Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 76 (2001)

Artikel: Symplectic topology on subcritical manifolds
Autor: Biran, Paul / Cieliebak, Kai

DOl: https://doi.org/10.5169/seals-57411

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-57411
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

(© 2001 Birkh&user Verlag, Basel

Comment. Math. Helv. 76 (2001) 712-753
0010-2571/01/040712-42 $ 1.504-0.20/0 Commentarii Mathematici Helvetici

Symplectic topology on subcritical manifolds

Paul Biran and Kai Cieliebak

Abstract. We introduce a new class of closed symplectic manifolds called subcritical. These
manifolds are closed analogues of subcritical Stein manifolds. We study symplectic and La-
grangian embeddings into such manifolds and into their hyperplane sections.
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ding.

1. Introduction

The study of the symplectic topology of Stein manifolds leads naturally to two
distinct subclasses: subcritical and critical. A Stein manifold is called subcritical
if it admits a plurisubharmonic function which has only critical points of index less
than half the (real) dimension, and eritical otherwise. Thanks to the special ge-
ometry, various problems of symplectic topology, such as Lagrangian embeddings,
are more tractable on subcritical Stein manifolds than on critical ones with the
tools presently available.

In this paper we introduce and study a new class of closed symplectic Kahler
manifolds, which are in a sense “closed cousins” of subcritical Stein manifolds.
These manifolds are, roughly speaking, closed symplectic Kahler manifolds (M, )
together with a complex hypersurface > C M that represents the Poincaré dual
to k[Q] (for some k& > 0), and such that the complement (M \ 3, Q) is a subecritical
Stein manifold (see Section 2 for the precise definition). We shall refer to such
triples (M, §;Y) as suberitical polarizations (of degree k) of (M, ).

This notion gives rise to two interesting types of manifolds:

e Symplectic manifolds (M, Q) which admit subcritical polarizations.

e Symplectic manifolds (3,Q|s) that arise as hypersurfaces in a subcritical
polarization (M, Q; ).

Research partially supported by the US-Israel Binational Science Foundation grant 1999086.
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As we shall see, manifolds of these types have remarkable symplectic properties,
mainly concerning Lagrangian and symplectic embeddings.

The most basic example of a subcritical polarization is (CP", o, ;% = CP" 1),
where ¥, € CP™ is any linear hyperplane (see Section 2). Here CP”™ is en-
dowed with its standard complex and symplectic structures and the symplec-
tic form o.,. is normalized so that the area of a projective line is 1. Also
note that o so besides (CP", o admitting a subcritical po-

larization it also arises as a hypersurface in a subcritical polarization, namely
(CP™ 1o . ., ;CP™). More examples appear in Section 2 below.

In this paper we mainly focus on topological restrictions on Lagrangian embed-
dings into symplectic manifolds 3} as above as well as some on aspects of symplectic
embeddings into manifolds (M, Q) that admit a subcritical polarization. We also

develop some tools for constructing examples of subcritical polarizations.

cpbl ‘ = O¢pns an)

1.1. Lagrangian embeddings

The most basic question one can ask regarding Lagrangian submanifolds is:

Given a symplectic manifold (M,Y), what are the restrictions on the topol-

ogy of its Lagrangian submanifolds ¢
Of course, one is mainly interested in restrictions beyond the ones arising from
Lagrangian submanifolds being totally real. The first results in this direction were
discovered by Gromov in [Gr-2] where he proved (among many other things) that
C™ has no closed Lagrangian submanifolds L with H*(L) = 0. The case of C"
has been extensively studied since then by many people (see [A-L-P] for a survey
on the subject and [Oh-2] for a more updated list of references). Note that in
comparison to general symplectic manifolds the case of C™ can be regarded as
local (Darboux’ Theorem). Of course, “local” should by no means be interpreted
as easy. As a matter of fact the highly non-trivial tools required to attack this
case reflect the complexity of the problem.

Lagrangian embeddings into other manifolds have been studied too, but mainly
on two types of (Stein) manifolds: subcritical Stein manifolds (see [Vi-1, A-L-P,
B-C]) and some cases of cotangent bundles (see the surveys [A-L-P, Vi-2]). In most
of these results the presence of a global homogeneous structure such as a Liouville
flow plays a crucial role. One can think of these results as “semi-local” in the sense
that they provide information on Lagrangian embeddings into a neighbourhood of
a given fixed Lagrangian submanifold or isotropic subcomplex.

In contrast to the above, the problem of Lagrangian embeddings into closed
symplectic manifolds is of a more global nature, since one is not allowed to assume
that the Lagrangian submanifold in question can be localized in a particular sub-
domain of the manifold. For example, a Lagrangian submanifold L of CP™ cannot
be always isotoped to lie in the affine part CP™\ CP"~! due to topological reasons
(e.g. L=RP™ C CP™, n > 2). Moreover, even when such an isotopy does exist in
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the smooth category it is unknown whether or not it can be realized symplectically.
Thus the problem of Lagrangian embeddings into CP"™ cannot be localized or
reduced to C”.

To the best of our knowledge, the only nontrivial restrictions on Lagrangian
embeddings into closed manifolds are two results due to Seidel and to Viterbo.
Viterbo proved (see [Vi-3], consult also [E-G-H]) that closed Lagrangian submani-
folds of a uniruled Kdhler manifold of complex dimension > 2 cannot have any Rie-
mannian metric of negative sectional curvature. Seidel [Se| proved the following: A
closed Lagrangian submanifold L of (CP™ o) must have H'(L;Z/(2n + 2)Z) #0.
Seidel obtained this result from his theory of graded Lagrangian submanifolds
(see [Se]) which can be used as an algebraic “add-on” to the machinery of Floer
homology. A delicate computation of this invariant in the case of CP™ gave rise
to the above result. It is interesting to remark that in this case too, the presence
of some global homogeneous structure — a Hamiltonian circle action in this case —
was crucial for putting the general theory to work.

From the study of subcritical manifolds we obtain new restrictions on La-
grangian embeddings into closed manifolds. In particular we shall recover Seidel’s
result and generalize it to a broader class of manifolds. Our approach is more
geometric and completely differs from Seidel’s. From our point of view the main
relevant feature of the ambient manifold is that it appears as a hypersurface of a
subcritical polarization. As already mentioned, CP™ is a particular case of this
situation.

Below is a sample of our results on Lagrangian submanifolds of CP™ x X, for
various types of manifolds X. These are all special cases of more general results
described in Section 4.

Before we start, let us remark that below the X “factor” is allowed to be a 0-
dimensional manifold (namely a point), however we shall always assume implicitly
that the CP™ factor is of positive dimension, namely n > 1. Henceforth we
shall abbreviate the standard symplectic form o of CP™ to o whenever the
dependence on the dimension n is clear.

cpn

Theorem A. Let (X?™ w, ) be either Stein or a closed symplectic manifold, and
assume that m(X) = 0. Then for n > m = dim¢ X, (CP" x X?™ 0 ®w, ) admits
no simply connected closed Lagrangian submanifold.

For example, this results applies to X>™ being the torus 72" (or more generally
a product of closed Riemann surfaces of genus > 0). See Section 4 for a sharper
result and more examples.

Remark. The dimension restriction n > m is sharp in the sense that Theorem A
fails to be true for m = n + 1. More precisely, let (X?"*2 w, ) be any 2(n + 1)-
dimensional symplectic manifold. Then for every sufficiently large a > 0, (CP™ x
X212 o @ aw,) admits a Lagrangian (2n + 1)-sphere (see the construction in
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Section 4.3).

Theorem A can be refined as follows. Here and throughout this paper, ¢ de-
notes the first Chern class of the tangent bundle of a symplectic manifold (X, w, ).

Theorem B. Let (X?™ w,) be a symplectic manifold for which ¢i¥ = 0 in
H?*(X;Z). Let L C (CP" x X?™ 0 @ wy) be a closed Lagrangian submanifold,
where n > m = dimg X.

i) If X is closed with wo(X) = 0, then either n1(L) has an infinite cyclic
subgroup, or Hi(L;Z) contains a non-trivial cyclic subgroup whose order
divides 2n + 2.

ii) If (X,wy) is an ezact tame manifold (see Section 4.1), then either H (L;Z)
has a non-trivial free subgroup, or it contains a non-trivial cyclic subgroup

whose order divides 2n + 2. Consequently, Hl(L; Z/(2n + Z)Z) #£0.

Note that the special case X = pt is already non-trivial and recovers Seidel’s
result [Se|] mentioned above. Other interesting examples of exact X are X = C™
and X = T*(N) where N is any closed manifold. As for closed X, the result applies
for example to X?™ = T?™ endowed with its standard symplectic structure, or
more generally, with any symplectic structure for which ¢; vanishes in H?(T?™;Z).

Observe that Theorems A and B fail to be true if X is allowed to have symplec-
tic spheres. Indeed, CP™ x CP"™ does admit closed simply connected Lagrangian
submanifolds. For example, {(2,Z) | z € CP"} C CP™ x CP" is a Lagrangian
copy of CP™. Nevertheless, we still have:

Theorem C. (CP"xCP"™, 0c®0o) does not admit any closed Lagrangian submani-
fold L with H1(L;Z) =0 and Ho(L;Z) = 0.

Combining Theorems A, B with a result of [B-C] we obtain the following de-
scription of Lagrangian embeddings into CP™ x C™. Here and in the following
C™ is always endowed with its standard symplectic form wgq = dxy Adyr + - - - +
dxm N dypm,.

Theorem D.

1. Forn > m, every closed Lagrangian submanifold L of (CP™ x C™, 0 ® weta)
must satisfy H(L;Z/(2n + 2)Z) # 0; in particular Hy(L;Z) # 0.

2. Buvery closed Lagrangian submanifold L of (CP" x C"tl 0 @© weq) with
Hi(L;Z) = 0 must satisfy: H'(L;Z/2Z) = --- = H*™(L; Z/2Z) = 0. O

The second case actually occurs: As noted above, CP™ x C**1 does admit a
Lagrangian (2n + 1)-sphere.

Finally, we describe a class of examples which are not products with CP™.
Consider a smooth algebraic curve C C CP™ (n > 2), and denote coordinates on
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CP"byz=1l20:":2p] Or w=[wg:---:wy]. Put

¥ = {(;w) ECP"xCP" | 2€C, Y zuw; 0}.
i=0

Note that ¥ is a CP” -bundle over C. We endow ¥ with the symplectic form
induced from CP"™ x CP™, namely w,, = (0 @ 0)|x.

Theorem E. Let C C CP™ and ¥ be as above with n > 2 and genus(C) > 0. Let
(X?™, w,) be as in Theorem A but with 0 < m <n—1. Then (X x X,w, ® w,)
admits no simply connected closed Lagrangian submanifold.

1.2. Gromov radius

Recall that the Gromov radius of a symplectic manifold (M, ) is defined as follows:
pe (M, Q) = sup{nr® | B*"(r) embeds symplectically into (M,Q)}.

Here B?"(r) stands for the closed ball of radius 7, endowed with the standard
symplectic structure.

Our study of subcritical manifolds gives rise to the following uniform bound
on their Gromov radius in terms of the degree k.

Theorem F. Let (M,Q,J) be a closed Kihler manifold that admits a suberitical
polarization of degree k. Assume that one of the following conditions holds:

1. dimp M <6, or
2. M = NQ| on mo(M) with X > 2k.
Then po(M,Q) < 1.
If, in addition, the subcritical polarization (M,€2;3) is such that the linear

system of sections of the holomorphic line bundle Ny jpr = Op(X)|s — 3 is base
point free, then p,(M,Q) = %

For example, (M, Q) can be taken to be (see Section 2):

e The blow-up of a CP? along a line P! with Q Poincaré dual do [H;| + [Ha],
where H; is the proper transform of a plane containing P!, and H, is the
proper transform of a plane transverse to P?.

o (CP"xT?, o®lw) withn > mand [ > 3, where w is any integral symplectic
split form on T2,

In both these examples k = 1, and we actually have equality p, = 1. More
examples and sharper results appear in Sections 2 and 8.
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Remarks.

1. Conditions 1-2 of Theorem F arise from technical reasons in the proof. We
strongly believe that they can be dropped.

2. The computation of the Gromov radius in both of the above examples can
be accomplished also by different (though ad hoc) techniques than the ones
presented in this paper. Thus the main novelty in Theorem F is not so
much in computing new examples, but rather in the fact that subcritical
manifolds share a uniform bound on their Gromov radius.

Given a Kihler manifold (M,Q,J) with Q@ € H?(M;Z) we denote by
knot(M, J,[€2]) the minimal integer & for which there exists a smooth and reduced
complex hypersurface > C M that represents the homology class Poincaré dual
to k[€].

Combining Theorem F with results from algebraic geometry due to Ein, Kiichle
and Lazarsfeld [E-K-L] we get the following theorem:

Theorem G. Let (M,Q,J) be a closed Kihler manifold that admits a suberitical
polarization of degree k. If (M,Q) and k satisfy one of the conditions 1-2 of
Theorem F then k < dime M. In particular kpoi(M, J, [Q]) < dime M.

1.3. The role of subcriticality

Before we delve into the details let us briefly outline how subcriticality is used to
obtain our results.

An important feature of (complete) subcritical Stein manifolds, observed in
[B-CJ, is that any closed Lagrangian submanifold of such a manifold can be dis-
placed away from itself via a Hamiltonian isotopy. In particular, the phenomenon
of Lagrangian intersections never occurs in such manifolds. Consequently, La-
grangian submanifolds L C (V,w,, ) of subcritical Stein manifolds enjoy the follow-
ing two remarkable properties:

1. Whenever well defined, the Floer cohomology H F*(L, L) vanishes.

2. There exists a holomorphic disc D C V with boundary on L with “low”

Maslov number p(D) < dime V' 4 1. This is called “Maslov class rigidity”
(see [B-C] for more details).
Under suitable a priori assumptions on the Maslov index of a given Lagrangian,
properties 1 and 2 impose strong restrictions on the topology of L (see [B-C]).

Our study of Lagrangian submanifolds in the closed(!) subecritical context
is based on the above ideas. Let (3,w,) be a closed symplectic manifold that
appears as a hypersurface of a subcritical polarization, say (M, ;). In order to
reach the favorite situation of a subcritical Stein manifold, we “lift” L to a certain
Lagrangian submanifold L ¢ (M \ %,Q) which is a circle bundle over L. The
point of this lifting construction is that now we have constructed a Lagrangian
submanifold, closely related to L, which lies inside a subcritical Stein manifold,
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namely in (M\ 3, Q). Under certain assumptions on the first Chern class of (¥, w,,)
we get, strong restrictions on the topology of L. AsLis nothing but a circle bundle
over L this yields restrictions on the topology of L. More details on this strategy
and on the “lifting” procedure are given in Section 5.2.

Subcriticality is also used in an essential way in our study of the Gromov
radius. Suppose that (M, €2;Y) is a subcritical polarization. Then by the results
of [Bi-1] (see Section 3 for a summary) it follows that (M, Q) can be decomposed
into two disjoint subsets: (M, Q) = (Fx,wo) [[ A, where EYy, is a disc bundle over
> endowed with a standard symplectic form wg, and A € M is a CW-complex
with Q-isotropic cells and such that dim A < %dim M. In other words, none of
the cells of A is Lagrangian.

Now given a symplectically embedded ball B C M, Gromov’s h-principle im-
plies that it possible to disjoin B from A by a symplectic isotopy. Thus we may
assume that B C (M \ A, Q) = (F,wq). This implies that p, (M, Q) = p.(E, wp).
The point of all this “acrobatics” is that the Gromov radius of (F,wp) can be
estimated from above (and sometimes even exactly computed) using the theory
of pseudo-holomorphic curves. This is possible due to the standard symplectic
structure wy of E. See Section 6 and [Bi-1] for more details.

We point out that subcriticality is crucial for this type of argument to work,
for otherwise the CW-complex A would contain also Lagrangian cells, a case in
which the h-principle fails.

1.4. Organization of the paper

The rest of the paper is organized as follows.

In Section 2 we introduce the notion of subcritical polarizations and construct
examples. The constructions are based on a “desingularization theorem”, which
is proved in Section 7. In Section 3 we summarize the results on decompositions
of polarized manifolds that we need later in the paper.

Section 4 is concerned with Lagrangian embeddings. We state here the most
general versions of our theorems in this direction, derive corollaries and list con-
crete examples. Theorems A, B, and E of the introduction are immediate conse-
quences of the corollaries. The main theorems on Lagrangian embeddings, Theo-
rems 4.2.1, 4.2.2, 4.2.3 as well as Theorem C from the introduction, are proved in
Section 5.

In Section 6 we prove the uniform bounds on the Gromov radius of subcritical
manifolds formulated in Theorems F and G. Finally, in Section 8 we briefly discuss
some other issues related to subcritical manifolds, such as symplectic packings and
capacities.

Acknowledgements. We thank the referee for pointing out to us the reference
to Laudenbach’s paper [Lau].



Vol. 76 (2001) Symplectic topology on subcritical manifolds 719
2. Subcritical polarizations
2.1. Setup

Subcritical Stein manifolds. A Stein manifold is a triple (V, .J, ) where (V,.J) is an
open complex manifold and ¢ : V' — R is a smooth exhausting plurisubharmonic
function. The term “exhausting” means that ¢ is proper and bounded from below.
“Plurisubharmonic” means that the 2-form w, = —dd®y is a J-positive symplectic
form, i.e. —dd®p(v, Ju) > 0 for every 0 # v € T(V). Unless explicitly stated, we
do not assume that (V, J, ) is complete in the Eliashberg-Gromov [E-G] sense.
We refer the reader to [El-1, El-2] for the foundations of the symplectic theory of
Stein manifolds.

It is well known that any plurisubharmonic Morse function ¢ : V' — R must
satisfy index,(y) < %dimR V for all critical points p. We call a Stein manifold
subcritical if these inequalities are strict, i.e. ¢ is a Morse function all of whose
critical points have index,(¢) < & dimg V.

Polarized Kdhler manifolds. Throughout this paper, by a Kéahler manifold we
mean a triple (M, €, J) where (M, Q) is a closed symplectic manifold and .J is an
(integrable) complex structure compatible with €.

A polarized Kihler manifold* P = (M*",Q, J; %) is a Kithler manifold (M, Q, J)
with [Q] € H?(M;Z) together with a smooth and reduced complex hypersurface
Y. € M whose homology class [¥] € Hap,_o(M) represents the Poincaré dual to
k[Q] € H*(M) for some k € N. The number k will be called the degree of the
polarization P and denoted by kp.

The function associated with a polarization. We shall now define a distinguished
plurisubharmonic function ¢, : M\Y — R which is canonically associated with the
polarization P. For this purpose let £ = Oy (32) be the holomorphic line bundle
defined by the divisor 3. Denote by s : M — L the (unique up to a constant
factor) holomorphic section whose zero set {s = 0} is Y. Choose a hermitian

metric || - || on £, and a compatible metric connection V with curvature
RY = 21ikpQ.
Finally, define ¢, : M \ ¥ — R to be
1
() = == g @)

Note that the function ¢, : (V = M \ 3, J) — R is plurisubharmonic. Indeed, a
simple computation shows that —ddcap,, = . Moreover, it is not hard to see that

¢, is exhausting and that it has no critical points outside some compact subset
of V (see [Bi-1]).

1 Note that our notion of polarized Kahler manifolds is slightly different from the one common
in algebraic geometry.
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It is important to remark that the function ¢, is canonically determined by
the polarization P up to an additive constant and does not depend on any of the
choices made for || - ||, s or V. This is due to the requirement on the curvature RV
and the fact that J is integrable (see [Bi-1] for more details).

Finally, let us mention that we do not assume ¢, to be Morse in general,
although this will be the case in many of the examples below.

Subcritical polarizations. A polarization P = (M, Q, J;¥) is called suberitical if
there exists a plurisubharmonic function ¢ : (V = M \ %, J) — R such that:
1. (V, J, ) is a subcritical Stein manifold, namely ¢ is Morse and for every
p € Crit(p), index,(¢) < 3 dimp V.
2. ¢ coincides with ¢, outside a compact subset of V' that contains Crit(y).
Note that this implies that Crit(¢) is finite.
In practice, it is not easy to apply this definition directly even if ¢ = ¢, itself
satisfies the above conditions. However we shall develop below (see Section 2.3)
some useful criteria for checking subcriticality.

2.2. Examples of subcritical polarizations

Below is a list of examples of subcritical polarizations. The construction of these
examples is based on a desingularization procedure presented in Section 2.3 below.
Most of these examples are a special case of more general family of subcritical
polarizations which is described in Section 2.4.

2.2.1. Subcritical polarizations of CP™. Consider the complex projective space
CP"™ endowed with the standard complex structure Jep» and its standard sym-
plectic Kahler form o,, normalized so that the area of each projective line is 1.
In what follows we denote by [zg : ... : z,] homogeneous coordinates on CP"™. On
each affine chart U; = {z; # 0} with coordinates u; = = (k # j) the form o is

given by

_ b s - 2
o= %aalog 1+Z|uk|
k#j
Let 3 C CP™ be any linear hyperplane (namely, defined by a linear equation).
Then the polarization P = (CP"™, 0, Jepn; ) is subcritical of degree kp = 1.
Indeed, suppose that ¥ = {Xgz0 + - - - + Apzn, = 0}, then it is easy to see that

" )\iziz
oo ([20: ... 2]) = —ilog <%) :

A simple computation shows that this function is Morse with only one critical

point, p = [Ag : ... : Ay], whose index is 0.
Finally, observe that (3,0, ‘Z) &~ (CP" 1,0, ,). As this holds for every
n > 1, we conclude that (CP™ o) can also be realized as a hypersurface of a

subcritical polarization.
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2.2.2. Products with CP™. Let (Y?™, Jy) be a closed complex manifold of complex
dimension m, and £ — Y a very ample line bundle. Let Q, be a Jy-Kahler
representative of ¢£. If n > m then (CP™ x Y*" 0 @ Qp, Jepn @ Jy) admits a
subceritical polarization of degree 1. The proof of this fact is given in Section 2.5
below.

A special case of this is when Y2 C CP” is a closed algebraic submanifold of
complex dimension m < n. Take > C CP™ x Y to be the hypersurface

w €Y, izlwlO}

= {(2711)) e CP" x CP™
i=0

Then (CP™ x Y?™, 0 @ oly, Jepn @ Jy; ) is a subcritical polarization.

2.2.3. Subcritical polarizations of CP™ x CP™. In view of the preceding exam-
ple, for n > m, (CP™ x CP™, 0 @ o) admits a subcritical polarization with the

hypersurface
m
Y= {(z,w) € CP" x CP™ Zzw = 0}7
i=0
where [zg @ -+ 2], [wo @ -+ 1 wy,] are homogeneous coordinates on each factor of

CP™ x CP™. On the other hand, it is possible to prove that CP™ x CP" has no
subcritical polarizations at all (see [Bi-1]).

2.2.4. Blow-ups. Let k > 1, m > 0 be integers. Fix a (complex) (k—1)-dimensional
linear subspace Py~ € CP™* and let

Xim = Blpr-1CP™

be the blow-up of CP™ 1% along Pé“fl. We denote by J ,,, the obvious complex
structure on Xy, ,,,. Consider now the following two divisors in X ,,:
e H —the proper transform of a linear hyperplane intersecting Pok ~1 transver-
sally.
e H, — the proper transform of a linear hyperplane in CP™t* that contains
prt
Suppose now that k > m. Then there exists a Jy, p,-Kdhler form Qp, ,, on Xy,
and a smooth and reduced hypersurface 3 € |Hy + Ha| such that:
1. [Qgm] is Poincaré dual to [H{]+ [Ho).
2. The degree 1 polarization P = (Xp m, Qk.m, Jkm; 2) is suberitical.

The proof is given in Section 2.5 below.

2.3. Desingularization

Our main tool in constructing subcritical polarizations is a desingularization pro-
cedure which we now describe.



722 P. Biran and K. Cieliebak CMH

Let (M,J) be a closed complex manifold and £, £s — M holomorphic line

bundles such that £ = £; ® L9 is ample. Let || - ||, V be a hermitian metric
and a compatible connection on £ such that the corresponding curvature form
Qr = Q%Rv is positive. Suppose we are given:

¢ Holomorphic sections s; : M — £; (¢ = 1,2) transverse to the zero sections
and such that the codimension-1 complex hypersurfaces >; = {s; = 0} inter-
sect transversally in the codimension-2 complex submanifold D = 331 N 3s.
e A holomorphic section sg : M — L with so‘ i D — L being transverse
to the zero section so that Z = D N {sp = 0} is a codimension-3 complex
submanifold.
Note that (M\(31U3,), J) and (D\Z, J|p) are Stein manifolds since 31 +%s C M
and Z C D are both ample divisors.

Theorem 2.3.1 (Desingularization Theorem). Suppose that the following condi-
tions are satisfied:

L (M\ (Z1UX9),J, —log|s1 ® s2|?) 4s a subcritical Stein manifold.

2. (D\ Z,J|p,—log||sol|?) is a subcritical Stein manifold.
Then for € > 0 sufficiently small the following holds:

1. s = (s1 ® sg +€sp) : M — L s transverse to the zero section so that

Y. = {s =0} is a smooth and reduced hypersurface.
2. The polarization P = (M, Qr, J; %) is suberitical.

Remark. Note that by definition a zero-dimensional manifold (namely a point or
a bunch of points) is not subcritical. Therefore the conditions of the theorem can
be satisfied only if dimg M > 3.

The proof of Theorem 2.3.1 is postponed until Section 7 below. We now turn
to some applications of this theorem.

2.4. Projective bundles

Let us first fix a few algebro-geometric notations. Let (Y, Jy) be a closed complex
manifold and E — Y a holomorphic vector bundle. We denote by P(E) = Y
the corresponding projective bundle. We remark that here we adopt Fulton’s
convention [Fu| rather than the “French” one, namely the fibre over y € Y is the
complex projectivization of the fibre £, (that is the space of complex lines) rather
than the projectivization of the dual of F.

The complex manifold P(F) comes naturally equipped with a holomorphic line
bundle Og(1) — P(FE) (called the hyperplane bundle) whose fibre over the line
ly € P(Ey) is just the dual I} = Home((,, C).

We are now in the position to describe a new family of subcritical polarizations.
Let (Y™ Jy) be a closed complex manifold of complex dimension m and F — Y
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a rank-/ holomorphic vector bundle. Consider the projective bundle
Xpr=PEaCH) LY,

where CF stands for the trivial rank-k holomorphic vector bundle over Y. We
denote by Jx , the induced complex structure on Xg g.

Suppose in addition that:

1. B —Y is semi-negative in the sense of Griffiths (see [Gri, Dem]).

2. We are given an ample line bundle £ — Y.

Under these assumptions we shall now endow Xpg ; with a Kahler form Qg
which represents the first Chern class of the line bundle Ogger (1) ® 7*L.

For brevity we write Fy = E @ CF. Choose a hermitian metric || - || on E
which has semi-negative curvature. The hermitian metric ||-|| g induces a hermitian
metric on Og, (1). We claim that the curvature of Og, (1) is semi-positive. Indeed,
there exists a natural surjection 7* (E}) — Opg, (1) hence Op, (1) is a quotient of
the pull back bundle 7* (E}). From our assumptions it follows that 7*(E7) has
semi-positive curvature, therefore the same holds also for Og, (1) (see [G-H]).
Denote by n,, . = %RoEk(l) the corresponding semi-positive curvature form.

Next, endow £ with a hermitian metric and connection | - ||z, V so that Q, =
- RY is a Kéhler form on Y. We claim that form

2mi
Qp e =7 Qc + 0y,

is Kéhler. Indeed, 5, , restricts to a Kihler form on each of the fibres of P(Ey) —
Y (this form corresponds to the standard Kihler form on CP'**~! under an
identification of a fibre E, @ C* with C'** equipped with its standard hermitian
metric). Since Q is Kéhler and both of the forms 7*Q, and 5, , are semi-positive
it easily follows that their sum is strictly positive. This concludes the construction
of the symplectic Kéhler form Qg g r.

Before we proceed, observe that the line bundle Og, (1) has k natural sections
induced from projections of E;, = E @ CF onto the components of C*. We denote
these sections by oq,...,05_1.

Jointly transverse sections. The following definition is analogous to the notion of
complete intersections. Let (Y, Jy) be a closed complex manifold endowed with an
ample line bundle £ — (Y, Jy). Suppose we are given m+ 1 holomorphic sections
80,...,8m . Y — L. We say that they are jointly transverse if sg is transverse to
the zero section of £ and for every 1 < ¢ < m, the section s; is transverse to the
complex submanifold D; = {sg = --- = s;_1 = 0}. Note that in this case D, is a
codimension-7 complex submanifold of (Y, Jy ).

An important example is when L is a very ample line bundle. In this case there
always exist dimc Y + 1 jointly transverse sections.

Theorem 2.4.1. Let E — Y?™ L —Y?" and (Xgx, Qe ke, Jx ) be as above

and assume that:
o cither k >m+1,
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e ork=m-+1andl>1.
Suppose also that L — Y admits m + 1 jointly transverse sections so, ..., 8m :
Y — L. Then there exist constants ¢; > 0 such that:
L s=(0o®7*sg+ Y 1o, €0 ®07*s;) : Xp — Op, (1) @ 7*L is transverse to
the zero section so that . = {s = 0} 4s a smooth and reduced hypersurface.
2. The polarization P = (Xg k, Qp k., Jx g 2) is subcritical,

Proof. The proof proceeds by induction over m = dim¢ Y.

For m = 0, we may assume that Y is a single point. Then F = C
Xpp = CPpkti-1 ¢ # 50 € L =2 C, and 09 ® w*sp is a nontrivial section of
the line bundle O(1) ® C = O(1) — CP**!=1. Thus (XEk QB ko, Ixp i 2) =
(CPFH=1 o Jeprsi-1; 2) is just the subcritical polarization of CP*+~1 discussed
above.

Assume now that m > 1 and the theorem holds for m — 1. The sections

0! Xpr — Op,(1) and 7%sp : X, — 7*L are transverse to the zero section.
Moreover, their zero sets intersect transversally in the codimension-2 submanifold

Xy 4= P(EaCHY) Y,

where Y = {so =0} C Y and El = E|y. Now X, , — Y with the restrictions of
o1,...,05 and s1, . .., s satisfies the assumptions of the theorem for (m—1,k—1, ().
By the induction hypothesis there exist positive constants €, ..., €, such that

m
=0y ®n"sy + Z%iai ®7rs;
i=2
is transverse to Xz ;| and induces a subcritical polarization on Xz, ;. So the
theorem will follow from Theorem 2.3.1 once we have shown that

(X \ (o0 = 0} U {0 = O), Jx 0, = —log o0 @ 750

is a subcritical Stein manifold.
To see this, denote by y, e,z = (21, . .., zx) coordinates on Y, E, C* respectively.
Then ¢(y7 [6 : Z]) - ¢1 (y> [6 : Z]) ik ¢)2(y) where

Al 2
alfes ) = —tog(ry i) and dnte) = —oglon(u)I
The restriction of ¢ to a fibre 77 1(y) has a unique critical point [e : 2] = [0: (1 :
0 :---:0)] which corresponds to the minimum of ¢;. So the critical points of ¢
are precisely the points (y,[0: (1:0:---:0)]) with d¢s(y) = 0. After perturbing
the metric on £ we may assume that the critical points of ¢, are non-degenerate.
Then the critical points of ¢ are non-degenerate of index

indy j0:(1:0::0)y¢ = indy¢o + 0 < m < dime Xg g,

hence they are subcritical. (Il
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2.5. Proofs of the statements in examples 2.2.2 and 2.2.4

The example given in 2.2.2 is a special case of Theorem 2.4.1. In fact, Theo-
rem 2.4.1 implies the following slightly stronger statement:

Corollary 2.5.1. Let (Y?™ Jy) be a closed complex manifold of complex dimen-
sion m, and L — Y an ample line bundle which admits m + 1 jointly transverse
holomorphic sections. Let Qp be a Jy-Kihler representative of . If n > m then
(CP"x Y™ 0@ Qr, Jopn @ Jy) admits a subcritical polarization of degree 1.

Proof. The proof follows easily from Theorem 2.4.1: take [ = 0 (so that E = 0)
and k =n+1. Then Xp =CP" xY and Qg =0 ® Q. O

‘We now turn to the

Proof of the statement in example 2.2.4. Consider the projective bundle P(Ey, ,,, ) 5
CP™ where Ey ,, = Ocpm(—1) & C*.

We claim that there exists a biholomorphism f : X, — P(Eg ) with the
following properties:

e f*0g, (1) = Ox,,(H1).

o [* (7 Oppm (1)) = Ox,. ., (H2).
Indeed, write elements of P(Ej ,,,) as (I, [z : w]) where { € CP™, z € | C C™ !
and w € C*. Consider the projection

P P(Ej ) — CP™ (121 w]) = [z : ).

The preimage p~1([z : w]) is a single point if z # 0 and a copy of CP™ if 2 = 0. By
uniqueness of blow-ups, this implies that P(E} ,,) is biholomorphic to the blow-up
of CP™ " along P¥~' = {[z : w| | 2 = 0}. Under this identification, H; and Ho
correspond (up to linear equivalence) to the proper transforms of the hypersurfaces
{w; =0} and {z5 = 0}. Thus
Hi~{(l,[z:w]) | z€l,w1 =0}, Hy~{(l,[z:w])]|z€l,z0 =0},

and the claim follows.

Note that the vector bundle Ej ,, is Griffiths semi-negative and O, (1) is
ample. Moreover, O,.. (1) admits m+1 jointly transverse sections. The corollary

now follows from Theorem 2.4.1 (with [ = 1 and k > m) by pulling everything
back via f. (Il

2.6. Subcritical polarizations in low dimensions

Surprisingly enough in real dimension < 4 there exist only two subcritical polar-
izations.
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Proposition 2.6.1. Let P = (M,Q,J; ) be a subcritical polarization.
o Ifdimp M = 2 then M = CP', ¥ = pt and kp = 1.
o IfdimpM =4 then M = CP?, ¥~ CP! is a projective line and kp = 1.

Proof. Assume first that dimp M = 4. Let A C M be the skeleton obtained
from Corollary 3.4 below and denote by g the genus of ». Being in dimension
4, we shall identify 2-homology with 2-cohomology without explicitly mentioning
Poincaré duality.

Since dimg A < 2, by a general position argument we get that:

Hi(M:;R) = H;(3;R) = R¥, and Hy(M;R)=R[3].

Thus x(M) =3 —4g and o(M) = 1. As by(M) = 1, there exists a € R such that
M = alQ)]. Substituting this into the signature formula ¢} - e = 2x(M)+ 30 (M)
we get a’[Q] - [Q] = 9 — 8¢, which implies that g < 1. By the adjunction formula
applied to > we have:

20-2=2-N—cM . % =kp(kp —a)[Q] - [Q].

As g <1, we conclude that a > kp > 0 and so M is monotone. By the Enriques—
Kodaira classification of complex surfaces ([B-P-V]), a monotone Kéhler surface
M must be rational. In particular it must have x(M) > 3 with equality if and
only if M = CP2. As x(M) = 3 — 4g, this proves that g =0 and M = CP2.

Now the only smooth rational curves in CP? are projective lines and con-
ics. However, the complement of a conic in CP? has the homotopy type of RP?
(see [Bi-1] for example), which contradicts subcriticality. Thus the only possibility
we are left with is M = CP?, ¥ = projective line and kp = 1.

Assume now that dimgp M = 2. In this case > is just a bunch of points.
Suberiticality implies that b1(M \ ) = 0. However the only punctured surface
with b; = 0 is the 2-sphere minus one point. (I

Remark. J. Etnyre pointed out to us a more topological proof of Proposition 2.6.1
which does not use the Enriques—Kodaira classification.

2.7. A remark regarding the explicitness of the examples

Let (M, €, J) be a Kéhler manifold with [Q] € H?(M;Z) and £ — M a holomor-
phic line bundle with ¢ = k[Q]. Let |£| = P(H°(M, £)) be the linear system
defined by £. In this paper we often make non-explicit statements of the kind
“there exists > € |L£| such that the polarization P = (M, <, J;X) is subcritical”
without specifying which Y. precisely we take (It may be possible that for one
choice of > the corresponding polarization is subcritical while for another one it
is not).

The justification is that the symplectomorphism type of (¥,w, = Q|») does
not depend on the specific choice of ¥ € |£] (as long as it is smooth and reduced).
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Since what we are interested in is the symplectic topology of manifolds that can be
realized as hypersurfaces in subcritical polarizations, we do not really care which
“copy” of (¥, w,,) in |£] gives rise to the subcritical polarization. All we care about
is that there exists at least one such element in |£|.

Let us briefly explain why the symplectomorphism type of (32, wy,) is uniquely
determined by L itself. Suppose that there exists a smooth and reduced element
Y € |£]. In this case the subset |L|smooth C |£| consisting of all smooth and
reduced divisors is the complement of a proper closed subvariety of |£|. Therefore
|£]|smootn is open dense in |£] and furthermore it is path connected. This implies
that any two hypersurfaces ', %" € |£|smooth are isotopic inside M, in particular
also diffeomorphic. Moreover, if we endow ¥/ and Y/ with the symplectic forms
w,, = Qlyy and w,, = Q|5 respectively, then it easily follows by Moser’s argument
that (3, w,, ) is symplectomorphic to (%", w,,,).

3. Decompositions of symplectic manifolds

One of our main tools in studying the symplectic topology of subcritical manifolds
is the decomposition technique developed in [Bi-1]. In this section we briefly
summarize the ingredients of this theory which are relevant for our purposes. We
refer the reader to [Bi-1] for more details.

Standard symplectic disc bundles. Let P = (M,€, J;Y)) be a polarization of degree
kp of a Kahler manifold.

Put wy, = Qs and let 7 : Ny, — ¥ be the (complex) normal line bundle of 3
in M with first Chern class ¢'® = kplw, ] € H*(3;R). Let || - || be any hermitian
metric on Ny, and denote by Fx; = {v € Ny, | [[v]| < 1} the open unit disc bundle
of Ny. Choose a connection V on Ny, with curvature RV = 2mikpws, and denote
by oV the associated transgression 1-form on Ny \ 0 defined by:

. a(vu)(u) =0, a(vu)(iu) = & for every u € Ny \ 0.

e aV|gv =0, where HV is the horizontal distribution of V.

With this normalization of oV we have daV = —7n*(kpwy). Define now the
following symplectic form wea, on Ey:

Wean = kpﬂ-*wz: + d(rzav)v

where r is the radial coordinate along the fibres induced by || - ||. It is easy to
check that we.y is well defined, that it is symplectic and has the following three
properties:

1. All fibres of 7 : 'y — X are symplectic with respect to wean and have area 1.

2. The restriction of weay to the zero section ¥ C Ex; equals to kpwy,.

3. Wean is Sl-invariant with respect to the obvious circle action on Ff.

The subscript in wea, suggests that this symplectic structure is canonical al-
though the definition of (Ex;, wean) a priori depends on ||| and V. Indeed, different
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choices of ||-|| and V in fact lead to symplectically equivalent results. The following
can be easily proved using a suitable version of Moser argument (see [M-S]):

Proposition 3.1. The symplectic type of (Ex, wean) depends only on the symplec-
tic type of (3, wy ). In fact, (Es,wecan) is uniquely characterized (up to symplecto-
morphism) by properties 1-3 above.

In view of the above proposition we shall henceforth call (Fy, wean) the standard
symplectic disc bundle over (¥, w,,) modeled on Ny,. Often we shall multiply wean

by a positive number ¢ > 0 (usually by ¢ = %) and refer to (Ex, cwean) as the

standard symplectic disc bundle with fibres of area ¢.?

Remarks. Here are two alternative descriptions of the symplectic manifold
(EE7 wcan):

1. If we denote by Py, = {v € Ny, ’ |lv|| = 1} C Ny the unit circle bundle and
by D(1) C C the open unit disc, then (Fy;, wean) = (Ps X g1 D(1), kprn*wg, +
d(r?a)), where S acts diagonally in an obvious way on both components,
7 is the radial coordinate on D(1), = : Ps, — X is the projection and « is a
connection 1-form on Py with do = —kpm*w,..

2. (Fs, wean) can be also viewed as a “one-sided” compactification of the neg-
ative symplectization of the contact manifold (Pg,{ = ker o). Indeed, it
is not hard to see that (Fx \ ¥, wean) is symplectomorphic to the negative
symplectization (Ps x (0, 00),d(e"*«)) where ¢ is the coordinate on (0, 00).

Isotropic CW-complexes. Let M be a smooth manifold. A subset A C M is
called an embedded CW-complex if there exists an abstract CW-complex K and
a homeomorphism i : K — A C M such that for every cell C' C K the restriction
ilint cain (pamcy : Int G — M is a smooth embedding. We denote dim A =
dim K = max{dim C | C C K is a cell of K}. Henceforth we shall always assume
all our CW-complexes to be connected and finite.

Let A C (M, Q) be an embedded CW-complex in a symplectic manifold. If for
every cell C as above, i(Int C) is an isotropic submanifold of (M, 2) we say that A
is an zsotropic CW-complex. Note that if A is isotropic we have dim A < % dimp M.
When this inequality is strict we call A a suberitical isotropic CW-compler.

The skeleton associated with a polarization. Let P = (M,€Q, J;Y) be a polarized
Kéhler manifold. Let ¢, : M \ ¥ — R be the associated function defined in
Section 2. Denote by g, ; = Q(:,J-) the Kéhler Riemannian metric associated
with the pair (Q,.J).

With this data fixed we have a distinguished subset Ap C M \ ¥ defined as

follows. Consider the gradient vector field gradgn P of the function ¢, with

2 Note that now the restriction of this symplectic form to 3 C Ex equals to ckpws,, not kpws,.
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respect to the metric g, , and let I} be its flow. Define Ap C M \ X to be the
union of all the stable submanifolds corresponding to critical points of ¢, that is

Ap={xe M\¥| tlirglo Fy(z) € Crit(p,)}.

Note that Ap C M \ ¥ is compact since F; is complete at —oo and Crit(p,,) is a
compact subset of M \ X.

We remark that Ap is completely determined by the polarization P without
any further choices since the function ¢, is determined (up to an additive constant)
by P. We shall therefore call Ap the skeleton associated with the polarization P.

The importance of Ap lies in the following Theorem from [Bi-1]:

Theorem 3.2. Let P = (M,Q,J; %) be a polarized Kdihler manifold. Then the
complement of the skeleton (M \ Ap, Q) is symplectomorphic to the standard sym-
plectic dise bundle (Eny,, %wcan) over Y. which is modeled on the normal bundle

Ny, and has fibres of area %.

It should be pointed out, however, that without any further assumptions on
the function ¢, and the metric g, , the skeleton Ap might have a very “wild”
structure. Moreover, even if ¢, is Morse Ap might be quite far from being a
“reasonable” space (see [Bi-1] for further discussion on this issue). On the other
hand, the following collection of results from [Bi-1] shows that it is always pos-
sible to modify € into € (which is diffeomorphic to ) in such a way that the
corresponding polarization P’ = (M, €', J; X)) gives rise to a skeleton which is an
isotropic CW-complex.

Theorem 3.3 ([Bi-1]). Let P = (M,Q, J; ) be a subcritical polarization of degree
kp. Then there exists a J-Kdahler form € that coincides with € near ¥ and
is cohomologous to Q and such that the polarization P = (M, J;Y) has the
following properties:

L. The Stein manifold (V. = M\ %, J,¢,,) — R is subcritical. Moreover,
P = pp outside a compact subset of V' which contains all the critical
points of .., .

2. The skeleton Ap: associated with P’ is an Q' -isotropic CW-complex with
dimp AP/ < % dimpg M.

3. (M N\ Ap:, Q) is symplectomorphic to the standard symplectic disc bundle
(Fy, #wcm) modeled on the normal bundle Nx; of 33 in M and whose fibres
have area ﬁ. Moreover, a symplectomorphism Fp : (Ex, #;wcan) — (M\
Ap:, Q') can be chosen so that it sends the zero section > C Ex onto Y C
M\ Ap: identically, namely Fpls = lx.

For the proofs see Theorems 2.6.A, 2.6.C, and 8.2.A in [Bi-1].
The following is a simple consequence of Theorem 3.3 and Moser’s argument:
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Corollary 3.4. Let P = (M,Q,J;%) be a subcritical polarization of degree kp.
Then there exists an Q-isotropic CW-compler A C M\ ¥ with dim A < %dimR M
and a symplectomorphism F : (Ey, %wcan) — (M \ A,Q) which sends the zero
section X C Eyx; onto ¥ C M\ A identically.

4. Lagrangian embeddings: theorems and examples
4.1. Setup

Monotone manifolds. Recall that a symplectic manifold (M, ) is called mono-
tone if there exists a positive real number Ay gy such that le\/[ = A(M,Q) [©] in
H?(M;R). Similarly, (M,Q) is called spherically monotone if the following two
conditions are satisfied:

1. ¢} does not vanish on ma(M).

2. There exists a positive real number X such that ¢}/ = A\[Q] on mo(M).
Note that due to condition 1 the number A is uniquely determined by € hence we
shall denote it from now on by A(ur,qy.

Examples.
1. (CP™,0o¢pn) is monotone with A =n+ 1.
2. (CP™ x CP™,0 @ o) is (spherically) monotone if and only if n = m.
3. Let (Y, w, ) be a closed symplectic manifold for which both ¢} and w,, vanish
on m2(Y). Then (CP™ x Y,0 & w, ) is spherically monotone but in general
not monotone. Again, A=n+ 1.

Tame symplectic manifolds. In what follows we call a symplectic manifolds (X, w, )
tame if it admits an w,-compatible almost complex structure Jx such that
(X,wy, Jx) is either geometrically bounded in the sense of [A-L-P| or conver at
infinity in the sense of [E-G]. This class of manifolds includes: closed symplec-
tic manifolds, Stein manifolds / domains, and interiors of compact symplectic
manifolds with Jx-convex boundary. We remark that X is allowed to be zero
dimensional (namely a point).

4.2. Main results

Let (3, w,,) be a closed symplectic manifold. We say that it can be realized as a
hypersurface of a suberitical polarization if it can be embedded into a subcritical
polarization P = (M, £, J; %) in such a way that w, = Q5.

Theorem 4.2.1. Let (X, w,,) be a symplectic manifold (with dim > > 0) that can
be realized as a hypersurface of a subcritical polarization of degree kp. Let (X, w,)
be a tame symplectic manifold. Assume that the following conditions are satisfied:
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1. [wy] and ¢ both vanish on mo(X) (resp. in H?(X;R)).
2. (¥, wy) is spherically monotone (resp. monotone).
3. )‘(EME) and kp satisfy the following inequality:

A(w) . dime ¥ +dime X + 1
kp Z '

Then (¥ x X,wy @ w, ) has no closed simply connected Lagrangian submanifolds
(resp. closed Lagrangian submanifolds L with Hy(L;Z) =0).

Remark. Note that the assumption “[w, | vanishes on m3(X)” allows X to be a
closed manifold (e.g. T?™). However, the analogous condition “jw,| vanishes in
H?(X,R)” implies that X cannot be a closed manifold (unless it is 0-dimensional).

Strongly monotone submanifolds. Let (3, w,) be a symplectic manifold that can
be realized as a hypersurface of a polarization P = (M, €, J; ). We say that
(¥, wy,) is strongly monotone in P if there exist n,v € N such that

net =vel® in HY(%;Z).

Here Ny — X stands for the (complex) normal line bundle of ¥ in M.

We remark that the integers 7, v depend on the polarization P and not only
on (¥, w,) because we need to know the value of ¢)'® in H?(3;Z) (not just in
H?(3;R)), or in other words, we need to know the topological type of Ns. The
ratio % however depends only on (¥, w;) and the degree of the polarization kp

A
since it is equal to % (where ¢ = A\nw,)lws] in H?(3;R)).

Theorem 4.2.2. Let (X, wy) be a symplectic manifold (with dim¥. > 0) that can
be realized as a strongly monotone hypersurface of a subcritical polarization P with
n,v defined as above. Let (X ,w,) be a tame symplectic manifold. Assume that
the following conditions are satisfied:

1. |wy | vanishes in H?(X;R) and ci¥ is a torsion element in H*(X;Z). Denote
by tx € N its order.
2. n,v satisfy the inequality:
v Amw) - dime ¥ 4 dime X + 1
n  kp 2 ’

Let L C (X x X,w, ®w,) be a closed Lagrangian submanifold. Then H'(L;Z/qZ)
lem@.m,tx) o
3 .

#0, where g =v

Remark. By the universal coefficient formula, “H'(L;Z/qZ) # 0" is equivalent
to saying that Hq(L;Z) either has a non-trivial free summand, or it contains a
non-trivial finite cyclic subgroup whose order divides ¢.
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Theorem 4.2.3. Let (¥, w,) and (X,w,) be symplectic manifolds satisfying the
same assumptions as in Theorem 4.2.2, with the exception that [w,] is only as-
sumed to vanish on mo(X). Let L C (¥ X X,wy, ® w,) be a closed Lagrangian
submanifold. Then either w1 (L) contains an infinite cyclic subgroup, or Hi(L;Z)
contains a non-trivial finite cyclic subgroup whose order divides q, where q is de-
fined in Theorem 4.2.2.

4.3. Corollaries and examples
As a corollary to Theorem 4.2.1 we have:

Corollary 4.3.1. Let (X*™ w,) be a 2m-dimensional tame symplectic manifold,
and suppose that ¢ and w, both vanish on m(X) (resp. in H*(X;R)). Let
n > m. Then (CP™ x X°™ o0 @ w,) has no closed simply connected Lagrangian
submanifolds (resp. closed Lagrangian submanifolds L with H{(L;Z) = 0).

Proof. In Section 2 we have seen that (CP™, o) can be realized as a hypersurface of
a subcritical polarization (of CP™ 1) of degree 1. Note that (CP", ) is monotone
with Acpr o) = n + 1. Therefore the inequality

AS,ws) ., dime ¥ 4 dime X 41
kp 2 '

becomes n+1 > $(n+ m + 1) which is equivalent to n > m. O

Construction. Note that the result is sharp in the following sense. Let m = n+1.
Then for any 2m-dimensional symplectic manifold (X?™, w, ), there exists ag > 0
such that for every a > ag, (CP™ x X?™ ¢ @ aw, ), admits a Lagrangian 2n + 1-
sphere.

The construction goes as follows. Denote by 27t ¢ C**! the unit sphere
and by h: 8271 — CP" the Hopf map. Then

S5 2 (7, h(2)) € (C"T x CP™,wa @ 0)

is a Lagrangian embedding (see [A-L-P]).

Now let (X,w, ) be a 2n + 2-dimensional symplectic manifold that admits a
symplectic embedding of a closed 2n + 2-dimensional ball of radius 1, say ¢ :
B (1) — (X, wy ). It is easy to check that

St — 9B 2(1) 5 2 = (¢(Z), h(2)) € (X x CP™, wy ® 0gta)

is a Lagrangian embedding.

To complete the construction, note that by Darboux’ Theorem for every sym-
plectic manifold (X,w, ) there exists ag > 0 such that for every a > ag, (X, aw, )
admits an embedding of a ball as above.
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Eramples of (X*™,w, ). Let us mention a few examples of manifolds that can play
the role of (X?™ w, ) in Theorem 4.2.1 and Corollary 4.3.1:

e X = pt.

e Any product of closed orientable surfaces of genus > 1 (e.g. T?™), the
product being endowed with any symplectic structure. More generally, any
closed aspherical symplectic manifold.

o Any Stein manifold (X, w, ) with ¢* vanishing on mo(X) (resp. in H?(X;R)).
For example, (C™,wqq) or cotangent bundles X = T*(N) of any closed
manifold N, endowed with their standard symplectic structure.

¢ Products of manifolds from the above list.

Proof of Theorem A. Immediate from Corollary 4.3.1. O

For symplectic manifolds (X, w, ) with ¢ being a torsion element in H?(X;Z)
we get from Theorem 4.2.2:

Corollary 4.3.2. Let (X*™,w, ) be a 2m-dimensional exact tame symplectic man-
ifold, and suppose that ¢ is a torsion element of order tx in H*(X;Z). In
case tx is even put T, = %tX, in case tx is odd put T, = tx. Letn > m.
Then every closed Lagrangian submanifold L C (CP™ x X*™ 0@ w, ) must satisfy
HYL;Z/(2n + 2)1,Z) # 0.

Proof. Note that (CP", &) is strongly monotone in CP"*! with = 1 and v = n+1.
Hence by Theorem 4.2.2, H'(L; Z/qZ) # 0 for ¢ = (n+1)lem(2,tx) = 2(n+1)7y.
O

Using Theorem 4.2.3 instead of Theorem 4.2.2, the assumption on the exactness
of w, can be weakened (so as to allow X to be a closed manifold):

Corollary 4.3.3. Let (X*™, w, ), tx, 7y andn > m be as in Corollary 4.3.2, with
the exception that [wy | vanishes on wo(X) instead of the assumption that wy is
eract. Let L C (CP™ x X*,0 @ w,) be a closed Lagrangian submanifold. Then
either w1(L) has an infinite cyclic subgroup, or Hy{(L;Z) contains a non-trivial
finite cyclic subgroup whose order divides (2n + 2)7x.

Proof of Theorem B. Immediate from Corollaries 4.3.2 and 4.3.3, with 7, = 1. O

Another class of examples. Let us describe another class of examples to which
Theorem 4.2.1 applies. Let (Y?* w,, Jy) be a Kihler manifold of real dimension
9k and let £y — Y be a holomorphic line bundle with ¢“ = [w,]. Assume that:
1. ¢} and w, both vanish on m(Y).
2. The line bundle £y — Y is very ample (or more generally, £y admits k+ 1
jointly transverse holomorphic sections, see Section 2).
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Consider the line bundle £ = «*  O(1) ® 75 Ly on CP™ x Y. Here, 7.y, :
CP"xY — CP" and 7y, : CP" x Y — Y are the obvious projections. Finally,
let ¥.27 262 — CP™ x Y?* be the zero set of a generic holomorphic section of the
line bundle L. It follows from Bertini’s theorem that 3. is irreducible, smooth and
reduced. We denote by wy, the restriction (¢ @ w, )|n. Note that the symplectic
type of (¥, w,,) does not depend on the choice of the generic section used to define

Y} (see the discussion in Section 2.7 above).

Corollary 4.3.4. Let (Y2, w,.) and 3 be as above, and let (X*™,w, ) be a 2m-
dimensional tame symplectic manifold such that ¢ and w, both vanish on mo(X).
Assume that n > k+m. Then (3 X X, w, ® wy) has no simply connected closed
Lagrangian submanifolds.

Proof. By Corollary 2.5.1, (CP" XY, 0 ® w,,, Jepn @ Jy;Y) is a subecritical polar-
ization of degree 1. By Lemma 5.1.2 the vanishing of ¢} and w,. on m5(Y) implies
that (%, w,,) is spherically monotone with )\(E7w2) = n. Hence by Theorem 4.2.1,
there exists no simply connected closed Lagrangian submanifold provided that
n>w,i.e.n>k+m. O

Again, (X,w, ) can be taken to be any of the manifolds in the list mentioned
after Corollary 4.3.1. As for (Y,w,., Jy ), one can take (Y, Jy) to be an Abelian vari-
ety endowed with an ample line bundle £y whose order of divisibility in Pic(Y, Jy)
is at least 3. It is well known that such a line bundle is very ample (see [G-H]).
For wy. one can take any Kahler representative of cfy.

Proof of Theorem E. Apply Corollary 4.3.4 with Y = C € CP™ and Ly — Y
the pullback of the hyperplane bundle on CP"™. The assumption genus(C) > 0
ensures m(Y) = 0. The explicit form of ¥ follows from Example 2.2.2. O

5. Lagrangian embeddings: proofs

In this section we prove our main results on Lagrangian embeddings: Theo-
rems 4.2.1, 4.2.2, 4.2.3, and Theorem C from the introduction.

5.1. Preparation for the proofs

The following theorem from [B-C] is an important ingredient in our study of La-
grangian submanifolds. A special case of this theorem, namely when V = C", has
been established before by Polterovich [Po], in [A-L-P] and by Oh [Oh-2]. See also
Viterbo [Vi-1] for related results)

A Lagrangian submanifold L C (M,w) is called monotone if [w] = Ap on
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7o (M, L) for some constant A > 0 (cf. [Oh-1]). Here p : mo(M, L) — Z denotes the
Maslov index. Note that if (M,w) admits a monotone Lagrangian submanifold
then (M,w) is automatically spherically monotone.

Theorem 5.1.1 ([B-C]). Let (V,Jv,p) be a subcritical Stein manifold and
(X,wy,JJx) a tame symplectic manifold for which wy wvanishes on mo(X). Let
L C(VxX,w,®wy) be a closed Lagrangian submanifold. Then there exists
a non-constant Jy & Jx-holomorphic disc D C V x X with 0D C L such that
w([D]) € dim L+1. Moreover, if we assume that L is monotone, H'(L; Z/2Z) # 0
and that dimg(V x X) > 4, then the disc D may be assumed to satisfy p([D]) <
dim L.

We shall also need the following lemma.

Lemma 5.1.2. Let P = (M,Q, J; %) be a polarization of degree kp. Assume that
either dimp M > 6, or dimg M = 4 and P is subcritical. Then:
1. Q wanishes on wo(M) if and only if wy, vanishes on mwo(X).
2. If (3, wy,) is spherically monotone (resp. monotone) then so is also (M, ).
FPurthermore, in this case Ay ) = )\(vaz) + kp.

Proof. If dimg M > 6 the lemma follows immediately from Lefschetz hyperplane
theorem, which implies that the inclusions » < M induces surjective maps on
and Hs. The case of subcritical P with dimg M = 4 follows from Corollary 3.4 and
a general position argument. The formula Ay q) = )\(sz) + kp is an immediate
consequence of the adjunction formula (see [G-H]). O

5.2. Proof of Theorem 4.2.1

Outline of the proof. Let us explain first the main ideas of the proof and how the
fact that (3, wy ) can be realized as a hypersurface of a subcritical polarization is
used.

Suppose, contrary to the statement of the theorem, that (X x X, w, ®w, ) does
admit a simply connected Lagrangian submanifold L.

By assumption there exists a subcritical polarization P = (M,Q, J;¥) with
Qlz = wy. The first step of the proof is to climb one dimension higher and
construct a monotone Lagrangian submanifold L, C ((M \ ) x X,Q & w, ) which
is built as a circle bundle over L. For this purpose we use the decomposition
technique described in Section 3.

The next step relies on the fact that M \ ¥ is a subcritical Stein manifold. By
Theorem 5.1.1 there exists a non-constant holomorphic disc D C (M \ ¥) x X
with boundary on L, such that:

u([D]) < dime(M x X).
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Next we combine the disc bundle structure on M \ A, described in Section 3,
with the fact that L is simply connected to cup the disc D with another symplectic
disc so as to obtain a sphere S C M x X with |, 5§ > 0. Moreover, we can compute
the value of [, Q.

The upper bound on p([D]) and a computation of the Maslov number of the
other disc give us an upper bound on the first Chern number ¢;([S]) in terms of
dime(M x X).

Finally we use the monotonicity of (M, Q). Comparing the ratio between the
upper bound on ¢;([S]) and the area [, with the number A(y; o) will give us a
contradiction. It turns out that the inequality in assumption 3 of the statement
of Theorem 4.2.1 is precisely the one needed in order to get this contradiction.

We now turn to the

Proof of Theorem 4.2.1. We first prove the statement of the theorem regarding
simply connected Lagrangians. The case of Lagrangians with Hy(L;Z) = 0 is
similar and we will indicate at the end of the proof the needed adjustments.

Suppose that there exists a simply connected Lagrangian L C (X x X, w,®w, ).
By assumption, > can be included in a subecritical polarization P = (M, Q, J; X))
with QIE = Wy,

Step 1. Let (B, wean) be the standard symplectic disc bundle over (3, wy,) mod-
eled on the normal line bundle Ny, of » in M and denote by 7 : Esy; — > the
projection.

For every 0 < r < 1 write

P, ={veE,||v|=r}CE,

for the circle subbundle of radius r. Denote by 7, : P, x X — 3 x X the obvious
projection coming from P, — ¥. Next, write L, C P, x X C E_ x X for the
restriction of the circle bundle P, x X — ¥ x X to L, namely L, = #*(L).

Finally, for every fixed 0 < r < 1 we endow E_ x X with the following symplectic
form

Or = —Wean @ (1 — rz)wx.
kp
A straightforward computation (based on the definition of wcan) shows that
L, C (E; x X,&,) is a Lagrangian submanifold.
We now have the following
Lemma 5.2.1. The circle bundle 7|, : L, — L is trivial. In particular L, =
L x St

The proof is given after the end of the present proof.
Note that the fibres of the circle bundle L, — L inherit an orientation induced
from the circle action on the fibres of P, — Y. In what follows we shall denote
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by « a fibre of the circle bundle L, — L endowed with this orientation. With this
notation we have w1 (L,) = Z[y].

Step 2. Let ¢, : V= M \ ¥ — R be the plurisubharmonic function on the Stein
manifold (V,.J) associated with P. Let Ap be the corresponding skeleton.

Due to Theorem 3.3 we may assume (replacing © with Q) that (V, J, ¢, ) is
a subcritical Stein manifold, that Ap is a subcritical isotropic CW-complex, and
that there exist a symplectomorphism

Fp . <Eg, #wcan> — (M \ AP,Q)

which sends the zero section ¥ C Ey identically onto > C M.
Denote by G the symplectomorphism

G=Fpx1:(Bsx X,d) — ((M\Ap)xX7§r)7

where Q, = Q@ (1 — 1w, .
Consider now the Lagrangian submanifold G(L,) C (M x X,€,). Note that
G(Ly) lies in fact inside (V x X, w,, @ (1 —7%)wy).

Lemma 5.2.2. There exists 0<r <1 such that G(L,)C (V x X, wy., ®(1 —rHw, )
28 monotone.

Again, the proof is postponed until the end of the current proof. From now on,
let r be the constant provided by Lemma 5.2.2.

Step 3. Let Jx be an w,-compatible almost complex structure which realizes
(X,wy, Jx) as a tame symplectic manifold. Put Jyxx = J® Jx.

We are now in the position to apply Theorem 5.1.1 since (V, J, Weo, ) is a subcrit-
ical Stein manifold, w, vanishes on m5(X), G(L,) is monotone, H(L,;Zs) # 0,
and dimg (V' x X) > dimp V' > 4.

By Theorem 5.1.1 there exists a non-constant .Jy « x-holomorphic disc D c
V x X with boundary on G(L,) such that u([D]) < dime V + dime X.

Since dimg V' > 4, the (real) codimension of Ap x X in V' x X is higher than
2. So by slightly perturbing D away from its boundary we get a symplectic disc
(which we continue to denote by D) with s Q, > 0and p([D]) < dime V+dime X
that lies in the complement of Ap x X in V' x X. In other words, we may assume
D to lie in the image of (Ex \ ) x X under G. Going back to Fx, x X via G~*
we get a symplectic disc

D=GYD)c (Ex\¥%)x X
with boundary on L, such that fD &r > 0 and p([D]) < dime ¥ + dime X + 1.

Step 4. As wy(L,) = Z[y], there exists a unique integer { such that 9[D] = l[v] in
71(Ly). We claim that [ < 0.
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To prove this, denote by pr, : By x X — X and pry Fy x X — FEyx, the

obvious projections. Let Ex(r) = {v & Ex ’ o]l <7} — ¥ be the closed disc
subbundle of radius r in Fy; and consider the pull-back disc bundle

X 1:FExn(r)x X — X xX.

Pick a point p € L and denote by F, = (7 x 1)~!(p) the fibre over p. Note that
F, is a symplectic disc (with respect to @,) with boundary on L,. Moreover, with
the orientation induced on F), by &, we obviously have d[F,] = [y] € w1 (L,).

As 9[D] = l[v], we can choose another representative D’ of [D] € mo(Exx X, L)
whose boundary winds around one of the fibres [ times, that is, 9D’ = lv.

Consider now the sphere S = D' Ugps (—1)F, obtained from gluing the disc D’
along the boundary to the (—!) multiple cover of the fibre F,. Since w, vanishes
on 73(X) and pr, (F;) = pt we have

/ priwy :/prj(wxqtl/ priwy =0
D! s F,

As [, &r >0, we get that [, pr’jEE Wean > 0. Note that wean = d((r2 — 1)av) on

Fx \ %, where oV is the transgression 1-form on F,, (see Section 3). So by Stokes
formula,

0< / Pry Wean = I(r? — 1)/a =1(r* - 1).
! ¥
This implies that { < 0, as stated.

Step 5. Denote by clT(EE) € H?(Fx;Z) the first Chern class of the tangent bundle
of the symplectic manifold (Fy, %wcan). From the assumptions of the theorem
we get (via the map Fp) that

A9
kp
On the other hand, from step 3 we have
2ci P20 ([8]) = w(ID)) + (~Dp([F,]) < dime X+ dime X +1+2(=0). (1)

Put B = (pr,,_)«([S]) € ma(Ex). Since ey vanishes on m(X) we also have:

T(E
01( Z):F;SC{M:

[wcan] on WQ(EE).

A0 AM,Q AM,Q
c?(EEXX)([S]) :%/ Wean = (kP )([E]~B _ (kp )(—l).

Combining this with inequality (1) and the fact that { < 0 we obtain

ASwy)  A,Q) | < dime Y4 dime X 41+ 2(-1)
kp kp - 2(-1)
st 2 ?
in contradiction to the assumption of the theorem. This concludes the proof of
the statement of Theorem 4.2.1 regarding simply connected Lagrangians.

-1
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The statement regarding Lagrangians L with Hi(L;Z) = 0. In this case the proof
goes along the same lines as above. The only difference is that instead of work-
ing with the homotopy groups m(L,), m(Fx x X, L,) one uses the correspond-
ing homology groups. For example, now we have Hy(L,;Z) = Z[v] rather than
71(Ly) = Z[v]; the disc D’ should be replaced by a surface (with boundary) rep-
resenting [D] € Hy(Fy, x X, L,), and so on. O

We now turn to the proofs of Lemmas 5.2.1 and 5.2.2 stated in the course of
the proof.

Proof of Lemma 5.2.1. We give the proof for the case of simply connected L. The
case of L satisfying Hy(L;Z) = 0 is very similar and even simpler.

Let cir € H?(L;Z) be the first Chern class of the circle bundle L, — L. The
triviality of the circle bundle L, — L is equivalent to the vanishing of clL*.

Note that H?(L;Z) has no torsion because H;(L;Z) = 0. Therefore it is enough
to show that ¢!~ vanishes in H2(L,;R).

Denote by ir, : L — ¥ x X the inclusion. Computing in H?(L;R) we have:

ef" =ippryel” = ijpryel® = if (kppryfwy)), (2)

where pr_ : ¥ x X — ¥ is the obvious projection.

Denote by pr, : ¥ x X — X the other obvious projection. Since [w, | vanishes
on my(X) it follows that pr’ [w, | vanishes also on wo(L). As L is simply connected,
the Hurewicz homomorphism 73(L) — Hy(L;Z) is surjective, and so i} pr¥ [wy]
vanishes in H?(L;R).

Finally, from L being Lagrangian for wy, © w, we conclude that if prj [wy] is
also zero in H?(L;R). Now we get from (2) that ¢i™ = 0. O

Proof of Lemma 5.2.2. Again, we present the proof for the case of L being simply
connected. The case Hy(L;Z) = 0 is completely analogous.

Note that Gy : ma((Es \ ¥) x X, Ly) — m2(V x X,G(L,)) is surjective due to
subcriticality. Therefore it is enough to prove that there exists r such that L, is
monotone in ((Fy \ ¥) x X, &, ).

Let A € mo((Ex\X)x X, L,). Denote by §(A) € Z the unique integer such that
0A = 6(A)[y] € m1(Ly). Let F, be a fibre as in step 4 of the proof of Theorem 4.2.1.

With these notations the class A —§(A)[F,]| € mo(Fx x X, L,) is the image of a
spherical class B € ma(Ey, x X ) under the natural homomorphism m(Eyx x X) —
WQ(EE X X7 LT)

It is easy to see that wp([F,]) = 2, hence 20?(EEXX)(B) = p(A) —26(A). On
the other hand, w, and ¢ vanish on 72(X) and so:
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1
zclT(Ez xX)(B) — 2pr’,;2(cr{(Ez))(B) = 2)\(M,Q)/ pr’fEZ (k_wca")
B P
. . 1
= 2>‘(M,Q)/ Wy = 2>‘(M,Q)/ Wy — 2)\(]\/[79)5(14)/ k—wcan
B A By R

#

" 1
— 2>\(M,Q)/ Wy — 2)\(M’Q)5(A)k_r2.
A P

Therefore, if we choose r = ( kp )E we have p(A) = 2A(y,0)[@0r](A) for every

A(M, )

Aemy((Ex\ %) x X, L,). Note that 2022 —20%) 4 151 and so 0<r<1. O

5.3. Proofs of Theorems 4.2.2 and 4.2.3

Proof of Theorem 4.2.3. We use the same notations as in the proof of Theo-
rem 4.2.1. We denote by P = (M, €, J;¥) the subcritical polarization mentioned
in the statement of the theorem.

Let L C (¥ x X,w;, ®w, ) be a closed Lagrangian submanifold. Assume that
71(L) has no elements of infinite order. We shall prove that H(L;Z) contains a
non-trivial cyclic subgroup whose order divides q.

Let L, — L be the circle bundle as in the proof of Theorem 4.2.1.

Claim. The bundle L, — L is not trivial.

Before we prove this, let us explain how it implies the desired statement on
H(L;Z).

Denote by ¢!~ € H?(L;Z) the first Chern class of the circle bundle L, — L
and let 77, : L — 3 x X be the inclusion. Since L, — L is not trivial, ch £0.

As L is a Lagrangian submanifold, T(X x X)|; = T(L) ® C and therefore
2i*LclEXX = 0. Denoting by pr_ : X x X — Y and by pr, : ¥ x X — X the obvious

projections, this can be written as:
2i3 prict + 2iprt e = 0. (3)

Recalling that ve}’® = nef, cf™ = % pric)™ and txcf = 0, we have:

lem(2, 7, ¢
gey” = iLpry (7%( ;777’ X)VC]1VE>

= i pry (lcm(Z, 7, tX)clz) =1y, <lcm(27 mt;d(pr’éc? + prl c{()) =0.

Summarizing all the above we see that ch #+ 0 but qch = 0. This proves
that H?(L;Z) contains a non-trivial cyclic subgroup whose order divides ¢. It
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easily follows from the universal coeflicient formula that the same also holds for
Hy(L;Z).

It remains to prove that the circle bundle L, — L is not trivial. Indeed, assume
that this bundle is trivial. Note that Lemma 5.2.2 continues to hold under the
assumption that all elements of 71 (L) have finite order (the proof is very similar to
the case m1(L) = 0). We can now apply steps 2 and 3 of the proof of Theorem 4.2.1
and in the same way obtain a disc D C (Ex \ ) x X such that &,([D]) > 0 and
w([D]) < dime X + dime X + 1.

Since the bundle L, — L is trivial we have 71 (L, ) = 71 (L) x {[y]), where {[v])
is the (infinite) cyclic group generated by [y]. Let I € Z be the unique integer such
that d|D] = (a, [v]') where a € 71(L). As in step 4 of the proof of Theorem 4.2.1
we claim that [ < 0.

To prove this recall that we are under the assumption that all the elements of
71 (L) are of finite order. Let s € N such that a® = 1 and choose a representative
D’ of s[D] € ma(Es x X, L, ) such that 9D' = 4%, Put S = D' Uspr (—sl)F,. The
same arguments as in Step 4 of the proof of Theorem 4.2.1 show that

0< / Pry Wean = sl(r? — 1)/a =sl(r? = 1),
4 ki

hence [ < 0.
Now we proceed in an analogous way to step 5 of the proof of Theorem 4.2.1
to obtain:

2T EXX)(18)) = w([D']) + (—sD)([Fy]) < s(dime X+ dime X + 1+ 2(=1)), and
(_sl)m,

kp
Finally, since [ < 0 we get:

e (s)

-1

v _Ases) _ Angy | < dime X 4 dime X 4 14 2(=0)
n kp kp - 2(-1)
z dime ¥ +dime X + 1
< 5 )
in contradiction to the assumption of the theorem.

This completes the proof of the claim that L, — L is a non-trivial circle bundle,
hence the proof of Theorem 4.2.3. (Il

Proof of Theorem 4.2.2. The proof is analogous to the proof of Theorem 4.2.3. The
required adjustments are similar to the ones needed in the proof of Theorem 4.2.1
for the case Hy(L;Z) = 0. One then concludes that H{(L;Z) either contains an
infinite cyclic subgroup (that is, the free part of Hy(L;Z) is non-trivial), or it has
a non-trivial cyclic subgroup whose order divides ¢q. By the universal coefficient
formula, this is equivalent to H'(L;Z/qZ) # 0. O
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5.4. Proof of Theorem C

Proof of Theorem C. We begin with the same construction as in Steps 1 and 2 of
the proof of Theorem 4.2.1, keeping the same notations. We take:

(M,Q) = (CP™t!, B

(2, wy,) = (CP™, 0., ) a linear hyperplane in CP™*1.

V =M\X=CP*1\CP"=Int B>t2(1).

o (X,wy)=(CP" 0.pn).

Finally, put J = Jgpnt1 to be the standard complex structure of CP*t!. Clearly
the polarization (M, Q, J; ) is subcritical.

Suppose that L C (¥ x X,w,, ® w, ) is a closed Lagrangian submanifold with
Hi(L;Z) =0 and Hy(L;Z) = 0.

Consider the circle bundle I, — L as in the proof of Theorem 4.2.1. We first
claim that this circle bundle is trivial. Indeed, the assumptions on H;(L;Z) and
Hy(L;Z) imply that H?(L;Z) = 0, and so the first Chern class of L, — L vanishes
(in H?(L;Z)). Thus L, — L is trivial.

Next, as in the proof of Theorem 4.2.1, consider the Lagrangian submanifold
G(L,) c(VxX,Q8 (1 —-rHw,).

Claim. G(L,) is monotone. Furthermore, its minimal Maslov number defined by
ponin = min {p(A) | A € m(V x X,G(Ly)), p(A) >0}
satisfies pmin = 2(n+1).

Before we prove this claim, let us see how this yields a contradiction. In-
deed, if fimin = 2(n + 1) then we have piin = dim L, + 1 and so by a theorem
due to Oh [Oh-2] the Floer cohomology of G(L,) satisfies HF*(G(L,);Z/2Z) =
Hi(G(LT);Z/2Z) for every 1 <4 < dim L, — 1. In particular:

HF'(G(L);Z/2Z) = H'(G(L, ); Z/2LZ) 4)
=~ OYL,;Z/2Z) = HY(L x SY;Z/2Z) = Z/2Z.
On the other hand, since V' is a subcritical Stein manifold, the results of [B-C]
imply that HF*(G(L,);Z/ QZ) completely vanishes, in contradiction to (4).
To complete the proof, it remains to show that G(L,) is monotone with pimin =

2(n +1). Let [20 : ... : z,11] be homogeneous coordinates on M = CP"T!
and write > as the hyperplane {zy = 0}. With this choice of Y. the skeleton of
the polarization P = (CP"*',0__ .., J;%) is just A = {[1 : 0 : ... : 0]} (see

Example 2.2.1).
The circle bundle P, — 3 can be naturally identified with the sphere

n+1
P’r: (Z17...7Zn+1) E(Cn+1 ’ Z|Zj|2:1—7’2 25277,«#17
j=1
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where the projection P, — ¥ is given by P, 3 (21,...,2n41) — [0 21 © ... ¢
Zn+1] € X. With these identifications the restriction of the map Fp to P, is just:

Fp(z1,...,2n41)=[r:21: ... 2pe1] forevery (z1,...,2n41) € Pr.
Pick a point (py,ps) € Land writepy = [0: 21 : ... z,41], Wwhere (21,..., 2,21)
are normalized to be in P,, that is E?;rll |zj]2 =1 —7r% Let S C M =~ CP"'!
be the projective line which connects the point p; and the point [1 : 0 : ... : 0]

forming the skeleton A, namely
S={Ao:Az1 ... Mzp] | o M] €CP}
Consider now the decomposition S = D’ U D’ into two discs, where:

D;L = {[Ao N /\121 PN A12n+1] ‘ |>\0| §T|)\1|}7

DL = {[)\o : /\121 Lt )\12n+1] ‘ |)\o| ZT|)\1|} .

Finally, put D, = D', x py and D_ = D’ x py. Note that both discs Dy, D_
have their boundaries on the Lagrangian submanifold G(L,). Moreover, in the
notations of the proof of Theorem 4.2.1, the disc D is precisely the image G(F))
of the fibre F, of the disc bundle Ex(r) x X — ¥ x X, and its (oriented) boundary
0D is just G(v). Similarly, the disc D_ lies in V' x X, and its boundary is a fibre
of the circle bundle G(L,) — L but with the opposite orientation, namely G(y~1).

Note that
7r2(V x CP™, G(LT)) ~ZA®Z[D_],

where A is the image of the class [pt X line] € my(V x CP™) under the natural
homomorphism 7o (V x CP™) — mo(V x CP™, L,). We have u(D.) = 2, hence

p(D-) = 2¢1"(S) = p(D1) = 2(n + 1).

Also, u(A) = 2¢5P"(A) = 2(n + 1). Since the symplectic form Q @ (1 — 7?)w,
takes the value 1 — 72 on both A and D_, it follows that G(L,) C V x CP" is
monotone with pimin = 2(n+1). O
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6. Gromov radius

In this section we prove Theorems F and G from the introduction.

6.1. Isotopies of subcritical CW-complexes and proof of Theorem F

An important ingredient in the proof of Theorem F is the following isotopy theo-
rem, essentially due to Laudenbach [Lau].

Theorem 6.1.1 (Isotopy Theorem). Let (M, Q) be a symplectic manifold (without
boundary, but possibly non-compact) and A C (M,§) an embedded finite CW-
compler with dim A < %dim M. Let B C M be a closed subset. Suppose that
there erists a (continuous) homotopy ¥ : A — M such that g is the inclusion

and 1 (A)N B = 0. Then there exists a compactly supported Hamiltonian isotopy
U, (M, Q) — (M, Q) with Wy — 1 and ¥,(A) N B = 0.

This theorem is a slight modification of Theorem IV from [Lau] (see also The-
orem I there) and can be proved in almost the same way. Let us also remark that
the above theorem and its proof belong to the framework of Gromov’s h-principle
(see [Gr-1]).

Now let P = (M,Q, J; %) be a subcritical polarization. By Corollary 3.4 there
exists a subecritical isotropic CW-complex A C M \ ¥ such that (M \ A, Q) is
symplectomorphic to the standard symplectic disc bundle (Fy, ﬁwcan).

The following result is an immediate consequence of the Isotopy Theorem and
Corollary 3.4. Here by a smoothly contractible subset of M we mean a subset
which can be isotoped (via an ambient smooth isotopy) into an arbitrarily small
coordinate neighbourhood in M. For example, a disjoint union of embedded closed
balls is always smoothly contractible.

Proposition 6.1.2. Let P = (M,Q, J; ) be a suberitical polarization of degree
kp. Let (N,v) be a symplectic manifold, possibly non-compact or with boundary.
Suppose that there exists a symplectic embedding f : (N,v) — (M, Q) such that
F(N) is smoothly contractible in M. Then there erists a symplectic embedding
(N,v) — (Ex, %wcan).

In particular, p,(M,Q) = p, <E27 %wcan).

Remark. Note that the inequality p,. (Eg, #wcan) < po(M, Q) holds for any

polarization, subcritical or not. However, in the critical case this inequality may
be strict. This happens e.g. for the degree 2 polarization (CP", o, Jepn; X) where
) is a smooth quadric (see [Bi-1]). The reason is that in this case A contains
Lagrangian cells, for which Theorem 6.1.1, and Gromov’s h-principle in general,
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do not apply. This discrepancy between the two Gromov radii and its implications
have been studied in [Bi-1].

Proof of Theorem F. Let P = (M, Q, J; ) be the subcritical polarization of degree
kp as in the statement of the theorem.

In view of Proposition 6.1.2 we have p,(M,Q) = p, (Eg7 %wcan). On the

other hand, it is proved in [Bi-1] (Proposition 5.A, see also Theorem 4.A and its
proof) that under the conditions of the theorem we have p, (Es;, wean) < 1, hence

Pa (EZ7 %wcan) S %
The converse estimate when Ox(3) — ¥ is base point free follows from the
results of [Bi-1] (see Lemma 5.B there). O

6.2. Seshadri constants and proof of Theorem G

Before we go to the proof we need a short tour into the theory of Seshadri constants.
Seshadri constants were defined by Demailly [Dem]|. We refer the reader also
to [E-L], [E-K-L] and the references therein for further details and interesting
results concerning these constants.

Let M be a complex manifold, and £ — M an ample line bundle. The Seshadri
constant of L at the point p € M is the following non-negative real number:

£(L,p) = inf Joct
Pl = mult,C’
where the infimum is taken over all irreducible holomorphic curves C passing
through the point p. Since this quantity may depend on the point p, it is useful
to define the following more global invariant:
E(L) = sup E(L,p)
peEM

which will be called the global Seshadri constant of L.

Given an ample line bundle £ — M over a complex manifold (M, .J), the
cohomology class cf can be represented by a J-compatible Kahler form Q, by
taking the curvature of £ with respect to a suitable metric connection. Note that
the symplectomorphism type of (M,Q,) depends only on the cohomology class
cf. This follows easily by Moser’s argument, since the space of J-compatible
symplectic forms on M is linearly convex.

The next proposition establishes a relation between Seshadri constants and the
Gromov radius (cf. [Laz] and also [Bi-3]):

Proposition 6.2.1. Let L — M be an ample line bundle over a complexr manifold
(M, J). Then
Pa (M7 QE) > 5([:)
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Proof. Let 7 : Mp — M be the complex blow-up of M at a point p € M, with
exceptional divisor E over p. Then it is not hard to see that (see [Dem]):

E(L, p) = sup{t € R| The R-divisor 7*L — tF is nef }. (5)

Recall that an R-divisor D on an algebraic variety is called nef (numerically effec-
tive) if it lies in the closure of the (R-)ample cone.

Now let e € H?(M,) be the Poincaré dual to E. Clearly (5) is equivalent to:
E(L,p) = sup{t € R| The cohomology class #*[Q,] —te € Hl’l(Mp) is Kéhler}.

Performing symplectic blowing-down (see e.g. [M-P], Corollary 2.1.D) we conclude
that p.(M,Qz) > E(L,p). Since this is true for every p € M, the proposition
follows. Il

‘We now turn to the

Proof of Theorem G. Since [Q] € H*(M;Z) N H“'(M, J), there exists a holomor-
phic line bundle £ — (M, J) with ¢f = [Q].

By the results of [E-K-L], for a “very general” point p € M we have the
following uniform bound:

1
E(L >
(L) 2 G
Combining this with Proposition 6.2.1 we get:
1
M, Q)>E(L)>E(L > —_—
pG( ? )— ( )— ( 7p)—d1mCM
On the other hand by Theorem F, p,(M,Q) < %. Therefore kp < dimc M. In
particular, kno (M, J,[Q]) < dime M. O

7. Proof of the Desingularization Theorem

Idea of the proof. We will show that ¢ = —log ||s]|? has two types of critical points.
The first type are e-small perturbations of critical points of —log ||s;®s5||? outside
>1 U 39, which have index < n = dim¢ M by assumption 1. The second type of
critical points occur near 1 N>s. Up to small perturbations, they can be modeled
as critical points of functions
(21, 2n) > —log 2122 + ef? —1og |50(28, . .-, 7).

on a neighbourhood of 0 in C™ such that >y N Y is described by {z1 = 29 = 0}.
The first term has a critical point of index 2, whereas the second term has critical
points of index < n — 2 by assumption 2, so the second type of critical points also
have index < n. Let us now make these arguments precise.



Vol. 76 (2001) Symplectic topology on subcritical manifolds 747

Proof of Theorem 2.3.1. Step 1. We cover M by finitely many holomorphic
charts on which £q, L9 are trivial. This allows us to view s1, 89,81 ® so = 8189 as
functions and speak of ds; ete. In view of the transversality assumptions, there
exist arbitrarily small constants 0 < § < p with the following properties:

e For i=1,2, V; = {|s;| < ¢} is a neighbourhood of ¥; on which |ds;| > p.

o V ={|s1|? + |s2]* < p?} is a neighbourhood of D on which

la10s1 4+ agdss|” > p(lai)® + |ag)?) for all ay,as € C.
o U ={|s1|” +|s2]® < p?, |so| < p} is a neighbourhood of Z on which
|apdso + a19s1 + a2832|2 > pllaol* + |a1|2 + |ag)?)  for all ai,as, a3 € C.

These properties imply the following:
e On M\ (V1 L) VQ)Z |8182| Z (52.
e On Vi \ V: From p? < |s1|? + |s2]? < 6% + |s2|* we infer

|8(5152)| == |$1882 + 32881| > |82| |881| = |$1| |882|

pz
2V = 8p -z

for ¢ sufficiently small, and similarly on V5 \ V. Here and in the following we
denote by c a generic constant independent of €, §, p.

Step 2. For e > 0 small, s is transverse to the zero section.

Proof. On M\ (V1 UV3): |s| > 62 —¢|sq| > 0 for € small.
On V;\ V: By step 1, |0s| > ’)2—2 —€ldso| > %2 > 0 for e small.
On V\ U: If s =0 then |s1s3] > ¢p and hence

|9s] > |s10s2 + 52851 — el@so| = p/*/[s1]? + [s2f? — ce
> pt/2\/|s1s2| — ce > pet/? — ce
>0 for e small.

On U: |0s]? > p(|s1]> + |s2]® + €2) > 0.

Step 3. The critical points of = —log||s||% lie in M\ (V1 UVa) orin V\U.
The critical points in M \ (V1 U V,) have index < n. The critical points in V \ U
satisfy p(|s1|? + |s2]?) < ce?.

Proof. Tn holomorphic charts write the metric on £ as || ||%2 = e"| | where | | is
the Euclidean metric and h a real function. Then ¢ = —log|s|> — h and 9¢ =
—%83 — 0h. So at a critical point, ds = —sdh.

On V; \ V: At a critical point, by step 2,

2
£ <05 = |0h] |s| < e(a + elsol),
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which is impossible for &, ¢ small.
On U: At a critical point,

pllsil + |s2f* + €%) < |0s|* < |Oh[*(|s1s2] + €lsol)?
< cllsisal? + %) < ep?lsal? + eped,

which is impossible for cp < 1.

On M\ (V1 U Vy): The critical points of —log||s;s2[|% are non-degenerate of
index < n, so the same is true for the critical points of —log ||s||% for € small.

On V\ U: At a critical point, by step 2,

P21 + [s2]? — ce < |9s] < [9h](|s1s2] + elsal)
< clsal’ +lsal* + €) < ep*Vsi P+ [sa P + e,

which implies p/2+/]s1]2 + [s2|? < ce for p sufficiently small.

Step 4. The critical points of ¢ in V \ U are in one-to-one correspondence with
the critical points of ¢g = — logHso|DH2£ : D — R and have index < n.

Proof. For p sufficiently small we can cover V' by holomorphic charts {(z1,...,2,) €
C| |12+ |22f* < p% |28 + -+ + |2 [? < p?} in which s1(2) = 21, s2(2) = 2.
Then

dp 1( . 8so> oh

9z s\ %G5 T B

ap 1 dsg oh

a—@*‘;(“ﬁ@)‘a—z;

d¢ 1 dsg  Oh for 4 — 8

szi_seazj_azj orj=23,...,n,
82¢ 1 8280 1 (980 880 82]7/
B AL B bl FP0N T ete
021029 s( +6821822>+32 <22+6821>(21+6822) 021029 e

By step 3, p(|s1]? + |s2]?) < c€® at a critical point, so s = esg + O(€?). It follows
that the expansion of the second order derivatives at a critical point in orders of
€ looks as follows:
¢ 1 3¢ 1
— =—— 1001 = ——— L Gi(]
021029 €80 ( )7 071079 €80 * ( )7
and all other second order derivatives are of O(1), i.e. zero order in e. Thus the
Hessian at a critical point 2 has the form
1A+AB
Hess.¢ = (E gt o) O,
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where the matrices A,fLB?C’ are of O(1). Moreover, the real 4 x 4-matrix A
corresponds to the quadratic form

1 1

(w1, wa) = ——wiwy — —W1W9
S0 80
= 2Im() Im(aws) — 2Re(21 ) Re(aws),
S0 80

which is non-degenerate of index 2.
The second order partial derivatives for 3 < j,k < n are given by

824 8?2

— —1 2_h) 40
0z;0zy, azjazk( og [so ) +0(e),

2 2
and similarly for 82 g; - and 82 ;;k. So the matrix C' is given by

C= Hess(z37...7zn)¢07
which is non-degenerate of index < n — 2. This proves that all critical points of ¢
in V'\ U are non-degenerate of index < n.
It remains to show the one-to-one correspondence between critical points of ¢
and ¢o. To see this, consider for fixed (z3,...,2,) the map

oo 22) = e 2 2 (2)) = (e 21) + 00

on the domain N = {|z1|* + |22|> < p?}. For ¢ small there are no solutions of
fe = 0 on the boundary dN. So the mapping degree of f. equals the degree
of fo(z1,22) = %(z%zl) which equals 1. Since the matrix A is non-degenerate

of index 2, all zeroes of f. are non-degenerate of local degree (—1)> = 1. So
fe has a unique zero in N. The non-degeneracy of the matrix C implies that
near every critical point of ¢ there exists a unique point (zs,...,z,) at which
9 .0 -
dzz T B

8. Discussion

Symplectic packings. In analogy to the Gromov radius, McDuff and Polterovich
defined and studied in [M-P] (see also [Bi-2]) the quantity

Vol(Image ¢,)
M, Q)= _—
on (M, Q) =swp — A ay
where the supremum is taken over all radii  for which there exists a symplectic
embedding o, : B>*(r)[[...]] B*(r) — (M, Q) of a disjoint union of N balls of
radius r.
The following is an immediate consequence of Proposition 6.1.2.
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Proposition 8.1. Let P = (M,Q, J; %) be a subcritical polarization of degree kp.
If a disjoint union of closed balls B*(r1) ] [[ B*(rn) — (M, Q) embeds sym-
plectically into (M, <)), then it also embeds symplectically into the standard sym-

plectic disc bundle (Eg, %wcan) In particular, vy (M, Q) = vy (Eg, ﬁwcan)
for every N > 1.

This result reduces the packing problem from (M, Q) to a standard symplectic
disk bundle, where it should be more tractable. In dimension 4 the numbers vy are
known for many cases (see [M-P], [Bi-2]). In dimension > 4, even on disk bundles
the packing problem seems out of reach with the methods currently available.

Spaces of symplectic embeddings. Given a vector of positive numbers
r=(ry,...,rn) denote by Emb(M, ;) the space of (unparametrised) symplectic
embeddings of the disjoint union B**(r{)[]---[[ B> (rw) into (M, ), equipped
with the C*° topology. A natural question, going back to the beginning of symplec-
tic topology, is whether or not these spaces are connected. At present this problem
is widely open in general (see [McD-1, McD-2, La, Bi-4, McD-3] for partial results
in dimension 4).

Let us denote by i : Emb(Ey, %wcan;f) — Emb(M, ;1) the natural inclusion
coming from the embedding described in Corollary 3.4. Proposition 6.1.2 states
that for symplectic manifolds (M,€)) that admit a subcritical polarization the
induced map

i 1o (Emb<Ez7 %wm;z)) — o (Emb(M, ;1))

is surjective. In fact, a 1-parametric version of Theorem 6.1.1 shows that this map
is also injective, hence an isomorphism.

For higher homotopy groups, one expects the induced map on 7 to be an
isomorphism provided that k < 2n — dim(Ap) — 2, where Ap is the skeleton of
the polarization P.

Symplectic capacities. Symplectic capacities have played an important role in the
development of symplectic geometry. One example is the Hofer—Zehnder capacity
crz (see [H-Z] for the definition) which is closely linked to Hamiltonian dynamies.
For instance, its finiteness implies the Weinstein conjecture for convex hypersur-
faces. However, the Hofer—Zehnder capacity has been computed only in very few
cases.

A variation of this is the capacity ¢%;, < cpz, where in its definition the
supremum is only taken over Hamiltonians H for which the set {H < max H} is
smoothly contractible in M. For the latter capacity, the Isotopy Theorem yields
the following result:
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Proposition 8.2. For a subcritical polarization P = (M,Q, J; %),

1
C?{Z(M7Q) = C%[Z (Eg, Ewcan> .

This reduces the computation of c% 5 from (M, Q) to the standard disk bundle,
where it may be approached by the methods of [H-V].

Degree of subcritical polarizations. All our examples of subcritical polarizations
have degree kp = 1. We conjecture that this is true for every subecritical polar-
ization. Note that this conjecture would improve the bound of Theorem G from
khol(M7 J, [Q]) < dim¢ M to khO](M7 J, [Q]) =38

There appear to be two ways to prove this conjecture. One using symplectic
homology (see e.g. [C-F-H]), the other using contact homology (see [El-3]). While
the first approach seems simpler, the second one has the advantage of giving more
information than kp = 1.

Holomorphic spheres in subcritical polarizations. All of our examples of subcritical
polarizations are uniruled in the sense that through every point there passes a non-
constant holomorphic sphere. We conjecture that this is true for every subcritical
polarization. More precisely, we expect that on every subcritical polarization some
spherical Gromov—Witten invariant of a point is nonzero. This conjecture may also
be approached via contact homology ([El-3]).
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