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Localisation des résidus de Baum—Bott, courbes
généralisées et K-théorie (I: feuilletages dans C?)

Vincent Cavalier et Daniel Lehmann

Abstract. Let v be a holomorphic vector field in a neighborhood of a point mg in C2, which is
a non dicritical isolated singularity. Let f = 0 be a reduced equation of the maximal separatrix
V' through mo, vy the vector field vy = f{/% — f;(%, and > the union of separatrices and
pseudo-separatrices (i.e. the set of points where v and vy are colinear). Assuming the foliations
defined by v and v to be distinct, we prove that the Baum-Bott residue BB(C%, v) of v at mo,
as well as the difference PH(v) — p between the Poincaré—Hopf index and the Milnor number of
V' at mg, are “localised” near the separatrices and pseudo-separatrices. (The particular case of
generalized curves has already been studied in details in [CLS] and [Br]). We also interpret in
K-theory the difference PH — p as well as the GSV index of Gomez Mont—Seade—Verjovski, and
we give a caracterisation of generalized curves in this framework, which will enable us to extend
this concept in higher dimension.

Mathematics Subject Classification (2000). 57R20, 57R25, 19E20.

Keywords. Singular holomorphic foliations, generalized curves, K-theory.

1. Introduction

Soit v = a% + ba% un champ de vecteurs holomorphe, défini sur un voisinage U

d'un point mg de C2, et ayant en ce point une singularité isolée non dicritique.
[On conviendra de réserver cette terminologie au cas ou aucune composante di-
critique n’apparait au cours du processus de réduction des singularités.] Soit V'
la séparatrice maximale en ce point (i.e. la réunion de toutes les séparatrices qui
passent par mg, nécessairement en nombre fini puisque la singularité mg a été
supposée non dicritique).

Si f = 0 est une équation réduite de V, C. Camacho, A. Lins Neto et P. Sad
ont cherché, dans [CLS], & comparer le feuilletage défini par v avec le feuilletage
f = c'® défini par le champ de vecteurs vy = ;8% - f;a%. Ils ont appelé “courbe
généralisée” les feuilletages dont la résolution par éclatements a les mémes singu-
larités que vy, c’est a dire n’admet que des singularités simples a valeurs propres
toutes non nulles (pas de “selle-noeud”). Ils ont montré dans ce cas, que l'indice
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PH,,,(v) de Poincaré-Hopf de v est égal au nombre de Milnor p de V' en myg, et
que réciproquement cette propriété caractérise les courbes généralisées parmi les
singularités non dicritiques.

Dans [Br], M. Brunella a comparé plus généralement les différents indices en
un point singulier non dicritique mg. Il a montré que l'indice GSV,, (v, V) de
Gomez Mont—Seade—Verjovski de v en myq relatif & V' (cf. ([GSV]) était toujours
positif ou nul. Dans le cas d'une courbe généralisée et pour une séparatrice V max-
imale, il a montré que GSV,,, (v, V) était nul, tandis que le résidu de Baum-Bott
BBy (v, c2) était alors égal a l'indice de Camacho—Sad-Lins Neto €Sy, (v, V)
([CS], [Li], [Su]) en mg relatif & V. Dans le cas des singularités qu’il a appelées
“presque liouvilléenes” (qui comprennent en particulier les singularités simples:
selles et selle-noeuds), Brunella a aussi donné une formule permettant de localiser
le résidu au voisinage de certaines des séparatrices: celles qui constituent le pole
de la forme de Liouville.

Dans cet article, nous nous proposons d’abord de donner de telles formules de
localisation dans le cas le plus général d'une singularité non dicritique mg: sup-
posant le feuilletage défini par v distinct de celui défini par vy, nous montrons au
paragraphe 2 que PH(v)—p et BB(v, c%) ne dépendent, une fois choisie ’équation
réduite f =0 de V, que du comportement local de v dans un voisinage tubulaire
de > — {mg}, oll ’ensemble ¥ (qui contient V') désigne ’ensemble des points en
lesquels v et vy sont colinéaires. Ces localisations dépendent donc aussi du choix
de la fonction f, qui n’est définie qu’a unité pres dans ’anneau des germes en mg
de fonctions holomorphes (voir les remarques finales du paragraphe 2). Le para-
graphe 3 est consacré a I’étude du comportement de ces indices par éclatement:
nous y démontrons en particulier la réciproque du résultat précité de Brunella:
si GSVy,, (v, V) = 0, la séparatrice est maximale, et le feuilletage est une courbe
généralisée. Nous étudions des exemples au paragraphe 4. Au paragraphe 5, nous
donnons une interprétation de GSV ainsi que de PH — p en K-théorie.

Dans un article ultérieur, nous verrons ce qu’on peut dire en dimension supé-
rieure.

Nous remercions les collegues avec qui nous avons eu d’utiles discussions, en
particulier S. Azziz, M. Karoubi, A. Lins Neto, J. F. Mattei, M. Nicolau et
M. Soares.

2. Théoréme de localisation en dimension 2

Soit donc v = a2 + ba% comme dans l'introduction. (On notera (v) le feuilletage
défini par v). Soit f = 0 une équation réduite de la séparatrice maximale V' passant
par le point singulier isolé mg de v. Il existe alors une fonction holomorphe C telle
que

<df,v>=Cf.

Les champs de vecteurs v et vy = f;

y% — f;a% sont colinéaires sur l’ensemble »
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des points ou Cf = 0.

On supposera, dans toute la suite, les deux feuilletages distincts, c’est a dire
C non identiquement nulle. Nous appellerons “pseudo-séparatrice” toute branche
de C = 0 passant par mg et qui n’est pas une séparatrice. Soit C la réunion
des pseudo-séparatrices. Notons (V4,)n la famille des branches irréductibles de V'
en mg, et (Cp) la famille des branches irréductibles de C en mg. [On écrira en
abrégé h € V ou h € C pour préciser si I’on utilise des branches de I'un ou I'autre
ensemble, tandis que h € ¥ désignera indistinctement une branche Vj, ou C}, ]

Une branche By, de ., d’équation réduite f;, = 0, sera dite “simple” si aucune
puissance > 1 de f5, ne divise C'f, c’est a dire si:

—ou bien h € V et f;, ne divise pas C,

—ou bien h € C, et (f,)? ne divise pas C.

Soit By, une branche de ¥, et U, un voisinage tubulaire de Bj, — {mg} dans
U (on supposera U, N U, = () pour k # £. Quitte & effectuer un changement de
coordonnées linéaires et a restreindre Uy, on peut toujours supposer que le champ
de vecteurs a% est transverse & By, — {mg} et vérifie simultanément v A a% #0 et

vp A 8% #0. Soit X — (z = ¢(X), y = ¢(X)) une paramétrisation de Puiseux de
By, On définit alors de nouvelles coordonnées locales (X, Y') dans Uj, en posant:

z = ¢(X),
y=9¢(X)+Y.

Remarquons d’une part que Bj a pour équation ¥ = 0, et d’autre part que ces
coordonnées locales sont aussi valables en mg si By, est lisse.

Notons A et B (resp. F' et G) les composantes de v (resp. vy) relativement &
la base (%7 %) dans Uj. Posons r = %: puisque % (qui est égal a 8%) est
linéairement indépendant de v et de vs, A et F' sont non nuls dans Up,.

Notons J = J(v) la matrice jacobienne g(g’? donnant la partie linéaire de v,

et posons Jy = J(vg).

On vérifie aisément les formules: fi, = ¢'F et —f} = ¢'G, de sorte que
Tr(Js) =0si By, est lisse.

Soit maintenant S3 une sphére de centre mg dans U, supposée transverse i
chaque branche By,. Notons T, la variété réelle S3 N By, (difféomorphe & un cercle),
et notons W, un voisinage fermé de de I';, dans S3NUj,: on peut toujours supposer
53 définie de telle facon que les restrictions de la projection (X, V) — X aW,et
OW), soient des fibrations au dessus de I'y,.

Notons indistinctement ¢y 1'un des deux polynémes de Chern ¢y ou (01)2, et
BB(v, cr) les résidus de Baum—Bott correspondants en myg, le résidu BB(v,c3)
n’étant autre que l'indice de Poincaré-Hopf PH(v) en mg. Pour toute matrice
M carrée d’ordre 2, on notera respectivement ¢4(M) et cy(M) le carré de la trace
Tr2(M) et le déterminant dét(M).
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Théoréme 2.1. On a les deux formules:

PH(u) —p =3 Ru(v, ca),
h

et BB(v,c?) = Z:Rh(v7 ),
h

ou l'on a posé:

-1 er(J —rJy)
Rh(1}7C[):m/;W Tff@/dX/\dY
h

ci(J—rJy) dY
1 ( 1) X,
rCf %

désignant le résidu de Cauchy relatif a la variable Y en'Y =

- 2im Jp,

C[(J — TJf)dY
rCf

X
0, pour X fixé. En particulier, sur une branche simple de 3., on obtient:

1 cr(J—rJ
Rh(v7cj):%/r‘ %(p/d)(7
h

ot Uon a défini D par Uégalité Cf =Y D (avec D # 0 sur By, — {mg}).

Démonstration. Nous avons montré dans [L.2], que pour deux feuilletages holo-
morphes distincts définis respectivement par les champs vy et v9 admettant tous
deux un méme point singulier isolé mg de C", la différence BB(v2, c;)— BB(v1, ¢r)
ne dépendait que du comportement de vy et vo dans un voisinage U arbitrairement
petit de ’ensemble Y des points de U — {mp} ol v; et vy sont colinéaires. On
rappelle qu'une connexion V sur T'M est dite “connexion de Bott” (ou “spéciale”)
relativement & un champ de vecteurs holomorphe v’ partout non nul sur une variété
holomorphe M, si

Vo *[vv ]7
{ VzZ' =0 chaque fois que Z’ est holomorphe, et Z antiholomorphe.

Notons alors:

V0 une connexion au dessus de U, — By, spéciale & la fois pour v et v I

V! une connexion au dessus de Uy, spéciale & la fois pour v et %7

V2 une connexion au dessus de Uy, spéciale & la fois pour v ¢ et %.

De telles connexions existent toujours, et d’apres la proposition 2 de [L.2], dont
nous reprenons les notations,

Resp(v,cr) = — Aoy ws (€1)s
OW,,
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oll wo, w1, wy désignent les formes de connexion associées & VY, V1, V2 relativement
a une méme trivialisation de 7M. (En effet, A, .,(cr) = 0, puisque V! et V2
sont toutes deux spéciales pour le méme champ de vecteurs %). Relativement
a la trivialisation (-2, 2

57 a5) de TM, les formes de connexion sont respectivement
données par

“o = &7 —df J+¢/(AdY — BdX)J|,
dX
w1 ==,
dX
= ——J.
w9 F f

On en déduit:

1

- _ /
rC’fCI(J rJdp)e'dX AdY.

—Augwr ws (er) =

Notant en effet ¢;( . , . ) la forme polaire de la forme quadratique c;( . ),
Pexpression A.g w;.w,(cr) est toujours égale, d’apres [B], & cr(wy — wg, w2 — wp).
[Si A désigne le simplexe {(t,u) , ¢t >0, v >0, t+u < 1}, py la deuxiéme
projection A x (U, — By) — U, — By, et & la connexion sur le fibré (po) 'TM
égale a t w1 + v wy + (1 —(t+ u)) wg, la courbure Q correspondante est en effet
de la forme dt A (w1 — wp) + du A (wg —wp) + K, ot K désigne une expression
sans dt ni du; 'image ¢;(€2) de ¢y par le morphisme de Chern—Weil associé & & est
donc de la forme dt A du cr(wi —wg, wz —wp) modulo des termes sans dt A du, d’ott
I'expression de A, ., w,(cr) par intégration sur le simplexe A.] On obtient done:

'[F A

_CI(w1 —Wwp, w2 — wo) = Cﬂf |:ZCI(J) — 20[(]7 Jf) - ECI(Jf):| ClX A dK
'F A AN2

¢ {CI(J) —2=er(J,Jy) + (6) cI(Jf)}dX/\dY?

~ACT
/

= o7 {CI(J) — 2rer(J,Jp) + r%,(Jf)} dX A dY,
1 /

= rC’fcI(J_ rdr)e’dX AdY.

Remarques 2.2. 1) Dans le cas oli By, est une séparatrice, B et G sont nuls sur
By, (puisque 8% est tangent & By,), et les hypotheéses du théoréme 1 de [L2], avec
n =2, v1 = vy et vg = v, sont vérifiées: la formule cherchée en est alors un cas
particulier.

2) En dérivant par rapport a Y lidentité (—AG + BF)¢’ = Cf, et en remar-
quant que f, B et G sont nuls sur une séparatrice, tandis que Ay —rF'y = F'ry
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et Ay — rFy, = F'r{,, on voit que, sur une séparatrice,

/ /
J—rJp = (FSX ng)

Corollaire 2.3. Si V}, est une branche simple de V', on obtient:

1 dr 1 (C + Fr/ )2
Rh(U702) = %/1" 77 et Rh(l}7c%) — %/F TX dX.
h h

Si, en outre, la séparatrice V), est lisse, C + Fry = Ay + Bj,.
Démonstration. Sur T'y,, F est en effet égal & ¢’ f{,, tandis que D = C'f{,, B =Y B,

et r est égal & fi,. On en déduit: CI(‘IT_;Jf) = CI(JA_OTJf). En outre, ¢1(J —7rJf) =
Y

c1(J) si Vj, est lisse.

Proposition 2.4. Posons, pour toute branche Vi, de la séparatrice V :

2

/
Vary, (v, 8) = ! / s
I'n

GSVi(v, V) = 1/ & S0, V) = /—dX
r, 7 2177' T

2im A
On a alors:
GSVimo(v,V) = Y GSVi(v,V), CSpmy(v,V) =D _ CSy(v,
hes hes
Vary,, (v, V) ZVarh v, V),
hes

Var,,,(v,V) désignant la variation de Khanedani—Suwa [KS].

Démonstration. D’apres [Li], il existe des fonctions holomorphes g et k, non nulles
sur V — {mg} et dont les germes en mg sont premiers entre eux, ainsi qu’une
1-forme 7 tels que

gw =k df + fn,

w désignant la forme w = b dzr — a dy.
Notons I' la réunion des I', pour h E V

Draprés [Br], GV, (v, V) = 5 fF k . Or il est clair que, sur V;,, 4 = g.

D’apres [Li], [Su] CSp, (v, V) = 522 fF L. Or, sur Vi, L = —SdX, car les deux
formes en question prennent la méme valeur C pour f =0 quand on les applique
av.



Vol. 76 (2001) Localisation des résidus de Baum-Bott 671

Enfin, d’apres [Br]|, [KS], Var,,(v,V) = GSViy, (v, V) + CSpy(v, V). Posons

[ =Y fsur Uy. Onendéduit que F' = f, fi =Y f\ et B =Y By sur Vj,. A partir
de l'identité Afi+Bf;, = cf, on obtient d’autre part la relation Af} = f(C—Bj,).
7 ’ AN
ijBy _ ()% T % sur V,, d’oi:

Il en résulte que o
F

Vary (v, V) = GSVi (v, V) + CSy (v, V).

Remarques. D’apres [Sul, C'S,,, (v, V) est en général distinct de >~ CS,,, (v, V3).
hes
Il ne faut donc pas confondre C'Sy (v, V) et CSy, (v, V3).

De facon analogue, GSV}, (v, V) # GSV,, (v, V3), car sur la branche S
d’équation réduite f5, = 0, vy, n’est pas la restriction de vy.
Toutefois, (cf. [Br]), Vary(v, V) = Vary,, (v, V).

Proposition 2.5. (i) Si Vj, est une branche simple de V', on obtient la formule:
Rp(v,c2) = GSVp(v, V).

(ii) S%, en outre, Vi, est lisse, et vérifie la condition générique suivante: les
restrictions a Vi, de A, X(Ax + B{,) et XC sont toutes trois de méme ordre d
relativement a la variable X. Le nombre CSy(v,V) est alors nécessairement non
nul, et

2
[Vawh(v7 V)}
CSh(”? V)
En particulier, si GSVy(v,V) =0, Rp(v, ) = CSu(v, V).

Rh(uc%) =

Démonstration. La partie (i) ne fait que reparaphraser I'une des formules du corol-
laire 2.3.

Notons respectivement AX¢, X% 1 et v X% 1 les parties principales des re-
strictions de A, A% + B{, et C' & V},. On a alors:

L (A + Bi)?
Ry(v,c}) = — | X Y7 4Xx
o) =g . 4c ’

2

=3
De fagon analogue, C'Sy(v,V) = X, et Vary (v, V) = §. La partie (ii) de la
proposition résulte immeédiatement de ces trois égalités.

Remarques concernant le choix de ’équation de V. 1) Il faut noter que
V ne dépend que du feuilletage défini par v, tandis que le feuilletage défini par vy,
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ainsi que C et les pseudo-séparatrices dépendent du choix de 1’équation réduite
f=0deV:si fest remplacé par uf, oll u désigne une unité (fonction holomorphe
ne s’anulant pas sur U), v; est remplacé par v,y = v vy + fo,, et (d(uf),v) =
(C+ 22 uf.

2) Si C(mg) # 0, il n’existe pas de pseudo-séparatrice en myg, et ceci quelque
soit le choix de f.

3) Si C(mg) = 0, un nombre fini d’éclatements permet de faire disparaitre les
pseudo-séparatrices, puisque 1’on finira toujours par obtenir que les transformées
strictes de celles ci ne passent plus par les points singuliers du feuilletage relevé.
En particulier, si, apres réduction des singularités, il reste des pseudo-séparatrices,
celles ci passent nécessairement pas des points selle ayant des valeurs propres A et
[ opposées: on pourra alors éclater encore une fois de tels points selle.

4) 11 est toujours possible de choisir I’équation réduite f = 0 de V, de facon
que toutes les séparatrices soient simples. En effet, les points (A, p) de C? tels
que Aa + pb ne soit divisible par aucun des facteurs premiers f;, de f forment un
ouvert dense. Il suffit alors de remplacer f par exp(Az + py)f pour un tel couple
(A, p), et chaque séparatrice est devenue branche simple.

5) Si le feuilletage défini par v est la restriction d’un feuilletage (& singularités
isolées) défini sur une surface holomorphe compacte M admettant une séparatrice
compacte maximale V I’équation de V est bien définie, a constante multiplicative
pres, au voisinage de tout point singulier du feuilletage.

Par exemple sur I'espace projectif Pr(2), dont nous noterons [u, v, w] les coor-
données homogenes, le feuilletage F défini par le flot

(([u7 v, w]) = [ePu, e, et”w])>
teC

a partir de 3 nombres complexes (\, i, v) deux & deux distincts, admet une sé-
paratrice compacte maximale, d’ équation réduite wvw = 0. Le feuilletage
(uv — /\w2) acc est alors défini globalement et de fagon naturelle. Au voisi-
nage du point [0, 0, 1], il coincide avec (vy) pour f(z,y) = zy (avec x = %,y = &),
f = 0 étant une équation particuliere de la séparatrice maximale locale de F. Tel
ne serait pas le cas, par exemple, si ’on prenait zy(1 4+ z) = 0 comme équation
réduite de cette séparatrice maximale locale.

Malheureusement, I’exemple de Jouanolou ([J]) montre qu’une telle séparatrice
globale peut ne pas exister, et que c’est méme ce qui se passe génériquement, (cf.
Lins Neto [Li]), alors que localement il en existe toujours d’aprés Camacho—Sad

([Cs)).

2. Comportement des indices par éclatements

Soit d I'ordre du champ de vecteurs en mg, et k 'ordre d'une séparatrice V', non
nécessairement maximale pour le moment, d’équation réduite f = 0. Soit (2/,¢)
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les coordonnées locales dans la variété obtenue en éclatant le point mg, quand on
écrit la projection (z/,t) — (z = 2/;y = 2’t). On note 4, b et f les fonctions
“éclatées-divisées”

W', t) = (e ta"), B!, t) = —b(al,ta'), f(a',8) = —5 (o 1),

x x x

Puisque la singularité mq est supposée non dicritique, le feuilletage relevé est
défini par le champ ¢ = x’dg‘z/ + (b—t&)a% dans le domaine de la carte (2, ¢). Une

équation réduite de la réunion V = V U Pe(1) de la transformée stricte VdeV
et du diviseur exceptionnel, s’écrit alors: z’ f = 0. [C’est une separatrlce pour 7,
maximale si V' est maximale pour v.] On posera: a = z/a et b=b— ta, et f = a:/f

On peut toujours supposer les coordonnées (z,y) choisies de fagon que le
feuilletage relevé ait toutes ses singularités m; = (0,¢;) dans le domaine de la
carte (z/,t). Les nombres ¢; sont les racines du polynéme I;(O, t). Soit 3; leur ordre
de multiplicité: >, 3; = d+ 1. Les racines de f (o,t) sont certains des nombres
t; ci-dessus (tous, si la séparatrice V' est maximale), avec un ordre de multiplicité
;. [On posera a; = 0 si #; nest pas racine de f(o,t).]

Avec les notations précédentes, on vérifie aisément:

20

v; = (vy) + (k- 1)f =

Une branche irréductible V;, de V' admet une paramétrisation de Puiseux de la
forme (z = 2P,y = ¢z + ...) ol py et g sont des entiers premiers entre eux.
La notation h € i signifiera que la transformée stricte Vi, de V,, passe par m;.
Posons W; = Upg;Vj. Si V' est maximale, Wi est une séparatrice maximale pour
v admettant encore f = 0 comme équation réduite.

Rappelons le résultat suivant:

Théoréme 3.1 ([CLS]). La singularité mg étant supposée non dicritique, les
relations suivantes sont vérifiées:

(i) B; — a; > 0 pour tout i, et d —k+1 > 0.

(ii) B; — @y = 0 pour tout i, et d —k+ 1 = 0 pour une courbe généralisée, si la
séparatrice est mazimale.

Remarque. J. F. Mattei et E. Salem ([MS]) ont démontré plus précisément que
d — k + 1 est nul pour la séparatrice maximale d’une singularité non dicritique,
lorsque les espaces tangents qui correspondent a la valeur propre 0 en les points
selle-noeuds de la réduction des singularités sont tangents a des transformées
strictes, et non a une composante du diviseur exceptionnel.

Brunella a démontré ([Br]) que GSV,, (v, V) est toujours positif ou nul pour
une singularité non dicritique. On obtient plus précisément le
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Théoréme 3.2. (i) La formule suivante est vérifiée:

GSVi(v,V) = GSVi (5, V) + pr(d — k + 1),

ot GSV;, (4, V) désigne la contribution de Vi, (et non de Vi,) & GSV,. (3,V) pour

h € i. |Bn particulier, GSVy,(v,V) > GSV},(0,V), Végalité ne se produisant que
sid—k+1=0]

(it) GSViny (v, V) = 32, GSVi, (8, V) 4+ | (Zpcv o) — L[ (d—k+1). [En particu-
lier, GSVp (v, V) 2 3. GSV;, (0, V), légalité ne se produisant que si d—k+1 =
0.]

(iii) GSVi (v, V) > 0.

Démonstration. Posons v = rpvy sur V. Sur Vj,, on en déduit © = 7, vy, avec
~ B r 4 e o, . .
Fh = T, d’ou ‘i’—: = "f{—: +(d—k+ l)d;} . Utilisant la paramétrisation de
Puiseux, on obtient la premiere partie du théoreme.

La contribution du diviseur exceptionnel a GSV@(@V) est égale a f3; — oy

puisque ¥ = ,if”f pour z' = 0. (En effet, pour ' = 0, fé + t]?é = k]?) Compte
tenu de (i), et de ce que >, (8 — a;) = d — k + 1, on obtient la formule (ii).

La formule (i) montre que GSV},(v,V) ne peut que diminuer par éclatement.
Comme il est positif ou nul pour une singularité réduite, on en déduit (iii).

D’aprées [Br], GSVy,(v,V) = 0 dans le cas d’une courbe généralisée si la
séparatrice est maximale. En fait la réciproque est vraie:

Théoréme 3.3. Les conditions suivantes sont équivalentes:
(i) GSVipy (v, V) =0,
(ii) GSVi(v, V) =0 pour tout h € V,

(iii) Le feuilletage défini par v est une courbe généralisée en mg, et V est la
séparatrice mazrimale.

Démonstration. L'inégalité (iii) du théoreme 3.2 implique ’équivalence des parties
(i) et (ii) du théoreme.

Supposons maintenant GSV,,, (v, V) = 0. Si mg est déja réduite, la partie (ii)
du théoreme est évidente. Sinon, GSVj,, (9, V) =0 pour tout i et d —k +1 =10
d’apres la partie (ii) du théoreme 3.2. Par récurrence sur le nombre d’éclatements
nécessaire a la réduction des singularités, on voit qu’il ne peut apparaitre de selle-
noeud ot GSV serait strictement positif. On a donc une courbe généralisée. En
outre, si la séparatrice n’était pas maximale, d — k 4 1 serait strictement positif.

Le fait que (iii) implique (i) dans le théoréme est aussi un corollaire immédiat
du théoreme 3.2.
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Théoréme 3.4 ([CLS]). (i) La formule suswante est vérifiée:

PHyo(0) = i) = 32 [PHa,(5) = ()] + (A= k + 1)d+ k=2,
ou ,umq(f) (resp. i, (f)) désigne le nombre de Milnor de la séparatrice f = 0
(resp. f =0) en mg (resp. m;).
En particulier, PHp(v) — pomg (f) 2 D, |:PH,,:;LZ. (©) — s, (f)|, Uégalité ne se
produisant que st d—k+1=0.

(ii) On a toujours linégalité
PHupo(0) = pimo () 20,

légalité n ‘ayant lieu que pour une courbe généralisée, la séparatrice f = 0 de v
étant alors automatiquement marimale.

4. Exemples

1) Exemple a = 22,b = y(Az + y), en fonction du paramétre complexe
A, que l'on supposera égal 4 1 ou non rationnel. [Si A était un rationnel
différent de 1, l'origine serait une singularité dicritique; tous les calculs d’indice
resteraient cependant valables; on ne pourrait simplement plus parler de courbe
généralisée ou de séparatrice maximale.]

Puisque zb — ya = zy[(A — 1)z + 9|, la séparatrice maximale a pour équation
zb—ya=0si A ¢ Q et zy =0si A = 1. Enoutre,si A £ 1, C =1TrJ =
(A + 2)z + 2y. Notons respectivement Sy, S2,S53 et Cy les droites d’équations
y=0,z=0,A=1Dz+y=0,et (A+2)z+ 2y = 0. On distinguera alors trois
cas:

A ¢ Q: on a une courbe généralisée, avec 3 séparatrices simples S, S5, 53 et
une pseudo-séparatrice simple C4. Les invariants sont donnés par le tableau:

S1 S Sz (4 Total
GSVi(o,V) 0 0 0 GSV (0, V) =0
CS(w, V) A+2 2 4-2 CS(v,V) =8

Ru(v,c?) A+2 2 4-X 0 BB(v,c2)=8

Ry(v,e9) 0 0 0 0 PHw)—pu=0
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En fait, il est aisé de calculer directement PH (v) = dim[O(z,y)/ (22, y(A\z +y))] =
4, et p=dim[O(z,y)/(y(y +2(A = D)2), 2(2y + (A — 1)z))] = 4.

A = 1: ce n’est pas une courbe généralisée, d—k+1 = 1, il y a deux séparatrices
simples S1 et S, et une pseudo-séparatrice simple C; les invariants sont décrits
par le tableau suivant:

S1 S C Total

GSVy(v,V) 1 1 GSV (v, V) =2

CSp(v,V) 2 1 CS(v,V)=3

Ry(v,c2) % 4 —% BB(v,c?) =8

Ry (v, ¢2) 1 1 1 PH(v)—p=3

En fait, il est aisé de calculer directement PH (v) = dim% =4, et p =

dim 9lew) — 1
(,y) '

2) Exemple d’un point selle avec valeurs propres opposées. L’intérét de
cet exemple est double:

— d’une part, il s’agit d'un point selle, avec une pseudo-séparatrice dont la
contribution a BB(v, c%) est non nulle. Il n’est donc pas tout a fait exact, dans
ce cas, d’affirmer que BB(v, c%) se “localise” au voisinage des seules séparatrices.
Cependant, il reste vrai que BB(v,c?) = C'S(v, V) (en I'occurence 0).

—d’autre part on peut voir, sur cet exemple, comment la contribution de chaque
séparatrice ou pseudo-séparatrice dépend en général du choix de I’équation réduite
de la séparatrice maximale, et peut méme en dépendre de facon discontinue.

Soient en effet A et ¢ deux parametres dans C (on supposera A # 0), v le champ
de vecteurs

{a—:c(1+)\x+y),

b:_y7

flz,y) = e rwtvtiiyy

On a alors: C' = —()\2x2 + Axy + 2ty2). La séparatrice maximale est formée
des deux branches simples y =0 et x = 0.

Posons ¢2 = 1 — 8t, de sorte que —4C = (2\z + y)? — €242 selon que ¢ est
nul ou non, on a une pseudo-séparatrice double d’équation 2Ax 4+ y = 0 ou deux
pseudo-séparatrices simples d’équations 2Az + (1 — e§)y =0, avec ¢ = £1.

Pour la branche y = 0, on obtient: Rh(uc%) = 3. Pour la branche z = 0,
Ry (v, c%) est égal & 3 ou & %7 selon que ¢ est nul ou non.

Si & # 0, on obtient: Rh(uc%) = 62;51 pour la pseudo-séparatrice 2 z-+
(1—ef)y = 0.
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Si € =0, on obtient: Rp(v, c%) = 0 pour la pseudo-séparatrice 2z + y = 0.

3) Exemple d’un selle-noeud. Donnons nous un entier p > 1, un nombre
complexe non nul A, et prenons le champ de vecteurs, correspondant a la forme
normale du selle-noeud, défini par: a = 2Pt b = y(1 + \aP), avec f(z,y) = zy,
et C = 14 (A+ 1)zP. Puisque C ne s’annule pas & lorigine, il n’y a pas de
pseudo-séparatrice. Dans cet exemple, I’hypothese de généricité de 2.5 (ii) n’est
pas vérifiée, et si A £ p% —2p — 1, on a Ry(v,c3).CS), # (Vary,)? pour la branche
y = 0.
Les invariants sont donnés par le tableau:

Si1(y=10) Sz(z=0) Total
GSVy(v,V) P 0 GSV(v,V)=p
CSp(v, V) A+1 1 CS(w,V)=X+2
Ru(v,¢?) A +1+42p 1 BB(v,c3) =A+2+2p
Ry (v, c2) p 0 PH(v)—p=p

Il est aisé de calculer directement PH(v) =p+1, et g = 1.

5. Localisation de PH — i et expression de GSV en K-théorie

1) Rappels sur 'homomorphisme de Chern—-Weil en K-théorie relative

Soit X un espace topologique ayant le type d’homotopie d'un CW complexe, et
Y un sous espace topologique ayant le type d’homotopie d'un CW sous complexe.
Rappelons d’abord qu’un élémént de la K-théorie complexe relative K(X,Y) =
k(X/Y) peut se définir par la donnée d’un triple (P, Q, ¢), ol P et () désignent des

fibrés vectoriels complexes au dessus de X, et ¢ un isomorphisme ¢ : P|y = Qly
entre les restrictions de ces fibrés & Y. On notera [P, @, ¢] ’élément de K(X,Y)
ainsi défini, qui ne dépend en particulier que de la classe d’ isotopie de ¢ (mais nous
renvoyons & [A] pour préciser la relation d’équivalence entre triples exprimant qu’ils
définissent le méme élément de K(X,Y)). L’image de [P, Q, ¢| par I'application
naturelle K(X,Y) — K(X) est égale & [Q — P]. Rappelons aussi les relations
~[P,Q,d] = @, P,6~Y], et [P,Q, 6] + [, R.v)] = [P, R, o g].

Si X est une variété différentiable, Y un ouvert de X, et Y7 un autre ouvert
tel que X =Y UY], rappelons ([LL1]) que la cohomologie H*(X,Y) & coefficients
complexes peut se définir par le complexe de Mayer-Viétoris relatif

MV*(X,Y) = Uhp(Y1) ® Qs (Y N YY),
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muni de la différentielle D : (uy,v) — (duy, —dv + uy), Q% désignant Palgebre
des formes différentielles et d la différentielle de de-Rham. (Le théoreme d’excision
correspond au fait que la cohomologie de ce complexe ne dépend pas du choix de
Y1)

Soit [P, Q, ¢] € K(X,Y) et supposons P,Q et ¢ différentiables. Donnons nous
deux connexions Vf sur la restriction Ply, de P a Y7, et V? sur Qly,. Notant
(V) =14¢1(V)+c2(V)+ -+ le cocycle représentant la classe totale de Chern
d'un fibré par ’homomorphisme de Chern—Weil associé a une connexion V sur ce
fibré, la classe totale de Chern de [P, Q, ¢] est donnée, d’apres [LS] (2-13), par la
classe de cohomologie du cocycle

(c(Vf) c(¢(V]), VT
(V2 Q

(V )’ o(VY)

) e mvex )

ou ¢(V, V') représente l'opérateur différence de Bott tel que dc(V, V') = ¢(V') —
¢(V). En particulier, si les connexions Vf et V? sont triviales, le cocycle précédent
a une partie homogene de degré 25 (j > 0) égale & (07 q(qﬁ(VfLV?)).

2) Localisation de PH — i en K-théorie

Rappelons ([BB1]) qu’un feuilletage F (de dimension complexe 1) sur une sur-
face holomorphe M (dimension complexe 2) est défini par la donnée d’un fibré
holomorphe en droites complexes £, de base M, et d’'un morphisme holomorphe
{: L — TM de fibrés vectoriels, ’ensemble singulier de F étant I’ensemble des
points de M ou ¢ n’est pas injectif. Mais F, étant aussi de codimension (com-
plexe) 1, peut encore étre défini par la donnée d’un fibré holomorphe en droites
complexes A, de base M, et d’'un morphisme holomorphe w : TM — N de fibrés
vectoriels, 'ensemble singulier de F étant alors égal & ’ensemble des points de M
oll w n'est pas surjectif. Soit S une partie de M contenant les points singuliers

de F et qu’on supposera compacte. La suite 0 — L L TM % N — 0 est exacte
au dessus de M — S. La donnée d’une scission (différentiable ou continue) de

cette suite exacte permet de définir un isomorphisme ¢(F) : L d N 2% TM au
dessus de M — S, dont la classe d’isotopie ne dépend pas du choix de la scission:
soit KPH(F) = [L & N,TM,$(F)] l'élément ainsi défini dans K(M, M — 5).
Si (Sa)a désigne la famille des composantes connexes de S, K(M,M — S) est
égal & @K (M, M — S,), et 'on notera KPH,(F) la composante de KPH(F)
sur K(M, M — S,). Supposons en particulier que S, soit un point singulier isolé
{mg} avec F = (v) au voisinage de mg; on notera KPH,(F) = KPHy,,(v).
D’apres le théoreme d’excision en K-théorie, on peut restreindre alors M a un
voisinage contractile U de mg dans M, arbitrairement petit, admettant des co-
ordonnées holomorphes (z,¥), et au dessus duquel tous les fibrés sont triviaux.
Notant 02(U) le fibré trivial de rang 2 au dessus de U, et posant v = aaa—z + ba%7

KPHp(v) est alors égal & [62(U), T(U), ¢y], olt ¢, désigne la trivialisation de
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&fini j—bd _ad i
T(U — mg) définie par les deux vecteurs v et ¢ = 3= — § By La premiere classe
e

de Chern de KPH,, (v) est nécessairement nulle, puisque H2(M, M —mq) = 0.

Lemme 5.1. La deuziéme classe de Chern ca de KPHp,(v) est égale a PHp,,(v)
dans H*(M, M — mg) = Z.

Ce résultat est probablement bien connu et doit faire partie du “folklore”,
mais comme nous ne l'avons pas trouvé dans la littérature, nous allons en donner
rapidement la démonstration.

D’apres les rappels faits en début de paragraphe, co [OQ(U ), T(U), ng(v)] est égal

a la classe de cohomologie du cocycle <O7c2(d>v(v(1) @ V?LV(Q))) dans

MVYU,U — mgp), ot V(]) désigne la connexion triviale naturelle sur le fibré triv-
ial de rang 1 61(U), et VY la connexion triviale sur TU associée & la triviali-
sation (%, 8%). Si D est un disque disque de dimension 4 dans U autour de
mg, Pévaluation du cocycle précédent sur le cycle relatif [D,dD] est égale a
— fope2 ((bU(V(l) & V(l)), Vg)) lorsque la sphere 0D est orientée par la normale

sortante. Puisque la connexion ¢, (V(l) &) V(ll) est v triviale, cette intégrale est égale
a PH,,,(v).

Soient v et v/ deux champs de vecteurs sur le voisinage U de mg, admettant
mg comme seule singularité éventuelle dans U (en particulier, v’ pourra étre égal
a vy). Soit ¥ I'ensemble des points de U en lesquels v et v’ sont colinéaires. Soit
D un disque autour de mg comme précédemment.

Théoréme 5.2. (i) La différence K PH, (v') — KPHp(v) dans K(U, U —myg)

admet un relévement naturel
KPHy(v,v") € K~Y(U — mg)

par Vapplication K—YU — mq) A K(U,U — mg) de la suite exacte du couple
(U7 U— mo).

(ii) L’élément K PHo(v,v") admet un relévement naturel
KPH(v,v') € KX (U —mg,U - %)

par Uapplication K—YU —mg,U —%) — K~YU —my) de la suite exacte du couple
(U —mo, U = X).

Démonstration. D’apres les rappels faits en début de paragraphe, K PH,,,(v') —
KPH,,,(v) est égal & [02(U), 02(U), ;1 ° ¢y |. Puisque ¢y 1o ¢y peut encore se

lire comme une application de U —myq dans GL(2, C), elle définit (cf. [A]) un fibré de
rang 2 sur la suspension de U —mg, donc un élément naturel de K (U —mg) dont
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l'image par K1 (U —mg) 2 K(U,U —mq) est égale & KPH,,,(v') — KPH,p,,(v),
d’otl la partie (i) du théoreme.

a =B
T _
On vérifie: ¢;1 oy = , avec a = aa’ + bb et f=ba’ —ab.
a
" 10e (-0
t+(1—-t)s  t+(1—t)ds’ .
Pour ¢ € [0,1], posons: g = ~|. Cette matrice a un
(1-1)83 t+(1-t)a

t+(1-£)5’
déterminant qui est toujours positif ou nul, mais qui est strictement positif si 5 # 0,

c’est & dire sur U — X: 'application g; est donc une isotopie entre ’application
constante égale & lidentité et ¢ lop, : U — 3 — GL(2,C). Clest dire que
la restriction de KPHp(v,v') & U — 3 est nulle, et que KPHp(v,v") admet un
relevement a K *1(U —mg, U — XJ), lequel est canonique puisque l'isotopie g; sur
U — ¥ a été définie de fagon naturelle, d’olt la partie (ii) du théorgme.

3) Expression de GSV en K-théorie

Une séparatrice de F est un sous ensemble analytique V de M, tel que Vy =
V — Sy soit une feuille de F, ot 'on a posé Sy = SN V. Le fibré normal a V
admet deux extensions, de nature différente, & tout V: ce sont respectivement le
fibré en droites F associé au diviseur définissant V', et la restriction a V du fibré
normal virtuel Q(F) = TM — £ de Baum—Bott. Plus précisément, V est défini
comme l’ensemble des zéros d’une section holomorphe V' dun fibré holomorphe
E — M’ défini au dessus d’un voisinage M’ de V' dans M, V étant génériquement
transverse a la section 0 de F/. Notant V une connexion arbitraire sur F, rappelons
([LS]) que la restriction & V' du morphisme Vs : TM’ — E ne dépend pas du choix
de V, et que sa restriction & Vj est surjective et a pour noyau TV, permettant
d’identifier canoniquement Fly, au fibré normal de Vg dans M. Dire que V est
une séparatrice de F signifie alors que la suite de fibrés vectoriels

0—Lly L TMly BBy —0

est exacte au dessus de V — Sy : une scission de cette suite exacte définit par
conséquent un isomorphisme [£ & Elly_g, — TM|y_g,, d’oll un élément

KGSV(F,V)e K(V,V = Sy).

Supposons en particulier que mg soit un point isolé de S et que V passe par
mg. On notera alors KGSV,,,,(F,V) ou KGSVy (v, V) I'image de KGSV (F,V)
dans K(V,V — myg) induite par I'inclusion de mg dans Sy. Soit U un voisinage
de mg dans M ne contenant pas d’autre point de S. Posons Uy = UNV. Le
théoreme d’excision en K-théorie permet alors d’affirmer que I’application na-
turelle K(V,V —mqg) — K(Uy, Uy — myg) est un isomorphisme.
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Si I'on note d’autre part (Vh) y la famille des branches localement irré-

=1,
ductibles de V' en myg, on a le lemme suivant:

Lemme 5.3. Les inclusions (Vi,, Vii—mq) — (V,V —myq) définissent une famille de
projecteurs K(V,V —mg) — K(V},, V}, — mg) permettant d’dentifier K(V,V —mg)
a la somme directe EDthlK(Vth — myg), laquelle est elle méme naturellement
isomorphe & ZN .

Démonstration. Chaque branche V}, admettant un paramétrage de Puiseux, on
peut choisir le voisinage U de mg dans M de telle sorte que chaque intersection
U NV}, contienne un disque D), de dimension 2. [espace quotient V4, /(V, — mg)
a méme type d’homotopie que Dy /3D qui est homéomorphe & une sphere S,%
de dimension 2, munie de deux points de base: d’une part le centre qui a pour
image mq par le paramétrage de Puiseux (et qui sera encore noté mg par abus de
notation), et d’autre part la classe d’ équivalence m;, de dDj,. L’espace quotient
V/(V — mg) a donc méme type d’homotopie que le quotient du bouquet \/, S’,%
par le sous espace fini {my,---,mp,---muy, }. La suite exacte associée & cette
cofibration en K-théorie montre alors que le morphisme naturel K(V/(V—=mg)) —
K(\/, S,%) = Z% induit par la cofibration est en fait un isomorphisme, chaque

facteur Z correspondant & une composante K (V/(Vi, — mg)).

On notera KGSV),(F,V) la composante de KGSV,,,,(F,V) € K(V,V —myg)
sur K(Vy,, Vi, — mg).
Attention & ne pas confondre KGSV},(F,V) avec KGSV(F,Vj) |

Théoréme 5.4. La donnée de GSV,, (F,V) équivaut d celle de KGSV,,, (v, V).
Plus précisément, l’isomorphisme

cy K(V}“Vh — mo) — H2(Vh7Vh = mo) ~7
défini par la premiére classe de Chern applique KGSVy, (v, V) sur GSV,(F,V).

Remarque. La formule ¢) (KGSV (v,V)) = GSV(F, V) est contenue implicite-
ment dans le théoreme 4.5 de [LS].

Démonstration. Soit Uy un voisinage tubulaire de V dans M, et soit Uy un sous
voisinage de mqg dans U tel que Uy U Uy admette une rétraction par déformations
sur V' (de tels choix de Uy et U sont toujours possibles). La cohomologie relative
H*(V,V —myg) est alors donnée par celle du complexe MV*(Uy U Uy, Up). Soit V
la connexion triviale sur T'M au dessus de Uy définie par Va% =0 et V% = 0.
Soit V' la connexion triviale sur 7'M |y, au voisinage de mq définie par V'v =0 et

Ty N _ 0 9 _ 9 o) _ _—rb __ _ra
Viw =0, o v —a%era—y etw—a%Jrﬁa—y avec o = anrbB,/B— m7etrtel
que v = rvy au dessus de V. [Ces composantes « et 3 sont définies de facon que
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w soit & la fois orthogonal & v pour la métrique hermitienne canonique sur C2 et
vérifie: < df,w >=1.]

D’apres les rappels faits en début de section, ¢ (K GSVy, (v, V)) est donnée par
le cocycle (0,¢1(V, V")) dans MV2((Ug U Uy, Up), et son évaluation sur le cycle
relatif (Dy,dDy,) par lintégrale th c1(V,V)ouTy =dDy.

Relativement a la trivialisation (%7 8%) de T'M au voisinage de mg, V a pour

forme de connexion 7 la matrice 0, tandis que V’ a pour forme de connexion la
matrice (Z Z>7 avec ap + bg+ da =0, au +bs+db =0, ap+ Bqg+ da = 0,

et au+ fBs +dB = 0. On en déduit: p = L(bda — Bda), s = L(adb — adp),
et p+s = ’:”, puisque 7 = af8 — ba. Or ¢1(V,V’') = —(p+ s). 1l en résulte
que D'évaluation de ¢ (KGSV;(v,V)) sur '), est égale & I, dr clest a dire &
GSVi(0,V).

Des théoremes 3.3, 5.2 et 5.4, résulte immédiatement le

Corollaire 5.5. Les trois propriétés suivantes d’un feuilletage F admettant en
un point mg une singularité non dicritique sont équivalentes:

(i) F est une courbe généralisée,

(ii) KGSV (v,V) =0 dans K(V,V —mg),

(iii) KPH(v,vf) =0 dans K(M —mg, M — %).
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