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Limites d’espaces tangents & une surface normale

Jawad Snoussi

Résumé. Nous étudions I’ensemble des hyperplans limites d’hyperplans tangents & un germe de
surface normale. Nous caractérisons ces hyperplans par le fait que le nombre de Milnor de leur
section avec la surface n’est pas minimum. Nous donnons ensuite une généralisation des résultats
de [14] en termes de résolution simultanée faible de la famille des sections hyperplanes, ce qui
nous permet de déterminer avec précision les tangentes exceptionnelles d’une surface normale.
Grace a ces résultats, nous démontrons que “les composantes de Tyurina” d’une désingularisation
raisonnable se contractent sur des points fixes du systéme linéaire des courbes polaires.

Abstract. We study the set of limiting tangent hyperplanes of a normal surface germ. We
characterize these hyperplanes by the non-minimality of the Milnor number of their section with
the surface. Then we generalise the results of [14] in terms of weak simultaneous resolution of
the family of hyperplane sections, and hence we precisely determine the exceptional tangents of
a normal surface singularity. Applying these results, we prove that the “Tyurina components”
of a reasonable desingularisation contract to fixed points of the linear system of polar curves.

Mathematics Subject Classification (2000). 32805, 32515, 32525, 32535, 32S45.

Mots-clés. Surface normale, Limite d’espaces tangents, Tangente exceptionnelle, Nombre de
Milnor, Courbe polaire, Composante de Tyurina.

1. Introduction

L’étude de la géométrie locale d’un espace analytique complexe X au voisinage
d’un point singulier = est intimement liée au comportement des espaces tangents
a X au voisinage de z. Ce point de vue étudié notamment par H. Whitney, D.T.
La et B. Teissier (cf. [30], [14], [13], [27], [17] ...) a largement contribué & la
classification et a I’étude de I’équisingularité des espaces analytiques.
Considérons un espace analytique équidimensionnel X plongé dans ¢V de
dimension d et z un point singulier de X. Notons v D’application qui associe a
tout point non-singulier de X la direction de 'espace tangent a X en ce point.
L’adhérence du graphe de v dans X x G(d,n) munie de la restriction de la
premiere projection g : X — X est la modification de Nash de I'espace X. La
fibre p~'(z) est identifiée & U'ensemble des directions limites d’espaces tangents a
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X en z.

Cet ensemble n’est connu explicitement que dans certains cas particuliers. Dans
le cas des courbes, c’est I’ensemble des composantes irréductibles du cone tangent.
Dans le cas des hypersurfaces a singularités isolées de (E?’7 J.P.G. Henry et D.T. La
en donnent une description explicite dans [14]. Une caractérisation numérique dans
le cas des hypersurfaces & singularités isolées est donnée par B. Teissier dans [27].
Des caractérisations géométriques sont également faites dans le cas des surfaces
dans [13] et dans des situations générales dans [16] et [17].

Dans ce travail, nous nous consacrons au cas des surfaces normales plongées
dans ¢ . Un hyperplan tangent & la surface en un point non-singulier est un hy-
perplan de @V qui contient le plan tangent 4 la surface en ce point. Nous étudions
en détail 'ensemble des limites d’hyperplans tangents a une surface normale en des
suites de points non-singuliers qui convergent vers ses points singuliers. L’idée de
considérer des hyperplans tangents, comme dans [17], permet dans le cas des sur-
faces normales d’exprimer les résultats plus simplement. Nous remplagons pour
cela la modification de Nash par le morphisme conormal. Plus précisément nous
donnons une généralisation des résultats connus dans le cas des hypersurfaces de
@ a singularités isolées.

Dans [27], B. Teissier caractérise les hyperplans qui ne sont pas limites d’hyper-
plans tangents a une hypersurface a singularités isolées par la minimalité du nom-
bre de Milnor de la section hyperplane aux points singuliers. Nous démontrons
(théoreme 4.2) que cette caractérisation est encore valable dans le cas des surfaces
normales. Pour cela, nous avons besoin d’une définition du nombre de Milnor
pour des courbes gauches. Nous utiliserons la généralisation du nombre de Milnor
pour une courbe gauche réduite donnée dans [1]. Une telle approche pourrait étre
généralisée aux dimensions supérieures si I’on dispose d’une définition raisonnable
d’un nombre de Milnor généralisé.

Dans [16] (§2.1), D.T. La et B. Teissier mettent en évidence sur le cone tan-
gent d’'une surface S en un point singulier £, un nombre fini de génératrices,
dites tangentes exceptionnelles de la surface en &, qui permettent de décrire
I’ensemble des limites d’hyperplans tangents a la surface au voisinage de £ comme
réunion de I’ensemble des hyperplans tangents au cone tangent le long de ses
génératrices et de I'’ensemble des hyperplans contenant une tangente exception-
nelle. Dans [14], J.P.G. Henry et D.T. La, démontrent que les tangentes ex-
ceptionnelles d’une hypersurface de @ a singularités isolées correspondent aux
points, dans les courbes exceptionnelles des éclatements des points singuliers, oll
il y a perte d’équisingularité de la surface éclatée le long des courbes exception-
nelles. En utilisant la notion de résolution simultanée faible (cf. [26] et [1] §§4 et
5), nous démontrons, dans le cas des surfaces normales de i (théoreme 5.6), que
les tangentes exceptionnelles correspondent aux points ol, localement, la famille
des sections hyperplanes n’admet pas de résolution simultanée faible. Ce qui nous
permettra de déterminer avec précision les tangentes exceptionnelles d’une sur-
face normale (théoréme 5.8). Nous en déduisons une relation entre les sections
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hyperplanes que G. Gonzalez-Sprinberg et M. Lejeune-Jalabert appellent sections
hyperplanes générales dans [9] (définition 4) et les sections hyperplanes définies
par des hyperplans qui ne sont pas des limites d’hyperplans tangents a la surface
en ses points singuliers.

Dans [21] (III. remarque 3.12), M. Spivakovsky pose la question de savoir si
les points singuliers de 1’éclatement des singularités d’une surface a singularités
rationnelles sont des points fixes du systeme linéaire des courbes polaires dans
Iéclatement. En remarquant que les tangentes exceptionnelles sont les tangentes
fixes du systeme linéaire des courbes polaires, nous pouvons répondre positivement
& cette question dans le cas général des surfaces normales (théoreme 6.6). Nous
donnons également une formulation de ce résultat en terme de contraction des
composantes de Tyurina d’une désingularisation de la surface (théoreme 6.9). Pour
cela, en utilisant un résultat de [9] sur la contraction des composantes irréductibles
du diviseur exceptionnel dans une résolution raisonnable, nous expliquons que la
notion de composantes de Tyurina introduite pour les singularités rationnelles de
surface dans [29], se prolonge au cas des surfaces normales comme ’a remarqué
M. Spivakovsky dans [21] (III. lemmme 7.1).

2. Définitions et résultats généraux

Soit (X, zg) un germe d’espace analytique équidimensionnel réduit de dimension d
que 'on supposera plongé dans (@N, 0). Nous désignerons par X un représentant
“assez petit” du germe (X,z¢) et par Xg le lieu non-singulier de X.

Notons Ox s, l'anneau local des fonctions holomorphes définies sur X au
voisinage de xo.

2.1. Espace conormal

o T =N vy
Considérons le sous-ensemble CO(X07G}N ) de Xp x @ constitué des couples
(z,&) ot z € Xg et &: @Y — @ est une forme linéaire qui s’annule sur 'espace
tangent, T, X0, a Xop en z.

Définition 2.1. L’adhérence dans X X ]I’Nil du projectivisé par rapport au sec-
ond facteur de Uespace Co(Xo, @N) est appelée espace conormal associé ¢ X dans
eV ; on le note C(X7(DN). On note x : C(X,CY) = X le morphisme induit
par la premiére projection et on Uappelle morphisme conormal.

L’espace conormal C(X, 2 ) est un sous-espace analytique de o x ]PNf1 de

dimension N +d —1 (cf. [25]).
Si x désigne un point non-singulier de l'espace X, l'ensemble |y~!(z)| cor-
respond a l’ensemble des hyperplans de o tangents a 'espace X en z.
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On dit quun hyperplan H de @V est une limite d’hyperplans tangents a
lespace X en zg 'il existe une suite de points non-singuliers (z,) de X qui
converge vers zo et une suite d’hyperplans (H,) de @V telles que pour tout n
Ihyperplan H,, soit tangent & X en z, et lasuite (H,) converge vers H dans
PV Le projeté sur PV de Pensemble Ix~!(z0)| est'ensemble des hyperplans
limites d’hyperplans tangents & X en zg. On I'identifiera & |x~!(xo)|. L’essentiel
de ce travail est consacré a I’étude de ce dernier ensemble dans le cas ot X est

une surface normale en zg.

Définition 2.2. Nous dirons qu’un hyperplan de N est général s’il n’est pas
une limite d’hyperplans tangents ¢ X en xq.

2.2. Liens entre les limites d’hyperplans tangents et le cone tangent

Un résultat dit & H. Whitney, dans [30] (théoreme 22.1), appliqué aux limites
d’hyperplans tangents permet de relier le cone tangent a I’ensemble des hyperplans
limites d’hyperplans tangents a X en zg:

Si z est un point de X autre que zg, on notera (zoz) la sécante & X en zg
passant par x .

Théoréme 2.3. Si (z,) est une suite de points non-singuliers de X qui con-
verge vers xg, telle que lim (xoz,) =1 et si (Hy) est une suite d’hyperplans
n—oo

tangents a X en z, qui converge vers un hyperplan H, alors on a | C H.

En particulier toute génératrice du cone tangent & X en zg est contenue dans
une limite d’hyperplans tangents & X en zp et réciproquement, toute limite
d’hyperplans tangents contient une génératrice du cone tangent.

Remarque 2.4. Dans le cas d’un germe de courbe, I’ensemble des limites d’hyper-
plans tangents & X au voisinage de zo est Pensemble des hyperplans de @ qui
contiennent une droite du cone tangent.

On désignera par Cx 4, le cone tangent & X en zg et par |Cx,q,| 'ensemble
soujacant.

Dans [13] (théoreme 1.2.1), D. T. La démontre un résultat dont le théoréme
suivant est une conséquence directe:

Théoréme 2.5. Soit (X,z0) un germe d’espace analytique équidimensionnel
réduit. Tout hyperplan tangent au céne tangent |Cx n,| le long d’une génératrice
est une limite d’hyperplans tangents a X en xq .

Voir le paragraphe suivant pour la tangence a un cone le long d’une génératrice.
En général, cette inclusion n’est pas une égalité comme le montre ’exemple
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suivant:

Exemple 2.6. L'hypersurface S de @ définie par équation z2 + y2 + 2% = 0
a une singularité isolée en 0. Le cone Cg o est défini par I'équation 22 +942=0;
c’est la réunion de deux plans. Chacun de ces deux plans est une limite de plans
tangents & S a l'origine. Cependant, tout plan de a? d’équation azx + by = 0;
a,b € €, est aussi une limite d’hyperplans tangents & S au voisinage de 0.

2.3. Cas d’un cone de dimension 2

Avant de traiter le cas des surfaces normales, nous allons étudier ’ensemble des
limites d’hyperplans tangents a un cone de dimension 2 en son sommet. La raison
en est que le théoreme 2.5 fait intervenir I’ensemble des hyperplans tangents au
cone tangent dans ’étude des limites d’hyperplans tangents & un espace donné.

Soit (X, zg) un cone de dimension 2 réduit de sommet zg que 'on supposera
contenu dans (CV,z). L'étude des espaces tangents & (X, zo) en zp est sim-
plifiée par le fait qu’elle se ramene a I’étude des espaces tangents a la courbe
projective projX.

En effet, ’homogénéité des polynémes définissant le cone (X, zq) implique
qu’'un point x du cone différent de xy est singulier si et seulement si tous les
points de la génératrice (zzg) du cone sont singuliers, ce qui est encore équivalent
au fait que le point de la courbe projX correspondant a cette génératrice est
singulier; nous dirons alors que la génératrice (xzg) est singuliére.

Par abus de langage nous dirons qu’une génératrice du cone est non-singuliere
quand tous ses points autres que le sommet du cone sont non-singuliers; ce qui
equivaut a dire que le point lui correspondant dans la courbe projX est non-
singulier.

Si une génératrice [ du cone est non-singuliere, alors un hyperplan H de al
est tangent au céne en un point de [ (£ zq ) si et seulement s’il est tangent au cone
en tout point de { (# zg) ; ce qui équivaut a dire que I’hyperplan projectif projH
contient la droite tangente a la courbe projective projX au point correspondant
a la génératrice [. On dira alors que cet hyperplan est tangent au cone le long de
la génératrice [ .

Par extension au cas des génératrices singulieres du cone (X,zp), on dira
qu’'un hyperplan H est tangent au cone le long d’une génératrice ! si I’hyperplan
projectif projH contient la tangente & I'une des branches de la courbe proj X au
point [y correspondant a la génératrice [.

Dans [22] (1.12), on démontre le résultat suivant:

Proposition 2.7. L’ensemble des limites d’hyperplans tangents a un cone X
de dimension 2 en son sommet est U'ensemble des hyperplans tangents au cone le
long de ses génératrices (singulieres ou non). On notera cet ensemble T(X) .
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Nous appliquerons les resultats de ce paragraphe au cone tangent d’une surface
normale en un point singulier.

2.4. Cas d’une surface normale

Dans toute la suite de ce travail nous allons nous restreindre au cas ol le germe
d’espace analytique (X,zo) est le germe d'une surface normale (S,zg) plongée
dans € ; ce qui équivaut & dire que le germe de surface (S,zg) est a singularité
isolée et que I'anneau Og 5, est Cohen-Macaulay (cf. [20] VI §2, [32] appendice 6
et [3] théoreme 18.15).

Pour simplifier les notations, nous supposerons, quitte & faire un changement
de variable, que le point zg est 'origine 0 de O , et nous désignerons par S un
représentant suffisamment petit du germe (S,0).

Le cone tangent Cg de la surface S en 0 étant une surface, d’apres la propo-
sition 2.7, le théoreme 2.5 s’exprime par I'inclusion: 7 (|Cso|) C |x 1(0)].

Dans [16] (2.1.3), D.T. La et B. Teissier établissent un résultat qui permet de
déterminer I’ensemble des limites d’hyperplans tangents a une surface normale a
Porigine. Ce résultat est également contenu dans [5] (page 23).

Théoréme 2.8, [l existe un nombre fini de génératrices li,--- Iy de |Cg ol
telles que Uensemble |x 1(0)| soit la réunion de T(|Csql) et de l'ensemble des
hyperplans de @V contenant l'une des génératrices 1;, 1 <1 <k.

Définition 2.9. Les génératrices du cone tangent citées ci-dessus sont appelées
tangentes exceptionnelles de S en 0.

Une partie importante de ce travail consiste & caractériser puis déterminer les
tangentes exceptionnelles d'une surface normale.

3. Projections linéaires

Dans cette section, nous étudions le comportement des limites d’hyperplans tan-
gents a une surface normale sous l'effet d’une projection générique sur un plan
complexe.

Une projection linéaire pr, : ¢~ — @2, qui a pour noyau un (N —2)-plan L,
induit un morphisme 7, : S — U C @°.

Nous dirons que la projection 7r, : S — U est générique si le morphisme 7,
est fini et son degré degom, en O est égal & la multiplicité m(S,0) de la surface
S en 0, qui est la multiplicité de I'idéal maximal de I'anneau local Ogg.

Drapres [24] (1.5.2), on a:
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Proposition 3.1. Une projection linéaire pr, : e — @? induit sur S une
projection générique si et seulement si le noyau L de pr, ne contient aucune
génératrice du cone tangent & S en 0; i.e. LN |Cgol = {0}.

3.1. Lieu critique et discriminant

Considérons un morphisme 7 : S — U d’une surface normale sur un ouvert de
a?.

Nous définissons le lieu critique de la projection m comme étant 'ensemble
réduit sous-jacent a l'adhérence dans S du lieu critique de la restriction de 7= au
lieu non-singulier de S. Nous le noterons C(r); c’est une courbe réduite.

Quand la projection 7 est un morphisme fini nous définissons le lieu discrim-
inant de 7 comme étant l’ensemble réduit sous-jacent a I'image par m du lieu
critique C(7) ; nous le noterons |Ay|. C’est une courbe réduite dans 'ouvert U
de @?.

Considérons une situation locale, o S est un représentant d’un germe de
surface normale et U est un voisinage ouvert de lorigine dans €2. Un point
générique, =, d’'une composante analytiquement irréductible du lieu discriminant
est affecté d’'une multiplicité que I'on calcule comme suit: La restriction de 7, au
dessus d’un voisinage de z , a I'image réciproque par m d’une droite transverse a
la composante irréductible contenant = est un morphisme fini entre deux courbes
non-singulieres. Le point z est une valeur critique pour ce morphisme. Si I'on
note v, l'indice de ramification de ce morphisme en un point y au-dessus de x
alors la multiplicité affectée & x est définie par my, = Yycr-102)(1y — 1) (voir
[7] p. 217). Quand la surface S et I'ouvert U sont suffisamment petits, la semi-
continuité du degré de la projection implique que la multiplicité m, est la méme
en tout point de la branche donnée, différent de I’origine.

Le lieu discriminant de la projection 7 étant une hypersurface dans U, il est
défini par une fonction f. Notons f;, i=1,--- ,r les composantes analytique-
ment irréductibles de f au voisinage de 'origine et m; la multiplicité affectée
aux points génériques de chacune de ces composantes.

Définition 3.2. Le discriminant de © est Uhypersurface de Uowvert U définie
par la fonction F = fI" .. fMr . On le notera Ay .

Le discriminant défini ci-dessus est la cloture schématique du discriminant usuel
de la restriction de la projection au lieu non-singulier de la surface.

Le lieu discriminant est I’ensemble sous-jacent au discriminant.

Dans [28] (§81 et 2), B. Teissier définit I'espace discriminant en terme d’idéaux
de Fitting. La définition que 'on donne ne permet pas d’établir I'invariance
par changement de base, cependant elle assure I'inexistence de composantes im-
mergées.
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Dans le cas ol la surface S est une intersection complete ces deux définitions
sont équivalentes (voir [27] I11. proposition 4).

Cette modification de la définition du discriminant nous permet d’énoncer le
lemme 4.4 dans la section suivante.

3.2. Un lemme clé

Nous donnons maintenant la caractérisation suivante des hyperplans généraux, en
rappelant qu’un hyperplan de @V est général s’il n’est pas une limite d’hyperplans
tangents.

Théoreme 3.3. Un hyperplan H de eV est général si et seulement s’il existe
un (N —2)-plan L C H tel que LN |Cgpo| = {0} et n,(H NS) ne soit pas une
droite du céne tangent Cap o du discriminant Ay, de w1, en 0, ot wy, est induit
par la projection linéaire de noyau L.

Ce théoreme est a la source des principaux résultats énoncés dans ce travail.

Démonstration: Nous suivons une démarche similaire a celle de D. T. La dans
[13] (lemme 2.3.1).

Commencons par prouver qu’un hyperplan H de al qui contient un (N —2)-
plan L vérifiant LN |Cgo| = {0} et tel que wr,(H NS) soit une droite du céne
tangent, Ca; o, du discriminant Aj, en 0 est une limite d’hyperplans tangents &
S en 0.

Précisons que puisque le (N —2)-plan L est un hyperplan de H et que pour
un choix convenable du représentant S et de 'ouvert U la projection =, : S — U
est finie et surjective, limage 7,(H N'S) n’est autre que la trace sur 'ouvert U
de I'image de H par la projection pr, : O — 7 qui est une droite D de (1)l

La droite D étant contenue dans le cone tangent réduit |Ca, |, il existe une
suite de droites (T, ), tangentes au lieu discriminant |Ap| en des points non-
singuliers y, et qui converge vers D. Il existe une suite de points non-singuliers
(zn,) de S contenue dans le lieu critique de 7y, telle que pour tout n, = (xy,) =
yn. Notons T, S Despace tangent & S en z,. Prouvons que pr(T,, S) =T,

La projection 7y, est de rang < 1 en tout point du lieu critique, on a donc
dimpr,(T,,S) < 1. Par ailleurs, d’apres le théoreme de Bertini (cf. [2] théoréeme
20.1), en choisissant un représentant suffisamment petit du germe (S,0), larestric-
tion du morphisme 7y, ason lieu critique est sans point critique sauf éventuellement
a lorigine. Ainsi, le morphisme 7, est de rang 1 en tout point de son lieu critique
autre que origine et done dimpr,(T,, S) = 1. D’ou légalité: pr(T,, S) = T,.

Notons H,, I’hyperplan pgl(Tn) ; c’est un hyperplan tangent & S en =z,
puisqu’il contient le plan tangent T, S. Quitte & en extraire une sous-suite, on

peut supposer que la suite (H,,) converge dans PV vers un hyperplan que 'on
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notera Ho,. On a alors:

pL(HOO) :pL( lim Hn) = lim pL(Hn) = lim Tn =D :pL(H).
n—0o0 n—oo n—oo
Les deux hyperplans H et H., sont donc égaux; et par suite ’hyperplan H est
une limite d’hyperplans tangents a la surface S en 0.

D’autre part, si ’hyperplan H ne contient aucune composante irréductible
de |Cgo| alors l'intersection des espaces projectifs projH et proj|Cgo| est un
nombre fini de points de PV 1. Par conséquent, un hyperplan général L de H
n’a aucune droite en commun avec |Cgo| et done LN |Cg | = {0}.

Ainsi, si pour tout hyperplan L de H lintersection LN|Cgo| n’est pas réduite
a {0}, I'hyperplan H contient une composante irréductible du cone tangent.
D’apres le théoreme 2.8, ’hyperplan H est une limite d’hyperplans tangents & S
au voisinage de 0.

Ceci acheve la preuve d’'une implication, a savoir que si un hyperplan H est
général alors il contient un (N — 2)-plan L vérifiant LN |Cgo| = {0} et tel que
7,(H NS) ne soit pas une droite du céne Ca; o .

Réciproquement, considérons un hyperplan Hy de @V qui est une limite
d’hyperplans tangents a la surface S en 0.

Notons A : C(S,¢V) — PV e morphisme induit sur ’espace conormal de
S dans @V par la seconde projection de S x ]PNil. Nous noterons (0, Hy) un
point de C(S, ") au-dessus de Hy € P et

N

Ao ¢ (C(S, @MY, (0, Ho)) — (P~ ', Hy)

le germe de morphisme induit par A au voisinage de (0, Hp).

Remarquons que puisque (0, Hp) € Ay Y(Hy) alors cet ensemble est non-vide.

L’ensemble \;!(Hp) est 'ensemble des couples (z, Hp) voisins de (0, Ho)
dans C(S,(DN) avec = € S et Hy est tangent ou limite d’hyperplans tangents a
Sen z.

Trois cas se présentent donc: dim)\gl(Ho) =2, 1,0u0.

Les deux premiers cas, sont des situations identiques & celles de [13] (lemme
2.3.1). Dans le premier cas, tous les hyperplans de Hy ont une génératrice en
commun avec le cone tangent Cgo. Dans le second, si L est un hyperplan de
Hy vérifiant LN |Cgo| = {0} alors la droite contenant I'image 7,(HoNS), de la
section Hp NS, est une droite du cone tangent au discriminant Ar, en 0.

Dans le troisieme cas, le morphisme Ag est fini. Soit L un (N — 2)-plan,
hyperplan dans Hy. Notons Cp I'ensemble des hyperplans de @V contenant ce

(N —2)-plan L. L’ensemble Cy est un sous-espace de IP " de dimension 1.
Rappelons que x : C(S7®N) — S désigne le morphisme conormal de S dans
@™ . Notons € = x(A; *(Co)) . Montrons que dim(C)=1:

Tout d’abord, puisque Ay est fini, dim(A\;'(Co)) = 1. Le morphisme conormal
x étant propre, 'espace C est un sous-espace analytique de S de dimension 1 ou 0.
Si dim(C) =0, onaura C = {0}, donc Ay (Co) est 'ensemble des couples (0, H),
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ou H est un hyperplan de N qui contient L et qui est une limite d’hyperplans
tangents & S en 0. Autrement dit, tout hyperplan de @V contenant L est une
limite d’hyperplans tangents & la surface S en 0. Si LN|Cg | = {0}, il existe des
hyperplans de @~ qui contiennent L et qui ne sont pas des limites d’hyperplans
tangents. Donc la dimension de C ne peut pas étre 0. Donc le sous-espace C de
S est de dimension 1.

La courbe C est une composante du lieu critique de la projection nr,. En effet,
en tout point de C non-singulier pour S, I’espace tangent & S est contenu dans
un hyperplan contenant L ; le noyau L de la projection va donc couper cet espace
tangent de maniere excédentaire.

Considérons une suite de points (z,, H,), dans Ay 1(Co) qui converge vers
(0, Hy) dans Pespace conormal C(S,@Y). Chaque hyperplan H, est tangent
la surface S au point z, € C et L C H,. Par conséquent, 'image 7,(H, NS)
est une droite tangente au lieu discriminant |Ap| de #r,. Quitte & en extraire
une sous-suite, la suite de droites w,(H, N'S) converge vers une droite du cone
Car,0. Or @, (H, NS) converge vers mr,(HoNS). L’image 71, (HpN'S) est done
une droite du céne tangent Ca; o du discriminant Ayj, de 7y, en 0.

On a donc démontré la deuxieme implication, & savoir que si un hyperplan H
contient un (N — 2)-plan L verifiant L N |Cgo| = {0} et si I'image #,(H NS)
n’est pas tangente au discriminant Ay, , alors H est général. O

4. Minimalité du nombre de Milnor

Dans le cas d’'un germe d’hypersurface de ORI singularité isolée, B. Teissier
démontre dans [27] (1.1.4) quun hyperplan de @ est général si et seulement
si sa section avec I'hypersurface est & singularité isolée et son nombre de Milnor
est minimum parmi les nombres de Milnor des sections hyperplanes a singularités
isolées. Nous nous proposons, dans cette section, de démontrer une condition
nécessaire et suffisante analogue et valable dans le cas des germes de surfaces
normales.

Dans [18] (§§6 et 7), J. Milnor définit le nombre de Milnor pour des hypersur-
faces & singularités isolées. Dans [12], H. Hamm définit aussi un nombre de Milnor
pour les intersections completes & singularités isolées.

Dans le cas des surfaces normales de @7, les sections hyperplanes sont en
général des courbes gauches qui ne sont pas des intersections compléetes. Cepen-
dant, dans [1] (§1.1), il est associé & une singularité de courbe réduite, un nombre
1 qui a des propriétés topologiques analogues a celles du nombre de Milnor et qui
coincide avec celui-ci dans le cas des intersections completes (cf. [1] (lemme 1.1.2)
et [10] (appendice 1)).

Considérons un germe de courbe réduite (C,0) et notons n:C — (C,0) sanor-
malisation. Posons § = dimg(n+Og)o/Oc,o0 et appelons r le nombre de branches
du germe (C,0). Nous avons une généralisation du nombre de Milnor pour un



Vol. 76 (2001) Limites d’espaces tangents & une surface normale 71
germe de courbe réduite défini de la maniere suivante (cf. [1] (1.1.1 et 1.2.1)):

Définition 4.1. On appellera nombre de Milnor du germe de courbe (C,0) et
on notera p(C,0) Uentier 26 —r + 1.

Le résultat principal de cette section est le suivant:

Théoreme 4.2. Soit S un représentant d’un germe de surface analytique normal
plongé dans eV . Un hyperplan H de @ ne contenant aucune composante
irréductible du cone |Cgo| est général si et seulement si la section H NS est
réduite et p(HNS,0) est minimum parmi les nombres de Milnor en 0 des sections
hyperplanes réduites.

Remarquons que dans le cas ou I’hyperplan H contient une composante irréduc-
tible du cone tangent |Cg o| alors, d’apres le théoreme 2.5, ¢’est une limite d’hyper-
plans tangents & S a l'origine.

D’autre part I'anneau local Og o des fonctions holomorphes sur S étant Cohen-
Macaulay, les sections hyperplanes de S qui sont des courbes, sont sans com-
posantes immergées (cf. [32] appendice 6 corollaire 3).

Avant de démontrer ce théoréme, nous allons énoncer deux lemmes:

Le premier lemme permet de régler le cas des sections hyperplanes qui ont des
singularités non-isolées.

Lemme 4.3. Si Uhyperplan H est général alors la section de H avec S est
une courbe réduite.

Démonstration: Considérons un hyperplan H dont la section avec S n’est
pas réduite. Notons E une composante non-réduite de H N'S. En tout point =
de E I’hyperplan H n’est pas transverse a S, il contient donc le plan tangent
a la surface S en tout point de E. En prenant une suite de points (z,) de la
composante E qui converge vers 0, 'hyperplan H est tangent a S en tout point
,, non-singulier; c’est donc une limite d’hyperplans tangents a S & 'origine.

O

Le second lemme permet d’établir un lien entre le nombre de Milnor d’une
section hyperplane réduite et la multiplicité d’intersection de son image avec le
discriminant d’une projection linéaire générique. Reprenons les notations de la
section précédente: 7, 1 S — U est la projection générique induite par un (N —2)-
plan L et Ap, est son discriminant défini dans 3.2. On a:

Lemme 4.4. Soit | : €* — € une forme linéaire et soit o =lomy. Sila courbe
a7 10) est réduite, la multiplicité d’intersection (Ar, -171(0))o en 0 est égale a
(0=1(0),0) + degory, — 1.



72 J. Snoussi CMH

Nous remercions le professeur D.T. La qui nous a aimablement communiqué
une preuve de ce lemme.

Démonstration: Sil'on note D un disque ouvert dans € centré en 0 et de
rayon suffisamment petit et si 'on choisit un bon représentant S du germe de
surface (S,0) qui, rappelons-le, est normal, le morphisme ¢ : S — D est une
lissification de la courbe a—1(0).

Si 'on note x(oc71(¢)) la caractéristique d’Euler de la courbe o~1(¢) pour
t € D et si 'on suppose que la courbe o~'(0) est réduite alors, d’aprés [1]
(corollaire 4.2.3), on a:

(o1 (#) = 1 = p(o™"(0),0).

En considérant la restriction de la projection m, & la courbe o '(£), et en re-
marquant que le lieu de ramification de cette restriction est ’ensemble des points
d’intersection de la courbe lil(t) avec le discriminant Ap, de 7, on obtient:

x(e7H(t)) = degom(1—#( () NAL))
+ Z (degomr, — Z (degyi!jm, —-1))
@ €l-1(DNAL yisEnT (1) (4.1)

= degomy, — (degy, ;71 —1).
£y 2

ziEl‘l(t)ﬁAL Yi,i Eﬂ'Lfl(zi)

Par ailleurs, le discriminant A, étant une hypersurface dans un ouvert de (EQ7
on a
O - A= > () AL (4.2)

z; €11 ()NAL
Or on a:
M) -AL)e = > (degy,,m —1). (4.3)
yig€ng (@)
En remplacant (4.3) dans (4.2) puis dans (4.1) on a:
x(0 (1)) = degom, — (171(0) - Ap)o.
D’ou I'égalité:
(o 1(0),0) = 1 — degomy, + (I71(0) - Ap)o.

O
Nous pouvons maintenant donner la démonstation du théoreme 4.2:
Démonstration: Précisons que si un hyperplan H de @V ne contient aucune
composante irréductible du cone |Cg o| alors I'intersection HN|Cg | est un nom-
bre fini de droites et donc un hyperplan générique L. de H vérifie la condition
LN |Cs7o| = {O}
Considérons un hyperplan H qui ne contient aucune composante irréductible
de |Cg 0|, qui soit une limite d’hyperplans tangents & la surface S en 0 et tel que
la section H NS soit réduite. Considérons alors un (N —2)-plan L contenu dans
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H tel que LN |Cgo|= {0} et notons 7y, : S — U la projection générique définie
par L comme dans la section prédédente.

Pour le mame (N — 2)-plan L, nous avons vu lors de la preuve du théoréme
3.3, qu’il existe un hyperplan H’ général contenant L. D’apres le lemme 4.3, la
courbe H' NS est aussi réduite.

D’apres le lemme 4.4, on a:

(WL(HQS)~AL)0 = M(HﬂS,O)+degoWL—1
et (4.4)
(WL(H/QS)~AL)0 = M(H/OS7O)+d€go’/TL—1

D’aprés le théoreme 3.3, la droite 7, (H N'S) est une droite du cone tangent
a Arp en 0 et la droite 7w,(H' N'S) n’en est pas. Par conséquent d’apres [4] (I11.
§3), on a
(WL(HO S) . AL)O 2 m(AInO)
et (4.5)
(WL(H/QS) 'AL)O = m(AL7O)

Il résulte de (4.4) et (4.5) que:
p(H NS,0) > p(H' NS,0).

Le nombre de Milnor de H NS en 0 n’est donc pas minimum.

Réciproquement, considérons un hyperplan H de @V ne contenant aucune
composante irréductible de |Cg o] .

Si la courbe H NS n’est pas réduite alors d’apres le lemme 4.3, 'hyperplan H
est une limite d’hyperplans tangents a S a l'origine.

Supposons maintenant que la courbe H NS est réduite et le nombre de Milnor
w(H N'S,0) n’est pas minimum. D’apres [1] (théoreme 6.1.7), il existe un ouvert
dense Q de ’ensemble des hyperplans de eV tel que pour tout H’ € Q on
ait H'N'S est réduite et p(H' NS,0) < p(H NS,0). L’ensemble des intersec-
tions des hyperplans contenus dans Q avec 'hyperplan H est un ouvert dense
de I’ensemble des hyperplans de H . Par ailleurs, puisque 'hyperplan H ne con-
tient aucune composante irréductible de |Cg |, 'ensemble des hyperplans de H
n’ayant aucune génératrice en commun avec le cone |Cgo| est aussi un ouvert
dense de ’ensemble des hyperplans de H. Il existe donc un hyperplan H' de o
tel qu'on ait & la fois H' NS est une courbe réduite, u(H' N'S,0) < u(H N'S,0)
et si 'on note L le (N —2)-plan de @V défini par I'intersection H' N H alors
LN |Cs7o| = {O}

Si I'on note 71, la projection générique définie par L, on a d’apres le lemme
44,

(AL~7TL(HQS))0 = /L(Hms70)+d€go7TL—1
et (4.6)
(AL . WL(H/ n S))o = M(H/ n S7O) + degom, — 1

Puisque p(H'NS,0) < u(HNS,0), on a alors
(AL ~7TL(HmS))0 > (AL ~7TL(H/ mS))o.
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Par conséquent, la droite (7, (HNS)) est une droite du coéne tangent au discrimi-
nant Ay, en 0. D’aprés le théoreme 3.3, ’hyperplan H est une limite d’hyperplans
tangents a la surface S a lorigine. Ce qui acheve la preuve du théoreme 4.2.

O

Exemple. Considérons la surface normale S de @* définie par (22 +¢% 422+
4,24 4 3y® + 22 —t*). Le cone tangent réduit |Cso| est le plan de ©* défini
par (z,z).

Considérons maintenant le 2-plan L de @* défini par (y,t). On a bien la
condition de généricité L N|Cgg| = {0}. Le discriminant de la projection 7y, est
Phypersurface Ap, de @2 définie par ((3® —t4)2(y® —3t4)2). On a m(Ar,0) = 12
et |Cay,o0| est la droite de @©? définie par (y). Le degré de la projection 7y, vaut
4.

Notons Hy—o et H;—o les hyperplans de @* définis respectivement par (y)
et par (t). D’aprés le théoreme 3.3, I'hyperplan H,—q est une limite d’hyperplans
tangents a S en 0 et 'hyperplan H,_( est général.

Les sections hyperplanes H,—o NS et H;—o NS sont définies respectivement
par (y,z° — 2t* 2% 4+ 3t*) et par (t,2? 4 222,y — 2%). Dans les deux cas ce
sont des intersections completes définies par des polynomes quasi-homogenes. En
appliquant la formule donnée par M. Giusti dans [11] (§1) pour le calcul du nombre
de Milnor dans ce cas, on obtient:

/L(Hyzo n S70) =13 et ,u(Ht:o N S70) =9.

Par ailleurs, si l’on note pyin = m(Ar,0) +m(S,0) — 1, qui dans ce cas vaut
12—4+1=29, alors d’apres le théoreme 4.2, on doit avoir p(Hi—oN'S,0) = timin
et u(Hy—0NS,0) > fimin, ce quiest le cas d’aprés le calcul des nombres de Milnor.

Remarquons que hyperplan Hy—o n’est pas tangent au coéne |Cgqg|. D’apres
le théoreme 2.8, I’hyperplan H,— contient donc une tangente exceptionnelle de
la surface S en 0. Dans ce cas, la droite définie par (z,y,z) est cette tangente
exceptionnelle de S en 0.

5. Tangentes exceptionnelles

Rappelons que d’apres le théoreme 2.8, la détermination de ’ensemble des limites
d’hyperplans tangents & une surface normale en un point singulier passe par la
détermination des tangentes exceptionnelles de cette surface en ce point singulier.

Nous allons commencer par donner une caractérisation des tangentes excep-
tionnelles d’un germe de surface normale en terme de résolution simultanée faible
des familles des sections hyperplanes.
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5.1. Résolution simultanée faible

Considérons un germe de morphisme plat d’espaces analytiques f, : (X, z0) —
(D,dp) ol (X,zg) est le germe d’une surface et (D,dy) celui d’une courbe
non-singuliere. Notons f : X — D un représentant suffisamment petit du germe
F AT X — X la normalisation de la surface X et f X —>Dle morphisme
composé fon.

La normalisation en famille et la résolution simultanée faible de f : X — D
sont définies comme suit (cf. [26] §1 et [1] 4.1.5):

Définition 5.1. La famille de courbes f : X — D a une normalisation en
famille si pour tout d € D la courbe f_l(d) est non-singuliere.

Si de plus f a une section holomorphe o : D — X telle que f~(d) — {o(d)}
soit non-singuli¢re pour tout d € D et |[n~(a(D))] = D x |n"Y{o(dy))| alors on
dit que le morphisme [ a une résolution simultanée faible en xq le long de o(D).

Dans le cas ol les fibres du morphisme f sont des courbes planes, la résolution
simultanée faible est caractérisée par 'une des nombreuses notions équivalentes
d’équisingularité d’une surface en un point le long d’une courbe (cf. [16] §1.2).
Certaines de ces équivalences ne sont plus valables dans le cas des courbes gauches.
Cependant nous disposons des équivalences suivantes ([26] théoréme 1.3.2 et [1]
théoréme 5.2.2):

Théoréme 5.2. Soit f: X — D comme ci-dessus.

a) Le morphisme f a une normalisation en famille si et seulement si pour tout
de D la courbe f71(d) est réduite et §(f~1(d)) = 6(f~*(do)), ou §(f~1(d)) =
Z S(f~Hd), z), Uinvariant & étant celui introduit pour la définition 4.1.

z€f~1(d)

b) Le morphisme f a une résolution simultanée faible si et seulement si l'une
des propriétés équivalentes suivantes est vérifiée:

(i) Le morphisme f a une normalisation en famille et il eriste une section
o:D — X telle que le nombre de branches, r(f~1(d),o(d)), de f~1(d) au point
o(d) soit constant pour tout d € D.

(i) Le morphisme f est & fibres réduites et a une section o : D — X telle
que le nombre de Milnor p(f~1(d),o(d)) soit constant pour tout d € D.

5.2. Caractérisations des tangentes exceptionnelles

Nous allons maintenant étudier I’existence d’une résolution simultanée faible dans
le cas des familles de sections hyperplanes d’une surface normale.

Considérons un (N —2)-plan L de @V tel que LN|Cso| = {0}. La projection
générique 7, : S — U C @? est définie par deux fonctions holomorphes f et g
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contenues dans I'idéal maximal m de I'anneau local Ogg. La généricité de m,
fait que la paire (f,g) est une suite réguliere de lanneau Ogg. Considérons
I'éclatement er, : Sf — S de I'idéal primaire (f,g)Oso. Nous avons alors le
diagramme commutatif suivant:

SxP' — S L S ey
J J 61)
UxPl — U 0 U a?

oll ey est I'éclatement de l'origine dans U et = est donné par la propriété
universelle de 1’éclatement.

Lasurface Sf, est définie dans Sx Ipt par I'idéal (fT2—gT:) de Ogo[T1,T2],
ot (Ty:Ty) est un systéme de coordonnées homogenes dans P' (cf. [3] 17.14).
Par unicité du morphisme 7] donné par la propriété universelle de I’éclatement,
7{, est le morphisme induit sur S} par la projection (7, Idp1) : S x P — Ux P
Le morphisme =], est un morphisme fini.

Considérons la projection p,, : U’ — ]Pl, et notons f: S — P! le morphisme
composé p,, ony,. Les fibres du morphisme f sont exactement les transformées
strictes par er, des sections hyperplanes de la surface S définies par les hyperplans
de @V qui contiennent le (N —2)-plan L. Une section hyperplane de S définie
par un hyperplan contenant le (N —2)-plan L étant isomorphe & sa transformée
stricte par D'éclatement e, on peut voir le morphisme f : S} — P! comme la
famille des sections hyperplanes de S définies par les hyperplans de @V contenant
L.

D’autre part, la surface S étant normale, I'espace S X Pl est Cohen-Macaulay
au voisinage de chacun de ses points. La surface S| étant une hypersurface dans
Sx ]Pl7 son anneau de fonctions holomorphes est donc localement Cohen-Macaulay.
Il en résulte que le morphisme f: S}, — P oest plat.

On fera alors une étude locale de ’existence de résolution simultanée faible de
la famille de sections hyperplanes f : S} — P! en chacun des points du diviseur
exceptionnel de S .

5.3. Considérons un point zo de la surface S| appartenant & la fibre excep-
tionnelle de I’éclatement er,. Notons Xi, un représentant assez petit du germe de
surface (S7,z0), D son image par le morphisme f,et fi,: X — Dy C P! le
morphisme induit par f.

Précisons que le morphisme fr, : Xi — D ainsi construit, a une section
naturelle o : D, — X1, qui & tout point d € Dy, associe le point o(d) € X,
défini comme étant I'unique point d’intersection de la fibre f; . (d) avec le diviseur
exceptionnel de I’éclatement e, dans Xr.

Théoreme 5.4. Soit H un hyperplan de @V ne contenant aucune composante
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irréductible du cone |Cgo| . H est général si et seulement si pour tout hyperplan L
de H wvérifiant LN|Cgo| = {0} on a: sil'on note zq le point exceptionnel de la
transformée stricte, par er, , de la section HNS et fi, : X1, — D1, le morphisme
construit, comme dans 5.3, autour de xg, alors f1, a une résolution simultanée
faible le long de o(Dy,).

Démonstration: Soit H un hyperplan de €V ne contenant aucune composante
irréductible du céne |Cg g

Supposons que I’hyperplan H est général. Soit L un (N — 2)-plan de o
contenu dans H et tel que LN|Cgg| = {0}. Notons zq le point d’intersection de
la transformée stricte de H NS par I'éclatement e, avec le diviseur exceptionnel
de er,. Rappelons que ensemble des hyperplans généraux de @V contenant L
est un ouvert dense de ’ensemble des hyperplans de @V contenant L. On peut
done choisir un représentant suffisamment petit Xj, du germe (S7,z¢) de sorte
que toutes les sections hyperplanes de S dont les transformées strictes par ey,
coupent le diviseur exceptionnel de e, dans X7, soient définies par des hyperplans
généraux de @V. Considérons alors le morphisme fr, : X1, — Di, défini autour
de 29 comme dans 5.3.

Rappelons que chaque fibre du morphisme f : S| — P! est isomorphe a la
section hyperplane de S dont elle est la transformée stricte par I’éclatement er,.
11 en résulte que si une section H’NS réduite a comme transformée stricte la fibre
fUd),d e P!, alors on a:

p(fH(d),o(d)) = p(H' NS, 0).

Dans le voisinage X1, de zg, les fibres du morphisme fi, sont toutes les trans-
formées strictes de sections hyperplanes définies par des hyperplans généraux de
. D’apres le théoreme 4.2, pour tout d € Dy, les fibres fL’l(d) sont réduites
et

u(ft(d),0(d)) = u(H NS, 0)

et vaut la valeur minimale (o, parmi les nombres de Milnor en 0 des sections
hyperplanes réduites de S. D’apres le théoreme 5.2, le morphisme f1, : X1, — Dg,
a une résolution simultanée faible le long de la section o(Dy,).

Réciproquement, supposons que pour tout (N — 2)-plan L de @V contenu
dans ’hyperplan H vérifiant LN|Cgo| = {0} le morphisme f1, : X1, — D1, a une
résolution simultanée faible le long de o(Dy,). Notons zg le point d’intersection de
la transformeée stricte, par I’éclatement er,, de HNS avec le diviseur exceptionnel
de er, et dy = fL(zg). D’apres le théoreme 5.2, pour tout d € Dy, la fibre fgl(d)
est réduite et

p(fpH(d),0(d) = u(fi H(do), o).

Or les fibres du morphisme f;, sont isomorphes aux sections hyperplanes de
S dont elles sont les transformées strictes par er,. L’ensemble des hyperplans
généraux de @V étant un ouvert dense de 'ensemble des hyperplans de o¥ , il
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existe d € Dy, tel que la fibre fﬂl(d) soit définie par un hyperplan général H’
de @Y. On a alors

wfp(d),o(d) = u(H' NS, 0).

Or d’apres le théoréme 4.2, on a p(H' N'S,0) = pymn. Par conséquent,

p(H NS,0) = N(fLTl(dO)71'O) = M(fﬂl(d)7a(d)) = M(H/ NS,0) = fimin.

D’apres le théoreme 4.2, I’hyperplan H est général.
O
Ce théoréeme nous donne une caractérisation des limites d’hyperplans tan-
gents en termes d’existence d’une résolution simultanée faible de familles de sec-
tions hyperplanes. Rappelons qu’une tangente exceptionnelle de S en 0 est une
génératrice du cone tangent telle que tout hyperplan la contenant est une limite
d’hyperplan tangent & S en 0. Cependant les tangentes exceptionnelles de S en
0 n’apparaissent pas clairement dans un éclatement de “type er,”. Par contre,
toute génératrice du coéone tangent & S en 0 correspond & un point du diviseur
exceptionnel de ’éclatement de 'origine dans S.

5.5. Notons e : S’ — S I'éclatement de I'origine dans S. Lasurface S’ obtenue est
plongée dans S x PY!. La courbe exceptionnelle dans S’ est la courbe projective
projCgo. Si L est un (N —2)-plan vérifiant LN|Cg | = {0} alors, I'identité sur
S et la projection : PY ! — projL. — P! induisent un morphisme p} : 8" — S} .
Drapres [19] (II. §7 proposition 6), le morphisme pf, est un morphisme fini.

Théoréme 5.6. Soit ly une génératrice du cine |Cg |, notons yo le point qui
lui correspond dans proj|Cso|. La génératrice ly est une tangente exceptionnelle
de la surface S en 0 si et seulement si, pour tout (N — 2)-plan L vérifiant
LN |Cgo| = {0}, le morphisme fr, : X1, — D1, construit autour de limage
p1.(yo) comme dans 5.3, n’a pas de résolution simultanée faible le long du diviseur
exceptionnel.

Démonstration: Soit lyp une tangente exceptionnelle de S en 0 et soit L un
(N —2)-plande @V vérifiant LN|Cs 0| = {0}. Notons yo le point de proj|Cs ol
correspondant & la génératrice Iy et xzg son image par le morphisme p{ construit
comme dans 5.5. D’apres la définition 2.9, Phyperplan H de @7 engendré par le
(N —2)-plan L et la droite Iy est une limite d’hyperplans tangents a la surface
S en 0 et donc d’apres le théoreme 4.2, la courbe H NS est soit non-réduite, soit
réduite et p(H N'S,0) > fimin, OU fmin désigne la valeur minimale des nombres
de Milnor & l'origine des sections hyperplanes réduites. Cette section hyperplane
est isomorphe & la fibre f; Y(dy) du morphisme fi, : X1, — Dy, (construit comme
dans 5.3), ou dy = fr.(zo) .

Si la courbe fi; 1(d0) n’est pas réduite, alors le morphisme f1, n’a pas de
résolution simultanée faible.
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Si la courbe f; *(do) est réduite alors on a

w(fr (do), 20) > fmin.

Par ailleurs, en choisissant un représentant Xy, du germe de surface (Sf,,zo) assez
petit, on peut supposer que toutes les autres fibres du morphisme f1, sont les
transformées strictes par er, de sections hyperplanes définies par des hyperplans
généraux de o ; donc pour tout d € Dy, différent de dp,

w5 (), () = pimin < p(fg " (do), o).

Par conséquent, d’apres le théoreme 5.2, le morphisme f;, n’a pas de résolution
simultanée faible le long du diviseur exceptionnel dans Xt.

Réciproquement, supposons que pour tout (N —2)-plan L de @V vérifiant
LN|Cso| = {0} le morphisme fi, : X1, — Dy, construit comme dans 5.3 autour du
point zo = p,(yo) n'admet pas de résolution simultanée faible le long du diviseur
exceptionnel dans Xi,.

Soit H un hyperplan de @V contenant la génératrice ly. Si I'hyperplan H
contient une composante irréductible de |Cg | alors c’est une limite d’hyperplans
tangents. Sinon, 'hyperplan H contient un (N — 2)-plan L de @V vérifiant
LN |Cgo| = {0}. Puisque le morphisme f7, : X1, — Dy, induit par L n’a pas
de résolution simultanée faible le long du diviseur exceptionnel dans Xi, alors
d’apres le théoreme 5.4, ’hyperplan H n’est pas général. Par conséquent, tout
hyperplan de @V contenant la génératrice [y est une limite d’hyperplans tangents
a la surface S en 0. D’apres la définition 2.9, la génératrice [y est une tangente
exceptionnelle de la surface S en 0. Ce qui acheve la preuve du théoreme 5.6.

O

Remarque 5.7. Notons f et g deux fonctions holomorphes de Og o qui définissent
la projection 7, : S — U. D’apres [24] (1. §5.2), la projection 7y, est générique si
et seulement si I'idéal maximal m de Ogo est entier sur l'idéal (f,g)Oso. Par
conséquent, lorsque la projection 7, est générique les deux idéaux (f,g) et m
de Og g ont mame cloture intégrale (en I'occurence m ); d’apres [24] (page 330),
ces deux idéaux ont mame éclatement normalisé.

Nous avons alors le diagramme commutatif suivant:

s —* . ¢
- J [ " (5.8)
s —2 5 S

ol les morphismes n et ny sont respectivement les normalisations des surfaces
S et S

Nous pouvons maintenant déterminer explicitement les tangentes exception-
nelles d’une surface normale:
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Théoréme 5.8. Soient ly une génératrice du cone |Cgo| et yo le point de
proj|Cso| qui lui correspond. La génératrice ly est une tangente exceptionnelle
de la surface S en 0 si et seulement si yo est un point singulier d’une branche de
la courbe proj|Csg| ou Uimage par la normalisation n d’un point singulier de la

surface S ou d'un point singulier du diviseur exceptionnel dans S ou une valeur
critique de la restriction de la normalisation aw diviseur exceptionnel de S.

Nous appellerons point spécial un point de la courbe proj|Cgg| parmi ceux
énumérés dans ce théoreme.

Ce théoreme améliore le résultat annoncé dans [23] (théoréme 8) et démontré
dans [22] (théoréeme 4.17). Nous remercions le professeur D. T. La qui a attiré
notre attention sur cette amélioration.

Remarque 5.9. Dans [9] (définition 4), G. Gonzdlez-Sprinberg et M. Lejeune-
Jalabert appellent section hyperplane générale d'une surface S (non-nécessairement
normale), une section de S définie par un hyperplan H dont le projectivisé
projH est transverse & la courbe proj|Cgo| en évitant: la transformée stricte par
I'éclatement e du lieu singulier de S, les points singuliers et les points spéciaux
de proj|Cso|. Le théoreme ci-dessus nous permet de comparer les sections hy-
perplanes générales dans le sens de [9] aux sections hyperplanes définies par des
hyperplans généraux dans le sens de ce travail; voir la proposition 5.12.

Démonstration: Montrons d’abord qu’un point spécial correspond & une tan-
gente exceptionnelle de S en 0:

Soit yo un point de proj|Cgo| et L un (N — 2)-plan de @V vérifiant LN
|Cs,0l = {0}. Notons pf, : S’ — S} le morphisme induit par L (comme dans 5.5)
et zo = pl(yo). Soit f1,: X1, — Dy, le morphisme construit autour de zy comme
dans 5.3.

ler cas: Le point yp est 'image par la normalisation n d’un point singulier
de S. Dans ce cas, par commutativité du diagramme (5.2), la surface normalisée
de X1, est singuliere au dessus de zp; par conséquent, le morphisme fi, n’a
pas de normalisation en famille, il n’a donc pas de résolution simultanée faible.
D’apres le théoreme 5.6, la génératrice [y correspondant & yo est une tangente
exceptionnelle de S en 0.

2 eme cas: yp est I'image par la normalisation n d’un point singulier du di-
viseur exceptionnel de S. Le point zy = pf,(yo) est alors image par nr d'un
point singulier du diviseur exceptionnel de S. Il est donc impossible d’avoir
In; (o(DL))| = Dy, x |ng *(x0)|. Le morphisme f, n’a donc pas de résolution
simultanée faible le long de o(Dy,). D’apres le théoreme 5.6, la génératrice [y est
une tangente exceptionnelle de S en 0.

3 eme cas: Le point yo est une valeur critique de la restriction de la normalisa-
tion n au diviseur exceptionnel dans S. Sile morphisme f;, avait une résolution
simultanée faible le long du diviseur exceptionnel dans X, alors on aurait d’apres
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5.1:
Ing, " (e(DL))| = Dy x |ng, (o).

Or d’apres la commutativité du diagramme (5.2), on a ng, = pj,on, par conséquent,
si on note Y un voisinage de yo dans S’ au dessus de Xi,, on aurait:

I~ (proj|Cs ol NY)| = DL x |n~ ! (yo)l,

ce qui est impossible quand g est une valeur critique de la restriction de n au di-
viseur exceptionnel de S. Le morphisme f;, n’a donc pas de résolution simultanée
faible. D’apres le théoreme 5.6, la génératrice I est une tangente exceptionnelle
de S en 0.

4eme cas: Le point yo est un point singulier d’une branche de proj|Cggl.
Il existe un point sg € S tel que n(sp) = yo et l'image par n du diviseur
exceptionnel au voisinage de sy contienne la branche de proj|Cs o| singuliere en
yo. Dans ce cas, au voisinage de sp, la restriction de la normalisation np, au
diviseur exceptionnel se factorise par une courbe singuliere. Par conséquent le
point zg = pf,(yo) est une valeur critique de cette restriction. Le morphisme fi,
n’a donc pas de résolution simultanée faible, et donc d’apres le théoreme 5.6, la
génératrice [y est une tangente exceptionnelle de S en 0.

Réciproquement, soit yo un point de proj|Cgg| non-spécial, montrons que la
génératrice Iy de |Cgo| qui lui correspond n’est pas une tangente exceptionnelle
de S en 0.

Choisissons un (N —2)-plan L de @V verifiant L N|Cgo| = {0} et tel que
Ihyperplan Hy de @V contenant L et ly vérifie les conditions suivantes:

la courbe Hy N S est réduite
proj Hy ne contient pas de point spécial (5.9)
Hy n’est pas tangent au cone |Cg .

Soit pf, : 8 — S| le morphisme induit par . comme dans 5.5. Posons
zo = pi(yo) et notons fi, : X;, — Dy, le morphisme construit autour de
comme dans 5.3. Posons do = fL.(zq).

Nous allons montrer que le morphisme f1, a une résolution simultanée faible
le long du diviseur exceptionnel dans Xi,.

Le point dy n’est pas une valeur critique de la restriction de fr, o ny, au
diviseur exceptionnel de S. En effet, Soit zy un point de S au-dessus de x.
Par commutativité du diagramme (5.2), n(z0) = yo et puisque yg n’est pas un
point spécial, zo n’est pas un point singulier du diviseur exceptionnel réduit de
S et son image par la normalisation est un point non-singulier d’une branche de
projCgo. Par construction du morphisme pj, (voir 5.5), la restriction & cette
branche de projCs o du morphisme fi, o p| est critique en yo si et seulement si
I’hyperplan projectif projHpy n’est pas transverse a cette branche dans Pyt ; ce
qui est exclu par le choix de Hy . Le point zp n’est pas alors un point critique du

morphisme composé fr, o pj, o n restreint au diviseur exceptionnel de S. Ainsi,
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le point dp n’est pas une valeur critique de la restriction de f1, o ny, au diviseur
exceptionnnel de S .

Il en résulte que la fibre (frong) (do) est transverse au diviseur exceptionnel
de S, de plus la section hyperplane Hy NS étant réduite la fibre i 1(do) est
une courbe réduite. Le morphisme f1, a donc une normalisation en famille au
voisinage de zg .

Montrons maintenant que le nombre de branches de la fibre f Y(dy) en zo
est égal au nombre de branches de f; *(d) en o(d) pour d voisin de dy et ol o
est la section naturelle de P' dans S/ . Posons z = o(d) .

Puisque les fibres (f1, ong,) ' (do) et (fr onr) '(d) sont non-singulitres, le
nombre de branches de f; '(dy) en zq et de f; '(d) en x est respectivement
égal au cardinal de ny'(zo) et de ny '(z).

Si y; est un point de projCs o au-dessus de zo, et puisque I'hyperplan pro-
jectif projHy est transverse a chacune des branches de projCso en y; dans
pL , le nombre de points y; ; de projCso au-dessus de x voisins de y; est
égal au nombre de branches de la courbe proj|Cgo| en y; . D’autre part, en vertu
des conditions (5.3), le cardinal de chaque fibre n~!(y;) est égal & la somme des
cardinaux des fibres n~!(y; ;) pour tous les points y;; au-dessus de z voisins
de y;. Par commutativité du diagramme (5.2), le cardinal de la fibre np Yao)
est donc égal a celui de la fibre np Y(z) et par conséquent les courbes o Ydy) et
b 1(d) ont le mame nombre de branches respectivement en zg et en z .

D’apres le théoreme 5.2, le morphisme f1, a une résolution simultanée faible
le long du diviseur exceptionnel et donc d’apres le théoreme 5.6, la génératrice [y
du cone Cgo n’est pas une tangente exceptionnelle de la surface S en 0. Ce qui
acheve la preuve du théoreme 5.8.

O

Remarque 5.10. D’apres le théoreme 5.8, un point de croisement de composantes
irréductibles non-singulieres de la courbe projCgo qui n’est pas un point spécial
ne correspond pas & une tangente exceptionnelle de la surface S en 0. Dans le cas
oll la surface S est une hypersurface a singularités isolées, de tels points n’existent
pas puisque J. P. G. Henry et D. T. La ont prouvé dans [14], que tous les points
singuliers de proj|Cg,g| correspondent & des tangentes exceptionnelles. Il serait
intéressant de savoir si de tels points existent dans le cas général des surfaces
normales.

Dans le cas ol la surface S’ obtenue par éclatement de 'origine de S est elle-
mame une surface normale (c’est le cas en particulier des surfaces & singularités
rationnelles (cf. [29])), le résultat du théoreme 5.8 s’exprime plus simplement:

Corollaire 5.11. Dans le cas ou l’éclatement de lorigine d’une surface normale
S est une surface normale, une génératrice lg du come Cgo est une tangente
exceptionnelle de S en 0 si et seulement si le point yo de proj|Cgo| lui corre-
spondant est un point singulier de la surface éclatée S’ ou un point singulier de
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la courbe proj|Cgol.

Ce corollaire découle du fait que dans le diagramme (5.2), les surfaces S’ et S
sont égales. On applique alors le théoreme 5.8.
En vertu des théoremes 2.8, 5.8, du corollaire 5.11 et de la remarque 5.9, on a:

Proposition 5.12. Pour une surface S normale en 0, une section hyperplane
générale dans le sens de [9] est définie par un hyperplan qui n’est pas limite
d’hyperplans tangents a la surface S en 0.

Dans le cas ou Uéclaté de S en 0 est une surface normale, une section hy-
perplane est générale dans le sens de [9] si et seulement si elle est définie par un
hyperplan qui n’est pas une limite d’hyperplans tangents a la surface S en 0.

6. Courbes polaires

La notion de variétés polaires introduite et étudiée par D.T. La et B. Teissier
(cf. [15]), constitue une classe d’objets géométriques liés & I’étude géométrique et
topologique des singularités des espaces analytiques complexes. Dans le cas des
germes de surfaces complexes, cette notion se réduit a celle des courbes polaires
qui se trouvent atre intimement liée aux tangentes exceptionnelles en des points
singuliers.

Un (N —2)-plan linéaire L de @V induit un morphisme 1, de la surface S
sur un ouvert U/ de @°. D’apreés [15] (§2), on définit les courbes polaires associées
au germe de surface (S,0) comme suit:

Définition 6.1. Pour un (N — 2) -plan générique L de @Y, Uadhérence dans
S du lieu critique de la restriction de 71, au lieuw non-singulier de S est un espace
analytique reduit de dimension 1 ou vide qu’on appelle courbe polaire (ou premiére
variété polaire) associée au germe de surface (S,0) et au (N —2)-plan L et qu’on

note P1((S,0),L).

Dans le cas d’une surface normale, et & moins que la surface ne soit non-
singuliere, les courbes polaires ne sont pas vides et coincident avec le lieu critique
des projections linéaires génériques.

On définit dans [21] (III. définition 1.1) les points fixes des courbes polaires
comme suit:

Définition 6.2. Soit p: X — S wune modification de la surface S au-dessus de
0. On dira qu’un point n de la fibre exceptionnelle de p est un point fixe par p
du systéme linéaire des courbes polaires ou encore un point base pour p s’il eriste
un owvert dense Q de la Grassmannienne des (N — 2) -plans de (DN, tel que
pour tout L € Q, la transformée stricte par p de la courbe polaire P1((S,0),L)
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contienne le point 7.

On commencera par étudier les points fixes du systeme linéaire des courbes
polaires par I’éclatement de I'origine d’une surface normale.

Un résultat de D.T. La et B. Teissier, dans [16] (proposition 2.2.1) s’interprete
dans le cas des surfaces normales comme suit:

Proposition 6.3. Un point de proj|Cgo| est un point base (ou encore un point
fize des courbes polaires) pour Uéclatement de Uorigine dans S si et seulement si
la génératrice du cone tangent qui lui correspond est une tangente exceplionnelle
de la surface en 0.

Dans le cas des surfaces & singularités rationnelles, M. Spivakovsky démontre
dans [21] (IIL. corollaire 3.11) le résultat suivant:

Proposition 6.4. Soit S wune surface normale ayant une singularité rationnelle
en 0 et soit e:S' — S léclatement de l'origine. Un point non-singulier de la
surface S’ est un point base pour Uéclatement si et seulement s’il est un point
singulier du diviseur exceptionnel réduit.

Et dans [21] (ITI. Remarque 3.12) il pose la question suivante:

Question 6.5. Soit S’ la surface obtenue par 1’éclatement d’une singularité ra-
tionnelle de surface. Un point singulier de la surface S’ est-il un point base pour
Iéclatement 7

Il donne une réponse positive a cette question dans le cas d’une surface a
singularité minimale dans [21] (III. §5).

Le corollaire 5.11 énoncé dans la section précédente donne une réponse positive
a la question 6.5 ainsi qu’une preuve de la proposition 6.4.

En appliquant les résultats obtenus dans la section précédente sur les tangentes
exceptionnelles d’'une surface normale, nous obtenons une réponse positive a la
question 6.5 dans le cas général d’une surface normale:

Théoréme 6.6. Soil S une surface normale a singularité en 0. Notons e :
S’ — S [éclatement de lorigine dans S et n : S — S la normalisation de S’ .

L’image par n d’un point singulier de S est un point base pour l’éclatement e .

Ce théoreme est une conséquence immédiate du théoréeme 5.8 et de la proposi-
tion 6.3.

Nous allons maintenant redonner une formulation & ce résultat en termes de
contraction des composantes de Tyurina.

Donnons d’abord une définition qui généralise la notion de composantes de
Tyurina a certaines résolutions d’une surface normale.
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Considérons une résolution 7 : X — S de la surface S. Si’'on note m Iidéal
maximal de 'anneau Og o, alors, d’apres la propriété universelle de I'éclatement
et de la normalisation (cf. [2] page 25), le faisceau mQOx est inversible si et
seulement si la résoltion 7 : X — S se factorise par I’éclatement normalisé de
Iidéal maximal m .

Considérons alors une résolution 7 : X — S telle que le faisceau mOx soit
inversible. Notons e : 8’ — S Péclatement de I'origine dans S et n:S — S’ sa
normalisation, et notons 7 : X — S le morphisme de factorisation: 7 = eono7.

n
Notons |7#~1(0)| = UEZ la décomposition de la fibre exceptionnelle de la
i=1
résolution en composantes irrédutibles. Si f désigne une fonction holomorphe
contenue dans I'idéal maximal m, on désignera par Dy la partie du diviseur

7*f qui est a support sur la fibre exceptionnelle. Il existe alors des entiers na-
n

turels mq 5, - ,my ; tels que Dy = Zmi,sz* On définit le cycle maximal de
i=1
la résolution = (cf. [31] II. §4), comme étant le cycle
Mx =infremDy,

ol 'on définit 'ordre partiel sur les cycles & support sur la fibre exceptionnelle en
comparant les coefficients un par un.
On posera

i=1

C’est un cycle positif qui vérifie (Mx - E;) <0 pour toute i € {1---n} (cf. [31]
I1. §4).

Le théoreme suivant est prouvé dans [8] §2:

Théoréme 6.7. Une composante irréductible E; de la fibre exceptionnelle de la

résolution m se contracte par T sur un point du diviseur exceptionnel dans S si
et seulement si (Mx - E;) =0.
De mame Uimage par © d’une composante irréductible E; est une composante

irréductible du diviseur exceptionnel dans S si et seulement si (Mx - E;) <O0.

Une démonstration de ce résultat est également faite dans [22] (théoréme 3.5).

Notons Ay, -, Ay les composantes connexes de I'adhérence dans |7~1(0)| de
I'ensemble |7—1(0)| — U E;.
(Mx-E;)<0

Définition 6.8. On appellera les composantes conneres A; définies ci-dessus,
les composantes de Tyurina-Spivakovsky de la résolution 7 : X — S.

Comme I'a remarqué M. Spivakovsky, dans [21] (III. Lemme 7.1), les com-
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posantes A; définies ci-dessus généralisent la notion de composantes de Tyurina
d’une résolution d’une surface & singularités rationnelles (cf. [29]) au cas des
résolutions de surfaces normales qui se factorisent par I’éclatement normalisé des
points singuliers.

Nous pouvons maintenant reformuler le théoreme 6.6 en termes de contractions
des composantes de Tyurina-Spivakovsky:

Théoreme 6.9. Si 7w : X — S est une désingularisation de la surface S
obtenue par composition de Uéclatement e : S' — S de Uidéal mazimal m Og g,
de la normalisation n : S — S de S' et de la désingularisation minimale
#:X =S (mr=eono7), alors les composantes de Tyurina-Spivakovsky de
la désingularisation m se contractent sur des points bases des courbes polaires de

S en 0 pour Uéclatement de lidéal mazimal de Og .

Démonstration: D’apres la définition 6.8 et le théoréeme 6.7, les composantes de
Tyurina-Spivakovsky de la désingularisation 7 se contractent par le morphisme 7
sur des points de la surface S. La résolution 7@ de S étant minimale, chaque com-
posante de Tyurina-Spivakovsky de 7 se contracte par 7 sur un point singulier
de la surface S. D’apres le théoréme 5.8 et la proposition 6.3, les composantes de
Tyurina-Spivakovsky de 7 se contractent donc par le morphisme n o7 sur des
points bases des courbes polaires de S en 0 par I’éclatement de I'idéal maximal
de OS,O~

O

On peut également s’intéresser a I’étude de ’existence de points fixes du systeme
linéaire des courbes polaires dans une désingularisation d’une surface normale. Ce
probleme est relié a I'étude des résolutions des surfaces par des suites de modifi-
cations de Nash normalisées.

Dans [21] (III. théoreme 1.2), M. Spivakovsky démontre:

Proposition 6.10. Le systeme linéaire des courbes polaires de S n’a pas de
point fire dans la résolution w : X — S si et seulement si la résolution m se
factorise par la modification de Nash normalisée de la surface S.

La détermination explicite de la résolution d’une singularité de surface normale
par des suites de modifications de Nash normalisées a partir d’une désingularisation
donnée, passe donc par la détermination des points fixes du systeme linéaire des
courbes polaires dans cette désingularisation.

Considérons une désingularisation 7 : X — S pour laquelle le faisceau mQOx
est inversible et qui soit minimale pour cette condition et notons o : X' — X
la suite minimale d’éclatements de points pour laquelle le systeme linéaire des
courbes polaires n’a pas de points fixes dans X’. D’aprées la proposition 6.10, la
surface X’ domine la modification de Nash normalisée S.

Nous obtenons alors le diagramme suivant, utilisé dans [21] (I11. 2) et [6] (§2):
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X -2 . X

> - (6.10)
s __* |

La minimalité des morphismes o et 7 fait que les composantes de Tyrina-
Spivakovsky de la résolution woo : X’ — S se contractent exactement sur les
points fixes du systeme linéaire des courbes polaires dans 1’éclatement de ’origine
dans S, qui sont les tangentes exceptionnelles de la surface normale S en 0.

Dans le cas ol les singularités de la surface S sont des points doubles rationnels
ou des singularités minimales, G. Gonzélez-Sprinberg dans [6] (§5) pour le premier
cas et M. Spivakovsky dans [21] (III. §5) pour le second, déterminent les points
fixes du systeme linéaire des courbes polaires dans la résolution minimale de la
surface. Dans le cas général, il n’y a pas encore & notre connaissance de résultat
sur la détermination des points fixes du systéme linéaire des courbes polaires dans
une résolution des singularités.
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