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Complexity of degenerations of modules

R Aehle Ch Riedtmann and G Zwara

Abstract A module M over an associative algebra A over an algebraically closed ¯eld k is said
to degenerate to a module N if N belongs to the closure of the isomorphism class of M in the

algebraic variety of d-dimensional A-modules d 2 N We associate a non-negative integer to a
degeneration M ·deg N its complexity and study its properties
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1 Introduction

Let k be an algebraically closed ¯eld A a ¯nite dimensional associative k-algebra
with a unit and mod A the category of ¯nite dimensional left A-modules Let
Md k denote the k-algebra of the d £ d-matrices with coe±cients in k We view
A as a quotient of a free associative algebra khX1; : : : ; Xri by a two-sided ideal
I We de¯ne the a±ne variety modd

A k as the set of r-tuples m1; : : : ; mr such
that mi 2 Md k and ½ m1; : : : ; mr is the zero matrix for any ½ 2 I The general
linear group Gld k acts on modd

A k by conjugation
As an ordinary set modd

A k is just the set Homk¡alg A; Md k and hence

Gld k -orbits in modd
A k correspond bijectively to isomorphism classes of d-dimen-

sional left A-modules

Let M and N be two d-dimensional A-modules By de¯nition M degenerates

to N noted M ·deg N if N lies in the closure of the Gld k -orbit of M in
modd

A k with respect to the Zariski topology This de¯nes a partial order on the

set of isomorphism classes of d-dimensional A-modules

Denote by Q the quiver

Q 1
a1¡Ã¡b1

2
a2¡Ã¡b2

3
¢ ¢ ¢

with vertex set Q0 N n f0g and arrows ai : i i + 1; bi : i + 1 i for every
i 2 Q0



782 R Aehle Ch Riedtmann and G Zwara CMH

We call a representation

T N1
®1¡Ã¡¯1

N2 ¢ ¢ ¢ Ni
®i¡Ã¡¯i Ni+1 ¢ ¢ ¢

of Q in modA the category of ¯nite dimensional A-modules an exact tube if the

sequence

0 Ni
¯i¡1
®i¡¡¡¡ Ni¡1 © Ni+1 ¡®i¡1;¯i¡¡¡¡¡¡¡ Ni 0

or equivalently the square

Ni
®i

/

¯i¡1

²

Ni+1

¯i
²

Ni¡1
®i¡1

/ Ni
is exact for all i ¸ 1 Here we set N0 0: Note that Ni is an A-module that
®i; ¯i are A-linear and that ®i is injective ¯i is surjective for all i ¸ 1 We say
that T is an M; N -tube if there is a natural number h such that

i N1 »A N

ii Nh+j+1 »A Nh+j © M for all j 2 N

We call the smallest such number h the complexity cpl T of the tube

Let T be an M; N -tube Note that the sequence

0 Nk
®k¡¡ Nk+1

¯1¢¢¢¯k¡¡¡¡ N1 0

is exact for any k As Nk+1 is isomorphic to Nk © M for k ¸ cpl T there is an
exact sequence

0 Nk ¡ Nk © M ¡ N 0;

and therefore M degenerates to N [5]
Conversely whenever M degenerates to N there exists an M; N -tube: In-

deed the third author showed in [7] that there is a short exact sequence

0 Z
f
g¡¡ Z © M N 0; 1 1

and in [6] he associated an exact tube Tf;g with such a sequence see also Section
4 In fact Tf;g is the cokernel of the injection ' : X X0 between the following

representations of Q:

X :

'
²

Z
1

/

'1

²

Z
f

o

1
/

'2

²

¢ ¢ ¢

f
o

1
/ Z

f
o

1
/

'i
²

Z
f

o

¢ ¢ ¢

'i+1

²

X0 : Z © M
Ã
f 0
g 0
0 1

/
/ Z © M2

1 0
o

Ã
f 0
g 0
0 1

/ ¢ ¢ ¢

1 0
o

Ã
f 0
g 0
0 1

/ Z © M i
1 0

o

Ã
f 0
g 0
0 1

/
/ Z © M i+1

1 0
o

¢ ¢ ¢
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with 'i f i; gf i¡1; : : : ; g t : Z Z © M i Both X and X0 are almost exact
tubes: they satisfy all requirements except those related to a1 and b1 The only
condition left to be checked for Tf;g is the exactness of the bottom row in the

commutative diagram Figure 1 with exact columns This is done by diagram
chasing

0

²

0

²

0

²

Z
1

/

f
g

²

Z f
/

Ã f2

g fg
²

Z
f
g

²

Z © M
Â

Ä

Ã f 0
g 0
0 1

/

²

Z © M2
1 0 0
0 1 0

/ /

²

Z © M

²

0 / N1

²

®1
/ N2

²

¯1

/ N1

²

/ 0

0 0 0

Figure 1

By construction N1 coker'1 is isomorphic to N Using Fitting's lemma in
order to replace Z by a direct summand if necessary in the exact sequence 1 1
we may assume that f is nilpotent say fh 0 Then 'h+j has the form 'h+j
0; : : : ; 0; gfh¡1; : : : ; g t : Z Z © Mh+j and its cokernel Nh+j is isomorphic to

M j © Nh for j ¸ 0 We conclude that Tf;g is an M; N -tube of complexity at
most h In fact Tf;g is an M; N -tube even if f is not nilpotent compare with
Proposition 4 2

We de¯ne the complexity of a degeneration M ·deg N to be

cpl M; N min cpl T ;

where T ranges over all M; N -tubes This seems to be a good way to measure

how \complicated" a degeneration is
Indeed we will prove in Sections 3 and 4 that a degeneration M ·deg N is of

complexity 1 if and only if there exists a non-split exact sequence

0 N 0 M N 00 0

with N »¡ N 0 © N 00 So these are the \simplest" degenerations In particular
any degeneration to an indecomposable N must have complexity at least 2

It is quite di±cult to compute the complexity of a degeneration The construc-
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tion described before gives an estimate from above: if

0 Z
f
g¡¡ Z © M N 0

is an exact sequence and fh 0 then cpl M; N · h Conversely it is easy to
show that

cpl M; N ¸
`` M
`` N ¡ 1;

where `` X is the Loewy length of X ; i e the smallest number r for which
radA r

¢ X 0 see Proposition 3 5 Both bounds are sharp but in general the

complexity di®ers from both
The complexity of a degeneration M ·deg N obtained from two degenerations

M ·deg P ·deg N seems to be quite unrelated to the sum of the complexities of
M ·deg P and P ·deg N For instance if we take non-split exact sequences

0 Ai Bi Ci 0; i 1; : : : ; r;
then there is a sequence of degenerations

r

Mi 1

Bi ·deg Ã
r¡1

Mi 1

Bi © Ar © Cr ·deg : : : ·deg Ã
s

Mi 1

Bi ©
r

Mi s+1

Ai © Ci

·deg : : : ·deg

r

Mi 1

Ai © Ci ;

but the complexity of
r

Mi 1

Bi ·deg

r

Mi 1

Ai © Ci

is 1 On the other hand we give an example of a chain of degenerations M ·deg

P ·deg N in Section 5 1 for which cpl M; P + cpl P;N < cpl M; N By Propo-
sition 5 1 a minimal degeneration can have arbitrarily high complexity A degen-
eration M ·deg N is called minimal if M is not isomorphic to N and moreover
M ·deg P ·deg N implies that P is isomorphic to either M or N

2 Degenerations bimodules and exact tubes

The following construction is explained in detail in [7] compare also [2] and [3]
pp 176{177 : If M ·deg N is a degeneration there exists a discrete valuation
k-algebra R with maximal ideal m and residue class ¯eld k and an A-R-bimodule
Y which is free of rank d over R such that

i Y m ¢ Y »A N

ii Y contains Rk M as an A-R-submodule
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These data are related to mapping a curve c to mod d
A k in such a way that its

image lies generically in the orbit of M and intersects the orbit of N Assuming c

to be non-singular and passing to the completion we may assume that R k[[t]]
The representation T Ni; ®i; ¯i de¯ned by the setting

Ni Y ti ¢ Y

and letting ®i : Ni Ni+1 and ¯i : Ni+1 Ni be induced by multiplication by
t and the identity respectively is easily seen to be an exact tube and by [7] it is
moreover an M; N -tube

This construction associating an exact tube with a bimodule is an equivalence:

Proposition 2 1 The category T of exact tubes is equivalent to the category
modf A-k[[t]] of A-k[[t]]-bimodules which are free of ¯nite rank over k[[t]]:

Proof We just describe a quasi-inverse functor For an exact tube T Ni; ®i; ¯i
we set

Y lim
Ã¡ Ni; ¯i ;

and we put
t ¢ n1; n2; : : : 0; ®1 n1 ; ®2 n2 ; : : :

for any in¯nite sequence n1; n2; : : : with ni 2 Ni and ¯i ni ni¡1 representing
an element of Y As T is an exact tube this de¯nes an A-k[[t]]-bimodule structure

on Y As t acts without torsion Y is free as a k[[t]]-module and its rank equals
dimk N1 since clearly Y t ¢ Y is isomorphic to N1 ¤

We give a direct construction of the bimodule corresponding to Tf;g for an
exact sequence

0 Z
f
g¡¡ Z © M N 0 2 1

with a nilpotent map f Set

Yf;g k[[t]]k M © Z

as an A-module and de¯ne the action of t on Z by

t ¢
0; z 1 g z ;f z :

Clearly this action of t is torsion free and Yf;g t Yf;g is isomorphic to N so

that Yf;g actually belongs to modf A-k[[t]] It is easy to see that the exact tube

associated with Yf;g is Tf;g

We will need the following truncated version of an exact tube:
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De¯nition 2 2 For m ¸ 1; an exact tube of height m is a representation in
modA

N1
®1¡Ã¡¯1

N2 : : : Nm¡1
®m¡1¡Ã¡¯m¡1

Nm

of the full subquiver Qm of Q whose vertices are 1; 2; : : : ; m such that the square

Ni
®i

/

¯i¡1

²

Ni+1

¯i
²

Ni¡1
®i¡1

/ Ni
is exact for i 1; : : : m¡ 1 Again we set N0 0

The category of exact tubes of height m is equivalent to the category of A-
k[t] tm -bimodules which are free of ¯nite rank over k[t] tm

Obviously an exact tube T restricts to an exact tube T·m of height m for all
m We will see in Section 4 that an M -extendible tube T Ni; ®i; ¯i of height
h ¸ 1 see next de¯nition is always the restriction of an M; N1 -tube

De¯nition 2 3 A tube T Ni; ®i; ¯i of height h is called M -extendible if there

is a decomposition Nh Z © Z0 and an exact sequence

0 Z
a
b

¡¡ Nh¡1 © M
c d

¡¡¡ Z 0 0

such that a ¯h¡1jZ and c prZ0 ± ®h¡1 where prZ0 : Z ©Z0 Z0 is the natural
projection

We end this section with some questions We do not know how to describe the

full subcategory of modf A-k[[t]] corresponding to M; N -tubes Conceivably
its objects are just those bimodules Y which contain k[[t]]k M as a subbimodule
This would follow if we knew that any M; N -tube is of the form Yf;g for some

exact sequence 2 1

3 Complexity

De¯nition 3 1 We call a map

µ
f
g¶ : Z Z © M

an M; N -monomorphism provided N is isomorphic to coker
¡
f
g
¢
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Recall that for a degeneration M ·deg N we de¯ned the complexity as

cpl M; N min cpl T ;

where T ranges over all M;N -tubes There always are M; N -tubes with di®er-
ent complexities For instance if f; g t : Z Z©M is an M; N -monomorphism
and we set

f 0 µ
0 1

f 0 ¶ : Z2 ¡ Z2; g0 g 0 : Z2 ¡ M;

the map f 0; g0 t will be an M; N -monomorphism too and it is easy to see that

cpl Tf 0;g0 2 cpl Tf;g :

Theorem 3 2 Let h ¸ 1 be a natural number and M ·deg N a degeneration
The following conditions are equivalent:

i cpl M;N · h
ii There is an exact sequence

0 ¡ Z
f
g

¡¡ Z © M ¡ N ¡ 0

such that cpl Tf;g · h

iii There exists an exact tube T Ni; ®i; ¯i of height 2h + 1 with N »¡A
N1

and such that

Nh+j+1 »¡A
Nh+j © M

for j 0; : : : ; h
iv There exists an M-extendible exact tube T Ni; ®i; ¯i of height h with

N »¡A
N1

Proof Most ingredients for the proof will be given in Section 4 Here we indicate

how they ¯t together: The implications ii i iii are obvious The results

of Section 4 up to Proposition 4 6 give that ii implies iv and Proposition 4 8
shows iv ii Finally the implication iii ii follows from Proposition 4 9
and the next lemma ¤

Lemma 3 3 Let T Ni; ®i; ¯i be an M; N -tube and assume that Nh+1 »
Nh © M for some h ¸ 1 Then cpl T · h:

Proof As T is an M; N -tube there exists a natural number j ¸ h such that
Ni+1 » Ni © M for all i ¸ j Take an integer i with h < i < j and consider the
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two exact squares

Nh © M » / Nh+1
®i:::®h+1

/

¯h
²

Ni+1
®j :::®i+1

/

¯i
²

Nj+1 » /

¯j
²

Nj © M

Nh
®i¡1:::®h

/ Ni
®j¡1:::®i

/ Nj :
The big square splits and therefore the two small squares split as well We con-
clude that Ni+1 is isomorphic to Ni © M ¤

As N0 0 our theorem takes the following simpler form for h 1; 2:

Corollary 3 4 Let M ·deg N be a degeneration Then

i cpl M;N · 1 if and only if N Z ©Z 0 and there exists an exact sequence

0 Z M Z0 0:

ii cpl M;N · 2 if and only if there exist two exact squares

Z
a

/

²

N

c

²

M / Z0

N /

c

²

Z
a

²

Z0 / N

Proposition 3 5 For any degeneration M ·deg N we have

cpl M; N ¸
`` M
`` N ¡ 1;

where `` X denotes the Loewy length of X ; i e the smallest integer r such that
radA rX 0

Proof Choose an M; N -tube T Ni; ®i; ¯i of complexity h cpl M;N
Then M is a direct summand of Nh+1 and hence `` M · `` Nh+1 We claim
that for all i ¸ 1

`` Ni · i `` N1 :

In fact for any exact sequence

0 A B C 0

the relation

`` B · `` A + `` C

holds true Our claim follows by induction considering the exact sequences

0 Ni¡1 Ni N1 0: ¤
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4 Exact tubes from monomorphisms

Throughout this section f; g t : Z Z © M denotes an M; N -monomorphism

De¯nition 4 1 We call two exact tubes T Ni; ®i; ¯i and T 0 N 0i ; ®
0i; ¯0isimilar if Ni is isomorphic to N 0i for all i ¸ 1

So we do not ask for any compatibility with the maps in the tubes Note

that the property of being an M; N -tube is preserved under similarity and so is
complexity

Proposition 4 2 There is a direct summand Z 0 of Z and an exact sequence

0 Z0

fjZ0

gjZ0¡¡¡¡ Z 0

© M N 0

such that f jZ0 is nilpotent and Tf;g is similar to TfjZ0 ;gjZ0
As a consequence Tf;g

is an M; N -tube

Proof By Fitting's lemma there is a decomposition Z Z0 © Z00 of Z as a direct
sum which is preserved under f and such that f 0 f jZ0 is nilpotent and f 00 f jZ00

is an automorphism of Z00 Set g0 gjZ0 and g00 gjZ00 Obviously the maps

µ
f 0i 0 g0f 0i¡1

¢ ¢ ¢ g0

0 f 00i g00f 00i¡1
¢ ¢ ¢ g00 ¶

t
: Z 0

© Z 00 ¡ Z 0

© Z 00

© M i

and

f 0i g0f 0i¡1
¢ ¢ ¢ g0 t : Z 0 ¡ Z0

© M i

have isomorphic cokernels as f 00 i is an isomorphism for i ¸ 1 Since f 0 is nilpo-
tent Tf 0;g0 is an M; N -tube ¤

Remark 4 3 Suppose that fh 0 As

'h+j 0; : : : ; 0; gfh¡1; : : : ; g t : Z ¡ Z © Mh+j ;
for j 2 N; the exact tube Tf;g has the following particularly simple form:

Nh+j Z © M j © Z0; Nh+j+1 Z © M j+1
© Z 0;

®h+j ³
f 0
g 0
0 1´ : Z © M j © Z0 Z © M © Mj © Z 0 ;

¯h+j 1 0 0
0 k l : Z © M j © M © Z0 Z © M j © Z 0;

for j 2 N; where Z0 is a cokernel of

Ã g ± fh¡1; : : : ; f; 1 t : Z ¡ Mh

and
k; l : M © Z 0 ¡ Z0
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is obtained from the commutative diagram

0 / Z 'h+1
/

f
²

Z © Mh+1 /

1 0
²

Nh+1 Z © M © Z0 /

1 0 0
0 k l

²

0

0 / Z 'h
/ Z © Mh / Nh Z © Z0 / 0

with exact rows

Our next goal is to show that up to similarity we may choose g 2 rad Z; M
We start with an auxiliary result:

Lemma 4 4 The tube Tf;g is similar to Tf 0;g with f 0 f ¡hg where h : M Z
is any homomorphism

Proof It su±ces to check the identity Ãi ± '0i 'i for i ¸ 1 where

'i f i; gf i¡1; : : : ; g t : Z ¡ Z © M i;

'0i f 0i; gf 0i¡1
; : : : ; g t : Z ¡ Z © M i

and

Ãi :
0
BBBBBBB@

1 h fh f2h ¢¢¢ f i¡1h
0 1 gh gfh ¢¢¢ gfi¡2h

0 0 1 gh

gfh

gh
0 ¢¢¢ ¢¢¢ ¢¢¢ 0 1

1CCCCCCCA
: Z ©MiZ ©Mi:

The key is the equation

f r f 0r +
r¡1

Xs 0
f s hg f 0r¡1¡s; r ¸ 1;

which is proved by induction ¤

Proposition 4 5 There exists a direct summand Z0 of Z and an exact sequence

0 Z 0

f0

g0

¡¡ Z0

© M N 0 4 1

with g0 2 rad Z0; M and such that Tf;g is similar to Tf 0;g0 :

Proof If g 2 rad Z; M there is nothing to be proved Otherwise we prove that
a sequence 4 1 exists such that Tf;g is similar to Tf 0;g0 and dim Z0 < dim Z
and then proceed by induction on dim Z We choose a non-zero direct summand
Z2 of Z for which gjZ2 is a section Replacing Z by an isomorphic module if
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necessary which leads to an isomorphic tube we may assume that Z Z1 © Z2

M M1 © Z2

g µ
q 0
0 1 ¶ and f µ

a c
b d ¶ :

Applying the preceding lemma for

h µ
0 c
0 d ¶ ;

we obtain a monomorphism
¡
f 00

g
¢

of the form

µ
f 00

g ¶ µ
a 0
b 0
q 0
0 1

¶ : Z1 © Z2 Z1 © Z2 © M1 © Z2:

Now we may take Z 0 Z1 M Z2 © M1 f 0 a and g0

¡
b
q
¢

¤

Proposition 4 6 Set h cpl Tf;g and suppose that g 2 rad Z;M and that f
is nilpotent Then Tf;g ·h is M -extendible

Proof Our assumptions on f and g imply that for some i the restriction ÃjZ of
the composition

Ã µ'i 0
0 1Mh¶ : Z © Mh Z © M i © Mh

of the maps

Z © Mh
Ã f 0

g 0
0 1¡¡¡¡¡ Z © M1+h

¢ ¢ ¢

Ã f 0
g 0
0 1¡¡¡¡¡ Z © M i+h

belongs to rad Z; Z © M i+h By construction of Tf;g the square

Z © Mh Ã
/

¼h
²

Z © M i © Mh

¼h+i
²

Nh
®i+h¡1¢¢¢®h

/ Ni+h

is exact where ¼j : Z © M j Nj is the projection to the cokernel of 'j : Z
Z © M j and it splits since h cpl Tf;g Therefore ¼hjZ is a section and
replacing Nh by an isomorphic module we may assume that

Nh Z © Z0; ¼h µ
1 ¤ ¤
0 d ¤ ¶ : Z © M © Mh¡1 ¡ Z © Z0;

where ¤ is an arbitrary map
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Now consider the exact squares

Z © Mh¡1

Ã f 0
g 0
0 1

/

¼h¡1

²

Z © M © Mh¡1
1 0 0
0 1 0

o

¼h
1 ¤ ¤0 d ¤

²

Nh¡1

®h¡1
/

Z © Z0:
¯h¡1

o

It is easy to see that the square

Z
g

/

¼h¡1jZ
²

M

d
²

Nh¡1
prz0 ±®h¡1

/ Z 0

is exact as well Moreover we have

¼h¡1jZ ¯h¡1jZ : ¤

Next we recall a di®erent construction for Tf;g which has been presented for
the most part in [6] From f; g t we obtain the commutative diagram Figure 2
with exact rows and ki; li ¯i ki+1; li+1 for i · m¡ 1

0 / Z
f
g

/

km¡1

²

Z © M
k1;l1

/

km;lm
²

N1 N / 0

0 / Nm¡1
®m¡1

/

¯m¡2

²

Nm
¯1:::¯m¡1

/

¯m¡1

²

N1
/ 0

0 / Nm¡2
®m¡2

/ Nm¡1
¯1:::¯m¡2

/ N1
/ 0

0 / N2
®2

/

¯1

²

N3
¯1 ¯2

/

¯2

²

N1
/ 0

0 / N1
®1

/ N2
¯1

/ N1
/ 0

Figure 2

The next step is always obtained by squeezing the push-out of the top sequence

by km between the two top rows
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We claim that the exact tube Ni; ®i; ¯i of height m thus obtained is isomor-
phic to the restriction Tf;g ·m of Tf;g

By induction we obtain the following series of exact squares:

Z
f
g

/

²

Z © M
Ã

f 0
g 0
0 1

/

Ã1

²

Z © M2

Ã2

²

Z © Mm¡1

Ã f 0
g 0
0 1

/

Ãm¡1

²

Z © Mm

Ãm
²

0 / N1
®1

/ N2 Nm¡1
®m¡1

/ Nm

with Ãi ki; li; ®i¡1li¡1; : : : ; ®i¡1 : : : ®1l1 : Z © M i Ni:
Note that the composition of the ¯rst i maps of the top row is just 'i : Z

Z © M i and that the sequence

0 Z 'i¡ Z © M i Ãi¡ Ni 0

is exact for i 1; : : : ; m So Ni »coker'i and the maps ®i are the ones we

claim As for ¯i it su±ces to show that

Ãi ± 1 0 ¯i ± Ãi+1:

This follows easily from the explicit formulas for Ãi; Ãi+1 the equation

ki; li ¯i ki+1; li+1

and the fact that Ni; ®i; ¯i is an exact tube of height m As a consequence we

have:

Remark 4 7 Let f; g t be an M;N -monomorphism and T 0 N 0i ; ®
0i; ¯0i an

exact tube of height m Then T 0 is isomorphic to Tf;g ·m if and only if there

exists an exact square

Z
f
g

/

¯0m¡1±k
²

Z © M

k;l
²

N
0m¡1

®0
m¡1

/ N
0m

:

Proposition 4 8 Any M -extendible exact tube T Ni; ®i; ¯i of height m

with N1 »A N is the restriction of the exact tube Tf;g to Qm for some M; N -

monomorphism f; g t

Proof Let

0 Z
a
b¡¡ Nm¡1 © M

c d

¡¡¡ Z 0 0
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be an exact sequence with Nm Z © Z0 a ¯m¡1jZ and c prZ0 ± ®m¡1 The

square

Nm Z © Z0

µ
c0a c0a0

b 0
0 1

¶
/

a;a0 ¯m¡1
²

Z © M © Z0

³
1 0 0
0 ¡d ca0 ´

²

Nm¡1

c0

c ®m¡1
/ Nm Z © Z 0

is exact Setting

Nm+1 Z © M © Z 0; ®m 0
@

c0a c0a0

b 0
0 1 1A

; ¯m µ
1 0 0
0 ¡d ca0 ¶

we may extend T to an exact tube of height m + 1 By construction the map

µ
c0a
b ¶ : Z ¡ Z © M

is an M;N -monomorphism and the square

Z
c0a
b

/

1
0

²

Z © M

µ
1 0
0 1
0 0 ¶

²

Nm Z © Z0
®m

/ Nm+1 Z © M © Z 0

is exact with

µ
1

0¶ ¯m ±
0
@

1
0
0 1
A

:

The result now follows from Remark 4 7 ¤

Proposition 4 9 Let T Ni; ®i; ¯i be an exact tube of height h+m for some

h ¸ 1 and m ¸ 1 Suppose that

Nh+j+1 »¡A
Nh+j © M

for j 2 f0; : : : ; m¡ 1g Then there is an M; N -monomorphism

µ
f
g¶ : Nh+m¡1 ¡ Nh+m¡1 © M

such that the restrictions T·m and Tf;g ·m are isomorphic

Proof We wish to choose

µ
f
g¶ Â ± ®h+m¡1
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for a suitable isomorphism Â : Nh+m Nh+m¡1 © M and to apply Remark 4 7

to the diagram

Nh+m¡1

¯ ¯m¡1:::¯h+m¡2

²

®h+m¡1
/ Nh+m

¯m:::¯h+m¡1

²

»Â
/ Nh+m¡1 © M

ukkkkkkkkkkkkkkkk

Nm¡1 ®m¡1
/ Nm

:

In order to do this we only need to construct a section

s : Nh+m¡1 ¡ Nh+m

satisfying

¯m¡1¯m ¢ ¢ ¢¯h+m¡1s ¯¯h+m¡1s ¯:

By our hypothesis the square

Nh+1
®

/

¯h
²

Nh+m

¯h+m¡1

²

Nh
®0

/ Nh+m¡1

splits where ® ®h+m¡1 : : : ®h+1 and ®0 ®h+m¡2 : : : ®h Choose a maximal
direct summand A of Nh+m for which ¯h+m¡1jA is a section Replacing T by an
isomorphic exact tube we may assume that we have

¯h+m¡1 µ
1 0 0
0 ° ± ¶ : A © B © M ¡ A © B;

®0 µ
" 0
0 1 ¶ : C © B ¡ A © B

for some maps °; ±; " Setting

s
0
@

1 0
0 1
0 01

A

: A © B ¡ A © B © M;

we obtain
1A©B ¡ ¯h+m¡1s µ

0 0
0 1¡ ° ¶ : A © B ¡ A © B;

which factors through ®0 But the sequence

0 ¡ Nh
®0

¡ Nh+m¡1 ¯¡ Nm¡1 ¡ 0

is exact which implies ¯ ¯¯h+m¡1s as required ¤
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5 Examples

All our examples are representations of quivers with relations Let Q be a quiver
with vertex set Q0 f1; : : : ;ng; I an admissible two-sided ideal in the quiver
algebra kQ d d1; : : : dn a vector in Nn and denote by

Rep Q; I; d

the a±ne algebraic variety of representations X of Q; I with X i kdi ; i 2 Q0
The dimension vector of X in Rep Q; I ; d is d The group G d

Q
n
i 1 GL di

acts on Rep Q; I ; d by

g ¢ X ® gj ± X ® ± g¡1
i

for an arrow ® : i j and g g1; : : : ; gn 2 G d
If we view M; N in Rep Q; I ; d as modules over kQ I of dimension d

P
n
i 1 di then M degenerates to N if and only if the representation N belongs

to the closure of the orbit G d ¢ M of M in Rep Q; I ; d [1] This allows us to
work with the smaller group G d

5 1 We begin with an example of a degeneration whose complexity is easy to
compute: Choose a natural number n ¸ 2 and let ~An be the equioriented quiver
with underlying graph An:

~An 1 °1

Ã¡ 2 Ã¡ ¢ ¢ ¢ Ã¡ n¡ 1 °n¡1

Ã¡ n:

Denote by Xi the indecomposable representation of ~An given by

Xi j k j · i;
0 j > i;

Xi °j
1 j < i;
0 j ¸ i:

Then M Xn has a ¯ltration

M Xn ¾ Xn¡1 ¾ ¢ ¢ ¢ ¾ X2 ¾ X1;

and it is well-known that M degenerates to the associated graded module

N
n

Mi 1

Xi Xi¡1;

where we set X0 0: We wish to compute the complexity cpl M; N thereby
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showing again that M actually degenerates to N Set

Z
n¡1

Mi 1

Xi;

f 0
BB
@

0 0
¶2

¶n¡1 01CA
: Z ¡ Z and

g 0
¢ ¢ ¢

0 ¶n : Z ¡ M Xn;

where ¶i : Xi¡1 Xi is the inclusion It is easy to check that f; g t is an
M; N -monomorphism Moreover fn¡1 0 and thus

cpl M; N · n¡ 1:

On the other hand the Loewy lengths of M and N are n and 1 respectively
which implies

cpl M; N ¸
`` M
`` N ¡ 1 n¡ 1

by Proposition 3 5 This example shows that there are degenerations of arbitrary
complexity

Note that for n 4 we obtain the following chain of degenerations:

M k 1

Ã
k 1

Ã
k 1

Ã
k ·deg P k 1

Ã
k 0

Ã
k 1

Ã
k

·deg N k 0

Ã
k 0

Ã
k 0

Ã
k:

The complexities are

cpl M; P 1 cpl P; N and
cpl M; N 3 > cpl M; P + cpl P; N :

Comparing with the example given in the introduction we see that cpl M; P +
cpl P; N can be either smaller or greater than cpl M; N for a chain

M ·deg P ·deg N:

5 2 Next we give an example of a minimal degeneration of arbitrary complexity:
Let Q be the quiver

Q 1 ®
/ 2 ¯b ;

choose a natural number n ¸ 2 and let I be the ideal generated by ¯n De¯ne M
and N to be the representations of dimension vector 1; n given by

M ® e1 Ã
10

0

; N ® e2 Ã
01

0
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and

M ¯ N ¯ Jn; respectively;

where e1; : : : ; en is the standard basis of kn and Jm is the Jordan block

Jm 0
BB
@

0 0
1

0 1 01CCAin Mm k for m 2 N

Proposition 5 1 There is a degeneration M ·deg N which is minimal and
cpl M; N n

Proof Denote by Z the indecomposable representation with dimension vector
0; n given by Z ¯ Jn and let f; g t : Z ¡ Z © M be given by

f 0; Jn ; g 0; 1 :

It is easy to see that f; g t is an M; N -monomorphism so M degenerates to N
Moreover we have fn 0 and therefore cpl M; N · n As

dim End M 1 and dim EndN 2;

the orbit of N has codimension 1 in the closure of the orbit of M which implies

that the degeneration is minimal
Suppose cpl M; N · n¡ 1; and choose an M;N -tube T Ni; ®i; ¯i with

Nn »¡ Nn¡1 © M Let Ãn : Nn M be the surjection obtained from this
decomposition

Claim For i 1; : : : ; n there exists a surjection

Ãi : Ni ¡ M i ;

where M i has dimension vector 1; i and is given by

M i ® 1; 0; : : : ; 0 t; M i ¯ Ji:

Using the claim for i 1 we obtain a surjection Ã1 : N1 N ¡ M 1 which
is impossible

We prove the claim by descending induction on i Observe that any map from
N to M i factors through the socle socM i and that M i socM i » M i¡1

Writing this factorization for Ãi ± ®i¡1 ¢ ¢ ¢ ®1 we obtain Ãi¡1 : Ni¡1 M i¡1

from the following commutative diagram with exact rows:
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0 / N

²

®i¡1¢¢¢®1
/ Ni

Ãi
²

¯i¡1
/ Ni¡1

Ãi¡1

²

/ 0

0 / socM i / M i / M i¡1 / 0:

As Ãi is surjective Ãi¡1 is as well ¤

A version of this argument implies the following result which we will not use:

cpl M; Mi ·
n¡ 1

i¡ 1 ¸ + 1; i ¸ 2:

The representation Mi is given by

Mi ® ei; Mi ¯ Jn:

5 3 We now exhibit a degeneration M ·deg N of complexity 2 with the property
that f2

6

0 for all M; N -monomorphisms f; g t Therefore the complexity can
be strictly less than the \index of nilpotence of M and N"; i e the number

minfr : f r 0g;

where the minimum is taken over all M; N -monomorphisms f; g t We stay
with the same quiver Q and we choose I to be generated by ¯3; i e we set n 3
in the preceding example Note that kQ I is representation-¯nite: it admits 29

indecomposables [4]
We let M and N be given by

M ® e2; N ® e3; M ¯ N ¯ J3;

where e1; e2; e3 is the standard basis of k3 Choose

Z 0 0 / k3 J3
e

f 0 0; J3 : Z 0 ¡ Z0 and
g0 0; 1 : Z 0 ¡ M:

Then f 0; g0 t is an M; N -monomorphism As f 0
2 factors through g0 the cokernel

N3 of the map

'3 f 0
3; g0f 0

2
; g0f 0; g0 t : Z0 ¡ Z 0

© M3

used to de¯ne the tube Tf0;g0 Ni; ®i; ¯i is isomorphic to the cokernel of

f 0
2; 0; g0f 0; g0 t : Z 0 ¡ Z0

© M3

and thus isomorphic to M © N2 By Lemma 3 3 we know that
cpl M; N · 2:
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On the other hand as N is indecomposable the complexity must exceed 1 so

cpl M; N 2:

Claim For any M; N -monomorphism

f; g t : Z ¡ Z © M;

we have f2
6

0

First we show:

Lemma 5 2 For any M;N -monomorphism

f; g t : Z ¡ Z © M;

Z 0 is a direct summand of Z

Proof Consider the exact sequences

§0 : 0 ¡ Z 0

f0

g0

¡¡ Z 0

© M
k0;l0

¡¡¡¡ N ¡ 0

and

§ : 0 ¡ Z
f
g

¡¡ Z © M
k;l¡¡¡ N ¡ 0:

It is easy to check that

dim Hom Z0; M dim Hom Z0; N 3;
dim End M dim Hom M; N 2:

Therefore the sequence of vector spaces

0 ¡ Hom Z0

© M;Z ¡ Hom Z0

© M; Z © M ¡ Hom Z0

© M; N ¡ 0

obtained from mapping Z 0 ©M into § is exact In particular k0; l0 : Z 0 ©M N
factors through k; l : Z ©M N and hence we have the following commutative

diagram Figure 3 with exact rows and columns
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0 0

§ : 0 / Z / Z © M

O

k;l
/ N

O

/ 0

0 / Z
1
0

/ Z © Z0

© M

O

0 1
/ Z 0

© M

k0;l0

O

/ 0

Z0

Ã
s
f 0

g0

O

Z0

f0

g0

O

0

O

0

O

Figure 3

So the middle column splits as well and since by construction f 0; g0 lie in the

radical
s : Z 0 ¡ Z

must be a section ¤

Let f; g t : Z Z © M be an M; N -monomorphism suppose f2 0 and
consider the commutative diagram Figure 4 with exact rows and columns

0

²

0

²

0

²

0 / ker f

²

/

M
0
1

²

/

X

²

/

0

0
/

Z

²

f
g

/

Z © M

1;0
²

k;l
/ N

²

/ 0

0 / im f
²

/ Z

²

/ coker f

²

/ 0

0 0 0

Figure 4

Then X must be a quotient of M and a submodule of N which is possible in
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exactly two ways:

i X k
0
1

/ k2 J2
e

ii X 0 / k 0
b

In the ¯rst case we have

ker f 0 / k 0
b

;

and our assumption f2 0 implies that dim Z 2 · 2 But then Z cannot contain
Z 0 as a direct summand

In the second case we see that

kerf k
1
0

/

k2 J2
e

:

Now f2 0 implies that dimZ 2 · 4 But then necessarily Z ¯® 0 since Z0

must be a direct summand of Z and Z cannot contain ker f as a submodule

5 4 As our last example we ¯nd a degeneration M ·deg N of complexity 2 for
which there exists an exact sequence

§ : 0 ¡ N
®1 f

g¡¡¡¡¡ N © M ¯1 f;¡l¡¡¡¡¡¡ N ¡ 0:

So we have an exact tube

T N1 N; N2 N © M; ®1; ¯1

of height 2 If this tube were the restriction of an in¯nite exact tube the com-
plexity cpl M; N would have to equal 1 So the number 2h + 1 in condition iii
of our main theorem cannot be replaced by 2h

Choose A k[®; ¯] ®2; ¯2 let M and N be 4-dimensional with

M ® N ® µ
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

¶ ; M ¯ µ
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

¶ ; N ¯ µ
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

¶ ;

and set

f µ
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

¶ ; g µ
0 0 0 0
0 1 0 0
1 0 0 0
0 0 0 1

¶ ; l µ
1 0 0 0
0 0 0 0
0 0 1 0
0 1 0 0

¶ :

It is easy to check that the sequence § obtained from these choices is exact So

M degenerates to N As N is indecomposable and f2 factors through g the same

argument as in Section 5 3 implies that cpl M; N 2
This example has another surprising feature: For any degeneration M ·deg N

we obtain
cpl M r; N r · cpl M; N ; r ¸ 1;
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by taking for M r ·deg N r the direct sum of r copies of an M; N -tube of minimal
complexity In our example we have

cpl M2;N2 1 < cpl M;N 2:

Indeed M2 is a projective cover for N and the kernel of an epimorphism M2 N
is N again So there is an exact sequence

0 ¡ N ¡ M2 ¡ N ¡ 0:
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