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Limites d'espaces tangents à une surface normale

Jawad Snoussi

Résumé. Nous étudions l'ensemble des hyperplans limites d'hyperplans tangents à un germe de

surface normale. Nous caractérisons ces hyperplans par le fait que le nombre de Milnor de leur
section avec la surface n'est pas minimum. Nous donnons ensuite une generalisation des résultats
de [14] en termes de resolution simultanée faible de la famille des sections hyperplanes, ce qui
nous permet de determiner avec precision les tangentes exceptionnelles d'une surface normale.
Grâce à ces résultats, nous démontrons que "les composantes de Tyurina" d'une désingularisation
raisonnable se contractent sur des points fixes du système linéaire des courbes polaires.

Abstract. We study the set of limiting tangent hyperplanes of a normal surface germ. We
characterize these hyperplanes by the non-minimality of the Milnor number of their section with
the surface. Then we generalise the results of [14] in terms of weak simultaneous resolution of
the family of hyperplane sections, and hence we precisely determine the exceptional tangents of
a normal surface singularity. Applying these results, we prove that the "Tyurina components"
of a reasonable désingularisation contract to fixed points of the linear system of polar curves.

Mathematics Subject Classification (2000). 32S05, 32S15, 32S25, 32S35, 32S45.

Mots-clès. Surface normale, Limite d'espaces tangents, Tangente exceptionnelle, Nombre de

Milnor, Courbe polaire, Composante de Tyurina.

1. Introduction

L'étude de la géométrie locale d'un espace analytique complexe X au voisinage
d'un point singulier x est intimement liée au comportement des espaces tangents
à X au voisinage de x. Ce point de vue étudié notamment par H. Whitney, D.T.
Là et B. Teissier (cf. [30], [14], [13], [27], [17] a largement contribué à la
classification et à l'étude de l'équisingularité des espaces analytiques.

Considérons un espace analytique équidimensionnel X plongé dans (DN de

dimension d et x un point singulier de X. Notons v l'application qui associe à

tout point non-singulier de X la direction de l'espace tangent à X en ce point.
L'adhérence du graphe de v dans X x G(d, n) munie de la restriction de la
première projection \i : X —s- X est la modification de Nash de l'espace X. La
fibre \jTx{x) est identifiée à l'ensemble des directions limites d'espaces tangents à
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X en x.
Cet ensemble n'est connu explicitement que dans certains cas particuliers. Dans

le cas des courbes, c'est l'ensemble des composantes irréductibles du cône tangent.
Dans le cas des hypersurfaces à singularités isolées de (D3, J.P.G. Henry et D.T. Là
en donnent une description explicite dans [14]. Une caractérisation numérique dans
le cas des hypersurfaces à singularités isolées est donnée par B. Teissier dans [27].
Des caractérisations géométriques sont également faites dans le cas des surfaces
dans [13] et dans des situations générales dans [16] et [17].

Dans ce travail, nous nous consacrons au cas des surfaces normales plongées
dans (DN Un hyperplan tangent à la surface en un point non-singulier est un hy-
perplan de (DN qui contient le plan tangent à la surface en ce point. Nous étudions
en détail l'ensemble des limites d'hyperplans tangents à une surface normale en des

suites de points non-singuliers qui convergent vers ses points singuliers. L'idée de

considérer des hyperplans tangents, comme dans [17], permet dans le cas des
surfaces normales d'exprimer les résultats plus simplement. Nous remplaçons pour
cela la modification de Nash par le morphisme conormal. Plus précisément nous
donnons une généralisation des résultats connus dans le cas des hypersurfaces de
Œ à singularités isolées.

Dans [27], B. Teissier caractérise les hyperplans qui ne sont pas limites d'hyper-
plans tangents à une hypersurface à singularités isolées par la minimalité du nombre

de Milnor de la section hyperplane aux points singuliers. Nous démontrons
(théorème 4.2) que cette caractérisation est encore valable dans le cas des surfaces
normales. Pour cela, nous avons besoin d'une définition du nombre de Milnor
pour des courbes gauches. Nous utiliserons la généralisation du nombre de Milnor
pour une courbe gauche réduite donnée dans [1]. Une telle approche pourrait être
généralisée aux dimensions supérieures si l'on dispose d'une définition raisonnable
d'un nombre de Milnor généralisé.

Dans [16] (§2.1), D.T. Là et B. Teissier mettent en évidence sur le cône
tangent d'une surface S en un point singulier £, un nombre fini de génératrices,
dites tangentes exceptionnelles de la surface en £, qui permettent de décrire
l'ensemble des limites d'hyperplans tangents à la surface au voisinage de £ comme
réunion de l'ensemble des hyperplans tangents au cône tangent le long de ses

génératrices et de l'ensemble des hyperplans contenant une tangente exceptionnelle.

Dans [14], J.P.G. Henry et D.T. Là, démontrent que les tangentes
exceptionnelles d'une hypersurface de (D3 à singularités isolées correspondent aux
points, dans les courbes exceptionnelles des éclatements des points singuliers, où

il y a perte d'équisingularité de la surface éclatée le long des courbes exceptionnelles.

En utilisant la notion de résolution simultanée faible (cf. [26] et [1] §§4 et

5), nous démontrons, dans le cas des surfaces normales de (D (théorème 5.6), que
les tangentes exceptionnelles correspondent aux points où, localement, la famille
des sections hyperplanes n'admet pas de résolution simultanée faible. Ce qui nous

permettra de déterminer avec précision les tangentes exceptionnelles d'une
surface normale (théorème 5.8). Nous en déduisons une relation entre les sections
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hyperplanes que G. Gonzalez-Sprinberg et M. Lejeune-Jalabert appellent sections

hyperplanes générales dans [9] (définition 4) et les sections hyperplanes définies

par des hyperplans qui ne sont pas des limites d'hyperplans tangents à la surface

en ses points singuliers.
Dans [21] (III. remarque 3.12), M. Spivakovsky pose la question de savoir si

les points singuliers de l'éclatement des singularités d'une surface à singularités
rationnelles sont des points fixes du système linéaire des courbes polaires dans
l'éclatement. En remarquant que les tangentes exceptionnelles sont les tangentes
fixes du système linéaire des courbes polaires, nous pouvons répondre positivement
à cette question dans le cas général des surfaces normales (théorème 6.6). Nous
donnons également une formulation de ce résultat en terme de contraction des

composantes de Tyurina d'une désingularisation de la surface (théorème 6.9). Pour
cela, en utilisant un résultat de [9] sur la contraction des composantes irréductibles
du diviseur exceptionnel dans une résolution raisonnable, nous expliquons que la
notion de composantes de Tyurina introduite pour les singularités rationnelles de
surface dans [29], se prolonge au cas des surfaces normales comme l'a remarqué
M. Spivakovsky dans [21] (III. lemmme 7.1).

2. Définitions et résultats généraux

Soit (X,xq) un germe d'espace analytique équidimensionnel réduit de dimension d

que l'on supposera plongé dans ((EN,0). Nous désignerons par X un représentant
"assez petit" du germe (X, xo) et par Xq le lieu non-singulier de X.

Notons Ox,x0 l'anneau local des fonctions holomorphes définies sur X au
voisinage de xq.

2.1. Espace conormal

M ~ N
Considérons le sous-ensemble Co(Xo,(D de Xo x (D constitué des couples
(x, £) où x G Xo et £ : (K>N —s- (D est une forme linéaire qui s'annule sur l'espace

tangent, T^Xo à Xo en x.

~ N— 1

Définition 2.1. L'adhérence dans X X P du projectivisé par rapport au second

facteur de l'espace Co(Xo,(E est appelée espace conormal associé à X dans
(C ; on le note C(X, (D On note \ '¦ C(X, (D —y X le morphisme induit
par la première projection et on l'appelle morphisme conormal.

L'espace conormal C(X,(DAr
dimension N + d-l (cf. [25]).

L'espace conormal C(X,(DAr) est un sous-espace analytique de Œ^xf de

Si x désigne un point non-singulier de l'espace X, l'ensemble \x (x)|
correspond à l'ensemble des hyperplans de (DN tangents à l'espace X en x
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On dit qu'un hyperplan H de (EN est une limite d'hyperplans tangents à

l'espace X en xq s'il existe une suite de points non-singuliers (xn) de X qui
converge vers xq et une suite d'hyperplans (Hn) de (DN telles que pour tout n
l'hyperplan Hn soit tangent à X en xn et la suite (Hn) converge vers H dans

P Le projeté sur P de l'ensemble |x^1(^o)| est l'ensemble des hyperplans
limites d'hyperplans tangents à X en xq. On l'identifiera à \x 1 (ico)|• L'essentiel
de ce travail est consacré à l'étude de ce dernier ensemble dans le cas où X est

une surface normale en xq.

Définition 2.2. Nous dirons qu'un hyperplan de (KN est général s'il n'est pas
une limite d'hyperplans tangents à X era xq.

2.2. Liens entre les limites d'hyperplans tangents et le cône tangent

Un résultat dû à H. Whitney, dans [30] (théorème 22.1), appliqué aux limites
d'hyperplans tangents permet de relier le cône tangent à l'ensemble des hyperplans
limites d'hyperplans tangents à X en xq :

Si x est un point de X autre que xq on notera (xqx) la sécante à X en xq
passant par x

Théorème 2.3. Si (xn) est une suite de points non-singuliers de X qui
converge vers xo, telle que lim (xoxn) l et si (Hn) est une suite d'hyperplans

n—>oo

tangents à X en xn qui converge vers un hyperplan H, alors on a I C H.

En particulier toute génératrice du cône tangent à X en xo est contenue dans

une limite d'hyperplans tangents à X en xq et réciproquement, toute limite
d'hyperplans tangents contient une génératrice du cône tangent.

Remarque 2.4. Dans le cas d'un germe de courbe, l'ensemble des limites d'hyperplans

tangents à X au voisinage de xo est l'ensemble des hyperplans de (DN qui
contiennent une droite du cône tangent.

On désignera par Cx,Xo le cône tangent à X en xo et par |Cx,a;ol l'ensemble
soujaçant.

Dans [13] (théorème 1.2.1), D. T. Là démontre un résultat dont le théorème
suivant est une conséquence directe:

Théorème 2.5. Soit (X, xo) un germe d'espace analytique équidimensionnel
réduit. Tout hyperplan tangent au cône tangent \Cx,xo\ ^e l°n9 d'une génératrice
est une limite d'hyperplans tangents à X en xq

Voir le paragraphe suivant pour la tangence à un cône le long d'une génératrice.
En général, cette inclusion n'est pas une égalité comme le montre l'exemple
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suivant:

Exemple 2.6. L'hypersurface S de Œ3 définie par l'équation x2 + y2 + z3 0

a une singularité isolée en 0. Le cône Cs.o est défini par l'équation x2 + y2 0 ;

c'est la réunion de deux plans. Chacun de ces deux plans est une limite de plans
tangents à S à l'origine. Cependant, tout plan de Œ d'équation ax + by 0 ;

a, b G Œ est aussi une limite d'hyperplans tangents à S au voisinage de 0.

2.3. Cas d'un cône de dimension 2

Avant de traiter le cas des surfaces normales, nous allons étudier l'ensemble des

limites d'hyperplans tangents à un cône de dimension 2 en son sommet. La raison
en est que le théorème 2.5 fait intervenir l'ensemble des hyperplans tangents au
cône tangent dans l'étude des limites d'hyperplans tangents à un espace donné.

Soit (X,xq) un cône de dimension 2 réduit de sommet xq que l'on supposera
contenu dans ((EN,xo). L'étude des espaces tangents à (X, xo) en xo est
simplifiée par le fait qu'elle se ramène à l'étude des espaces tangents à la courbe
projective projX.

En effet, l'homogénéité des polynômes définissant le cône (X,xq) implique
qu'un point x du cône différent de xq est singulier si et seulement si tous les

points de la génératrice (xxo) du cône sont singuliers, ce qui est encore équivalent
au fait que le point de la courbe projX correspondant à cette génératrice est

singulier, nous dirons alors que la génératrice (xxo) est singulière.
Par abus de langage nous dirons qu'une génératrice du cône est non-singulière

quand tous ses points autres que le sommet du cône sont non-singuliers; ce qui
équivaut à dire que le point lui correspondant dans la courbe projX est non-
singulier.

Si une génératrice / du cône est non-singulière, alors un hyperplan H de (EN

est tangent au cône en un point de / ^ xq si et seulement s'il est tangent au cône

en tout point de / (^ xo) ; ce qui équivaut à dire que l'hyperplan projectif projH
contient la droite tangente à la courbe projective projX au point correspondant
à la génératrice /. On dira alors que cet hyperplan est tangent au cône le long de

la génératrice /.
Par extension au cas des génératrices singulières du cône (X, xq) on dira

qu'un hyperplan H est tangent au cône le long d'une génératrice / si l'hyperplan
projectif projH contient la tangente à l'une des branches de la courbe projX au
point lo correspondant à la génératrice /.

Dans [22] (1.12), on démontre le résultat suivant:

Proposition 2.7. L'ensemble des limites d'hyperplans tangents à un cône X
de dimension 2 en son sommet est l'ensemble des hyperplans tangents au cône le

long de ses génératrices (singulières ou non). On notera cet ensemble T(X)
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Nous appliquerons les résultats de ce paragraphe au cône tangent d'une surface
normale en un point singulier.

2.4. Cas d'une surface normale

Dans toute la suite de ce travail nous allons nous restreindre au cas où le germe
d'espace analytique (X,xq) est le germe d'une surface normale (S,xo) plongée
dans Œ ; ce qui équivaut à dire que le germe de surface (S,xo) est à singularité
isolée et que l'anneau 0s,œo est Cohen-Macaulay (cf. [20] VI §2, [32] appendice 6

et [3] théorème 18.15).
Pour simplifier les notations, nous supposerons, quitte à faire un changement

de variable, que le point xo est l'origine 0 de (DN et nous désignerons par S un
représentant suffisamment petit du germe (S,0).

Le cône tangent Cs,o de la surface S en 0 étant une surface, d'après la proposition

2.7, le théorème 2.5 s'exprime par l'inclusion: T(|Cs,o|) C \x 1(0)| •

Dans [16] (2.1.3), D.T. Là et B. Teissier établissent un résultat qui permet de

déterminer l'ensemble des limites d'hyperplans tangents à une surface normale à

l'origine. Ce résultat est également contenu dans [5] (page 23).

Théorème 2.8. Il existe un nombre fini de génératrices l\,--- ,/& de |Cs,o|
telles que l'ensemble |^ 1 (0)| soit la réunion de 7~(|Cs,o|) et de l'ensemble des

hyperplans de (C contenant l'une des génératrices lt, 1 < i < k.

Définition 2.9. Les génératrices du cône tangent citées ci-dessus sont appelées

tangentes exceptionnelles de S en 0.

Une partie importante de ce travail consiste à caractériser puis déterminer les

tangentes exceptionnelles d'une surface normale.

3. Projections linéaires

Dans cette section, nous étudions le comportement des limites d'hyperplans
tangents à une surface normale sous l'effet d'une projection générique sur un plan
complexe.

Une projection linéaire pl : ®N —> Œ2, qui a pour noyau un (N — 2) -plan L,
induit un morphisme ttl : S —s- U C (C

Nous dirons que la projection ttl : S —s- U est générique si le morphisme ttl
est fini et son degré degoTr-^ en 0 est égal à la multiplicité m(S,0) de la surface
S en 0, qui est la multiplicité de l'idéal maximal de l'anneau local 0s,o•

D'après [24] (1.5.2), on a:
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Proposition 3.1. Une projection linéaire pl : (E —> (D induit sur S une
projection générique si et seulement si le noyau L de pl ne contient aucune
génératrice du cône tangent à S en 0; i.e. L Pi |Cs,o| {0} ¦

3.1. Lieu critique et discriminant

Considérons un morphisme tt : S —s- U d'une surface normale sur un ouvert de
Œ2.

Nous définissons le lieu critique de la projection tt comme étant l'ensemble
réduit sous-jacent à l'adhérence dans S du lieu critique de la restriction de tt au
lieu non-singulier de S Nous le noterons C(tt) ; c'est une courbe réduite.

Quand la projection tt est un morphisme fini nous définissons le lieu discriminant

de 7T comme étant l'ensemble réduit sous-jacent à l'image par tt du lieu
critique C(tt) ; nous le noterons |A,r| C'est une courbe réduite dans l'ouvert U
de Œ2.

Considérons une situation locale, où S est un représentant d'un germe de

surface normale et U est un voisinage ouvert de l'origine dans Œ Un point
générique, x d'une composante analytiquement irréductible du lieu discriminant
est affecté d'une multiplicité que l'on calcule comme suit: La restriction de tt au
dessus d'un voisinage de x à l'image réciproque par tt d'une droite transverse à

la composante irréductible contenant x est un morphisme fini entre deux courbes

non-singulières. Le point x est une valeur critique pour ce morphisme. Si l'on
note vy l'indice de ramification de ce morphisme en un point y au-dessus de x
alors la multiplicité affectée à x est définie par mx Y,yev-1{x){l'y ~ 1) (voir
[7] p. 217). Quand la surface S et l'ouvert U sont suffisamment petits, la semi-
continuité du degré de la projection implique que la multiplicité mx est la même

en tout point de la branche donnée, différent de l'origine.
Le lieu discriminant de la projection tt étant une hypersurface dans U, il est

défini par une fonction / Notons /j, i 1, • • • r les composantes analytiquement

irréductibles de / au voisinage de l'origine et mj la multiplicité affectée

aux points génériques de chacune de ces composantes.

Définition 3.2. Le discriminant de ir est l'hypersurface de l'ouvert U définie

par la fonction F f™1.../™' On le notera A^

Le discriminant défini ci-dessus est la clôture schématique du discriminant usuel
de la restriction de la projection au lieu non-singulier de la surface.

Le lieu discriminant est l'ensemble sous-jacent au discriminant.
Dans [28] (§§1 et 2), B. Teissier définit l'espace discriminant en terme d'idéaux

de Fitting. La définition que l'on donne ne permet pas d'établir l'invariance

par changement de base, cependant elle assure l'inexistence de composantes
immergées.
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Dans le cas où la surface S est une intersection complète ces deux définitions
sont équivalentes (voir [27] III. proposition 4).

Cette modification de la définition du discriminant nous permet d'énoncer le

lemme 4.4 dans la section suivante.

3.2. Un lemme clé

Nous donnons maintenant la caractérisation suivante des hyperplans généraux, en

rappelant
tangents.
rappelant qu'un hyperplan de (EN est général s'il n'est pas une limite d'hyperplans

Théorème 3.3. Un hyperplan H de (KN est général si et seulement s'il existe

un (N — 2) -plan LC-ff tel que L Pi |Cs,o| {0} et tv\^{H C\ S) ne soit pas une
droite du cône tangent Cal,o du discriminant Al de ttl en 0, où ttl est induit
par la projection linéaire de noyau L

Ce théorème est à la source des principaux résultats énoncés dans ce travail.
Démonstration: Nous suivons une démarche similaire à celle de D. T. Là dans

[13] (lemme 2.3.1).
Commençons par prouver qu'un hyperplan H de (EN qui contient un (N — 2)-

plan L vérifiant L n |Cs,o| {0} et tel que ttl(H Pi S) soit une droite du cône

tangent, Cal,o du discriminant Al en 0 est une limite d'hyperplans tangents à
S enO.

Précisons que puisque le (N — 2) -plan L est un hyperplan de H et que pour
un choix convenable du représentant S et de l'ouvert U la projection ttl : S —s- U
est finie et surjective, l'image tv\^{H C\ S) n'est autre que la trace sur l'ouvert U
de l'image de H par la projection pl '¦ ® —> (D qui est une droite D de (D

La droite D étant contenue dans le cône tangent réduit |Cal,o|, il existe une
suite de droites (Tn), tangentes au lieu discriminant |Al| en des points non-
singuliers yn et qui converge vers D. Il existe une suite de points non-singuliers
(xn) de S contenue dans le lieu critique de ttl telle que pour tout n, 7TL(xn)

yn. Notons TXriS l'espace tangent à S en xn. Prouvons que p-^(TXriS) Tn :

La projection ttl est de rang < 1 en tout point du lieu critique, on a donc
dimpi^CJ:XrS) < 1. Par ailleurs, d'après le théorème de Bertini (cf. [2] théorème
20.1), en choisissant un représentant suffisamment petit du germe (S, 0), la restriction

du morphisme ttl à son lieu critique est sans point critique sauf éventuellement
à l'origine. Ainsi, le morphisme ttl est de rang 1 en tout point de son lieu critique
autre que l'origine et donc d,impi^CJ:XrS) 1. D'où l'égalité: pi^(TXnS) Tn.

Notons Hn l'hyperplan pL (Tn) ; c'est un hyperplan tangent à S en Xr,

puisqu'il contient le plan tangent TXriS Quitte à en extraire une sous-suite, on

peut supposer que la suite (Hn) converge dans P vers un hyperplan que l'on
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notera H^,. On a alors:

Pl(H00)=Pl( lim Hn) lim pL(Hn) lim Tn D pL(H).
n—>oo n—>oo n—>oo

Les deux hyperplans H et H^ sont donc égaux; et par suite l'hyperplan H est

une limite d'hyperplans tangents à la surface S en 0.

D'autre part, si l'hyperplan H ne contient aucune composante irréductible
de |Cs.o| alors l'intersection des espaces projectifs proj H et proj |Cs.o| est un
nombre fini de points de F^"1. Par conséquent, un hyperplan général L de H
n'a aucune droite en commun avec |Cs.o| et donc L n |Cs.o| {0} -

Ainsi, si pour tout hyperplan L de H l'intersection Ln|Cs.o| n'est pas réduite
à {0}, l'hyperplan H contient une composante irréductible du cône tangent.
D'après le théorème 2.8, l'hyperplan H est une limite d'hyperplans tangents à S

au voisinage de 0.

Ceci achève la preuve d'une implication, à savoir que si un hyperplan H est

général alors il contient un (N — 2) -plan L vérifiant L n |Cs.o| {0} et tel que
ttl(H Pi S) ne soit pas une droite du cône Cal.o •

Réciproquement, considérons un hyperplan Ho de (DN qui est une limite
d'hyperplans tangents à la surface S en 0.

Notons A : C(S, Œ —s- P le morphisme induit sur l'espace conormal de

S dans (DN par la seconde projection de S x P Nous noterons (O,Ho) un
M ' N—l

point de C(S,(D au-dessus de Hq G P et

le germe de morphisme induit par A au voisinage de (0,Hq).
Remarquons que puisque (O,Ho) € \o~1(Ho) alors cet ensemble est non-vide.
L'ensemble Xq1(Ho) est l'ensemble des couples (x,Ho) voisins de (O,Ho)

dans C(S,Œ'/V) avec x G S et Ho est tangent ou limite d'hyperplans tangents à

S en x
Trois cas se présentent donc: dimX^1 (Ho) 2, f, ou 0.

Les deux premiers cas, sont des situations identiques à celles de [13] (lemme
2.3.1). Dans le premier cas, tous les hyperplans de Ho ont une génératrice en

commun avec le cône tangent Cs.o • Dans le second, si L est un hyperplan de

Ho vérifiant Ln |Cs.o| {0} alors la droite contenant l'image ttl(Ho n S) de la
section Ho n S est une droite du cône tangent au discriminant Al en 0

Dans le troisième cas, le morphisme Ao est fini. Soit L un (N — 2) -plan,
hyperplan dans Ho • Notons Co l'ensemble des hyperplans de (DN contenant ce

- N—l
(N — 2)-plan L. L'ensemble Co est un sous-espace de P de dimension 1.

Rappelons que \ '¦ 0(8,0^) —> S désigne le morphisme conormal de S dans
®N Notons C x(^ö (co)) • Montrons que dim(C) 1 :

Tout d'abord, puisque Ao est fini, dim(X0 1(Co)) 1. Le morphisme conormal

X étant propre, l'espace C est un sous-espace analytique de S de dimension 1 ou 0.

Si dvm(C) 0 on aura C {0} donc A^1 (Co) est l'ensemble des couples (0, H)
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où H est un hyperplan de (Ew qui contient L et qui est une limite d'hyperplans
tangents à S en 0 Autrement dit, tout hyperplan de (Ew contenant L est une
limite d'hyperplans tangents à la surface S en 0 Si Ln |Cs.o| {0} il existe des

hyperplans de (DN qui contiennent L et qui ne sont pas des limites d'hyperplans
tangents. Donc la dimension de C ne peut pas être 0 Donc le sous-espace C de
S est de dimension 1

La courbe C est une composante du lieu critique de la projection ttl- En effet,
en tout point de C non-singulier pour S l'espace tangent à S est contenu dans

un hyperplan contenant L ; le noyau L de la projection va donc couper cet espace
tangent de manière excédentaire.

Considérons une suite de points (xn,Hn)n dans Ao"1(Co) qui converge vers
(O,Ho) dans l'espace conormal C(S,Œ'/V). Chaque hyperplan Hn est tangent à

la surface S au point xn G C et L C Hn. Par conséquent, l'image Tr^(Hn n S)

est une droite tangente au lieu discriminant |Al| de ttl- Quitte à en extraire
une sous-suite, la suite de droites Tr^(Hn n S) converge vers une droite du cône

Cal.o- Or 7TL,(-ffn H S) converge vers ttl(Ho CiS). L'image ttl(ÄoI~iS) est donc
une droite du cône tangent Cal.o du discriminant Al de ttl en 0.

On a donc démontré la deuxième implication, à savoir que si un hyperplan H
contient un (N — 2) -plan L vérifiant Ln |Cs.o| {0} et si l'image
n'est pas tangente au discriminant Al alors H est général.

4. Minimalité du nombre de Milnor

Dans le cas d'un germe d'hypersurface de (C à singularité isolée, B. Teissier
démontre dans [27] (1.1.4) qu'un hyperplan de Œ est général si et seulement
si sa section avec l'hypersurface est à singularité isolée et son nombre de Milnor
est minimum parmi les nombres de Milnor des sections hyperplanes à singularités
isolées. Nous nous proposons, dans cette section, de démontrer une condition
nécessaire et suffisante analogue et valable dans le cas des germes de surfaces
normales.

Dans [18] (§§6 et 7), J. Milnor définit le nombre de Milnor pour des hypersur-
faces à singularités isolées. Dans [12], H. Hamm définit aussi un nombre de Milnor
pour les intersections complètes à singularités isolées.

Dans le cas des surfaces normales de Œ les sections hyperplanes sont en
général des courbes gauches qui ne sont pas des intersections complètes. Cependant,

dans [1] (§1.1), il est associé à une singularité de courbe réduite, un nombre

\i qui a des propriétés topologiques analogues à celles du nombre de Milnor et qui
coincide avec celui-ci dans le cas des intersections complètes (cf. [1] (lemme 1.1.2)
et [10] (appendice 1)).

Considérons un germe de courbe réduite (C, 0) et notons n : C —> (C, 0) sa
normalisation. Posons S dirri(!;(n*öc)o/öcto et appelons r le nombre de branches
du germe (C,0). Nous avons une généralisation du nombre de Milnor pour un
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germe de courbe réduite défini de la manière suivante (cf. [1] (1.1.1 et 1.2.1)):

Définition 4.1. On appellera nombre de Milnor du germe de courbe (C,0) et

on notera /z(C,0) l'entier 2ô — r+1.

Le résultat principal de cette section est le suivant:

Théorème 4.2. Soit S un représentant d'un germe de surface analytique normal
plongé dans (D Un hyperplan H de (D ne contenant aucune composante
irréductible du cône |Cs,o| est général si et seulement si la section H (~) S est
réduite et /z(iïnS,0) est minimum parmi les nombres de Milnor en 0 des sections
hyperplanes réduites.

Remarquons que dans le cas où l'hyperplan H contient une composante irréductible

du cône tangent |Cs,o I alors, d'après le théorème 2.5, c'est une limite d'hyper-
plans tangents à S à l'origine.

D'autre part l'anneau local C?s,o des fonctions holomorphes sur S étant Cohen-
Macaulay, les sections hyperplanes de S qui sont des courbes, sont sans
composantes immergées (cf. [32] appendice 6 corollaire 3).

Avant de démontrer ce théorème, nous allons énoncer deux lemmes:
Le premier lemme permet de régler le cas des sections hyperplanes qui ont des

singularités non-isolées.

Lemme 4.3. Si l'hyperplan H est général alors la section de H avec S est

une courbe réduite.

Démonstration: Considérons un hyperplan H dont la section avec S n'est

pas réduite. Notons E une composante non-réduite de H D S. En tout point x
de E l'hyperplan H n'est pas transverse à S, il contient donc le plan tangent
à la surface S en tout point de E. En prenant une suite de points (xn) de la

composante E qui converge vers 0, l'hyperplan H est tangent à S en tout point
xn non-singulier; c'est donc une limite d'hyperplans tangents à S à l'origine.

Le second lemme permet d'établir un lien entre le nombre de Milnor d'une
section hyperplane réduite et la multiplicité d'intersection de son image avec le

discriminant d'une projection linéaire générique. Reprenons les notations de la
section précédente: ttl : S —s- U est la projection générique induite par un (N—2) -

plan L et Al est son discriminant défini dans 3.2. On a:

Lemme 4.4. Soit l : (D —> (E une forme linéaire et soit a /ottl. Si la courbe

<T^1(0) est réduite, la 'multiplicité d'intersection (Al • /^1(O))o en 0 est égale à
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Nous remercions le professeur D.T. Là qui nous a aimablement communiqué
une preuve de ce lemme.

Démonstration: Si l'on note D un disque ouvert dans Œ centré en 0 et de

rayon suffisamment petit et si l'on choisit un bon représentant S du germe de

surface (S,0) qui, rappelons-le, est normal, le morphisme a : S —s- D est une
lissification de la courbe a~1(0).

Si l'on note x(°" 1(^)) la caractéristique d'Euler de la courbe o~l{t) pour
£ G D et si l'on suppose que la courbe a~1(0) est réduite alors, d'après [f]
(corollaire 4.2.3), on a:

En considérant la restriction de la projection ttl à la courbe a~1(t), et en
remarquant que le lieu de ramification de cette restriction est l'ensemble des points
d'intersection de la courbe /^1(t) avec le discriminant Al de ttl, on obtient:

(de9vi,i'!rL ~ 1))

(4.1)

Par ailleurs, le discriminant Al étant une hypersurface dans un ouvert de (D

on a:

(/-1(O)-AL)o= J2 (^W-AlW (4.2)

suei-^sjnAL

Or on a:

(l-\t)-AL)xt= J2 (degyîJ7rL-l). (4.3)

yi,1e7TL1(xî)

En remplaçant (4.3) dans (4.2) puis dans (4.1) on a:

X(*-\t)) degoirL - (r\0) ¦ AL)0.

D'où l'égalité:
M^-^O)^) 1 - degO7rh + (r^O) ¦ AL)0.

n
Nous pouvons maintenant donner la démonstation du théorème 4.2:

Démonstration: Précisons que si un hyperplan H de (C ne contient aucune
composante irréductible du cône |Cs,o| alors l'intersection iîn|Cs,o| est un nombre

fini de droites et donc un hyperplan générique L de H vérifie la condition
Ln|Cs,o| {O}.

Considérons un hyperplan H qui ne contient aucune composante irréductible
de |Cs,o| j qui s°it une limite d'hyperplans tangents à la surface S en 0 et tel que
la section HDS soit réduite. Considérons alors un (N — 2)-plan L contenu dans
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H tel que L n |Cs.o| {0} et notons ttl : S —s- U la projection générique définie

par L comme dans la section prédédente.
Pour le màme (N — 2) -plan L, nous avons vu lors de la preuve du théorème

3.3, qu'il existe un hyperplan H1 général contenant L. D'après le lemme 4.3, la
courbe H1 D S est aussi réduite.

D'après le lemme 4.4, on a:

(7rL(ffnS)-AL)0 Li(HnS,O) + degoirL-l
et (4.4)

D'après le théorème 3.3, la droite tv\^{H C\ S) est une droite du cône tangent
à Al en 0 et la droite tv\^{H' C\ S) n'en est pas. Par conséquent d'après [4] (III.
§3), on a:

(7rL(ffnS)-AL)0 > m(AL,0)
et (4.5)

K(iî'nS)-AL)0 m(AL,0)
II résulte de (4.4) et (4.5) que:

/x(iïns,o)
Le nombre de Milnor de H n S en 0 n'est donc pas minimum.
Réciproquement, considérons un hyperplan H de (K>N ne contenant aucune

composante irréductible de |Cs.o •

Si la courbe HDS n'est pas réduite alors d'après le lemme 4.3, l'hyperplan H
est une limite d'hyperplans tangents à S à l'origine.

Supposons maintenant que la courbe H D S est réduite et le nombre de Milnor
/z(iïnS,0) n'est pas minimum. D'après [1] (théorème 6.1.7), il existe un ouvert
dense Q de l'ensemble des hyperplans de (EN tel que pour tout H' G Q on
ait H1 n S est réduite et \i{H' n S,0) < jjl{H n S,0). L'ensemble des intersections

des hyperplans contenus dans Q avec l'hyperplan H est un ouvert dense
de l'ensemble des hyperplans de H Par ailleurs, puisque l'hyperplan H ne
contient aucune composante irréductible de |Cs,o|, l'ensemble des hyperplans de H
n'ayant aucune génératrice en commun avec le cône |Cs.o| est aussi un ouvert
dense de l'ensemble des hyperplans de H. Il existe donc un hyperplan H' de (EN

tel qu'on ait à la fois H' n S est une courbe réduite, fj,(H' n S,0) < (j,(H n S,0)
et si l'on note L le (N — 2) -plan de (K>N défini par l'intersection H' Ci H alors

Ln|Cs,o| {O}.
Si l'on note ttl la projection générique définie par L, on a d'après le lemme

4.4,
(AL-7rL(ffnS))0 Li(HnS,O) + degoirL-l

et (4.6)

(AL-7rL(ff/nS))0 Li(H'nS,Q) + degoirL-l
Puisque \i{H' n S, 0) < /x(iî n S, 0), on a alors

(AL • irL(H n S))o > (AL • irL(H' n S))o.
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Par conséquent, la droite (tti,(HC\S)) est une droite du cône tangent au discriminant

Al enO. D'après le théorème 3.3, l'hyperplan H est une limite d'hyperplans
tangents à la surface S à l'origine. Ce qui achève la preuve du théorème 4.2.

Exemple. Considérons la surface normale S de Œ définie par (x2 + y3 + z2 +
£4,2x2 + 3y3 + z2 — tA). Le cône tangent réduit |Cs,o| est le plan de Œ défini

par (x,z).
Considérons maintenant le 2-plan L de Œ4 défini par (y,t). On a bien la

condition de généricité L n |Cs,o| {0}- Le discriminant de la projection ttl est

l'hypersurface AL de Œ2 définie par ((y3-t4)2(y3-3t4)2). On a m(AL,0) 12

et |Cal,o| est la droite de Œ2 définie par (y). Le degré de la projection ttl vaut
4.

Notons Hy=o et Ht=o les hyperplans de Œ4 définis respectivement par (y)
et par (t). D'après le théorème 3.3, l'hyperplan Hy=o est une limite d'hyperplans
tangents à S en 0 et l'hyperplan Ht=o est général.

Les sections hyperplanes Hy=o n S et Ht=o n S sont définies respectivement
par {y,x2 — 2t4,z2 + 3t4) et par (t,x2 + 2z2,y3 — z2). Dans les deux cas ce

sont des intersections complètes définies par des polynômes quasi-homogènes. En
appliquant la formule donnée par M. Giusti dans [11] (§1) pour le calcul du nombre
de Milnor dans ce cas, on obtient:

=0 n S, 0) 13 et fj,(Ht=0 n S, 0) 9.

Par ailleurs, si l'on note \imin to(Al,0) + m(S,0) — 1, qui dans ce cas vaut
12 — 4+1 9, alors d'après le théorème 4.2, on doit avoir /j(Ht=o n S, 0) \imin
et jj(Hy=oC]S,0) > j-imin, ce qui est le cas d'après le calcul des nombres de Milnor.

Remarquons que l'hyperplan Hy=o n'est pas tangent au cône |Cs,o|- D'après
le théorème 2.8, l'hyperplan Hy=o contient donc une tangente exceptionnelle de

la surface S en 0. Dans ce cas, la droite définie par [x,y,z) est cette tangente
exceptionnelle de S en 0.

5. Tangentes exceptionnelles

Rappelons que d'après le théorème 2.8, la détermination de l'ensemble des limites
d'hyperplans tangents à une surface normale en un point singulier passe par la
détermination des tangentes exceptionnelles de cette surface en ce point singulier.

Nous allons commencer par donner une caractérisation des tangentes
exceptionnelles d'un germe de surface normale en terme de résolution simultanée faible
des familles des sections hyperplanes.
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5.1. Résolution simultanée faible

Considérons un germe de morphisme plat d'espaces analytiques fXo : (X,xq) —?

(D,do) où (X,xq) est le germe d'une surface et (D,do) celui d'une courbe
non-singulière. Notons / : X —s- D un représentant suffisamment petit du germe
fXo, n : X —> X la normalisation de la surface X et / : X —> D le morphisme
composé / on.

La normalisation en famille et la résolution simultanée faible de / : X —s- D

sont définies comme suit (cf. [26] §1 et [1] 4.1.5):

Définition 5.1. La famille de courbes f : X —> D a une normalisation en

famille si pour tout d € D la courbe f 1(d) est non-singulière.
Si de plus f a une section holomorphe a : D —> X telle que f 1(d) — {a(d)}

soit non-singulière pour tout d £ D et \n~1(a(D))\ D X \n~1(a(do))\ alors on
dit que le morphisme f a une résolution simultanée faible en xo le long de <r(D).

Dans le cas où les fibres du morphisme / sont des courbes planes, la résolution
simultanée faible est caractérisée par l'une des nombreuses notions équivalentes
d'équisingularité d'une surface en un point le long d'une courbe (cf. [16] §1.2).
Certaines de ces équivalences ne sont plus valables dans le cas des courbes gauches.
Cependant nous disposons des équivalences suivantes ([26] théorème 1.3.2 et [1]

théorème 5.2.2):

Théorème 5.2. Soit f : X —> D comme ci-dessus.

a) Le morphisme f a une normalisation en famille si et seulement si pour tout
del) la courbe f-^d) est réduite et ôif-^d)) ^/"^do)), où ôif-^d))

&{f 1{d),x), l'invariant 5 étant celui introduit pour la définition 4-1-

b) Le morphisme f a une résolution simultanée faible si et seulement si l'une
des propriétés équivalentes suivantes est vérifiée:

(i) Le morphisme f a une normalisation en famille et il existe une section
a : D —s- X telle que le nombre de branches, r(f^1(d),a(d)), de f^1(d) au point
a(d) soit constant pour tout d G D.

(n) Le morphisme f est à fibres réduites et a une section a : D —s- X telle

que le nombre de Milnor /^(f^1(d),a(d)) soit constant pour tout deD.q

5.2. Caractérisations des tangentes exceptionnelles

Nous allons maintenant étudier l'existence d'une résolution simultanée faible dans
le cas des familles de sections hyperplanes d'une surface normale.

N nConsidérons un (N — 2)-plan L de (EN tel que Ln|Cs,o| {0}. La projectio
générique ttl : S —s- U C (E2 est définie par deux fonctions holomorphes f et g
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contenues dans l'idéal maximal m de l'anneau local 0s.o- La généricité de ttl
fait que la paire (/,<?) est une suite régulière de l'anneau 0s.o- Considérons
l'éclatement e^ : SL —s- S de l'idéal primaire (f,g)Os.o- Nous avons alors le

diagramme commutatif suivant:

SxP1 ^-> S; —2^ s < > (KN

(5-7)

[/xP1 <-- £/' co : £/ < > Œ2

où eo est l'éclatement de l'origine dans U et ttl est donné par la propriété
universelle de l'éclatement.

La surface SL est définie dans SxP1 par l'idéal (fT2-gT1) de 0s.o[Ti,T2],
où (Ti : T2) est un système de coordonnées homogènes dans P (cf. [3] 17.14).
Par unicité du morphisme ttl donné par la propriété universelle de l'éclatement,
7TL est le morphisme induit sur SL par la projection (ttl, Wpi : S x P1 —s- U x P1.

Le morphisme ttl est un morphisme fini.
Considérons la projection pT2 : U' —s- P1, et notons / : SL —s- P1 le morphisme

composé pr2 o 7TL. Les fibres du morphisme / sont exactement les transformées
strictes par eL des sections hyperplanes de la surface S définies par les hyperplans
de (K>N qui contiennent le (N — 2) -plan L. Une section hyperplane de S définie

par un hyperplan contenant le (N — 2) -plan L étant isomorphe à sa transformée
stricte par l'éclatement eL on peut voir le morphisme / : SL —s- P comme la

famille des sections hyperplanes de S définies par les hyperplans de Œ contenant
L.

D'autre part, la surface S étant normale, l'espace SxP est Cohen-Macaulay
au voisinage de chacun de ses points. La surface SL étant une hypersurface dans
SxP1, son anneau de fonctions holomorphes est donc localement Cohen-Macaulay.
Il en résulte que le morphisme / : SL —s- P1 est plat.

On fera alors une étude locale de l'existence de résolution simultanée faible de

la famille de sections hyperplanes / : SL —s- P1 en chacun des points du diviseur
exceptionnel de SL.

5.3. Considérons un point xo de la surface SL appartenant à la fibre
exceptionnelle de l'éclatement eL. Notons Xl un représentant assez petit du germe de

surface (SL,xo), Dl son image par le morphisme / et /l : Xl —> Dl C P le

morphisme induit par /.
Précisons que le morphisme /l : Xl —? Dl ainsi construit, a une section

naturelle a : Dl —? Xl qui à tout point d G Dl associe le point a(d) G Xl
défini comme étant l'unique point d'intersection de la fibre f^l{d) avec le diviseur
exceptionnel de l'éclatement eL dans Xl-

Théorème 5.4. Soit H un hyperplan de (KN ne contenant aucune composante
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irréductible du cône |Cs,o| ¦ H est général si et seulement si pour tout hyperplan L
de H vérifiant L Pi |Cs,o| {0} on a: si l'on note xq le point exceptionnel de la

transformée stricte, par e^ de la section H D S et /l : Xl —? Dl le morphisme
construit, comme dans 5.3, autour de xq, alors /l a une résolution simultanée
faible le long de <t(Dl).

Démonstration: Soit H un hyperplan de (C ne contenant aucune composante
irréductible du cône |Cs,o|-

Supposons que l'hyperplan H est général. Soit L un {N — 2) -plan de (C

contenu dans H et tel que Ln |Cs,o| {0}. Notons xo le point d'intersection de

la transformée stricte de H n S par l'éclatement e^ avec le diviseur exceptionnel
de ei,. Rappelons que l'ensemble des hyperplans généraux de (DN contenant L
est un ouvert dense de l'ensemble des hyperplans de (DN contenant L. On peut
donc choisir un représentant suffisamment petit Xl du germe (SL,xo) de sorte

que toutes les sections hyperplanes de S dont les transformées strictes par e^
coupent le diviseur exceptionnel de e^ dans Xl soient définies par des hyperplans
généraux de (K>N. Considérons alors le morphisme /l : Xl —> Dl défini autour
de xo comme dans 5.3.

Rappelons que chaque fibre du morphisme / : SL —s- P est isomorphe à la
section hyperplane de S dont elle est la transformée stricte par l'éclatement e^.
Il en résulte que si une section H'dS réduite a comme transformée stricte la fibre

/ 1(d),d G P1, alors on a:

Dans le voisinage Xl de xq, les fibres du morphisme /l sont toutes les
transformées strictes de sections hyperplanes définies par des hyperplans généraux de
(KN. D'après le théorème 4.2, pour tout d G Dl, les fibres f^l{d) sont réduites
et

et vaut la valeur minimale jim;m parmi les nombres de Milnor en 0 des sections

hyperplanes réduites de S. D'après le théorème 5.2, le morphisme /l : Xl —? Dl
a une résolution simultanée faible le long de la section <t(Dl).

Réciproquement, supposons que pour tout (N — 2) -plan L de (Ew contenu
dans l'hyperplan H vérifiant Ln|Cs,o| {0} le morphisme /l : Xl —? Dl a une
résolution simultanée faible le long de <t(Dl). Notons xo le point d'intersection de

la transformée stricte, par l'éclatement eL, de HDS avec le diviseur exceptionnel
de eL et do /l(^o)- D'après le théorème 5.2, pour tout d G Dl, la fibre f:[1{d)
est réduite et

Or les fibres du morphisme /l sont isomorphes aux sections hyperplanes de
S dont elles sont les transformées strictes par e^. L'ensemble des hyperplans
généraux de (K>N étant un ouvert dense de l'ensemble des hyperplans de (E>N, il
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existe d G Dl tel que la fibre f^l{d) soit définie par un hyperplan général H'
de (EN. On a alors

Or d'après le théorème 4.2, on a n{H' n S,0) /xTOjn. Par conséquent,

D'après le théorème 4.2, l'hyperplan H est général.
n

Ce théorème nous donne une caractérisation des limites d'hyperplans
tangents en termes d'existence d'une résolution simultanée faible de familles de
sections hyperplanes. Rappelons qu'une tangente exceptionnelle de S en 0 est une
génératrice du cône tangent telle que tout hyperplan la contenant est une limite
d'hyperplan tangent à S en 0. Cependant les tangentes exceptionnelles de S en
0 n'apparaissent pas clairement dans un éclatement de "type ei/'. Par contre,
toute génératrice du cône tangent à S en 0 correspond à un point du diviseur
exceptionnel de l'éclatement de l'origine dans S.

5.5. Notons e : S' —s- S l'éclatement de l'origine dans S. La surface S' obtenue est

plongée dans S x P ~ La courbe exceptionnelle dans S' est la courbe projective
projCsfi- Si L est un (N — 2) -plan vérifiant Ln|Cs,o| {O} alors, l'identité sur
S et la projection : F^"1 — projL —s- P1 induisent un morphisme p'L : S' —s- SL.

D'après [19] (IL §7 proposition 6), le morphisme p'L est un morphisme fini.

Théorème 5.6. Soit Iq une génératrice du cône |Cs,o|, notons yo le point qui
lui correspond dans proj\Cs,o\. La génératrice Iq est une tangente exceptionnelle
de la surface S en 0 si et seulement si, pour tout (N — 2) -plan L vérifiant
L Pi |Cs,o| {0}, le morphisme /l : Xl —> Dl construit autour de l'image
Ph(yo) comme dans 5.3, n'a pas de résolution simultanée faible le long du diviseur
exceptionnel.

Démonstration: Soit Iq une tangente exceptionnelle de S en 0 et soit L un
(N - 2) -plan de (CN vérifiant Ln |Cs,o| {0}. Notons y0 le point de proj\Csfi\
correspondant à la génératrice Iq et xo son image par le morphisme p'L construit
comme dans 5.5. D'après la définition 2.9, l'hyperplan H de (D engendré par le

(N — 2) -plan L et la droite Iq est une limite d'hyperplans tangents à la surface
S en 0 et donc d'après le théorème 4.2, la courbe HP\S est soit non-réduite, soit
réduite et /z(iïnS,0)> /xTOjn, où \im;m désigne la valeur minimale des nombres
de Milnor à l'origine des sections hyperplanes réduites. Cette section hyperplane
est isomorphe à la fibre /L"1(do) du morphisme /l : Xl —? Dl (construit comme
dans 5.3), où do /l(^o) •

Si la courbe /L"1(do) n'est pas réduite, alors le morphisme /l n'a pas de

résolution simultanée faible.
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Si la courbe f^l(do) est réduite alors on a

Par ailleurs, en choisissant un représentant Xl du germe de surface (SL,xo) assez

petit, on peut supposer que toutes les autres fibres du morphisme /l sont les

transformées strictes par e^ de sections hyperplanes définies par des hyperplans
généraux de (K>N ; donc pour tout d G Dl différent de do,

M(/L1(d).(7((f)) Mmrn < /x(/L
1
(d0), Z0).

Par conséquent, d'après le théorème 5.2, le morphisme /l n'a pas de résolution
simultanée faible le long du diviseur exceptionnel dans Xl-

Réciproquement, supposons que pour tout (N — 2) -plan L de Œ vérifiant
Ln|Cs.o| {0} le morphisme /l : Xl —? Dl construit comme dans 5.3 autour du

point xo p^ilio) n'admet pas de résolution simultanée faible le long du diviseur
exceptionnel dans Xl-

Soit H un hyperplan de (DN contenant la génératrice lo. Si l'hyperplan H
contient une composante irréductible de |Cs.o| alors c'est une limite d'hyperplans
tangents. Sinon, l'hyperplan H contient un (N — 2) -plan L de (DN vérifiant
L n |Cs.o| {0} • Puisque le morphisme /l : Xl —? Dl induit par L n'a pas
de résolution simultanée faible le long du diviseur exceptionnel dans Xl alors
d'après le théorème 5.4, l'hyperplan H n'est pas général. Par conséquent, tout
hyperplan de (DN contenant la génératrice lo est une limite d'hyperplans tangents
à la surface S en 0. D'après la définition 2.9, la génératrice lo est une tangente
exceptionnelle de la surface S en 0. Ce qui achève la preuve du théorème 5.6.

n

Remarque 5.7. Notons f et g deux fonctions holomorphes de 0s.o qui définissent
la projection ttl : S —s- U. D'après [24] (I. §5.2), la projection ttl est générique si
et seulement si l'idéal maximal m de 0s.o est entier sur l'idéal (f,g)Os,o- Par
conséquent, lorsque la projection ttl est générique les deux idéaux (/,<?) et m
de 0s.o ont màme clôture intégrale (en l'occurence m); d'après [24] (page 330),
ces deux idéaux ont màme éclatement normalisé.

Nous avons alors le diagramme commutatif suivant:

§ —^-^ S'

(5.8)

où les morphismes n et n^ sont respectivement les normalisations des surfaces
S' et SL

Nous pouvons maintenant déterminer explicitement les tangentes exceptionnelles

d'une surface normale:
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Théorème 5.8. Soient Iq une génératrice du cône |Cs,o| et yo Ie point de

proj |Cs,o| 1U^ lui correspond. La génératrice Iq est une tangente exceptionnelle
de la surface S en 0 si et seulement si yo est un point singulier d'une branche de

la courbe proj|Cs,o| ou l'image par la normalisation n d'un point singulier de la

surface S ou d'un point singulier du diviseur exceptionnel dans S ou une valeur
critique de la restriction de la normalisation au diviseur exceptionnel de S

Nous appellerons point spécial un point de la courbe proj |Cs,o| parmi ceux
énumérés dans ce théorème.

Ce théorème améliore le résultat annoncé dans [23] (théorème 8) et démontré
dans [22] (théorème 4.17). Nous remercions le professeur D. T. Là qui a attiré
notre attention sur cette amélioration.

Remarque 5.9. Dans [9] (définition 4), G. Gonzâlez-Sprinberg et M. Lejeune-
Jalabert appellent section hyperplane générale d'une surface S (non-nécessairement
normale), une section de S définie par un hyperplan H dont le projectivisé
proj H est transverse à la courbe proj |Cs,o| en évitant: la transformée stricte par
l'éclatement e du lieu singulier de S, les points singuliers et les points spéciaux
de proj |Cs,o| • Le théorème ci-dessus nous permet de comparer les sections hy-
perplanes générales dans le sens de [9] aux sections hyperplanes définies par des

hyperplans généraux dans le sens de ce travail; voir la proposition 5.12.

Démonstration: Montrons d'abord qu'un point spécial correspond à une
tangente exceptionnelle de S en 0:

Soit yo un point de proj|Cs,o| et L un (N — 2) -plan de (K>N vérifiant Ln
|Cs,o| {0}. Notons p'L : S' —s- SL le morphisme induit par L (comme dans 5.5)
et xo p'L(yo)- Soit /l : Xl —? Dl le morphisme construit autour de xo comme
dans 5.3.

1 er cas: Le point yo est l'image par la normalisation n d'un point singulier
de S. Dans ce cas, par commutativité du diagramme (5.2), la surface normalisée
de Xl est singulière au dessus de xq ; par conséquent, le morphisme /l n'a
pas de normalisation en famille, il n'a donc pas de résolution simultanée faible.
D'après le théorème 5.6, la génératrice Iq correspondant à yo est une tangente
exceptionnelle de S en 0.

2 ème cas: yo est l'image par la normalisation n d'un point singulier du
diviseur exceptionnel de S. Le point xo Pl(î/o) est alors image par n^ d'un
point singulier du diviseur exceptionnel de S. Il est donc impossible d'avoir
n:L1{a{T>iJ))\ Dl x Iït-^ 1(xo)|. Le morphisme /l n'a donc pas de résolution

simultanée faible le long de o~(Dl) D'après le théorème 5.6, la génératrice Iq est

une tangente exceptionnelle de S en 0.

3 ème cas: Le point yo est une valeur critique de la restriction de la normalisation

n au diviseur exceptionnel dans S. Si le morphisme /l avait une résolution
simultanée faible le long du diviseur exceptionnel dans Xl alors on aurait d'après
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5.1:

KV(DL))| DL x KVo)|.
Or d'après la commutativité du diagramme (5.2), on a n^ p'hon, par conséquent,
si on note Y un voisinage de yo dans S' au dessus de Xl, on aurait:

K1 (proj|Cs.oI n Y)| DL x \n-\yo)\,

ce qui est impossible quand yo est une valeur critique de la restriction de n au
diviseur exceptionnel de S. Le morphisme /l n'a donc pas de résolution simultanée
faible. D'après le théorème 5.6, la génératrice Iq est une tangente exceptionnelle
de S en 0.

4 ème cas: Le point yo est un point singulier d'une branche de proj |Cs.o|-
II existe un point sq g S tel que n(so) yo et l'image par n du diviseur
exceptionnel au voisinage de sq contienne la branche de proj|Cs.o| singulière en

yo. Dans ce cas, au voisinage de sq, la restriction de la normalisation n^ au
diviseur exceptionnel se factorise par une courbe singulière. Par conséquent le

point xq p'L(yo) est une valeur critique de cette restriction. Le morphisme /l
n'a donc pas de résolution simultanée faible, et donc d'après le théorème 5.6, la
génératrice Iq est une tangente exceptionnelle de S en 0.

Réciproquement, soit yo un point de proj|Cs,o| non-spécial, montrons que la

génératrice Iq de |Cs.o| qui lui correspond n'est pas une tangente exceptionnelle
de S en 0.

Choisissons un (N — 2) -plan L de (DN vérifiant Ln|Cs.o| {O} et tel que

l'hyperplan Ho de Œ contenant L et Iq vérifie les conditions suivantes:

la courbe Hq Pi S est réduite
projHo ne contient pas de point spécial (5-9)
Hq n'est pas tangent au cône |Cs o|

Soit p'L : S' —s- S^ le morphisme induit par L comme dans 5.5. Posons

xo p'i,(yo) et notons /l : Xl -^ Dl le morphisme construit autour de xq
comme dans 5.3. Posons do /l(^o)

Nous allons montrer que le morphisme /l a une résolution simultanée faible
le long du diviseur exceptionnel dans Xl

Le point do n'est pas une valeur critique de la restriction de /l o ul au
diviseur exceptionnel de S En effet, Soit zq un point de S au-dessus de xq
Par commutativité du diagramme (5.2), ti(zq) yo et puisque yo n'est pas un
point spécial, zq n'est pas un point singulier du diviseur exceptionnel réduit de
S et son image par la normalisation est un point non-singulier d'une branche de

projCs.o ¦ Par construction du morphisme p'L (voir 5.5), la restriction à cette
branche de projCs.o du morphisme /l°Pl est critique en yo si et seulement si

l'hyperplan projectif projHo n'est pas transverse à cette branche dans P^^1 ; ce

qui est exclu par le choix de Hq Le point zq n'est pas alors un point critique du
morphisme composé /l o p'L o n restreint au diviseur exceptionnel de S Ainsi,
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le point do n'est pas une valeur critique de la restriction de /l o ul au diviseur
exceptionnnel de S

Il en résulte que la fibre (/l°«l) 1(|^o) est transverse au diviseur exceptionnel
de S de plus la section hyperplane Ho l~l S étant réduite la fibre /^(cfo) est

une courbe réduite. Le morphisme /l a donc une normalisation en famille au
voisinage de xo ¦

Montrons maintenant que le nombre de branches de la fibre /^(cfo) en xo
est égal au nombre de branches de f-^1(d) en a(d) pour d voisin de do et où a
est la section naturelle de P1 dans S^ Posons x a(d)

Puisque les fibres (/l oni,)~1(do) et (/l oni,)~1(d) sont non-singulières, le

nombre de branches de f^l(do) en xo et de f^l{d) en x est respectivement
égal au cardinal de n^fao) et de n^^x)

Si yi est un point de projCsfi au-dessus de xo et puisque l'hyperplan pro-
jectif projHo est transverse à chacune des branches de projCsfi en yi dans

F^"1 le nombre de points y,hJ de projCsß au-dessus de x voisins de y% est

égal au nombre de branches de la courbe proj|Cs,o| en y% D'autre part, en vertu
des conditions (5.3), le cardinal de chaque fibre n^1(yi) est égal à la somme des

cardinaux des fibres n~1(yij) pour tous les points y^j au-dessus de x voisins
:1{de yt Par commutativité du diagramme (5.2), le cardinal de la fibre n:L1{xo)

est donc égal à celui de la fibre n:L1{x) et par conséquent les courbes f^1{do) et
f:[1{d) ont le màme nombre de branches respectivement en xo et en x

D'après le théorème 5.2, le morphisme /l a une résolution simultanée faible
le long du diviseur exceptionnel et donc d'après le théorème 5.6, la génératrice Iq

du cône Cs,o n'est pas une tangente exceptionnelle de la surface S en 0. Ce qui
achève la preuve du théorème 5.8.

Remarque 5.10. D'après le théorème 5.8, un point de croisement de composantes
irréductibles non-singulières de la courbe projCsfi qui n'est pas un point spécial
ne correspond pas à une tangente exceptionnelle de la surface S en 0. Dans le cas

où la surface S est une hypersurface à singularités isolées, de tels points n'existent

pas puisque J. P. G. Henry et D. T. Là ont prouvé dans [14], que tous les points
singuliers de proj |Cs,o| correspondent à des tangentes exceptionnelles. Il serait
intéressant de savoir si de tels points existent dans le cas général des surfaces
normales.

Dans le cas où la surface S' obtenue par éclatement de l'origine de S est elle-
màme une surface normale (c'est le cas en particulier des surfaces à singularités
rationnelles (cf. [29])), le résultat du théorème 5.8 s'exprime plus simplement:

Corollaire 5.11. Dans le cas où l'éclatement de l'origine d'une surface normale
S est une surface normale, une génératrice lo du cône Cs,o est une tangente
exceptionnelle de S en 0 si et seulement si le point yo de proj |Cs,o| lui
correspondant est un point singulier de la surface éclatée S' ou un point singulier de
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la courbe proj |Cs,o •

Ce corollaire découle du fait que dans le diagramme (5.2), les surfaces S' et S

sont égales. On applique alors le théorème 5.8.
En vertu des théorèmes 2.8, 5.8, du corollaire 5.11 et de la remarque 5.9, on a:

Proposition 5.12. Pour une surface S normale en 0, une section hyperplane
générale dans le sens de [9] est définie par un hyperplan qui n'est pas limite
d'hyperplans tangents à la surface S en 0.

Dans le cas où l'éclaté de S en 0 est une surface normale, une section hy-
perplane est générale dans le sens de [9] si et seulement si elle est définie par un
hyperplan qui n'est pas une limite d'hyperplans tangents à la surface S en 0.

6. Courbes polaires

La notion de variétés polaires introduite et étudiée par D.T. Là et B. Teissier

(cf. [15]), constitue une classe d'objets géométriques liés à l'étude géométrique et

topologique des singularités des espaces analytiques complexes. Dans le cas des

germes de surfaces complexes, cette notion se réduit à celle des courbes polaires
qui se trouvent àtre intimement liée aux tangentes exceptionnelles en des points
singuliers.

Un (N — 2) -plan linéaire L de (K>N induit un morphisme ttl de la surface S

sur un ouvert U de Œ D'après [15] (§2), on définit les courbes polaires associées

au germe de surface (S,0) comme suit:

Définition 6.1. Pour un (N — 2) -plan générique L de (E l'adhérence dans
S du heu critique de la restriction de ttl au lieu non-singulier de S est un espace
analytique réduit de dimension 1 ou vide qu'on appelle courbe polaire (ou première
variété polaire) associée au germe de surface (S,0) et au {N— 2)-plan L et qu'on
note Pi((S,0),L).

Dans le cas d'une surface normale, et à moins que la surface ne soit non-
singulière, les courbes polaires ne sont pas vides et coincident avec le lieu critique
des projections linéaires génériques.

On définit dans [21] (III. définition 1.1) les points fixes des courbes polaires
comme suit:

Définition 6.2. Soit p : X —> S une modification de la surface S au-dessus de

0. On dira qu 'un point r/ de la fibre exceptionnelle de p est un point fixe par p
du système linéaire des courbes polaires ou encore un point base pour p s'il existe

un ouvert dense Q de la Grassmannienne des (N — 2) -plans de (E tel que

pour tout L G Çl, la transformée stricte par p de la courbe polaire Pi((S,0),L)
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contienne le point r\.

On commencera par étudier les points fixes du système linéaire des courbes
polaires par l'éclatement de l'origine d'une surface normale.

Un résultat de D.T. Là et B. Teissier, dans [16] (proposition 2.2.1) s'interprète
dans le cas des surfaces normales comme suit:

Proposition 6.3. Un point de pro? |Cs,o| est un point base (ou encore un point
fixe des courbes polaires) pour l'éclatement de l'origine dans S si et seulement si
la génératrice du cône tangent qui lui correspond est une tangente exceptionnelle
de la surface en 0.

Dans le cas des surfaces à singularités rationnelles, M. Spivakovsky démontre
dans [21] (III. corollaire 3.11) le résultat suivant:

Proposition 6.4. Soit S une surface normale ayant une singularité rationnelle
en 0 et soit e : S' —s- S l'éclatement de l'origine. Un point non-singulier de la

surface S' est un point base pour l'éclatement si et seulement s'il est un point
singulier du diviseur exceptionnel réduit.

Et dans [21] (III. Remarque 3.12) il pose la question suivante:

Question 6.5. Soit S' la surface obtenue par l'éclatement d'une singularité
rationnelle de surface. Un point singulier de la surface S' est-il un point base pour
l'éclatement

Il donne une réponse positive à cette question dans le cas d'une surface à

singularité minimale dans [21] (III. §5).
Le corollaire 5.11 énoncé dans la section précédente donne une réponse positive

à la question 6.5 ainsi qu'une preuve de la proposition 6.4.

En appliquant les résultats obtenus dans la section précédente sur les tangentes
exceptionnelles d'une surface normale, nous obtenons une réponse positive à la

question 6.5 dans le cas général d'une surface normale:

Théorème 6.6. Soit S une surface normale à singularité en 0 Notons e :

S' —s- S l'éclatement de l'origine dans S et n : S —s- S' la normalisation de S'

L'image par n d'un point singulier de S est un point base pour l'éclatement e

Ce théorème est une conséquence immédiate du théorème 5.8 et de la proposition

6.3.
Nous allons maintenant redonner une formulation à ce résultat en termes de

contraction des composantes de Tyurina.
Donnons d'abord une définition qui généralise la notion de composantes de

Tyurina à certaines résolutions d'une surface normale.
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Considérons une résolution tt : X —s- S de la surface S. Si l'on note m l'idéal
maximal de l'anneau 0s,o, alors, d'après la propriété universelle de l'éclatement
et de la normalisation (cf. [2] page 25), le faisceau mOj est inversible si et
seulement si la résoltion tt : X —s- S se factorise par l'éclatement normalisé de

l'idéal maximal m.
Considérons alors une résolution tt : X —s- S telle que le faisceau mOj soit

inversible. Notons e : S' —s- S l'éclatement de l'origine dans S et n : S —s- S' sa

normalisation, et notons 7f : X —s- S le morphisme de factorisation: tt eonoff.
n

Notons |tt^1(O)| ME^ la décomposition de la fibre exceptionnelle de la

¦i=i
résolution en composantes irrédutibles. Si / désigne une fonction holomorphe
contenue dans l'idéal maximal m, on désignera par Df la partie du diviseur
tt* f qui est à support sur la fibre exceptionnelle. Il existe alors des entiers na-

n

turels toij, • • • ,mnj tels que Df NmjjEj. On définit le cycle maximal de

î=i
la résolution tt (cf. [31] IL §4), comme étant le cycle

Mx =inffemDf,
où l'on définit l'ordre partiel sur les cycles à support sur la fibre exceptionnelle en

comparant les coefficients un par un.
On posera

Mx
r=i

C'est un cycle positif qui vérifie {Mx • Ej) < 0 pour toute ie {1 • • -n} (cf. [31]

IL §4).
Le théorème suivant est prouvé dans [8] §2:

Théorème 6.7. Une composante irréductible Ej de la fibre exceptionnelle de la
résolution tt se contracte par tt sur un point du diviseur exceptionnel dans S si
et seulement si {Mx • Ej) 0.

De màme l'image par tt d'une composante irréductible Ej est une composante
irréductible du diviseur exceptionnel dans S si et seulement si {Mx • Ej) < 0.

Une démonstration de ce résultat est également faite dans [22] (théorème 3.5).
Notons Ai,--- Afc les composantes connexes de l'adhérence dans |tt^1(0)| de

l'ensemble |tt^1(0)| — M Ej.

Définition 6.8. On appellera les composantes connexes Aj définies ci-dessus,
les composantes de Tyurina-Spivakovsky de la résolution tt : X —> S.

Comme l'a remarqué M. Spivakovsky, dans [21] (III. Lemme 7.1), les com-
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posantes Aj définies ci-dessus généralisent la notion de composantes de Tyurina
d'une résolution d'une surface à singularités rationnelles (cf. [29]) au cas des

résolutions de surfaces normales qui se factorisent par l'éclatement normalisé des

points singuliers.
Nous pouvons maintenant reformuler le théorème 6.6 en termes de contractions

des composantes de Tyurina-Spivakovsky:

Théorème 6.9. Si tt : X —> S est une désingularisation de la surface S

obtenue par composition de l'éclatement e : S' —> S de l'idéal maximal m Os,o,
de la normalisation n : S —> S' de S' et de la désingularisation minimale
tt : X —> S (jt e o n o îf), alors les composantes de Tyurina-Spivakovsky de

la désingularisation tt se contractent sur des points hases des courbes polaires de

S en 0 pour l'éclatement de l'idéal maximal de 0s,o-

Démonstration: D'après la définition 6.8 et le théorème 6.7, les composantes de

Tyurina-Spivakovsky de la désingularisation tt se contractent par le morphisme tt
sur des points de la surface S. La résolution 7f de S étant minimale, chaque
composante de Tyurina-Spivakovsky de tt se contracte par tt sur un point singulier
de la surface S. D'après le théorème 5.8 et la proposition 6.3, les composantes de

Tyurina-Spivakovsky de tt se contractent donc par le morphisme n o tt sur des

points bases des courbes polaires de S en 0 par l'éclatement de l'idéal maximal
de Os,o.

n
On peut également s'intéresser à l'étude de l'existence de points fixes du système

linéaire des courbes polaires dans une désingularisation d'une surface normale. Ce

problème est relié à l'étude des résolutions des surfaces par des suites de
modifications de Nash normalisées.

Dans [21] (III. théorème 1.2), M. Spivakovsky démontre:

Proposition 6.10. Le système linéaire des courbes polaires de S n'a pas de

point fixe dans la résolution tt : X —> S si et seulement si la résolution tt se

factorise par la modification de Nash normalisée de la surface S.

La détermination explicite de la résolution d'une singularité de surface normale

par des suites de modifications de Nash normalisées à partir d'une désingularisation
donnée, passe donc par la détermination des points fixes du système linéaire des

courbes polaires dans cette désingularisation.
Considérons une désingularisation tt : X —s- S pour laquelle le faisceau mOj

est inversible et qui soit minimale pour cette condition et notons a : X' —s- X
la suite minimale d'éclatements de points pour laquelle le système linéaire des

courbes polaires n'a pas de points fixes dans X'. D'après la proposition 6.10, la
surface X' domine la modification de Nash normalisée S.

Nous obtenons alors le diagramme suivant, utilisé dans [21] (III. 2) et [6] (§2):
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X1 —^ X

(6.10)

La minimalité des morphismes a et tt fait que les composantes de Tyrina-
Spivakovsky de la résolution tt o a : X' —s- S se contractent exactement sur les

points fixes du système linéaire des courbes polaires dans l'éclatement de l'origine
dans S, qui sont les tangentes exceptionnelles de la surface normale S en 0.

Dans le cas où les singularités de la surface S sont des points doubles rationnels
ou des singularités minimales, G. Gonzâlez-Sprinberg dans [6] (§5) pour le premier
cas et M. Spivakovsky dans [21] (III. §5) pour le second, déterminent les points
fixes du système linéaire des courbes polaires dans la résolution minimale de la
surface. Dans le cas général, il n'y a pas encore à notre connaissance de résultat
sur la détermination des points fixes du système linéaire des courbes polaires dans

une résolution des singularités.
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