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Invariant measure and Lyapunov exponents for birational
maps of P?

Jeffrey Diller

Abstract. In this paper we construct and study a natural invariant measure for a birational
self-map of the complex projective plane. Our main hypothesis—that the birational map be
“separating”—is a condition on the indeterminacy set of the map. We prove that the measure
is mixing and that it has distinct Lyapunov exponents. Under a further hypothesis on the
indeterminacy set we show that the measure is hyperbolic in the sense of Pesin theory. In this
case, we also prove that saddle periodic points are dense in the support of the measure.

Mathematics Subject Classification (2000). Primary 32F50; Secondary 58F15, 58F23.
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1. Introduction

In this paper and its predecessors [Dill, Dil2] we develop an account of the dy-
namics of a birational map f. : P? . The general idea, inspired by similar work
[BS], [Bri], [FS1] in multi-variable complex dynamics, is to combine techniques
from pluripotential and smooth ergodic theory to construct and then study sev-
eral measure theoretic objects naturally associated with f,. The difficulty in our
context is the presence of the indeterminacy set I consisting of points at which
f+ is ill-defined. Points of indeterminacy make potential theoretic constructions
harder to accomplish and smooth ergodic theory more difficult to apply.

To proceed, let © be the Fubini-Study Kahler form on P? and d > 1 be
the algebraic degree of fi—ie. the degree of the polynomials that define f in
homogeneous coordinates. We showed in [Dill] that there exist positive closed
(1,1) currents

T = lim 1 e ~ = lim if"*@
K n—oo dm + ? K n—oo dn*
associated with a birational map f; and its inverse f_, provided that deg f} = d"
for all n > 0. Here we consider the measure p = ™ A p—. It is important
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to stress that the currents ™ and p~ are quite singular, especially at points of
indeterminacy. In order to finesse the “multiplication” of u* by 11—, we require that
our birational maps be separating. That is, if 7T =, <, f™(IT) is the closure of
the backward orbit of the indeterminacy set of f,, and 7~ is the corresponding
set for f_, then we insist that ZT NZ~ = 0.

The currents 1™ and p~ have the invariance properties ftu®t =d- ", f*p= =
d - p~. We show here that

Theorem 1.1. The measure p is fi-invariant.

The proof of this theorem is less immediate than one might hope. The key
point is to show that p attaches no mass to points of indeterminacy and, more
generally, to the critical set of f,. After establishing invariance, we adapt a proof
of Bedford and Smillie [BS] to show that

Theorem 1.2. p is mizing with respect to f, .

Since mixing implies ergodicity, and the extended indeterminacy sets ZT and
T~ are essentially invariant, this theorem has the consequence that at least one of
the sets T or 7~ is p-negligible.

The central results in this paper concern the Lyapunov exponents of f,. Sup-
pose for a moment that we are in the more general situation of a measurable,
invertible and a.e. differentiable map h : X O of a compact two dimensional man-
ifold and that v is a probability measure that is ergodic with respect to h. Then
under the hypothesis that the the derivatives of h and h~! are log integrable with
respect to v, Oseledec’s Theorem guarantees the existence of two real numbers
x~,x T that describe the growth rates of typical vectors under backward and for-
ward iteration. That is, for v a.e. point p € X and a generic vector v € T, X, we
have

1
lim —log ||h}oll = x™,
n—oo N

and similarly for ~~1 and x~. Oseledec’s Theorem applies, in particular, if A is
an outright diffeomorphism. Here, we prove

Theorem 1.3. If f, : P? 9 is birational and separating, then log" |Dfy| is p
integrable. In particular, fi satisfies the hypothesis of Oseledec’s Theorem.

By log™(-), we mean max{log(-),0}. An important ingredient in the proof of
Theorem 1.3 is a rather technical result (Theorem 5.3) concerning regularity of
local potentials for pT. If f, were holomorphic (i.e. IT = @) instead of birational,
the analogue for our regularity result would be that local potentials for pt are
Holder continuous.

Lyapunov exponents are most meaningful when they are non-zero. The final
result of this paper gives a simple criterion sufficient to guarantee that Lyapunov
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exponents of a separating birational map are non-zero.

Theorem 1.4. If fi : P? & is a degree d > 1 separating birational map and
w(It) =0, then x* >logd/4.

Combined with the remark following Theorem 1.2, this implies that at least
one of the Lyapunov exponents of a separating birational map is non-zero. Results
similar to Theorem 1.4 have been obtained by Bedford and Smillie [BS] for polyno-
mial diffeomorphisms of C? and by Briend and Duval [Bri], [BD] for holomorphic
maps of P™. The nearest precedent for the proof of Theorem 1.4 that we give here
is Briend’s thesis [Bri]. In particular, we appropriate his use of Lyapunov charts
and coverings by balls of small @ mass.

If W(IT) = uw(Z7) = 0, then Theorem 1.4 tells us that x is (non-uniformly)
hyperbolic—i.e. neither Lyapunov exponent vanishes. In this case, we adapt a
standard proof of the closing lemma for uniformly hyperbolic maps to show

Theorem 1.5. If f : P2 O is a degree d > 1 separating birational map such that
w(IT) = u(Z™) = 0, then supp p lies in the closure of the saddle periodic points
of f.

We remark that it is not difficult to produce examples of separating birational
maps. Any polynomial diffeomorphism of C? extends to P? as a birational map for
which ZT and 7~ are single (distinct) points. Hence a polynomial diffeomorphism
of C? is separating. Such a map remains separating if one pre- or post-composes
with an automorphism of P? close to the identity. More generally, if the f_—orbit
of each point in I converges to an f —attracting cycle, then f. is separating
and p(ZT) = 0. We refer the reader to the final section of [Dill] for more specific
examples.

This paper is organized as follows.

e Section 2 provides the necessary background on birational maps and pluripo-
tential theory.

e Section 3 introduces the measure p and contains the proof of Theorem 1.1.
Many thanks to Eric Bedford for helping us with the pluripotential theory
in this section.

e Section 4 contains the proof Theorem 1.2.

e Section 5 contains the proof of Theorem 1.3, including the regularity result
for local potentials for pT.

e Section 6 reviews the pertinent facts about Lyapunov exponents and Lya-
punov charts. In particular, it states Oseledec’s Theorem (suitably tailored
to the present context).

e Section 7 contains the proof of Theorem 1.4.
e Section 8 contains the proof Theorem 1.5
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2. Birational maps and pluripotential theory: background

Let 7 : €%\ {0} — P? denote the usual projection sending lines through 0 to
points. Where a metric is implied but not specified in what follows, we assume
the Euclidean metric on C? and the Fubini-Study metric on P2. Recall that any
homogeneous polynomial map f : C3 — C? naturally induces a map f : P2 —
P? satisfying 7 o f = f omw. Suppose that the coordinates of f have no non-
constant common factors. Then we refer to the induced map f as a rational map
of (algebraic) degree d & deg f. If f(ﬁ) = 0 for some p # 0, then f(nw(p)) cannot
be defined continuously. We refer to w(p) as a point of indeterminacy for f and
denote the set of all such points by I. It is not hard to show that [ is always finite.

Throughout this paper, we will let £, : P? ¢ denote a birational map of
algebraic degree d > 1. That f, is birational means that there exists an algebraic
curve V and another rational map f_: P? — P? such that fiof =f of, =id
on P?\ V. It turns out that the degree of f_ is also d.

We will distinguish objects corresponding to f; from those corresponding to
f— using 4+ and — sub/superscripts. For instance, we denote the critical set of f
by C* and remark that this set is an algebraic curve of degree 3d — 3 counting
multiplicity.

Proposition 2.1. The following statements are true for any birational map f :
P2 - P2,
(1) IT CCT, and every irreducible component of C* contains a point of IT.
(2) Given any irreducible curve V.C CT, fo (V) 4s a single point in I~ ; likewise,
giwen any p~ € 1, f;l(pf) is a component of CT.
(3) f+ : P2\ CT — P2\ C~ is a biholomorphism.

In particular, our assumption that d > 1 implies that the critical sets CT,C~
and indeterminacy sets I, I~ are always non-empty. Proofs of Proposition 2.1 and
of several of the following results can be found in [Dill], [Dil2]. It is interesting to
note that the algebraic degrees of f' do not necessarily grow as one would expect

them to (i.e. one might guess that deg f? = d" = deg fﬁ) We require an extra
hypothesis on It and I~ to guarantee predictable degree growth.

Proposition 2.2. The following statements are equivalent for a birational map
fiv : P2 — P? with inverse f_:

(1) deg(f7) = d" for alln;

(2) ItTnf(I7)=0 for all n.

3) frINYN fr(I) =0 for all n,m > 0;

+3. =

2

Following Sibony [Sib], we call maps satisfying any of these equivalent con-
ditions algebraically stable. We will assume throughout this paper that all our
birational maps belong to this category (in fact, shortly, we require something
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stronger). An important dynamical consequence of this assumption is the exis-
tence of a so-called Green’s function Gt for f+. The following theorem was proved
in [Dill] and in a very different fashion in [Fav]. However, Sibony [Sib] has given
a quite simple proof that holds for general rational maps.

Theorem 2.3. Let f+ be a homogeneous representative for fi. Then the limit

7o)

Gt (p) = lim dinlog‘

L
loc”

(1) Gt(\p) = GT(p) + log |A| for every A € C;

(2) Grofi=d- fy.

exists pointwise and in L The function G* is plurisubharmonic and satisfies

The Green’s function G is defined on C? rather than on P? and determined
only up to an additive constant (depending on the choice of f+) However, dd°G*
is a positive closed current independent of the additive constant, and it induces a
positive closed current x4 on P? as follows. Let U C P? be open and ¢ : U — C3
be a section of 7. Then pt|y = dd°(G* oo). It is quite natural to define f¥u " |y =
dd°(G" o f| o o), in which case it follows immediately that fipwt =d-pT. An
additional fact about p™ (see [FS1]) that we will need is that u™ concentrates no
mass on any algebraic curve.

We remark that any plurisubharmonic function @ : C* — RU {—co} satisfying
a(Ap) = a(p) + clog |A] for some ¢ > 0 induces a positive closed (1, 1) current v on
P2 in the same way that Gt does. It is not hard to see that (v, ©) = ¢, where ©
is the Kéhler form for the Fubini-Study metric on P? appropriately normalized.
Fornzess and Sibony [FS1] showed that every positive closed (1, 1) current on P?
is induced by a homogeneous potential @. In particular © is induced by log||p||,
so the first conclusion in Theorem 2.3 translates to the statement that

1
+ 1 oMk
i =l m e
In fact, ut attracts a great many positive closed (1,1) currents under pullback.

Theorem 2.4. Let T be a closed (1,1) current on P?. Suppose that T has a
bounded local potential (i.e. T = dd®u, where ||ul|, < o0) on a neighborhood of
each superattracting periodic point (if any) of f+. Then

1
lim —

FET =pr,

The convergence takes place in the weak topology and is uniform among all T
whose support excludes a fired neighborhood of all superattracting cycles.

We showed in [Dil2] that this theorem can be extended to certain ‘truncated’
currents. In order to state the more general theorem, we define the extended
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indeterminacy set of fi to be the closure of the backward orbit of IT—that is

T+ = G I,

n=0

We also recall the mass norm of a positive current T on an open set U:

My [T] = sup{(T, ¢) : suppe C U, [l¢ll, < 1}.

Of course convergence in mass norm is much stronger than convergence in the
usual weak topology on currents. A slightly weakened version of Theorem 3.4 in
[Dil2] goes as follows.

Theorem 2.5. Let T be a positive closed (1,1) current on P? and ¢y : P? — C
be a smooth function. Suppose that local potentials for T are continuous on a
neighborhood of TT Usupp). Then

lim —f (/ ¢T/\M> ™.

Convergence takes place in the weak topology and is consistent with differentiation
in that the sequences

1
ﬁf)ff*(#}T), —ddcf" (¥T)
both tend to zero in the mass norm on P2,

Two points in the statement of this theorem merit explanation. The first is
that the right side of the first equation implies that we can reasonably define the
product T'A p~ as a measure. This is not obvious, but since the next section is
devoted to a similar issue, we defer further discussion of wedge products of positive
currents until then. The second point to explain is the use of f", rather than f}*
in both equations. While these notations are interchangeable in the setting of
diffeomorphisms, we do not intend them to be so here. As we have already noted,
it makes sense to pull back positive closed currents by pulling back their potentials.
For present purposes, it suffices to take

FRLWT) = lim 7, (6T) = Jim (g o f1)1", (6T)

where x; : P2 — [0,1] is any sequence of smooth functions satisfying

e x; vanishes on a neighborhood of the critical set C;I" of f;

e y,; =1 on aset K; that increases to P2\ (" as j goes to co.
More detailed discussion of the relationship between f1 and f_, acting on positive
currents occurs in [Dil2]. Suffice it to note here that if ¢ = 1 is trivial, then
T > f,T. The case where T' is the current of integration over C,” provides an
example where the inequality is strict.
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3. Invariant measure

A formal construction suggests that pluripotential theory ought to yield an in-
variant measure for algebraically stable birational maps. Since f, is algebraically
stable if and only if f_ is, we can apply Theorem 2.3 to construct currents g and
u~ associated with f and f_, respectively. Then we set u = u™ A p~. It seems
reasonable to expect that

+
_ 12 _ _
Fratt = Foakt™ A frap”™ = == Np™ = p" Ap™ = . (1)

However, for the same reason that one cannot always multiply a pair of distri-
butions together, it is not generally possible to form the wedge product of two
currents. Furthermore, even if one can make sense of the wedge product, it re-
mains to determine whether pushforward by f. will distribute across the product
as is assumed in (1). Our goal in this section is to address these difficulties and
show that with a stronger hypothesis on f, the construction of an invariant mea-
sure from pt and g~ succeeds.

Bedford and Taylor (see [BT]) originated an integration by parts method for
taking the wedge product of positive closed currents with locally bounded poten-
tials. If W C C? is open, u : W — R is locally bounded and plurisubharmonic,
and T is a positive closed (1,1) current on W, then the action of ddu AT on a
test function ¢ is given by

{dd°u AT, ) = (T, udd’p).

It turns out that this defines dd°u A T as a positive measure. This can be seen
from the following theorem of Bedford and Taylor (see [BT]).

Theorem 3.1. Suppose that uj,v; : W — R are decreasing sequences of smooth
plurisubharmonic functions converging pointwise to locally bounded plurisubhar-
monic functions u,v. Then

lim ddu; A dd®v; = ddu A ddv

Jj—o0

weakly.

Though examples indicate that the integration by parts construction cannot
be used to defined the wedge product of arbitrary positive closed currents, one
need not restrict oneself to positive closed currents with locally bounded poten-
tials. Indeed, Forneess and Sibony [FS2] have shown that the integration by parts
construction and Theorem 3.1 succeed when the unboundedness loci of u and v
do not coincide too much. The precise condition they discovered is as follows. Let
M, denote the smallest closed set such that p ¢ M, implies that u; is bounded
on a neighborhood of p. Let M, be the corresponding set for v. Then the wedge
product ddu A dd°v is admissible provided that M, N M, lies in the pseudoconvex
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envelope of its complement in W. In particular, things go well if at any point in
W, at least one of the functions « or v is locally bounded.

Definition 3.2. We say that a birational map f. : P> — P? is separating if
ItnI-=0.

In particular, f, is algebraically stable if it is separating. The following theorem
is proved (in greater generality) in [Dill].

Theorem 3.3. The Green function G for a separating birational map is contin-
uous on 7 Y(P?\ IT).

In particular, local potentials for u* are bounded near any point in P2\ Z+.
Clearly, (P?\ZT)U(P?\7~) = P? for a separating birational map, so we see from
the discussion above that the wedge product y = u™ Ay~ is admissible for such a
map. In order to show that u is also invariant, we will need a couple of preliminary
lemmas. We thank Eric Bedford for pointing these out to us and explaining their
proofs.

Lemma 3.4. Suppose that v and v are plurisubharmonic functions defined on the
unit polydisk A?, and that u is continuous. Then dd°u A dd°v has no atoms.

Proof. Tt is enough to show that dd°u A dd°v attaches no mass to the origin.
After subtracting off a constant, we can assume that «(0,0) = 0 and set w(r) =
SUP|4| |yl <r [4(2,y)|. We choose a smooth compactly supported function ¢ : A% —
[0,1] such that ¢» = 1 on A?/2, and we set o, (x,y) = (x/r,y/r) for r > 0. Let
0 = dd° ||(z, )||>. Then since dd°u A dd°v is positive, we have

dd®u A dd°v(0) < liminf [ 4, dd°u A dd®
A2

r—0

= lim inf/ wdd®P, N ddv
A2

r—0

= Timinf udd®e, | M,a2 [dd°]

C
< liminf “’z(r) / 9 A ddv
r—0 r rA2

But the last line is bounded above by O(w(r)) because of a consequence of Jensen’s
formula that we will use repeatedly in this paper (see e.g. [Dem]|, Consequence 4.4):

Fact 3.5. Suppose that T is a positive closed (1,1) current defined on a neighbor-

hood of 0 € C?. Then

- AN

r Bo(r)
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is an increasing function of r.

Since w(r) tends to 0 with r, we are done. O

Lemma 3.6. Suppose that v and v are plurisubharmonic functions on the unit
polydisk A? = {|z|, |y| < 1}. Assume that u is continuous and that its restriction
to the = aris is harmonic. Assume that the restriction of v to the x axis is locally
integrable (i.e. not identically —o0). Then dd°u A dd®v concentrates no mass on
the x axis.

Proof. Since the conclusion is true if and only if it holds for every open subset of
the z-axis, we can assume without loss of generality that the restriction of v to
the z-axis is negative and (globally) integrable. By subtracting off u(x,0), we can
assume that wu(z,y) vanishes on the z axis. To prove the lemma, it will suffice to
show that dd°u A ddv places no mass on the disk D = {(z,0) : |z| < 1/4}.

Let v : A — [0,1] be a smooth, compactly supported function such that
¥(z) = 1if |2| < 1/2. Let ¢,(2) = ¥(2/r), and let

wfr) =supfu(z,) 2] < Iyl <7}

Then

/ ddu A dd°v = lim/ dd®u A dd°v
D r—0 [lzl<1/4

lyl<r

<lim [ (yhbiyale) ddou A ddo
ly|<2r

= Thﬂ% i<y wdd® (1o, (y)1h1 2 ()] A ddv. (2)
y|<2r

We shall have to deal separately with each of the integrals that arises from ex-
panding

dd® [shar (y)ib1 j2(x)] = b1y () dd®har (y) + oy dd®ehy o ()
+ dipar (y) A dbypo() + dipyyo(a) AdPar(y).  (3)

Consider the part of the integral corresponding to the first term in equation (3).
In the following computation, we take advantage repeatedly of the fact that ¢
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appears as a function of only one of the variables z and y.

lin% uthy /o (x) ddPa,(y) A ddv
|z|<1/2
|yl <27
dy N\ dy
< lim “’(;) ldde]). / ddoo n 222
r—0 r 7
|z|<1/2
|yl <27
dy N\ dy
< lim 2 / bar(y)(z) ddoo A LY
r—0 7” 21
<1
ly|<4r
C dy N\ dy
= lim wz(r) / v, (y) dd®(z) A ik
r—0 7 21
<1
|y|<ar
<1 dy/\dy d:l:/\'dx. ()
r—»O 21 21
lz|<1 |y|<4r
But for almost every z € A, we have that
. 1 dy A dy
lim ——
e LG e AN

Therefore, we can invoke the Lebesgue dominated convergence theorem and the
fact that w(r) — 0 with r to conclude that the limit in (4) is zero. This takes
care of the contribution to (2) from the first term on the right side of (3). The
contribution from the second term can be handled in a similar fashion.

We can apply Schwarz’s inequality to the contribution from the third term on
the right side of (3).

lir% / wdipar(y) A dPyjo(z) A ddv

|z|<1/2
lyl<2r
1/2
<tim | [ laldin () £ do ) n i
|z|<1/2
|lyl<2r
1/2

x| [ Wldysn) Ao ndio

Je|<1/2
lyl<2r

By the same reasoning employed for the first term, we can show that each of the
integrals in the last line behaves like O(w(r)) as r tends to zero. In particular, the
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contribution to (2) from the third term in (3) vanishes. An identical argument
shows that the contribution from the fourth term vanishes as well. O

Theorem 3.7. The measure = u~ A p" for a separating birational map has no
atoms and puts no mass on CT or C.

Proof. As we noted above, we can find a neighborhood U = U(p) of any given
point p € P2 such that either Gt or G~ is continuous on 7~ Y(U). Switching to
local coordinates, we can assume that U = A? is the unit polydisk, p = (0,0) and
o : A2 — C? is a holomorphic section. Since p* = dd°G* o o, Lemma 3.4 shows
that p is not an atom for .

In particular, i places no mass on I and no mass on any singular point of C~.
To finish the proof, we need only show that u places no mass on a neighborhood
of each regular point of C* \ I and C~ \ I~. Take a regular point p € C*\ I'T,
for instance. Let V' be the irreducible component of C* containing p. Since G~ is
continuous near 7 (1), we have from Proposition 2.1 that G~ is not identically
equal to —oo on V. That is, local potentials for = are locally integrable on V. On
the other hand, f, (V') is a point p~ € I~, and Gtis continuous in a neighborhood
of p~. We apply the formula Gt o fi = (deg f.)GT to conclude that G is
continuous on a neighborhood of 7=*(V '\ I'T). Therefore, local potentials for "
are continuous on a neighborhood of p. Moreover, let o : U — C? be a section
defined on a neighborhood of p. Then the local potential G+ o o for uh satisfies

&t oo(g) Gt o froo(q) = ———(G () +log A(g)]

 deg fy  deg fy

for all ¢ € V NU, some holomorphic function A : VN U — C*, and some p~ € C3
(independent of ¢) such that 7(p~) = p~. It follows that local potentials for p™
are harmonic on U N'V. We can take U to be a small polydisk about p such that
V N U is identified with the z-axis. Lemma 3.6 now applies to finish the proof. [

Proof of Theorem 1.1. Recall from Proposition 2.1 that f. : P2\ CT — P2\ (C~
is a biholomorphism. Therefore if £ C P?\ C~, equation (1) holds rigorously. We
need only consider further the case where I/ C C~. By the previous theorem, we
have that p(F) = 0. Furthermore, under any reasonable definition, f;l(E) will
be a subset of C*. Hence, u(fjfl(E)) =0, too. O

4. Mixing

A birational mapping f, : P? — P? is said to be mizring with respect to an
invariant measure y if for any measurable subsets 4, B C P2, we have

lim p(f7(A) N B) = p(4) N u(B).

n—oo
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Bedford and Smillie [BS] showed that polynomial diffeomorphisms of P? are mixing
with respect to the measure = p™ A u~. We now generalize their result to
separating birational maps. The main idea of the proof appears in [BS]. It is,
however, somewhat more delicate to make this idea succeed at the present level of
generality. As at the end of Section 2 we let C,I” denote the critical set of f7.

Proof of Theorem 1.2. Since u is a Borel measure, it is enough (see [KH]) to show
that for any two smooth functions , ¢ : P? — C we have

lim Pzw(%fi)du—(/mwdu) (/Pzwdu>.

Even though +o f might be discontinuous at points in , ¥, the first integral makes
sense because p does not charge C;F O IF.

Clearly we lose no generality by assuming that ¢ and ¢ take values only in the
interval [0,1] and that ¢ is supported in a coordinate polydisk D. We can also
assume that D NZ~ = 0. To see this, note that because f is separating we can
write ¢ = ¢ + ¢~ where suppe ™ NZ~ and suppy ™ NI are empty. Then by
invariance of p, we can write

/w-(T#Ofﬁ)dM:/ so+~(¢0fﬁ)du+/ Y- (o o f)du.
P2 P2 P2

and deal with the first and second integrals separately. The arguments that fol-
low address only the first integral, but those needed for the second integral are
completely analogous.

We choose a local potential g~ for 1~ on a neighborhood of D in such a way
that g~ vanishes at every z € I” N D (this can be arranged, since I is finite, by
adding on an appropriate pluriharmonic function). We let

w™(r) =max{lg~(z)| : 2 € Byt (r)},
and note that lirr(l) w™(r) = 0 by Theorem 3.3.

We choose smooth functions x; : P? — [0, 1] such that y; vanishes in a neigh-
borhood of €,/ and that supp (1 — x;) decreases to C,| as j increases. For suffi-
ciently small » we choose smooth, compactly supported functions p, : D — [0, 1]
as follows. Let p: Bo(1) — [0, 1] be a smooth, compactly supported and radially
symmetric function satisfying p = 1 on Bp(1/2). Using local coordinates on D, we

then set
pr(z)= p<z;w>~

weDNIT

In what follows we will repeatedly use the fact that if T' is a positive closed
(1,1) current on P?, and 5 is a continuous function with absolute value less than
one everywhere, then

C C C
KT, dd pr) |, KT ndpr A dpr)| < —5 [T, p2r 0)],
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where 6 = dd®||z||* is the (local) Euclidean Kihler form on D, and C depends on
p but not on 7 or r.
To prove Theorem 4, we need to know that

Lemma 4.1.
Lo o du=lm it (L= p)dile-wo ). )
In particular, the limit on the right side exists and is independent of p.

Assuming this lemma holds, the proof of the theorem proceeds as follows. We
expand

dd°p - (o f1)] = @ dd®(4p o 1) + dp A d°( o f1)

+d( o 1) Ndp+ (Yo f})ddp,

and deal with the right side of (5) after distributing with respect to this decom-
position. Taking advantage of invariance and the fact that ut does not charge
algebraic curves, we rewrite and bound

(T, 97 (1= pr)pdd (o f1))]
= lim ="t X0~ (1 — pr ) dd(sb o £7))]

J—o0 dn

(6)

. L 5 P _
= lim 2o (dd"f" (") x5 (1 = pr)g” )

j—o0

1
< lim M [d—nddcmwm} (1 = pr)g |

IN

oM {dinddcff*(wuﬂ}

which, by Theorem 2.5, vanishes uniformly in r as n increases. The parts of (5)
corresponding to the second and third terms on the right side of equation (6)
vanish for similar reasons. Therefore, the only relevant term is the fourth one,
which can be rewritten as

lim (4", g~ (1 = pr)(¢ © £7) dd°p)

= lim lim L(fﬁ*uﬁxg'g’(l —pr)(¢ o 1) dd p)

r—0j—00 dP

. . [ - c
= lim lim d—n<f+*(¢p,+)7xjg (1 — py) dd®yp)

r—0j—o00

)|
= d_" <fz* (¢M+)7 g ddc(10>a
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since f7, (") does not charge C} or I7. We conclude that
2 T <2 1 n — C
lim [ @ (pofP)du = lim —(f2(pT), g ddp)

n—00 Jp2
= (ut Ap, )t g™ dd°y)
= (u, ) (ut Add°g™, )

= /Ww/wdm

as desired. The second equality follows from Theorem 2.5. (Il

Proof of Lemma 4.1. By definition of x and Theorem 3.7, we have

[Lerwordu=tim [ (1—p)-o-worman
P2 r—=0 Jp2
= lim (", g7 dd°[(1 = pr) - - (0 F1)])
= lim (", 97 (1 = p,) dd°[p - (¢ 0 f1)]) (7)
—{ut, 97 (Yo f)ddp,))
g™ e (Yo f Adpr)
+ {97 d°pr Adlp - (Yo 1))

Our task is to show that the last three terms vanish with r. The second term is
most easily eliminated.

lim (4", g~ ¢ - (¥ o f}) dd’p,))| <

A
5
Q
, [
©

A
g
Q
&

=
I
<

The third and fourth terms in (7) are equal, so we deal only with the third. We
break this term up further.

(™ g~ d(¢p-vo f) Adpr)| < [T, g7 (b o f)d°p Adpr)| ®)

+ Kut g ed(Wo f1) Adpy)l.
To deal with the first term in this new decomposition, we apply Schwarz’s inequal-
ity.
(u", g™ (Yo f)d% A dpr)|
< Wt (g~ @ o ) dpr A dope) V2|, dip A dp)| /2

) (W22 < g

72

IN

which tends to zero with r. It remains only to address the second term on the
right side of (8). We apply Schwarz’s inequality again and take advantage of the
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fact that ' does not charge curves to compute
(b ™ g™ d*($ o £1) Adpr)|
< Uit (1= prya) d( o f1) N (o PN, (97 @) dpr A dopr)|M?

< Cw™(r) Jim [, x5(1 = pppp) dlw o f1) N (o SN2
Cw(r) .. o 5 o
= S tim 14", Oy 0 )1 = a0 ) i o) 2
Cw™(r)
- qn/2
Since the last quantity vanishes with r, we are done. O

Corollary 4.2. If f. : P2 — P? is a separating birational map, then either
suppp CIT or w(IT) = 0. In particular, either W(Zt) =0 or u(I-) = 0.

Proof. By the previous theorem f; is ergodic with respect to p. By definition
of I, we have f. (Z7) = ZT (modulo IT, which has measure zero). Therefore,
w(Z1) is either zero or one. In the latter case, we conclude from the fact that 7T
is closed that supp . C Z1. Finally, Zt N Z~ = @ by hypothesis, so at least one of
the two sets must have measure zero. |

5. Log integrability of the derivative

In what follows (see the introduction to Section 6) it will be crucial to know
that log™ ||[Dfy|| and log™ || Df_|| are u integrable functions. In order to establish
integrability we will prove a strengthened continuity result for the Green’s function
GT.

Fix a homogeneous map f+ inducing fy. Given p € P? and p € 7 (p), note
| 7+ @]
1517
by a constant if necessary, we can assume I' < 0 on all of P2. It is not difficult to

verify that

that the quantity I'(p) = log depends on p but not on p. Multiplying f+

S Lo fip)
GT(p) =1 — 9
) =oglpl + 3 =5 ©)
Further significance of T stems from the following propositions proved in [Dill].

Proposition 5.1. There is a constant C such that for any p,q € P>\ IT.
dist(f+ (p), f+(g)) < Cem> IO T dist (p, g),

Proposition 5.2. There are constants C1,Ca depending only on f such that
C1+ Clogdist(p, I'T) < I(p),
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In particular, I' is bounded below on any compact subset of P?\ IT.

It follows (see Lemma 6.4 in [Dill]) from Proposition 5.1 that there exists C > 0
such that for any p € P? we have dist(f7(p),Z7) > C™ dist(p,Z). It follows from
Proposition 5.2 that

@)l

~nd
121l

where the first two d’s denote exterior differentiation. We will make use of both
these observations to prove the following upper bound on the modulus of continuity
of the Green’s function.

1l (p)Il =

‘ e T < O(dist(p, IT))7F, (10)

Theorem 5.3. Fiz a compact set K CC P?\ IT. Then there exist constants
r, k> 0 such that

‘é+ (LZ) _ é‘l‘ (i)‘ < ek\/\logdis‘c(ﬂ'([i),71'((1'))\7
12 lalt /1~
for every p,q € 7 1(K) such that dist(w(p),n(q)) < r.

Remark 5.4. Note that if the square root were absent from the exponential in
this theorem, then the conclusion would be that the Green’s function is Hoélder
continuous.

Proof. Let p = n(p) and ¢ = 7(§) denote the corresponding points in P2, Set
ry = dist(f7(p), f¥(q)) and R,, = dist(f7(K),Z7). By the first observation in the
preceding paragraph, we see that

R, >C"Ry (11)

for some constant C' = C(f1) > 0. By (9) we have

) -l < ) IR ROl g s
n=0

where S;,: and S;,; denote the first ng and remaining terms, respectively, in the
sum. The value of ng will be determined in the course of our estimates below.
For terms in St,;; we employ the crude upper bound

[To fii(p) =T o fii(q)| £ max{—I"o fi(p),—I"o fi(q)}
& Cl +7’LC2,

where C1,Cy > 0 are constants depending on f; and K. The second inequality
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follows from Proposition 5.2 and equation (11). Hence,

e o]

C C
S £ 3 2
n=nqo
Cy + nCy = Cy +nCs
S D ek D DR
no<n<10 n>max{no,10}

>0

c c
St 2w

n>max{no,10}

where A = % and d > 1. We conclude that
C
Stair < o = Ceikn% (13)
where C, k > 0 are constants depending only on f, and K.

Lemma 5.5. Suppose that r; < R; for all j <n. Then

T < Cn2r07
where C > 0 depends only on K and f.. Moreover, there exists a constant A =
A(f+,K) such that r; < R; for all j < Ay/|logrol.

Proof. According to Proposition 5.1, we have
_Crknflg...gicro 7
RE_4 (Rp_1...Ro)

But equation (11) then gives
C{LT’O

2
——— < C" 1y,
C;w(nﬂ)/?R/Sn

n = =
as desired. The last part of the lemma follows inductively from the first via the
estimate

2 .
r; <C7 rg < B'Ry < Ry,

where we assume without loss of generality that C' > 1 > B. O

We now return to the proof of Theorem 5.3, estimating Sj,;; under the as-
sumption that ng is no larger than A+/|logrg|. We also assume that ro < Ry.
It then follows from Lemma 5.5 that r, < R, for all n < np. In particular, the
geodesic segment ¢ joining f7(p) to f7(q) will avoid I* by a distance of at least
R, /2. Thus by Lemma 5.5 and equation (11),

k
n n 2 n2 1
IFo 730) T o f1a)] < maxdr@)] < Oy (-] <07

n
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for some C > 1 and all n < ng. We conclude that

no—1 no—1 2
Lo f?(p)—Tof cn oty
S35 o228 T 100

n=0

2
< CnOJrlTo.

Now suppose in addition that ro < 1/2. After possibly shrinking the constant A
in Lemma 5.5 and taking ng to be the least integer larger than A+/|logrg|, we will

have S < Cré/z. From equation (13), we will further have Sy < e~ BV/logrol
For small rg, the larger of these bounds is the one for S;,;. Since rq = dist(p, q),
we are done. [l

Remark 5.6. The constants k and rp in Theorem 5.3 depend on K (i.e. on the
distance Ry from K to Z7). It is entirely possible, though somewhat messier, to
keep track of this dependence throughout the proof of the theorem and obtain
estimates that are completely explicit in terms of Rp.

We are now ready for the

Proof of Theorem 1.3. It is enough to know that log™ || D f_|| is locally integrable
near each point in P2. Near points p ¢ I, log" | Df_|| is continuous. Since p is
a Borel measure, local integrability near p is automatic.

It remains to verify local integrability near each point p in the finite set IT.
Without loss of generality, we work in local coordinates z such that p corresponds
to z = 0. It follows from Proposition 5.1 that

log™ | Df-(2)|| < Alog el ”
Therefore, we need only show that log||z| is 1 integrable in a ball Bg(1) of radius
one about 0. We estimate this integral by dividing the ball into shells.

1
log; / log 7 p
/Bo(l) B || Z Ser<lai<y A

o (14)
< ) G+ 1)(log2)u(Bo(277)).
§=0

Let 0 be the Euclidean Kéhler form on Bg(2), and choose a cutoff function
¥ 1 Bo(2) — [0,1]. That is, ¢ is smooth, radially symmetric, and compactly
supported on Bg(2), and ¢ =1 on Bg(1). We let ¢;(2) = ¢(272), noting that the
C? norm of 1, is 47 times that of 4. Since @ is a strongly positive form (see [Kli]),
we have a constant C' > 0 such that |(T, pdd®y;)| < C49(T, |p| 6) for any positive
closed (1,1) current 1" and any continuous function p.

The map f is separating, so we lose no generality by assuming that ZTNBg(2)
is empty. Theorem 3.3 then implies that 4™ has a continuous local potential on
Bo(2). That is, we choose a section o : Bg(2) C P2 — C3\ {0} of the canonical
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projection 7 and define the local potential g™ (z) = Gt 0 (2) — Gt 0 0(0). Again
without losing generality, we assume that the C'' norm of log||o| is uniformly
bounded. This combined with Theorem 5.3 gives us for each ||z|| < r < 2 that

') =16 00(:) =Gt aol0)
<|e (wam) - & (o) |+ et
< e *VIoerl 4 oy < eky/Tlogr],

The first inequality follows from item 1 in Theorem 2.3. The integration by parts
definition of y allows us to compute

u(Bo(277)) < / byt Ap

Bo(1)

— / g’ ddp; A~
Bo(1)

Clldsllge  sup |g+|/ s
Bo(2-9+1)

Bo(2-i+1)

IN

-1
Ceik\fjﬁ 0N 'Lbi.
Bo(2-4+1)

< Ce Vi,

IN

for all j > 0 (the last inequality comes from Fact 3.5). Inserting this estimate into

(14), we obtain
il = ,
log — p < Cje*k‘/j.
/30(1) (Edl JZZ:O

One can see that the last sum converges by comparing its terms with 52 for j
large. This completes the proof. O

Corollary 5.7. If f. is separating, then the functions log™ HDf;lu are also in-
tegrable.

Proof. Since p is invariant and D f;l ofy = Df_ at p almost every point, we have

Log" Dt = [ tog* D570 £l £on= [ tog* D11 <o
[l

6. Lyapunov exponents and Lyapunov charts

Since the quantities log™ HD fle are u integrable, we can apply the well-known
(see the supplemental section in [KH]) multiplicative ergodic theorem of Oseledec.
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Taking into account the fact that our invariant measure is mixing, we immediately
deduce the following from Oseledec’s Theorem.

Theorem 6.1. Suppose that f, : P? — P? is a separating birational map. There
exist numbers x~ < xT such that at i almost every point p € P?

1
[ X7 == Jim Clog [ D)) -

1
X" = lim ~log | D2 (p)
If x= =xT, then
1
Xt =x = fim Clog | D)o

for almost every point p € P? and any non-zero vector v € TpPQ. Ifx™ > x—, then
there ezists a measurably varying, f invariant decomposition T,P? = E* @ B at
w almost every point of P?. Moreover, if v € E*\ {0}, then

_ .1 % 1 n
X~ = lim —log||[DfE(p)-of| = = lim —log|[Df2(p) ]|,
and similarly for v € E*\ {0} and xT. Finally, the sine of the angle between E°
and BEY is “tempered” in the sense that

lim llogsiné( 2 Eif‘i(p)) =0

w5 rz(e)

at almost every point p.

The numbers x and x~ are called the Lyapunov exponents of f, with respect
to p. The theory of non-uniform hyperbolicity (see [KH] for an introduction and
further references; I also learned a great deal from Briend’s thesis [Bri] which con-
tains a nice general exposition of these topics in a context similar to ours) was
developed by Pesin and others in order to explore the way in which Lyapunov
exponents influence the dynamics of a map. This theory begins with ([KH], Theo-
rem S.2.10) the fact that one can make a tempered, measurably varying choice of
coordinates on tangent spaces T, so that D, fy has Lyapunov block form. That is,
in these coordinates D, f acts, up to an error factor of e, like a diagonal matrix
with entries of absolute value ex+, eX . Moreover, in the sense specified by the
following result ([KH], Theorem S.3.1), the infinitesimal choice of coordinates on
T, can be used to select advantageous local coordinates on a neighborhood of p.

Theorem 6.2. Suppose f. : P2 — P? is a separating birational map, and let
xT,x 7, E5,E" be as above. For any € > 0 there exists a set A C supp p of full
measure, a tempered function 6 : A — (0,1], and a collection of holomorphic

embeddings 1, : Bo(d(p)) — P? such that

(1) ¥p(0) = p;
(2) ¢ is e-slowly varying—i.e. e < 6(fL(p))/d(p) < e for every p € A;
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(3) There exists a constant K > 0 and a measurable, e-slowly varying function

A: A= RT such that

K~ dist(4p(@), ¢p(y) < lle —yll < Alp) dist(4p (@), ¥p(y)).

4) If f, = ¢f_+1(p) o fy oy, then f, and Dof, are € close in the C' distance

on Bo(d(p));
(5) Dof, has Lyapunov block form.

We will call the maps v, Lyapunov charts and the points p € A regular. Since
A is of full measure, we can (and will) assume that p € A implies that f*(p) € A
for all n € Z. The proof of Theorem 6.2 is given for C'T® diffeomorphisms in
[KH], and it applies almost directly to the case of separating birational maps.
The only additional technicality in our setting is that the C* norm of f, becomes
unbounded near points of indeterminacy. This affects the definition of §, and in
particular, the conclusion that we can choose a slowly varying §. However, one
can show that the log of the C? norm of f, is integrable in the same way that
we proved integrability of log || D f+|| in the previous section. Further inspection
of the proof in [KH] reveals that this integrability suffices to overcome the extra
difficulty.

Corollary 6.3. The Lyapunov exponents for a separating birational map fi sat-
isfy x~ <0< xT.

Proof. Suppose that both exponents are negative, and apply Theorem 6.2 with
e << |xT|. Consider a Lyapunov chart 1, : Bo((p)) — P? about a point p € A.
Then f, maps Bo(d(p)) into Bo(d(f+(p))), contracting by a factor of at least
eX' e, Likewise ff+ () f 20y ete, will further contract images of the ball by the
+
same factor so that successive images will eventually decrease to {0}. By item 3.
of Theorem 6.2, we conclude that the radius of f7 (1, Bo(d(p)) tends to zero as n
increases. In particular, iterates of f; form a normal family in a neighborhood of

p. This implies (see [Dill]) that p ¢ supp uT, and therefore, that p ¢ A C supp p.
[l

7. Lower estimate for Lyapunov exponents

The goal of this section is to prove Theorem 1.4. Before we start, we state an
immediate consequence of Theorem 1.4 and Corollary 4.2.

Corollary 7.1. The measure ju associated with a separating birational map has at
least one non-zero Lyapunov exponent. Moreover, either u is a hyperbolic measure
(i.e. neither exponent vanishes) or suppp C T UT ™.
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For purposes of this section and the next, we fix some notation. Given an
€ > 0, we apply Theorem 6.2 to f,. Let ¢ be a number between 0 and 1. Since the
resulting Lyapunov charts vary measurably, we can find compact subsets A; C A
of measure 1 —¢ such that u(A;) > 1—¢ and the Lyapunov charts vary continuously
on A; in the C! topology. In particular, the function § admits a positive lower
bound §; on A; and the function A admits an upper bound A;.

In proving Theorem 1.4, we take ¢ = 1/2. The set 77 is pu negligible by
hypothesis and closed by definition, so we can certainly assume that A, 5 is disjoint
from 1. By shrinking ¢ if necessary, we can further arrange that dist(A 4o, t) >
2Kd1/9. This and Theorem 6.2 guarantees that the image v,(Bo(d1/2)) of the
Pesin chart about each p € Ay, avoids T T by a positive distance independent of
p. We proceed in a series of lemmas.

Lemma 7.2. There exists a constant C' and for each p € Ay;5 a local potential g;
for pt on ¥, (Bo(d1/2)) such that ”g;“oo < C.

Proof. By construction of A;,, and Theorem 3.3, the Green’s function G* is uni-
formly continuous over the set Up€A1/2 Yp(Bo(d1/2)). Fix p € Ay/y and choose a

section o : ,(Bo(d1/2)) — C*\ {0} such that [lo(p)|| = 1 and the image of &
is contained in the complex hyperplane tangent to the unit sphere at o(p)—e.g.
if o(p) = (0,0, 1), then the first two components of o give affine coordinates on
¥, (Bo(d1/2)). Because the images of the Lyapunov charts are uniformly small, the
image of ¢ is also contained in a spherical shell {1 < ||p]| < C} for some constant
C independent of p. The proof is concluded by taking g]‘f = Gtoo. O

Since f can be conjugated near any point in A4/ to within ¢ of a non-singular
matrix, we see that f7'(I~) N Ay, = 0 for every n. In particular, the sets S, =
J7(A1j2) N Ayyo are well-defined and compact for every n € N.

Lemma 7.3. There exist constants C, N > 0 such that for everyn > N:

(1) p(Sn) > 1/8;
(2) for every r < 019 and any n > N, there exists points p1,...,py € Sy such

that k < C/r* and S, C U;_, ¥, (Bo(r)).

Proof. The first assertion follows from the fact that p is mixing for f_. Given
7 < 0179 consider the collection of open sets of the form ¢, (Bo(r)) where p is
any point in S,,. By Theorem 6.2, each of these open sets contains a round ball
By(r/Aq/2). Since S, is compact, we can choose finitely many points py, ..., px
so that the balls Bj(r/5A4;/5) centered at these points cover S,,. Moreover, by
a well-known argument (see the proof in 1.6 of [Ste]), we can discard some of
these balls (i.e. re-index and shrink k) so that the remaining balls are mutually
disjoint but that when we expand their radii by a factor of five, the expanded balls
By, (r/A1/2) again cover S,,. The former (disjointness) property guarantees that
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k < C/r* for some absolute constant C' determined by the volume of P2, The
latter property guarantees that S,, C U5:1 Yp, (Bo(r)), as desired. O

To continue the proof of Theorem 1.4, we fix a point p € S,, and consider the
map f;' : Bo(d1/2) — Bo(d1/2) defined as a composition

= ff;"l(p) B . Jog

of maps specified in Theorem 6.2. This map is, of course, not defined everywhere

on Bo(d1 /). However, if x is the largest Lyapunov exponent of f, then Theorem

6.2 guarantees that f}'(2) € Bo(d1/2) whenever [|z|| <7y, & (1—6)”6_”(X++5)(51/2.

Capitalizing on this observation, we set
Brp = ¢p(Bo(rn/2K Ay )5))
and try to estimate pu(B,, ,).

Lemma 7.4. There exists a constant C independent of p and n and a local poten-
tial g for pt on By(rn/Ays) such that |lg™ |, < C/d".

Proof. 1t follows from Theorem 6.2 that By (ry,/A1/2) C ¢p(Bo(ry)). Hence from
the discussion above, we have that f1(Bp(rn/A1/2)) C $n(p)(Bo(dy2)). More-
over, f(p) € S, by definition. Thus we can use the potentials given by Lemma
7.2 to define a potential gft,&(p) o f} for f*u™ = d"ut on Bp(rn/Ayi/). This
potential is uniformly bounded above, independent of p and n, so we can divide
by d" to obtain the desired potential g for p'. O

Lemma 7.5. Let © be the Fubini-Study Kdhler form on P2. There is a constant
C such that for every p € P? and r > 0,

1 _
By (r)

Proof. If we work in affine coordinates centered at p € P? and replace the Fubini—
Study Kéahler form with the Euclidean Kahler form, then the left side of the desired
inequality is an increasing function of r (Fact 3.5). Moreover, the Euclidean and
Fubini—Study Kahler forms are strongly positive forms that are comparable near
the origin, so if 7o > 0 is small enough, there is a constant C' = C(rp) independent
of p such that for all » < rg.

1 __C _

r Bp(r) 7o By (ro)

On the other hand, we have the trivial bound
1 1
— ONp < — OAu
7 B, (r) o Jp2
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for all » > ro. O

Let 7, : Bo(r,/A) — [0,1] be a sequence of smooth compactly supported
functions identically equal to one on Bo(rn/2A;/2). From the definition of B, ,,
and Theorem 6.2 we have that n, = 1 on B, ,. Clearly, we can arrange that
ddn, < CO/r2. Let gT be the local potential given by Lemma 7.4. We estimate

pByp) = / ptApT < / M ddg™ A p~
B P2

n,p

C gt
:/g+ddcnn/\/fS%/ ONp~
P2 Tn Bp(rn/A1/2)

< C/d,

where the constant C is independent of p € S,, and n. The second equality is
just the definition of wedge product of positive closed (1,1) currents. The last
inequality follows from the previous two lemmas.

To complete the proof of Theorem 1.4, we observe that B,, , D Bp(rn/QKA%/Z).

Therefore we can apply Lemma 7.3 to choose points py, ..., pr € AL, with k < C/r2

such that
r 1
Bn i Q7
M(H e

where C7 and C5 are independent of n. From these last equations and our upper
bound for u(B,, ), we conclude that

1 C
g < ;M(anpj) S 'f"%dn

for every n. Letting n — oo and expanding r,, gives

+ s logd B
T 4(1 —e€)
Since € > 0 is arbitrary, Theorem 1.4 is proved. O

8. Periodic points

If W(ZT) = u(Z~) = 0, then it follows from Theorem 1.4 that p has one positive
and one negative Lyapunov exponent. Under these conditions, we will now show
that saddle periodic points are dense in supp p, proving Theorem 1.5. We reuse
the notation ¢, A, A;, §;, A; from the previous section.

The first step of the proof consists in showing that any point in supp p can be
approximated by nearly periodic regular points.
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Lemma 8.1. Given p € supp p and €1 > 0, there exists t > 0 such that for any
€y > 0, there exists g € Ay and n € N such that

o dlSt(p7 q) < €1.
o [T(q) € ¥q(Bolea)) N Ay

Proof. If t is small enough, the set Bp(e1/2) N A; has positive measure. That is,
there exists p’ € A; such that B,/(r) N A; has positive ¢ mass and is contained
in Bp(e1/2) for all » > 0 small enough. Since y is mixing, we can for any such
r find n € N and ¢ € By (r) N A; such that f7(q) € By /(r) N A; as well. Hence
if 7 satisfies 24,7 < &;, we have f7(q) € By(2r) C tq4(Bo(24(q)r)). Taking
r =min{e;/4, ey /2,0, /2A,} therefore finishes the proof. O

Now apply this lemma with es << €1,e. We will complete the proof of The-
orem 1.5 by exhibiting a saddle periodic point of period n whose orbit intersects
$q(Bo(Ces)). The approach is similar to the proof of the closing lemma for hy-
perbolic maps (Theorem 6.4.15) given in [KH], but there is an extra complication
due to the fact that the Lyapunov charts can degenerate along the orbit of ¢. In
particular, our method would not suffice to prove a general closing lemma for f;
it is important that the pseudo-orbit ¢, f+(q),fi(q)7 e ﬁfl(q)q be an actual
orbit except at the last step.

For each j =1,...,n —1, we set f; = ffi—l(q)7 wherever the righthand side is

defined—in particular on U; = Bo(e’(x++5)6(fifl(q))). Similarly, we take
~i —1
fn=1bg o fr 0ty =g orrig) 0 Frniggy

which, for ez small enough, is defined on an open subset of C? containing U,, =
Bo(e’(ﬁ“e)é(fi*l(q))). We have for 0 < j < n that

I1f; = Dofjllcn < 2e.

Additionally, if j < n then f;(0) = 0, and in the remaining case it is at least true
that || f»(0)| < ea.
If U=U; x---xU,, then fixed points of the map

F(fﬂly . wxn) &t (fn(xn)7 fl(xl), B fnfl(mnfl))

from U into C?" correspond to periodic orbits (1), ... s pn-1(gy(@n) of f1. To
find a fixed point, we write F' = DoF' + E, where E(0) = (f,(0),0,...,0) and
in the product norm (this is essential, since we have no control on the size of n)
on C?" = (C?)*, we have ||E||c1 < 2. Moreover, the linear operator, DoF is a
shifted product of the Dg f;’s, so H (DoF — 1)1t H is bounded above by a constant
depending only on the minimal distance from the Lyapunov exponents of u to
zero.

A point is fixed by F if and only if it is fixed by S def (DFy —I)71 o E.
Moreover, the above observations show that S contracts the product metric by
a factor of 2C¢, where again, C depends only on the Lyapunov exponents of
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p. We claim that S(U) C U for ¢ and ¢ taken small enough to invoke the
(proof of the) contraction mapping theorem. To see this, let S; denote the jth
component of S. It is possible that the radius of U; might decay as j increases
from 1 to n. Nevertheless, slow variation of ¢ ensures that the radius of U; 4
is at least (1 — ¢) times that of U;. Therefore since z; € U; for j < n, we see
that [|Sj1(z;)ll = |1S541(z;5) — Sj41(0)]| = 2Ce||z;]|, so that S;yi(x;) € Ujpr.
Moreover, continuity of § on A; allows us to assume by shrinking ¢5 that the radii of
U,, and U are nearly equal. Hence z,, € U,, implies that || f,,(2,)| < ea+2C¢ ||z,
so that Si(z,) € Uy, too. Our claim is therefore justified.
Thus

n n—1
Il < 37 157(0) — 90 < IS0 32 (20 < 26,
g= 7=0

for € small enough. In particular, X = lim,,_,~, S™(0) exists, is a fixed point of
F', and lies within distance 2ey of the origin. The image ¢’ = ¢1(z1) of the first
coordinate of X is a periodic point of period (dividing) n close to ¢. Since its orbit
is contained in the Lyapunov charts about g, ..., f* " 1(q), we see easily that the
largest and smallest eigenvalues of Dy f™ have magnitudes approximately enx’

and e”X | respectively, so that ¢ is also a saddle point. This concludes the proof
of Theorem 1.5.
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