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Symplectic topology on subcritical manifolds

Paul Biran and Kai Cieliebak

Abstract We introduce a new class of closed symplectic manifolds called subcritical These

manifolds are closed analogues of subcritical Stein manifolds We study symplectic and La-
grangian embeddings into such manifolds and into their hyperplane sections

Mathematics Subject Classi¯cation 2000 53D12 53D35 53D40

Keywords Symplectic manifold Lagrangian submanifold Stein manifold symplectic embed-
ding

1 Introduction

The study of the symplectic topology of Stein manifolds leads naturally to two
distinct subclasses: subcritical and critical A Stein manifold is called subcritical
if it admits a plurisubharmonic function which has only critical points of index less

than half the real dimension and critical otherwise Thanks to the special ge-
ometry various problems of symplectic topology such as Lagrangian embeddings

are more tractable on subcritical Stein manifolds than on critical ones with the

tools presently available
In this paper we introduce and study a new class of closed symplectic KÄahler

manifolds which are in a sense \closed cousins" of subcritical Stein manifolds

These manifolds are roughly speaking closed symplectic KÄahler manifolds M;­
together with a complex hypersurface § ½ M that represents the Poincar¶e dual
to k[­] for some k > 0 and such that the complement M n§;­ is a subcritical
Stein manifold see Section 2 for the precise de¯nition We shall refer to such
triples M;­; § as subcritical polarizations of degree k of M;­

This notion gives rise to two interesting types of manifolds:

² Symplectic manifolds M;­ which admit subcritical polarizations

² Symplectic manifolds §;­j§ that arise as hypersurfaces in a subcritical
polarization M;­; §

Research partially supported by the US-Israel Binational Science Foundation grant 1999086
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As we shall see manifolds of these types have remarkable symplectic properties

mainly concerning Lagrangian and symplectic embeddings

The most basic example of a subcritical polarization is CP n; ¾
CP n ; § » CP n¡1

where § ½ CP n is any linear hyperplane see Section 2 Here CP n is en-
dowed with its standard complex and symplectic structures and the symplec-
tic form ¾

CPn is normalized so that the area of a projective line is 1 Also
note that ¾

CPn+1

¯
¯

CP n
¾

CPn so besides CP n; ¾
CPn admitting a subcritical po-

larization it also arises as a hypersurface in a subcritical polarization namely
CPn+1; ¾

CPn+1 ; CP n More examples appear in Section 2 below
In this paper we mainly focus on topological restrictions on Lagrangian embed-

dings into symplectic manifolds § as above as well as some on aspects of symplectic
embeddings into manifolds M;­ that admit a subcritical polarization We also

develop some tools for constructing examples of subcritical polarizations

1 1 Lagrangian embeddings

The most basic question one can ask regarding Lagrangian submanifolds is:

Given a symplectic manifold M;­ what are the restrictions on the topol-
ogy of its Lagrangian submanifolds

Of course one is mainly interested in restrictions beyond the ones arising from
Lagrangian submanifolds being totally real The ¯rst results in this direction were

discovered by Gromov in [Gr-2] where he proved among many other things that
Cn has no closed Lagrangian submanifolds L with H1 L 0 The case of Cn

has been extensively studied since then by many people see [A-L-P] for a survey
on the subject and [Oh-2] for a more updated list of references Note that in
comparison to general symplectic manifolds the case of Cn can be regarded as

local Darboux' Theorem Of course \local" should by no means be interpreted
as easy As a matter of fact the highly non-trivial tools required to attack this
case re°ect the complexity of the problem

Lagrangian embeddings into other manifolds have been studied too but mainly
on two types of Stein manifolds: subcritical Stein manifolds see [Vi-1 A-L-P
B-C] and some cases of cotangent bundles see the surveys [A-L-P Vi-2] In most
of these results the presence of a global homogeneous structure such as a Liouville
°ow plays a crucial role One can think of these results as \semi-local" in the sense

that they provide information on Lagrangian embeddings into a neighbourhood of
a given ¯xed Lagrangian submanifold or isotropic subcomplex

In contrast to the above the problem of Lagrangian embeddings into closed
symplectic manifolds is of a more global nature since one is not allowed to assume

that the Lagrangian submanifold in question can be localized in a particular sub-
domain of the manifold For example a Lagrangian submanifold L of CPn cannot
be always isotoped to lie in the a±ne part CP n

nCP n¡1 due to topological reasons

e g L RP n
½ CP n n ¸ 2 Moreover even when such an isotopy does exist in
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the smooth category it is unknown whether or not it can be realized symplectically
Thus the problem of Lagrangian embeddings into CP n cannot be localized or
reduced to Cn

To the best of our knowledge the only nontrivial restrictions on Lagrangian
embeddings into closed manifolds are two results due to Seidel and to Viterbo
Viterbo proved see [Vi-3] consult also [E-G-H] that closed Lagrangian submani-
folds of a uniruled KÄahler manifold of complex dimension > 2 cannot have any Rie-
mannian metric of negative sectional curvature Seidel [Se] proved the following: A
closed Lagrangian submanifold L of CP n; ¾

CPn must have H1 L;Z 2n + 2 Z 6 0
Seidel obtained this result from his theory of graded Lagrangian submanifolds

see [Se] which can be used as an algebraic \add-on" to the machinery of Floer
homology A delicate computation of this invariant in the case of CPn gave rise

to the above result It is interesting to remark that in this case too the presence

of some global homogeneous structure { a Hamiltonian circle action in this case {
was crucial for putting the general theory to work

From the study of subcritical manifolds we obtain new restrictions on La-
grangian embeddings into closed manifolds In particular we shall recover Seidel's
result and generalize it to a broader class of manifolds Our approach is more

geometric and completely di®ers from Seidel's From our point of view the main
relevant feature of the ambient manifold is that it appears as a hypersurface of a
subcritical polarization As already mentioned CP n is a particular case of this
situation

Below is a sample of our results on Lagrangian submanifolds of CP n
£ X for

various types of manifolds X These are all special cases of more general results

described in Section 4

Before we start let us remark that below the X \factor" is allowed to be a 0-
dimensional manifold namely a point however we shall always assume implicitly
that the CP n factor is of positive dimension namely n ¸ 1 Henceforth we

shall abbreviate the standard symplectic form ¾
CPn of CP n to ¾ whenever the

dependence on the dimension n is clear

Theorem A Let X2m; X
be either Stein or a closed symplectic manifold and

assume that ¼2 X 0 Then for n ¸ m dimC X CP n £X2m; ¾ © X admits
no simply connected closed Lagrangian submanifold

For example this results applies to X2m being the torus T 2m or more generally
a product of closed Riemann surfaces of genus > 0 See Section 4 for a sharper
result and more examples

Remark The dimension restriction n ¸ m is sharp in the sense that Theorem A
fails to be true for m n + 1 More precisely let X2n+2; X be any 2 n + 1 -
dimensional symplectic manifold Then for every su±ciently large a > 0 CP n £
X2n+2; ¾ © a X admits a Lagrangian 2n + 1 -sphere see the construction in
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Section 4 3

Theorem A can be re¯ned as follows Here and throughout this paper cX
1

de-
notes the ¯rst Chern class of the tangent bundle of a symplectic manifold X; X

Theorem B Let X2m; X
be a symplectic manifold for which cX

1
0 in

H2 X; Z Let L ½ CP n
£ X2m; ¾ © X

be a closed Lagrangian submanifold
where n ¸ m dimC X

i If X is closed with ¼2 X 0 then either ¼1 L has an in¯nite cyclic
subgroup or H1 L; Z contains a non-trivial cyclic subgroup whose order
divides 2n + 2

ii If X; X is an exact tame manifold see Section 4 1 then either H1 L; Z
has a non-trivial free subgroup or it contains a non-trivial cyclic subgroup
whose order divides 2n + 2 Consequently H1

¡L
; Z 2n + 2 Z¢ 6

0

Note that the special case X pt is already non-trivial and recovers Seidel's
result [Se] mentioned above Other interesting examples of exact X are X Cm

and X T ¤ N where N is any closed manifold As for closed X the result applies

for example to X2m T 2m endowed with its standard symplectic structure or
more generally with any symplectic structure for which c1 vanishes in H2 T 2m; Z

Observe that Theorems A and B fail to be true if X is allowed to have symplec-
tic spheres Indeed CP n £ CP n does admit closed simply connected Lagrangian
submanifolds For example f z; z j z 2 CP n

g ½ CP n £ CP n is a Lagrangian
copy of CP n Nevertheless we still have:

Theorem C CP n£CP n; ¾©¾ does not admit any closed Lagrangian submani-
fold L with H1 L; Z 0 and H2 L; Z 0

Combining Theorems A B with a result of [B-C] we obtain the following de-
scription of Lagrangian embeddings into CP n £ Cm Here and in the following

Cm is always endowed with its standard symplectic form std dx1 ^ dy1 + ¢ ¢ ¢ +
dxm ^ dym

Theorem D
1 For n ¸ m every closed Lagrangian submanifold L of CP n £Cm; ¾ © std

must satisfy H1 L; Z 2n + 2 Z 6 0; in particular H1 L;Z 6 0

2 Every closed Lagrangian submanifold L of CP n
£ Cn+1; ¾ © std with

H1 L;Z 0 must satisfy: H1 L; Z 2Z ¢ ¢ ¢ H2n L;Z 2Z 0 ¤

The second case actually occurs: As noted above CPn £ Cn+1 does admit a
Lagrangian 2n + 1 -sphere

Finally we describe a class of examples which are not products with CP n

Consider a smooth algebraic curve C ½ CP n n ¸ 2 and denote coordinates on
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CP n by z [z0 : ¢ ¢ ¢
: zn] or w [w0 :

¢ ¢ ¢ : wn] Put

§ z; w 2 CP n
£ CP n

¯̄
¯̄

z 2 C;
n

Xi 0

ziwi 0 :

Note that § is a CP n¡1-bundle over C We endow § with the symplectic form
induced from CP n

£ CP n namely § ¾ © ¾ j§

Theorem E Let C ½ CP n and § be as above with n ¸ 2 and genus C > 0 Let
X2m; X

be as in Theorem A but with 0 · m < n¡ 1 Then ¡§ £ X; § © X
admits no simply connected closed Lagrangian submanifold

1 2 Gromov radius

Recall that the Gromov radius of a symplectic manifold M;­ is de¯ned as follows:

½
G M;­ supf¼r2

j B2n r embeds symplectically into M;­ g:

Here B2n r stands for the closed ball of radius r endowed with the standard
symplectic structure

Our study of subcritical manifolds gives rise to the following uniform bound
on their Gromov radius in terms of the degree k

Theorem F Let M;­; J be a closed KÄahler manifold that admits a subcritical
polarization of degree k Assume that one of the following conditions holds:

1 dimR M · 6 or
2 cM

1 ¸[­] on ¼2 M with ¸ > 2k

Then ½
G M;­ · 1

k
If in addition the subcritical polarization M;­; § is such that the linear

system of sections of the holomorphic line bundle N§ M OM § j§ § is base

point free then ½G M;­ 1
k

For example M;­ can be taken to be see Section 2 :

² The blow-up of a CP 3 along a line P1 with ­ Poincar¶e dual do [H1] + [H2]
where H1 is the proper transform of a plane containing P 1 and H2 is the

proper transform of a plane transverse to P 1

² CP n
£T 2m; ¾©l with n > m and l ¸ 3 where is any integral symplectic

split form on T 2m

In both these examples k 1 and we actually have equality ½G
1 More

examples and sharper results appear in Sections 2 and 8
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Remarks
1 Conditions 1-2 of Theorem F arise from technical reasons in the proof We

strongly believe that they can be dropped
2 The computation of the Gromov radius in both of the above examples can

be accomplished also by di®erent though ad hoc techniques than the ones

presented in this paper Thus the main novelty in Theorem F is not so
much in computing new examples but rather in the fact that subcritical
manifolds share a uniform bound on their Gromov radius

Given a KÄahler manifold M;­; J with ­ 2 H2 M ; Z we denote by
khol M; J; [­] the minimal integer k for which there exists a smooth and reduced
complex hypersurface § ½ M that represents the homology class Poincar¶e dual
to k[­]

Combining Theorem F with results from algebraic geometry due to Ein KÄuchle
and Lazarsfeld [E-K-L] we get the following theorem:

Theorem G Let M;­; J be a closed KÄahler manifold that admits a subcritical
polarization of degree k If M;­ and k satisfy one of the conditions 1-2 of
Theorem F then k · dimC M In particular khol M; J; [­] · dimC M

1 3 The role of subcriticality

Before we delve into the details let us brie°y outline how subcriticality is used to
obtain our results

An important feature of complete subcritical Stein manifolds observed in
[B-C] is that any closed Lagrangian submanifold of such a manifold can be dis-
placed away from itself via a Hamiltonian isotopy In particular the phenomenon
of Lagrangian intersections never occurs in such manifolds Consequently La-
grangian submanifolds L ½ V; V

of subcritical Stein manifolds enjoy the follow-
ing two remarkable properties:

1 Whenever well de¯ned the Floer cohomology HF ¤ L;L vanishes

2 There exists a holomorphic disc D ½ V with boundary on L with \low"
Maslov number ¹ D · dimC V + 1 This is called \Maslov class rigidity"
see [B-C] for more details

Under suitable a priori assumptions on the Maslov index of a given Lagrangian
properties 1 and 2 impose strong restrictions on the topology of L see [B-C]

Our study of Lagrangian submanifolds in the closed subcritical context
is based on the above ideas Let §; § be a closed symplectic manifold that
appears as a hypersurface of a subcritical polarization say M;­; § In order to
reach the favorite situation of a subcritical Stein manifold we \lift" L to a certain
Lagrangian submanifold L̂ ½ M n §;­ which is a circle bundle over L The

point of this lifting construction is that now we have constructed a Lagrangian
submanifold closely related to L which lies inside a subcritical Stein manifold
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namely in Mn§;­ Under certain assumptions on the ¯rst Chern class of §; §
we get strong restrictions on the topology of L̂ As L̂is nothing but a circle bundle
over L this yields restrictions on the topology of L More details on this strategy
and on the \lifting" procedure are given in Section 5 2

Subcriticality is also used in an essential way in our study of the Gromov
radius Suppose that M;­;§ is a subcritical polarization Then by the results

of [Bi-1] see Section 3 for a summary it follows that M;­ can be decomposed
into two disjoint subsets: M;­ E§; 0 `¢ where E§ is a disc bundle over
§ endowed with a standard symplectic form 0 and ¢ ½ M is a CW-complex
with ­-isotropic cells and such that dim¢ < 1

2
dim M In other words none of

the cells of ¢ is Lagrangian
Now given a symplectically embedded ball B ½ M Gromov's h-principle im-

plies that it possible to disjoin B from ¢ by a symplectic isotopy Thus we may
assume that B ½ M n ¢;­ E; 0 This implies that ½

G M;­ ½
G E; 0

The point of all this \acrobatics" is that the Gromov radius of E; 0 can be

estimated from above and sometimes even exactly computed using the theory
of pseudo-holomorphic curves This is possible due to the standard symplectic
structure 0 of E See Section 6 and [Bi-1] for more details

We point out that subcriticality is crucial for this type of argument to work
for otherwise the CW-complex ¢ would contain also Lagrangian cells a case in
which the h-principle fails

1 4 Organization of the paper

The rest of the paper is organized as follows

In Section 2 we introduce the notion of subcritical polarizations and construct
examples The constructions are based on a \desingularization theorem" which
is proved in Section 7 In Section 3 we summarize the results on decompositions

of polarized manifolds that we need later in the paper
Section 4 is concerned with Lagrangian embeddings We state here the most

general versions of our theorems in this direction derive corollaries and list con-
crete examples Theorems A B and E of the introduction are immediate conse-
quences of the corollaries The main theorems on Lagrangian embeddings Theo-
rems 4 2 1 4 2 2 4 2 3 as well as Theorem C from the introduction are proved in
Section 5

In Section 6 we prove the uniform bounds on the Gromov radius of subcritical
manifolds formulated in Theorems F and G Finally in Section 8 we brie°y discuss

some other issues related to subcritical manifolds such as symplectic packings and
capacities

Acknowledgements We thank the referee for pointing out to us the reference

to Laudenbach's paper [Lau]
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2 Subcritical polarizations

2 1 Setup

Subcritical Stein manifolds A Stein manifold is a triple V; J;' where V;J is an
open complex manifold and ' : V R is a smooth exhausting plurisubharmonic
function The term \exhausting" means that ' is proper and bounded from below

\Plurisubharmonic" means that the 2-form ' ¡ddC' is a J -positive symplectic
form i e ¡ddC' v;Jv > 0 for every 0

6

v 2 T V Unless explicitly stated we

do not assume that V; J;' is complete in the Eliashberg{Gromov [E-G] sense

We refer the reader to [El-1 El-2] for the foundations of the symplectic theory of
Stein manifolds

It is well known that any plurisubharmonic Morse function ' : V R must
satisfy indexp ' · 1

2
dimR V for all critical points p We call a Stein manifold

subcritical if these inequalities are strict i e ' is a Morse function all of whose

critical points have indexp ' < 1
2

dimR V

Polarized KÄahler manifolds Throughout this paper by a KÄahler manifold we

mean a triple M;­; J where M;­ is a closed symplectic manifold and J is an
integrable complex structure compatible with ­

A polarized KÄahler manifold 1
P M2n;­; J ; § is a KÄahler manifold M;­; J

with [­] 2 H2 M ;Z together with a smooth and reduced complex hypersurface

§ ½ M whose homology class [§] 2 H2n¡2 M represents the Poincar¶e dual to
k[­] 2 H2 M for some k 2 N The number k will be called the degree of the

polarization P and denoted by kP

The function associated with a polarization We shall now de¯ne a distinguished
plurisubharmonic function 'P

: Mn§ R which is canonically associated with the

polarization P For this purpose let L OM § be the holomorphic line bundle
de¯ned by the divisor § Denote by s : M L the unique up to a constant
factor holomorphic section whose zero set fs 0g is § Choose a hermitian
metric k ¢ k on L and a compatible metric connection r with curvature

Rr 2¼ikP­:

Finally de¯ne 'P
: M n § R to be

'P x ¡
1

4¼kP
log ks x k

2:

Note that the function 'P
: V M n §; J R is plurisubharmonic Indeed a

simple computation shows that ¡ddC'P ­ Moreover it is not hard to see that'P
is exhausting and that it has no critical points outside some compact subset

of V see [Bi-1]

1 Note that our notion of polarized KÄahler manifolds is slightly di®erent from the one common
in algebraic geometry
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It is important to remark that the function 'P
is canonically determined by

the polarization P up to an additive constant and does not depend on any of the

choices made for k ¢ k; s or r This is due to the requirement on the curvature Rr
and the fact that J is integrable see [Bi-1] for more details

Finally let us mention that we do not assume 'P to be Morse in general
although this will be the case in many of the examples below

Subcritical polarizations A polarization P M;­; J;§ is called subcritical if
there exists a plurisubharmonic function ' : V M n §; J R such that:

1 V; J;' is a subcritical Stein manifold namely ' is Morse and for every
p 2 Crit ' indexp ' < 1

2
dimR V

2 ' coincides with 'P
outside a compact subset of V that contains Crit 'Note that this implies that Crit ' is ¯nite

In practice it is not easy to apply this de¯nition directly even if ' 'P
itself

satis¯es the above conditions However we shall develop below see Section 2 3
some useful criteria for checking subcriticality

2 2 Examples of subcritical polarizations

Below is a list of examples of subcritical polarizations The construction of these

examples is based on a desingularization procedure presented in Section 2 3 below
Most of these examples are a special case of more general family of subcritical
polarizations which is described in Section 2 4

2 2 1 Subcritical polarizations of CP n Consider the complex projective space

CP n endowed with the standard complex structure JCP n and its standard sym-
plectic KÄahler form ¾

CPn normalized so that the area of each projective line is 1
In what follows we denote by [z0 : : : : : zn] homogeneous coordinates on CP n On
each a±ne chart Uj fzj 6 0g with coordinates uk

zk
zj k 6 j the form ¾ is

given by

¾ i
2¼

@@ log

0
@

1 +
n

Xk 6 j
juk j

2

1A
:

Let § ½ CPn be any linear hyperplane namely de¯ned by a linear equation
Then the polarization P CP n; ¾; JCP n ; § is subcritical of degree kP

1

Indeed suppose that § f¸0z0 + ¢ ¢ ¢ + ¸nzn 0g then it is easy to see that

'P ¡[z0 : : : : : zn]
¢ ¡

1

4¼
log µ jP

n
i 0 ¸izij

2

P
n
i 0 jzij2

¶ :

A simple computation shows that this function is Morse with only one critical
point p [¸0 : : : : : ¸n] whose index is 0

Finally observe that §; ¾
CPn

¯
¯§

» CP n¡1; ¾
CPn¡1 As this holds for every

n ¸ 1 we conclude that CP n; ¾ can also be realized as a hypersurface of a
subcritical polarization
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2 2 2 Products with CP n Let Y 2m;JY be a closed complex manifold of complex
dimension m and L Y a very ample line bundle Let ­L be a JY -KÄahler
representative of c

L1 If n > m then CPn £ Y 2m; ¾ © ­L; JCP n © JY admits a
subcritical polarization of degree 1 The proof of this fact is given in Section 2 5

below
A special case of this is when Y 2m

½ CP n is a closed algebraic submanifold of
complex dimension m < n Take § ½ CP n

£ Y to be the hypersurface

§ z; w 2 CP n
£ CP n

¯̄
¯̄

w 2 Y;
n

Xi 0

ziwi 0 :

Then CP n £ Y 2m; ¾ © ¾jY ; JCP n © JY ; § is a subcritical polarization

2 2 3 Subcritical polarizations of CP n £ CP m In view of the preceding exam-
ple for n > m CP n £ CP m; ¾ © ¾ admits a subcritical polarization with the

hypersurface

§ z; w 2 CPn
£ CP m

¯̄
¯̄

m

Xi 0

ziwi 0 ;

where [z0 : ¢ ¢ ¢ : zn]; [w0 :
¢ ¢ ¢ : wm] are homogeneous coordinates on each factor of

CP n
£ CP m On the other hand it is possible to prove that CP n £ CP n has no

subcritical polarizations at all see [Bi-1]

2 2 4 Blow-ups Let k ¸ 1; m ¸ 0 be integers Fix a complex k¡1 -dimensional
linear subspace P k¡1

0 ½ CP m+k and let
Xk;m BlP k¡1

0
CP m+k

be the blow-up of CP m+k along P k¡1
0 We denote by Jk;m the obvious complex

structure on Xk;m Consider now the following two divisors in Xk;m:

² H1 { the proper transform of a linear hyperplane intersecting P k¡1
0 transver-

sally
² H2 { the proper transform of a linear hyperplane in CP m+k that contains

P k¡1
0

Suppose now that k > m Then there exists a Jk;m-KÄahler form ­k;m on Xk;m
and a smooth and reduced hypersurface § 2 jH1 + H2j such that:

1 [­k;m] is Poincar¶e dual to [H1] + [H2]
2 The degree 1 polarization P Xk;m;­k;m; Jk;m;§ is subcritical
The proof is given in Section 2 5 below

2 3 Desingularization

Our main tool in constructing subcritical polarizations is a desingularization pro-
cedure which we now describe
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Let M; J be a closed complex manifold and L1; L2 M holomorphic line

bundles such that L L1 ­ L2 is ample Let k ¢ k;r be a hermitian metric
and a compatible connection on L such that the corresponding curvature form
­L

1
2¼iRr is positive Suppose we are given:

² Holomorphic sections si : M Li i 1; 2 transverse to the zero sections

and such that the codimension-1 complex hypersurfaces §i fsi 0g inter-
sect transversally in the codimension-2 complex submanifold D §1 \ §2

² A holomorphic section s0 : M L with s0

¯
¯

D
: D L being transverse

to the zero section so that Z D \ fs0 0g is a codimension-3 complex
submanifold

Note that Mn §1[§2 ; J and DnZ; J jD are Stein manifolds since §1+§2 ½ M
and Z ½ D are both ample divisors

Theorem 2 3 1 Desingularization Theorem Suppose that the following condi-
tions are satis¯ed:

1
¡M n §1 [§2 ; J;¡ log ks1 ­ s2k

2
¢ is a subcritical Stein manifold

2 D n Z;JjD;¡ log ks0k
2 is a subcritical Stein manifold

Then for ² > 0 su±ciently small the following holds:
1 s s1 ­ s2 + ²s0 : M L is transverse to the zero section so that

§ fs 0g is a smooth and reduced hypersurface

2 The polarization P M;­L;J ; § is subcritical

Remark Note that by de¯nition a zero-dimensional manifold namely a point or
a bunch of points is not subcritical Therefore the conditions of the theorem can
be satis¯ed only if dimC M ¸ 3

The proof of Theorem 2 3 1 is postponed until Section 7 below We now turn
to some applications of this theorem

2 4 Projective bundles

Let us ¯rst ¯x a few algebro-geometric notations Let Y; JY be a closed complex
manifold and E Y a holomorphic vector bundle We denote by P E ¼ Y

the corresponding projective bundle We remark that here we adopt Fulton's
convention [Fu] rather than the \French" one namely the ¯bre over y 2 Y is the

complex projectivization of the ¯bre Ey that is the space of complex lines rather
than the projectivization of the dual of Ey

The complex manifold P E comes naturally equipped with a holomorphic line

bundle OE 1 P E called the hyperplane bundle whose ¯bre over the line

ly 2 P Ey is just the dual l¤y HomC ly; C
We are now in the position to describe a new family of subcritical polarizations

Let Y 2m;JY be a closed complex manifold of complex dimension m and E Y
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a rank-l holomorphic vector bundle Consider the projective bundle

XE;k P E © Ck ¼ Y;

where Ck stands for the trivial rank-k holomorphic vector bundle over Y We

denote by JXE;k the induced complex structure on XE;k
Suppose in addition that:
1 E Y is semi-negative in the sense of Gri±ths see [Gri Dem]
2 We are given an ample line bundle L Y

Under these assumptions we shall now endow XE;k with a KÄahler form ­E;k;L
which represents the ¯rst Chern class of the line bundle OE©Ck 1 ­ ¼¤L

For brevity we write Ek E © Ck Choose a hermitian metric k ¢ kE on E
which has semi-negative curvature The hermitian metric k¢kE induces a hermitian
metric on OEk

1 We claim that the curvature of OEk 1 is semi-positive Indeed
there exists a natural surjection ¼¤ E¤k OEk 1 hence OEk

1 is a quotient of
the pull back bundle ¼¤ E¤k From our assumptions it follows that ¼¤ E¤k has

semi-positive curvature therefore the same holds also for OEk
1 see [G-H]

Denote by ´E;k
1

2¼iROEk 1 the corresponding semi-positive curvature form
Next endow L with a hermitian metric and connection k ¢ kL r so that ­L1

2¼iRr is a KÄahler form on Y We claim that form

­E;k;L ¼¤­L + ´E;k

is KÄahler Indeed ´E;k restricts to a KÄahler form on each of the ¯bres of P Ek
Y this form corresponds to the standard KÄahler form on CP l+k¡1 under an
identi¯cation of a ¯bre Ey © Ck with Cl+k equipped with its standard hermitian
metric Since ­L is KÄahler and both of the forms ¼¤­L

and ´E;k are semi-positive

it easily follows that their sum is strictly positive This concludes the construction
of the symplectic KÄahler form ­E;k;L

Before we proceed observe that the line bundle OEk
1 has k natural sections

induced from projections of Ek E © Ck onto the components of Ck We denote
these sections by ¾0; : : : ; ¾k¡1

Jointly transverse sections The following de¯nition is analogous to the notion of
complete intersections Let Y; JY be a closed complex manifold endowed with an
ample line bundle L Y; JY Suppose we are given m + 1 holomorphic sections

s0; : : : ; sm : Y L We say that they are jointly transverse if s0 is transverse to
the zero section of L and for every 1 · i · m the section si is transverse to the

complex submanifold Di fs0 ¢ ¢ ¢ si¡1 0g Note that in this case Di is a
codimension-i complex submanifold of Y; JY

An important example is when L is a very ample line bundle In this case there

always exist dimC Y + 1 jointly transverse sections

Theorem 2 4 1 Let E Y 2m
L Y 2m and XE;k ­E;k;L;JXE;k be as above

and assume that:

² either k > m + 1



724 P Biran and K Cieliebak CMH

² or k m + 1 and l ¸ 1
Suppose also that L Y admits m + 1 jointly transverse sections s0; : : : ; sm :
Y L Then there exist constants ²i > 0 such that:

1 s ¾0 ­ ¼¤s0 +P
m
i 1 ²i¾i ­ ¼¤si : XE;k OEk 1 ­ ¼¤L is transverse to

the zero section so that § fs 0g is a smooth and reduced hypersurface

2 The polarization P XE;k;­E;k;L;JXE;k ;§ is subcritical

Proof The proof proceeds by induction over m dimC Y
For m 0 we may assume that Y is a single point Then E » Cl

XE;k » CPk+l¡1 0
6

s0 2 L » C and ¾0 ­ ¼¤s0 is a nontrivial section of
the line bundle O 1 ­ C » O 1 CP k+l¡1 Thus XE;k;­E;k;L; JXE;k; §
CPk+l¡1; ¾; JCP k+l¡1 ; § is just the subcritical polarization of CP k+l¡1 discussed

above

Assume now that m ¸ 1 and the theorem holds for m ¡ 1 The sections

¾0 : XE;k OEk
1 and ¼¤s0 : XE;k ¼¤L are transverse to the zero section

Moreover their zero sets intersect transversally in the codimension-2 submanifold

X ~E;k¡1 P ~E © Ck¡1 ~Y ;

where ~Y fs0 0g ½ Y and ~E Ej~Y Now X ~E;k¡1 Y with the restrictions of
¾1; : : : ; ¾k and s1; : : : ; sk satis¯es the assumptions of the theorem for m¡1; k¡1; l
By the induction hypothesis there exist positive constants ~²2; : : : ; ~²m such that

~s ¾1 ­ ¼¤s1 +
m

Xi 2

~²i¾i ­ ¼¤si

is transverse to X ~E;k¡1
and induces a subcritical polarization on X ~E;k¡1

So the

theorem will follow from Theorem 2 3 1 once we have shown that

³XE;k n f¾0 0g [ f¼¤s0 0g ;JXE;k ; Á ¡ log k¾0 ­ ¼¤s0k
2´

is a subcritical Stein manifold
To see this denote by y; e; z z1; : : : ; zk coordinates on Y; E; Ck respectively

Then Á y; [e : z] Á1 y; [e : z] + Á2 y where

Á1 y; [e : z] ¡ log³ jz1j
2

kzk
2 + kek

2 ´ and Á2 y ¡ log k¾0 y k
2:

The restriction of Á to a ¯bre ¼¡1 y has a unique critical point [e : z] [0 : 1 :
0 :

¢ ¢ ¢
: 0 ] which corresponds to the minimum of Á1 So the critical points of Á

are precisely the points y; [0 : 1 : 0 : ¢ ¢ ¢ : 0 ] with dÁ2 y 0 After perturbing

the metric on L we may assume that the critical points of Á2 are non-degenerate

Then the critical points of Á are non-degenerate of index

ind y;[0: 1:0:¢¢¢:0 ] Á indyÁ2 + 0 · m < dimC XE;k ;

hence they are subcritical ¤
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2 5 Proofs of the statements in examples 2 2 2 and 2 2 4

The example given in 2 2 2 is a special case of Theorem 2 4 1 In fact Theo-
rem 2 4 1 implies the following slightly stronger statement:

Corollary 2 5 1 Let Y 2m; JY be a closed complex manifold of complex dimen-
sion m and L Y an ample line bundle which admits m + 1 jointly transverse

holomorphic sections Let ­L
be a JY -KÄahler representative of c

L1
If n > m then

CPn £ Y 2m; ¾ ©­L; JCP n © JY admits a subcritical polarization of degree 1

Proof The proof follows easily from Theorem 2 4 1: take l 0 so that E 0
and k n + 1 Then XE;k CP n £ Y and ­E;k;L ¾ © ­L ¤

We now turn to the

Proof of the statement in example 2 2 4 Consider the projective bundle P Ek;m ¼

CP m where Ek;m OCP m ¡1 © Ck

We claim that there exists a biholomorphism f : Xk;m P Ek;m with the

following properties:

² f¤OEk;m 1 OXk;m H1

² f¤ ¼¤OCPm 1 OXk;m H2

Indeed write elements of P Ek;m as l; [z : w] where l 2 CP m z 2 l ½ Cm+1

and w 2 Ck Consider the projection

½ : P Ek;m CP m+k ; l; [z : w]
7

[z : w]:

The preimage ½¡1 [z : w] is a single point if z
6

0 and a copy of CP m if z 0 By
uniqueness of blow-ups this implies that P Ek;m is biholomorphic to the blow-up
of CP m+k along P k¡1

0 f[z : w] j z 0g Under this identi¯cation H1 and H2
correspond up to linear equivalence to the proper transforms of the hypersurfaces

fw1 0g and fz0 0g Thus

H1 » f l; [z : w] j z 2 l; w1 0g; H2 » f l; [z : w] j z 2 l; z0 0g;

and the claim follows

Note that the vector bundle Ek;m is Gri±ths semi-negative and OCPm 1 is
ample Moreover OCPm 1 admits m+1 jointly transverse sections The corollary
now follows from Theorem 2 4 1 with l 1 and k > m by pulling everything
back via f ¤

2 6 Subcritical polarizations in low dimensions

Surprisingly enough in real dimension · 4 there exist only two subcritical polar-
izations
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Proposition 2 6 1 Let P M;­;J ; § be a subcritical polarization

² If dimR M 2 then M CP 1 § pt and kP
1

² If dimRM 4 then M CP 2 § » CP 1 is a projective line and kP
1

Proof Assume ¯rst that dimR M 4 Let ¢ ½ M be the skeleton obtained
from Corollary 3 4 below and denote by g the genus of § Being in dimension
4 we shall identify 2-homology with 2-cohomology without explicitly mentioning
Poincar¶e duality

Since dimR ¢ < 2 by a general position argument we get that:
H1 M ; R H1 §; R » R2g; and H2 M ; R R[§]:

Thus Â M 3 ¡ 4g and ¾ M 1 As b2 M 1 there exists a 2 R such that
cM

1
a[­] Substituting this into the signature formula cM

1 ¢cM
1

2Â M +3¾ M
we get a2[­] ¢ [­] 9 ¡ 8g which implies that g · 1 By the adjunction formula
applied to § we have:

2g ¡ 2 § ¢ §¡ cM
1 ¢ § kP kP ¡ a [­] ¢ [­]:

As g · 1 we conclude that a ¸ kP > 0 and so M is monotone By the Enriques{
Kodaira classi¯cation of complex surfaces [B-P-V] a monotone KÄahler surface

M must be rational In particular it must have Â M ¸ 3 with equality if and
only if M CP 2 As Â M 3 ¡ 4g this proves that g 0 and M CP 2

Now the only smooth rational curves in CP 2 are projective lines and con-
ics However the complement of a conic in CP 2 has the homotopy type of RP 2

see [Bi-1] for example which contradicts subcriticality Thus the only possibility
we are left with is M CP 2 § projective line and kP

1
Assume now that dimR M 2 In this case § is just a bunch of points

Subcriticality implies that b1 M n § 0 However the only punctured surface

with b1 0 is the 2-sphere minus one point ¤

Remark J Etnyre pointed out to us a more topological proof of Proposition 2 6 1
which does not use the Enriques{Kodaira classi¯cation

2 7 A remark regarding the explicitness of the examples

Let M;­; J be a KÄahler manifold with [­] 2 H2 M ; Z and L M a holomor-
phic line bundle with c

L1
k[­] Let jLj P H0 M; L be the linear system

de¯ned by L In this paper we often make non-explicit statements of the kind

\there exists § 2 jLj such that the polarization P M;­; J ; § is subcritical"
without specifying which § precisely we take It may be possible that for one

choice of § the corresponding polarization is subcritical while for another one it
is not

The justi¯cation is that the symplectomorphism type of §; § ­j§ does

not depend on the speci¯c choice of § 2 jLj as long as it is smooth and reduced
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Since what we are interested in is the symplectic topology of manifolds that can be

realized as hypersurfaces in subcritical polarizations we do not really care which

\copy" of §; § in jLj gives rise to the subcritical polarization All we care about
is that there exists at least one such element in jLj

Let us brie°y explain why the symplectomorphism type of §; § is uniquely
determined by L itself Suppose that there exists a smooth and reduced element
§ 2 jLj In this case the subset jLjsmooth ½ jLj consisting of all smooth and
reduced divisors is the complement of a proper closed subvariety of jLj Therefore

jLjsmooth is open dense in jLj and furthermore it is path connected This implies

that any two hypersurfaces §0; §00 2 jLjsmooth are isotopic inside M in particular
also di®eomorphic Moreover if we endow §0 and §00 with the symplectic forms

§0 ­j§0 and §00 ­j§00 respectively then it easily follows by Moser's argument
that §0; §0

is symplectomorphic to §00; §00

3 Decompositions of symplectic manifolds

One of our main tools in studying the symplectic topology of subcritical manifolds

is the decomposition technique developed in [Bi-1] In this section we brie°y
summarize the ingredients of this theory which are relevant for our purposes We

refer the reader to [Bi-1] for more details

Standard symplectic disc bundles Let P M;­; J ; § be a polarization of degree

kP
of a KÄahler manifold
Put § ­j§ and let ¼ : N§ § be the complex normal line bundle of §

in M with ¯rst Chern class cN§
1 kP

[ § ] 2 H2 §; R Let k ¢ k be any hermitian
metric on N§ and denote by E§ fv 2 N§

¯
¯

kvk < 1g the open unit disc bundle
of N§ Choose a connection r on N§ with curvature Rr 2¼ikP § and denote
by ®r the associated transgression 1-form on N§ n 0 de¯ned by:

² ®ru u 0; ®ru iu 1
2¼

for every u 2 N§ n 0

² ®rjHr 0 where Hr is the horizontal distribution of rWith this normalization of ®r we have d®r ¡¼¤ kP § De¯ne now the

following symplectic form can on E§:

can kP
¼¤ § + d r2®r ;

where r is the radial coordinate along the ¯bres induced by k ¢ k It is easy to
check that can is well de¯ned that it is symplectic and has the following three

properties:

1 All ¯bres of ¼ : E§ § are symplectic with respect to can and have area 1

2 The restriction of can to the zero section § ½ E§ equals to kP §
3 can is S1-invariant with respect to the obvious circle action on E§
The subscript in can suggests that this symplectic structure is canonical al-

though the de¯nition of E§; can a priori depends on k¢k and r Indeed di®erent
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choices of k¢k and r in fact lead to symplectically equivalent results The following
can be easily proved using a suitable version of Moser argument see [M-S] :

Proposition 3 1 The symplectic type of E§; can depends only on the symplec-
tic type of §; § In fact E§; can is uniquely characterized up to symplecto-
morphism by properties 1{3 above

In view of the above proposition we shall henceforth call E§; can the standard
symplectic disc bundle over §; § modeled on N§ Often we shall multiply can
by a positive number c > 0 usually by c 1

kP
and refer to E§; c can as the

standard symplectic disc bundle with ¯bres of area c 2

Remarks Here are two alternative descriptions of the symplectic manifold
E§; can :

1 If we denote by P§ fv 2 N§

¯
¯

kvk 1g ½ N§ the unit circle bundle and
by D 1 ½ C the open unit disc then E§; can » P§ £S1 D 1 ; kP

¼¤ § +
d r2® where S1 acts diagonally in an obvious way on both components

r is the radial coordinate on D 1 ¼ : P§ § is the projection and ® is a
connection 1-form on P§ with d® ¡kP

¼¤ §
2 E§; can can be also viewed as a \one-sided" compacti¯cation of the neg-

ative symplectization of the contact manifold P§; » ker ® Indeed it
is not hard to see that E§ n §; can is symplectomorphic to the negative

symplectization P§ £ 0;1 ; d e¡t® where t is the coordinate on 0;1
Isotropic CW-complexes Let M be a smooth manifold A subset ¢ ½ M is
called an embedded CW-complex if there exists an abstract CW-complex K and
a homeomorphism i : K ¢ ½ M such that for every cell C ½ K the restriction

ijIntC»Int Ddim C : Int C M is a smooth embedding We denote dim¢
dimK maxfdim C j C ½ K is a cell of Kg Henceforth we shall always assume

all our CW-complexes to be connected and ¯nite

Let ¢ ½ M;­ be an embedded CW-complex in a symplectic manifold If for
every cell C as above i Int C is an isotropic submanifold of M;­ we say that ¢
is an isotropic CW-complex Note that if ¢ is isotropic we have dim¢ · 1

2
dimR M

When this inequality is strict we call ¢ a subcritical isotropic CW-complex

The skeleton associated with a polarization Let P M;­; J ; § be a polarized
KÄahler manifold Let 'P

: M n § R be the associated function de¯ned in
Section 2 Denote by g­;J ­ ¢; J ¢ the KÄahler Riemannian metric associated
with the pair ­; J

With this data ¯xed we have a distinguished subset ¢P ½ M n § de¯ned as

follows Consider the gradient vector ¯eld gradg­;J 'P
of the function 'P

with

2 Note that now the restriction of this symplectic form to § ½ E§ equals to ckP § not kP §
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respect to the metric g­;J and let Ft be its °ow De¯ne ¢P ½ M n § to be the

union of all the stable submanifolds corresponding to critical points of 'P
that is

¢P fx 2 M n § j lim
t 1

Ft x 2 Crit 'P g:

Note that ¢P ½ M n § is compact since Ft is complete at ¡1 and Crit 'P
is a

compact subset of M n §
We remark that ¢P is completely determined by the polarization P without

any further choices since the function 'P
is determined up to an additive constant

by P We shall therefore call ¢P the skeleton associated with the polarization P
The importance of ¢P lies in the following Theorem from [Bi-1]:

Theorem 3 2 Let P M;­; J ; § be a polarized KÄahler manifold Then the

complement of the skeleton M n¢P ;­ is symplectomorphic to the standard sym-
plectic disc bundle EN§ ; 1

kP
can over § which is modeled on the normal bundle

N§ and has ¯bres of area 1
kP

It should be pointed out however that without any further assumptions on
the function 'P

and the metric g­;J the skeleton ¢P
might have a very \wild"

structure Moreover even if 'P
is Morse ¢P

might be quite far from being a

\reasonable" space see [Bi-1] for further discussion on this issue On the other
hand the following collection of results from [Bi-1] shows that it is always pos-
sible to modify ­ into ­0 which is di®eomorphic to ­ in such a way that the

corresponding polarization P
0 M;­0; J ; § gives rise to a skeleton which is an

isotropic CW-complex

Theorem 3 3 [Bi-1] Let P M;­; J ; § be a subcritical polarization of degree

kP Then there exists a J-KÄahler form ­0 that coincides with ­ near § and

is cohomologous to ­ and such that the polarization P
0 M;­0; J ; § has the

following properties:
1 The Stein manifold V M n §; J;'P0

R is subcritical Moreover

'P0 'P
outside a compact subset of V which contains all the critical

points of 'P0

2 The skeleton ¢P0 associated with P
0 is an ­0-isotropic CW-complex with

dimR ¢P0 < 1
2

dimR M
3 M n ¢P0 ;­0 is symplectomorphic to the standard symplectic disc bundle

E§; 1
kP

can modeled on the normal bundle N§ of § in M and whose ¯bres

have area 1
kP

Moreover a symplectomorphism FP
: E§; 1

kP
can M n

¢P0 ;­0 can be chosen so that it sends the zero section § ½ E§ onto § ½
M n ¢P0 identically namely FP j§ 1l§

For the proofs see Theorems 2 6 A 2 6 C and 8 2 A in [Bi-1]
The following is a simple consequence of Theorem 3 3 and Moser's argument:
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Corollary 3 4 Let P M;­;J ; § be a subcritical polarization of degree kP
Then there exists an ­-isotropic CW-complex ¢ ½ M n§ with dim¢ < 1

2
dimR M

and a symplectomorphism F : E§; 1
kP

can M n ¢;­ which sends the zero
section § ½ E§ onto § ½ M n ¢ identically

4 Lagrangian embeddings: theorems and examples

4 1 Setup

Monotone manifolds Recall that a symplectic manifold M;­ is called mono-
tone if there exists a positive real number ¸ M;­ such that cM

1 ¸ M;­ [­] in
H2 M ; R Similarly M;­ is called spherically monotone if the following two
conditions are satis¯ed:

1 cM
1

does not vanish on ¼2 M
2 There exists a positive real number ¸ such that cM

1 ¸[­] on ¼2 M
Note that due to condition 1 the number ¸ is uniquely determined by ­ hence we

shall denote it from now on by ¸ M;­
Examples

1 CP n; ¾CP n is monotone with ¸ n + 1
2 CP n £ CP m; ¾ © ¾ is spherically monotone if and only if n m
3 Let Y; Y be a closed symplectic manifold for which both cY

1
and Y vanish

on ¼2 Y Then CP n
£ Y; ¾ © Y is spherically monotone but in general

not monotone Again ¸ n + 1

Tame symplectic manifolds In what follows we call a symplectic manifolds X; X
tame if it admits an X -compatible almost complex structure JX such that
X; X ; JX is either geometrically bounded in the sense of [A-L-P] or convex at

in¯nity in the sense of [E-G] This class of manifolds includes: closed symplec-
tic manifolds Stein manifolds / domains and interiors of compact symplectic
manifolds with JX-convex boundary We remark that X is allowed to be zero
dimensional namely a point

4 2 Main results

Let §; § be a closed symplectic manifold We say that it can be realized as a
hypersurface of a subcritical polarization if it can be embedded into a subcritical
polarization P M;­; J ; § in such a way that § ­j§

Theorem 4 2 1 Let §; § be a symplectic manifold with dim § > 0 that can
be realized as a hypersurface of a subcritical polarization of degree kP Let X; X
be a tame symplectic manifold Assume that the following conditions are satis¯ed:
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1 [ X ] and cX
1

both vanish on ¼2 X resp in H2 X ; R
2 §; § is spherically monotone resp monotone

3 ¸ §; §
and kP

satisfy the following inequality:

¸ §; §
kP

>
dimC § + dimC X + 1

2
:

Then § £ X; § © X has no closed simply connected Lagrangian submanifolds

resp closed Lagrangian submanifolds L with H1 L; Z 0

Remark Note that the assumption \[ X ] vanishes on ¼2 X " allows X to be a
closed manifold e g T 2m However the analogous condition \[ X ] vanishes in
H2 X; R " implies that X cannot be a closed manifold unless it is 0-dimensional

Strongly monotone submanifolds Let §; § be a symplectic manifold that can
be realized as a hypersurface of a polarization P M;­; J ; § We say that
§; § is strongly monotone in P if there exist ´; º 2 N such that

´c§
1

ºcN§
1 in H2 §; Z :

Here N§ § stands for the complex normal line bundle of § in M
We remark that the integers ´; º depend on the polarization P and not only

on §; § because we need to know the value of cN§
1 in H2 §; Z not just in

H2 §; R or in other words we need to know the topological type of N§ The

ratio º
´ however depends only on §; § and the degree of the polarization kP

since it is equal to ¸ §; §
kP

where c§
1 ¸ §; §

[ § ] in H2 §; R

Theorem 4 2 2 Let §; § be a symplectic manifold with dim § > 0 that can
be realized as a strongly monotone hypersurface of a subcritical polarization P with
´; º de¯ned as above Let X; X

be a tame symplectic manifold Assume that
the following conditions are satis¯ed:

1 [ X ] vanishes in H2 X; R and cX
1

is a torsion element in H2 X ; Z Denote
by tX 2 N its order

2 ´; º satisfy the inequality:

º
´

¸ §; §
kP

>
dimC § + dimC X + 1

2
:

Let L ½ §£X; § © X
be a closed Lagrangian submanifold Then H1 L; Z qZ

6

0 where q º lcm 2;´;tX
´ 2 N

Remark By the universal coe±cient formula \H1 L; Z qZ 6 0" is equivalent
to saying that H1 L; Z either has a non-trivial free summand or it contains a
non-trivial ¯nite cyclic subgroup whose order divides q
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Theorem 4 2 3 Let §; § and X; X
be symplectic manifolds satisfying the

same assumptions as in Theorem 4 2 2 with the exception that [ X ] is only as-
sumed to vanish on ¼2 X Let L ½ § £ X; § © X

be a closed Lagrangian
submanifold Then either ¼1 L contains an in¯nite cyclic subgroup or H1 L; Z
contains a non-trivial ¯nite cyclic subgroup whose order divides q where q is de-
¯ned in Theorem 4 2 2

4 3 Corollaries and examples

As a corollary to Theorem 4 2 1 we have:

Corollary 4 3 1 Let X2m; X
be a 2m-dimensional tame symplectic manifold

and suppose that cX
1

and X both vanish on ¼2 X resp in H2 X ; R Let
n ¸ m Then CP n £ X2m; ¾ © X has no closed simply connected Lagrangian
submanifolds resp closed Lagrangian submanifolds L with H1 L; Z 0

Proof In Section 2 we have seen that CP n; ¾ can be realized as a hypersurface of
a subcritical polarization of CP n+1 of degree 1 Note that CP n; ¾ is monotone

with ¸ CP n;¾ n + 1 Therefore the inequality

¸ §; §
kP

>
dimC § + dimC X + 1

2
:

becomes n + 1 > 1
2 n + m + 1 which is equivalent to n ¸ m ¤

Construction Note that the result is sharp in the following sense Let m n+1

Then for any 2m-dimensional symplectic manifold X2m; X there exists a0 > 0
such that for every a ¸ a0 CP n £ X2m; ¾ © a X admits a Lagrangian 2n + 1-
sphere

The construction goes as follows Denote by S2n+1
½ Cn+1 the unit sphere

and by h : S2n+1 CP n the Hopf map Then

S2n+1
3 z

7

z; h z 2 Cn+1
£ CP n; std © ¾

is a Lagrangian embedding see [A-L-P]
Now let X; X be a 2n + 2-dimensional symplectic manifold that admits a

symplectic embedding of a closed 2n + 2-dimensional ball of radius 1 say ' :
B2n+1 1 X; X It is easy to check that

S2n+1 @B2n+2 1 3 z
7 ' z ; h z 2 X £ CP n; X © ¾std

is a Lagrangian embedding
To complete the construction note that by Darboux' Theorem for every sym-

plectic manifold X; X there exists a0 > 0 such that for every a ¸ a0 X; a X
admits an embedding of a ball as above
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Examples of X2m; X Let us mention a few examples of manifolds that can play
the role of X2m; X in Theorem 4 2 1 and Corollary 4 3 1:

² X pt
² Any product of closed orientable surfaces of genus ¸ 1 e g T 2m the

product being endowed with any symplectic structure More generally any
closed aspherical symplectic manifold

² Any Stein manifold X; X with cX
1

vanishing on ¼2 X resp in H2 X ; R
For example Cm; std or cotangent bundles X T ¤ N of any closed
manifold N endowed with their standard symplectic structure

² Products of manifolds from the above list

Proof of Theorem A Immediate from Corollary 4 3 1 ¤

For symplectic manifolds X; X with cX
1

being a torsion element in H2 X ; Z
we get from Theorem 4 2 2:

Corollary 4 3 2 Let X2m; X
be a 2m-dimensional exact tame symplectic man-

ifold and suppose that cX
1

is a torsion element of order tX in H2 X ; Z In
case tX is even put ¿X

1
2 tX in case tX is odd put ¿X tX Let n ¸ m

Then every closed Lagrangian submanifold L ½ CP n £X2m; ¾ © X must satisfy
H1 L; Z 2n + 2 ¿X Z 6 0

Proof Note that CP n; ¾ is strongly monotone in CP n+1 with ´ 1 and º n+1

Hence by Theorem 4 2 2 H1 L;Z qZ 6 0 for q n+1 lcm 2; tX 2 n+1 ¿X
¤

Using Theorem 4 2 3 instead of Theorem 4 2 2 the assumption on the exactness

of X can be weakened so as to allow X to be a closed manifold :

Corollary 4 3 3 Let X2m; X ; tX ; ¿X and n ¸ m be as in Corollary 4 3 2 with
the exception that [ X ] vanishes on ¼2 X instead of the assumption that X is
exact Let L ½ CP n

£ X2m; ¾ © X be a closed Lagrangian submanifold Then
either ¼1 L has an in¯nite cyclic subgroup or H1 L; Z contains a non-trivial
¯nite cyclic subgroup whose order divides 2n + 2 ¿X

Proof of Theorem B Immediate from Corollaries 4 3 2 and 4 3 3 with ¿X 1 ¤

Another class of examples Let us describe another class of examples to which
Theorem 4 2 1 applies Let Y 2k ; Y ; JY be a KÄahler manifold of real dimension
2k and let LY Y be a holomorphic line bundle with cLY

1 [
Y

] Assume that:
1 cY

1
and

Y
both vanish on ¼2 Y

2 The line bundle LY Y is very ample or more generally LY admits k +1

jointly transverse holomorphic sections see Section 2
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Consider the line bundle L ¼¤
CPn O 1 ­ ¼¤

Y LY on CP n
£ Y Here ¼

CPn :
CP n £ Y CP n and ¼Y : CP n £ Y Y are the obvious projections Finally
let §2n+2k¡2

½ CP n £ Y 2k be the zero set of a generic holomorphic section of the

line bundle L It follows from Bertini's theorem that § is irreducible smooth and
reduced We denote by § the restriction ¾ © Y j§ Note that the symplectic
type of §; § does not depend on the choice of the generic section used to de¯ne

§ see the discussion in Section 2 7 above

Corollary 4 3 4 Let Y 2k; Y
and § be as above and let X2m; X

be a 2m-
dimensional tame symplectic manifold such that cX

1
and X

both vanish on ¼2 X
Assume that n > k + m Then § £ X; § © X has no simply connected closed
Lagrangian submanifolds

Proof By Corollary 2 5 1 CP n £ Y; ¾ © Y ; JCP n © JY ; § is a subcritical polar-
ization of degree 1 By Lemma 5 1 2 the vanishing of cY

1
and

Y
on ¼2 Y implies

that §; § is spherically monotone with ¸ §; § n Hence by Theorem 4 2 1

there exists no simply connected closed Lagrangian submanifold provided that
n > n+k¡1 +m+1

2 i e n > k + m ¤

Again X; X can be taken to be any of the manifolds in the list mentioned
after Corollary 4 3 1 As for Y; Y ; JY one can take Y;JY to be an Abelian vari-
ety endowed with an ample line bundle LY whose order of divisibility in Pic Y;JY

is at least 3 It is well known that such a line bundle is very ample see [G-H]
For Y

one can take any KÄahler representative of cLY
1

Proof of Theorem E Apply Corollary 4 3 4 with Y C ½ CP n and LY Y

the pullback of the hyperplane bundle on CP n The assumption genus C > 0
ensures ¼2 Y 0 The explicit form of § follows from Example 2 2 2 ¤

5 Lagrangian embeddings: proofs

In this section we prove our main results on Lagrangian embeddings: Theo-
rems 4 2 1 4 2 2 4 2 3 and Theorem C from the introduction

5 1 Preparation for the proofs

The following theorem from [B-C] is an important ingredient in our study of La-
grangian submanifolds A special case of this theorem namely when V Cn has

been established before by Polterovich [Po] in [A-L-P] and by Oh [Oh-2] See also

Viterbo [Vi-1] for related results

A Lagrangian submanifold L ½ M; is called monotone if [ ] ¸¹ on
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¼2 M; L for some constant ¸ > 0 cf [Oh-1] Here ¹ : ¼2 M; L Z denotes the

Maslov index Note that if M; admits a monotone Lagrangian submanifold
then M; is automatically spherically monotone

Theorem 5 1 1 [B-C] Let V; JV ;' be a subcritical Stein manifold and

X; X ; JX a tame symplectic manifold for which X vanishes on ¼2 X Let
L ½ V £ X; ' © X be a closed Lagrangian submanifold Then there exists
a non-constant JV © JX-holomorphic disc D ½ V £ X with @D ½ L such that
¹ [D] · dimL+1 Moreover if we assume that L is monotone H1 L; Z 2Z 6 0
and that dimR V £ X ¸ 4 then the disc D may be assumed to satisfy ¹ [D] ·dimL

We shall also need the following lemma

Lemma 5 1 2 Let P M;­; J ; § be a polarization of degree kP
Assume that

either dimR M ¸ 6 or dimR M 4 and P is subcritical Then:
1 ­ vanishes on ¼2 M if and only if § vanishes on ¼2 §
2 If §; § is spherically monotone resp monotone then so is also M;­

Furthermore in this case ¸ M;­ ¸ §; § + kP

Proof If dimR M ¸ 6 the lemma follows immediately from Lefschetz hyperplane

theorem which implies that the inclusions § M induces surjective maps on ¼2
and H2 The case of subcritical P with dimR M 4 follows from Corollary 3 4 and
a general position argument The formula ¸ M;­ ¸ §; § + kP is an immediate
consequence of the adjunction formula see [G-H] ¤

5 2 Proof of Theorem 4 2 1

Outline of the proof Let us explain ¯rst the main ideas of the proof and how the

fact that §; § can be realized as a hypersurface of a subcritical polarization is
used

Suppose contrary to the statement of the theorem that §£X; § © X does

admit a simply connected Lagrangian submanifold L
By assumption there exists a subcritical polarization P M;­; J ;§ with

­j§ § The ¯rst step of the proof is to climb one dimension higher and
construct a monotone Lagrangian submanifold Lr ½ M n § £ X;­ © X which
is built as a circle bundle over L For this purpose we use the decomposition
technique described in Section 3

The next step relies on the fact that M n § is a subcritical Stein manifold By
Theorem 5 1 1 there exists a non-constant holomorphic disc D ½ M n § £ X
with boundary on Lr such that:

¹ [D] · dimC M £ X :
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Next we combine the disc bundle structure on M n ¢ described in Section 3
with the fact that L is simply connected to cup the disc D with another symplectic
disc so as to obtain a sphere S ½ M £X with

RS ­ > 0 Moreover we can compute
the value of

RS ­
The upper bound on ¹ [D] and a computation of the Maslov number of the

other disc give us an upper bound on the ¯rst Chern number c1 [S] in terms of
dimC M £ X

Finally we use the monotonicity of M;­ Comparing the ratio between the

upper bound on c1 [S] and the area
RS ­ with the number ¸ M;­ will give us a

contradiction It turns out that the inequality in assumption 3 of the statement
of Theorem 4 2 1 is precisely the one needed in order to get this contradiction

We now turn to the

Proof of Theorem 4 2 1 We ¯rst prove the statement of the theorem regarding
simply connected Lagrangians The case of Lagrangians with H1 L; Z 0 is
similar and we will indicate at the end of the proof the needed adjustments

Suppose that there exists a simply connected Lagrangian L ½ §£X; § © X
By assumption § can be included in a subcritical polarization P M;­;J ; §
with ­j§ §

Step 1 Let E§ ; can be the standard symplectic disc bundle over §; § mod-
eled on the normal line bundle N§ of § in M and denote by ¼ : E§ § the

projection
For every 0 < r < 1 write

Pr ©
v 2 E§

¯
¯

kvk rª ½ E§

for the circle subbundle of radius r Denote by ¼̂r : Pr £ X § £ X the obvious

projection coming from Pr § Next write Lr ½ Pr £ X ½ E§ £ X for the

restriction of the circle bundle Pr £ X § £ X to L namely Lr ¼̂¡1
r L

Finally for every ¯xed 0 < r < 1 we endow E§ £X with the following symplectic
form

^r
1

kP
can © 1¡ r2

X :

A straightforward computation based on the de¯nition of can shows that
Lr ½ E§ £ X; ^r is a Lagrangian submanifold

We now have the following

Lemma 5 2 1 The circle bundle ¼̂r jLr : Lr L is trivial In particular Lr »
L £ S1

The proof is given after the end of the present proof
Note that the ¯bres of the circle bundle Lr L inherit an orientation induced

from the circle action on the ¯bres of Pr § In what follows we shall denote
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by ° a ¯bre of the circle bundle Lr L endowed with this orientation With this
notation we have ¼1 Lr Z[°]

Step 2 Let 'P
: V M n § R be the plurisubharmonic function on the Stein

manifold V; J associated with P Let ¢P
be the corresponding skeleton

Due to Theorem 3 3 we may assume replacing ­ with ­0 that V;J;'P
is

a subcritical Stein manifold that ¢P is a subcritical isotropic CW-complex and
that there exist a symplectomorphism

FP
: µE§;

1

kP
can¶ M n ¢P ;­

which sends the zero section § ½ E§ identically onto § ½ M
Denote by G the symplectomorphism

G FP £ 1l : E§ £ X; ^r ³ M n ¢P £ X;
b
­r´ ;

where

b
­r ­ © 1 ¡ r2

X
Consider now the Lagrangian submanifold G Lr ½ M £ X;

b
­r Note that

G Lr lies in fact inside V £ X; 'P © 1 ¡ r2
X

Lemma 5 2 2 There exists 0<r<1 such that G Lr ½¡V £X; 'P © 1¡r2
X ¢is monotone

Again the proof is postponed until the end of the current proof From now on
let r be the constant provided by Lemma 5 2 2

Step 3 Let JX be an X -compatible almost complex structure which realizes

X; X ; JX as a tame symplectic manifold Put JV £X J © JX
We are now in the position to apply Theorem 5 1 1 since V; J; 'P

is a subcrit-
ical Stein manifold X vanishes on ¼2 X G Lr is monotone H1 Lr; Z2 6 0
and dimR V £ X ¸ dimR V ¸ 4

By Theorem 5 1 1 there exists a non-constant JV £X -holomorphic disc
e
D ½

V £ X with boundary on G Lr such that ¹ [
e
D] · dimC V + dimC X

Since dimR V ¸ 4 the real codimension of ¢P £ X in V £ X is higher than
2 So by slightly perturbing

e
D away from its boundary we get a symplectic disc

which we continue to denote by
e
D with

R
e
D

b
­r > 0 and ¹ [

e
D] · dimC V +dimC X

that lies in the complement of ¢P £X in V £X In other words we may assume

e
D to lie in the image of E§ n § £ X under G Going back to E§ £ X via G¡1

we get a symplectic disc

D G¡1

e
D ½ E§ n § £ X

with boundary on Lr such that
RD ^r > 0 and ¹ [D] · dimC § + dimC X + 1

Step 4 As ¼1 Lr Z[°] there exists a unique integer l such that @[D] l[°] in
¼1 Lr We claim that l < 0
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To prove this denote by prX
: E§ £ X X and pr

E§
: E§ £ X E§ the

obvious projections Let E§ r ©
v 2 E§

¯̄
kvk · rª § be the closed disc

subbundle of radius r in E§ and consider the pull-back disc bundle
¼ £ 1l : E§ r £ X § £ X:

Pick a point p 2 L and denote by Fr ¼ £ 1l ¡1 p the ¯bre over p Note that
Fr is a symplectic disc with respect to ^r with boundary on Lr Moreover with
the orientation induced on Fr by ^r we obviously have @[Fr ] [°] 2 ¼1 Lr

As @[D] l[°] we can choose another representative D0 of [D] 2 ¼2 E§£X; Lr
whose boundary winds around one of the ¯bres l times that is @D0 l°

Consider now the sphere S D0 [@D0 ¡l Fr obtained from gluing the disc D0

along the boundary to the ¡l multiple cover of the ¯bre Fr Since
X vanishes

on ¼2 X and prX Fr pt we have

Z
D0

pr¤
X X Z

S
pr¤

X X + l Z
Fr

pr¤
X X 0

As
RD0

^r > 0 we get that
RD0

pr¤
E§ can > 0 Note that can d¡ r2 ¡ 1 ®r¢

on

E§ n § where ®r is the transgression 1-form on E§ see Section 3 So by Stokes

formula
0 < Z

D0

pr¤
E§ can l r2 ¡ 1 Z

°
® l r2 ¡ 1 :

This implies that l < 0 as stated

Step 5 Denote by cT E§
1 2 H2 E§; Z the ¯rst Chern class of the tangent bundle

of the symplectic manifold E§; 1
kP

can From the assumptions of the theorem
we get via the map FP that

cT E§
1 F ¤

P
cM

1

¸ M;­
kP

[ can] on ¼2 E§ :

On the other hand from step 3 we have

2cT E§£X
1 [S] ¹ [D] + ¡l ¹ [Fr ] · dimC § + dimC X + 1 + 2 ¡l : 1

Put B pr
E§ ¤

[S] 2 ¼2 E§ Since cX
1

vanishes on ¼2 X we also have:

cT E§£X
1 [S] ¸ M;­

kP
Z

B
can

¸ M;­
kP

[§] ¢ B ¸ M;­
kP ¡l :

Combining this with inequality 1 and the fact that l < 0 we obtain
¸ §; §

kP

¸ M;­
kP ¡ 1 ·

dimC § + dimC X + 1 + 2 ¡l
2 ¡l ¡ 1

·
dimC § + dimC X + 1

2
;

in contradiction to the assumption of the theorem This concludes the proof of
the statement of Theorem 4 2 1 regarding simply connected Lagrangians
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The statement regarding Lagrangians L with H1 L; Z 0 In this case the proof
goes along the same lines as above The only di®erence is that instead of work-
ing with the homotopy groups ¼1 Lr ; ¼2 E§ £ X;Lr one uses the correspond-
ing homology groups For example now we have H1 Lr ; Z Z[°] rather than
¼1 Lr Z[°]; the disc D0 should be replaced by a surface with boundary rep-
resenting [D] 2 H2 E§ £ X; Lr and so on ¤

We now turn to the proofs of Lemmas 5 2 1 and 5 2 2 stated in the course of
the proof

Proof of Lemma 5 2 1 We give the proof for the case of simply connected L The

case of L satisfying H1 L; Z 0 is very similar and even simpler
Let cLr

1 2 H2 L; Z be the ¯rst Chern class of the circle bundle Lr L The

triviality of the circle bundle Lr L is equivalent to the vanishing of cLr
1

Note that H2 L;Z has no torsion because H1 L; Z 0 Therefore it is enough
to show that cLr

1 vanishes in H2 Lr; R
Denote by iL : L § £ X the inclusion Computing in H2 L; R we have:

cLr
1 i¤Lpr¤

§cPr
1 i¤Lpr¤

§cN§
1 i¤L kP

pr¤
§ [ § ] ; 2

where pr§ : § £ X § is the obvious projection
Denote by prX

: §£X X the other obvious projection Since [ X ] vanishes

on ¼2 X it follows that pr¤
X

[ X ] vanishes also on ¼2 L As L is simply connected
the Hurewicz homomorphism ¼2 L H2 L; Z is surjective and so i¤Lpr¤

X
[ X ]

vanishes in H2 L; R
Finally from L being Lagrangian for § © X we conclude that i¤Lpr¤

§ [ § ] is
also zero in H2 L; R Now we get from 2 that cLr

1 0 ¤

Proof of Lemma 5 2 2 Again we present the proof for the case of L being simply
connected The case H1 L;Z 0 is completely analogous

Note that G¤
: ¼2¡ E§ n § £ X; Lr¢

¼2¡V £ X; G Lr ¢
is surjective due to

subcriticality Therefore it is enough to prove that there exists r such that Lr is
monotone in ¡ E§ n § £ X; ^r¢

Let A 2 ¼2¡ E§ n§ £X; Lr¢
Denote by ± A 2 Z the unique integer such that

@A ± A [°] 2 ¼1 Lr Let Fr be a ¯bre as in step 4 of the proof of Theorem 4 2 1

With these notations the class A¡ ± A [Fr ] 2 ¼2 E§ £X; Lr is the image of a
spherical class B 2 ¼2 E§ £ X under the natural homomorphism ¼2 E§ £ X
¼2 E§ £ X; Lr

It is easy to see that ¹ [Fr ] 2 hence 2cT E§£X
1 B ¹ A ¡ 2± A On

the other hand X and cX
1

vanish on ¼2 X and so:
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2cT E§£X
1 B 2pr¤

E§
cT E§

1 B 2¸ M;­ Z
B

pr¤
E§ µ

1

kP
can¶

2¸ M;­ Z
B

^r 2¸ M;­ Z
A

^r ¡ 2¸ M;­ ± A Z
Fr

1

kP
can

2¸ M;­ Z
A

^r ¡ 2¸ M;­ ± A
1

kP
r2:

Therefore if we choose r ³ kP¸ M;­ ´
1
2 we have ¹ A 2¸ M;­ [^r] A for every

A2¼2 E§ n § £ X; Lr Note that ¸ M;­
kP

¸ §; §
kP

+ 1>1 and so 0<r<1 ¤

5 3 Proofs of Theorems 4 2 2 and 4 2 3

Proof of Theorem 4 2 3 We use the same notations as in the proof of Theo-
rem 4 2 1 We denote by P M;­; J; § the subcritical polarization mentioned
in the statement of the theorem

Let L ½ § £ X; § © X be a closed Lagrangian submanifold Assume that
¼1 L has no elements of in¯nite order We shall prove that H1 L; Z contains a
non-trivial cyclic subgroup whose order divides q

Let Lr L be the circle bundle as in the proof of Theorem 4 2 1

Claim The bundle Lr L is not trivial

Before we prove this let us explain how it implies the desired statement on
H1 L; Z

Denote by cLr
1 2 H2 L; Z the ¯rst Chern class of the circle bundle Lr L

and let iL : L § £ X be the inclusion Since Lr L is not trivial cLr
1 6 0

As L is a Lagrangian submanifold T § £ X jL » T L ­ C and therefore

2i¤Lc§£X
1 0 Denoting by pr§ : §£X § and by prX

: §£X X the obvious

projections this can be written as:

2i¤Lpr¤
§c§

1
+ 2i¤Lpr¤

X cX
1

0: 3

Recalling that ºcN§
1 ´c§

1
cLr

1 i¤Lpr¤
§cN§

1 and tXcX
1

0 we have:

qcLr
1 i¤Lpr¤

§ µ
lcm 2; ´; tX

´ ºcN§
1 ¶

i¤Lpr¤
§³lcm 2; ´; tX c§

1´ i¤L³lcm 2; ´; tX pr¤
§c§

1
+ pr¤

X cX
1 ´ 0:

Summarizing all the above we see that cLr
1 6 0 but qcLr

1 0 This proves

that H2 L; Z contains a non-trivial cyclic subgroup whose order divides q It
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easily follows from the universal coe±cient formula that the same also holds for
H1 L; Z

It remains to prove that the circle bundle Lr L is not trivial Indeed assume

that this bundle is trivial Note that Lemma 5 2 2 continues to hold under the

assumption that all elements of ¼1 L have ¯nite order the proof is very similar to
the case ¼1 L 0 We can now apply steps 2 and 3 of the proof of Theorem 4 2 1
and in the same way obtain a disc D ½ E§ n § £ X such that ^r [D] > 0 and

¹ [D] · dimC § + dimC X + 1
Since the bundle Lr L is trivial we have ¼1 Lr ¼1 L £ h[°]i where

h[°]iis the in¯nite cyclic group generated by [°] Let l 2 Z be the unique integer such
that @[D] a; [°]l where a 2 ¼1 L As in step 4 of the proof of Theorem 4 2 1
we claim that l < 0

To prove this recall that we are under the assumption that all the elements of
¼1 L are of ¯nite order Let s 2 N such that as 1 and choose a representative

D0 of s[D] 2 ¼2 E§ £ X;Lr such that @D0 °sl Put S D0 [@D0 ¡sl Fr The

same arguments as in Step 4 of the proof of Theorem 4 2 1 show that

0 < Z
D0

pr¤
E§ can sl r2 ¡ 1 Z

°
® sl r2 ¡ 1 ;

hence l < 0
Now we proceed in an analogous way to step 5 of the proof of Theorem 4 2 1

to obtain:

2cT E§£X
1 [S] ¹ [D0] + ¡sl ¹ [Fr ] · s dimC § + dimC X + 1 + 2 ¡l ; and

cT E§£X
1 [S] ¡sl ¸ M;­

kP
:

Finally since l < 0 we get:

º
´

¸ §; §
kP

¸ M;­
kP ¡ 1 ·

dimC § + dimC X + 1 + 2 ¡l
2 ¡l ¡ 1

·
dimC § + dimC X + 1

2
;

in contradiction to the assumption of the theorem
This completes the proof of the claim that Lr L is a non-trivial circle bundle

hence the proof of Theorem 4 2 3 ¤

Proof of Theorem 4 2 2 The proof is analogous to the proof of Theorem 4 2 3 The

required adjustments are similar to the ones needed in the proof of Theorem 4 2 1

for the case H1 L; Z 0 One then concludes that H1 L; Z either contains an
in¯nite cyclic subgroup that is the free part of H1 L; Z is non-trivial or it has

a non-trivial cyclic subgroup whose order divides q By the universal coe±cient
formula this is equivalent to H1 L;Z qZ 6 0 ¤
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5 4 Proof of Theorem C

Proof of Theorem C We begin with the same construction as in Steps 1 and 2 of
the proof of Theorem 4 2 1 keeping the same notations We take:

² M;­ CP n+1; ¾
CPn+1

² §; § » CP n; ¾
CPn a linear hyperplane in CP n+1

² V M n § » CP n+1
n CP n » IntB2n+2 1

² X; X CP n; ¾
CPn

Finally put J JCP n+1 to be the standard complex structure of CPn+1 Clearly
the polarization M;­; J ; § is subcritical

Suppose that L ½ § £ X; § © X is a closed Lagrangian submanifold with
H1 L; Z 0 and H2 L; Z 0

Consider the circle bundle Lr L as in the proof of Theorem 4 2 1 We ¯rst
claim that this circle bundle is trivial Indeed the assumptions on H1 L;Z and
H2 L; Z imply that H2 L; Z 0 and so the ¯rst Chern class of Lr L vanishes

in H2 L; Z Thus Lr L is trivial
Next as in the proof of Theorem 4 2 1 consider the Lagrangian submanifold

G Lr ½ V £ X;­ © 1 ¡ r2
X

Claim G Lr is monotone Furthermore its minimal Maslov number de¯ned by

¹min min
©¹ A j A 2 ¼2¡V £ X; G Lr ¢

; ¹ A > 0ª
satis¯es ¹min 2 n + 1

Before we prove this claim let us see how this yields a contradiction In-
deed if ¹min 2 n + 1 then we have ¹min dim Lr + 1 and so by a theorem
due to Oh [Oh-2] the Floer cohomology of G Lr satis¯es HF i

¡G Lr ; Z 2Z¢ »
H i

¡G Lr ; Z 2Z¢
for every 1 · i · dim Lr ¡ 1 In particular:

HF 1

¡G Lr ; Z 2Z¢ » H1

¡G Lr ; Z 2Z¢
4

» H1 Lr;Z 2Z » H1 L £ S1; Z 2Z Z 2Z:

On the other hand since V is a subcritical Stein manifold the results of [B-C]
imply that HF ¤¡G Lr ; Z 2Z¢

completely vanishes in contradiction to 4

To complete the proof it remains to show that G Lr is monotone with ¹min
2 n + 1 Let [z0 : : : : : zn+1] be homogeneous coordinates on M CP n+1

and write § as the hyperplane fz0 0g With this choice of § the skeleton of
the polarization P CP n+1; ¾

CPn+1 ; J ; § is just ¢ f[1 : 0 : : : : : 0]g see

Example 2 2 1

The circle bundle Pr § can be naturally identi¯ed with the sphere

Pr
8
<

:

z1; : : : ; zn+1 2 Cn+1

¯
¯
¯

n+1

Xj 1
jzj j

2 1¡ r2

9

;
» S2n+1;



Vol 76 2001 Symplectic topology on subcritical manifolds 743

where the projection Pr § is given by Pr 3 z1; : : : ; zn+1 7 [0 : z1 : : : : :
zn+1] 2 § With these identi¯cations the restriction of the map FP to Pr is just:

FP z1; : : : ; zn+1 [r : z1 : : : : : zn+1] for every z1; : : : ; zn+1 2 Pr:

Pick a point p1; p2 2 L and write p1 [0 : z1 : : : : : zn+1] where z1; : : : ; zn+1
are normalized to be in Pr that is P

n+1

j 1 jzj j2 1 ¡ r2 Let S ½ M » CP n+1

be the projective line which connects the point p1 and the point [1 : 0 : : : : : 0]
forming the skeleton ¢ namely

S
©

[¸0 : ¸1z1 : : : : : ¸1zn+1]

¯
¯

[¸0 : ¸1] 2 CP 1

ª :

Consider now the decomposition S D
0+ [D

0¡
into two discs where:

D
0+ ©

[¸0 : ¸1z1 : : : : : ¸1zn+1]

¯
¯

j¸0j · rj¸1jª ;

D0¡ ©
[¸0 : ¸1z1 : : : : : ¸1zn+1]

¯
¯

j¸0j ¸ rj¸1jª :

Finally put D+ D
0+ £ p2 and D¡ D

0¡ £ p2 Note that both discs D+; D¡have their boundaries on the Lagrangian submanifold G Lr Moreover in the

notations of the proof of Theorem 4 2 1 the disc D+ is precisely the image G Fr
of the ¯bre Fr of the disc bundle E§ r £X §£X and its oriented boundary
@D+ is just G ° Similarly the disc D¡ lies in V £X and its boundary is a ¯bre

of the circle bundle G Lr L but with the opposite orientation namely G °¡1

Note that

¼2¡V £ CP n; G Lr ¢ » ZA © Z[D¡];

where A is the image of the class [pt £ line] 2 ¼2 V £ CP n under the natural
homomorphism ¼2 V £ CP n ¼2 V £ CP n; Lr We have ¹ D+ 2 hence

¹ D¡ 2cM
1

S ¡ ¹ D+ 2 n + 1 :

Also ¹ A 2cCP n
1 A 2 n + 1 Since the symplectic form ­ © 1 ¡ r2

X
takes the value 1 ¡ r2 on both A and D¡ it follows that G Lr ½ V £ CP n is
monotone with ¹min 2 n + 1 ¤
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6 Gromov radius

In this section we prove Theorems F and G from the introduction

6 1 Isotopies of subcritical CW-complexes and proof of Theorem F

An important ingredient in the proof of Theorem F is the following isotopy theo-
rem essentially due to Laudenbach [Lau]

Theorem 6 1 1 Isotopy Theorem Let M;­ be a symplectic manifold without
boundary but possibly non-compact and ¢ ½ M;­ an embedded ¯nite CW-
complex with dim¢ < 1

2
dim M Let B ½ M be a closed subset Suppose that

there exists a continuous homotopy Ãt : ¢ M such that Ã0 is the inclusion
and Ã1 ¢ \B ; Then there exists a compactly supported Hamiltonian isotopy

ªt : M;­ M;­ with ª0 1l and ª1 ¢ \B ;
This theorem is a slight modi¯cation of Theorem IV from [Lau] see also The-

orem I there and can be proved in almost the same way Let us also remark that
the above theorem and its proof belong to the framework of Gromov's h-principle
see [Gr-1]

Now let P M;­; J ; § be a subcritical polarization By Corollary 3 4 there

exists a subcritical isotropic CW-complex ¢ ½ M n § such that M n ¢;­ is
symplectomorphic to the standard symplectic disc bundle E§; 1

kP
can

The following result is an immediate consequence of the Isotopy Theorem and
Corollary 3 4 Here by a smoothly contractible subset of M we mean a subset
which can be isotoped via an ambient smooth isotopy into an arbitrarily small
coordinate neighbourhood in M For example a disjoint union of embedded closed
balls is always smoothly contractible

Proposition 6 1 2 Let P M;­; J; § be a subcritical polarization of degree

kP Let N; º be a symplectic manifold possibly non-compact or with boundary
Suppose that there exists a symplectic embedding f : N; º M;­ such that
f N is smoothly contractible in M Then there exists a symplectic embedding

N; º E§; 1
kP

can

In particular ½
G M;­ ½

G ³E§; 1
kP

can´
Remark Note that the inequality ½

G ³E§; 1
kP

can´ · ½
G M;­ holds for any

polarization subcritical or not However in the critical case this inequality may
be strict This happens e g for the degree 2 polarization CP n; ¾; JCP n ; § where

§ is a smooth quadric see [Bi-1] The reason is that in this case ¢ contains

Lagrangian cells for which Theorem 6 1 1 and Gromov's h-principle in general
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do not apply This discrepancy between the two Gromov radii and its implications

have been studied in [Bi-1]

Proof of Theorem F Let P M;­; J ; § be the subcritical polarization of degree

kP
as in the statement of the theorem

In view of Proposition 6 1 2 we have ½G M;­ ½G ³E§; 1
kP

can´ On the

other hand it is proved in [Bi-1] Proposition 5 A see also Theorem 4 A and its

proof that under the conditions of the theorem we have ½G E§; can · 1 hence

½
G ³E§; 1

kP
can´ · 1

kP
The converse estimate when O§ § § is base point free follows from the

results of [Bi-1] see Lemma 5 B there ¤

6 2 Seshadri constants and proof of Theorem G

Before we go to the proof we need a short tour into the theory of Seshadri constants

Seshadri constants were de¯ned by Demailly [Dem] We refer the reader also

to [E-L] [E-K-L] and the references therein for further details and interesting

results concerning these constants

Let M be a complex manifold and L M an ample line bundle The Seshadri
constant of L at the point p 2 M is the following non-negative real number:

E L; p inf
C3p

RC c
L1

multpC
;

where the in¯mum is taken over all irreducible holomorphic curves C passing

through the point p Since this quantity may depend on the point p it is useful
to de¯ne the following more global invariant:

E L sup
p2M

E L; p

which will be called the global Seshadri constant of L
Given an ample line bundle L M over a complex manifold M; J the

cohomology class c
L1

can be represented by a J-compatible KÄahler form ­L by
taking the curvature of L with respect to a suitable metric connection Note that
the symplectomorphism type of M;­L

depends only on the cohomology class

c
L1

This follows easily by Moser's argument since the space of J-compatible
symplectic forms on M is linearly convex

The next proposition establishes a relation between Seshadri constants and the

Gromov radius cf [Laz] and also [Bi-3] :

Proposition 6 2 1 Let L M be an ample line bundle over a complex manifold
M; J Then

½G M;­L ¸ E L :
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Proof Let ¼ : fMp M be the complex blow-up of M at a point p 2 M with
exceptional divisor E over p Then it is not hard to see that see [Dem] :

E L; p supft 2 R j The R-divisor ¼¤L¡ tE is nef g: 5

Recall that an R-divisor D on an algebraic variety is called nef numerically e®ec-
tive if it lies in the closure of the R- ample cone

Now let e 2 H2

fMp be the Poincar¶e dual to E Clearly 5 is equivalent to:

E L; p supft 2 R j The cohomology class ¼¤[­L]¡ te 2 H1;1

fMp is KÄahlerg:

Performing symplectic blowing-down see e g [M-P] Corollary 2 1 D we conclude

that ½G M;­L ¸ E L; p Since this is true for every p 2 M the proposition
follows ¤

We now turn to the

Proof of Theorem G Since [­] 2 H2 M ; Z \H1;1 M; J there exists a holomor-
phic line bundle L M; J with c

L1
[­]

By the results of [E-K-L] for a \very general" point p 2 M we have the

following uniform bound:

E L; p ¸
1

dimC M
:

Combining this with Proposition 6 2 1 we get:

½
G M;­ ¸ E L ¸ E L; p ¸

1

dimC M
:

On the other hand by Theorem F ½
G M;­ · 1

kP
Therefore kP · dimC M In

particular khol M; J; [­] · dimC M ¤

7 Proof of the Desingularization Theorem

Idea of the proof We will show that Á ¡ log ksk
2 has two types of critical points

The ¯rst type are ²-small perturbations of critical points of¡ log ks1­s2k
2 outside

§1 [ §2 which have index < n dimC M by assumption 1 The second type of
critical points occur near §1\§2 Up to small perturbations they can be modeled
as critical points of functions

z1; : : : ; zn 7 ¡ log jz1z2 + ²j
2 ¡ log ks0 z3; : : : ; zn k

2

on a neighbourhood of 0 in Cn such that §1 \ §2 is described by fz1 z2 0g
The ¯rst term has a critical point of index 2 whereas the second term has critical
points of index < n¡ 2 by assumption 2 so the second type of critical points also
have index < n Let us now make these arguments precise
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Proof of Theorem 2 3 1 Step 1 We cover M by ¯nitely many holomorphic
charts on which L1; L2 are trivial This allows us to view s1; s2; s1 ­ s2 s1s2 as

functions and speak of @si etc In view of the transversality assumptions there

exist arbitrarily small constants 0 < ± < ½ with the following properties:

² For i 1; 2 Vi fjsij < ±g is a neighbourhood of §i on which j@sij ¸ ½

² V fjs1j
2 + js2j

2 < ½2
g is a neighbourhood of D on which

ja1@s1 + a2@s2j
2 ¸ ½ ja1j

2 + ja2j
2 for all a1; a2 2 C:

² U fjs1j
2 + js2j

2 < ½2; js0j < ½g is a neighbourhood of Z on which

ja0@s0 + a1@s1 + a2@s2j
2 ¸ ½ ja0j

2 + ja1j
2 + ja2j

2 for all a1; a2; a3 2 C:

These properties imply the following:

² On M n V1 [ V2 : js1s2j ¸ ±2

² On V1 n V : From ½2 · js1j
2 + js2j

2 < ±2 + js2j
2 we infer

j@ s1s2 j js1@s2 + s2@s1j ¸ js2j j@s1j¡ js1j j@s2j

¸ p½2 ¡ ±2½ ¡ c± ¸
½2

2

for ± su±ciently small and similarly on V2 n V Here and in the following we

denote by c a generic constant independent of ²; ±; ½

Step 2 For ² > 0 small s is transverse to the zero section

Proof On M n V1 [ V2 : jsj ¸ ±2 ¡ ²js0j > 0 for ² small
On Vi n V : By step 1 j@sj ¸ ½2

2 ¡ ²j@s0j ¸ ½2

4 > 0 for ² small
On V n U : If s 0 then js1s2j ¸ ²½ and hence

j@sj ¸ js1@s2 + s2@s1j¡ ²j@s0j ¸ ½1 2

pjs1j2 + js2j2 ¡ c²

¸ ½1 2

pjs1s2j¡ c² ¸ ½²1 2 ¡ c²
> 0 for ² small

On U : j@sj
2 ¸ ½ js1j

2 + js2j
2 + ²2 > 0

Step 3 The critical points of Á ¡ log ksk
2
L

lie in M n V1 [ V2 or in V n U
The critical points in M n V1 [ V2 have index < n The critical points in V n U
satisfy ½ js1j

2 + js2j
2 · c²2

Proof In holomorphic charts write the metric on L as k k
2
L

eh
j j where j j is

the Euclidean metric and h a real function Then Á ¡ log jsj
2 ¡ h and @Á

¡ 1
s

@s ¡ @h So at a critical point @s ¡s@h
On Vi n V : At a critical point by step 2

½2

4 · j@sj j@hj jsj · c ± + ²js0j ;
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which is impossible for ±; ² small
On U : At a critical point

½ js1j
2 + js2j

2 + ²2 · j@sj
2 · j@hj

2
js1s2j + ²js0j

2

· c js1s2j
2 + ²2½2 · c½2

js1j
2 + c½2²2;

which is impossible for c½ < 1
On M n V1 [ V2 : The critical points of ¡ log ks1s2k

2
L

are non-degenerate of
index < n so the same is true for the critical points of ¡ log ksk

2
L

for ² small
On V n U : At a critical point by step 2

½1 2

pjs1j2 + js2j2 ¡ c² · j@sj · j@hj js1s2j + ²js0j

· c js1j
2 + js2j

2 + ² · c½1 2

pjs1j2 + js2j2 + c²;

which implies ½1 2

pjs1j
2 + js2j

2 · c² for ½ su±ciently small

Step 4 The critical points of Á in V n U are in one-to-one correspondence with
the critical points of Á0 ¡ log

°°

s0jD

°°

2

L
: D R and have index < n

Proof For ½ su±ciently small we can cover V by holomorphic charts f z1; : : : ; zn 2
Cn

¯̄
jz1j

2 + jz2j
2 < ½2; jz3j

2 + ¢ ¢ ¢ + jznj
2 < ½2

g in which s1 z z1 s2 z z2
Then

@Á
@z1 ¡

1

s³z2 + ²
@s0

@z1 ´¡
@h

@z1
;

@Á
@z2 ¡

1

s³z1 + ²
@s0

@z2 ´¡
@h

@z2
;

@Á
@zj ¡

1

s
²

@s0

@zj ¡
@h

@zj
for j 3; : : : ; n;

@2Á

@z1@z2 ¡
1

s³1 + ²
@2s0

@z1@z2´+
1

s2³z2 + ²
@s0

@z1´³z1 + ²
@s0

@z2´¡
@2h

@z1@z2
etc

By step 3 ½ js1j
2 + js2j

2 · c²2 at a critical point so s ²s0 + O ²2 It follows

that the expansion of the second order derivatives at a critical point in orders of
² looks as follows:

@2Á
@z1@z2 ¡

1

²s0
+ O 1 ;

@2Á
@¹z1@¹z2 ¡

1

²¹s0
+ O 1 ;

and all other second order derivatives are of O 1 i e zero order in ² Thus the

Hessian at a critical point z has the form

HesszÁ µ
1
² A + ~A B

Bt C¶ + O ² ;
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where the matrices A; ~A; B; C are of O 1 Moreover the real 4 £ 4-matrix A
corresponds to the quadratic form

w1; w2 7 ¡
1

s0
w1w2 ¡

1

¹s0
¹w1 ¹w2

2Im
w1

s0
Im w2 ¡ 2Re

w1

s0
Re w2 ;

which is non-degenerate of index 2
The second order partial derivatives for 3 · j;k · n are given by

@2Á
@zj@zk

@2

@zj@zk ¡ log js0j
2 ¡ h + O ² ;

and similarly for @
2Á

@¹zj@zk
and @

2Á
@¹zj@¹zk

So the matrix C is given by

C Hess z3;:::;zn Á0;

which is non-degenerate of index < n¡ 2 This proves that all critical points of Á
in V n U are non-degenerate of index < n

It remains to show the one-to-one correspondence between critical points of Á
and Á0 To see this consider for ¯xed z3; : : : ; zn the map

f² z1; z2 ²³
@Á

@z1
z ;

@Á
@z2

z ´
1

s0
z2; z1 + O ²

on the domain N fjz1j
2 + jz2j

2 · ½2
g For ² small there are no solutions of

f² 0 on the boundary @N So the mapping degree of f² equals the degree

of f0 z1; z2
1
s0

z2; z1 which equals 1 Since the matrix A is non-degenerate
of index 2 all zeroes of f² are non-degenerate of local degree ¡1 2 1 So

f² has a unique zero in N The non-degeneracy of the matrix C implies that
near every critical point of Á0 there exists a unique point z3; : : : ; zn at which

@Á
@z3 ¢ ¢ ¢

@Á
@zn

0 ¤

8 Discussion

Symplectic packings In analogy to the Gromov radius McDu® and Polterovich
de¯ned and studied in [M-P] see also [Bi-2] the quantity

vN M;­ sup
r

Vol Image'r
Vol M;­ ;

where the supremum is taken over all radii r for which there exists a symplectic
embedding 'r : B2n r ` : : :`B2n r M;­ of a disjoint union of N balls of
radius r

The following is an immediate consequence of Proposition 6 1 2
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Proposition 8 1 Let P M;­; J ; § be a subcritical polarization of degree kP
If a disjoint union of closed balls B2n r1 ` ¢ ¢ ¢`B2n rN M;­ embeds sym-
plectically into M;­ then it also embeds symplectically into the standard sym-
plectic disc bundle ³E§; 1

kP
can´ In particular vN M;­ vN ³E§; 1

kP
can´

for every N ¸ 1

This result reduces the packing problem from M;­ to a standard symplectic
disk bundle where it should be more tractable In dimension 4 the numbers vN are

known for many cases see [M-P] [Bi-2] In dimension > 4 even on disk bundles

the packing problem seems out of reach with the methods currently available

Spaces of symplectic embeddings Given a vector of positive numbers

r r1; : : : ; rN denote by Emb M;­; r the space of unparametrised symplectic
embeddings of the disjoint union B2n r1 ` ¢ ¢ ¢`B2n rN into M;­ equipped
with the C1 topology A natural question going back to the beginning of symplec-
tic topology is whether or not these spaces are connected At present this problem
is widely open in general see [McD-1 McD-2 La Bi-4 McD-3] for partial results

in dimension 4
Let us denote by i : Emb E§; 1

kP
can; r Emb M;­; r the natural inclusion

coming from the embedding described in Corollary 3 4 Proposition 6 1 2 states

that for symplectic manifolds M;­ that admit a subcritical polarization the

induced map

i# : ¼0 µEmb³E§;
1

kP
can; r´¶ ¼0³Emb M;­; r ´

is surjective In fact a 1-parametric version of Theorem 6 1 1 shows that this map
is also injective hence an isomorphism

For higher homotopy groups one expects the induced map on ¼k to be an
isomorphism provided that k · 2n ¡ dim ¢P ¡ 2 where ¢P is the skeleton of
the polarization P

Symplectic capacities Symplectic capacities have played an important role in the

development of symplectic geometry One example is the Hofer{Zehnder capacity
cHZ see [H-Z] for the de¯nition which is closely linked to Hamiltonian dynamics

For instance its ¯niteness implies the Weinstein conjecture for convex hypersur-
faces However the Hofer{Zehnder capacity has been computed only in very few
cases

A variation of this is the capacity c0
HZ · cHZ where in its de¯nition the

supremum is only taken over Hamiltonians H for which the set fH < max Hg is
smoothly contractible in M For the latter capacity the Isotopy Theorem yields

the following result:
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Proposition 8 2 For a subcritical polarization P M;­; J ;§

c0
HZ M;­ c0

HZ µE§;
1

kP
can¶ :

This reduces the computation of c0
HZ from M;­ to the standard disk bundle

where it may be approached by the methods of [H-V]

Degree of subcritical polarizations All our examples of subcritical polarizations

have degree kP
1 We conjecture that this is true for every subcritical polar-

ization Note that this conjecture would improve the bound of Theorem G from
khol M; J; [­] · dimC M to khol M; J; [­] 1

There appear to be two ways to prove this conjecture One using symplectic
homology see e g [C-F-H] the other using contact homology see [El-3] While
the ¯rst approach seems simpler the second one has the advantage of giving more

information than kP
1

Holomorphic spheres in subcritical polarizations All of our examples of subcritical
polarizations are uniruled in the sense that through every point there passes a non-
constant holomorphic sphere We conjecture that this is true for every subcritical
polarization More precisely we expect that on every subcritical polarization some

spherical Gromov{Witten invariant of a point is nonzero This conjecture may also
be approached via contact homology [El-3]
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