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Quasi-isometries of groups, graphs and surfaces

Sylvain Maillot

Abstract. We give a characterization of virtual surface groups as groups quasi-isometric to
complete simply-connected Riemannian surfaces. Results on the equivalence up to quasi-isome-
try of various bounded geometry conditions for Riemannian surfaces are also obtained.
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1. Introduction

A major question in geometric group theory is to determine which groups are quasi-
isometric to a given metric space X . The answer is known in many cases, e.g. when
X is a symmetric space (see for instance the survey [8]) or for some spaces arising
in 3-manifold geometry [21, 22, 24] or combinatorial group theory [11, 9, 10, 27].
Here we address a related question: given a smooth manifold R, determine the
class of groups that are quasi-isometric to some complete Riemannian metric on
R. When R is the line R or the open annulus S!' x R, the answer is obviously
the class of 2-ended (i.e. virtually cyclic) groups, because the number of ends
is a quasi-isometry invariant for proper geodesic metric spaces. Hence the first
interesting case is that of the plane R? .

This case has been studied by G. Mess in his work on the Seifert fiber space
conjecture [23], which unfortunately is still unpublished. To state his result, we
need some terminology. A Riemannian plane is a Riemannian manifold diffeomor-
phic to R? . Such a manifold is quasi-homogeneous if all balls of given radius are
isometric to some ball in a compact submanifold (the precise definition is given
in section 3.2). A wvirtual (closed) surface group is a group I' having a subgroup
IV of finite index, such that I” is isomorphic to the fundamental group of some
compact surface (without boundary). This is equivalent to saying that T" is an
extension of a finite group by an infinite 2-dimensional (closed) orbifold group.

Some results of [23], together with the convergence group theorem due to [26,
14, 5], give the following characterization of groups quasi-isometric to a complete,
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quasi-homogeneous Riemannian plane.

Theorem 1.1. Let T' be a finitely generated group. If T is quasi-isometric to a
complete, quasi-homogeneous Riemannian plane, then I" is a virtual closed surface
group.

The main result of this paper generalizes theorem 1.1 in two directions. First
the hypothesis of quasihomogeneity can be removed, as was stated in Mess’s article.
Second, we deal with simply-connected surfaces with geodesic boundary. This
leads to the following statement:

Theorem 1.2. Let T" be a finitely generated group. Then ' is a virtual surface
group iff T' is quasi-isometric to some complete simply-connected Riemannian
surface with (possibly empty) geodesic boundary.

Theorem 1.2 is a consequence of theorem 1.1 and the following two propositions:

Proposition 1.3. Let T' be a finitely generated group. If T is quasi-isometric
to a complete Riemannian plane, then 1" is quasi-isometric to a complete, quasi-
homogeneous Riemannian plane.

Proposition 1.4. A finitely generated group T' s virtually free iff it is quasi-iso-
metric to some complete simply-connected Riemannian surface R with nonempty
geodesic boundary.

We will also give a new proof of theorem 1.1 assuming the convergence group
theorem. This proof is simpler than Mess’s original proof and uses ideas of C. Pittet
and T. Delzant.

Proposition 1.3 is obtained as a corollary of theorem 3.5, a more general re-
sult on large scale properties of complete Riemannian planar surfaces. The same
method gives theorem 3.6, which characterizes quasi-homogeneous surfaces up to
quasi-isometry in terms of bounds on the Gauss curvature. For more detailed
statements, see section 3.2.

The paper is organized as follows. Sections 2 and 3 contain some general
definitions and technical lemmas, as well as the statements of theorems 3.5 and 3.6.
Sections 46 are devoted to the proofs of these theorems. In section 4, we introduce
the notion of pseudo-triangulation, which is our most important tool. Definitions
are given and technical results, including the crucial pseudo-triangulation theorem,
are stated. In section 5, it is shown that the technical results imply theorems 3.5
and 3.6. The proof of the pseudo-triangulation theorem occupies all of section 6.
It is strongly inspired by some work of Mess in [23].

Section 7 contains the proof of theorem 1.1 assuming the convergence group
theorem. In section 8, we deal with surfaces with boundary and prove proposi-
tion 1.4 as a consequence of the more general, but rather technical theorem 8.1.
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2. Nets and quasi-isometries

Let (X,d) be a metric space. We let B(z,r) denote the metric ball of radius r
centered at a point z € X and N(Y,r) the metric r-neighborhood of a subset
YCX,ie. Uzey B(z,r). We usually write dy for the metric on Y associated
to the length structure induced by inclusion (which is in general different from the
restriction of d to Y x Y ) and call it the intrinsic metric on Y . The diameter
of Y with respect to the intrinsic metric is called the intrinsic diameter of Y .
For instance, if £ C X is an embedded arc, its intrinsic diameter is equal to its
length, which is in general different from the diameter of £ as a subset of (X,d).

Let Cy,Cy be positive real numbers. A subset Y C X is said to be C;-
separated if balls of radius C; centered at distinct points of Y are disjoint. It is
said to be Cs-quasidense if balls of radius C, centered at points of Y cover X,
ie. N(Y,Cq) = X. We say that Y is uniformly discrete if for all » > 0 there
is a constant n(r) such that for all z € X, the cardinal of Y N B(z,r) is not
greater than n(r) .

Definition 2.1. A (Cy,Cs) -net in a metric space X is a subset N which is
both Ci -separated and Co -quasidense. A net is called uniform if it is uniformly
discrete.

Definition 2.2. Let (Xi,d1) and (Xa,d2) be two metric spaces. We say that a
map [ : X1 — X9 is a quasi-isometry if there erist positive real numbers A, C
such that:

i The inequality

A ldy(z,2) — C < do(f(z), f(&") < Mdy(z,2') + C

holds for any z,2' € Xy .
ii. The image of f is C -quasidense in X .

It can be shown that if there is a quasi-isometry f : X; — X5, then there
is a quasi-isometry f : X, — X; such that fo f (resp. fo f) is a bounded
distance from the identity of X5 (resp. Xi). In that case, we say that X and
Y are quasi-isometric. Being quasi-isometric is an equivalence relation between
metric spaces. We assume the reader to be familiar with this concept and some
basic properties that come readily from the definition. For example, if Y is a
quasidense subset of a metric space X , the inclusion map 7 :Y — X is a quasi-
isometry. In particular, if N; is a net in X; and Ny is a net in X, then to
prove that X; and X, are quasi-isometric it is enough to prove that N; and
Ny are quasi-isometric. For future reference, we state the following well-known
lemma.

Lemma 2.3. [Rubber band principle, cf. [18, 11]] Let N be a set, let (X1,dy) and
(Xa,da) be geodesic metric spaces with one-to-one maps f; : N — X; such that
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fi(N) is a net. Call d; the distance functions on N induced by f; for 1 =1,2.
If di and dy are uniformly equivalent, i.e. there exist functions r — aq(r) and
7= an(r) such that dy(z,y) < aq(di(z,y)) and di(z,y) < as(ds(z,y)) for all
z,y € N, then X1 and Xy are quasi-isometric.

Proof. We need only show that the identity map between (N,d;) and (N,ds)
is a quasi-isometry. For z,y € N, we choose a geodesic arc £ C X; between
fi(z) and fi(y). We subdivide ¢ into a concatenation of n subarcs & U,, & U
cUg, 4 & with n < di(x,y) +1 and each &; has length at most 1. Let C
be a constant such that fi(N) is C-quasidense in X;. Then every intermediate
point z; is within C of some point fi(y;). By the triangle inequality we get
do(z,y) < na(2C +1) < a1(2C + 1)(d1(z,y) + 1) . By a similar argument, one
gets di(z,y) < a1(2C" + 1)(dy(x,y) + 1) for some constant C’' coming from the
quasidensity of fo(N) in Xs.

3. Some notions of bounded geometry
3.1. Coarse bounded geometry

Let G = (N,E) be a (locally finite, unoriented) graph. We call loops the edges
whose vertices are equal. The underlying space of G, still denoted G, can be
endowed with the path metric where every edge has length 1. When no metric
is explicitly defined on G, this one will be understood. The set of vertices N is
always a (1/3,1/2)-netin G.

Definition 3.1. A graph G = (N,E) is said to have bounded geometry if there
is a constant n >0 such that any vertex x € N belongs to at most n edges.

If G has bounded geometry, then the net N is uniform. It turns out that if
X is a geodesic metric space, then X admits a uniform net iff there is a graph of
bounded geometry quasi-isometric to (X,d) (cf. [20]). This justifies the following
definition:

Definition 3.2. [c¢f. [3]] We say that a metric space has coarse bounded geo-
metry if it admits a uniform net.

Let Xy, X2 be two metric spaces and f : X; — X5 be a quasi-isometry.
Assume that X; has coarse bounded geometry. The image of a uniform net
N C X, is then uniformly discrete and quasidense in X5 . Thus any maximal
1 -separated subset of f(/N) is a uniform net in X, . We have proved:

Lemma 3.3. Being of coarse bounded geometry is invariant under quasi-isometry.
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Example 1. Any complete Riemannian manifold whose Ricci curvature is bounded
from below has coarse bounded geometry. This is a consequence of the Bishop-
Gromov inequality.

Example 2. Every geodesic metric space quasi-isometric to a finitely generated
group has coarse bounded geometry. Indeed, the Cayley graph of any finitely ge-
nerated group has bounded geometry, hence coarse bounded geometry and we have
seen that coarse bounded geometry is a quasi-isometry invariant.

3.2. Quasi-homogeneity

Graphs of bounded geometry have an interesting property: given a real number
r > 0, there are only finitely many isometry types of balls B(z,r) such that z €
N . This leads us to the following definition, which was introduced by G. Mess [23]
in a slightly different form.

Definition 3.4. A metric space X is quasi-homogeneous if for all r > 0 there
is a compact subset Y, C X such that for all x € X there is a point y € Y, such
that B(x,r) is isometric to B(y,r) .

Remarks.

e This property is not a quasi-isometry invariant, because one can take a quasi-
homogeneous space X (e.g. the Euclidean plane E?), choose an unbounded
sequence (z,) and deform X in the neighborhood of each z, in a different
way without changing the quasi-isometry type.

e This notion is much weaker than what is called quasi-homogeneous in [21]. For
instance, a space which is quasi-homogeneous in our sense need not have any
other self-isometry than the identity.

e Note that nothing is assumed about the topology of the balls B(z,r) and
B(y,7). There are contractible, quasi-homogeneous manifolds which are not
uniformly contractible (cf. section 8).

Convention. For us, a surface will be a connected 2-manifold, in general non-
compact.

Let R be an open surface. We say that R is planar if every simple closed
curve in R is separating. We say that R is planar at infinity if there is a compact
submanifold K C R such that every component of R — K is planar. (Intuitively,
this means that R has at most a finite number of handles.) We are now in position
to state our first results.

Consider the following properties, where R is an open surface and h a com-
plete Riemannian metric on R.

(H) R admits a complete quasi-homogeneous Riemannian metric quasi-isometric
to h.
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(B) (R, h) has coarse bounded geometry.
(P) R is planar at infinity.

Theorem 3.5. If (R, h) has property (B) and property (P), then it also has prop-
erty (H).

Since any geodesic metric space quasi-isometric to a finitely generated group
satisfies property (B) (example 2), proposition 1.3 is a straightforward consequence
of theorem 3.5.

Classical definitions of bounded geometry for Riemannian surfaces usually in-
volve bounds on Riemannian invariants such as curvature or injectivity radius. The
technique used to prove theorem 3.5 enables us to study the connections between
those properties and quasihomogeneity when Riemannian surfaces are considered
“up to quasi-isometry”. Consider the following condition, which is apparently
weakest possible:

(C) R admits a complete Riemannian metric with a lower curvature bound which
is quasi-isometric to h.

Obviously (H) implies (C), because quasihomogeneity gives upper and lower

bounds for any local invariant. It turns out that the converse is also true:

Theorem 3.6. If (R,h) has property (C) then it also has property (H).

The main technical tool used in the proof of theorems 3.5 and 3.6 is the notion
of pseudo-triangulation, which is introduced in the next section.

4. Pseudo-triangulations
4.1. Definitions
We begin by recalling a well-known definition:

Definition 4.1. A cell decomposition of a smooth surface R is a collection D
of pairs (i, f) where i € {0,1,2} and f :1° — R is a smooth map, called an
1 ~cell and abusively identified to its image, having the following properties:

i Any i-cell for i <2 is contained in some (i + 1) -cell.

ii Any two 0 -cells are disjoint.

iii If f is an i-cell for i >0, then f embeds Int(I*) in the complement of the
union DU of the (i — 1) -cells (henceforth called the (i —1) -skeleton) and
maps II° to the (i — 1) -skeleton.

iv For i >0, no two i-cells intersect each other outside the (i — 1) -skeleton.

v The 2 -skeleton is all of R .

A O-cell is simply a point. A 1-cell is either a simple arc or a simple closed
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curve. The combinatorial length of a sequence of 1-cells is its cardinal. If f is a
2 -cell, we can view its boundary as such a sequence, so we have a notion of com-
binatorial boundary length. Note that boundary 1 -cells have to be counted “with
multiplicity”. We sometimes call f a mn-gon when its combinatorial boundary
length is n .

We say that D is reduced if no closed 1-cell bounds a 2-cell and no two 1-
cells cobound a 2-cell. Thus D admits no 1-gon and admits a 2-gon only in
the very special case where D consists of a single 2 -cell with boundary a single
one-sided curve. This can only happen in the projective plane, so we will not
encounter it since we will work only with noncompact surfaces.

Thus the simplest 2-cells we will meet are 3-gons. A 3-gon is either a gen-
uine triangle or some kind of “degenerate triangle” in which the number of vertices
and/or edges is less than 3. There are four types of degenerate 3-gons, repre-
sented on figure 1: (1) two vertices, one loop and two edges; (2) two vertices, one
loop and one double edge; (3) one vertex, three loops; (4) one vertex, one simple
loop, one (one-sided) double loop.

Figure 1. The four types of degenerate 3 -gons.

Definition 4.2. A cell decomposition is called a pseudo-triangulation if all 2 -
cells are 3 -gons. A pseudo-triangulation is nondegenerate if no 2-cell is a
degenerate 3 -gon.

Remark. Note that a nondegenerate pseudo-triangulation is not necessarily a
triangulation in the usual sense, because the definition allows two 2 -cells to have
more than one edge in common.

Suppose now that the surface R is endowed with a geodesic metric d (for
us, d will always be the distance function associated to a Riemannian metric,
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possibly with conical singularities). The modulus |D| of a cell decomposition D
(with respect to d) is then defined to be the (possibly infinite) supremum of the
lengths of its 1-cells. We say that D is uniformly locally finite if for all » > 0
there is n(r) such that any ball of radius r meets at most n(r) cells.

Definition 4.3. Let D be a pseudo-triangulation of a surface R with a (possibly
singular) Riemannian metric. We say that D is uniform (with respect to the
metric) if it satisfies the following conditions:

i DO s a net.

ii D has finite modulus.
iii. D is uniformly locally finite.

Remarks.

e By (i) and (iii), D is a uniform net. However, (iii) is in general stronger
than just requiring the uniformity of D . This question will be dealt with
by proposition 4.5.

e Let Cy,Cy be constants such that D) is a (C1, Cq) -net. Then the intrinsic
diameters of the non-closed 1-cells are bounded below by 2C;, because they
contain at least two distinct points of N . Besides, (ii) gives a uniform upper
bound for the intrinsic diameters of all 2 -cells in the following way: the sum of
the lengths of the 1-cells in the boundary of a given 2-cell is always bounded
above by 3|D|, so the intrinsic diameter of a given 2-cell is always bounded
above by 3|D|+ 2Cs . In particular, any 1-cell or 2-cell meeting a compact
K is contained in the 3|D|+ 2C5 -neighborhood of K.

4.2. Main results on pseudo-triangulations

The following existence theorem for pseudo-triangulations is our main technical
result:

Theorem 4.4. [Pseudo-triangulation theorem| Let (R, h) be a complete open
Riemannian surface. For each net N in (R, h), there exists a pseudo-triangulation

D of R that has finite modulus with respect to h and whose 0 -skeleton is exactly
N.

The proof of this theorem is deferred to section 6.

We intend to apply theorem 4.4 in the case where N is a uniform net. The
next proposition shows that under some hypotheses on the topology or geometry
of (R, h), the resulting pseudo-triangulation is actually uniform.

Proposition 4.5. Let (R, h) be a complete open Riemannian surface. Assume
either that R is planar at infinity or h has curvature bounded below. Let D be a
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pseudo-triangulation of R that has finite modulus and such that DO is a uniform
net. Then D is uniformly locally finite, hence uniform.

The end of this section is devoted to the proof of proposition 4.5. We start with
the following lemma, which we state with somewhat general notation because it
will also be needed in section 6.

Lemma 4.6. Let (F,h) be a complete Riemannian surface (possibly with bound-
ary), whose associated distance function is denoted by d. Let C be a positive real
number and 'Y a C -quasidense closed subset of F. Let £ CF be a simple closed
curve which avoids 'Y and separates F into two closed subsurfaces F1,Fo . Then
the following assertions hold:
i Given i€ {1,2}, either F;NY is nonempty or £ is C-quasidense in F; .
iit If both F1NY and FoNY are nonempty, then there erist x1 € F1NY and
z9 € FaNY such that d(zq1,z2) < 2C.

Proof. Assertion (i) is obvious from the definition of a quasidense subset. To prove
assertion (ii), remark that by compacity of ¢, the distance between F; NY and
FonY is realized by a pair (z1,z2) CF1NY xFonY . If d(xy,z2) were greater
than 2C, then the midpoint of a minimizing geodesic between z; and x5 would
be at distance > C from Y, giving a contradiction.

Proof of proposition 4.5. Let N be the 0-skeleton of D and X its modulus. We
begin with the case where R is planar at infinity. Obviously, one may suppose that
R is planar. We have to estimate the number of cells meeting a ball in function
of the radius of the ball (and independently of its center). For the 0-cells, it is
just the definition of uniform discreteness. If we do it for 1-cells, the estimate for
2 -cells will follow, for a given 1 -cell lies in the boundary of at most two 2 -cells.
Taking into account the fact that a 1-cell meeting a ball B(z,7) lies in the ball
B(z,r + X), we have reduced the problem to proving:

Claim. For all » > 0, there exists C(r) such that the number of 1-cells lying in
a ball of radius r is at most C(r).

To prove the claim, we consider a ball B(z,r). Let £ be the collection of
0-cells of D lying in B(z,7). By hypothesis, the cardinal of £ is bounded
independently of z. Generically, B(z,r) is a compact planar surface. Adding
each component of R —B(z,r) that is a disc containing no point of N, we get a
subsurface 7, which by lemma 4.6 is contained in B(z,7 4+ C3) where Cy is the
quasi-density constant of N C R.

Consider the set C of arcs « : 1 — Z such that

i« is an embedding except possibly at its endpoints.

iilg(a) < A.
iii @ meets N exactly at its endpoints (which therefore belong to £ ).
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We consider elements of C up to “proper” homotopy, saying that o and o/
are equivalent when there is a homotopy between a and o’ through elements of
C (note that such a homotopy always fixes the endpoints since N is discrete.)
Now in each equivalence class, there is at most one 1-cell of D (otherwise D
would have a 2-gon), so we have reduced the claim to finding a uniform upper
bound for the number of equivalence classes of C.

This reduces to estimating the number of boundary components of the planar
surface Z . Now by lemma 4.6, every component of R —7 contains a point y € N
such that d(z,y) < r + 2C,. By uniformity of N, there is an upper bound for
the number of such points y . This proves the claim, and therefore proposition 4.5
in the case where R is planar at infinity.

For the case where h has a curvature lower bound, we observe that the above
argument, would still work if, instead of being a planar surface, 7Z had uniformly
bounded genus. But this will indeed be the case, for we have an upper bound for
diam 7 . This together with the lower bound on the curvature gives an upper bound
on the area of 7, and then the Gauss-Bonnet formula yields a lower bound for
the Euler-Poincaré characteristics of 7. Hence the above argument still applies.
This completes the proof of proposition 4.5.

5. Proof of theorems 3.5 and 3.6

In this section, we prove theorems 3.5 and 3.6 assuming the existence theorem 4.4.

5.1. Regular piecewise Euclidean metrics

As we have remarked, graphs of bounded geometry are quasi-homogeneous. More
generally, if X is a PL-manifold with a given triangulation 7 satisfying suitable
(combinatorial) boundedness conditions, it can be endowed with a piecewise flat
metric, which will be quasi-homogeneous. Below we make this construction precise
in dimension 2. The reader can find a definition for n-dimensional PL-manifolds
in a paper by O. Attie [1].

Definition 5.1. Let X be a surface and D a nondegenerate, locally finite pseudo-
triangulation of X . The regular piecewise Euclidean metric on (X, D) is
the path metric such that every 1 -cell is a geodesic arc of length 1 and every 2 -cell
s isometric to a Fuclidean equilateral triangle. It is uniquely defined up to choice
of barycentric coordinates on each 2 -cell.

All regular piecewise Euclidean metrics are “Euclidean metrics with conical
singularities” in the sense of M. Troyanov [25]. We call such a metric “regular”
because the fact that all 2-cells are equilateral induces some restrictions, e.g. the
cone angles are always multiples of 7/3. We are mainly interested in the case
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where the 1-skeleton is a graph of bounded geometry, or equivalently the cone
angles are uniformly bounded above. In that case, the metric is quasi-homoge-
neous. Thus it is natural to consider the following property.

(E) R admits a complete, quasi-homogeneous regular piecewise Euclidean metric
quasi-isometric to h .

Lemma 5.2. Let R be an open surface with a geodesic metric d and D be a
uniform pseudo-triangulation on (R,d). Let (X,dx) be the 1-skeleton of D with
the intrinsic metric. Then (X, dx) is quasi-isometric to (R,d).

Proof. Let N be the 0-skeleton. By hypothesis, N is a net in both (R,d),
and (X, dx), so we can use the rubber band principle. It is clear than d(z,y) <
dx(z,y) for all z,y € N . Conversely, let £ be a geodesic arc in R between two
points z,y. Call Dy,..., Dy the 2-cells which meet &. Since D is uniformly
locally finite, there is an upper bound on k which depends only on d(z,v).
Decompose & into arcs §1U---UE, where each &; lies in some 2-cell D;) . We
can replace each &; by a path in the boundary of Dj;) with the same endpoints.
Piecing those paths together and getting rid of double points, we obtain an arc
connecting z to y in X of length bounded above by 3k|D|. Then the rubber
band principle gives the required quasi-isometry.

To prove that properties (B) and (P) (resp. property (C)) implies (H), we will
go through (E). The following lemma proves that (E) implies (H).

Lemma 5.3. Let R be a surface with a nondegenerate pseudo-triangulation D
whose 1 -skeleton has bounded geometry. Let d denote the corresponding reqular
piecewise Euclidean metric. Then (R,d) is quasi-homogeneous. Furthermore,
R admits a complete (smooth) quasi-homogeneous Riemannian metric h' that is
quasi-isometric to d .

Proof. The bounded geometry condition on DU implies that for a given r >0,
there are finitely many balls of radius r centered on D) | up to isometry. Since
D) is quasidense in (R, d), this proves that (R, d) is quasi-homogeneous. Now
d corresponds to a smooth Riemannian metric in the complement of D . Since
there are finitely many balls of radius 1/10 centered on D% up to isometry, we
can define a complete, quasi-homogeneous Riemannian metric h’ on all of R by
coherently smoothing the conical singularities in N (D) 1/10) .

It remains to prove that (R, /') is quasi-isometric to (R, d) . First remark that
D is uniform with respect to each of these two metrics. By applying lemma 5.2
to both the singular and the smooth metric, we are left to consider D) with the
intrinsic metrics induced by respectively h’ and d, which are easily seen to be
quasi-isometric to each other.
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Proof of theorems 3.5 and 3.6. We have already seen that property (E) implies
property (H). Thus we need only prove the following two facts: property (C)
implies property (E), and properties (B) and (P) together imply property (E).

We are going to prove these two facts at once: assume that either property
(C) holds or properties (B) and (P) hold. Example 1 shows that in both cases
property (B) holds, i.e. (R,%) has coarse bounded geometry. Let N be a uniform
(C1,Co)-net in (R, k). By theorem 4.4, (R, h) admits a pseudo-triangulation D
of finite modulus such that D = N . Since either property (C) or property (P)
holds, we can apply proposition 4.5, so D is uniform. Thus our task is to prove
that the existence of this uniform pseudo-triangulation implies property (E).

Applying lemma 5.2, we obtain a quasi-isometry between (R, h) and the 1-
skeleton of D with the intrinsic metric, which we denote (X,dx). X isa graph
and dy a geodesic metric such that all loops have length bounded above by |D|
and all edges that are not loops have length bounded above by |D| and below by
2C; . Hence we can renormalize dx to get a metric dYy quasi-isometric to dx
and such that all loops have length 2 and all edges that are not loops have length
1. (Note that d% and dx cannot be made bi-Lipschitz in general since there
could exist arbitrarily short loops.)

We will now subdivide X to get a new graph X’ quasi-isometric to X and
which is the 1-skeleton of a pseudo-triangulation 7’ of R without degenerate
3-gons. This is done as follows. First add a vertex in the middle of each loop.
Then consider a degenerate 3-gon A. If A is of type (1) or (2), connect by an
edge the new vertex to the vertex opposite to the loop. If A is of type (3), connect
the three new vertices to each other pairwise. If A is of type (4), do the same
thing as for type (3), except that one of the new vertices is double, so one of the
three new edges is actually a loop [ which belongs to two new 3-gons A; and
As of type (1). Subdivide [ by adding a new vertex z and connect z to the
opposite vertices in A; and A, . Finally in this case we have subdivided A into
six nondegenerate cells by adding four vertices and six edges.

Let d’ be the regular piecewise Euclidean metric associated to D’ . Since X’
has bounded geometry, (R,d’) is quasi-homogeneous by lemma 5.3. By lemma 5.2,
(R,d’) and X’ are quasi-isometric. Finally (R,d') is quasi-isometric to (R, h)
by construction and we are done.

6. Proof of the pseudo-triangulation theorem
6.1. Blowing holes

Throughout this section, (R, k) is a complete Riemannian surface and N C R
is a (C1,Cq)-net in R. In order to prove the pseudo-triangulation theorem, our
goal is to produce a graph embedded in R, with vertex set N, which will be
the 1-skeleton of the pseudo-triangulation. One might think of looking at pairs
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(z,y) € N such that z,y are distinct and close to each other, and connect such
pairs of points by geodesic arcs. But these arcs are to be chosen carefully: on the
one hand, they must not intersect each other outside N, and on the other hand
there must be sufficiently many of them to cut R into 3-gons.

For technical reasons, we will not actually connect points of N by geode-
sic arcs; instead we replace each =z € N by a small topological disc around z
and work in the complement of the union of the interiors of these discs, slightly
perturbing the metric so that the resulting surface has strictly convex boundary,
which ensures the existence of geodesic arcs.

More precisely, we choose for each = € N a triple (ri(z),ra(z),73(z)) € R?
such that 0 < ri(z) < ro(z) < r3(z) < min(Cy/2,inj(z)) where inj(z) is the
injectivity radius of h at z. Define D, := B(z,7r2(x)), Cy = 9Dy, A, =
B(z,r3(x)) — Int B(z,71(z)) . We modify /& by a bump function with support in
A, sothat the circle C, is strictly convex in R—Int D, and call Ay the modified
metric.

Define R(N) := R — J ey Int(D,). The boundary of R(N) is the disjoint
union of the circles C, , so it has strictly convex boundary with respect to hy .
By choosing ro sufficiently small, we may assume that there is a uniform upper
bound Cj3 for the hpy -lengths of the C, ’s.

Let d denote the distance function on R(N) induced by hp . There are
constants C7,C5H > 0 such that d(C,,Cy,) > C} for all z # y and OR(N)
is C}-quasidense in R(N). From now on, we will work in the metric space
(R(N),d) .

We will use shortest ares in R(N), that is by definition proper immersions
a: 1 — R(N) which are essential (i.e., not properly homotopic into dR(N))
and are shortest in their proper homotopy classes. We do some usual abuses of
language, such as omitting the word “proper” when talking of proper arcs and
proper homotopies, and identifying a with its image in R(N).

In each (proper) homotopy class of essential arcs, there is a (generally not
unique) shortest element. We say that two arcs ay,as are homotopically disjoint if
there are arcs al, aj respectively homotopic to a; and a; and satisfying ajnal =
(). The following proposition contains the facts we will use about shortest arcs.
The first and the second statements follow from the work of Freedman, Hass and
Scott [13], while the third is a straightforward exercise using the exchange/roundoff
trick.

Proposition 6.1.

i Any shortest arc that is properly homotopic to an embeddeding is an embedding.
it Two shortest arcs that are homotopically disjoint are disjoint or equal.
iii Let aj,as be embedded shortest arcs such that there erists a (not properly)
embedded disc D containing the images of ai,as. Then a; and ay intersect
in at most one point.
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We will write 71 Uy 72, or simply 71 U o for the concatenation of two arcs
71,12 C R(IV) with a common endpoint w € R(N).

6.2. Geodesic divides

We now give definitions concerning what we call a geodesic divide. The reader
should keep in mind that such an object is meant to correspond to the 1 -skeleton
of a cell decomposition, which explains some of the terminology.

A geodesic divide is a set E of shortest arcs called edges. We say that E is
embedded if each edge is embedded and no two edges intersect each other. It is
reduced if no two edges are homotopic. Its modulus |E| is the supremum of the
lengths of its edges. The pieces of R(N) split along E (or simply E-pieces)
are the components of R(N) — J,c.pa. As in the case of cell decompositions,
there is a notion of combinatorial boundary length for E -pieces (but this may be
infinite). A simply-connected E-piece having combinatorial boundary length n
will be called a n-gon.

Given two geodesic divides E,E’, we say that E' is an extension of E if
E Cc E. If both E and E' are embedded, this amounts to insisting that the
union of the edges of E is contained in the union of the edges of E’.

Proposition 6.2. Define Cy := 2C), . There exists an embedded, reduced geodesic
divide E1 in R(N) such that |Ei| < Cy and every Ei -piece is simply-connected.

Proof. The idea of the proofis actually quite simple. Let £ be a list of all nontrivial
free homotopy classes of loops in R(N) which admit an embedded element. We
say that an arc a kills a class [¢] € £ if a is not homotopically disjoint from &.
If one takes the elements of £ in an arbitrary order and Kkills them one by one
by adding properly embedded arcs, one could expect that the use of shortest arcs
guarantees that the divide obtained is embedded and has finite modulus. However,
this does not work nicely. In particular, it does not seem easy to prove that the
resulting divide is embedded, so our approach is somewhat different.

We say that an essential arc a strongly kills [£] if its intersection number
modulo 2 with £ is 1 (this is independent of the choice of ¢ in its homotopy
class). Clearly this is (as the name tells) stronger than to say that a kills [¢] in
the above sense. Let L' = [£1], [&2] ... be a list of all elements of £ that admit a
strongly killing arc. We will first construct an embedded, reduced geodesic divide
E1 such that all elements of £’ are strongly killed by an edge of E; and then
show that in fact every element of L is killed.

The divide E; will be constructed inductively. Consider the family of all arcs
that strongly kill [¢1]. By a standard compacity argument using the Ascoli-Arzela
theorem and the fact that any such arc meets &;, there exists an arc a; that has
minimal length in this family. In particular, a; is a shortest arc (i.e. minimizes
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length in its homotopy class).

Delete from the list [£1],[S2], ... all classes that are strongly killed by aj .
Then take the first class [€,,] on the list which is not strongly killed by a; .
Choose an arc as shortest among all arcs that strongly kill [¢,,,] and so on. This
construction gives a sequence of essential arcs a,, which defines a divide E; . Each
a, is clearly shortest in its homotopy class, thus a geodesic (in the Riemannian
sense). Moreover if a, and a, are homotopic, then the set of classes strongly
killed by a,, is the same as a,,, so n=m . Hence E; is reduced.

Assume there is a [¢] € £ which is not killed by any edge of E;. Such a ¢
must separate R(XNV) for otherwise there would be a closed loop intersecting it
transversely in one point, from which it is easy to construct a strongly killing arc.
Let U,V be the components of R(N) split along £ . If both U and V contained
a boundary circle of R(N), an arc connecting them would strongly kill [¢]. So
we may assume that U does not meet dR(N). In particular, U is compact by
lemma 4.6.

Now U cannot be a disc, so U has at least one handle or one cross-cap. Let
¢ Cc U be anonseparating curve. Then [¢/] appears on the list £’ so some edge
a of E; strongly kills [¢/]. But if a did not kill £, some arc a’ homotopic to a
would lie in V, contradicting the fact that a kills £ .

To complete the proof of proposition 6.2, we still have to show that the a, ’s
are embedded, do not intersect one another and have length < Cy4 .

If some a,, is not embedded, write a,, = 11 Uy 12 U, 13 for some multiple
point z. By construction, there is a homotopy class [£p] such that a, is shortest
among arcs that strongly kill [¢,]. By general position, we may assume that &,
is self-transverse, intersects a,, transversely and that £, avoids multiple points of
ap, and vice-versa (in particular z & &, ). By hypothesis, #(¢, Nay,) is odd. If
#(& Nma) is even, then #(§, N (1 Uns)) is odd, so smoothing out 7y Uns yields
a shorter arc killing [£,], a contradiction, so #(§, N1n2) is odd. By symmetry we
may assume that lg(n;) < lg(n3) . Rounding the corner of 5, Uny, Un; b yields an
arc shorter than a, and strongly killing [£,], again a contradiction. Thus every
edge of E; is embedded.

If two edges a,, a,, intersect in some point w , the intersection must be trans-
verse. Write a,, = 11 Uy 12 and a,, = 13 Uy n4 . Up to changing the indices, we
may assume that 73 is shortest among the 7;’s, so in particular lg(ns) < lg(ny)
and lg(nz) <lg(n2) . Let [¢,] be a homotopy class such that a,, is shortest among
arcs that strongly kill [,]. Assume ¢, is self-transverse and avoids w. Then by
counting the intersection points of £, with n; and 7 one sees that exactly one
of naUm and nsUny strongly kills [§,], and we get a contradiction by rounding
the corner of a suitable arc. We have shown that E; is embedded. Note that the
same argument proves the following lemma.

Lemma 6.3. Let a,, be an edge of Ei. Then the inequality

min(lg(n),lg(n2)) < min d(C;, w)
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holds for every decomposition a, = 11 Uy 12 .

Remark. In particular, for all w € a,, , one of the two subarcs 71,7, minimizes
the distance between its endpoints.

There remains to prove that |[Eq] < C4. Let a, be an edge of E;. Write
an =11 Uy 72, Where w is the midpoint of a,, . Since dR(N) is C} -quasidense,
w must be C} -close to some boundary component C. , so the above lemma proves
that w is C}-close to one (hence both) of the endpoints of a, . Therefore a,
has length at most 2C) = C, . This completes the proof of proposition 6.2.

6.3. Further splitting

The goal of this section is to add sufficiently many edges to the divide E; so that
its complement consists of topological open discs of uniformly bounded diameter.
Since adding an edge in a simply-connected piece cuts it into two simply-connected
pieces, we will restrict attention to divides E such that all E-pieces are simply-
connected. This is not essential, but simplifies some statements.

Let X be a simply-connected piece of R(N) split along some embedded,
reduced geodesic divide. Its closure in R(/N) need not be simply-connected, for
it could contain 1 -sided loops or 2-sided edges both of whose sides lie in X .
To avoid this problem, we consider the inverse image of X in the universal cover
of R(N): since X is simply-connected, it is a disjoint union of infinitely many
copies of X . Let X be one such component and X be the closure of X . Then
dX is what we want to consider as the ‘proper” boundary of X .

To describe X we need to distinguish two cases: if X is compact, then X is
topologically a cm}le7 consisting of arcs agUcpUa;UciU. .. Ua,Uc, glued together
at their endpoints where the a;’s project onto elements of E and the c;’s onto
subarcs of OR(N). We will call the a;’s frontier arcs and the ¢;’s boundary arcs.
Topologically, X is adisc. If X is noncompact, then it is homeomorphic to a
disc minus some arcs in the boundary. Each component of dX is then a line with
a similar decomposition ...Ua_{Uc_jUagUcgUay U... into frontier arcs and
boundary arcs.

Given a constant C > 0, we say that X is C-thin if every point of X can be
connected to some point of 0X by a path in X of length < C (measured with
respect to the lift of hy to the universal cover of R(N)). In other words, 8X is
C -quasidense in X with the intrinsic metric. This is an important property since
it allows E-pieces to be cut into smaller pieces of uniformly bounded diameter.
Fortunately, it is automatic thanks to the following lemma.

Lemma 6.4. Let E be an embedded, reduced geodesic divide and X a simply-
connected E -piece. Then X is Ch -thin.
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Proof. Any point z € Int X projects to a point y € X . There is a path £ C R(N)
of length < C) connecting y to OR(N). Let ¢ be the lift of ¢ starting at z .
Then if ¢ cuts some edge a € E which lifts to a subarc of 84X, then ¢ cuts
this subarc of 8X , so d(:ma)z') < Cf . Otherwise, ¢ lies in X and the same
conclusion holds.

Lemma 6.4 applies in particular to our divide E; and any embedded, reduced
geodesic divide which is an extension of E; .

Proposition 6.5. There are constants Cs,Cg > 0 and an embedc{ed, reduced
geodesic divide Eo such that |Ez| < Cs and for every By -piece X, X 4s homeo-
morphic to a disc and its intrinsic diameter is < Cg .

First we need a technical lemma which ensures that, under some natural con-
ditions, adding an edge to an embedded, reduced geodesic divide yields a divide
with the same properties.

Lemma 6.6. Let E be an embedded, reduced geodesic divide such that all F -
pieces are simply-connected. Let a be an arc properly embedded in R(N) and
disjoint from the edges of E.. Let X be the E -piece that contains a. Assume
that a is not parallel rel OR(N) in X to an arc in OR(N).

i a is essential.

ii Let 3 be a shortest arc homotopic to a. If a is not parallel rel OR(N) in X
to an edge of K, then a lies in X and adding it to K vyields an embedded,
reduced divide.

Proof. To prove assertion (i), observe that since a is not parallel rel R(N) in X
to an arcin OR(N), a is not parallel into IR(NN), because if it were, the product
region could not contain an edge of E and thus would lie entirely in X .

We now prove assertion (ii): by proposition 6.1, a is embedded and does not
intersect any edge of E. If 3 did not lie in X, it would be disjoint from a, so
a and a would be parallel, and the same argument as above involving a product
region shows that a would be homotopic to an edge, a contradiction. Hence 2a
does lie in X , and again by the same argument it is not homotopic to an edge of
E . It follows that the geodesic divide obtained by adding a to E is embedded
and reduced.

Proof of 6.5. Here is a sketch of the proof: we start with the divide E; given
by proposition 6.2. We construct by transfinite induction an increasing family of
divides E such that Ej = E;. At each step, we choose a piece X and split oX
into frontier arcs a, and boundary arcs c, as explained before. The thinness of
X allows us to find two boundary arcs c,,,,cy, such that ny —ny > 1 and there
is an arc « of controlled length in X connecting them. However, the bound on
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lg(v) may depend on the lengths of the neighboring frontier arcs, so since we want
to iterate the construction, we need to distinguish carefully between the edges of
E; and the new edges. The basic strategy is to choose a frontier arc, say ag,
and find a collection of cutting arcs ~i,...,7, which are sufficiently far from ag
and split X into p + 1 components, one of which has controlled diameter, and
such that the others have only one cutting arc in their boundary. Adding the
projections to X of the cutting arcs to the divide yields a larger divide E'. The
cutting arcs become frontier arcs of E’-pieces, so we can iterate the construction
to cut those new pieces, taking ag to be the corresponding new frontier arc.

Define Cy := 2C, + 2C4 and Cg := 3C5 + 2C3 + C, + 1. All the divides
E} will have the following properties: E) is an extension of every divide EL for
p < X; the modulus of E) is at most Cs and for every piece X of R(NV) split
along Ej , either the intrinsic diameter of X is at most Cg, or X admits at
most one frontier arc which is not already an edge of E; .

Clearly Ej = E; has all these properties. Next is the description of the in-
ductive step. Assume that some piece X of E) is noncompact or has intrinsic
diameter greater than Cg. If necessary, we number X so that ag is the lift of
the new arc. Let U denote the arc ¢_q{ UagUcy and z,y denote its endpoints.
Consider the metric neighborhood Y = N (U, Cs) C X with respect to the intrin-
sic metric on X . By hypothesis, ¥ # X . Let F be a small neighborhood of Y
in X which lies in N (U,Cs5+1) and is a compact, connected planar surface. Let
~ be the boundary component of F which meets X . Clearly, v contains U .
Moreover, v does not fill X , for v = dX would imply diam(X) < Cs +C4H+1.

We can split (y—U)U{xz,y} into yyU& Uy U---UE, 1 Uy, where v; C X
and & C X — N(U,Cs). Now X is Cj-thin, so every point of any & is a
distance at most C} of some point of 0X . Let Z,...,Z; be the components
of the closure of dX N N(v,C4) — U. Bach ~; lies in some Zj() . Consider
the (abstract) graph G whose vertices are the Z;’s and where there is an edge

between Z; and Zj iff N(Z;,Cy) N N(Zg,C5) is not contained in N(U, Cs) .
Lemma 6.7. There is an edge path in G connecting 7y and Zjii1y for all i.

Proof. If j(i) = j(i 4+ 1), it is obvious. Otherwise we can write

& = (&N N(Zju,Cy)) U U (& N N(Zg, Cy)).
k3 (4)

This gives & as a union of two nonempty closed subsets. Since ¢; is connected,
this union cannot be disjoint. This means that there is a k # j(¢) such that
& N N(Zjwy, Cy) N N(Zy,Cy) # 0. In particular, Z;;y and Zj; are connected by
an edge in G. If j(i 4+ 1) = k, we are done. If not, we can repeat the same
argument, putting together j(i) and k on one side and everything else on the
other side. We get an edge between j(i) or k& and some k’. After finitely many

steps, we obtain an edge path in G connecting Z;q;y and Zjgq) -
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Call W the union of all the a, ’s and ¢, ’s that do not lie entirely within U
and meet N(Z;,C)) for at least one j. The components of W will be denoted
Wiy,...,W;. Each 7Z; is contained in some Wy, .

Lemma 6.8. Given indices j,j such that there is an edge of G between Z;
and Zj , either k(j) = k(j') holds or there are boundary arcs c, C Wy,
cm C Wiy with |n—m| > 2 and a shortest are of length < Cs connecting ¢,

A

to ¢y in X.

Proof. By hypothesis, there is a point z € X such that d(z, Z;) <y, d(z,Z;) <
C) and d(z,U) > Cs . Assume that k(j) = k(j') does not hold. Then there is an
arc b of length < 2C) connecting Z; to Z; . The endpoints of b lie either on
¢, 's or on a, ’s. If they both lie on ¢, ’s, we are done. Otherwise we can extend
b along the boundary, getting an arc b’ of length at most 2C4 + 2Cy = Cs
connecting some ¢, C Wy(;) tosome ¢, C Wy with n Z%m. If In—m| <2,
the arc we are looking for exists already: it is one of the a; ’s. Otherwise, lemma 6.6
applied to b’ gives the required arc.

Combining the two previous lemmas, we get the following conclusion: up to
reindexing the Wy, ’s, there exists a finite sequence b/, ...,b. having the following
properties:

iEvery b} is a shortest arc and its length is at most < Cs .
ii Wy contains z, W, contains y and for all i, b} connects boundary arcs
Cn(i) C W, and Cm(i) C Wi+1 .
The problem is that some of the b]’s might intersect each other. This is the
purpose of the next lemma.

Lemma 6.9. Possibly after reindexring again the Wy, ’s, there is a sequence b, ...
bl satisfying the same properties, and in addition the bl ’s are pairwise disjoint.
Proof. Let (bY,...,b”) be a finite sequence of arcs of length < Cs such that each
by’ is either a frontier arc or a cutting arc and connects boundary arcs ¢,,¢;y C W)
and ¢, ;) C W) with the properties that W1y contains =, W) contains y
and p(i+1) = q(i). The complexity of the sequence is defined as the pair (s,7),
lexicographically ordered, where s is the cardinal of the sequence and 7 is the
sum of the lengths of the b} ’s.

The work already done shows that such a sequence exists. Since the b ’s are
shortest arcs, the set of all complexities of sequences consisting only of shortest
arcs and of given cardinal is finite, so we can choose one of least complexity. To
show that the elements of such a sequence do not intersect each other, we use
again exchange/roundoff arguments.

Assume there are indices ¢ < j such that by Nb/ is nonempty. Then b} and
bY are cutting arcs and by lemma 6.1(iii) they intersect transversely in one single
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point. Let w be this intersection point and di,ds, d3, d4 be the arcs connecting w
to respectively ¢y, Cm(i), Cn(j) and Cpy - If 7 —4 > 1, we find a sequence of
cardinal < s by replacing b} by a shortest arc homotopic to d;Udy (connecting
C(n;) 0 C(m;) and suppressing every bl for i <k < j. Thus j must be equal
to i+ 1 and ¢(i) =p(j) holds.

If lg(dsg) > lg(ds), replace b} by a shortest arc homotopic to d; Uds . Other-
wise replace b;.’ by a shortest arc homotopic to doUd4 . In each case the resulting
sequence has same cardinal and smaller 7, hence smaller complexity.

Since diam X > Cg, there is at least one cutting arc among the b/ ’s given by
lemma 6.9. Projecting the cutting arcs to X gives shortest arcs, and by lemma 6.6,
adding those arcs to E} yields an embedded, reduced geodesic divide satisfying
the required properties.

The result follows by transfinite induction: the construction has to stop for
some countable ordinal A. The corresponding E) has the additional property
that all Ej -pieces have intrinsic diameter at most Cs.

6.4. Getting the pseudo-triangulation

Proposition 6.10. There is an embedded, reduced geodesic divide Es such that
|[Es| < Cs and all Es -pieces are 3 -gons.

Proof. Start with the divide Eo given by proposition 6.5. Recall that the fact
that Es is reduced implies that there are no 1-gons, and that 2-gons can only
occur in a very special case in the projective plane, which is excluded here by the
noncompacity of R. Thus all Es-pieces have combinatorial boundary length at
least 3.

For each Es-piece X having combinatorial boundary length n > 3, consider
its boundary apUcpUaiUciU...Ua,_1Uc, 1 and choose a finite sequence of
pairwise disjoint arcs bs,...,b, o such that each b; connects ¢y to c¢;. Project
those arcs to X and choose a shortest arc b; in the homotopy class of the pro-
jection for each 7. By proposition 6.1, the b, ’s are embedded, pairwise disjoint
and their lengths are certainly bounded by the intrinsic diameter of X , hence by
Cg. The b; s cut X into a finite number of (possibly degenerate) 3-gons, so the
proof is complete.

Connecting each endpoint of an edge of Es to the center of the corresponding
D, gives a cell decomposition D of R in which all 2-cells are 3-gons and whose
0-skeleton is exactly N . All 1-cells have length (with respect to &) bounded by
A= Cg + Cq. This completes the proof of the pseudo-triangulation theorem.
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7. Proof of theorem 1.1

The goal of this section is to prove theorem 1.1 modulo the convergence group
theorem. For this, it is enough to prove:

Proposition 7.1. Let T' be a finitely generated group which is quasi-isometric
to a complete quasi-homogeneous Riemannian plane (R,h). Then either T' is
virtually Z° or R 4s quasi-isometric to the hyperbolic plane H? .

Indeed, let T" be a finitely generated group quasi-isometric to the hyperbolic
plane. Then T' is word-hyperbolic with boundary S', hence a uniform conver-
gence group on S'. By the convergence groups theorem [26, 14, 5], it is virtually
the fundamental group of a hyperbolic surface.

Proposition 7.1 is one of the results of G. Mess’s paper [23]. Our proof, outlined
below, is completely different and considerably shorter.

Let R be a Riemannian plane. By Riemann’s uniformization theorem, R has
the conformal structure of either the Euclidean plane E? or the hyperbolic plane
H? . So the proof of proposition 7.1 falls into two cases, which we call respectively
the “Euclidean” and the “hyperbolic” case. The two cases will be dealt with
independently and by completely different methods. Next is a short discussion of
these methods.

In the Euclidean case (i.e. under the assumption that the plane R is confor-
mally equivalent to E? ) the goal is to prove that I' has subcubic growth, which
allows us to conclude using M. Gromov’s celebrated theorem on groups of poly-
nomial growth. The bound on the growth of I' is obtained by comparing the
isoperimetric dimensions of R and E?.

In the hyperbolic case (i.e. when R is conformally equivalent to H?) the
proof is based on the conformal version of a renormalization principle, which gives
bounds on the dilatation of conformal diffeomorphisms between certain Rieman-
nian surfaces. In our case, it gives a lower bound for ¢ in terms of the hyperbolic
metric. To get an upper bound, we use a trick due to Gromov (cf. [6]).

7.1. The Euclidean case

In this section, we assume that R is conformally equivalent to E? and prove that
I' is virtually Z?. We fix a finite set of generators for I' and let Vp(n) denote
the growth function of I with respect to these generators.

We need some more notation. If 2 C R is a bounded domain with sufficiently
smooth boundary, we denote by || its area and || the length of its boundary.
It is convenient to use the same notation for the corresponding discrete notions in
I',i.e. when € is a finite subset of T', we define 9 to be the set {g € Q| 3¢’ €
I'-Q, ds(g,9') =1} and we let |Q| denote the cardinal of €.
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Proposition 7.2. If there is a constant C > 0 such that Vr(n) > Cn®, then
there is a constant C' > 0 such that the following isoperimetric inequality holds
for any bounded domain Q@ C R

QP22 < ¢'1oQ.

Proof. By theorem 1 of [7], there is a constant C” > 0 such that the discrete
isoperimetric inequality
|Q|2/3 < C//|BQ|

holds for any finite subset Q@ C I'. By lemma 4.2 of [20], the same discrete
inequality (up to a multiplicative constant) holds in some net N C R, so by
lemma 4.5 of [20] the required inequality holds in R.

By the Ahlfors lemma ([19], 6.9), the fact that R is conformally equivalent to

E? implies that there is a sequence of domains D; C R such that

. oD

lim — =

imtoo  |Dy

Together with proposition 7.2, this implies that there is no constant C such that
Vr(n) > Cn? for all n. Thus by Gromov’s theorem [16], ' has at most quadratic
growth and is virtually nilpotent. Applying the result of [2], we deduce that T’
has a subgroup of finite index I such that I is nilpotent, there is at most one
nontrivial quotient in the lower central series of I, and this quotient has rank at
most 2. This means that I has a subgroup of finite index isomorphic to Z, Z?
or the trivial group. But we know that I' is infinite, and I" cannot be virtually Z
for the following reason: in that case, the Cayley graph of I" would have two ends,
which contradicts the fact that the number of ends is a quasi-isometry invariant
for proper geodesic metric spaces. This completes the proof of proposition 7.1 in
the Euclidean case.

7.2. The hyperbolic case

From now on we assume that R is conformally equivalent to H? . We will make
the further hypothesis that T is not virtually Z? and prove that R is quasi-iso-
metric to H? . In fact, Mess shows that no complete Riemannian plane conformally
equivalent to H? can be quasi-isometric to Z?, but there does not seem to be a
short, direct proof of this fact.

Our proof of the hyperbolic case relies on the following lemma.

Lemma 7.3. [Half-minimum lemma, cf. [17], p. 256]

Let (X,d) be a complete metric space and h : X — RY a function which is
locally bounded away from zero. Let x be a point of X such that 0 < h(z) < % .
Then there exists a point ©’ € X such that d(z,z’) < 2, h(z') < h(z) and
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z' is a so-called half-minimum, i.e. for all y € X, if d(y,z’) < %\/ z') then
h(y) = gh(z’) .

Proof. Seeking a contradiction, assume there is no such z’. In particular z itself
is not a half-minimum. Then by definition, there is a 1 € X such that d(z1,z) <
1/h(z) and yet h(z1) < Lh(z). But z1 cannot be a half-minimum either, so
there is a z» such that d(zg,z1) < 5 h(xl) and h(zg) < %(xl) This implies
that d(z,z2) < 2\/_ +1 <2 and h($2) < 1h(x). This process never stops and
vields a Cauchy sequence () satisfying d(z,z,) < 2 and h(z,) < 2=h(z).
Set y = limz, . Then h cannot be locally bounded away from zero at vy, a

contradiction.

Using the half-minimum lemma, we deduce:

Lemma 7.4. [cf. [17], p. 255] Let (X,gx) and (V,gyv) be complete Riemannian
surfaces. Suppose that X is quasi-homogeneous and Isom(V) is cocompact. Let
c: X — 'V be aconformal map. Define a function p: X — R% by gx = wicrgy .
If there is a sequence x, € X such that p(x,) — 0, then there exists a conformal
map f B2 —=V.

Proof. Applying the half-minimum lemma to the function p at each =z, , we get
a sequence vy, satisfying

hmﬂ(yn) ={)

1
Vye X  dx(y,yn) < 5 wyn) = ply) 2

1
5H(Yn).

Since X is quasi-homogeneous, there exist constants r, A and for each n a
conformal chart ¢, : B(0,7) — X satisfying ¢,(0) = vy, , [|D¢,(0)]] =1 and
SUPGeg(0,r) IDdn (@)l =1/2X.

Set B, = B(0,\/+/u(yn)) € E?. Then for n sufficiently large so that
2¢/plyn) < 7, we can define a map z, : B, — B(0,7) by z,(a) = ply,)a
Next we use the cocompacity of Isom(V): by postcomposing ¢ with suitable
isometries of V, we get conformal maps ¢, : X — V such that for each n,
cn(yn) belongs to some fixed compact K C V. Finally define f,, = ¢p 0 ¢p o2y .

We need to estimate sup||Df,|, which we do by giving upper bounds for
IDell, IDnll and Dz,

First we see that ||Dzy,(a)| = p(yn) and ||Déy, (2, (a))|| < 1/2X forall a € B,
Thus if a € By, , then ¢, (2,,(a)) € B(yn, 31/1(y»)) and the half- minimum prop-
erty asserts that u(én(zn(a))) > 2u(yn). Now recall that ¢, is the compo-
sition of an isometry and of ¢, which is conformal of dilatation 1/p. Hence

IDen (6 (@)l < 2/plyn) . We deduce:
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2

IDfn(@)ll < [Den(dn(zn(@))ll - [Dnlzn(a))] - [[Dzn(a)l
1
)

p(Yn)

Thus for every n, the sequence { fp}pZn obtained by restricting each f, to B,
is equicontinuous on B,, and for all p we know that f,(0) € K and |Df,(0)|| =
1. By Ascoli’s theorem, { fp }p>r admits a convergent subsequence. By diagonal
extraction, we obtain a sequence of conformal maps g, : B, — V which converges
uniformly on compacts to some map ¢ : E> — V. By standard properties of
conformal mappings in dimension 2, the map g is conformal or constant, but the
latter possibility is ruled out by the fact that [|[Dg(0)|| = lim||Dg,(0)|| =1.

Next we turn to the proof of proposition 7.1 in the hyperbolic case. To simplify
notations, let ds? denote the hyperbolic metric on H? and consider a quasi-
homogeneous conformal metric g = p?ds? such that (H?,g) is quasi-isometric to
a finitely generated group I'. Let d denote the hyperbolic distance and d, the
distance with respect to g. Our goal is to prove that (H? d) and (H?,d,) are
quasi-isometric.

Taking (X,gx) = (H?%,g), (V,gv) = (H?,ds?) and c¢ the identity map,
lemma 7.4 implies that the function p is bounded away from zero, since Liouville’s
theorem tells us that there is no conformal map f : E2 — H?. Thus we have
a linear upper bound for d in terms of d; . The remaining task is to obtain an
inequality in the reverse direction. For this, we will again use the half-minimum
lemma.

First we need some notation. For given 2 € H?, p > 0, let D(z, p) denote the
hyperbolic disc around z of radius p, A(z,p) the area of this disc with respect
to g, C(z,p) its boundary circle, I(p) (resp. L(z,p)) the length of C(z,p) with
respect to ds’ (resp. to g). (Note that by homogeneity, [(p) is independent of
z, while L(z, p) may not be.)

Besides homogeneity, the only property of the hyperbolic metric we will need
is the following fact.

Fact. There is a small positive constant Ry such that p < Rg implies [(p) <
20p .

Given z € H? and A >0, let r(x,A) be the infimum of the numbers p > 0
such that A(z,p) > A. For fixed A >0, the function = — r(z, A) takes positive

values and is locally bounded away from zero.

Lemma 7.5. Fir A > 0. If 0 <r <Ry and A(z,r) < A then there exists
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p € [r/2,r] such that L(z,p) < 10V/A.

Proof. Assume the conclusion does not hold. Then by the Cauchy-Schwarz in-
equality and the above fact, we have for all p € [r/2,7]:

2
100A < (/ uds) <lIp) / p?ds
C(z,p) C(z,p)

< 20p - / p? ds.
C(z,p)

Dividing by p and integrating between r/2 and r, we get:
o dp
100A — < 20A(z,r) < 20A
r/2 P

5In2 <1.

Lemma 7.6. If inf{r(z,A) | z € H?>} = 0 for some A >0, then there is a closed
curve of length < 800v/A enclosing a domain of area > A .

Proof. We apply the half-minimum lemma to the function =z — r(z, A). We
can find zs such that ra = r(za,A) < Rg and for all z, d(z,za) < % TA
implies r(z, A) > %TA. Let zp be chosen so that ry < % 7a . Then for all
z € D(xa,2ry) and all r <ry, we have A(z,r) <A.

By lemma 7.5, we can associate to any point z such that d(z,zs) = ra
a p(x) € [ra/4,7a/2] such that L(z,p(z)) < 10v/A. Let z; be a point on
C(za,ra). Then C(zy,p(x1)) and C(za,ra) intersect in two points (see fig-
ure 2). Let x5 be one of them.

Then C(zy,p(z1)) cannot lie in the exterior of C(zg, p(x2)), and if it was
contained in its interior, then we would get p(z1) < p(z2)/2, which cannot hap-
pen. So these two circles intersect. We can further construct z3, z4 and so on,
stopping when C(zy, p(z,)) intersects C(zy, p(z1)). We obtain

nra =
1 < ZP(%) <(ra) <2074,
i=1

from which we deduce n < 80. Piecing together the outward arcs of the
C(z, p(z3)) s, we get a curve of length less than 800v/A bounding a domain of
area greater than A .

Lemma 7.7. There is a constant Ag >0 such that inf{r(z,Ag) |z € H?} > 0.

Proof. In order to obtain a contradiction, take a sequence A; — +o0o such that
inf{r(z,A;) |z € H*} = 0. Lemma 7.6 then gives a sequence of domains €2; with
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Figure 2.

|99,
[€2]
to the metric g ).
Now assume (again by contradiction) that for some constant C > 0, the in-

equality

bounded and |Q;| — 400 . (All lengths and areas are taken with respect

2172 < ¢log)
holds for all bounded domains. Then there is a constant C’ > 0 such that
*? < Claqu| < |,

which is impossible since |Q;| — 400

So the above isoperimetric inequality does not hold. By proposition 7.2, the
growth function of I' cannot be at least cubic. Asin the Euclidean case, it follows
that T' is virtually Z?, which contradicts the hypothesis made at the beginning
of this subsection.

Lemma 7.8. Let V be a complete, quasi-homogeneous Riemannian manifold.
Then for any A > 0 there is a T7(A) > 0 such that for all © € V, the vol-
ume of Bz, 7(A)) is > A.

Proof. Let a > 0 be a lower bound for the volumes of balls of radius 1 and n(A) €
N such that A < n(A)a. Take 7(A) large enough so that any ball of radius 7(A)
contains at least n(A)+ 1 disjoint balls of radius 1. (e. g., 7(A) =3n(A)+1.)
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We are now in position to complete the proof of proposition 7.1. Define ry =
min(Ro, inf{r(z, Ag) | = € H?}) . Using lemma 7.5, we define a function p: R —
[r0/2,70] such that the inequalities A(z,p(x)) < Ag and L(z,p(z)) < 10v/A,
hold for all z € H? . From now on, we write C(z) = C(x, p(z)) .

Figure 3.

Let z,y be points of H?. Let + be a hyperbolic geodesic passing through
z and y. We want to construct a finite sequence (zy,...,z,) of points of ~
such that z; = z, =z, = y and consecutive C(z;)’s intersect. We will use the
same technique as in the proof of lemma 7.6: we take z; = x and for ¢ > 1,
z; will be one of the two intersection points between v and C(z;—1) (see fig. 3).
If we look at ~ in such a way that z lies on the left of y, then at each step
we can describe the choice made by saying that we pick either the “leftmost” or
“rightmost” intersection point.

If C(z) and C(y) intersect, we are done. If they are exterior to each other,
move toward the right. For some m, C(zm,—_1) lies in the exterior of C(y) and
C(zy,) does not. If C(y) lies in the interior of C(z,,), then we have 2p(y) <
plzm), so C(y) and C(z,,) intersect. If C(z) and C(y) are disjoint, but not
exterior to each other, move first to the left until C(z,,) is exterior to C(y), then
to the right as in the previous case. In each case, we find a C(z,) intersecting
C(y) with n bounded by an affine function of d(z,y) .

We can now connect z and y by a path aUfUJ where « is the shortest g-
geodesic connecting z to a point of C(z), ¢ the shortest g-geodesic connecting
y to a point of C(y) and 5 C|JC(z;). Each of the C(z;)’s has length less than
10+/Ag, so the length of 3 with respect to g is bounded by an affine function of
d(z,y) .

We are left with the following problem: given a point z € H?, find an upper
bound for the g-distance between z and C(z, p(z)) which does not depend on
z . Lemma 7.8 provides a solution. Indeed, let 79 = 7(Ag) be the constant given
by that lemma. Assume all points of C(z, p(x)) are distant of z by more than 75 .
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Let z be a point of the g-ball centered at z of radius 7o. If 2 € D(z, p(z)), a
connectivity argument shows that some minimizing g -geodesic segment connect-
ing z and z must cut C(z, p(z)). If « is an intersection point, then it satisfies
dy(z,u) < 19, a contradiction.

We have just proved that the g-ball centered at = of radius 7y is contained in
D(z, p(z)), whose area is less than Ay . This contradiction completes the proof
of theorem 7.1.

8. Surfaces with nonempty boundary

The section is devoted to the proof of proposition 1.4, which says that a finitely
generated group I' is virtually free iff it is quasi-isometric to some complete simply-
connected surface R with nonempty geodesic boundary. The “only if” part is easy
(just take the universal covering of a compact surface with geodesic boundary of
the adequate genus), so we concentrate on the “if” part. It is a consequence of
the following technical result:

Theorem 8.1. Let R be a simply-connected, noncompact surface, with nonemp-
ty boundary, D a nondegenerate pseudo-triangulation of R and d the reqular
piecewise Buclidean metric induced by D . Let T' be a finitely generated group
quasi-isometric to (R,d). Then T is virtually free.

Proof of proposition 1.4 assuming theorem 8.1. Let (R,h) be a complete simply-
connected Riemannian surface with nonempty geodesic boundary. The proof of
the pseudo-triangulation theorem works in this case as well as in the boundary-free
case, starting with a net N that has a subnet N’ that is contained in R and
is quasidense in it. So the proof that (B) + (P) implies (E) goes through as in
the boundary-free case and shows that (R, h) is quasi-isometric to some regular
piecewise Euclidean simply-connected surface. Then theorem 8.1 implies that T’
is virtually free.

The proof of theorem 8.1 is based on the following lemma.
Lemma 8.2. JR is quasidense in R .

The proof of lemma 8.2 is rather technical, so we first show that it implies
theorem 8.1.

Proof of theorem 8.1 assuming lemma 8.2. et N be the set of vertices of the
pseudo-triangulation that lie in dR . Lemma 8.2 implies that N is quasidense.
Perturb the metric so that it is smooth in the interior of R and each point z €¢ N
is replaced by a convex boundary arc. Now we are in the setting of section 6. Using
the same terminology, R consists of just one thin, simply-connected piece. Hence
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we may apply proposition 6.5. This yields an embedded geodesic divide which
splits R into pieces of uniform size. Let T be the dual graph of this splitting.
Then T is a tree and is quasi-isometric to R . It follows that I' is quasi-isometric
to a tree, hence a word-hyperbolic group whose boundary has dimension 0, so it
is virtually free [15].

The end of the paper is devoted to the proof of lemma 8.2. Let (R,d) and
I' satisfy the hypotheses of theorem 8.1. The distance function on G will also
be denoted by d. There are constants X,C’ > 0 and (XN, C’)-quasi-isometries
f:T'—=R, f:R—T suchthat f isa coarse inverse of f,ie. forall geT' we
have d(f(f(g)),g) <C’ and for all =z € R we have d(f(f(z)),z) <C’.

A (bi-infinite) (A, C)-quasi-geodesic in R is a map « : R — R that is a
(A, C) -quasi-isometry.

Lemma 8.3. There are constants A\,C >0 such that

i For every x,y € R there is a (A, C) -quasi-isometry f,,: R — R such that
fuy(x) lies in the C-neighborhood of y .

ii For every x € R there is a (A, C) -quasi-geodesic «, such that x lies in the
C -neighborhood of o .

Proof. The key is that (i) and (ii) are coarse versions of properties that T' satisfies
because it is a group, namely: I' acts transitively on itself by isometries and for
all g € T' there is a geodesic in the Cayley graph of I' that passes through g¢.
Thus the corresponding coarse properties hold in any metric space quasi-isometric
to I'. For instance, let z,y be points R and h : ' — I' be an isometry which
sends f(z) to f(y). Then fohof is a quasi-isometry and sends z close to y .
A straightforward computation shows that the various constants depend only on
X and C’. The proof of (ii) is similar.

The idea of the next lemma is due to B. Bowditch. (cf. [4]).

Lemma 8.4. (R,d) is uniformly simply-connected, which means that there
is a function p: Ry — Ry such that every loop v C R bounds a singular disc
of diameter less than p(diam-«y) .

Proof. Define
p(r) = X2(r+1) + CA+1).

Assume this function does not work. Then by planar topology it does not even
work for embedded loops, which means that there is a » > 0 and an embedded
disc © such that diam 9dQ =r and diamQ > p(r) .

Let « be a point of € such that d(z,9Q) > p(r)/2. By lemma 8.3(ii), there
is a (A, C)-quasi-geodesic «a, which meets B(z,C). We may assume that a,
is continuous. Thus it must meet 00 in at least two points z1 = a(t1) and



58 S. Maillot CMH

9 = a(ta), where t; and ¢2 have the property that there is a tg € [t1, 2] such
that d(a(to),z) < C. But then the quasi-geodesicity of « implies

ty —t1 = (t2 —to) + (to —t1) > —Z(p(r;— C).

It follows that

giving a contradiction.

In the next two lemmas, we exploit the uniform simple connectivity of R to
obtain “connect-the-dots” type results (cf. [12]).

Lemma 8.5. For all p,D > 0 there exists D' > 0 such that for every (u,D)-
quasi-isometry h : R — R, there is a continuous (u,D')— quasi-isometry h' :
R — R such that d(h(z),h'(z)) < D’ for all z € R. The constant D' depends
only on w, D and the function p.

Proof. The continuous quasi-isometry b’ is constructed by induction over the
skeleta of the pseudo-triangulation. First set A’ = h on the 0-skeleton. Then
map each edge to a geodesic. Finally use lemma 8.4 to define A’ on the 2-skeleton.
A straightforward computation shows that h’ satisfies the above properties with
D' =2(p+ 1)p2p+2D)+2u+D+2.

Lemma 8.6. For all D > 0 there exists ¢(D) > 0 such that any continuous map
h:S'x{0,1} — R satisfying d(h(t,0),h(t,1)) <D forall t € S' can be extended
to a map h:S'x 1 — R satisfying diamh(t x I) < (D).

Proof. Similar to that of lemma 8.5, using a triangulation of S! x 1.

Proof of lemma 8.2. Seeking a contradiction, assume there is a point z € R such
that d(z,0R) > ¢, where ¢ is to be determined. Let y be any point of dR . By
lemma, 8.3(i), there is a (X, C)-quasi-isometry f,, which sends = into B(y, C).
Let f., beacoarseinverse for f,, . By increasing the constants, we may suppose
that f,, and f,, are continuous (lemma 8.5).

Let U be a topological disc containing B(fs (), A(C+1)+C) and such that
diamU < p(2A(C + 1) +2C). Since d(y, foy(z)) < C, the disc U meets 0R,
which implies that every component of R — U is simply-connected.

Let € be a large disc such that = € Q and d(z,0Q) > 6. If ¢ is large enough
so that (6 — C)/A > diamU , then the loop f, ,(9Q) will avoid U . Since every
component of R — U is simply-connected, f,,(09) bounds a singular disc V
such that UNV = 0. For all z € V, we have d(f,,(z),2) > A(C+ 1)+ C,
whence d(f,,(2),2) > 1. This proves that f, ,(fs,(0€)) is null-homotopic in
R —{z}.
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Let h:S'x {0,1} — R be defined by hy = 9Q and hy = fo,(fe, (09)).
Lemma 8.6 provides a homotopy between 9Q and f, ,(fs,(0Q)) such that
diamh(t x I) < ¢(C) for all ¢+ € St. If § is chosen so that ¢(C) < & then
this homotopy avoids =, which gives the expected contradiction.
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