Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 76 (2001)

Artikel: The Rost invariant has trivial kernel for quasi-split groups of low rank
Autor: Garibaldi, Ryan Skip

DOl: https://doi.org/10.5169/seals-57410

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-57410
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

(© 2001 Birkh&user Verlag, Basel
Comment. Math. Helv. 76 (2001) 684-711

0010-2571/01/040684-28 $ 1.504-0.20/0 Commentarii Mathematici Helvetici

The Rost invariant has trivial kernel for quasi-split groups of
low rank

Ryan Skip Garibaldi

Abstract. For G a simple simply connected algebraic group defined over a field F, Rost has
shown that there exists a canonical map Rg : H(F,G) — H3(F,Q/Z(2)). This includes the
Arason invariant for quadratic forms and Rost’s mod 3 invariant for exceptional Jordan algebras
as special cases. We show that R has trivial kernel if G is quasi-split of type Eg or E7. A
case-by-case analysis shows that it has trivial kernel whenever G is quasi-split of low rank.

Mathematics Subject Classification (2000). 20G10 (17B25).

Keywords. Rost invariant, exceptional groups.

For G a simple simply connected algebraic group over a field F', the set of all
natural transformations of functors

HY(?,Q) — H*(?,Q/Z(2))

is a finite cyclic group [KMRT98, §31] with a canonical generator. (Here H*(?, M)
is the Galois cohomology functor which takes a field extension of the base field
F and returns a group if M is abelian and a pointed set otherwise. When F' has
characteristic 0, Q/Z(2) is defined to be lim p2? for p,, the algebraic groups of nth
roots of unity; see [EKLV98, p. 95] or [Gil00, 1.1(b)] for a more complete definition.)
This generator is called the Rost invariant of G and we denote it by Rg. In an
abuse of notation, we also write R for the map H'(F, G) — HY(F,Q/Z(2)).
This map provides a useful invariant for algebraic structures classified by
HY(F,G), and an important and typically difficult question is to describe the
kernel of Rg. For example, when G is split of type D,,, Rg is essentially the Ara-
son invariant I°F — H3(F,Z/2) for quadratic forms, where I"F' is as usual the
nth power of the ideal IF' of even-dimensional quadratic forms in the Witt ring
of F. That the kernel of the Arason invariant is precisely I*F is a quite difficult
result due independently to Merkurjev—Suslin [MS91] and Rost. (The proof of the
main result of this paper somehow boils down to this one fact.) In general, one
doesn’t even know if the kernel of Rg is trivial. On the other hand, the question
becomes tractable if we assume that G is quasi-split. Generally R has nontrivial
kernel; we give easy examples where G is split of type Dg (in 1.9) and By (in
1.6), and quasi-split of type 24 (in 1.11). It should be mentioned that Rg can
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have nontrivial kernel when G is split of type Fs as well; Gille [Gil, Appendix] has
produced an example by applying his results from [Gil00] to reduce the question
to the same one for a split group of type Dsg.

The principal result in this paper is to enlarge the list of quasi-split groups for
which the Rost invariant is known to have trivial kernel.

Main Theorem 0.1. Suppose that G is a quasi-split simply connected group of
type Eg or Ey. Then the Rost invariant Rg has trivial kernel.

0.2. There are some easy consequences of this theorem that may help the reader
place it in context. The first is that as a vastly less powerful corollary, we obtain
Serre’s “Conjecture II” for quasi-split groups of type Fg and F~, in that if I has
p-cohomological dimension < 2 for p = 2,3 (see [Ser94, 1.3] for a definition), then
the main theorem implies that H'(F,G) is trivial. This conjecture appeared in
print back in 1962 [Ser62], and remained open for such groups until the 1990s,
when Chernousov (unpublished) and Gille [Gil01] proved it (amongst other cases)
independently and by different methods. Here we get it for free from the Main
Theorem.

0.3. Another consequence is the following: Suppose that L is a field extension of
I of degree relatively prime to 2 and 3 and that G is a group of type Fg or E».
Serre asked in [Ser95, p. 233, Q. 1] if the natural map H'(F,G) — H'(L,G) is
injective. Our Main Theorem gives the partial answer that it has trivial kernel in
the case where G is quasi-split. This result was already known by experts in the
area using arguments special to groups of type Fg and F~r, but as for Conjecture 11
we get, it for free here.

0.4. There is also an application to finite-dimensional algebras. There is a
large family of nonassociative algebras with involution called structurable algebras
which includes central simple associative algebras with involution (as studied in
[KMRT98]) and Jordan algebras (with involution the identity), see [All94] for a
survey. The simple structurable algebras have all been classified, and they consist
(roughly) of the two families already mentioned plus four others. The most poorly
understood of these four additional types consists of 56-dimensional algebras all of
which are isomorphic over a separably closed field and have automorphism group
which is simply connected of type Fgs. Call algebras belonging to this class Brown
algebras. There is a natural equivalence relation defined on the set of structurable
algebras called isotopy [AH81] which is weaker than isomorphism, and in the case
of Jordan algebras is the same as the traditional notion of isotopy. For Albert alge-
bras, it is known that any algebra isotopic to the split one is actually split. (This is
equivalent to the cohomological statement that the map H'(F, Fy) — H'(F, Eg)
induced by the embedding Fy — Ejg described in 2.4 has trivial kernel.) The Main
Theorem here combined with [Gar01b, 4.16(2), 5.12] shows that an analogous con-
clusion holds for Brown algebras, i.e., a Brown algebra isotopic to the split one is
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quasi-split. This was previously unknown. (This has the cohomological interpreta-
tion that the map H'(F, EX) — H'(F, E;) induced by the embedding Ef — E;
described in 3.5 has trivial kernel.)

The material in [KMRT98] is sufficient to show that the kernel of the Rost
invariant is trivial for quasi-split groups of type Ga, D4 (including those of triali-
tarian type [KMRT98, 40.16]), and Fy, at least away from the “bad primes” 2 and
3. As easy corollaries to results needed for the Fg and F; cases, we get analogous
results for groups of type ?4,, B,, and nontrialitarian groups of type D,, with
small » in Section 1. Since H!(F, Q) is always trivial for G split of type A,, or C,,
we get the following:

Theorem 0.5. Suppose that G is a simple simply connected algebraic group. If
G is

o quasi-split of (absolute) rank < 5;

o quasi-split of type Bg, Dg, or Fg; or

o split of type Dy or Ex,
then the Rost invariant Rq has trivial kernel.

The proofs of these theorems that we will give here and the material in
[KMRT98] rely on the ground field having “good” characteristic, meaning for our
purposes # 2,3. However, it is a consequence of Gille’s main theorem in [Gil00]
that one only needs to prove that the Rost invariant has trivial kernel for fields of
characteristic 0. Consequently, all fields considered here will be assumed to have
characteristic # 2,3, but our two theorems will still hold for all characteristics.
(Of course, in prime characteristic the group Q/Z(2) must be defined somewhat
differently [Gil00], but this affects neither the statement of the theorems nor our
proofs.)

Section 1 dispenses with the classical groups. (Some of that material is useful
later.) Sections 2 and 3 contain the material necessary to reduce questions about
the Rost invariant for a larger group to a subgroup. That material easily reduces
the proof of the main theorem to considering the quasi-split >Fg case, which is
treated in the remaining Sections 4 through 7.

Remark 0.6 (Noninjectivity for Fy). We caution the reader that even when the
Rost invariant has trivial kernel, it may be far from injective. For example, for Fj
the split group of type Fy, the set H'(F, Fy) classifies Albert F-algebras. From
known facts about Albert algebras, it is easy to show that two classes a;q, as cor-
responding to isotopic Jordan algebras .J;, Jo have the same Rost invariant. Since
there are many isotopic Albert algebras which are not isomorphic (for example,

LAfter this paper was released as a preprint, Chernousov sent to me a different proof of
the ?Eg case [Che00], which uses a completely different argument. His proof will be published
elsewhere.
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over R there are 3 isomorphism classes of Albert algebras and two of these are iso-
topic [Jac7l, p. 119]), the Rost invariant for Fy has trivial kernel but is typically
not injective.

Notations and conventions

All algebraic groups considered here will be affine. We say that an algebraic group
G is simple if it has finite center and no noncentral closed normal subgroups defined
over an algebraic closure. When we say that a group is “of type T,,”, we implicitly
mean that it is simple of that type. We will use the standard notations G,,,, G,,
and p,, for the algebraic groups with F-points F™*, F', and the nth roots of unity
in F, and G° will always denote the identity component of an algebraic group G.
For a variety X we write X (F') for its F-points.

Our notation for quadratic forms will follow the standard reference [Lam73],
with two quirks: We use the Pfister-approved notation for Pfister forms, so
Lay,...,a,>» = ({l,—a1) ® -~ ® (1,—ay), and we write H for the hyperbolic
plane {1, —1).

The standard reference for Galois cohomology is [Ser94, §1.5], and for algebras
with involution (including the groups Spin (4, ), O(A,o), and SO(A, o)) it is
[KMRT98].

1. Quasi-split groups of type A, B, and D

As indicated in the introduction, the Rost invariant “should” have trivial kernel
for quasi-split groups of small rank. To prove this for Fg, we will need a result
on groups of type D, which also easily settles this question for groups of type A
and B. (For the results in this section, our global hypothesis that our fields have
characteristic # 3 is not required; we need only assume characteristic # 2.) For ¢ a
nondegenerate quadratic form over F', there is a short exact sequence of algebraic
groups

1 C Spin(q) —— SO(q) —— 1 (1.1)

with C isomorphic to ps.

Lemma 1.2. For q a d-dimensional nondegenerate quadratic form with anisotropic
part of dimension da, such that d > 5 and d+ d,, < 16, the kernel of the Rost
invariant of Spin(q) is precisely the image of H(F,C) in H*(F,Spin(q)).

The hypothesis d > 5 ensures that Spin(g) is simple and simply connected, so
that it makes sense to speak of the Rost invariant Rgpin(q)-

Proof. The set H(F,SO(q)) classifies quadratic forms of the same dimension and
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discriminant as ¢ [KMRT98, 29.29]. For o € H'(F,Spin(q)) we set g, to be the
quadratic form corresponding to the image of o in H'(F,SO(q)). Then ¢, — q is
not only even-dimensional with trivial discriminant (i.e., q, — ¢ € I°F), but since
¢ comes from H'(F,Spin(q)), it has the same Clifford invariant as ¢ [KMRT9S,
31.11] and so g, — ¢ € I°F by Merkurjev’s Theorem. As described in [KMRT98,
p. 437, the Rost invariant of « is the Arason invariant es(q, — q) € H>(F,Z/2).
(Since Z/2 = u$?, we can consider Z/2 to be a subgroup of Q/Z(2) and hence
H3(F,Z/2) is a subgroup of H?*(F,Q/Z(2)).)

Suppose first that o is in the image of H'(F,C). Sequence (1.1) induces an
exact sequence

SO(q)(F) —— H'(F,C) —— H'(F,Spin(q)) —— H'(F,50(q)),
(1.3)
and since the Rost invariant Rgping) “factors through” H YF,SO(q)), certainly
Rgpin(q) (@) is trivial.
Conversely, suppose that ais in the kernel of the Rost invariant. Then e3(g,—q)
is trivial, but as mentioned in the introduction the kernel of es is precisely I*F.
Since dim g, = dim ¢ = d, the hypotheses on ¢ ensure that the dimension of the
anisotropic part of g, —q is strictly less than 16. Since ¢, —g € I*F, it is hyperbolic
by the Arason—Pfister Hauptsatz [Lam73, X.3.1]. Thus ¢, is isomorphic to ¢ and
« is in the kernel of the map H'(F,Spin(q)) — H'(F, SO(q)), which is just the
image of H'(F,C). O

The first map in (1.3) is the spinor norm, which immediately produces the
following lemma.

Corollary 1.4. Suppose that q is as in Lemma 1.2. Then the kernel of the Rost
invariant is isomorphic to F* JSN(q)F*?, where SN(q) is the image of the spinor
norm map SO(q)(F) — F*/F*2. O

1.5. Quasi-split simply connected groups of type B,, are actually split, so of the
form Spin(g) for ¢ = nH L (1). In terms of the lemma, d = 2n + 1 and d,,, = 1.
So ¢ satisfies the hypotheses for 2 < n < 6. Since ¢ is isotropic, it has surjective
spinor norm, so the Rost invariant for a split group of type B, has trivial kernel
for 2 <n <6.

Example 1.6 (B;). As just mentioned, the split simply connected group of type
By is isomorphic to Spin(q) for ¢ = 7H L (1). The Rost invariant Rgpincg) can
have nontrivial kernel. Sequence (1.1) induces an exact sequence

H'(F,Spin(q)) —— H'(F,50(q) —— H*(F.p;)  (17)
where the set H!(F, SO(q)) classifies nondegenerate quadratic forms with the same
dimension (15) and discriminant (1 - F*?) as q.

Fix a base field F' and a nonhyperbolic 4-fold Pfister form ¢ over F' (e.g. F =R,
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p=<—-1,—1,—-1,-1>>). Set q, = —¢’ for ¢’ such that ¢ = (1) L ¢'. Then
disc go = (—1)(125) det(—¢') = 1- F*2, so there is a unique element of H(F, SO(q))
corresponding to g,. The image of ¢, under the connecting homomorphism & is
[Co(ga — ¢)], which by [Lam73, V.2.10] is the same as [C(g, — ¢)] which is trivial
since g, —q = —p € I°F. Thus ¢, is the image of some o in H'(F,Spin(q)). But
then Rgpin(g)(a) = e3(gs — q) = e3(—¢), which is trivial since ¢ € I'F.

1.8. An analysis for groups of type D, similar to the one in 1.5 for B,, shows
that the Rost invariant for a simply connected group is trivial for groups of type
1D, with 3 <n < 7 and for groups of type 2D,, with 3 < n < 6. As in the B case,
we show that one of these bounds is sharp.

Example 1.9 ('Dg). The situation here is quite similar to the one in Example
1.6, except that ¢ = 8H. Use the same base field F' and nonsplit 4-fold Pfister
form ¢ from before. There is a unique element of H'(F, SO(q)) corresponding to
¢ and since ¢ = ¢ — g € I*F, the same reasoning shows that there is a nontrivial
class in H!(F,Spin(q)) which is the inverse image of ¢ and which has trivial Rost
invariant.

Lemma 1.2 easily deals with quasi-split groups of type 24,, of low rank.

Corollary 1.10. If G is a quasi-split simply connected group of type %A, with
n < 5, the kernel of the Rost invariant Rq is trivial.

Proof. Set K to be the quadratic field extension of ' which splits G and take
(V, h%) to be a “maximally split” (n+ 1)-dimensional hermitian form over K. (See
below for a more explicit description.) Then G is SU(V, h?), the algebraic group
with F-points
h(gv, gv') = h(v,v’)
SUWV,h*)(F)={ge GL(V)(K) | for all v,v’ € V and
detg=1

The trace form of h? is defined to be the quadratic form ¢% on V considered as a
2(n + 1)-dimensional vector space over I' given by ¢%(v) = h%(v,v). Then

d mH if n4+1 = 2m, 44 2mH if n+1 = 2m,
mH L (1) ifntl=2m+1 2mH L <d>» ifntl=2m+1,

where K = F(\/ﬁ) if n = 2m for some integer m, and the H occurring in the
description of h? is the usual unitary hyperbolic plane as described in [Sch85,
7.7.3].

The set H'(F, Q) classifies nonsingular hermitian forms » on V which have
the same dimension and discriminant as A% [KMRT98, p. 403]. The group G
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embeds in SO(V, ¢%) in an obvious manner. The corresponding map H'(F, G) —
H(F,SO(V,q%)) sends h to its trace form ¢, and this map is an injection by [Sch85,
10.1.1(ii)]. Moreover, the Rost invariant Rs(h) is just es(q — ¢?) by [KMRT9S,
31.44]. Since dim¢? = 2n + 2 < 13 and the anisotropic part of ¢¢ has dimension
0 (if n+1 is even) and 2 (if n+ 1 is odd), as in the proof of Lemma 1.2, if Rz (h)
is trivial, ¢ =2 ¢% and so h = h. O

Example 1.11 (?4¢). Take ' = R, K = C, and consider G = SU(V, h?) for
h? the hermitian form 3H L (1) over K, so that G is simply connected quasi-
split of type 2Ag. Then the hermitian form h = (-1, -1, -1, -1, —1, -1, —1) has
trace form ¢ = —7< —1>> which is not hyperbolic, so h corresponds to a (unique)
nontrivial class in H'(F,G). However,

q_qd = T -1>-—<—-1>= —<<—17—17—17_1>> S I4F7

80 Ra(h) is trivial.

2. Folded root systems

2.1. The Rost multiplier. A loop in an arbitrary algebraic group G is a homo-
morphism G,,, — G. Let G, be the set of loops in G. As in [KMRT98, p. 432], we
set Q(G) to be the abelian group of all integer-valued functions on G, such that

(1) for 9f the loop given by 9f(x) = gf(z)g ', q(%f) = q(f) for all g € G and
f € Gy; and

(2) for any two loops f and h with commuting images, the function ZxZ — Z
given by (k,m) — q(f*h™) is a quadratic form.

When G is a simple group, Q(G) is cyclic with a canonical generator which is
positive definite [KMRT98, 31.27], hence is identified with Z. Now suppose that
we have two simple simply connected groups H C G. The inclusion gives a map
H, — G,, so we in turn have a map Z = Q(G) — Q(H) = Z. Because the
canonical generators are positive definite, this map must be multiplication by a
positive integer n, which we define to be the Rost multiplier of the inclusion.

The naturality of the Rost invariant implies that we have a commutative dia-
gram

HY(F,H) —— HY(F,Q/Z(2))
H

HY(F,G) —° H3(F,Q/Z(2)),

where n is the Rost multiplier of the inclusion [KMRT98, 31.34]. This is the
motivation for our study of this invariant.
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2.2. Luckily, it can be quite easy to compute such a “Rost multiplier”. Suppose
that G and H are split and contain split maximal tori S and T respectively such
that the T lies in S. Since G and H are simply connected, the character groups
X(T) and X (S) are identified with the weight lattices, but the character groups
are dual to the loop groups S, and T, [Bor91, 8.6] and the weight lattices are
dual to the lattices generated by the coroots, which we denote by A. ¢ and A, #,
respectively. (By a coroot, we mean the roots of the dual root system, which are
denoted by & in [Bou68, VI.1] for « a root.) Putting these dualities together,
we obtain identifications S, = A.¢ and Ty = A, g, so the inclusion ' C S
induces a map Ac g — Ace. Now the dual root systems (whose roots are the
coroots) are indeed root systems [Bou68, VI.1.1, Prop. 2| and so they each have
a unique minimal Weyl-group invariant positive-definite integer-valued quadratic
form [Bou68, VI.1.2, Prop. 7], say ¢ and r (for the forms for G and H respectively).
Hence ¢ induces such a form on A, g, which must be of the form nr for some natural
number n. This n is the Rost multiplier of the inclusion.

Criterion (2) in the definition of Q(G) implies that its canonical generator
is identified with the positive-definite Weyl-group invariant quadratic form on the
dual root system which takes the value 1 on short coroots. (Short roots correspond
to long roots, where we adopt the convention that short = long in the event that
all roots have the same length. In that case, the quadratic form is very easy to
identify, in that its Gram matrix is simply the Cartan matrix of the root system
with all entries divided by 2.) So one can simply compute the image of a short
coroot from H in the dual root system for GG to find the Rost multiplier of the
inclusion.

Example 2.3 (SL, — SLay). The block diagonal embedding SL,, < SLa, via
z +— (*,) has Rost multiplier 2. The map given by z — (* ;) has Rost multi-
plier 1.

Example 2.4 (Folding). The split simply connected group of type Eg can be
realized as the group Inv (J) of invertible linear maps of the split Albert algebra J
which preserve the cubic norm form. The algebra J has a nondegenerate symmetric
bilinear trace form 7' given by setting T'(z,y) to be the trace of the product z - y
[Jac68, p. 240, Thm. 5], and for ¢ € Inv (J)(F) we define of € GL(J)(F) to
be the unique map satisfying 7'(0(5), ¢' (")) = T'(4,4") for all 5,5/ € J. This
defines an outer automorphism of Fg = Inv (J) [Jac61, p. 76, Prop. 3] and the
subgroup of elements fixed by this automorphism is the split group Iy of F-algebra
automorphisms of J.

We would like to compute the Rost multiplier of the inclusion Fy C FEgs. Fix
an F-split maximal torus S in G := Fg which is preserved by the automorphism
(such as the one denoted by “Sg” in [GarOlb, pf. of 7.2]) and fix a set of simple
roots A of G with respect to S. We would like our outer automorphism to leave A
invariant, although it probably does not do so. However, two things are apparent
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from the definition of the Rost multiplier: it is not changed by scalar extension
nor by modifying the automorphism ¢ — ¢! by an inner automorphism of Fg. So
we may assume that the base field is separably closed and so that the F-points of
the Weyl group of G with respect to S (i.e., the F-points of Ng(S)/S) is the full
Weyl group of the root system of G with respect to S. Then we may modify our
outer automorphism by an element of the Weyl group so that Fj is described as
the subgroup of Fg fixed by the automorphism f induced by the automorphism of
A which is given by the unique nontrivial automorphism of the Dynkin diagram.
That is, we set H := Fy = G/ (= the subgroup of G of elements fixed by f),
and T = (S/)° (= the identity component of T'N G7) is a maximal torus in H.
The restrictions of elements of A to T' give a root system of H with respect to
T [Sch69, p. 108] and the fibers of this restriction map are the orbits of f in A
[Sch69, 3.5].

Now A ¢ is a free Z-module with basis A = {5 | § € A} which is permuted by
f and A g is the fixed sublattice. So A,z has a basis consisting of one element
for each orbit of f in A, and this element is given by the sum of the elements in the
orbit in A. There is a coroot 6 € A which is fixed by f, hence ¢ is a member of the
Z-basis for Ac . The form g on A, ¢ restricts to a positive-definite Weyl-invariant
form on A, g such that q((;) = 1, consequently ¢ restricts to be the minimal such
form r. By the discussion in 2.2 the Rost multiplier of the inclusion Fy C Fjg is 1.

Remark 2.5. Presumably this same argument also works in the other instances
where one obtains a root system by “folding up” another root system all of whose
roots have the same length, i.e., Corq1 C Agpry, Bp—1 C Dy, and Gy C Dy. The
other root system consisting of roots of the same length, A, folds up to give the
smaller root system BCy, see [Hec84, Table 1.

3. Small representations

We say a representation V of an algebraic group G is smeall if G has an open
orbit in P(V). We are interested in small representations in the case where G
is simple, which have all been classified as a consequence of the (more general)
classification of prehomogeneous vector spaces, see [Kim88] for a survey. These
small representations also provide “standard relative sections” in the language of
[Pop94, 1.7], and in that sense were classified in [Ela72, Table 1]. Our motivation
for studying these representations comes from the following easy lemma, which
was pointed out to me by Rost.

Lemma 3.1. Suppose that G is an algebraic group over a field F' such that G
has a small representation V', and that F is infinite or G is connected. Let H be
a subgroup of G consisting of the elements which stabilize some F-point in the open
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orbit in P(V'). Then the natural map
HYF,H) — H'(F,G)

18 surjective.

Proof. If the base field I is finite, then by hypothesis G is connected, and by
Lang’s Theorem H'(F,G) is trivial so the lemma holds. So we may assume that
F'is infinite.

Fix a l-cocycle z € Z'(F,G). It defines a twisted version P(V), of P(V') which
is the same as P(V') over the separable closure Fi., of F' but has a different Galois
action: For w € P(V),(Fsep) and o € Gal(Fsep/ '), o acts by

T %W = Z;0W

where juxtaposition denotes the usual action. The twisted version U, of U, defined
analogously, is an open subset of P(V),.

Since the representation gives a map G — GL(V), P(V), is F-isomorphic to
P(V). In particular, since F' is infinite, P(V'),(F) is dense in P(V),(Fiep). Since
U,(Fsep) is open in P(V),(Fiep), the two sets U, (Fiep) and P(V),(F) must meet
nontrivially, i.e., U, has some F-point which we will denote by z,.

Now let z € U(F) be the point with stabilizer subgroup H and fix some
g € G(Fyep) such that gz = z,. Then for all 0 € Gal(Fsep/F'), the element
g '2,(cg) fixes z and so lies in H(Fie,). Thus 2 is cohomologous to something in
the image of Z'(F, H). O

Example 3.2 (0,1 C O,)). Write O, for the orthogonal group of the dot product
on F™. Then the subgroup of O,, which stabilizes [v] € P(F™) where v has nonzero
length is just O,_1 X p,, where O, _1 is the orthogonal group for the (n — 1)-
dimensional space of vectors in F" which are orthogonal to v. Iterating this
process recovers the fact that all nondegenerate quadratic forms are diagonalizable,
a.k.a. the Spectral Theorem.

Example 3.3 (Spin,, [Igu70], [GV78], [Pop80]). For Spin,, the spin group for an
n-dimensional maximally split quadratic form, the spin representation (if n is odd)
or the half-spin representation (if » is even) is small for n < 12 and n = 14. In
the n = 14 case, the stabilizer subgroup is isomorphic to (G X G2) X pg, and this
leads to structural statements about 14-dimensional forms in I°F, see [Ros99].

Example 3.4 (Fy x py C Eg). We write Eg for the split group of type Eg which
can be realized as Inv (J) as described in 2.4. By [Jac61, p. 71, Thm. 7], Es acts
transitively on the subset of J consisting of elements of norm 1, so certainly this
is a small representation.

Take H to be the subgroup of Eg consisting of elements which fix the identity
element 1; of J projectively. Since the norm form is cubic, ps is contained in
H and is central (since it consists of scalar endomorphisms), and any element
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of H differs by an element of pg from something which fixes 1; absolutely. This
subgroup of elements fixing 1 ; is well-known — it is the automorphism group Fj of
J [Jach9, p. 186, Thm. 4], which is split of type Fy. So H is isomorphic to Fy X ps,
and the resulting surjective map H'(F, Fy x puy) — HF, Fg) is the statement
that H'(F, Es) classifies cubic forms of the form AN for N the norm form on some
Albert F-algebra and A € F™*, see [Spr62]. This can also be interpreted in terms
of structurable algebras, see [GarOlb, 2.8(1)].

Example 3.5 (Eg x p, C Fr). Write B for the split simply connected group of
type Er over F. It is the group of vector space automorphisms of V' = (4 ) which
preserve a quartic form ¢ as given in [Bro69, p. 87]. Then E; acts transitively on
the open subset of P(V') consisting of points [v] such that ¢(v) # 0 by [Fer72, 7.7].

We set H to be the subgroup of E; which stabilizes the vector v = (}9)
projectively. This vector has ¢(v) # 0, and so by [Fer72, 3.7] there are two uniquely
determined (up to scalar multiples) “strictly regular” elements e and es such that
v lies in their span. These are e; = (3 ) and es = (§ ). Since E; preserves the
property of being strictly regular, every element of H must projectively stabilize
e1 and ey as well, and perhaps interchange them.

Now, the map w defined by

aj\ _ [iB iy
<(52)-(5%)
lies in H, where ¢ is some fixed square root of —1 in the separable closure of F. We

would like to describe an arbitrary h € H, which after modification by w we may
assume projectively stabilizes each of e; and e;. Then by [Bro69, p. 96, Lem. 12],

h must be of the form
h(a j) _ (ula w(ﬂ)
i’ B et wp

where ¢ is a similarity of the norm form on .J with multiplier x and ¢! is as defined
in 2.4. Since h also stabilizes v, we must have that ¢ = +1. In particular, after
modifying h by w? = —1, we may assume that h has the form

h(? é) - (@T?j’) W(ﬁj)>

where ¢ preserves the cubic norm on J and so lies in Fg. We have shown that H
is isomorphic to Fg X .

The surjection on Galois cohomology coming from this example will be more
useful if we can replace Eg x p, with a simple group. For K a quadratic étale
F-algebra, we write EL for the simply connected quasi-split group of type Eg over
F which is split by an extension L of F'if and only if L®p K = L x L.

Proposition 3.6 (Cf. [GarOlb, 4.14]). For each o € H'(F,Ey) there is some
quadratic étale F-algebra K such that EE embeds in FEy with Rost multiplier 1
and « is in the #mage of the induced map H'(F, EX) — H(F, Ey).
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Proof. Fix some a € Z'(F, Fs x p,) representing o.. The natural projection Eg x
py — p4 has an obvious section given by sending ¢ — w; set b to be the image of
a given by the map induced by the composition Eg x gy — py — Fg X py. Twist
Es % py by b to obtain a new group (Fg X py)s, with a twisted Galois action * so
that

oxg="bs("g)b, ",
where 7 g denotes the usual action. There is an isomorphism

HY(F, (Es % pa)o) —— H'(F, Eo x py)

where 7, L() is the class of a 1-cocycle given by o — a,b; ! with values in the
identity component of the twisted group (Fs x py)s. This identity component is
just Fg twisted by b, and we would like to show that it is isomorphic to E for
some quadratic étale I'-algebra K. If o in Gal(Fyep/F') has by = %1, then o acts
in the usual manner upon the twisted Fg. On the other hand, if b, = +w, then
the twisted action is given by

a gy —1 gy a oplo=t(j)
(o*h) (j’ ﬁ) = (w)oho™ ' (tw) (j/ ﬁ) = (mpa_l(j) 3 > ;
This is precisely the description of the Galois action on E£ given in [GarOlb, 2.4]
for K determined by the image of b under the composition H'(F, Fg x p,) —
HY(F,p,) — HYF, py) = F*/F*?, s0 (Fg)y is isomorphic to E. To see that EX
embeds in F, we observe that the 1-cocycle b is trivial in H'(F, E;) by [Gar0Olb,
4.10, 5.10], so we have a map

Ef C (Es % pg)y — (Er)y —>; E;

where (by a simple computation having nothing to do with E;) H'(f) = 7. This
proves the proposition aside from the claim about the Rost multiplier.

But that claim is easy in the split case (where K = F'x F'), since the embedding
of Fg in E7 comes from the obvious embedding of root systems. Since the Rost
multiplier is invariant under scalar extension, the embeddings of quasi-split groups
of type EX in E; given above all have Rost multiplier 1 as well. Il

4. D, C %,

For the remainder of the paper we will study the quasi-split group E£ of type *Fg
defined in 3.5. In this section we introduce a particular subgroup G of EE which is
reductive of semisimple type D4. Defining G will necessitate digging more deeply
in to the structure of Cayley and Albert algebras.

Definition 4.1. Fix € to be the split Cayley algebra endowed with hyperbolic
norm form n and canonical involution ~. (For more information about Cayley
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algebras, see [KMRT98, §33.C] or [Sch66, Ch. III, §4].) If t € GL(€)(F) satisfies
n(t(c)) = mn(c) for some m € F* and all ¢ € €, we say that m is a similarity of n
with multiplier p(¢) := m. (Note that if o, is the involution on Endp(€) which is
adjoint for n so that n(tc, ') = n(c, on(t)c) for all ¢, ¢’ € €, then u(t) = on(t)t.)
Set GO° (€, n) to be the algebraic group with F-points

GO® (€, n)(F) — {t € GL(@)(F) ‘t is a similarity of n with multlpher} .

w(t) such that det(t) = u(t)*

We can also define a new, seemingly uglier multiplication * on € by setting z %
y = zy as in [KMRT98, §34.A]. A related triple is a triple (to,t1,t2) in GO°(€,n)*3
such that
plts) " Mi(w o y) = tiga(x) * tia (y)

for all z,y € € and ¢ = 0,1,2 with subscripts taken modulo 3. Write Rel (€, n)
for the algebraic subgroup of GO°(€,1n)*?® consisting of related triples and Spin(n)
for the subgroup of Rel (€,n) consisting of triples with multiplier one (i.e., those
triples such that p(t;) =1 for all ).

4.2. The vector space underlying the split Albert F-algebra J is the subspace
of M3(€) consisting of elements fixed by the conjugate transpose * which applies
~ to each entry and takes the transpose. It is the algebra denoted by $(€3) in
the notation of [Jac68, §1.5] and has multiplication a - b := (ab + ba)/2, where
juxtaposition denotes the usual multiplication on M3(¢€). When writing down
explicit elements of .J, we will use a “.” to indicate entries whose values are forced
by this symmetry condition. The reductive group Rel (€, n) embeds in the group
Inv (J) of norm isometries of J via the map ¢t — g, given by

€0 €2 - pto) e ta(e2)
gt - €1 Co — . M(t1)7161 to(Co) ‘ (43)
¢l - €9 ti(c1) : p(ta) ey

Let e; denote the element of J whose only nonzero entry is a 1 in the (i+1, i+1)-
position. Any element of Inv (J)(K) which fixes ey, s, and ej is of the form g; for
some t € Spin(n) by [Sod66, p. 155, Thm. 1]. This implies that every element of
Inv (J)(F') which leaves each of subspaces Fe; invariant is in the image of Rel (¢, n).

4.4. Definition of G. Since Rel (€,n) embeds in Inv (J) over F, it embeds in
B over K. However, we can identify EX with Inv (J) with a different t-action
where “f .= ¢f11, where ¢+ is the nontrivial F-automorphism of K and juxtaposition
denotes the usual action; we fix this identification for the rest of the paper. The
map Rel (€,n) — EX is not defined over I': For t = (to,t1,t2) € Rel (€,n)(K) and
g: € E, we have ‘g, = Guoq(t)-1. Which is typically not the same as g,;, where
o, (t) means to apply o, to each component of . Define G to be the algebraic
group over F' which is the same as Rel (€, n) over K but with a different :-action:
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for t € G(K), set ‘t := 10,(t)"'e. Then G injects into EE over F via the map g
from (4.3).

This group G is reductive with absolute rank 6 and semisimple part Spin(n) of
type Dy.

4.5. The center P of GG. Set N; to be the algebraic group with F-points the
elements of K* with norm 1 in F. This group is the same as G,,, over K, but has a
different r-action given by ‘A = ¢(A)~1. It is sometimes denoted by R%; 7(Gm.Kx).

The center of Rel(€,n) is the subgroup of G2 consisting of triples whose
product is one. But we are concerned with G, which has a different t-action; its
center P is isomorphic to the subgroup of N 1XS consisting of triples whose product
is 1. This rank 2 torus is F-anisotropic and K-split.

The importance of G is given by the following lemma, excavated from a paper
by Ferrar:

Ferrar’s Lemma 4.6. [Fer69, p. 65, Lem. 3] The natural map H (K/F,G) —
HY(K/F, EE) is surjective.

Comments. Ferrar proved this by explicit computations in the Jordan algebra.
However, this can also be seen with more algebraic group-theoretic methods, as was
pointed out to me by Gille. We must assume that our base field has characteristic
0, which as was observed in the introduction does not harm our main results in
any way.

The group Sping is split simply connected of type D4 and so contains a subgroup
which is isogenous to SL;4. Each copy of the group SLs contains a rank 1 torus
which is anisotropic over I' and split over K, and we set T to be the image in
Sping of these four tori. Let T be the subtorus of G generated by T and the
center P. It is a rank 6 F-anisotropic torus which is split over K. Let B be a
Borel subgroup of EX defined over K and containing 7. Then ‘BN B = T, so
by [PR94, p. 369, Lem. 6.28] the natural map H'(K/F,T) — HY(K/F, Ef) is a
surjection. [l

Now imagine how the argument for proving the main theorem in the 2E;
case must proceed: We apply some simple argumentation and Ferrar’s Lemma
to show that any class in H'(F, Ef) with trivial Rost invariant must come from
HY(K/F,G). Then we apply some facts about Rost invariants on this smaller
group to obtain the theorem. However, G is reductive, so we want to put our class
with trivial Rost invariant into a simple subgroup if we hope to apply our results
from Section 1. This requires further study of the center of G.

4.7. The group H(K/F,P). There is a short exact sequence over K
1 P N 2o Ny 1,
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where 7 is the product map, which induces an exact sequence

1

HY(K/F,P) —— HY(K/F,N**) 22 gyk/F Ny,
The first map is an injection because the product map = is a surjection on F-
points. Any l-cocycle in Z'(K/F, Ny) is determined by its value at ¢, and the
condition that it is a 1-cocycle forces that this value lies in F'*. The obvious check
shows that two such are cohomologous if and only if they differ by a norm from K*.
So H'(K/F, P) is isomorphic to the subgroup of (F* /Ny, p(K*))*® consisting of
elements with product in Ng,p(K*).

4.8. The map H'(K/F,G) — H'(K/F,P). There is a short exact sequence
1 —— Spin(n) G P 1

where the map G — P is given by sending each ¢; to its multiplier p(t;) = on(¢:)t; €
N;. This sequence is even exact over K (instead of just over a separable closure
of F) because the map G — P is surjective over K by [KMRT98, 35.4]. A 1-
cocycle v € ZYK/F,G) is determined by its value v, at ¢, and the image of 7 in
H'Y(K/F,P) is the multiplier of ~,.

A natural question is the following: Any 1-cocycle in Z1(K/F, EE) comes from
H'(K/F,G) by Ferrar’s Lemma and so has an image in H'(K/F, P). Is that image
an invariant of the original class in H'(K/F, EX)? The answer is no, as is shown
in the following lemma. (Explicit situations where the hypotheses are satisfied
nontrivially will be given in 6.6 and 7.10.)

Moving Lemma 4.9. Let n be a I-cocycle in Z'(K/F,G) whose image in
ZYK/F, P) takes the value a at 1. Suppose that there is some j € eq x Jx such
that

j#* =0 and T(j,ng)=re F*.

Then 1 is cohomologous in H'(K/F, EX) to a 1-cocycle coming from Z'(K/F,Q)
whose image in Z'(K/F, P) takes the value (r—*, ag, ag 'r) at v.

The hypotheses in the lemma make use of the Freudenthal cross product x :
J x J — J, which is a commutative bilinear map defined by the relation 6N () =
T(5,5 x 7) for all j € J. The map #: J — J is defined by 2% :=j x j.

The proof is an adaptation of an argument in [Fer80, p. 277].

Proof. First observe that the three elements j, eg, and eq x 7 for j/ := n,.j all
have “rank one”, i.e., are sent to zero by the map z — 27 .
For z and y in J, we have the identity [McC69, (19)]:
z x (& x y) = N(z)y + T(z,y)z™. (4.10)

Setting = w+ z, we have 27 = w? +w x 2z + 27. The term of N(z) = N(w + 2)
which has degree 1 in w and degree 2 in z is T'(w, 2% )y. Substituting z = w + 2
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into (4.10) and taking the terms on both sides with this degree, we obtain the
identity

wx (2% xy)+2x(yx(zxw)=
T(w, 2" )y + T(z,y)(w x 2) + T(w,y)z*. (4.11)

Since the vector space eg x J is preserved by « and G(K), we have j' = eg x w for
some w. Applying (4.11), we obtain

eo X (eg x 7)) =T(eo, e0)(e0 x y) = 5. (4.12)
For N trilinearized so that N(z,z,z) = N(z), we have
6N(607j7 €0 X j/) = T(@O X jaeﬂ X ]/) - T(]7 € X (60 X j/)) = T(]m]/) =T 7& 0.

(The triple e, 7, eg x 7 is said to be “in general position”.) By [SV68, 3.11], this
implies that there exist some f € Inv (J)(K) and p; € K* such that

f(7) = poeo,  f(ea) = pre1, and f(eo x j') = poea.
Since n is hyperbolic, there is some g = g; € Inv (J)(K) such that g(eg) = 00 teo,
gler) = pyler, and g(es) = popies. By replacing f with gf, we may assume that
po = p1 = 1. Moreover, f preserves N, and so py = 6N (e, €1, paea) = 7.

Set ' € ZY(K/F, Ef) to be the cocycle cohomologous to 5 given by 7/ =
fin 4fH~". It is standard that the maps f and inverse commute on Inv (.J),
hence {f1)~! = {1 = 1f !4, where the action of + on EX is as in 4.4. Thus
we have

m o= finof e

Keeping in mind the facts that e; x e;1 1 = e;10; fi{uxv) = f(u) x f(v)
for all u,v € Jg; equation (4.12); and j x (eg x j') = regp (as can be verified by
examining the explicit formula for x given in [Jac68, p. 358, (4)], although the
reader should be cautioned that our definition of x — which agrees with the one
in [KMRT98] and [McC69] — differs from Jacobson’s by a factor of 2), one can
now easily calculate that ff(eo) = ey and f(5’) = reg. It follows that

ni(eo) =reg, and nl(er) = aglel.
Since 7 is a 1-cocycle, we have n,t(u x v) = (17, u) x (19, v). Thus n,e(eq x §') =
apeg X §, and we have
n(e2) = (ao/7)es.
Since 17, preserves the linear subspaces Ke; for all 4, it belongs to G(K), and we
are done. O

5. 2Ds C %

For the purpose of making computations, we will need to make use of another
subgroup of EX, which we define to be the subgroup consisting of elements A such



700 R. S. Garibaldi CMH

that h and h' both fix the element ey € .J. Since the map h — hl is a group
homomorphism on Inv (J), it is clear that H is indeed a subgroup of EX over K,
and it is preserved by the t-action so it is even defined over F. Our first task is to
describe it explicitly.

5.1. Fix a particular basis wq, ug, ..., ug for the split Cayley algebra € as given
in [Gar98, p. 388]. One important thing for us to know about this basis is that
when we bilinearize the norm form n so that n(z,z) = 2n(z), we have

! ) 1 ifi+j5=9
Uiy Uj ) = .
7 0 otherwise,

so that the Gram matrix of the symmetric bilinear form with respect to this basis is
a matrix we will denote by Sg. It is the 8 x 8 matrix which has zeroes everywhere
except for a line of ones connecting the (1,8) and the (8,1) entries. Also, the
canonical involution ~ is given by

—u; ifi#£4,5
U=dus ifi=4

Uy ifi =5.

5.2. Over K, H is isomorphic to Spin;; xp,. Let A denote the 10-dimensional
subspace ey x J of J, which is A = (319“%> For f in Inv(J)(K), we have
fleo x 3) = ff(eo) x f1(4), so for f € H we have f(A) = A. The multiplication

on J restricts to give A the structure of a central simple Jordan algebra as well,
albeit with a different unit element. It has norm form N4 given by

Na (ggé) = af —n(c).

Extend scalars to K (t) and fix f in H(K). Then N(teg+3) = N(f(teg+7)) =
N(teo + f(5)). The coefficient of ¢ in this expression is T'(eq, %) = T(eq, f(§)7).
For j actually lying in A, T(eq, 7%) = Na(j), so f restricts to preserve the norm
on A. Write O(A) for the algebraic subgroup of GL(A) consisting of maps which
preserve the norm N4 (i.e., the orthogonal group of the 10-dimensional quadratic
form N4). We have proven that restriction provides a map H — O(A) which is
defined over K.

The map H — O(A) has kernel of order 2: Anything in H which maps to the
identity in O(A) fixes all of the idempotents ¢;, and so is of the form g; for some
t € Spin(n). However, ¢ty must also be the identity, so ¢t = (1,1,1) or (1,—1,—1)
by [Gar98, 1.5(2)].

We would like to show that the map H — O(A) is surjective. Note that O(A)
is generated by
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e the special orthogonal group SO(B) for B the codimension 1 subspace of A
spanned by € and e; —eq endowed with the quadratic form given by restricting
Na;
e anything in O(A) with determinant —1; and
e anything in O(A) which does not leave B invariant.
Since for f € Aut(J), fT = f, the subgroup Aut(.J/eq) of elements of Aut(.J) which
fix eg is a subgroup of H. As described in [Jac68, p. 376, Thm. 4], Aut(J/eg) =
Spin(B) and the restriction to B gives the surjection onto SO(B). The map

o 2]~ (2 5g)

© €1 Co = © €2 Co

c1 - £ cz - E1

lies in H(K) and restricts to have determinant —1 on A. Finally, we consider
Freudenthal’s maps from [Jac61, p. 74]. For E;; € M3(€) the matrix whose only

nonzero entry is a 1 in the (7, 7)-position, 13 the 3 x 3 identity matrix, z € €, and
a € J, he defines a map ;;(x) € Inv (J) given by

Yij(z)(a) = (13 + zEij)a(ls + zEyy)",

where juxtaposition denotes the usual multiplication in M3(€), not the Jordan
multiplication. So ¢;(x) € H(K) if i, j # 1. In particular, ¢s2(us)|4 is given by

Por(us)la (2 2) = (7 L30ms,)
which does not leave B invariant.
Finally, we observe that H° is isomorphic to Spin(A). The inverse image, call
it H’, of SO(A) maps onto SO(A) with a kernel which is central and of order 2.

Consequently, H' is simple and hence must be isomorphic to Spin(A). Since H’ is
connected and [H : H'] =2, H° = H’.

5.3. Over F, H is isomorphic to Spin(4H L (—1,k)) x py. To compute the
isomorphism class of H over F, we observe that the map h — h' restricts to the
identity on the kernel of the K-map H — O(A), so the t-action on H induces one
on O(A), which we will calculate explicitly.

Fix the basis (u1,u9,us,uq, €1, €9, us,...,us) for A so that the Gram matrix
for the symmetric bilinear form associated with N4 becomes

e
Sa .
—i5y

for S5 and Sy defined analogously to how Sg was in 5.1. Then SO(A) is generated
by
e a torus 1" consisting of diagonal matrices with diagonal entries (di,da, ...,
ds,ds b, dy b, o dY);
e root groups U;;: G, — SO(A) given by
Uij(’l”) =10+ T’Eij - T’Ej*i*

for 119 the 10 x 10 identity matrix, ¢* := 11 — 4, and (4,5) = (4,i + 1) for
1=1,2,3, and their transposes; and
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e root groups V;;: G, — SO(A) given by
‘/w(r) = 110 -I-?”(EZJ + Ej*i*)

for (i,7) = (4,5) and (4,6), and their transposes. (Note that Vis(r) =
¢32(T7A5)|A and ‘/46(7") = ¢23(7”U4)|A forre F = GQ(F))
Since the torus lies in the image of Rel (€, n) and g;r = go. (1)1, the action on
T and on the first kind of root groups is the usual t-action. However,

Vas () = ¢aa(rus)t = pos(—rua) = Vag(—7).
So the map h +— hf induces on SO(A) the map f +— M fM~ for

M:<14752 )
14

Write n for the 1-cocycle in Z'(K/F,O(A)) given by n, = M. The K-map
H — O(A) descends to a map over I from H onto the twisted group O(A),, so
we wish to describe the group O(A),.

But this is now just a problem of explicitly computing a quadratic form given
by descending down a quadratic extension. So we need to find a K-basis of A® K
consisting of elements fixed by the map a ® k — M(a) ® 1(k). Then O(A), is
isomorphic to O(q), where ¢ is the restriction of N4 to the F-span of those fixed
vectors. Such a K-basis is given by u; for 1 < i < 8, e; — eq, and Ve, + Vkes.
These vectors give an orthogonal basis for a quadratic form 4H L (—1, k), which
proves the claim.

Following is a little lemma which foreshadows the way we will prove the Main
Theorem for quasi-split groups of type 2Fs.

Lemma 5.4. The Rost multiplier of the inclusion H° C EX is 1. The restriction
of the Rost invariant on HY(F, EX) to the image of H(F, H®) has trivial kernel.

Proof. Since the Rost multiplier is invariant under scalar extension, we may work
over K, where this embedding is described in 5.2. Then some of the coroots
(identified with copies of G,, lying in the maximal torus 7' from 5.3) for H° are
the same as those for Spin(n) considered as a subgroup of Inv (J) via the map g.
Since the inclusion Spin(n) < Inv (J) has Rost multiplier 1, so does H® C Ef.
Since the quadratic form g = 4H L (—1, k) is isotropic, the spinor norm map
SO(q)(F) — F*/F*? is surjective. The Rost invariant Ryo has trivial kernel by
1.4, and the second claim follows. (Il

6. Special cocycles

Definition 6.1. For a = (ag, ay,as) € (F*)*® with product 1, we define a “spe-
cial” cocycle 2 := zk o in HY(K/F,G). Set 2, = (20,21,22) where z; = m;(a)dP
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for P the permutation matrix giving the map wy + wur(x) for 7 the permutation
(12)(36)(45)(78), m;(a) the diagonal matrix

mj(a) = diag(1, aj, a;, ajj:% a;rlh 1,1,a;5) (6.2)
with subscripts taken modulo 3, and
d = diag(1,1,-1,1,1,-1,1,1).
The z; form a related triple by [Gar98, 1.6, 1.7, 1.5(3)], so 2, € G(K). Note that
oa(mj(a)) = Pm;(a)P, and, since P is an isometry of n, o(P) = P~1 = P. We

have
‘2j = ou(my(a)dP) ™" = Pmy(a)~'PdP = 251

and so z is indeed in Z'(K/F,G).
The image of z , in HY(K/F, P) is the class of a.

6.3. Freedom in the definition. Of course, some of these special cocycles are
cohomologically equivalent in H'(K/F,G). If a and o’ are two triples in (F*)*3
such that a}la; € Ng/p(K*) for all j, fix \; € K* such that a}la; = Aju(Aj).
Then for £ = ({y, £1,¢5) with £; = Pm;(A)P, £ is a related triple by [Gar98], so
L€ G(K). We have % (2x.0/), £ ' = (2K,a)., i.€., the two cocycles zx o and 2 o
are cohomologous.

6.4. We will twist by these cocycles to move a cocycle in H'(F,G) so that it
takes values in a semisimple group. For now, we just observe that the semisimple
group we get from one of them, Spin(n),, is described in [Gar98, pp. 403, 404]:
Let k € F* be such that K = F (\/E) and let @); denote the quaternion algebra
(k,a;)p generated by elements z, y such that 2> = k, y?> = a;, and zy = —yx. The
group Spin(n), is isomorphic to Spin(A4;, o;) where A; is isomorphic to My(Q;), o;
is an isotropic orthogonal involution with trivial discriminant, and

(Co(Ai, 03), 1) = (Ait1,0i11) X (Aita, 0i42), (6.5)
where the subscripts are taken modulo 3. (These properties specify the o; up to

isomorphism [Gar0Ola, 2.3].)

The Moving Lemma lets us say something useful about the Rost invariant of
our special cocycles.

Corollary 6.6. The Rost invariant REéx(zK&) is trivial if and only if 2k 4 is
cohomologically trivial in H'(F, EL).

Proof. Consider the element j = (g 8 8) in eg x Jg for ¢ = ug/2 + ug. Then
n(c) = 0 and, consulting the explicit formula for j# in [Jac68, p. 358], we see that
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j7 = 0. Moreover, for z := zk 4, we have z,1j = (O 0 co’) for ¢/ = w1/2+wr. Then
T(5,5) =cc +e =n(c,c/)=1.

Applying the Moving Lemma shows that z is equivalent in H'(K/F, E£) to some
2 e ZY(K/F,G) whose image in H'(K/F,P) is (1,a0,ag ). In particular, the
0-component of the triple z/ in GO°(€,n)*3 belongs to SO(€,n) and the 1- and
2-components have multipliers ag and ay ! vespectively. Thus the restriction of 2!
to the 10-dimensional subalgebra A defined in 5.2 has determinant 1 and so lies
in H°. If the Rost invariant Ry (2) is trivial, then zp 4 is trivial in H'(F, E£)
by Lemma 5.4. (Il

In a special case the value of the Rost invariant of our special cocycles can be
computed explicitly.

Lemma 6.7. For a,k € F* such that K = F(\Vk), the Rost invariant of the
1-cocycle 2 (1,4,0-1y % (a) U (k) U (=1) in H3(F,Z/2) C H*(F,Q/Z(2)).

Proof. The cocycle z := 2 (1 4,0-1) takes values in H and restricts to have de-
terminant 1 on the subalgebra A defined in 5.2, so z € Z1(K/F, H®). Since the
inclusion H° C EX has Rost multiplier 1, to compute the Rost invariant of z,
we may compute the Rost invariant of z in H'(F, H°). But recall that H° is
isomorphic to Spin(q) for ¢ = 4H 1 (—1,k) and that H*(F,SO(q)) classifies non-
degenerate quadratic forms of the same dimension and discriminant as ¢q. So we
can compute the Rost invariant of z by computing the quadratic form ¢, corre-
sponding to the image of z in H'(F, SO(q)), which is just the restriction of q® K
to the vector subspace fixed by the action a ® k — 2z, M (a) ® t(x) for M as in 5.3.
We perform the Galois descent calculation by decomposing A ® K into 2-
dimensional subspaces and calculating the Galois action on those subspaces.

subspace restriction of F-basis for contribution
basis z, M fixed subspace to g,
(ul, UQ) SQ totally
(wr,ug) So isotropic
(us3,us) ) us — us, Vkus + Vkus (1, k)
(wy,us) (o1 %) aug+us,—avkuy + Vkus {(—a,ak)
(e1,€2) (7(1 —a”! ) —e1 + aea, Vker + avkes  (—a,ak)

The first two subspaces form a complementary pair of totally isotropic subspaces,
so they contribute two hyperbolic planes to ¢,. Thus the image of 2z is ¢, =
2H L1 (1,—k, —a,ak,—a,ak) and the Rost invariant of z is the Arason invariant
of ¢, —qg=<a,k,—1>. (Il
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7. Quasi-split groups of type Eg and E7

This section consists solely of a proof of the main theorem, beginning with a nearly
trivial lemma.

Lemma 7.1. Suppose that C is a central subgroup in a simple simply connected
group I'. Then H'(F,C) acts on H'(F,T") and for ¢ € H'(F,C) and v € H'(F,T),
we have

Rr (¢ ) = Rr(¢) + Br(v),
where Rr(C) denotes the image of ¢ under the composition H'(F,C) —s H'(F,T)
“ HY(F,Q/Z(2)).

Proof. Pick a 1-cocycle z € Z(F,C) which represents (. We have a diagram

HYFT) —— HYFT,) % HYFET)
H3(F,Q/Z(2)) —— H*(F,Q/Z(2)) ~2% H3(F,Q/2(2)).

Here the group I';, is the usual twist of I" by the cocycle z; it is just the group I with
a different Galois action so that a member o of Gal(Fiep/F') maps g — 2z, gz, L.
In our case, z, is central, so in fact ', is identical to I'. The map 7, is the usual
twisting map [Ser94, 1.5.5], defined by sending a € Z'(F,T',) to the l-cocycle
0 — ay2,. The composition of the two maps on the top row is then the action
of C.

The left-hand box commutes because the Rost invariant is canonical. The right-
hand box commutes by [Gil00, p. 76, Lem. 7]. The desired equality is equivalent
to the commutativity of the outer rectangle. O

This result has the obvious corollary that the induced map H'(F,C) —
H3(F,Q/Z(2)) is a group homomorphism.

7.2. Groups of type 'Fs. Suppose first that our simply connected quasi-
split group of type FEjg is split and denote it simply by Fs. From Example 3.4,
we have an embedding Fj x pg — FEj which induces a surjection on H L terms.
So for ¢ € H'(F, Eg), we can find ¢ € H*(F, Fy) and ¢ € H'(F, p3) such that
¢ @ ( — e. Since Fjg is split and the image of p4 is the center of Fg, the image of
HY(F, p3) — HY(F, Eg) is trivial. If ¢ is in the kernel of the Rost invariant Rp,,
by Lemma 7.1 ¢ must be killed by the composition

H\(F, Fy) — H\(F, Es) 25 H3(F,Q/Z(2)).

As described in 2.4, the Rost multiplier of the embedding Fy C Fg is 1, so ¢ lies
in the kernel of the Rost invariant Rp,, which is known to be trivial. Thus ¢ is
the image of ¢, which we have already observed is trivial.
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Remark 7.3 (Noninjectivity for ). The Rost invariant is typically noninjective
for the group Fg. To see this, we can not simply apply Remark 0.6 and the fact
that the embedding F; — FEjg has Rost multiplier 1, since two isotopic Albert
algebras have the same image in H'(F, Es).

Instead, fix a ground field F' which supports a division (= nonreduced) Albert
F-algebra J. Over the field F'(¢), the norm N of J does not represent ¢ as can
be seen by elementary valuation theory [Jac68, p. 417, Lem. 1]. Consequently,
N is not isomorphic to tN over F(t), so the images of the two classes (J) & (1)
and (J) @ (¢) under the map H'(F, Fy) x H'(F, pu3) — H'(F, Eg) are distinct by
[Gar01b, 2.8(2)]. However, since the image of H*(F, us) — H!(F, Eg) is trivial,
by Lemma 7.1 the two classes in H'(F, Eg) have the same Rost invariant.

7.4. Groups of type ?Fs. Suppose now that our quasi-split simply connected
group of type Fg is not actually split, so that it only becomes split over some
quadratic field extension K of F. Write EX for this group, as we have since
Section 4. By the split case, any o € H'(F, EX) which is in the kernel of the Rost
invariant must become trivial over K and so belongs to H'(K/F, EEX). Applying
Ferrar’s Lemma 4.6, we have that « is the image of some § € H'(K/F,G).

7.4. Twisting. Fix a triple a = (ag, a1, a2) € (F*)*® such that apajas = 1
which represents the image of 3 in H*(K/F, P). (This makes sense thanks to the
description of HY(K/F,P) in 4.7.) Then we set z := zx , as defined in 6.1, and
we can twist F by 2 to obtain a diagram

Rpisy,
AN

HY(F,G.) —— H'(F,(E{).) H?(F,Q/Z(2))

| | e

Rk
HY(F,G) —— HY(FEF) —— HFQ/Z(2)),
where the right vertical arrow has the specified value by [Gil00, p. 76, Lem. 7].

7.6. The image of 7, () in H'(F, SO(A,)). We want to say something about
what kind of class 3’ := 7, 1() can be. In particular, its image in H'(K/F, P,)
is trivial, so ' comes from the semisimple part of G,, which is isomorphic to
Spin (A4, o) for (A, o) one of the three algebras A; described in 6.4.

We may think of 3’ as lying in H'(K/F,Spin (A,0)) and consider its image in
HY(K/F,SO(A,c)). Let L be a generic splitting field of A (e.g., a function field of
its Severi-Brauer variety) and consider the image of 3’ in H'(L, SO(A, 0)). Since
Aissplit by L, o becomes adjoint to the quadratic form <k, a;41>> L 2H [Gar0la,
2.3]. The image of 3’ determines an 8-dimensional quadratic form ¢ over L, and
the Rost invariant of 3’ is just the class of g — <k, a;+1>> in I°L/I*L. However, by
the twisting argument above, the Rost invariant of 8’ over I is —R BE (z). Since
A is split over L, a; € L* is a norm from KL, so by 6.3 and Lemma 6.7 the Rost
invariant becomes (k) U (a;+1) U (—=1) over L.
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For ¢ = <k, a;; 1>, we have that ¢ — ¢ lies in I°L and ¢ — ¢ = ¢< 1>
mod I*L. But then

g+ é=1(q—¢)+26=4¢=0 mod I'L.

So ¢ + ¢ is in I*L. However dim(q L #) = 12 < 16, so by the Arason-Pfister
Hauptsatz, ¢ L ¢ is hyperbolic and we have ¢ = (=1)¢ L 2H.

Consequently, the image of 3’ in H'(L, SO(A, o)) is the same as the image of
—1 € F*/F*? = HYF, Z(SO(A,0))). Since A is Brauer-equivalent to a quater-
nion algebra, it follows from the material in [Sch85, Ch. 10] that the canonical map
HYF,SO(A,0)) — HY(L,SO(A, o)) is injective. (This was shown independently
in [PSS| and [Dej01].) Thus the image of 3’ in H'(F, SO(A, o)) must also be —1.

7.7. More generally, any simply connected group I' of type D, is isomorphic
to Spin(A;, ;) for three central simple algebras A; of degree 8 with ¢ = 0,1,2
endowed with an orthogonal involution o; with trivial discriminant and related as
in (6.5).

Each of the three descriptions of I' comes paired with natural maps I' —
SO(A;,0;) — Pr for PI' the adjoint group associated to I'. The kernel of the
second map is Z(SO(A;,04)) = poy, and the kernel of the composition is Z(T'),
which is isomorphic to the subgroup of u;S of elements with product 1. The
group H'(F, Z(I')) can be identified with the set of triples b = (bo, by, bs) €
F*/F*? with product 1 [KMRT98, 44.14] and where the map H'(F,Z(I')) —
HYF, Z(SO(A;,0,))) is given by b+ b;.

Lemma 7.8. (Notation as in the preceding paragraph.) Suppose an element
n € HYF,I') has the same image in H'(F,SO(A;,0;)) as ¢; € F*/F*? =
HY(F, Z(SO(A;,0;))) fori=1,2. Thenn is the image of ((cica) ™1, c1,¢2) coming
from HY(F, Z(I')).

Proof. The short exact sequence 1 — Z(SO(A;,0;)) — SO(Ai,0,) — PI' —
1, gives that 5 is killed by the composition H'(F,I') — H'(F,SO(A;,0;)) —
H(F, PT) for i = 1. Thus 7 is the image of some class (no, n1,no) in HY(F, Z(I')).

For general Calois-cohomological reasons, the map H'(F, Z(I')) — H'(F,T') is
a group homomorphism. (Although the second set doesn’t have a group structure,
the image of the first set does.) The kernel of this map can be described fully by
suitably applying [KMRT98, 35.4], but for our purposes it is enough to observe that
it contains all elements of the form (s,s~',1) for s a spinor norm of an element in
SO(Ag, 02)(F) and symmetrically. Let G(A;, 0;)° be the algebraic group of proper
similarity factors, i.e., the group with F-points

G(Ai, 0,)°(F) = {m € F* | 3 f € A} such that m = o;(f)f and Nrdu, (f) = m*}.

For every mg € G(Ag,00)°(F), the kernel contains an element of the form
(mg, m1, ma) and symmetrically. Conversely, if (bo, b1, b2) is in the kernel, then
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b; € G(A;,0;)°(F) for all i.

It is also the case that the natural map F*/F*? = HY(F, Z(SO(A;,0;))) —
HY(F,SO(A;,0;)) is a group homomorphism, and its kernel is precisely
G(A;,0;)°(F). Thus we may modify ng by an element of G(As, 02)°(F') and so
assume that ny = ¢o.

Now consider the middle component of the triple (ng, n1,n2). By hypothesis,
ny = myep for some my € G(Ay,01)°(F). By [Mer96, p. 262, Prop.|, the group
SN(As, o2)(F) of spinor norms from SO(As, o5)(F) is the group generated by F*?
and the norms from finite field extensions F which split A and make o5 isotropic.
By [Mer96, p. 263, Prop.], G(A1,01)°(F) is equal to the group generated by the
norms from every extension field £ which splits A; and makes oy hyperbolic.
Since the (A;,0;) are related by (6.5), any extension which splits A; and makes
o1 hyperbolic certainly splits A, and makes oy isotropic, so SN(As,02)(F) 2
G(A1,01)°(F). Consequently, the element (mhmfl7 1) belongs to the kernel of
HY(F,Z(I')) — HYF,T).

Thus 7 is the image of

(n07n17n2)(m17m;17 1) = ((m161C2)717m101762)(m17mfl7 1) = ((0102)717C1702)

as desired. O

7.9. (' is in the image of H'(K/F, Z(Spin(4,0))). Let (A, o) = (Ag,00)
for (A;,0;) as in 6.4. Combining the result from 7.6 with Lemma 7.8, we have
that g’ € H'(F,Spin (4, 0)) is the image of (1,—1,—1) € H'(F, Z(Spin (4, 7))).
However, for k& € F* such that K = F (\/E)7 since K certainly splits A and
makes o hyperbolic and —k = Nk, r(Vk), by Merkurjev’s norm principle [Mer96,
p. 262, Prop.] there is some element of SO(A, ¢)(F') with spinor norm —k. Then
as described in the proof of Lemma 7.8, 3’ is also the image of (1,k, k1) €
HY(F, Z(Spin (4, 0))), which itself is in the image of H(K/F, Z(Spin (A, c))).

7.10 Consider the 1-cocycle b = 7, (V') € Z}(K/F,G) for V' the image of (1, k, k1)
as above. (Note that b represents the class of 3 and is the 1-cocycle which takes
the value g(1 _1,_1)2K . at ¢.) For j and c as in the proof of 6.6, we set j' := b,1j,

so that 5/ = (2 8 %’) for ¢ = w1 /24wy and T'(4,5') =nlc, ') = 1. By the Moving

Lemma 4.9, we may replace 3 by a different inverse image of o in H'(K/F,G)
and so assume that a = (1, a0, ag *).

Any element of G with multiplier (1,-,-) lies in H, and since such an element
restricts to have determinant 1 on the subspace A defined in 5.2, it in fact lies in
H°. Thus « is in the image of H'(F, H°). Since the Rost invariant of « is trivial,
« must be the trivial class by Lemma 5.4.

7.11. Groups of type E;. We are left with proving that the Rost invariant
has trivial kernel for G split of type Er, but this follows directly from the same
conclusion for quasi-split groups of type Ejg, thanks to Proposition 3.6.
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