary 5.2. (i) i(II)(a X B) = (i(I1})a) K B+ o K (4(115)3) ;
(i) 6(a®B) = (d10) WB+ (=1)Pall (526) ;
(i) QL. M)RQL (N) C QY M x N);
(iv) for all 'k we have 3, .\ hp(M)hq(N) < hy(M x N). O

Question. When the inequality in 5.2(iv) turns out to be the equality?
Now we consider the Lefschetz map

L7t HE(M x N) — H?™ P2 F(M x N).
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Proposition 5.3.
Potmin)y—1(M X N) = hop 1 (M) + hay1(N),
Potminy—2(M X N) = hapo(M) + hom1(M)hon 1 (N) + hon_2(N).

Proof. Because of the Kiinneth isomorphism
H*Mx N)=~ H"(M)® H*(N),
we conclude that
Im (Lm“‘*l) =[w]"® (Im Ly 1) ) (Im mel) ® [wa]™,

o] [ooa] fost]

and the first equality follows from 2.4. Similarly,
Im (L) = (i) @ fwo]" !+ (for ] ) © fwn]"}

& {lwr]™ @ (2] 20) + or] "1 @ ([wa] ")}
© {([w1]m71w1) ® ([w2]7k1w2)}'

where w,w; run over H?(M) and v,wy run over H?(N). Now, in view of 2.4,
the computation of dimensions completes the proof. QED

Corollary 5.4. Let M?>™ be a manifold which admits a family of symplectic
forms such that the symplectically harmonic Betti number ho,,  varies for k=1
or k=2. Then M x N is a flerible manifold whenever a manifold N admits a
symplectic structure.

Proof. If hop—1(M) varies then the result follows from the first equality of 5.3. If
hom_2(M) varies but ho,, 1(M) does not vary then the result follows from the
second equality of 5.3. QED

6. Duality

Consider a symplectic manifold (M?™,w) and the chain complex

S QR (M) _% QF (M) _8 QF-IM) ——— -

with ¢ as in (1.2). The following proposition follows directly from the definition
of 4.

Proposition 6.1.
(i) da =0 if and only if d(*xa) = 0;
(ii) a€lIm d if and only of *a€Im d. O
We define
HE(M) = H¥(M,w) = Ker 6°/Im 6", where 6* =§: Q' — Q1.
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Brylinski [2] uses the notation H{*™ for our Hf .

Corollary 6.2. [2] The operator * : QF — Q*™~F induces an isomorphism
x 1 HE(M) — HZ™F(M).
In particular, HE(M) = H*(M) for M closed. O

We dualize the definition of symplectically harmonic Betti numbers h; by
setting
hp(M) = hf (M, w) := dim (Qf /Im § N Qf,)

Corollary 6.3. Y (M) = hy (M) O

In particular, in view of 2.2, if M is closed then A3 (M) = bap_(M) for
E=0,1,2.

It is clear that many other results of Sections 1 and 2 can be dualized in a
similar way. We leave it to the reader.
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