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Commentarii Mathematici Helvetici

Surfaces de la classe VII0 admettant un champ de vecteurs

II
Georges Dloussky Karl Oeljeklaus et Matei Toma

D¶edi¶e µa Alan T Huckleberry µa l'occasion de son soixantiµeme anniversaire

R¶esum¶e On termine la classi¯cation des surfaces holomorphes compactes pour lesquelles existe

un champ de vecteurs holomorphe global non trivial On d¶emontre sous cette hypothµese que

toute surface S de la classe VII0 avec b2 S > 0 contient une coquille sph¶erique globale C'est
exactement le cas oµu cette classi¯cation ¶etait incomplµete Cet article est la suite de [3]

Mathematics Subject Classi¯cation 2000 32J15 32M25 32Q57

Keywords Compact complex surface class VII0 holomorphic vector ¯eld global spherical
shell

Une surface est une vari¶et¶e complexe compacte S de dimension 2 On note

bi S le i-iµeme nombre de Betti de S

0 Introduction et rappels

La classe VII0 de Kodaira qui est form¶ee des surfaces complexes compactes

minimales S µa b1 S 1 est complµetement comprise seulement dans le cas

b2 S 0 Introduisons la notation VII+
0

pour d¶esigner la sous-classe des sur-
faces S µa b2 S > 0 Une surface de la classe VII+

0
ne contient qu'un nombre ¯ni

de courbes compactes [9] Les seuls exemples connus dans la classe VII+
0

sont ceux
admettant une coquille sph¶erique globale CSG Les surfaces µa CSG sont main-
tenant bien comprises Nous renvoyons le lecteur µa [2] et µa [4] pour la d¶e¯nition et
leurs propri¶et¶es Rappelons ici seulement qu'une surface S de la classe VII+

0
avec

CSG contient exactement b2 S courbes rationnelles D'aprµes [10] nous appelerons

une surface S de la classe VII+
0

sp¶eciale si elle contient b2 S courbes rationnelles

Le but de cet article est d'achever la classi¯cation des surfaces complexes com-
pactes admettant un champ de vecteurs holomorphe non trivial ou ce qui est
¶equivalent une action holomorphe presque e®ective du groupe de Lie complexe

C; + Cette classi¯cation ¶etait incomplµete pr¶ecisement dans le cas de la classe

VII+
0
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On a montr¶e dans [3] que si S est une surface de la classe VII+
0

munie d'un
champ de vecteurs holomorphe non trivial alors S est une surface sp¶eciale Il
restait le problµeme de savoir si sous ces hypothµeses S contient une CSG C'est ce

problµeme que nous r¶esolvons dans cet article

Th¶eorµeme 0 1 Soit S une surface complexe compacte minimale munie d'un
champ de vecteurs holomorphe non trivial pour laquelle les nombres de Betti sa-
tisfont les conditions b1 S 1 et n b2 S > 0 Alors S contient une coquille
sph¶erique globale

Remarque 0 2 Le champ induit une action presque e®ective de C; + Comme

le nombre de courbes compactes sur S est ¯ni il n'y a pas d'action de tore Seuls
les deux cas suivants se produisent :

1 Le champ induit une action e®ective de C ; ¢ Alors S est une surface

d'Inoue parabolique [6] et donc µa CSG
2 L'action de C;+ est e®ective On a montr¶e dans [2] que de telles surfaces

µa CSG existent

Rappellons que pour une surface sp¶eciale S on a H1 S; C ' C [10] p 481
ce qui permet de noter par L¸ le ¯br¶e plat correspondant µa ¸ 2 C On d¶esigne

par M S la matrice d'intersection des b2 S courbes rationnelles On sait que

k S : 1 + pjdetM S j
est un entier Lorsque S contient une CSG et b2 S > 0 cet entier est ¶egal d'aprµes

[4] µa l'entier k S d¶e¯ni dans [2]
On note kod S la dimension de Kodaira d'une surface S D'aprµes notre r¶esultat

[2] et [5] la classi¯cation des surfaces complexes compactes avec champs de vec-
teurs holomorphes est termin¶ee :

Th¶eorµeme 0 3 Une surface compacte complexe minimale admet un champ de

vecteurs holomorphe non trivial si et seulement si elle appartient µa la liste sui-
vante :

I Surfaces v¶eri¯ant kod S ¸ 0 :
a Tores complexes

b Fibr¶es principaux de Seifert au dessus d'une surface de Riemann µa ¯bre une

courbe elliptique

II Surfaces kÄahleriennes v¶eri¯ant kod S ¡1 :
a Fibr¶es holomorphes µa ¯bre P1 C et µa groupe structural C au-dessus d'une

surface de Riemann de genre g ¸ 1 P2 C et surfaces de Hirzebruch §n; n
0; 2; 3; : : :

b Fibr¶es holomorphes µa ¯bre P1 C avec groupe structural connexe r¶esoluble
au-dessus d'une surface de Riemann de genre g ¸ 1 tel que le ¯br¶e en droites

associ¶e ait une section holomorphe non triviale
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III Surfaces non kÄahleriennes v¶eri¯ant kod S ¡1 :
a Surfaces de Hopf presque homogµenes

b Surfaces d'Inoue de type S +
N;p;q;r;t

c Surfaces S de la classe VII+
0

admettant une CSG et dont le ¯br¶e anticano-
nique est de la forme

K¡1
O D¡K ­Lk S ;

oµu D¡K est le diviseur num¶eriquement anticanonique Ici k S 1 si et seulement
si S est une surface d'Inoue parabolique

Notons µ un champ de vecteurs holomorphe non-trivial sur une surface S de la
classe VII+

0
Comme dans [3] on supposera dans la suite grâce µa [6] que l'action

du groupe C; + induite par µ est e®ective On note Dµ le diviseur des z¶eros de

µ et D le diviseur r¶eduit maximal de S On a montr¶e dans [3] que D consiste en
exactement b2 S courbes rationnelles c'est-µa-dire que S est sp¶eciale

Voici le contenu de l'article : l'id¶ee directrice est de reconstituer µa partir du
feuilletage r¶eduit F associ¶e au champ de vecteurs µ et du diviseur maximal D de

S un certain germe d'application contractante C2; 0 C2; 0 qui permet grâce

aux r¶esultats de Ch Favre [4] de retrouver la CSG

{ Dans le x1 on d¶emontre que le feuilletage F est ¶egalement d¶e¯ni par une

1-forme m¶eromorphe logarithmique

2 H0 S;­1 LogD ­Lk ;

avec pôles le long du diviseur D et tordue par un ¯br¶e plat Lk oµu k
k S > 1 comme dans le cas des surfaces µa CSG [2]

{ Dans le x2 on montre qu'il existe un voisinage ouvert V [ D du diviseur
maximal D invariant par le feuilletage F avec V V n D tel que le
revêtement universel de V est isomorphe µa Hg £ C et ¼1 V ' Z nZ[ 1

k ] Ici
Hg fw 2 C j <e w < 0g

{ Dans le x3 on calcule une forme normale des g¶en¶erateurs g° g d'un groupe

G ' Z n Z[ 1
k ] agissant proprement discontinûment sur Hg £ C On obtient

g° w; z w + 2¼i; z

g w; z kw; z + fg w

oµu fg w H e¡w et

H ³ A0 + X
m>0;k-m

Am³m

est un polynôme

{ Ceci permet de reconstituer dans le x5 un germe d'application contractante

et de voir que V peut-être compacti¯¶e par des courbes rationnelles de fa»con
µa obtenir une surface avec CSG ce qui donne le r¶esultat En même temps

nous voyons que l'ouvert V ¶etait en fait ¶egal µa S n D
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1 Forme logarithmique tordue et coe±cient de torsion

Soit S une surface sp¶eciale au sens de Nakamura c'est-µa-dire que S est mini-
male b1 S 1 n : b2 S > 0 et il existe exactement n courbes rationnelles

D'aprµes [10] la surface S est di®¶eomorphe µa une surface contenant une CSG en
particulier son groupe fondamental ¼1 S est isomorphe µa Z En utilisant le fait
que H1 S; C ' H1 S; O ' C on voit aussitôt que les ¯br¶es holomorphes en
droites topologiquement triviaux sont exactement les ¯br¶es en droites plats Ces

¯br¶es sont µa leur tour canoniquement parametr¶es par C : un homomorphisme ½

de ¼1 S ' Z dans C est uniquement d¶etermin¶e par la valeur ¸ : ½ 1 Nous

notons par L¸ le ¯br¶e correspondant
µA l'exception des surfaces d'Inoue{Hirzebruch et d'Inoue paraboliques le di-

viseur maximal r¶eduit D d'une surface sp¶eciale consiste en un cycle de courbes

rationnelles auquel se rattache un systµeme non vide d'arbres de courbes ration-
nelles voir [10] De plus le morphisme ¼1 D ¼1 S est bijectif [9] Cela
implique que dans le revêtement universel ~S de S l'image r¶eciproque du cycle est
une châ³ne in¯nie de courbes rationnelles

Dor¶enavant S d¶esignera une surface sp¶eciale admettant un champ de vecteurs

global non trivial µ qui induit une action e®ective de C; + On montrera ici que

le feuilletage F induit par µ est ¶egalement d¶e¯ni par une 1-forme m¶eromorphe

logarithmique tordue par le ¯br¶e plat Lk S On note Dµ le diviseur d'annulation
de µ D'aprµes [3] il existe un diviseur num¶eriquement anticanonique D¡K et un

¯br¶e plat L· · 2 C¤ tels que

D¡K Dµ + D; ¤

K¡1 ­ L· D¡K: ¤¤

Lemme 1 1 Il existe une 1-forme m¶eromorphe logarithmique ferm¶ee tordue

2 H0 S;­1 logD ­ L· ¡1

qui a ses pôles le long de D

D¶emonstration Soit Z l'espace analytique des singularit¶es du feuilletage holo-
morphe F et JZ le faisceau d'ideaux associ¶e D'aprµes [3] Z est l'espace des points

d'intersections des courbes rationnelles de S On notera aussi par £S le faisceau
des germes de champs de vecteurs holomorphes Le champ de vecteurs µ induit
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d'aprµes ¤ et ¤¤ une suite exacte courte de OS-modules

0 O Dµ £S JZ ­ L· ¡1 ­O D 0:

En dualisant on obtient la suite exacte courte

0 L· ­O ¡D ­1
S JZ ­O ¡Dµ 0;

et donc une section

2 ¡ S;­1 ­ L· ¡1 ­O D ;

qui v¶eri¯e µ ´ 0 Autour d'un point lisse de D on choisit des coordonn¶ees

locales z1; z2 telles que D fz2 0g On sait que les courbes sont invariantes

pour F et donc µ est tangent µa D voir [3] On a alors

µ a z1; z2 zm
2

@

@z1

et
b z1; z2

dz2

z2
;

avec a 0; 0
6

0 b 0; 0
6

0 et m 2 N puisque le morphisme L· ­O ¡D ­1
S

ne s'annule qu'en codimension 2
Par cons¶equent la forme a des pôles logarithmiques le long de D et en outre

elle est ferm¶ee puisque

d 2 ¡ S;­2 ­ L· ¡1 ­O D ¡ S; O ¡Dµ 0:

¤

Notons g le g¶en¶erateur de ¼1 S Z qui agit sur ~S de fa»con que g ·¡1

Lemme 1 2 · 2 N n f0; 1g ou 1

· 2 N n f0; 1g

D¶emonstration Le relev¶e de sur le revêtement universel ~S de S est une 1-forme

m¶eromorphe µa pôles logarithmiques le long de l'image r¶eciproque ~D
de D Notons

encore cette forme Soient D0; : : : ;Dm¡1 les courbes rationnelles du cycle de S
et C0; : : : ; Cm¡1 une chaine connexe de courbes dans ~D recouvrant D0; : : : ;Dm¡1
On pose Cm : g C0 Soit U un voisinage pseudoconvexe de D et ~U

son image

r¶eciproque dans ~S Pour un petit lacet °0 dans ~U n ~D
autour de C0 on a

Z
g±°0

Z

°0

g ·¡1 Z

°0

:

Soit °1 un lacet autour de C1 Nous allons comparer les int¶egrales R°0
et R°1

Dans un voisinage de p : C0 \ C1 on prend des coordonn¶ees locales x; y telles

que C0 fx 0g et C1 fy 0g On a vu dans [3] qu'en p µ a la forme

µ f x; y xayb¹µ
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avec f 0; 0
6

0 oµu

¹µ ¹x + xf1
@

@x ¡ ºy + yf2
@

@y
;

¹; º 2 N et f1 0; 0 f2 0; 0 0 car les courbes sont toutes invariantes Cette

forme est d'ailleurs valable pour toute intersection de courbes de D
Le premier jet de ¹µ s'¶ecrit

J1 µ ¹x
@

@x ¡ ºy
@

@y
:

Si on pose g1
dx
x

+ g2
dy
y

la condition

0 h ; ¹µi
g1

x ¹x + xf1 ¡
g2

y
ºy + yf2

entrâ³ne g1 ¹ + f1 g2 º + f2
Maintenant nous avons

Z

°0

2¼i Res jy c1 2¼i g1 0; c1

pour un c1 6 0 ¯x¶e Puisque est ferm¶ee cette int¶egrale est ind¶ependante de

c1 De plus g1 0; c1 6 0 car a des pôles logarithmiques le long de ~D Par
cons¶equent R°0

2¼ig1 0; 0
6

0 et de fa»con analogue R°1
2¼ig2 0; 0

6

0

Le rapport de ces deux int¶egrales est

R°1

R°0

g2 0; 0

g1 0; 0
¹
º ¡CS F ; C1; C0 \ C1

et donc

·¡1 Rg±°0

R°0

m

Y
i 1

R°i
R°i¡1

m

Y
i 1 ¡CS F ; Ci; Ci¡1 \ Ci ;

oµu les °i sont de petits lacets dans ~U n ~D
autour de Ci On a not¶e CS F ; C; p

l'indice de Camacho{Sad du feuilletage F le long de la courbe C au point p voir
[1]

En particulier · 2 Q+ On se propose maintenant de montrer que le nombre ·
ne d¶epend que du graphe dual de D c'est-µa-dire de la matrice d'intersection de D

Soit Bi1; : : : ; Bimi l'arbre de courbes rationnelles dont la racine est Ci bij :
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¡B2
ij et

bi : ¡CS F ; Ci; Ci \Bi1
1

¡CS F ; Bi1; Ci \Bi1
1

bi1 ¡ ¡CS F ; Bi1; Bi1 \Bi2
1

bi1 ¡
1

¡CS F; Bi2; Bi1 \ Bi2
: : :

1

bi1 ¡
1

bi2 ¡
1

bi3 ¡ : : : : : :¡
1

bimi

:

On pose bi 0 s'il n'y a pas d'arbre sur Ci Alors on a 0 · bi < 1 pour tout i
Soient

di : ¡C2
i ¡ bi > 1

et
®i : ¡CS F ; Ci; Ci¡1 \ Ci ; i 1; : : : ; m:

La formule de Camacho{Sad [1] entrâ³ne

®i +
1

®i+1
di; pour 1 · i · m¡ 1 1

et
®m +

1

®1
dm: 2

On d¶emontrera dans l'annexe que les ¶equations 1 et 2 entrâ³nent que

·¡1 ®1 ¢ : : : ¢ ®m

ne d¶epend que des di; 1 · i · m Plus pr¶ecisement on verra que · est unique

µa inversion prµes Le lecteur pourrait aussi consulter le fameux article [7] de F
Hirzebruch qui traite le cas oµu tous les bi sont nuls par une m¶ethode di®¶erente

D'aprµes [10] il existe une surface S0 avec coquille sph¶erique globale dont le
diviseur maximal admet le même graphe dual que le diviseur maximal de S

L'unique feuilletage holomorphe singulier de S0 est induit par une forme loga-
rithmique tordue 0 2 H0 S0;­1 Log D0 ­Lk avec k k S0 k S 2 N nf0; 1g
voir [2] Puisque · et k se calculent µa partir du graphe dual par la même ¶equation

µa inversion prµes d'aprµes l'annexe on aura · k ou · 1
k ¤

Remarque 1 3 On peut choisir le g¶en¶erateur g de ¼1 S tel que · < 1 ce que

nous faisons par la suite et alors ·¡1 k S k

En r¶esum¶e nous avons obtenu dans cette section la
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Proposition 1 4 Il existe une 1-forme m¶eromorphe logarithmique ferm¶ee tordue

2 H0 S;­1 logD ­ Lk S ;

k S 2 N n f0; 1g qui a ses pôles le long de D et qui d¶e¯nit le feuilletage F

2 Revêtement universel du compl¶ementaire des courbes

Soit U un petit voisinage ouvert de D tel que D soit une r¶etraction par d¶eformation
de U On a

¼1 U ¼1 D ¼1 S Z:

Il existe un domaine fondamental U0 pour l'action de Z dans l'image r¶eciproque

~U
de U dans ~S tel que le bord de U0 dans ~U

coupe ~D
sur une composante C0 et

sur sa translat¶ee g C0 le long d'un cercle S1 Soit Y0 : Sº¸0 gº U0

Lemme 2 1 Il existe une normalisation de de fa»con que la repr¶esentation

½ : ¼1
~S n ~D C

° 7 Z
°

ait comme image 2¼iZ[ 1
k ] ½ C En plus on peut choisir cette normalisation telle

que ½ ¼1 Y0 n ~D
2¼iZ

D¶emonstration Puisque ~S est simplement connexe le groupe ¼1
~S n ~D

est en-
gendr¶e par les petits lacets autour des composantes irr¶eductibles de ~D D'aprµes

les r¶esultats de la section pr¶ec¶edente d¶emonstration du lemme 1 2 et en utilisant
les mêmes notations on voit que ½ ¼1

~S n ~D
est un Z[ 1

k ]-module engendr¶e par
2¼ia0 R°0

; : : : ; 2¼ian¡1 R°n¡1
oµu °0; : : : ;°n¡1 d¶esignent les petits lacets

autour des courbes C0; : : : ; Cn¡1 dans U0
Maintenant on peut normaliser la forme de sorte que les nombres a0; : : : ; an¡1

soient des entiers positifs µa p g c d ¶egal µa 1 ; donc le groupe ½ ¼1
~S n ~D

est libre

de rang 1 comme Z[ 1
k ]-module

De maniµere similaire le groupe ½ ¼1 Y0 n ~D
sera engendr¶e comme Z-module

par les petits lacets autour des courbes irr¶eductibles de ~D
qui rencontrent U0 ¤

Nous supposerons dans la suite que est normalis¶ee comme dans le lemme 2 1
Soit A un domaine fondamental pour l'action de Z sur ~S et X0 : Sj¸0 gj A

En translatant par g on peut supposer que ~D \ X0 ½ Y0 Remarquons qu'aprµes

une telle translation on a

½ ¼1 Y0 [X0 n ~D
½ ¼1 Y0 n ~D

2¼iZ:
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Fixons z0 2 U0 Nous d¶e¯nissons une fonction holomorphe f sur Y0 [X0 n ~Dpar

f z expµZ
z

z0

+
1

k ¡ 1
Z

g z0

z0

¶:

On v¶eri¯e ais¶ement que f est bien d¶e¯nie et que

f g z fk z y

pour z 2 Y0 [X0 n ~DSoit C la partie lisse dans ~D
d'une composante irr¶eductible de ~D\Y0 Comme

est une forme logarithmique ferm¶ee quitte µa remplacer par ¡ un calcul local
autour de C montre que f se prolonge en tant que fonction continue et donc aussi
holomorphiquement en prenant la valeur 0 sur C Nous prolongeons maintenant
f sur l'ensemble ~D \ Y0 en utilisant µa nouveau que les rapports des r¶esidus de

sur les composantes de ~D
sont des rationnels positifs

Le noyau Ker½ d¶e¯nit un revêtement ¼ : X 0 : ^S n D Ker½ ~S n ~D On
v¶eri¯e aussitôt que l'action de g sur ¼1

~S n ~D
stabilise Ker½ et induit donc une

action de Z sur X 0 Notons encore par g un relµevement de g sur X 0 Soit 0 ¼

et Á : X 0 C une primitive de 0 sur X 0 telle que exp Á coÄ³ncide avec ¼ f sur
une composante connexe de l'image r¶eciproque par ¼ de Y0 [X0 n ~DComme Á±g kÁ l'image de Á est invariante sous l'action du groupe multipli-
catif fkº; º 2 Zg ; cette image est aussi invariante sous l'action du groupe additif
2¼iZ[ 1

k ] Comme d'autre part f s'annule sur Y0\ ~D Á X 0 contient le demi-plan
gauche Hg : fw 2 C j <e w < 0g La fonction Á est une submersion holomorphe

Les composantes connexes de ses ¯bres sont isomorphes µa C en tant qu'orbites du
°ot relev¶e

Proposition 2 2 Les ¯bres de Á au-dessus de Hg sont connexes

Nous sommes maintenant en mesure d'¶enoncer le r¶esultat principal de cette

section La d¶emonstration de la Proposition 2 2 est report¶ee µa la ¯n de la section
La Proposition 2 2 implique que la restriction de Á µa l'ouvert V 0 : Á¡1 Hg est

en fait un C-¯br¶e principal au-dessus de Hg et donc trivial Soit ~V : ¼ V 0 et V
son image dans S Soit ° 2 ¼1

~V un lacet avec ½ ° 2¼i et g° l'automorphisme

de V 0 ' Hg £ C correspondant µa °
Le r¶esultat principal de cette section est la

Proposition 2 3 Le revêtement universel de ~V et donc celui de V sont iso-
morphes au produit Hg £ C et ¼1 V est engendr¶e par les deux automorphismes g
et g° de Hg £ C De plus ® g g° : gg°g¡1 gk

° et ¼1 V ' Z n® Z[ 1
k ]

D¶emonstration Remarquons que V [D est un voisinage de D dans S La vari¶et¶e
V 0 Hg £ C est d¶ejµa le revêtement universel de V D'aprµes le Lemme 2 1 et la
Proposition 2 2

¼1
~V ' Zh

1

k i ' fgngl°g¡n
j l; n 2 Zg:
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La conclusion en d¶ecoule ¤

C'est µa la ¯n de l'article seulement qu'on verra que V [D est compact et donc
coÄ³ncide avec S Avant d'attaquer la d¶emonstration de la Proposition 2 2 nous

d¶emontrons le

Lemme 2 4 Chaque ¯bre f¡1 ® pour ® 2 ¢ : f³ 2 C j 0 < j³j < 1g est
contenue dans une feuille du feuilletage ~

F induit par F sur ~S

D¶emonstration Remarquons d'abord qu'il su±t de montrer le lemme pour ® dans

un voisinage arbitrairement petit de 0 dans ¢ : f³ 2 C j j³j < 1g En e®et s'il
¶etait faux pour un certain ® on aurait deux composantes de f¡1 ® se trouvant
dans deux feuilles di®¶erentes de ~

F D'aprµes la relation y les images par gº ; º >
0 des deux composantes consid¶er¶ees se trouveraient dans deux composantes de

f¡1 ®kº L'invariance du feuilletage ~
F par g donnerait l'existence de deux feuilles

di®¶erentes coupant f¡1 ®kº

Lorsque ® tend vers z¶ero l'ensemble f¡1 ® \ U0 s'accumule sur ~D \U0 Plus

pr¶ecis¶ement pour tout voisinage de ~D\U0 et ® assez petit f¡1 ® \U0 se trouvera
dans ce voisinage Prenons une composante Z de f¡1 ® Elle se trouve dans une

feuille de ~
F

Notons zi; zj un systµeme local de coordonn¶ees analytiques autour d'un noeud
Ci \ Cj dans lequel Ci fzi 0g; Cj fzj 0g Puisque le feuilletage est
localement d¶e¯ni par df f ou par df les feuilles de ~

F au voisinage de Ci\Cj
sont les hypersurfaces de niveau d'une fonction l zmii zmjj voir [8] page 498

VI 3 et la d¶emonstration du lemme 1 page 503 On a not¶e par l un ¶el¶ement
de Diff C; 0 En particulier il s'ensuit que chaque feuille qui est su±samment
proche de l'une des courbes Ci sera proche de toute autre courbe Cj de ~D \ U0
En plus si p:g:c:d: mi; mj 1

{ une composante locale d'une feuille autour du noeud Ci \ Cj contient lo-
calement mi composantes connexes locales autour de Ci et mj autour de

Cj ;

{ la fonction l zmii zmjj n'est pas une puissance donc est µa ¯bres connexes

d'aprµes le lemme 1 de [8] page 500

Notons par pi le nombre des composantes locales de Z autour d'un point lisse

de la courbe Ci La ¯bre f¡1 ® a ai : 1
2¼i R°i

composantes locales autour de

Ci et dij : p:g:c:d: ai; aj composantes locales autour d'un noeud Ci \ Cj 6 ;Remarquons que pi · ai Avec les notations pr¶ec¶edentes on a

mi
ai
dij

; mj
aj
dij

:

Il s'ensuit que le nombre de composantes locales de Z autour d'un noeud Ci \Cj 6 ; est
pi
mi

pidij
ai

pjdij
aj

pj
mj

:
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Nous obtenons la relation pi
ai

pj
aj pour chaque Ci \ Cj 6 ; En utilisant la

connexit¶e de ~D\ U0 et le fait que Z est contenu dans une feuille de ~
F on d¶eduit

l'existence d'un nombre rationnel s tel que s pi
ai ; i 0; : : : ; n ¡ 1 Maintenant

p:g:c:d: a0; : : : an¡1 1 entrâ³ne s 2 Z et donc pi ai pour tout i 0; : : : ; n¡ 1
et Z est l'unique composante connexe de f¡1 ® \ U0 ¤

D¶emonstration de la Proposition 2 2 Soient L1;L2 deux composantes connexes

d'une ¯bre Á¡1 ¯ avec ¯ 2 Hg On peut se ramener µa la situation oµu ® : e¯ est
petit en utilisant l'action de fgº j º 2 Zg La même action permet de supposer que

¼ L1 et ¼ L2 coupent X0 au besoin on remplace ® par ®kº On peut supposer
même que L1 et L2 coupent la même composante connexe de ¼¡1 X0 [ Y0 n
~D Pour voir ceci on prend un chemin qui relie L1 et L2 et on considµere le
recouvrement ¼¡1 gn X0 [ Y0 n ~D n2Z D'aprµes le lemme pr¶ec¶edent ¼ L1 et
¼ L2 se trouvent dans la même feuille de ~

F puisque f prend sur ¼ L1 \ X0 [Y0 6 ; la même valeur que sur ¼ L2 \ X0 [ Y0 6 ; Soit z 2 ¼ L1 \ Y0
¼ L2 \ Y0 et z1 2 L1; z2 2 L2 des pr¶eimages par ¼ Un chemin ° reliant z1 µa
z2 dans X 0 se projette sur un chemin ferm¶e dans ~S n ~D L'int¶egrale de sur ce

chemin sera nulle et donc ½ ° 0 i e z1 z2 et L1 L2 ¤

3 Actions proprement discontinues sur H £ C

Le but de cette section est de montrer un th¶eorµeme g¶en¶eral concernant certains

groupes d'automorphismes holomorphes agissant proprement discontinûment sur
Hg £ C oµu Hg fw 2 C j <e w < 0g

Notons par w; z les coordonn¶ees globales de Hg £ C

Th¶eorµeme 3 1 Soit k 2 N k > 1 Soit G un sous-groupe du groupe des auto-
morphismes holomorphes de Hg £ C On suppose que

{ le groupe G est isomorphe au produit semi-direct Z n Z[ 1
k ] c'est-µa-dire qu'il

existe deux g¶en¶erateurs g; g° 2 G de G tels que gg°g¡1 gk
°

{ l'action de G sur Hg £ C est proprement discontinue

{ elle pr¶eserve un champ de vecteurs µ int¶egrable sans z¶eros

Alors µa conjugaison prµes µ @ @z et le groupe G est engendr¶e par les deux
automorphismes

½ g° w; z w + 2¼i; z
g w; z kw; z + H e¡w ;

oµu H ³ P
s
m 0 Am³m est un polynôme tel que Am 0 pour tout m > 0 avec

kjm et As 6 0 R¶eciproquement l'action d'un groupe d'automorphismes de Hg £C
engendr¶e par deux ¶el¶ements g; g° de la forme ci-dessus est libre et proprement
discontinue

D¶emonstration Une application ¶evidente du th¶eorµeme de Liouville montre qu'un
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automorphisme de Hg £ C est de la forme

w; z
7 Aw; f1 w z + f2 w ;

oµu A 2 AutO Hg ' P SL 2; R f1 2 O¤ Hg et f2 2 O Hg En particulier la
projection de Hg £C sur Hg induit canoniquement un homomorphisme de groupes

´ de G dans AutO Hg L'hypothµese de la propre discontinuit¶e de l'action montre

que si Ker ´ ¶etait non-trivial il serait isomorphe µa Z oµu µa Z2 Mais ce n'est pas

di±cile µa voir que Z n Z[ 1
k
] n'admet pas de tels sous-groupes normaux Donc ´

est injectif i e G ' ´ G ½ AutO Hg ' P SL 2; R Puisque G est un groupe

r¶esoluble non-commutatif l'adhµerence de Zariski r¶eelle de ´ G dans P SL 2; R
l'est aussi Cette adhµerence est donc conjugu¶ee au sous-groupe de Borel standard
de P SL 2; R Ce fait et la structure de G impliquent maintenant que ´ G est
conjugu¶e dans AutO Hg au groupe engendr¶e par w

7

w + 2¼i et w
7 kw

Le champ de vecteurs int¶egrable µ ne s'annule pas par hypothµese Il est donc
constant sur chaque ¯bre de la projection de Hg £ C sur Hg Par cons¶equent ce

champ est de la forme ® w @

@z
sur Hg £ C oµu ® 2 O Hg En conjuguant avec

l'automorphisme

w; z
7

w; ®¡1
¢ z ;

on se ramµene au cas ® ´ 1
Puisque g et g° pr¶eservent µ @ @z on a :

g° w; z w + 2¼i; z + f° w
g w; z kw; z + fg w :

L'automorphisme g° engendre une action de Z sur Hg £C qui induit un C-¯br¶e
principal holomorphe

Hg £ C Z Hg Z ' ¢ f³ 2 C j 0 < j³j < 1g:

La trivialit¶e holomorphe de ce ¯br¶e entrâ³ne l'existence d'une fonction holomorphe

h : Hg C telle que

h w + 2¼i ¡ h w f° w

et la conjugaison par w; z
7 w; z + h w nous mµene µa la nouvelle forme

g° w; z w + 2¼i; z :

Par la suite nous supposerons donc que f° ´ 0
On a par hypothµese

g ± g° ± g¡1 gk
° ;

ce qui conduit µa la 2¼i-p¶eriodicit¶e de la fonction fg

En factorisant par exp : Hg ¢ ; w
7

ew : ³ ; on obtient un d¶eveloppement
en s¶erie de Laurent

fg w X
m2Z

amemw X
m2Z

am³m:
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Une conjugaison par
w; z

7 w; z + ¯ w

oµu ¯ est une fonction 2¼i-p¶eriodique sur Hg ne modi¯e pas la forme de g° mais
remplace fg par

w 7 fg w + ¯ kw ¡ ¯ w :

Soit
h ³ : X

m2Z

am³m; h+ ³ : X
m>0

am³m:

La s¶erie P1l 0 h+ ³kl converge uniform¶ement sur tout compact de ¢ Pour
le voir il su±t d'¶ecrire h+ ³ ³ ³¡1h+ ³ et de remarquer que ³¡1h+ ³ est
holomorphe en 0 Soit

Â ³ :
1
X
l 0

h+ ³kl
:

On a

Â ³ ¡ Â ³k h+ ³ :

En posant ¯ w : Â ew nous obtenons

fg w + ¯ kw ¡ ¯ w X
m·0

amemw:

On peut donc supposer que fg w h ew oµu h 2 O P1 C n f0g
Il nous reste la possibilit¶e de conjuguer avec w; z

7

w; z + ' ew oµu ' 2
O P1 C n f0g

Pour une fonction
h ³ X

m·0

am³m

et l 2 N on considµere

hl ³ : X
kljm; m<0

am³m

et
h0 : h:

Chaque hl est de la forme hl ³ fl ³kl avec une fonction fl Si ' d¶esigne la
s¶erie formelle ¡Pl¸1 fl on a formellement :

h ³ + ' ³k ¡' ³ h ³ ¡f1 ³k + f1 ³ ¡f2 ³k + f2 ³ ¡f3 ³k + : : :

Pl¸0 fl ³ ¡ fl+1 ³k

et chaque terme ne contient dans son d¶eveloppement en s¶erie de Laurent en ³ que

des termes bm³m avec k - m Dans le premier terme de la somme on peut bien sûr
avoir b0 6 0
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Pour 0 < R < 1; l ¸ 1 et j³j ¸ R on a :

jfl ³ j · X
kljmm<0

jamjR
m
kl · X

kljmm<0

jamjR
m+kl¡1 · Rkl¡1 X

m·0
jamjR

m;

ce qui montre que la s¶erie qui d¶e¯nit ' est uniform¶ement convergente sur tout
compact de P1 C n f0g Il en d¶ecoule une forme normale pour h :

h ³ a0 + X
m<0
k-m

am³m:

Si h a cette forme normale toute modi¯cation non triviale

h ³ + ' ³k ¡ ' ³
de h ³ par une conjugaison perdra la forme normale Autrement dit la fonction

³ 7 ' ³k ¡ ' ³ a la forme normale si et seulement si elle est identiquement
nulle Pour voir ceci on ¶ecrit les d¶eveloppements en s¶erie de ces fonctions :

' ³ X
m·0

bm³m ; ¡' ³k + ' ³ X
m·0

cm³m:

S'il existe cr 6 0 pour r 2 Z¡ alors k - r br cr ; bkr ckr + br cr
bk2r ck2r + bkr cr; : : : et la s¶erie Pm·0 bm³m ne serait pas convergente sur
P1 C n f0g Contradiction

Les g¶en¶erateurs de G s'¶ecrivent maintenant sous la forme

g° w; z w + 2¼i; z

g w; z kw; z + fg w

avec fg w h ± exp w H ± exp ¡w oµu

H ³ A0 + X
m>0
k-m

Am³m;

A0 a0; Am a¡m
Pour voir que H est un polynôme nous utiliserons la propre discontinuit¶e de

l'action du sous-groupe ¡ : fgl;n : g¡n
± gl° ± gn

j n 2 Z; l 2 Zg ' Z[ 1
k ]

Nous d¶emontrerons la

Proposition 3 2 La fonction H est un polynôme de degr¶e non-nul si et seule-
ment si l'action de ¡ sur Hg £ C est libre et proprement discontinue

Explicitement nous avons

gl;n w; z ³w +
2¼il
kn ; z +

n¡1

X
j 0

³fg kjw ¡ fg³kjw +
2¼il
kn¡j ´´´:
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Posons pour l 1

Gn;j ³ H ³kj ¡H ³kj exp ¡2¼ikj¡n ; 0 · j < n;

Fn ³ X
0·j<n

Gn;j ³ :

Avec ces notations et ³ exp ¡w on a

n¡1

X
j 0

³fg kjw ¡ fg³kjw +
2¼i

kn¡j ´´
n¡1

X
j 0

Gn;j ³ Fn ³ ;

et
g1;n w; z ³w +

2¼i
kn ; z + Fn ³ ´:

Fixons les notations suivantes :
rT resp rD est le cercle resp le disque ouvert de rayon r > 0 Les di®¶erents

cercles rT sont munis de la mesure de Lebesgue normalis¶ee dm ³ pour laquelle
RrT dm ³ 1

Si f est holomorphe sur 3¹D wind f d¶esigne le nombre de z¶eros de f dans 3D
Soit K : fz 2 C j 3 · jzj · 3k

g
Dans la d¶emonstration de la partie directe de la Proposition 3 2 on utilisera les

lemmes suivants :

Lemme 3 3 Soit f une fonction holomorphe sur le disque ferm¶e 3k ¹D telle que

pour tout z 2 K j f z j¸ 1 Alors on a les relations

Z
3T

ln j f ³ ³¡wind f j dm ³ Z
3kT

ln j f ³ ³¡wind f j dm ³ ;

Z
3T

ln j f ³ j dm ³ Z
3kT

ln j f ³ j dm ³ ¡ k ¡ 1 wind f ln 3:

D¶emonstration La fonction z
7

ln f z z¡wind f est holomorphe sur K ce qui
donne la premiµere relation d'aprµes la formule de Cauchy La deuxiµeme s'en d¶eduit
facilement ¤

Lemme 3 4 Pour tous a; b 2 C tels que j a j> 2 et j b j< 1 on a

ln j a + b j¸ ln j a j ¡ j b j :

D¶emonstration Comme j a + b j> 1 l'in¶egalit¶e

ln j a j· ln j a + b j + ln³1 + j b j
j a + b j

´
donne le r¶esultat ¤
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Lemme 3 5 Soit f une fonction holomorphe d¶e¯nie au voisinage du disque ferm¶e
3¹D On pose

A Z
3T

ln+
j f ³ j dm ³ :

Alors il existe une constante C > 0 ind¶ependante de f pour laquelle

ln Z
2T

j f ³ j dm ³ · CA:

Ici on a not¶e ln+ max ln; 0

D¶emonstration Une estimation imm¶ediate au moyen de la formule de Poisson
donne l'existence d'une constante C > 0 telle que pour tout z 2 2T on ait

ln j f z j· CA:

Il s'ensuit
Z

2T
j f ³ j dm ³ · exp CA ;

l'in¶egalit¶e voulue en d¶ecoule ¤

Lemme 3 6 Soit f Ps¸0 f̂ s zs une fonction holomorphe sur un voisinage du
disque 2D Alors pour tout s 2 N

jf̂ s j
¯
¯
¯
¯

Z
2T

f ³ ³¡sdm ³
¯
¯
¯
¯

· 2¡s Z
2T

j f ³ j dm ³ :

Lemme 3 7 Pour tout n ¸ 0 on a

Fn+1 ³ Gn+1;0 ³ + Fn ³k :

D¶emonstration Avec les notations pr¶ec¶edentes on a

Fn+1 ³ P0·j·n¡H ³kj ¡H ³kj exp ¡2¼ikj¡n¡1
¢

Gn+1;0 ³ + P1·j·n¡H ³kj ¡H ³kj exp ¡2¼ikj¡n¡1
¢

Gn+1;0 ³ +P0·j¡1<n¡H ³k kj¡1

¡H ³k kj¡1
exp ¡2¼ik j¡1 ¡n

¢

Gn+1;0 ³ + Fn ³k : ¤

Lemme 3 8 Pour tout º ¸ 1

cFn ºkn¡1 Aº 1 ¡ exp ¡2¼iº k :

En particulier

j cFn ºkn¡1
j¸j Aº j k:
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D¶emonstration On a pour tout s

\Gn;n¡1 s Z

T
¡H ³kn¡1

¡H ³kn¡1
exp ¡2¼ik¡1

¢³¡sdm ³

Z
T
¡X

m¸0

Am³mkn¡1

¡Xm¸0

Am³mkn¡1
exp¡2¼im k ¢³¡sdm ³ :

On voit que le seul terme non nul dans\Gn;n¡1 ºkn¡1 est celui obtenu pour m º
On a donc \Gn;n¡1 ºkn¡1 Aº 1 ¡ exp ¡2¼iº k :

En outre s'il existe un indice j 0 · j < n ¡ 1 pour lequel dGn;j ºkn¡1
6

0 il
existerait m ¸ 1 pour lequel Am 6 0 mkj ºkn¡1 Mais alors m k ºkn¡j¡2

2
N ce qui est exclu puisque lorsque k divise m on a Am 0 Pour obtenir l'in¶egalit¶e
on remarque que si Aº 6 0 º k

62 N et j 1 ¡ exp ¡2¼iº k j¸ 1 k ¤

D¶emonstration de la Proposition 3 2 1 Nous faisons une d¶emonstration par l'ab-
surde Supposons que H ne soit pas un polynôme et n¶eanmoins que ¡ opµere pro-
prement discontinûment En particulier les images g1;n K du compact K doivent
tendre vers l'in¯ni Comme le premier membre converge cela implique que la
suite j Fn j converge uniform¶ement sur K vers +1 ce que nous supposons donc
dor¶enavant

Puisque H est de classe
C

1 sur K il existe une constante c > 0 ind¶ependante
de n pour laquelle

¯n : sup
³2K j Gn;0 ³ j sup

³2K j H ³ ¡H ³ exp ¡2¼ik¡n
j· ck¡n:

Fixons un entier positif N tel que

pour tous ³ 2 K; n ¸ N; j Fn ³ j¸ 2 ¤

et

X
n>N

¯n · 1: ¤¤

On note W : wind FN et on pose F ³ : FN ³k En utilisant ¤ on
obtient wind F kW On rappelle que FN+1 ³ F ³ + GN+1;0 ³ La com-
binaison du th¶eorµeme de Rouch¶e appliqu¶e µa F et GN+1;0 avec les in¶egalit¶es ¤ et
¤¤ montre que wind FN+1 kW: Par r¶ecurrence on montre que pour p 2 N

wind FN+p kpW:
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D'aprµes les lemmes 3 3 et 3 7 on obtient
Z

3T
ln j FN ³ j dm ³ Z

3kT
ln j FN ³ j dm ³ ¡ k ¡ 1 W ln 3

Z
3T

ln j FN ³k
j dm ³ ¡ k ¡ 1 W ln 3

Z
3T

ln j FN+1 ³ ¡GN+1;0 ³ j dm ³ ¡ k ¡ 1 W ln 3:

En appliquant le lemme 3 4 et les in¶egalit¶es ¤ et ¤¤ on obtient
Z

3T
ln jFN ³ jdm ³ ¸ Z

3T
¡ln jFN+1 ³ j¡jGN+1;0 ³ j¢dm ³ ¡ k ¡ 1 W ln 3

¸ Z
3T

ln j FN+1 ³ j dm ³ ¡ ¯N+1 ¡ k ¡ 1 W ln 3;

ou encore

Z
3T

ln j FN+1 ³ j dm ³ · Z
3T

ln j FN ³ j dm ³ + ¯N+1 + k ¡ 1 W ln 3:

Un raisonnement par r¶ecurrence nous conduit aux in¶egalit¶es

Z
3T

ln j FN+p ³ j dm ³ · Z
3T

ln j FN ³ j dm ³ + X
N<s·N+p

¯s

+ k ¡ 1 W ln 3 X
0·s<p

ks

· C + W kp ln 3;

yy

pour une certaine constante C > 0 ind¶ependante de p 2 N
Le lemme 3 5 ainsi que les in¶egalit¶es ¤ et yy nous donnent l'existence d'une

constante C1 > 0 ind¶ependante de p telle que

ln Z
2T

j FN+p ³ j dm ³ · C1 + C1kp:

Puisque H n'est pas un polynôme on peut trouver un entier º qui v¶eri¯e

º > C1k1¡N ln 2; et Aº 6 0:

Mais alors d'une part le lemme 3 6 nous donne

ln j\FN+p ºkN+p¡1
j · ln Z

2T
j FN+p ³ j dm ³ ¡ ºkN+p¡1 ln 2

· C1 + C1kp ¡ ºkN+p¡1 ln 2 ¡ ¡1 lorsque p ¡ 1:

D'autre part d'aprµes le lemme 3 8

j\FN+p ºkN+p¡1
j¸j Aº j k > 0;

ce qui donne une contradiction Par cons¶equent si H n'est pas un polynôme et si
Ask 0 pour tout s 2 N les fonctions j Fn j ne peuvent pas converger vers +1uniform¶ement sur K
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2 R¶eciproquement supposons que H soit un polynôme c'est-µa-dire que

H ³
s

X
m 1

Am³m;

avec Am 0 quand k j m ; le terme constant ne joue aucun rôle dans l'expression de

gl;n Consid¶erons par l'absurde l'existence d'une suite glº ;nº º2N qui contredirait
la propre discontinuit¶e de l'action

Alors en particulier la suite

µ2¼ilº
knº

¶
º2N

est born¶ee et donc nº º2N peut être suppos¶e strictement croissante en passant
le cas ¶ech¶eant µa une sous-suite

En examinant la deuxiµeme composante de glº ;nº w; z on voit que la suite

0
@

X
1·m·s; 0·j·nº¡1

Ame¡mkjw 1 ¡ e
2¼ilºm
knº¡j 1A

º2N

est aussi born¶ee pour w ¯x¶e Il existe un diviseur t 2 N de k tel que la sous-suite
de nº; lº º2N satisfaisant t p:g:c:d: k; lº soit de longueur in¯nie Nous nous res-

treignons µa cette sous-suite et supposons qu'elle contredise la propre discontinuit¶e
Soit

s0 : max fm 2 N j Am 6 0 et tm
k

62 Zg [ f0g :

Si s0 6 0 on a

As0e¡s0knº¡1w 1 ¡ e
2¼ilºs0

k
6

0

et plus pr¶ecis¶ement puisque j1¡ e
2¼ilºs0

k j º2N est minor¶e par j1¡e
2¼itk j ce terme

est dominant dans l'expression

X
1·m·s; 0·j·nº¡1

Ame¡mkjw¡1 ¡ e
2¼ilºm
knº¡j ¢

et tend vers l'in¯ni avec nº Donc s0 0 Soit alors

s1 : max³nm 2 N j Am 6 0 et tm
k2 62 Zo [ f0g´:

Si s1 6 0 on aura

As1e¡s1knº¡2w 1 ¡ e
2¼ilºs1

k2
6

0

et c'est le terme dominant dans ce cas Comme avant on voit que s1 0 De fa»con
analogue on considµere s2; s3; : : : etc D'une part tous ces sj sont nuls d'autre part
cela est impossible car il existe un p 2 N tel que ts

kp 62 Z Pour ce p on a s sp 6 0

¤
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La d¶emonstration du Th¶eorµeme 3 1 s'achµeve en remarquant que l'action d'un
groupe G engendr¶e par les automorphismes

½ g° w; z w + 2¼i; z
g w; z kw; z + H e¡w :

de Hg £ C est proprement discontinue si et seulement si l'action du sous-groupe

¡ ' Z[ 1
k ] l'est

En e®et supposons que ¡ agit proprement discontinûment et notons ® : G Z
la projection de noyau ¡ Il est ¶evident que le facteur Z dans ¼1 V agit de fa»con
proprement discontinue sur Hg £ C Donc si une suite d'¶el¶ements de G contre-
disait la propre discontinuit¶e il existerait une sous-suite in¯nie ayant une image

constante par ® Aprµes une multiplication de cette sous-suite avec un ¶el¶ement
convenablement ¯x¶e on peut supposer que l'image par ® est l'¶el¶ement neutre de

Z On obtient ainsi une suite dans ¡ qui contredit la propre discontinuit¶e de l'action
de ¡ ¤

4 Construction du germe contractant
Dans cette section nous terminons la demonstration du Th¶eorµeme 0 1 D'aprµes

la Proposition 2 3 et le Th¶eorµeme 3 1 l'action du groupe ¼1 V sur Hg £ C est
engendr¶ee par les deux automorphismes

½ g° w; z w + 2¼i; z
g w; z kw; z + H e¡w :

oµu H ³ P
s
m 0 Am³m est un polynôme en forme normale c'est-µa-dire Am 0

pour tout m > 0 avec kjm et As 6 0
Soit l : [s k] + 1 Nous allons conjuguer notre groupe avec

Á w; z w; z +
l¡1

X
m 1

Ame¡mw :

Ceci n'aura pas d'e®et sur g° mais

Á ± g ± Á¡1 w; z kw; z + A0 + Q e¡w ;

oµu Q ³ H ³ ¡A0 ¡Pl¡1
m 1 Am³m + Pl¡1

m 1 Am³mk est un polynôme de degr¶e
s avec

³min k;l
jQ ³ :

En it¶erant au besoin cette proc¶edure on ¯nira avec un polynôme Q de degr¶e s
tel que ³ ljQ ³ Soit Q ³ : P

s
m l bm³m et d : p:g:c:d:fk; m j bm 6 0g

Conjuguons maintenant avec Á w; z dw; z :

Á ± g° ± Á¡1 w; z w + 2¼id; z

Á ± g ± Á¡1 w; z kw; z + A0 + Q e¡w d :
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On v¶eri¯e que le groupe engendr¶e est ¶egal au groupe G0 engendr¶e par

w; z
7

w + 2¼i; z

w; z
7 kw; z + A0 + Q e¡w d :

Soit maintenant
l0 : [s kd] + 1

et
Q0 ³ :

s

X
m l

bm³m d:

En utilisant l'in¶egalit¶e d[x d] < [x]+1; d 2 N ; x 2 R et le fait que les indices des

coe±cients non nuls de Q0 sont divisibles par d on v¶eri¯e ais¶ement que ³l0

jQ0 ³
Nous conjuguons maintenant par w; z

7

w; el0wz et les g¶en¶erateurs de G0

deviennent
w; z

7

w + 2¼i; z

w; z
7 kw; el0 k¡1 wz + A0el0kw + P ew ;

oµu P est le polynôme d¶e¯ni par

P » : »l0kQ0 »¡1 :

Remarquons que degP · l0 k ¡ 1 et que P 0 0 Soit

P »
l0 k¡1

X
m 1

cm»m:

On a p:g:c:d:fk; m j cm 6 0g 1
Cette relation implique que le germe contractant

f : ¢¤ £ C ¢¤ £ C;

f »; z : »k; »l0 k¡1 z + A0»l0k + P »

est localement injectif autour de 0; 0 En e®et si f »1; z1 f »0; z0 alors

»k
0 »k

1 et »l0 k¡1
0 z0 + P »0 »l0 k¡1

1 z1 + P »1 Posons ² : »1 »0 On a ²k 1
et

z1 ²l0

£z0 + »¡l0 k¡1
0

l0 k¡1

X
m 1

cm»m
0 1 ¡ ²m

¤:

Si ² 1 on a z1 z0 Sinon prenons m0 le plus petit indice tel que cm0 6 0
et ²m0

6

1 L'existence d'un tel indice est garantie par la relation p:g:c:d:fk; m j
cm 6 0g 1 On ¶ecrit maintenant

z1 ²l
0·z0 + »¡l0 k¡1 +m0

0 ³cm0 1 ¡ ²m0 +
l0 k¡1

X
m m0+1

cm»m¡m0
0 1¡ ²m ´¸
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et on voit que pour z0 et »0 assez petits z1 reste loin de 0 L'injectivit¶e locale en
r¶esulte

Par la Proposition 1 2 8 de [4] il s'ensuit que f est un germe d¶e¯nissant une

surface µa CSG minimale S0 dont on note D0 le diviseur maximal
On peut aussi v¶eri¯er que le quotient de Hg £C par l'action de G0 est le même

que celui de ¢¤ £ C par la relation d'¶equivalence u1 » u2 : il existe n1; n2 2 N
tels que f±n1 u1 f±n2 u2 :

Il s'ensuit de la construction que V et S 0
n D0 sont isomorphes Comme les

matrices d'intersection de D et de D0 sont d¶e¯nies n¶egatives et ni D ni D0 ne

contiennent des courbes exceptionnelles de premiµere espµece cet isomorphisme se

prolonge en un isomorphisme de V [D sur S0 En particulier V [D est compacte
et coÄ³ncide avec S ce qui d¶emontre le th¶eorµeme ¤

5 Annexe

On considµere la suite de polynômes P0;P1; : : : ; Pi; : : : de variables X1;X2; : : : ; Xi; : : :
d¶e¯nis par r¶ecurrence par

P0 : 1; P1 : X1; Pi : XiPi¡1 ¡ Pi¡2; i ¸ 2:

Le but de cette annexe est de d¶emontrer la proposition suivante

Proposition 5 1 Soit ®1; : : : ; ®m une solution du systµeme

®i +
1

®i+1
di; pour 1 · i · m¡ 1 1

®m +
1

®1
dm: 2

pour des nombres ¯x¶es di; i 1; : : : ; m et soit ·¡1 : ®1 ¢ ®2 ¢ ¢ ¢ ¢ ¢ ®m Alors

·+
1

· Pm d1; : : : ; dm ¡ Pm¡2 d2; : : : ; dm¡1 :

Nous commen»cons avec un lemme pr¶eparatoire

Lemme 5 2 Pour tout n 2 N on a

Pn X1; X2; : : : ; Xn Pn Xn; Xn¡1; : : : ; X1 :

D¶emonstration Nous allons montrer par r¶ecurrence la relation :

Pi X1; : : : ; Xi X1Pi¡1 Xi; : : : ; X2 ¡ Pi¡2 Xi; : : : ; X3 ; 3

pour i ¸ 2 L'assertion du lemme en est une cons¶equence directe Les cas i 2; 3
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sont clairs Supposons que 3 soit vraie pour i¡ 1 et pour i Alors

Pi+1 X1; : : : ;Xi+1 Xi+1Pi X1; : : : ; Xi ¡ Pi¡1 X1; : : : ; Xi¡1

Xi+1 X1Pi¡1 Xi; : : : ; X2 ¡ Pi¡2 Xi; : : : ; X3

¡ X1Pi¡2 Xi¡1; : : : ; X2 ¡ Pi¡3 Xi¡1; : : : ; X3

X1 Xi+1Pi¡1 Xi; : : : ; X2 ¡ Pi¡2 Xi¡1; : : : ; X2

¡ Xi+1Pi¡2 Xi; : : : ; X3 ¡ Pi¡3 Xi¡1; : : : ; X3

X1Pi Xi+1; : : : ; X2 ¡ Pi¡1 Xi+1; : : : ; X3

ce qui d¶emontre 3 ¤

D¶emonstration de la Proposition 5 1 Le systµeme 1 est ¶equivalent µa

m

Y
j i

®j di
m

Y
j i+1

®j ¡
m

Y
j i+2

®j pour 1 · i · m¡ 1:

Il en d¶ecoule

·¡1 ®1 : : : ®m

d1®2 : : : ®m ¡ ®3 : : : ®m

P1 d1 ®2 : : : ®m ¡ P0®3 : : : ®m

d2 P1 d1 ¡ 1 ®3 : : : ®m ¡ P1 d1 ®4 : : : ®m

P2 d1; d2 ®3 : : : ®m ¡ P1 d1 ®4 : : : ®m

: : : : : :

Pm¡1 d1; : : : ; dm¡1 ®m ¡ Pm¡2 d1; : : : ; dm¡2 :

De fa»con analogue en partant de
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®1 : : : ®m ¡1 dm¡1 ®1 : : : ®m¡1 ¡1 ¡ ®1 : : : ®m¡2 ¡1

®1 : : : ®m¡1 ¡1 dm¡2 ®1 : : : ®m¡2 ¡1 ¡ ®1 : : : ®m¡3 ¡1

: : : : : : : : :

®1®2 d1 ®1 ¡1 ¡ 1

on en d¶eduit

· ®1 : : : ®m ¡1

Pm¡1 dm¡1; : : : ; d1 ®¡1
1 ¡ Pm¡2 dm¡1; : : : ; d2

et encore d'aprµes le lemme et 2

·+
1

· Pm¡1 d1; : : : ; dm¡1 ³®m +
1

®1
´¡ Pm¡2 d1; : : : ; dm¡2

¡Pm¡2 dm¡1; : : : ; d2

Pm¡1 d1; : : : ; dm¡1 dm ¡ Pm¡2 d1; : : : ; dm¡2 ¡ Pm¡2 dm¡1; : : : ; d2

Pm d1; : : : ; dm ¡ Pm¡2 dm¡1; : : : ; d2 :

¤
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