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Complexity of degenerations of modules

R. Aehle, Ch. Riedtmann and G. Zwara

Abstract. A module M over an associative algebra A over an algebraically closed field k is said
to degenerate to a module N if N belongs to the closure of the isomorphism class of M in the
algebraic variety of d-dimensional A-modules, d € N. We associate a non-negative integer to a
degeneration M <geg N, its complexity, and study its properties.

Mathematics Subject Classification (2000). 14L30, 16G10.
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1. Introduction

Let k be an algebraically closed field, A a finite dimensional associative k-algebra
with a unit and mod A the category of finite dimensional left A-modules. Let
My(k) denote the k-algebra of the d x d-matrices with coefficients in k. We view
A as a quotient of a free associative algebra k(Xy,..., X,) by a two-sided ideal
I. We define the affine variety mod% (k) as the set of r-tuples (my, ..., m,) such
that m; € My(k) and p(my, ..., m,) is the zero matrix for any p € I. The general
linear group Glg(k) acts on mod® (k) by conjugation.

As an ordinary set, mod% (k) is just the set Homy ay(A, My(k)) and hence
Gla(k)-orbits in mod? (k) correspond bijectively to isomorphism classes of d-dimen-
sional left A-modules.

Let M and N be two d-dimensional A-modules. By definition, M degenerates
to N, noted M <geg N, if N lies in the closure of the Gly(k)-orbit of M in
mod‘i(k), with respect to the Zariski topology. This defines a partial order on the
set, of isomorphism classes of d-dimensional A-modules.

Denote by @ the quiver

ay az
G=l3 8.
bl b2

with vertex set Qo = N\ {0} and arrows a; : ¢ — i+ 1, b; : i+ 1 — ¢ for every

1 € Qo.
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We call a representation
IR o,
T=N1 "Nz N = Ngj1-

B1 Bs
of @ in mod A, the category of finite dimensional A-modules, an exact tube if the
sequence

LTl (o 1,8:)
O—>Ni—>Ni,1€BNi+1 —>Nl—>0

or equivalently the square

oy
N,——=Niq

lﬂi1 lﬂi
.

2—1

Nioy ——N;

is exact for all 7+ > 1. Here we set Ng = 0. Note that NN; is an A-module, that
a;, B; are A-linear and that «; is injective, [3; is surjective, for all 4 > 1. We say
that T is an (M, N)-tube if there is a natural number A such that

(i) Ny >N,

(i) Nagjt1 % Nipyj @ M, for all j € N.

We call the smallest such number h the complexity e¢pl(T") of the tube.
Let T' be an (M, N)-tube. Note that the sequence

O—>Nka—k>Nk+1M>N1—>0

is exact for any k. As Ny is isomorphic to N @ M for k > cpl(T'), there is an
exact sequence
0—=N, — Ny M — N —0,

and therefore M degenerates to N [5].

Conversely, whenever M degenerates to N, there exists an (M, N)-tube: In-
deed, the third author showed in [7] that there is a short exact sequence

f
O—->Z(—g)»ZGB]W—a]\f—-)O7 (1.1)

and in [6] he associated an exact tube T , with such a sequence (see also Section
4). In fact, T 4 is the cokernel of the injection ¢ : X — X’ between the following
representations of Q:

! f ¥ !
X 7z A 7 7
1 1 1 1
wl <P1l <P2l @i‘/ 4Pz'+1l
(10) (10) (10) ) (10) )
X/ Z@M<—Z@M2<—...<—Z@Mz<—Z®Mz+L..

<f0> <f0> <f0> <f0>
g0 g0 g0 g0
01 01 01 01
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with @; = (f59f" 1, ...,9)' : Z — Z @& M*. Both X and X’ are almost exact
tubes: they satisfy all requirements except those related to a; and b;. The only
condition left to be checked for T}, is the exactness of the bottom row in the
commutative diagram (Figure 1) with exact columns. This is done by diagram
chasing.

Figure 1

By construction, Ny = coker ¢ is isomorphic to N. Using Fitting’s lemma in
order to replace Z by a direct summand if necessary in the exact sequence (1.1),
we may assume that f is nilpotent, say f* = 0. Then ¢h44 has the form ¢p,4; =
0,...,0,gf" 1 ...,9)": Z — Z & M" I, and its cokernel Ny ; is isomorphic to
M7 & Ny, for j > 0. We conclude that T}, is an (M, N)-tube of complexity at
most k. In fact, Ty 4 is an (M, N)-tube even if f is not nilpotent (compare with
Proposition 4.2).

We define the complexity of a degeneration M <geg N to be

cpl(M, N) = mincpl(T),

where T ranges over all (M, N)-tubes. This seems to be a good way to measure
how “complicated” a degeneration is.

Indeed, we will prove in Sections 3 and 4 that a degeneration M <goq N is of
complexity 1 if and only if there exists a non-split exact sequence

0—=N —->M-=N'=0

with N =5 N’ @ N”. So these are the “simplest” degenerations. In particular,
any degeneration to an indecomposable N must have complexity at least 2.
It is quite difficult to compute the complexity of a degeneration. The construc-
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tion described before gives an estimate from above: if

F
0—>Z£>ZEBM—>N—>O

is an exact sequence and f* = 0, then cpl(M, N) < h. Conversely, it is easy to
show that

cpl(M, N) > &

where €4(X) is the Loewy length of X; i.e., the smallest number r for which
(rad A)" - X = 0 (see Proposition 3.5). Both bounds are sharp, but in general the
complexity differs from both.

The complexity of a degeneration M <4, N obtained from two degenerations
M <geg P <geg N seems to be quite unrelated to the sum of the complexities of
M <geg P and P <goz N. For instance, if we take non-split exact sequences

0—- A —-B;,—-C; —0, i=1,...,r,

then there is a sequence of degenerations

r r—1 s r
@ Bz Sdeg (EB Bz) ) A’r S C'r Sdeg cee Sdeg (@ Bz) 52 (Az 2] Cz)
i=1

i=1 i=s+1

i=1

T

Sdeg cee Sdeg @(Az D CZ)7

i=1

but the complexity of
@ Bz Sdeg @(Az S Cl)
i=1 i=1

is 1. On the other hand, we give an example of a chain of degenerations M <y
P <g4eg N in Section 5.1 for which cpl(M, P)+cpl(P, N) < ¢pl(M, N). By Propo-
sition 5.1, a minimal degeneration can have arbitrarily high complexity. A degen-
eration M <geg N is called minimal if M is not isomorphic to N and moreover
M <geg P <geg N implies that P is isomorphic to either M or N.

2. Degenerations, bimodules and exact tubes

The following construction is explained in detail in [7] (compare also [2] and [3],
pp. 176-177): If M <4y N is a degeneration, there exists a discrete valuation
k-algebra R with maximal ideal m and residue class field k and an A-R-bimodule
Y, which is free of rank d over R, such that

) Y/m- YN
ii) Y contains R ®; M as an A-R-submodule.
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These data are related to mapping a curve ¢ to mod (k) in such a way that its
image lies generically in the orbit of M and intersects the orbit of N. Assuming ¢
to be non-singular and passing to the completion, we may assume that R = k[[¢]].
The representation 1" = (IV;, a4, 3;) defined by the setting

N = Y/(t)-Y

and letting a;; : N; — N;41 and 3; © N;41 — N; be induced by multiplication by
t and the identity, respectively, is easily seen to be an exact tube, and by [7] it is
moreover an (M, N)-tube.

This construction associating an exact tube with a bimodule is an equivalence:

Proposition 2.1. The category T of exact tubes is equivalent to the category
mod f A-k[[t]] of A-k[[t]]-bimodules which are free of finite rank over k[[t]].

Proof. We just describe a quasi-inverse functor. For an exact tube T' = (N, oy, 3;)
we set

and we put
t- (’rL17 n, .. ) - (O,al(n1)7 042(7”02)7 . )

for any infinite sequence (n1,n9,...) with n, € N; and (3;(n;) = n;_1 representing
an element of J. As 7' is an exact tube, this defines an A-k[[t]]-bimodule structure
on Y. As t acts without torsion, ) is free as a k[[t]]-module, and its rank equals
dimy, Ny, since clearly Y/(t) - Y is isomorphic to Nj. O

We give a direct construction of the bimodule corresponding to T, for an
exact sequence

0—>Z@>Z®M—>N—>O (2.1)
with a nilpotent map f. Set
Vig=klltllox M Z
as an A-module and define the action of t on Z by

t-(0,2) = (1®g(2), f(2)).

Clearly, this action of ¢ is torsion free, and Yy ,/(t))}, is isomorphic to N, so
that Yy , actually belongs to modf A-k[[t]]. It is easy to see that the exact tube
associated with Yy 4 is Ty 4.

We will need the following truncated version of an exact tube:
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Definition 2.2. For m > 1, an exact tube of height m is a representation in
mod A

a1 Oégl
N1:NQ...Nm_1 P N,
B1 Bm—1
of the full subquiver @,, of @ whose vertices are 1,2, ..., m, such that the square

oy
Ny—— = N,y

b

Qi—1
Nyy——N;

is exact for i = 1,...m — 1. Again we set Ng = 0.

The category of exact tubes of height m is equivalent to the category of A-
k[t]/(t™)-bimodules which are free of finite rank over k[¢]/ (™).

Obviously, an exact tube T' restricts to an exact tube T, of height m for all
m. We will see in Section 4 that an M-extendible tube T' = (N, a, 3;) of height
h > 1 (see next definition) is always the restriction of an (M, Ny)-tube.

Definition 2.3. A tube T' = (N;, oy, 3;) of height h is called M-extendible if there
is a decomposition N, = Z @ Z’ and an exact sequence

OeZ&Nhfl@MﬂZ/—ﬂ)

such that a = B,—1|z and ¢ = prz- oap_1, where pry, : Z& 7' — 7’ is the natural
projection.

We end this section with some questions. We do not know how to describe the
full subcategory of modf A-k[[t]] corresponding to (M, N)-tubes. Conceivably,
its objects are just those bimodules ) which contain k[[¢]] ®4 M as a subbimodule.

This would follow if we knew that any (M, N)-tube is of the form Yy , for some
exact sequence (2.1).

3. Complexity

Definition 3.1. We call a map

<f>:Z—>ZEBM
g

an (M, N)-monomorphism provided N is isomorphic to coker (g )
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Recall that, for a degeneration M <4eg IV, we defined the complexity as
cpl(M, N) = mincpl(7T),

where T ranges over all (M, N)-tubes. There always are (M, N)-tubes with differ-
ent complexities. For instance, if (f, g)! : Z — Z®M is an (M, N)-monomorphism
and we set

f’(?é):zz—»Z% g =(90): 2> — M,

the map (f’, ¢’)! will be an (M, N)-monomorphism, too, and it is easy to see that

cpl(Tyr o) = 2¢epl(Ty 4).

Theorem 3.2. Let h > 1 be a natural number and M <q4o, N a degeneration.
The following conditions are equivalent:
() epl(M,N) < h

(ii) There is an exact sequence

¥
O—>ZQ>Z@M—>N—>O

such that cpl(Ty ) < h.
(iii) There exists an exact tube T'= (N, oy, 3;) of height 2h+ 1 with N % Ny
and such that

Nytj+1 —2 Nug @ M

for 7=0,...,h.
(iv) There erists an M-extendible exact tube T = (N;, oy, 3;) of height h with
N =5 N
A

Proof. Most ingredients for the proof will be given in Section 4. Here we indicate
how they fit together: The implications (ii) = (i) = (iii) are obvious. The results
of Section 4 up to Proposition 4.6 give that (ii) implies (iv), and Proposition 4.8
shows (iv) = (ii). Finally, the implication (iii) = (ii) follows from Proposition 4.9
and the next lemma. d

Lemma 3.3. Let T = (N;, a4, 3;) be an (M, N)-tube, and assume that Npiq —
Nn® M for some h > 1. Then cpl (T) < h.

Proof. As T is an (M, N)-tube, there exists a natural number 5 > h such that
Niv1 = N; © M for all 4 > j. Take an integer i with h < i < 4, and consider the
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two exact squares

A Qg Qpg Qg Qlgq1 R
Ny @ M " Nppy —22000 N Njj1 "> N;& M

N

Qg 1...0p Qig—1...05

Ny, N; N;.

The big square splits, and therefore the two small squares split as well. We con-
clude that N;, is isomorphic to N; & M. O

As Ny = 0, our theorem takes the following simpler form for h =1, 2:

Corollary 3.4. Let M <45 N be a degeneration. Then
i) epl(M,N) < 1ifand onlyif N = Z& Z' and there exists an eract sequence
0—=Z—M-—2Z —0.

ii) cpl(M, N) < 2 if and only if there exist two exact squares

7Z—=N N—Z
M—7 7' —> N

Proposition 3.5. For any degeneration M <qeg N we have
(M)
(M, N)> ———~ —1
Cp ( 7 ) — KE(N) 7
where L6(X) denotes the Loewy length of X; i.e., the smallest integer r such that
(rad A)"X =0.

Proof. Choose an (M, N)-tube T' = (N;, a4, 5;) of complexity h = cpl(M, N).
Then M is a direct summand of Np11, and hence €4(M) < €0(Np+1). We claim
that, for all 7 > 1,

CU(N;) < i L0(Ny).

In fact, for any exact sequence
0—-A—-B—->C-—0

the relation
U(B) < Le(A) + e(C)

holds true. Our claim follows by induction, considering the exact sequences

0— N;,_y—N; —- N, —0. [l
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4. Exact tubes from monomorphisms

Throughout this section, (f,g)" : Z — Z @ M denotes an (M, N )-monomorphism.

Definition 4.1. We call two exact tubes T' = (N;, o, 8;) and 1" = (N], o, 3])

2
similar if N; is isomorphic to N/ for all i > 1.

So we do not ask for any compatibility with the maps in the tubes. Note
that the property of being an (M, N)-tube is preserved under similarity, and so is
complexity.

Proposition 4.2. There is a direct summand Z' of Z and an exact sequence
(f]|Z/)
02 2257276 M - N—0

such that f|z: is nilpotent and T ; is similar to Ty, 4,,. As a consequence, Ty 4
is an (M, N)-tube.

Proof. By Fitting’s lemma, there is a decomposition Z = 7' @ 7" of Z as a direct
sum which is preserved under f and such that f’ = f|z- is nilpotent and f” = f|z»
is an automorphism of Z”. Set ¢’ = g|z- and ¢’ = g|z~. Obviously the maps

i

Fro gttt g ;
(O f,,i g”f”i71~~~g” a7 7 7"oM

and 4 4
(f/l g/f/l—1 . ”g/)t /N . Mt

have isomorphic cokernels as (f”)? is an isomorphism for ¢ > 1. Since f’ is nilpo-
tent, T 4 is an (M, N)-tube. O
Remark 4.3. Suppose that f* =0. As
Ynis=(0,...,0,gf" 1 9 Z — Z® M"Y,

for 7 € N, the exact tube T ; has the following particularly simple form:

Nyj=ZoM@®Z, Nyjuu=ZeMT oz,

Wy = (g%) ZoMeZYsZoMe (M @ 7)),

Brii=(§2N:(ZeM)oMaZ - (ZeaM)e Z,
for 7 € N, where Z’ is a cokernel of

p=(go(f* . L) Z— M"

and
k, ) Mo Z — 7
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is obtained from the commutative diagram
0—= 7% 7o M —= Ny = Z& M & Z' —=0

lf l(w) l( )

0—>Z—F—>ZoM——>Ny=Za Z

o=

—_— O
with exact rows.

Our next goal is to show that, up to similarity, we may choose g € rad(Z, M).
We start with an auxiliary result:

Lemma 4.4. The tube Ty g is similar to Ty 4 with f' = f—hg, where h: M — Z

is any homomorphism.

Proof. 1t suffices to check the identity v; o ', = ;, for ¢ > 1, where
Pi = (fi7gfi717"'7g)t:Z_)Z@Mi,
i i—1 i
or = (9" 92— ZoM

and ]
1 h fh f2h - fln

0 1 gh gfh - gf* ?h

00 1 h . . 5 .

e ZeoM - Ze M.
iR R R
.
0 oo . 0 1

The key is the equation

r—1
T R ¥ (7)Y (A §
s=0
which is proved by induction. (Il

Proposition 4.5. There erists a direct summand Z' of Z and an exact sequence

f/
OHZ/QZ’EBM—MVHO (4.1)

with ¢’ € rad(Z', M) and such that T 4 is similar to Ty 4.

Proof. If g € rad(Z, M), there is nothing to be proved. Otherwise, we prove that
a sequence (4.1) exists such that 7%, is similar to T4 o and dimZ’ < dimZ
and then proceed by induction on dim Z. We choose a non-zero direct summand
Zy of Z for which g|z, is a section. Replacing Z by an isomorphic module if
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necessary, which leads to an isomorphic tube, we may assume that Z = 7, @ 7,

M = M & Zs,
~[q0 _fac
9(01> and f(bd)'

Applying the preceding lemma for
0c
= (04)
(f//) of the form
g
f// —y % 8 . Z Z Z
=1 gq0): 21922 —=Z1®Z2® M1 ® Z>.
01
Now we may take Z/ = Zy, M = Zo ® My, f' =a and ¢’ = (2). 0

Proposition 4.6. Set h = cpl(T} ), and suppose that g € rad(Z, M) and that f
is nilpotent. Then (T 4)<p is M-extendible.

Proof. Our assumptions on f and g imply that, for some 4, the restriction v|z of
the composition

p={(% % ). zeM —ze M oM
0 1y

of the maps
fo 0
(53) th
ZoMh 21 Zzo MU . 221 7 g M

belongs to rad(Z, Z @ M*t"). By construction of Ty.4, the square

¥ ,
ZoM——Zao Mo M

l‘ﬂ'h lﬂ'h-H

Qith—1""0h
Nh Ni+h

is exact, where m; : Z & M7 — Nj is the projection to the cokernel of ¢; : Z —
Z @ M7, and it splits, since h = ¢pl(Ty,4). Therefore, 7|z is a section, and
replacing Nj, by an isomorphic module, we may assume that

1 % %

e / -
Nh—ZEBZ7 Wh((]d*

):Z@M@Mh*1—>Z@Z’7

where * is an arbitrary map.
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Now consider the exact squares

10

It is easy to see that the square

z—1 M

e

Proro0_ g
Ny | ——— 7

is exact as well. Moreover, we have
Th-1lz = Br—1lz- u
Next we recall a different construction for T% 4, which has been presented for

the most part in [6]. From (f, g)' we obtain the commutative diagram (Figure 2)
with exact rows and (k;, ;) = Bi(kiy1, liv1) for i <m — 1.

(g) (k1,01)

0 7z ZoMIE N =N — >0
o T

0 Nt — N P Pm Ny 0
]

0> Npyp 2" N, 2Pt ) 0

0 Ny N, PP N 0
O

0 N—2 NP LNy 0

Figure 2

The next step is always obtained by squeezing the push-out of the top sequence
by k., between the two top rows.
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We claim that the exact tube (N;, «;, 5;) of height m thus obtained is isomor-
phic to the restriction (7,4)<m of T,4.
By induction, we obtain the following series of exact squares:

7
7 (g) Z@M—>Z@M2 .............. Z@Mm—1—>Z@Mm
l lwl l¢2 l%l j’/’m
0 Ny = I momsssmsssmossmsnss Nim—1 - N,

with ; = (k“ li, g 1li—1,. 00y 1. .. alll) 2 e M — N;.
Note that the composition of the first ¢ maps of the top row is just ¢; : Z —
7 & M? and that the sequence

0522 zeoM YN, >0

is exact for 4 = 1,...,m. So N; = cokery;, and the maps «; are the ones we
claim. As for j3;, it suffices to show that

Pio(10) = Biotit1.
This follows easily from the explicit formulas for ¢;, ;,1, the equation
(ki 1) = Bi(kiv1; liv1)
and the fact that (N;, oy, ;) is an exact tube of height m. As a consequence we

have:

Remark 4.7. Let (f,g)" be an (M, N)-monomorphism and 7" = (N/, o}, 3}) an

k3

exact tube of height m. Then 7" is isomorphic to (1 4)<n if and only if there
exists an exact square

(2)

7—/ZO M .

Proposition 4.8. Any M-extendible exact tube T = (N;, oy, ;) of height m
with Ny %N is the restriction of the exact tube Ty, to Qp, for some (M, N)-

monomorphism (f,g)t.

Proof. Let

02 N oM LD 2o
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be an exact sequence with N, = Z® 7/, a = By—1|z and ¢ = pry, o 1. The
square
< ca ca’ )
b 0
0 1

Npn=2072 ———ZoMe Z
. |62
¢ )T %¥m—1

Npy——————>N, =207

(ava/)—5m1l

is exact. Setting

ca ca 10 o
Npi1=ZoMaZ, an=|b 0 |, Bn= ,
0 1 0 —d ca

we may extend T to an exact tube of height m + 1. By construction, the map

7
(Cba> Z—ZoM

is an (M, N)-monomorphism, and the square

Z () ZoM

| l3)

Np=28®7 >Np1=Zo6MaZ

1

)
=fBmo| 0
(o) =me {0

The result now follows from Remark 4.7. O

is exact with

Proposition 4.9. Let T' = (N;, oy, 3;) be an exact tube of height h+m, for some
h>1 and m > 1. Suppose that

Nitjo1 =0 Nopy ® M
for 5 €4{0,...,m —1}. Then there is an (M, N)-monomorphism
<ch> “Niym-1— Nngm 1 &M

such that the restrictions T<p, and (T} 4)<p are isomorphic.

<f) = XOC®pirm—1
g

Proof. We wish to choose
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for a suitable isomorphism x : Nptm — Npim—1 @ M and to apply Remark 4.7
to the diagram

Ophtm—1 ~
Nhim—1 i Nhim ~ Nhtm—1 @M .
B_ﬁml~~ﬁh+m2l ﬂm---ﬁmmll /
Nmfl Q1 > Nm

In order to do this, we only need to construct a section
5 Npym-1 — Npym

satisfying
Bm—1Bm -+ Brrm—18 = BBrim—18 = B.
By our hypothesis, the square

Nh+1 —Z Nh+m
lﬂh lﬁh+m1
Nj ——= Npim—1

splits, where & = ap1m—1...ap41 and &' = apym—2 ... . Choose a maximal
direct summand A of Npi,, for which B,4+m_1|a is a section. Replacing T" by an
isomorphic exact tube, we may assume that we have

100
6h+m71 = <O’)/(5> A@B@M%A@B7

a’Gﬂ):C@B—aA@B

for some maps v, 9, €. Setting

10
s=|01]|:AeB— A®Ba& M,
00

we obtain

0 0
laeB — Brim—18 = (0 1—'7) cA® B — A® B,

which factors through o’. But the sequence
0— N 25 N1 25 Nppy — 0

is exact, which implies 5 = B/3,4m—18 as required. (Il
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5. Examples

All our examples are representations of quivers with relations. Let Q be a quiver

with vertex set Qo = {1,...,n}, I an admissible two-sided ideal in the quiver
algebra kQ, d = (dy, ...dy) a vector in N, and denote by
Rep(Q, 1, d)

the affine algebraic variety of representations X of (@, I) with X (i) = k%, i € Qo.
The dimension vector of X in Rep(Q, I,d) is d. The group G(d) = [[;_, GL(d;)
acts on Rep(@, I,d) by

(9-X)(a) =gjoX(a)og,"

for an arrow o : 1 — j and g = (g1, ..., 9n) € G(d).

If we view M, N in Rep(Q@,I,d) as modules over kQ/I of dimension d =
S . di, then M degenerates to N if and only if the representation N belongs
to the closure of the orbit G(d) - M of M in Rep(Q,I,d) [1]. This allows us to
work with the smaller group G(d).

5.1. We begin with an example of a degeneration whose complexity is easy to
compute: Choose a natural number n > 2 and let A,, be the equioriented quiver
with underlying graph A, :

71 ITn—1
Ap=1«—2+— . —n—-1+—n

Denote by X; the indecomposable representation of ffn given by

Xi(7) = {k 4 =k

0 j>1,
1 5 <y,
Xi(vy) = {0 i

Then M = X,, has a filtration
M:XnDXn_1:)“~:)X2:)X1,
and it is well-known that M degenerates to the associated graded module
N=E xi/Xi 1,
i=1

where we set Xo = 0. We wish to compute the complexity cpl(M, N), thereby
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showing again that M actually degenerates to N. Set

n—1
z =P x,
d=1

f = LQ.:' " -7 — 7 and

ln—1 0

g=100--0u,):Z —M=X,,

where v; © X; 1 — X; is the inclusion. It is easy to check that (f,g)" is an
(M, N)-monomorphism. Moreover, f*~! = 0, and thus

cpl(M,N) <n—1.

On the other hand, the Loewy lengths of M and N are n and 1, respectively,
which implies
(M)
(MN)> —~2 —1=n-1
by Proposition 3.5. This example shows that there are degenerations of arbitrary
complexity.
Note that for n = 4 we obtain the following chain of degenerations:

M=k&bkdbhdb<quP=kikdkdk
<ag N=k T h< kT
The complexities are
cpl(M, P) =1=cpl(P,N) and
cpl(M, N) =3 > cpl(M, P) + cpl(P, N).

Comparing with the example given in the introduction, we see that cpl(M, P) +
¢pl(P, N) can be either smaller or greater than cpl(M, N) for a chain

M Sdeg P Sdeg N.

5.2. Next we give an example of a minimal degeneration of arbitrary complexity:

Let @ be the quiver
Q=1—>2" )5,

choose a natural number n > 2, and let I be the ideal generated by ™. Define M
and NV to be the representations of dimension vector (1,n) given by

b i
M(a) =ey = (>7 N(a) =eg = ()
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and
M(B) = N(3) = J,, respectively,
where eq, ..., e, is the standard basis of k™ and .J,, is the Jordan block
0 0
P
0 . 1‘ 0

in M, (k), for m € N.

Proposition 5.1. There is a degeneration M <gqop N, which is minimal, and
cpl(M, N) = n.

Proof. Denote by Z the indecomposable representation with dimension vector
(0,n), given by Z(3) = J,,, and let (f,g)" : Z — Z & M be given by

f= (07 Jn)> g= (07 1)

It is easy to see that (f, g)* is an (M, N)-monomorphism, so M degenerates to N.
Moreover, we have f =0, and therefore cpl(M, N) < n. As

dimEnd M =1 and dimEnd N = 2,

the orbit of N has codimension 1 in the closure of the orbit of M, which implies
that the degeneration is minimal.

Suppose cpl(M, N) < n — 1, and choose an (M, N)-tube T' = (N;, o, 3;) with
N, = N,_1® M. Let v, : N, — M be the surjection obtained from this
decomposition.

Claim. Fori=1,...,n, there exists a surjection
Y Ny — M(i)y
where MY has dimension vector (1,4) and is given by

M®(a)=(1,0,...,0)", MDQB)=J,.

Using the claim for i = 1, we obtain a surjection ¢1 : Ny = N — M), which
is impossible.

We prove the claim by descending induction on i. Observe that any map from
N to M@ factors through the socle socM® and that M® /socM @) = pG=1),
Writing this factorization for ¢¥; o o; 1 ---ay, we obtain ¥; { : N;_1 — MG
from the following commutative diagram with exact rows:
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l ll/’z' Yi-1
Y

0 —soecM ) —— M —— -1 ——0.

As 1), is surjective, ;1 is as well.

799

O

A version of this argument implies the following result, which we will not use:

n—1
1—1

cpl(M, M;) = { } +1, i>2.

The representation M; is given by

MZ(CV) = €4, MZ(/B) = Jn

5.3. We now exhibit a degeneration M <g., N of complexity 2 with the property
that f2 # 0 for all (M, N)-monomorphisms (f, g)!. Therefore the complexity can

be strictly less than the “index of nilpotence of M and N”; i.e., the number

min{r : f7 = 0},

where the minimum is taken over all (M, N)-monomorphisms (f, g)".

We stay

with the same quiver Q, and we choose I to be generated by 83: i.e., we set n =3
in the preceding example. Note that kQ/I is representation-finite: it admits 29

indecomposables [4].
We let M and N be given by

M(a) = ey, N(a)=-e3, M(B)=N(B)=Js,
where eq, es, e3 is the standard basis of k2. Choose
7= O—>k33 &

ff=0(0,J3): 2/ — Z' and
g=0,1): 7 — M.

Then (f/, g')" is an (M, N )-monomorphism. As f’ ? factors through ¢’, the cokernel

N3 of the map
os= (" g1 df g2 — 7' &M

used to define the tube T oo = (N, oy, ;) is isomorphic to the cokernel of

(F°,0, 9, 9) 2 — 2" M
and thus isomorphic to M & No. By Lemma 3.3, we know that
cpl(M, N) < 2.
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On the other hand, as N is indecomposable, the complexity must exceed 1, so
cpl(M,N) = 2.
Claim. For any (M, N)-monomorphism
(f,9):Z — Zo M,

we have f? £ 0.

First we show:

Lemma 5.2. For any (M, N)-monomorphism
(f7g)t A —>Z@M7
Z' is a direct summand of Z.

Proof. Consider the exact sequences

Eid g
E/:O—>Z/M>Z/®MMN—>O

and
f
5.0z zau & Ny

It is easy to check that

dimHom(Z', M) = dimHom(Z’, N) = 3,
dimEnd M = dimHom(M, N) = 2

Therefore the sequence of vector spaces
0 — Hom(Z' & M,Z) — Hom(Z' & M, Z& M) — Hom(Z' & M,N) — 0

obtained from mapping Z’® M into ¥ is exact. In particular, (k',0') : Z/& M — N
factors through (k,{) : Z® M — N, and hence we have the following commutative
diagram (Figure 3) with exact rows and columns.
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(k1)
hI 0 Z ZoM N 0

|
(

0) , 01
0—>Z—>Za(Z M) —>Z aM—>0

(7) )

Z/—Z/

0 0
Figure 3

So the middle column splits as well, and since by construction f’, ¢’ lie in the
radical,
s: 7 —Z

must be a section. O

Let (f,9)! : Z — Z @ M be an (M, N)-monomorphism, suppose f> = 0, and
consider the commutative diagram (Figure 4) with exact rows and columns.

0 0 0
0 ker f M X 0
oo O
4 k,l
0 A ZeM 0 N 0
(1,0)
0 im f 7 coker f —— 0
0 0 0
Figure 4

Then X must be a quotient of M and a submodule of N, which is possible in
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exactly two ways:

(i) X = kﬁu{) 7

(i) X = 0—>I<;Q 0

In the first case, we have

ker f = O—>kQ 0,
and our assumption f? = 0 implies that dim Z(2) < 2. But then Z cannot contain
Z' as a direct summand.

In the second case, we see that
o,

ker f = k——sk :)Jg.
Now f? = 0 implies that dim Z(2) < 4. But then necessarily Z(3a) = 0, since 7’
must be a direct summand of Z, and Z cannot contain ker f as a submodule.

5.4. As our last example, we find a degeneration M <., N of complexity 2 for
which there exists an exact sequence

Oqu — -
5.0 N0 yoy A0 vy

So we have an exact tube
T=(N =N, No=N&M, oy, )

of height 2. If this tube were the restriction of an (infinite) exact tube, the com-
plexity epl(M, N) would have to equal 1. So the number 2h + 1 in condition (iii)
of our main theorem cannot be replaced by 2h.

Choose A = k[a, 3]/ (a?, 3?), let M and N be 4-dimensional with

It is easy to check that the sequence . obtained from these choices is exact. So
M degenerates to N. As N is indecomposable and f2 factors through g, the same
argument as in Section 5.3 implies that cpl(M, N) = 2.

This example has another surprising feature: For any degeneration M <qe; N
we obtain

cpl(M",N") <cpl(M,N), r=>1,
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by taking for M" <geg N” the direct sum of r copies of an (M, N)-tube of minimal
complexity. In our example, we have

epl(M?,N?) =1 < cpl(M,N) = 2.

Indeed, M? is a projective cover for N, and the kernel of an epimorphism M? — N
is N again. So there is an exact sequence

0—N—M?2_N_——0O
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