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Surfaces de la classe VII; admettant un champ de vecteurs,

II
Georges Dloussky, Karl Oeljeklaus et Matei Toma

Dédié a Alan T. Huckleberry, a loccasion de son soixantiéme anniversaire

Résumé. On termine la classification des surfaces holomorphes compactes pour lesquelles existe
un champ de vecteurs holomorphe global non trivial. On démontre, sous cette hypothese, que
toute surface S de la classe VI avec b2 (S) > 0 contient une coquille sphérique globale. C’est
exactement le cas ol cette classification était incompléte. Cet article est la suite de [3].

Mathematics Subject Classification (2000). 32J15, 32M25, 32Q57.

Keywords. Compact complex surface, class VIlg, holomorphic vector field, global spherical
shell.

Une surface est une variété complexe compacte S de dimension 2. On note
b;(S) le i-ieme nombre de Betti de S.

0. Introduction et rappels

La classe VIIp de Kodaira, qui est formée des surfaces complexes compactes
minimales S & b1(S) = 1, est completement comprise seulement dans le cas
by(S) = 0. Introduisons la notation VII§ pour désigner la sous-classe des sur-
faces S & by(S) > 0. Une surface de la classe VII ne contient quun nombre fini
de courbes compactes, [9]. Les seuls exemples connus dans la classe VIIJ sont ceux
admettant une coquille sphérique globale (CSG). Les surfaces & CSG sont main-
tenant bien comprises. Nous renvoyons le lecteur & [2] et & [4] pour la définition et
leurs propriétés. Rappelons ici seulement qu’une surface S de la classe VII§ avec
CSG contient exactement by (S) courbes rationnelles. D’apres [10] nous appelerons
une surface S de la classe VIIJ spéciale si elle contient by(.S) courbes rationnelles.

Le but de cet article est d’achever la classification des surfaces complexes com-
pactes admettant un champ de vecteurs holomorphe non trivial ou, ce qui est
équivalent, une action holomorphe presque effective du groupe de Lie complexe
(C,+). Cette classification était incomplete précisement dans le cas de la classe
VIIT,
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On a montré dans [3] que, si S est une surface de la classe VIIj munie d’un
champ de vecteurs holomorphe non trivial, alors S est une surface spéciale. 11
restait le probléme de savoir si, sous ces hypotheses, S contient une CSG. C’est ce
probleme que nous résolvons dans cet article.

Théoréme 0.1. Soit S une surface complexe compacte minimale munie d’un
champ de vecteurs holomorphe non trivial, pour laquelle les nombres de Betti sa-
tisfont les conditions by (S) =1 et n = by(S) > 0. Alors S contient une coquille
sphérique globale.

Remarque 0.2. Le champ induit une action presque effective de (C,+). Comme
le nombre de courbes compactes sur S est fini, il n’y a pas d’action de tore. Seuls
les deur cas suivants se produisent :

1) Le champ induit une action effective de (C*,-). Alors S est une surface
d’Inoue parabolique [6], et donc a CSG.

2) L’action de (C,+) est effective. On a montré dans (2] que de telles surfaces
a CSG existent.

Rappellons que pour une surface spéciale S, on a H'(S,C*) ~ C*, [10], p. 481,
ce qui permet de noter par L* le fibré plat correspondant & A € C*. On désigne
par M(S) la matrice d’intersection des by(S) courbes rationnelles. On sait que

k(S) =1+ +/|det M(S)]

est un entier. Lorsque S contient une CSG et by(S) > 0, cet entier est égal, d’apres
[4], & Uentier k(S) défini dans [2].

On note kod(S) la dimension de Kodaira dune surface S. I’apres notre résultat,
[2] et [5], la classification des surfaces complexes compactes avec champs de vec-
teurs holomorphes est terminée :

Théoréme 0.3. Une surface compacte complere minimale admet un champ de
vecteurs holomorphe non trivial si, et seulement si elle appartient d la liste sui-
vante :

1) Surfaces vérifiant kod(S) >0 :

a) Tores complezes.

b) Fibrés principauz de Seifert au dessus d’une surface de Riemann a fibre une
courbe elliptique.

I1) Surfaces kihleriennes vérifiant kod(S) = —oo -

a) Fibrés holomorphes a fibre P1(C) et a groupe structural C* au-dessus d’une

surface de Riemann de genre g > 1, Po(C) et surfaces de Hirzebruch %, n =
0, 28,0 e

b) Fibrés holomorphes a fibre P1(C) avec groupe structural conneze résoluble
au-dessus d’une surface de Riemann de genre g > 1, tel que le fibré en droites
associé ait une section holomorphe non triviale.
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IIT) Surfaces non kihleriennes vérifiant kod(S) = —oo -

a) Surfaces de Hopf presque homogénes.

b) Surfaces d’Inoue de type S](Vf; gt

¢) Surfaces S de la classe VHO+ admettant une CSG et dont le fibré anticano-
nique est de la forme

K =0(D_g)® LFS),

ot D_k est le diviseur numériquement anticanonique. Ici k(S) =1 si et seulement
st S est une surface d’Inoue parabolique.

Notons # un champ de vecteurs holomorphe non-trivial sur une surface S de la
classe VIIj . Comme dans [3], on supposera dans la suite, grace & [6], que I’action
du groupe (C,+) induite par 6 est effective. On note Dy le diviseur des zéros de
0, et D le diviseur réduit maximal de S. On a montré dans [3], que D consiste en
exactement by (S) courbes rationnelles, c’est-a-dire que S est spéciale.

Voici le contenu de ’article : 'idée directrice est de reconstituer a partir du
feuilletage réduit F associé au champ de vecteurs 6 et du diviseur maximal D de
S un certain germe d’application contractante (C?,0) — (C?,0) qui permet, grace
aux résultats de Ch. Favre [4], de retrouver la CSG.

— Dans le §1 on démontre que le feuilletage F est également défini par une
1-forme méromorphe logarithmique

we H°(S,Q (LogD) ® L),
avec poles le long du diviseur D et tordue par un fibré plat L*, ot k =
k(S) > 1, comme dans le cas des surfaces a CSG, [2].

— Dans le §2, on montre qu’il existe un voisinage ouvert VU D du diviseur
maximal D, invariant par le feuilletage F , avec V. = V \ D tel que le
revétement universel de V' est isomorphe & Hy x C et 71(V) ~ Z x Z[#]. Ici
H, = {w € C | Re(w) < 0}.

— Dans le §3, on calcule une forme normale des générateurs g, g d'un groupe
G~7ZKx Z[%] agissant proprement discontiniment sur Hy x C. On obtient

gy(w, 2) = (w + 27, z)

g(w, 2) = (kw,z+ fy(w))
oll fy(w)=H(e ™) et
HE) = Aot Y Anc™
m>0,ktm
est un polynéme.

— Ceci permet de reconstituer dans le §5 un germe d’application contractante
et de voir que V peut-étre compactifié par des courbes rationnelles de fagon
a obtenir une surface avec CSG, ce qui donne le résultat. En méme temps,
nous voyons que l'ouvert V' était en fait égal & S\ D.
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1. Forme logarithmique tordue et coefficient de torsion

Soit S une surface spéciale au sens de Nakamura, c’est-a-dire que S est mini-
male, b1(S) = 1, n := by(S) > 0 et il existe exactement n courbes rationnelles.
D’apres [10], la surface S est difféomorphe & une surface contenant une CSG, en
particulier son groupe fondamental m(S) est isomorphe & Z. En utilisant le fait
que H'(S,C) =~ HY(S,0) ~ C, on voit aussitét que les fibrés holomorphes en
droites topologiquement triviaux sont exactement les fibrés en droites plats. Ces
fibrés sont a leur tour canoniquement parametrés par C* : un homomorphisme p
de 7m1(S) ~ Z dans C* est uniquement déterminé par la valeur A := p(1). Nous
notons par L* le fibré correspondant.

A I’exception des surfaces d’Inoue-Hirzebruch et d’Inoue paraboliques, le di-
viseur maximal réduit I d’une surface spéciale consiste en un cycle de courbes
rationnelles auquel se rattache un systeme non vide d’arbres de courbes ration-
nelles (voir [10]). De plus, le morphisme 71(D) — 71(S) est bijectif ([9]). Cela
implique que dans le revétement universel S de S, Pimage réciproque du cyele est
une chaine infinie de courbes rationnelles.

Dorénavant S désignera une surface spéciale admettant un champ de vecteurs
global non trivial @ qui induit une action effective de (C,+). On montrera ici que
le feuilletage F induit par # est également défini par une 1-forme méromorphe
logarithmique tordue par le fibré plat L*(S). On note Dy le diviseur d’annulation
de 6. D’apres [3], il existe un diviseur numériquement anticanonique D_j, et un
fibré plat L%, k € C* tels que

D_g=Dy+ D, (%)
Kl'®L=D_kg. (%)
Lemme 1.1. [l existe une 1-forme méromorphe logarithmique fermée tordue
we H(S,QlogD) ® (L*)™1)
qui a ses poles le long de D.
Démonstration. Soit Z l'espace analytique des singularités du feuilletage holo-
morphe F et Jz le faisceau d’ideaux associé. D’apres [3], Z est espace des points

d’intersections des courbes rationnelles de S. On notera aussi par ©g le faisceau
des germes de champs de vecteurs holomorphes. Le champ de vecteurs € induit,
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d’apres (%) et (x) une suite exacte courte de Og-modules

0— O(Dy) —» 05— Jz 0 (LF) 1@ 0O(D) — 0.
En dualisant on obtient la suite exacte courte

0— L*®O(-D) — Qf — Jz ® O(=Dg) — 0,

et donc une section
wel(S,0'e (L") e0(D)),

qui vérifie w(f) = 0. Autour d’un point lisse de D on choisit des coordonnées
locales (21, 22) telles que D = {z5 = 0}. On sait que les courbes sont invariantes
pour F et donc 6 est tangent & D (voir [3]). On a alors

0
0= a(zth)z%na—Zl
et J
W = b(zh 22)27
2

avec a(0,0) # 0, b(0,0) # 0 et m € N, puisque le morphisme L* @ O(-D) — QL
ne s’annule qu’en codimension 2.

Par conséquent, la forme w a des poles logarithmiques le long de D et, en outre,
elle est fermée puisque

dw e T(S,Q* ® (L") ' ® O(D)) = '(S,0(=Dy)) = 0.
O

Notons g le générateur de 71(S) = Z qui agit sur S de facon que g*w = x~'w.

Lemme 1.2. k € N\ {0,1} ou 1 e N\ {0,1}.

Démonstration. Le relevé de w sur le revétement universel S de S est une 1-forme
méromorphe A poles logarithmiques le long de l'image réciproque D de D. Notons
encore cette forme w. Soient Dy, ..., D, _1 les courbes rationnelles du cycle de S
et Cy, ..., C,_1 une chaine connexe de courbes dans D recouvrant Do,....,Dpn_1.
On pose C,, := g(Cp). Soit U un voisinage pseudoconvexe de D et U son image
réciproque dans S. Pour un petit lacet ~o dans U \ D autour de Cj on a

/ w:/ g*w:mfl/ w.
govyo Yo Yo

Soit v1 un lacet autour de Cy. Nous allons comparer les intégrales f% w et f% w.
Dans un voisinage de p := Cy N Cy on prend des coordonnées locales (z,y) telles
que Cy = {x =0} et C; = {y = 0}. On a vu dans [3] qu’en p, 0 a la forme

0= flz,y)z"y"0
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avec f(0,0) # 0, ou

_ a 0
0 = (pz + xfl)% — (vy + yf2)6—y7

w,v € N* et f1(0,0) = f5(0,0) = 0, car les courbes sont toutes invariantes. Cette
forme est d’ailleurs valable pour toute intersection de courbes de D).
Le premier jet de 6 s’écrit

0

J1(8) = pa = Vya—y.

d d,
Si on pose w = gl—x + g0 _y7 la condition
z K

0= (w,0) = T (uz + 1) = Ly +yfa)

entraine g1(p + f1) = g2(v + fo2).
Maintenant nous avons

/ w = 2mi Res(w)|y—c, = 27i g1(0, ¢1)
Yo

pour un ¢; # 0 fixé. Puisque w est fermée, cette intégrale est indépendante de

c1. De plus, ¢1(0,¢1) # 0, car w a des poles logarithmiques le long de D. Par

conséquent f% w = 2mig1(0,0) # 0 et de facon analogue fwl w = 2migs(0,0) # 0.
Le rapport de ces deux intégrales est

w
_ = = :—CS(.F7017COQC1)
14

et done

s

w m
KL= ijVOW =11 (—CS(F,C;, Ci_1 N Cy)),
Yo =i,

f%w _
w,
i—1

f’Y* i=1

oll les ~; sont de petits lacets dans U \ D autour de C;. On a noté CS(F,C,p)
I'indice de Camacho—Sad du feuilletage F le long de la courbe C au point p, voir
[1].
En particulier x € Q% . On se propose maintenant de montrer que le nombre x
ne dépend que du graphe dual de D, c’est-a-dire de la matrice d’intersection de D.
Soit Bji, ..., By, l'arbre de courbes rationnelles dont la racine est Cj, b;; =
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2
—Bl,j et
1
biI:—CS f,Ci,CiﬂBi =
( ) —GS(F, Bu, i1 Ba)
B 1 B 1
b —(=CS(F,Ba,BaNBa)) 1
“L ™ _CS(F, B, Bi1 N Big)
B 1
by — 1
T
bi2 - 1
b, - _—
38, T imesws bimi

On pose b; =0, 8’il n’y a pas d’arbre sur C;. Alors on a 0 < b; < 1, pour tout 4.
Soient

d; Z:—Cg—bi>1

et
Qy = —CS(F, C“C,‘,1 N 01)7 ie= 17 R
La formule de Camacho—Sad ([1]) entraine
o+ =d;, pourl <i<m-—1 (1)
Q41
et
1

oy, + — = dpy,. (2)

aq
On démontrera dans ’annexe que les équations (1) et (2) entrainent que

Iiilial'.,.'am

ne dépend que des d;, 1 < i < m. Plus précisement on verra que x est unique
a inversion pres. Le lecteur pourrait aussi consulter le fameux article [7] de F.
Hirzebruch qui traite le cas ol tous les b; sont nuls par une méthode différente.

D’apres [10], il existe une surface S’ avec coquille sphérique globale dont le
diviseur maximal admet le méme graphe dual que le diviseur maximal de S.

L'unique feuilletage holomorphe singulier de S’ est induit par une forme loga-
rithmique tordue w’ € H°(S', Q! (Log D') ® L*) avec k = k(S') = k(S) € N\ {0, 1}
(voir [2]). Puisque « et k se calculent & partir du graphe dual par la méme équation
a inversion pres, d’apres ’annexe, on aura kK = k ou Kk = % ([l
Remarque 1.3. On peut choisir le générateur g de m1(S) tel que k < 1, ce que
nous faisons par la suite et alors k=1 = k(S) = k.

En résumé, nous avons obtenu dans cette section la
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Proposition 1.4. [l existe une 1-forme méromorphe logarithmique fermée tordue
w e H°(S, Q' (logD) ® L*¥9)),
k(S) € N\ {0,1}, qui a ses péles le long de D et qui définit le feuilletage F.

2. Revétement universel du complémentaire des courbes

Soit U un petit voisinage ouvert de D, tel que D soit une rétraction par déformation
de U. On a

m(U) =71 (D) =m1(S) =Z.
Il existe un domaine fondamental Uy pour 'action de Z dans 'image réciproque

U de U dans S, tel que le bord de Uy dans U coupe D sur une composante Cj et
sur sa translatée g(Cp) le long d’un cercle S, Soit Yy := J, 0 9% (Vo).

Lemme 2.1. [l existe une normalisation de w de fagon que la représentation

p:m(S\D)—-C

1o [
>

ait comme image 271'2'2[%] C C. En plus, on peut choisir cette normalisation telle

que p(m1(Yo \ D)) = 2milZ.

Démonstration. Puisque S est simplement connexe, le groupe 71(S \ D) est en-
gendré par les petits lacets autour des composantes irréductibles de D. D’apres
les résultats de la section précédente (démonstration du lemme 1.2) et en utilisant
les mémes notations, on voit que p(w1(S \ D)) est un Z[1]-module engendré par

2miag = f% W, ..., 2mia,_1 = f%H1 w, ol Yo, .. .,Yn_1 désignent les petits lacets
autour des courbes Cy,...,C,_1 dans Up.
Maintenant on peut normaliser la forme w de sorte que les nombres ag, . .., a1

soient des entiers positifs & p.g.c.d. égal & 1; donc le groupe p(m1(S\ D)) est libre
de rang 1 comme Z[1]-module.

De maniére similaire le groupe p(m1(Y5 \ D)) sera engendré comme Z-module
par les petits lacets autour des courbes irréductibles de DD qui rencontrent Uy. O

Nous supposerons dans la suite que w est normalisée comme dans le lemme 2.1.
Soit A un domaine fondamental pour ’action de Z sur S et X := Uj>0 g7 (A).

En translatant par g, on peut supposer que D N Xy C Y. Remarquons qu’apres
une telle translation, on a

p(mi((Yo U Xo)\ D)) = p(mi (Yo \ D)) = 2riZ.
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Fixons 2o € Up. Nous définissons une fonction holomorphe f sur (Yo U Xg) \ D

par
z 1 g(=0)
f(z)exp(/zoer—k_1 1 w).

On vérifie aisément que f est bien définie et que

flg(2) = f*(2) (1)
pour z € (Yo U Xo) \ D.

Soit C' la partie lisse dans D d’une composante irréductible de DN Y,. Comme
w est une forme logarithmique fermée, quitte & remplacer w par —w, un calcul local
autour de C' montre que f se prolonge en tant que fonction continue et donc aussi
holomorphiquement en prenant la valeur 0 sur C. Nous prolongeons maintenant
f sur I'ensemble D N Yy, en utilisant & nouveau que les rapports des résidus de w
sur les composantes de D sont des rationnels positifs. o

Le noyau Kerp définit un revétement 7 : X' := S\ D/Kerp — S\ D. On
vérifie aussitot que laction de g sur 71 (S \ D) stabilise Kerp et induit donc une
action de Z sur X’. Notons encore par g un relevement de g sur X’. Soit w’ = 7*w
et ¢ : X’ — C une primitive de w’ sur X', telle que exp(¢) coincide avec n* f sur
une composante connexe de 1'image réciproque par 7 de (Yy U Xo) \ D.

Comme ¢og = k¢, 'image de ¢ est invariante sous 'action du groupe multipli-
catif {k”,v € Z}; cette image est aussi invariante sous I’action du groupe additif
27rz'Z[%]. Comme, d’autre part, f s’annule sur Yy N D, ¢(X') contient le demi-plan
gauche H, := {w € C | Re(w) < 0}. La fonction ¢ est une submersion holomorphe.
Les composantes connexes de ses fibres sont isomorphes a C en tant qu’orbites du
flot relevé.

Proposition 2.2. Les fibres de ¢ au-dessus de H sont conneres.

Nous sommes maintenant en mesure d’énoncer le résultat principal de cette
section. La démonstration de la Proposition 2.2 est reportée a la fin de la section.

La Proposition 2.2 implique que la restriction de ¢ & louvert V' := ¢~ 1(H,) est
en fait un C-fibré principal au-dessus de H, et donc trivial. Soit V = 7 (V') et V
son image dans S. Soit v € 71 (V) un lacet avec p(vy) = 27i et g l'automorphisme
de V' ~ H, x C correspondant & .

Le résultat principal de cette section est la
Proposition 2.3. Le revétement universel de V et donc celui de V sont iso-

morphes au produit Hy x C et 71 (V) est engendré par les deux automorphismes g
et g de Hy x C. De plus, o(g)(gy) :== ggvg ' = gF et m (V) =2 Z %, Z[1].

Démonstration. Remarquons que V' U D est un voisinage de D dans S. La variété
V! = H, x C est déja le revétement universel de V. D’apres le Lemme 2.1 et la
Proposition 2.2

m(V)=Z[7| = {g"g\g ™ | Ln e Z}.
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La conclusion en découle. O

C’est & la fin de article seulement qu’on verra que V U D est compact et donc
coincide avec S. Avant d’attaquer la démonstration de la Proposition 2.2, nous
démontrons le

Lemme 2.4. Chaque fibre f~'(a) pour a € A* == {¢ € C |0 < [¢] < 1} est
contenue dans une feuille du feuilletage F induit par F sur S.

Démonstration. Remarquons d’abord qu’il suffit de montrer le lemme pour « dans
un voisinage arbitrairement petit de 0 dans A := {¢ € C | [¢] < 1}. En effet, s'il
était faux pour un certain a, on aurait deux composantes de f~!(a) se trouvant
dans deux feuilles différentes de F. D’apres la relation (1) les images par g¥,v >
0, des deux composantes considérées se trouveraient dans deux composantes de
F~ (). L’invariance du feuilletage F par g, donnerait Iexistence de deux feuilles
différentes coupant f~!(a®").
Lorsque o tend vers zéro, 'ensemble f~'(a) N Uy s’accumule sur DnU,. Plus
précisément pour tout voisinage de DNUj et o assez petit, f ~Ha)NUg se trouvera
dans ce voisinage. Prenons une composante Z de f~!(a). Elle se trouve dans une
feuille de F.
Notons (z;, z;) un systéme local de coordonnées analytiques autour d’un noeud
C; N Cy, dans lequel C; = {z; = 0},C; = {z; = 0}. Puisque le feuilletage est
localement défini par w = df / f ou par df, les feuilles de F au voisinage de C; N C;
sont les hypersurfaces de niveau d’une fonction l(z;"iz;nj) (voir [8], page 498,
VI.3 et la démonstration du lemme 1, page 503). On a noté par [ un élément
de Dif f(C,0). En particulier il s’ensuit que chaque feuille qui est suffisamment
proche de I'une des courbes Cj, sera proche de toute autre courbe C; de DnNU,.
En plus, si p.g.c.d.(m;,m;) =1
— une composante locale d’une feuille autour du noeud C; N C; contient lo-
calement m; composantes connexes locales autour de Cj, et m; autour de
Cj j

— la fonction l(z:n’z;nJ ) n’est pas une puissance, donc est a fibres connexes,
d’apres le lemme 1 de [8], page 500.

Notons par p; le nombre des composantes locales de Z autour d’un point lisse
de la courbe C;. La fibre () a a; == ﬁ f%, w composantes locales autour de
Ci, et dij = p.g.c.d.(a;, a;) composantes locales autour d’un noeud C; N C; # .
Remarquons que p; < a;. Avec les notations précédentes, on a
a; aj
B gy

Il s’ensuit que le nombre de composantes locales de Z autour d’'un noeud C; N
C; # 0 est

m; =

pi _ iy _ pidiy _ Py

my a; a; msj ’
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Nous obtenons la relation Z—j = 5—; pour chaque C; N C; # 0. En utilisant la

connexité de DN Uy et le fait que Z est contenu dans une feuille de F on déduit
I’existence d’un nombre rationnel s tel que s = £2. i = 0,...,n — 1. Maintenant
p.g.c.d.(ag,...an—1) =1 entraine s € Z et donc p; = a; pour tout i =0,...,n—1
et Z est P'unique composante connexe de f~*(a) N Up. O

Démonstration de la Proposition 2.2. Soient Li, Lo deux composantes connexes
d’une fibre ¢—1(3) avec 3 € H,. On peut se ramener & la situation ou o := P est
petit en utilisant 1’action de {¢” | v € Z}. La méme action permet de supposer que
7(L1) et w(Ly) coupent Xp, au besoin on remplace « par o . On peut supposer
méme que L; et Ly coupent la méme composante connexe de 7 *((Xo U Yp) \
f)) Pour voir ceci, on prend un chemin qui relie Iy et Lo, et on considere le
recouvrement (7 (g™ ((Xo U Y5) \ D)))pez. D’apres le lemme précédent 7(Ly) et
7(Ly) se trouvent dans la méme feuille de F, puisque f prend sur 7(L;) N (Xq U
Yo) # 0 la méme valeur que sur w(Lq) N (Xo U Yy) #£ 0. Soit 2 € n(L1) NYy =
w(Lo) NYy et 21 € Ly, 29 € Ly des préimages par 7. Un chemin v reliant z; &
2 dans X’ se projette sur un chemin fermé dans S \ D. Lintégrale de w sur ce
chemin sera nulle et donc p(y) =0, i.e. 21 = 29 et Ly = Lo. O

3. Actions proprement discontinues sur H x C

Le but de cette section est de montrer un théoreme général concernant certains
groupes d’automorphismes holomorphes agissant proprement discontintiment sur
H, x C, ot H, = {w € C | Re(w) < 0}.

Notons par (w, z) les coordonnées globales de H, x C.

Théoréme 3.1. Soit k € N, k > 1. Soit G un sous-groupe du groupe des auto-
morphismes holomorphes de Hy x C. On suppose que

— le groupe G est isomorphe au produit semi-direct Z, X Z[%], c’est-a-dire qu’il

existe deuzx générateurs g, g, € G de G tels que gg g~ = g’j,

= laction de G sur Hy x C est proprement discontinue,

— elle préserve un champ de vecteurs 6 intégrable sans zéros.

Alors, a conjugaison pres, 8 = 0/0z et le groupe G est engendré par les deuz
automorphismes

{ gy(w, z) = (w+ 2mi, z)
glw,2) = (kw,z+ He™)),

ot H(C) = 30 _o AmC™ est un polynome tel que An, = 0 pour tout m > 0 avec
klm et As # 0. Réciproquement, Uaction d’un groupe d’automorphismes de Hy x C
engendré par deur éléments g,g, de la forme ci-dessus est libre et proprement
discontinue.

Démonstration. Une application évidente du théoreme de Liouville montre qu’un
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automorphisme de Hy x C est de la forme
(w,2) = (Aw, fi(w)z + f2(w)),

o A € Auto(Hy) =~ PSL(2,R), fi € O*(Hy) et fo € O(H,). En particulier, la
projection de H x C sur H induit canoniquement un homomorphisme de groupes
n de G dans Auto(H,). L’hypothese de la propre discontinuité de Iaction montre
que si Ker(n) était non-trivial, il serait isomorphe & Z ol & Z*. Mais ce n’est pas
difficile a voir que Z x Z[%] n’admet pas de tels sous-groupes normaux. Donc 7
est injectif, i.e. G ~ n(G) C Auto(H,) ~ PSL(2,R). Puisque G est un groupe
résoluble non-commutatif, I’adhérence de Zariski réelle de n(G) dans PSL(2,R)
I’est aussi. Cette adherence est donc conjuguée au sous-groupe de Borel standard
de PSL(2,R). Ce fait et la structure de G impliquent maintenant que n(G) est
conjugué dans Auto(H,) au groupe engendré par (w — w + 27i) et (w — kw).

Le champ de vecteurs intégrable 8 ne s’annule pas par hypothese. 11 est donc
constant sur chaque fibre de la projection de H, x C sur H,. Par conséquent ce
champ est de la forme a(w)% sur Hy x C, ot o € O*(Hj,). En conjuguant avec
I’automorphisme

-1

(w, z) — (w0 " - 2),

on se ramene au cas o = 1.
Puisque g et g, préservent 6 = 9/dz, on a :
gy(w, z) = (w4 2mi, z + f(w))
g(w, z) = (kw,z + fy(w)).

L’automorphisme g, engendre une action de Z sur H, x C, qui induit un C-fibré
principal holomorphe

Hy xC/Z - Hy/Z ~A*={CeC|0<|C| <1}

La trivialité holomorphe de ce fibré entraine ’existence d’une fonction holomorphe
h:Hy; — C telle que
h(w + 2mi) — h(w) = f,(w)

et la conjugaison par (w, z) — (w, z + h(w)) nous mene & la nouvelle forme
gy(w, 2) = (w + 27i, 2).

Par la suite nous supposerons donc que f, = 0.

On a par hypothese

—1 k
gogyog =gy,

ce qui conduit a la 2mi-périodicité de la fonction f.

En factorisant par exp : H; — A*, w— €* =: {, on obtient un développement

en série de Laurent
folw) = Z ame™ = Z amC™.
meZ mEZ
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Une conjugaison par
(w, 2) = (w, 2+ B(w))
oll 3 est une fonction 2mi-périodique sur Hg, ne modifie pas la forme de g, mais
remplace f, par
w = fg(w) + Blhw) — B(w).
Soit
WO =Y aml™, hi(Q) =) am(™

meZ m>0

La série >,° 0 hy (¢ kl) converge uniformément sur tout compact de A*. Pour
le voir il suffit d’écrire h, (¢) = ¢(¢h(¢)) et de remarquer que {~1h, (¢) est

holomorphe en 0. Soit
o0

X(€) =" hi(¢M).

On a i
x(Q) = x(¢*) = hy Q).

En posant g(w) := x(e"), nous obtenons
Fo(w) + Bkw) — B(w) = Y ame™”.
m<0
On peut donc supposer que fq(w) = h(e¥), ot h € O(P1(C) \ {0}).

Il nous reste la possibilité de conjuguer avec (w, z) — (w, z + @(e)), ol ¢ €

O(P(C)\ {0}).

Pour une fonction

W) =Y aml™

m<0

et [ € N*, on considere

hy (C) = Z Gm Cm

ktm, m<0
et
ho =h.

Chaque h; est de la forme h;(¢) = fl(g“kl), avec une fonction f;. Si ¢ désigne la
série formelle — 37,5, fi, on a formellement :

h(C) + (P —e(C) = (W)= F1(¢F)) + (F1(O) = f2(CM) + (£2() = f3(CF) + ...
- Elzo(fl(o - fl+1(Ck))

et chaque terme ne contient dans son développement en série de Laurent en ¢ que
des termes b,,(™ avec k 4 m. Dans le premier terme de la somme, on peut bien str
avoir by # 0.
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Pour0<R<1,l>1et|{|>Rona:

m .. U m
A1 <D Jam| R <Y Jam|[R™TF 71 < RF 1Y " Ja,|R™,

klm Eklm m<0
m<0 m<0

ce qui montre que la série qui définit ¢ est uniformément convergente sur tout
compact de P;(C) \ {0}. Il en découle une forme normale pour h :

MO =ao+ S aml™
i

Si h a cette forme normale, toute modification non triviale

h(C) + (CF) — (0

de h(¢) par une conjugaison perdra la forme normale. Autrement dit, la fonction
¢ = @(C*) — »(¢) a la forme normale si, et seulement si elle est identiquement
nulle. Pour voir ceci, on écrit les développements en série de ces fonctions :

P(Q) =D bml™, =)+ () =D eml™
m<0 m<0
S’il existe ¢, # 0 pour r € Z_, alors k¥ r, by = ¢, by = cpr +br = ¢,
br2r = Cp2p + brr = ¢, ... et la série Zm<0 b (™ ne serait pas convergente sur
P (C) \ {0}. Contradiction !
Les générateurs de GG s’écrivent maintenant sous la forme

gy(w, z) = (w+ 2mi, z)

g9(w,z) = (kw, 2z + fy(w))

avec fo(w) = hoexp(w) = H oexp(—w) ol

H(C) = Ag+ Z Amcm7
m>0
ktm
Ap=ag, Am = a_m.
Pour voir que H est un polynoéme, nous utiliserons la propre discontinuité de
Paction du sous-groupe I' := {g; , ;=g " © gl7 og"|neZ, lel}~ Z[%]
Nous démontrerons la

Proposition 3.2. La fonction H est un polynéme de degré non-nul, si et seule-
ment si laction de I sur Hy x C est libre et proprement discontinue.

Explicitement nous avons

Gim(w, 2) = <w+ 2%”72 +§ (fg(kjw) —Jq (kjw+ ::Z)))

3=0
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Posons pour [ =1,

G j(C) = H(CM) — H(CF exp(—2miki™)), 0<j<n,

Fall)= ). Gasll).

0<j<n

Avec ces notations et { = exp(—w), on a

et

Fixons les notations suivantes :
7T (resp. rD) est le cercle (resp. le disque ouvert) de rayon r > 0. Les différents
cercles rT sont munis de la mesure de Lebesgue normalisée dm(¢), pour laquelle

frqr dm(¢) = 1. _

Si f est holomorphe sur 3D, wind(f) désigne le nombre de zéros de f dans 3D.
Soit K :={2€ C|3< |2 <3}

Dans la démonstration de la partie directe de la Proposition 3.2 on utilisera les
lemmes suivants :

Lemme 3.3. Soit f une fonction holomorphe sur le disque fermé 3*D telle que
pour tout z € K, | f(2) |> 1. Alors on a les relations

/mw@cmwwmm:/IMﬂmwmmmmq
3T 3k

/ In | 7(<) Idm(C):/ In [ £(¢) [ dm(¢) — (k — 1wind(f) In3.
3T 3kT

Démonstration. La fonction z — In(f(z)z~*"4/)) est holomorphe sur K, ce qui
donne la premiere relation d’apres la formule de Cauchy. La deuxieme s’en déduit
facilement. (|

Lemme 3.4. Pour tous a,b € C, tels que |a|>2 et |b|< 1, ona

Inla+b|>In(lal)—]|b].

Démonstration. Comme | a + b |> 1, I'inégalité

1n|a|§1n|a+b|+ln(1+|a|i|b|)

donne le résultat. O
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Lemme 3.5. Soit f une fonction holomorphe définie au voisinage du disque fermé
3D. On pose

= l'l+ m .
Af/ml | £() | dm(¢)

Alors il existe une constante C > 0, indépendante de f, pour laquelle

in [ 1£) | dm(¢) < A
2T
(Ici on a noté In™ = max(In, 0).)

Démonstration. Une estimation immédiate au moyen de la formule de Poisson
donne ’existence d’une constante C > 0, telle que pour tout z € 2T, on ait

In | f(z) < CA.

Il s’ensuit

[ 170 1am(c) < exp(ca);
2T

I'inégalité voulue en découle. (Il

Lemme 3.6. Soit f =3 <, f(s)zs une fonction holomorphe sur un voisinage du
disque 2D. Alors, pour tout s € N,

1f(s)] =

mf(ocwm(o\ <27 [ 1701 dm(0).
Lemme 3.7. Pour toutn >0 on a
Froi1(€) = Gry1,0(C) + Fo(CF).
Démonstration. Avec les notations précédentes on a
Fry1(0) = Tocjan(HCF) = H(CF exp(-2miki 1))
= Gny10(C) + X icjan (H(CH) = H(CM exp(—2miki 1))
Gt 1,0(0)+ o< 1n (HCHF )= H((CF)F ™ exp(—2mikli=H=m))
= Gny1,0(¢) + Fn(C). 0

Lemme 3.8. Pour tout v > 1,
(k™ 1) = A, (1 — exp(—2miv/k)).

En particulier,

| Ba(vk™ ) [2] Ay | /.
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Démonstration. On a pour tout s,

—

Grm1(s) = /T(H(g’f"’l) — H(¢" ™ exp(=2mik™))¢*dm(C)
_ /T (32 AmC™ " =57 4™ exp(-2mim/k))¢ ™ dm(C).

m>0 m>0

On voit que le seul terme non nul dans CZ}: 1(vk™ 1) est celui obtenu pour m = v.
On a donc

Crm 1k 1) = A, (1 — exp(—2miv/k)).

En outre, s'il existe un indice 7, 0 < 7 < n — 1, pour lequel C?,;j(yk"_l) £ 0, il
existerait m > 1 pour lequel A,, # 0, mk? = vk" 1. Mais alors m/k = vk" 972 ¢
N, ce qui est exclu, puisque lorsque k divise m on a A,,, = 0. Pour obtenir I'inégalité
on remarque que si A, # 0, v/k € Net | 1 —exp(—2miv/k) |> 1/k. O

Démonstration de la Proposition 8.2. 1) Nous faisons une démonstration par 1’ab-
surde. Supposons que H ne soit pas un polynéme et néanmoins que I' opeére pro-
prement discontiniment. En particulier les images g1 ,,(K) du compact K doivent
tendre vers l'infini. Comme le premier membre converge, cela implique que la
suite (| F,, |) converge uniformément sur K vers 400 ce que nous supposons donc
dorénavant.

Puisque H est de classe C' sur K, il existe une constante ¢ > 0 indépendante
de n pour laquelle

B = sup | Gyo(C) |= sup | H(C) — H(Cexp(—2mik™")) |< ck™™.
ceK CeK

Fixons un entier positif N tel que
pour tous ¢ € K, n > N,| Fo(C) | 2 (¥)

et

Z Bn <1 (%)

n>N

On note W = wind(Fy) et on pose F(¢) := Fyn(¢*). En utilisant (%), on
obtient wind(F') = kW. On rappelle que F'ni1(¢) = F({) + Gn+1,0(¢). La com-
binaison du théoreme de Rouché appliqué & F' et Gy41,0 avec les inégalités () et
(#+) montre que wind(Fy1) = kW. Par récurrence, on montre que pour p € N,

wind(Fnip) = KPW.
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D’apres les lemmes 3.3 et 3.7, on obtient
[ 1@ 1dm(©) = [ | Fy(Q) | dm(¢) - (b~ )W in3
3T 36T
= [ I Fa(e) [ dm(¢) = (k= )W n3
3T

= /sqr In | Fn11(¢) = Gn41,0(C) | dm(C) — (k= 1)W n3.

En appliquant le lemme 3.4 et les inégalités (x) et (xx), on obtient

/ In [Fy (O)ldm(¢) > / (In [Ey11(O)| |G 1,0(C))dm(C) — (k — )W In3
3T 3T

> / In | Fis1(C) | dm(¢) — By s1 — (k — )W In3,
3T

Oou encore
/ In | Fy41(¢) | dm(¢) < / In | Fy(¢) | dm(C) + Brsa + (k — )W n3,
3T 3T

Un raisonnement par récurrence nous conduit aux inégalités

/3T1n|FN+p(c>|dm(c>s/mlanN(cndm(cw S 4

N<s<N+p

Hk—-1)Wh3 3 ke ()
0<s<p

< C+Wk?In3

pour une certaine constante C' > 0 indépendante de p € N.
Le lemme 3.5 ainsi que les inégalités (x) et (77) nous donnent ’existence d’une
constante Cy > 0 indépendante de p telle que

m/|mﬂmhm@gq+qw
2T
Puisque H n’est pas un polynéme on peut trouver un entier v qui vérifie
v>CikYN/In2, et A, #0.
Mais alors, d’une part le lemme 3.6 nous donne
In | vy (k"7 | <1 [ | By ip(Q) ] dim(¢) = vk 4 n2
2T
<O+ C1k? —vENtP~ 1 n2 — —co  lorsque p —s 0.
D’autre part, d’apres le lemme 3.8,
| Py p (kNP7 2] A, | /K > 0,

ce qui donne une contradiction. Par conséquent, si H n’est pas un polynome, et si
A, = 0 pour tout s € N, les fonctions | F), | ne peuvent pas converger vers +oo
uniformément sur K.
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2) Réciproquement, supposons que H soit un polynéme, c¢’est-a-dire que
S
H) =) AmC™,
m=1

avec A, = 0 quand k | m ; le terme constant ne joue aucun role dans I'expression de
gi.n- Considérons, par ’absurde, I’existence d’une suite (g, n, )ven qui contredirait
la propre discontinuité de ’action.
( 2mil,, )
ke vEN

Alors, en particulier, la suite
est bornée et done (n,),cn peut étre supposé strictement croissante (en passant,
le cas échéant, & une sous-suite).

En examinant la deuxiéme composante de g, », (w, z), on voit que la suite

i 27l
E Ame_mk]w(l — ekﬁvli?)

1<m<s, 0<j<n, —1 veN

est aussi bornée (pour w fixé). Il existe un diviseur ¢ € N* de k, tel que la sous-suite
de (ny, 1, ), cn satisfaisant ¢ = p.g.c.d.(k, [,,) soit de longueur infinie. Nous nous res-
treignons a cette sous-suite et supposons qu’elle contredise la propre discontinuité.
Soit
tm
so:=max({meN| A, #0et - g Z}yU{0}).

Sisg #0, on a
2mily, sg

Agge ™™ (1 — TR £ 0

2mily s

PRI . . 4 2mit
et, plus précisément, puisque (|1 —e~ %  |),ew est minoré par |1 —e |, ce terme
est dominant dans I’expression

i 2mily m
§ Ame—mkjw(l_ekny'ij)

1<m<s, 0<j<n, —1

et tend vers l'infini avec n,,. Done sqg = 0. Soit alors
t
81 ::max({mEN| A, #0 et k—n; ¢Z}U{O}).

Si s1 # 0, on aura
g kw2 2mily, sy
Asle o w(l_c k2 )7&0
et c’est le terme dominant dans ce cas. Comme avant, on voit que s; = 0. De fagon
analogue, on considere sq, s3, ... etc. D'une part tous ces s; sont nuls, d’autre part
. . %, . tS .
cela est impossible, car il existe un p € N tel que 7% ¢ Z. Pour cepona s = s, # 0.

O
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La démonstration du Théoreme 3.1 s’achéve en remarquant que ’action d'un
groupe G engendré par les automorphismes

gy(w, 2) = (w + 271, z)
{ g(w,z) = (kw,z+ H(e™™)).
de H, x C est proprement discontinue si, et seulement si ’action du sous-groupe
T =~ Z[1] Dest.

En effet, supposons que I" agit proprement discontintiment et notons o : G — Z
la projection de noyau I'. Il est évident que le facteur Z dans 71(V') agit de fagon
proprement discontinue sur Hy x C. Donc, si une suite d’éléments de G contre-
disait la propre discontinuité, il existerait une sous-suite infinie ayant une image
constante par a. Aprés une multiplication de cette sous-suite avec un élément
convenablement fixé, on peut supposer que l'image par « est 1’élément neutre de

Z. On obtient ainsi une suite dans I' qui contredit la propre discontinuité de ’action
de I'. O

4. Construction du germe contractant

Dans cette section nous terminons la demonstration du Théoreme 0.1. D’apres
la Proposition 2.3 et le Théoreme 3.1, I’action du groupe 7 (V') sur Hy x C est
engendrée par les deux automorphismes

{ gy(w, z) = (w+ 2mi, z)
glw,z) = (kw,z+ H(e™™)).

ot H(¢) = Y7o Am (™ est un polynéme en forme normale, ¢’est-a-dire A, =0

pour tout m > 0 avec k|lm et As # 0.
Soit [ := [s/k] + 1. Nous allons conjuguer notre groupe avec

-1
d(w, z) = (w, z + Z Ape™ ™).
m=1

Ceci n’aura pas d’effet sur g, mais
$ogod i (w,2) = (kw,z + Ao + Qc™)),
ol Q(¢) = H(¢) — Ao — Zi;:ll A 1 Zﬁ;:ll A ™ est un polynéme de degré

s avec
¢t D1Q(¢).
En itérant au besoin cette procédure, on finira avec un polynéme Q de degré s

tel que ¢*|Q(C). Soit Q(¢) :== >0 _, bml™ et d :=p.g.c.d{k, m | by, #£0}.
Conjuguons maintenant avec ¢(w, z) = (dw, z) :

$ogyod (w,z2) = (w+ 2rid, z)
$ogog!(w,2) = (kw,z + Ao + Q(e™/%)).
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On vérifie que le groupe engendré est égal au groupe G’ engendré par
(w, 2) — (w+ 271, 2)
(w, z) — (kw,z+ Ag+ Q(efw/d)).
Soit maintenant
U:=s/kd+1
et

Q) =3 bl
m=l

En utilisant I'inégalité d[z/d] < [z]+1, d € N*, 2z € R et le fait que les indices des
coefficients non nuls de Q’ sont divisibles par d, on vérifie aisément que ¢V’ |Q'(C).
Nous conjuguons maintenant par (w,z) — (w, e'"2) et les générateurs de G’
deviennent

(w, 2) — (w + 271, z)

(w, 2) — (kw, el (b=Dwy 4 Agel'® 4 P(e”)),
ol P est le polynome défini par
PE) = ¢"*Q ™).
Remarquons que degP < U'(k — 1) et que P(0) = 0. Soit

V(k—1)

Pifi= 3 €™

m=1

On ap.gedfk,m|cy, #0} = 1.
Cette relation implique que le germe contractant

f:A"xC— A" xC,
F(&2) = (5,60 Dz + A" + P(&)
est localement injectif autour de (0,0). En effet, si f(&1,21) = f(&o,20), alors

eh —¢b et 8* D20 1 Pgg) = €/ F V2 4 P(¢1). Posons € := &1 /€. On a ¢ = 1

et
U(k—1)

2 = e [20 + /fofl,(kfl) Z em&T (1 — €™)].

m=1
Sie =1, on a2z = z. Sinon, prenons my le plus petit indice tel que ¢p,, # 0
et €™ # 1. L'existence d’un tel indice est garantie par la relation p.g.c.d.{k,m |
¢m 7 0} = 1. On écrit maintenant
) '(k—1)
21 =€ |20+ f(;l (k=1)+mo (cmo(l — ™) + Z eméo (1 - em))}

m=mo+1
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et on voit que pour zp et & assez petits, z; reste loin de 0. L’injectivité locale en
résulte.

Par la Proposition 1.2.8 de [4], il s’ensuit que f est un germe définissant une
surface & CSG minimale S’ dont on note D’ le diviseur maximal.

On peut aussi vérifier que le quotient de Hy x C par l'action de G’ est le méme
que celui de A* x C par la relation d’équivalence uy ~ ug : il existe ny,no € N
tels que £ () = [°7(us).

Il s’ensuit de la construction que V et S’ \ D’ sont isomorphes. Comme les
matrices d’intersection de D et de D’ sont définies négatives et ni D ni D’ ne
contiennent des courbes exceptionnelles de premiere espece, cet isomorphisme se
prolonge en un isomorphisme de V U D sur S’. En particulier V' U D est compacte
et coincide avec S, ce qui démontre le théoreme. (Il

5. Annexe

On considere la suite de polynémes Py, Py, ..., P;, ... devariables X, Xo, ..., X}, ...
définis par récurrence par

Py:=1,P:=X,P, =X;P,_1—P,_2, 1 2>2.

Le but de cette annexe est de démontrer la proposition suivante.

Proposition 5.1. Soit (a1, ..., am) une solution du systéme
1 ,
oy + =d;, pourl <i<m-—1 (1)
Qi1
1
O, + — = dm. (2)
o
pour des nombres fixtés d, 1 =1,...,m et soit kL i=oq -ag----- Q. Alors

1
K+ ; = Pm(dl, i ,Clm) — })mfg(dz7 o3 .7dm,1).

Nous commencons avec un lemme préparatoire.
Lemme 5.2. Pour tout n € N*, on a
Po( X1, Xo, ..., X)) = P (X, Xne1,y .o, X1).
Démonstration. Nous allons montrer par récurrence la relation :
P(X1,...,. X)) =X1P (X, ..., Xo) — Po( Xy, ..., X3), (3)

pour i > 2. L’assertion du lemme en est une conséquence directe. Les cas i = 2,3
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sont clairs. Supposons que (3) soit vraie pour ¢ — 1 et pour 7. Alors

Pl Xy, e, Xiga) = Xt PilX 00, X)) — Bl X1, 00, Xid)
= X1 (X1 P 1(Xiy ., Xo) = Pio( Xy, ..., X3))
—(X1Pio(Xi_1,..., X2) — Pr_a(Xi_1,..., X3))
= X TR i1 B i« o ) — B i Wi oo, i)
A K 1P oKy e K)o B gty nes k)]

= XiFi(Xiy 1y, X)) — B 1(Xif1, .. 3. X3)

ce qui démontre (3). O

Démonstration de la Proposition 5.1. Le systeme (1) est équivalent a

m m m
Haj:diHaj—HajpourlgiSm—l.
j=i j=i+1 Jj=i+2

Il en découle

K = Qf...Qp

= diag ... —Q3... 0

= Pl(dl)ag. Oy —Poag N &

dQ(Pl(dl) — 1)&3 e Gy — Pl(dl)oz4 o Qyyy

- Pg(d17 dg)ag o Qg —Pl(dl)a4 e Qi

De fagon analogue, en partant de
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(al...am)71 = dm,l(al...am,1)71 —(al.‘.am,g)fl
(ozl...ozm,l)fl = dm,g(ozl...ozm,g)*l —(al...am,g)fl
a1y — dl(al) 1 -1

on en déduit

k= (a...am)" "

- mel(dm717 e 7d1)afl - Pm72(dmfl7 4343 d2)

et encore, d’apres le lemme et (2)

1 1
Rt = = Poa(diyodt) (am+ =) = Paa(di, )
K ay

_Pm72(dm717 . '7d2)
= m,1(d17 .o 7dm71)dm - Pm72(d17 e 7d'ﬂ7/*2) - Pm72(dm717 U 7d2)

= Pp(di,...,dw) — Pp_o(dpm_1,...,d2).
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