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Relevements des algebres lisses et de leurs morphismes

Alberto Arabia

Abstract. Let R be a commutative ring and let I be any ideal of R, put R := R/I. We prove
that for any smooth R-algebra A there exist a smooth R-algebra A such that A is isomorphic
to R@p A. We also show that for any morphism of smooth R-algebras @ : A — B, there exist
a morphism of smooth R-algebras a : A — B such that 1@ e : R® A — R® B is isomorphic
to @: A — B. As a corollary, when R is neetherian, we show that for any smooth R-algebra A
there exist a very smooth weakly complete algebra At over R such that R® Al is isomorphic

to A.

Résumé. Soient R un anneau commutatif et I un idéal de R, notons R := R/I. Nous prouvons
que pour toute R-algebre lisse A, il existe une R-algsbre lisse A telle que A est isomorphe &
R ®pg A. Nous prouvons également que pour tout morphisme de R-algebres lisses @ : A — B,
il existe un morphisme de R-algebres lisses ¢ : A — Btelque 1Qa: R® A —> RQ B est
isomorphe & @ : A — B. On en déduit, lorsque R est ncethérien, que pour toute R-algeébre lisse
A il existe une R-algebre faiblement compléte trés lisse Al telle que R @ Al est isomorphe a

A.
Mathematics Subject Classification (2000). 14A15, 13A19, 14F30.
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Introduction

Tous les anneaux et algebres dans cet article sont commutatifs et possedent une
identité pour le produit.

Soient R un anneau et I un idéal dans R. Notons R := R/I. Par réduction
modulo I, on fait correspondre & une R-algébre A, la R-algebre A := R®r A
et & un morphisme de R-algtbres o : A; — As le morphisme de R-algtbres
@:A; — A, donné par a(z®a) := z®aa). Un “relévement d’une R-algébre A”
est alors la donnée d’un morphisme surjectif de R-algebres pa : A — A dont la
réduction p 4 est bijective. La notion de relevement des morphismes de R-algebres
est analogue.

Dans [G, SGA;], Grothendieck introduit la notion de morphisme lisse dans la
catégorie des schémas. C’est une notion stable par composition et par changement
de base et donne lieu, dans le cas affine, & la notion d’algebre lisse. La réduction
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modulo I d'une R-algebre lisse est alors une R-algebre lisse.

En géométrie algébrique on est emmené a considérer le probleme inverse ol
I’on recherche des relevements soumis a certaines contraintes de lissité. Clest le
cas notamment dans [G] et dans 'article de Monsky et Washnitzer ([MW]) ot les
questions suivantes se posent de maniere cruciale :

Rel-1) Existe-t-il des relevements lisses pour une R-algebre lisse donnée ?

Rel-2) Etant données des R-algebres A et B, oll A est lisse, dans quelle mesure un
morphisme de R-algebres @ : A — B admet-il un relevement v : A — B7

Rel-3) E_ltant données des R-algebres é et B, ou A est lisse, et des morphismes de
R-algebres homotopes @y, s : A — B, dans quelle mesure des relévements
u; : A — B des u;, sont-ils homotopes 7

Dans ce travail, nous donnons des réponses tres générales a ces questions.
Pour Rel-1, nous prouvons qu’elle admet une réponse affirmative sans aucune
restriction sur le couple (R, I); autrement dit :

Théoréme (1.3.1). Pour tout anneau R, tout idéal I C R et toute R-algébre
lisse A, il existe une R-algébre lisse dont la réduction modulo I est isomorphe

a A.

On généralise ainsi les versions de ce théoreme précédemment connues : celle
de Grothendieck ([G] et [SGA;] III 6.10), out R est noethérien et I est nilpotent,
qui prouve également que deux relévements lisses d’une méme R-algebre lisse sont
toujours isomorphes (non canoniquement) ; et celle de Renée Elkik ([E], §4) ol le
couple (R, I) est neethérien hensélien, qui généralise la version de Grothendieck
a ceci pres que l'unicité de la classe d’isomorphie des relevements lisses n’est plus
garantie. Au dela du cas affine, Grothendieck démontre que toute courbe lisse sur le
corps résiduel R d’un anneau noethérien local complet R, admet un relevement en
une courbe lisse sur R ([G]) et J.-P. Serre donne des exemples de schémas projectifs
lisses sur F, n'admettant pas de relevements lisses en caractéristique nulle ([S]).

Pour démontrer notre généralisation, nous avons repris l'idée, sous-jacente dans
[E], de construire des relevements lisses pour les R-algebres lisses & l'aide de
relevements projectifs de modules projectifs de type fini. Plus précisément, soit
A une R-algebre et (7) : Mod; ;. (A) ~» Mody  (A) le foncteur de réduction mo-
dulo I sur les catégories de modules. Nous prouvons :

Théoréme (1.2.3). Pour tout anneau R, tout idéal I, toute R-algebre de type
fini A et toute présentation libre et finie d’un A- module projectif de type fini M :

ar Loae Lar o, (o)

il existe une A-algébre A, intersection compléte et voisinage étale de I dans A,
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un A.-module projectif de type fini M., et une présentation libre et finie de M, :
L IT
AP — AT — M, —0,

de réduction modulo I isomorphe d (o).

Grace a ce théoreme la preuve de 'existence de relevements lisses donnée par
Elkik dans [E] s’applique & tout couple (R, I).

Concernant les questions Rel-2,3, nous prouvons les deux théorémes suivants,
toujours sans aucune hypothese supplémentaire sur le couple (R, I).

Théoréme (2.1.3). Etant donnés un morphisme de R-algébres h: A — B, et
des relévements pa : A — A et pg : B — B, ot A est lisse, il existe une B-
algébre B, intersection compléte et voisinage étale de I dans B, et un morphisme
de R-algébres h: A — B, qui reléve h. En d’autres termes, on a un diagramme :

ot £ : B — B, désigne 'homomorphisme structural et ou pg_ est ’homomor-
phisme induit par € a partir de pp.

On rappelle que deux morphismes de R-algebres ug,uq : A — B sont dits
“homotopes” lorsqu’il existe un morphisme de R-algébres h : A — BIT] tel que
ug(a) = h(a)(0) et ui(a) = h(a)(1).

Théoréme (2.2.2). Soient A une R-algébre lisse et ug,u1 : A — B deuz mor-
phismes de R-algébres dont les réductions modulo I sont homotopes (par exemple
égales). Il eriste alors une B[T|-algébre B[T)., intersection compléte et voisi-
nage étale de I, de (T') et de (1 —T') dans B[T], et un morphisme de R-algébres

h:A— B[T]: tels que p; . 0 h = u;. En d’autres termes, on a un diagramme :
BIT|.—=—B[T] T T

b Poe  po|p1 P ”
s Die
5 ” 4
A

g B 0 1

U

ot l'on note £ : B[] — B[T|. I’homomorphisme structural et po,,p1 . : BT, —
B les morphismes de B[T]-algébres induits par e a partir de pg et p1 respective-
ment.

Lorsque I'anneau R est ncethérien, Monsky et Washnitzer associent a chaque R-
algebre A une certaine sous-algebre A’ du complété séparé I-adique A de A qu’ils
appellent la “complétion faible” de A ([MW]). L’algebre AT est un relevement de A
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qui n’est généralement pas de type fini sur R. Le caractére fonctoriel (aussi bien
que la définition) de la cohomologie de Monsky—Washnitzer dépend alors de ce
que toute R-algebre lisse A admette des relevements A d’un type particulier que
Monsky et Washnitzer qualifient de “tres lisses”. L’existence de tels relevements
est établie dans [MW] pour une classe de R-algébres lisses contenant pour l'es-
sentiel les intersections complétes, mais le probléme de leur existence pour toute
R-algebre lisse n'’y est pas résolu. A ce sujet nous démontrons :

Théoréme (3.3.2). Soient R un anneau neethérien et A une R-algébre lisse.

Pour tout relévement A de A, lisse sur R, Ualgébre AT est un relévement trés

lisse de A.

Dans notre travail ce théoréme est corollaire immédiat du fait que les releve-
ments lisses sur R d’une R-algebre lisse sont “trés lisses au voisinage étale prés”
(th. 2.1.2) (résultat valable pour tout couple (R, I') et dont on déduit les théoremes
2.1.3 et 2.2.2 ci-dessus).

Organisation de article. Apres la section 0, destinée a fixer la terminologie et &
des rappels, nous abordons dans les sections 1 et 2 I’étude des questions Rel-1,2,3.
La section 3 interprete les résultats des sections précédentes apres complétion I-
adique (faible) et donne un apercu des simplifications apportées a 'introduction
de la cohomologie de Monsky—Washnitzer.

Remerciements. Cette étude a été proposée par Zoghman Mebkhout et s’insére
dans son programme des recherches autour de la factorisation de la fonction Zéta
d’une variété affine non singuliere sur un corps fini ([M]). Je lui suis tres recon-
naissant pour toutes les discussions mathématiques que nous avons eues a ce sujet
de méme que pour son appui et enthousiasme constants.

0. Rappels
0.1. Notations et terminologie

Les anneaux et algebres dans cet article sont tacitement supposés commutatifs et
munis d'une identité pour le produit qui sera respectée par les homomorphismes
(et inclusions) d’anneaux et algébres.

La donnée de base sera un couple (R, I) oul R désigne un anneau et I un idéal
dans R. Ces données ne seront astreintes a vérifier a priori aucune autre propriété
particuliere.

Pour toute R-algebre A, on note :

e 1 4 : 'identité pour le produit.

o Agq : localisé de A en un idéal premier P C A ; k(P) : le corps résiduel de Agp.
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o Alg(A) :la catégorie des A-algebres ot Homoma (-, -) désignera Morajg(a)(-, -).

o Mod(A) (resp. Mod; ¢ (A)) : la catégorie des A-modules (resp. de type fini) ol
Hom 4 (-, -) désignera Mormody (- -)-

® Qa/r : le module des différentielles relatives de A sur Ret da/jr: A — Qa/r
la R-dérivation canonique.

e Pour tout morphisme de R-algebres o : A — B, on note Q(a) : Qu/p —
Q1 p/r le morphisme des modules des différentielles relatives induit par o ; il est
déterminé par les égalités Q(a)(da r(a)) = dg/r(a(a)), pour tout a € A.

e Pour tout morphisme surjectif de R-algébres oo : A — B, on dispose d’une
suite exacte a droite canonique de B-modules :

ker(a)/ker(a)® —2=— B®a Qa/r 222 g p —0 (1)
ot (idp xQ(a))(b® d(a)) := bd(ca(a)) et oll J, (notée aussi d lorsque la sur-
jection o est sous-entendue) est I’application induite par la restriction de la
dérivation d 4,/ r & ker(or). Cette suite est appelée “la premiére suite fondamen-
tale associée a la surjection o .

Dans le cas ol & : A — B n’est pas nécessairement surjectif, on dispose d’une
suite exacte a droite canonique de B-modules :

idp xQ(a)

B®aQa/r QB/R Q/a—0 (2)

ol le morphisme Qp,r — Qpya provient de la structure de A-algebre de B
définie par « et de ce qu’alors toute A-dérivation de B est une R-dérivation.
Cette suite est appelée “la seconde suite fondamentale associée a o .

Le couple (R, I) étant sous-entendu, la notation R désigne I’anneau quotient
R/I. Pour toute R-algebre A, la notation A désigne la R-algébre R ®gr A.

Pour toute R-algebre A, on entend par foncteur de “réduction modulo I”, &
la fois, le foncteur (7) : Alg(A) ~+ Alg(A) qui fait correspondre & une A-algebre
B la A-algébre R ®g B et 3 un morphisme de A-algebres o : By — Bj I'homo-
morphisme @ : B; — By donné par @z ® b) := x ® a(b) ; mais aussi le foncteur
(7) : Mod(A) ~» Mod(A) qui fait correspondre & un A-module M le A-module
M = R®gr M et mutatis mutandis pour les morphismes. Dans ce contexte,
un “relévement” dune A-algebre B est la donnée d'une A-algébre B dont la
réduction modulo I est isomorphe & B, ou, ce qui revient au méme : la donnée
d’un morphisme surjectif de A-algébres pg : B — B dont la réduction modulo
I est bijective. La notion de relevements des A-modules et de leurs morphismes
résulte de considérations semblables.

0.2. Lissité

On rappelle la notion de lissité et quelques résultats connus qui seront utilisés dans

la suite (cf. [SGA1, EGA4, BLR]).



612 A. Arabia CMH

0.2.1. Définition. Un morphisme de schémas f : X — S est dit “lisse au point
z € X (de dimension relative r)” s'il existe un voisinage ouvert U > z et une
S-immersion j : U — A% de U dans un espace linéaire A% sur S, tel que les
conditions suivantes sont satisfaites :

L-(a) Localement en y := j(z), le faisceau d’idéaux de définition du sous-schéma
J(U) de A%, est engendré par (n —r) sections gr11,...,9n; et

L-(b) {dgr+1, ..., dgn} est linéairement indépendant dans Q}VSL/S ® k(y).

Le morphisme f : X — S est dit “lisse” lorsqu’il est lisse en chaque point de
X ; il est dit “étale” s'il est lisse et de dimension relative nulle en chaque point de
X. Une R-algebre A est dite “lisse (resp. étale)” lorsque le morphisme de schémas
Spec(A) — Spec(R) induit par ’homomorphisme structural R — A, r — r-14,
est lisse (resp. étale).

Une R-algebre lisse admet toujours des présentions globales finies puisqu’elle
est localement de présentation finie par définition. On rappelle & continuation
une liste de conditions équivalentes a la lissité pour une R-algebre munie dune
présentation finie.

0.2.2. Proposition. Soit0 — J — R[X1,...,X,] —— A — 0 une présentation
finie d’une R-algébre A. Les assertions suivantes sont équivalentes :
a) A est une R-algébre lisse.

b) La premiére suite fondamentale de A-modules associée & la surjection w :

0— J/I? 2 Agg s Q idAX—Q(QQA/R—’0 (3)

[X] *“RIX]/R
est exacte et scindée.

c) Le A-module Q4R est projectif et O est injective.

¢’) Le morphisme 0, admet des rétractions (locales).

d) Soit K un idéal de carré nul (resp. nilpotent) d’une R-algébre B, notons p :
B — B/K la projection canonique. Alors, Uapplication entre les ensembles
des morphismes de R-algébres :

Homompg(A, B) — Homompg(A, B/K)

P = poy
est surjective.

On utilisera également le critere de lissité plus général suivant, valable pour un
quotient d'une R-algebre lisse, et pas uniquement d'une algebre de polynomes.

0.2.3. Corollaire. Soient R un anneau, C une R-algébre lisse et K un idéal de
type fini de C. Notons A .= C/K. Les assertions suwantes sont équivalentes :

a) A est une R-algébre lisse.
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b) Le morphisme de A-modules 8, - K/K? — A ®¢ Qg¢/r de la premiére suite
fondamentale associée a la surjection canonique de R-algébres oo : C — A, est
injectif et admet une rétraction.

Démonstration. Etant donnée une présentation finie de C :

0—J—s R[X]:=R[Xy,..., X, =55C =0,
on a la présentation finie (induite) de A :

0 — 15 (K) RX|—25A—0,

aoTe

et le morphisme de présentations :
0— J —— R[X] =55 C—0

e L "

0— 15 (K): RX| -2 5A-0

aome

D’autre part, comme C est supposée lisse sur R, la premiere suite fondamentale
associée & m est scindée (0.2.2-(b)) :

ide XQ(‘ITc)
_—>

O
OHJ/JQ?C(gR[X] Qrx)/r Qc/r—0, (0)

(p désigne une rétraction de 9., ).
Considérons maintenant le morphisme de complexes induit par le morphisme
de présentations (x) :
ida ®0x ; :
5 c ida ®(ide xQ(7c))
0—- A®c (J/JY) ﬁA@R[g} QR[X]/R—»A®OQO/R—>O

v

LpJ/ J{: lidA x Q)

ida ®Q(71‘A)
(ida xQ(a))or

o
g _q ~
7o (K)/ng' (K)*—2= AQprx Qrx)r Qa/p —0
(D)
ol :
¢ la premiere ligne est la suite (¢) tensorisée par A®¢ () et v désigne de maniere
abrégée le morphisme id 4 ®(ide XQ(7e)) ;
e la deuxieme ligne est la premiere suite fondamentale associée a 74 ;

e ¢ est le morphisme de A-modules induit par l'inclusion J C Wal(K ) dans
(). On vérifie que coker(y) ~ K/K? et que la composée v o 3, induit sur
coker(y) le morphisme 9, de 'assertion (b) dont le noyau est isomorphe a la
cohomologie du complexe simple associé au bicomplexe (D).

Lorsque A est lisse sur R, la deuxiéme ligne dans (D) est exacte et scindée et
une simple chasse au diagramme montre que la suite :

0 — coker(a) = K/K? %A@)o QC/RMQA/R_)O (1)

o
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est exacte. Comme Q 4/ g est projectif (0.2.2-(c)), le morphisme id4 xQ(c) admet
une section et d, admet une rétraction.

Réciproquement, lorsque 9, est injective, la suite (}) est exacte, la cohomologie
du complexe simple associé au bicomplexe (D) est nulle, et la deuxieme ligne de (D)
est donc exacte. Lorsque 9, admet, en plus, une rétraction, le A-module Q4,5
est projectif (puisque facteur direct alors du module projectif A ®¢c Q¢/r), la
deuxieme ligne de (D) est scindée et A est par conséquent lisse sur R (0.2.2-(b)). O

1. Relevements des algébres lisses

Dans la démarche de Renée Elkik ([E]) pour prouver 'existence de relevements des
algebres lisses, le cas des R-algebres intersections complétes lisses et le probleme
du relevement des modules projectifs de type fini sur des algebres de type fini sur
R, sont les ingrédients fondamentaux. La section 1.1 rappelle le cas des intersec-
tions completes et ne comporte aucun résultat nouveau ; dans la section 1.2, on
apporte une réponse générale au probleme du relevement des modules projectifs de
type fini. On applique ensuite ces résultats pour démontrer, dans 1.3, le théoreme
général d’existence de relevements lisses 1.3.1.

1.1. Relévements des intersections complétes lisses

1.1.1. Définition. Une R-algebre de présentation finie A est appelée “intersec-
tion compléte lisse (de dimension relative r) sur R’ si elle admet une présentation
finie de la forme :

0—=J=(gr41,---,9n) = R[X1,..., Xn] = A =0,

telle que I’idéal de A engendré par les mineurs d’ordre (n—7) de la matrice jaco-
bienne [0g;/0X;] est 'idéal unité (en particulier A est lisse sur R).

La méme terminologie est utilisée en langage des schémas affines : Soient X et
S les schémas affines correspondant respectivement & A et R. L’expression “X est
intersection compléte lisse au-dessus de S” est synonyme de “A est une R-algébre
intersection compléte lisse” .

Lorsque 'on se donne un homomorphisme d’anneaux o : A — B, on notera
a: A - B, le fait que B, munie de la structure de A-algebre définie par o, est
intersection complete lisse sur A.

1.1.2. Lemme. Soit A une R-algébre de présentation finie.
Les conditions suivantes sont équivalentes :

a) A est intersection compléte lisse (de dimension relative r).



Vol. 76 (2001) Relévements des algebres lisses 615

b) A admet une présentation finie 0 — J — R[X| 5 A — 0 telle que J/J?
est un A-module libre (de rang n—r) et Uapplication canonique Oy : J/J2 —
A O pr(x] QR[T(]/R est injective et admet une rétraction.

1.1.3. Remarque. Soit J = (f;11,..., fn) unidéal de R[X| := R[Xy,...,X,] et
notons 7 : R[X| — R[X]/J =: A la surjection canonique. Soit Mn(f,i1,..., fn)
I'idéal de R[)_( ] engendré par les mineurs d’ordre (n—r) de la matrice jacobienne
[0fi/0X;]. Pour chaque f € Mn(f,11,..., fn), tel que 7(f) n’est pas nilpotent
dans A, la localisation Ay est intersection compléte lisse de dimension relative r
sur R.

1.1.4. Fibré conormal & un plongement fermé. Soit A une R-algebre lisse.
Pour toute présentation finie :

0—J=(f,....fs)—R[X] = R[Xy,...,Xny]—A =0, (%)
le A-module J/J? est projectif de type fini et l’algébre symétrique SL(T/T ) est
par conséquent lisse sur A (donc sur R). Le schéma affine au-dessus de X :=
Spec(A) correspondant & S* (J/J?) est le “fibré conormal au plongement fermé
X C AR associé a la présentation (x)”; on le note : Tk (AR).

La proposition suivante est démontrée dans [E] (lemme 3, p. 562) dans un cadre
neethérien, mais sa démonstration est valable en toute généralité.

1.1.5. Proposition ([E]). Soit0 — J — R[X1,...,Xn] = A — 0 une présenta-
tion finie d’une R-algébre lisse A de plongement fermé associé X := Spec(A) C
AR Alors, le fibré conormal T% (AR) est intersection compléte lisse sur Spec(R).

1.1.6. Proposition ([E]).

a) Toute R-algébre intersection compléte lisse (de dimension relative r) admet un
relévement intersection compléte lisse (de dimension relative r) sur R.

b) Soit Z_une R-algébre lisse. Alors, le fibré conormal de tout plongement fermé

Spec(A) C A% associé a une présentation finie de A admet un relévement
intersection compléte lisse sur R.

Démonstration ([E] §4).

a) On considére une présentation de A en tant que R-algébre intersection com-
plete lisse de dimension relative r :

0— (Grety---,0n) — R[X| = R[Xy,...,X,] — A—0.

L’idéal J de R[X] engendré par {G,.1,...,3n} et les mineurs d’ordre n—r
de la matrice jacobienne [0g;/0X; ]| est alors I'idéal unité. Pour chaque i =
r+1,...,n, notons g; un relevement arbitraire de g; dans R[X] et posons

A= R[X]/(gr+1,- - 9n)-
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Soit J I'idéal de R[X] engendré par {g,i1,...,0n} et les mineurs d’ordre n—r
de la matrice jacobienne [0g;/0.X; ]. L’idéal J est I'image de J par la surjection

canonique v : R[X] — R[X], de sorte qu'il existe f € J vérifiant v(f) = 1.
On en déduit une surjection Ay —» A induite par v qui fait de A la réduction
modulo I de A;. D’autre part, la R-algebre A; est intersection complete lisse
de dimension relative r (rem. 1.1.3).

b) Conséquence de (a) d’apres 1.1.5. O

1.2. Relevements projectifs des modules projectifs de type fini

1.2.1. Définition. Soit A une R-algeébre. On appelle “voisinage étale de I dans
A” toute A-algebre B, étale sur A et telle que la réduction modulo I du mor-
phisme structural de A dans B est un isomorphisme.

1.2.2. Définitions.

a) Soit A une R-algébre; on appellera “relévement d’une présentation (libre et
finie) d’un A-module projectif de type fini” :

ZPLZ‘?—JW—m? (%)
la donnée d’'un A-module projectif de type fini M et d’une présentation :
AP A0 M 0,

tels que idy ®L = L. Lorsque un tel relevement existe on dira que “la présen-
tation de module projectif () se reléve a A”.

b) On dira que le couple (R, I) “vérifie la propriété de relévement” lorsque pour
toute R-algebre de type fini A et pour toute présentation libre et finie de
A-module projectif de type fini M :

Ar L. A40 L7 o0, (o)
il existe un voisinage étale A, de I dans A tel que la présentation de module

projectif (o) se releve & A..

1.2.3. Théoréme. Pour tout anneau R et tout idéal I dans R, le couple (R, I)
vérifie la propriété de relévement.

Démonstration. Soit A une R-algebre de type fini. Donnons-nous une présentation
libre et finie d’'un A-module projectif de type fini M :

RNy (BRI v S (o)
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Comme M est un A-module projectif, II admet une section 7, la composée
¢ = &oll € Endz(A?) vérifie > = ¢ et im(+)) ~ M. L’endomorphisme v est donc
idempotent et M s’identifie au sous-module de A7 des vecteurs propres associés
4 la valeur propre 1. On a ainsi une nouvelle présentation libre et finie de M :

A A N0, avec P2 = 7, (1)

qui est un cas particulier des présentations considérées dans le théoreme et que
nous étudierons dans un premier temps.

Notons ¢ € End a(A?) un relevement quelconque de . Comme ¢ est idempo-
tent, on a det(2¢) — 1) = %1 et donc det(2¢) — 1) = £1 + x, pour un certain z € I.
Ainsi, quitte & remplacer A par le localisé AL, (voisinage ouvert de I dans A),
on peut supposer que I’endomorphisme 2¢) — 1 € End 4 (A?) est inversible.

Nous allons montrer maintenant comment déformer I’endomorphisme ¢ (quitte
a remplacer A par un voisinage étale de I dans A) pour en faire un relevement
idempotent de .

— Supposons 'idéal I principal de générateur noté «
On a alors ¢/ — ¢ = ma pour un certain o € End4(A?).

Considérons I'algebre de polynémes & ¢” inconnues A[X] := A[Xy 1,..., X, ]

et notons S € End A[Y](A[)_( ]9) I'endomorphisme dont la matrice [f3; ;], par rap-

port & la base canonique de A[X]?, est donnée par 3; ; = X; ;. Soit :
R:=a+ (29 —1)5+75° € End 4% (A[X]Y), ()
de matrice associée [ R; j]. On pose : Ay := A[X]|/(R; ;).
Le jacobien f := det[9R; ;/0Xy | est de la forme f = £1+7P pour un certain
P e A[X]. En effet, f modulo 7 est le jacobien de I'application R : End4(A?) —
End4(A9), définie par R([X;;]) == a + (2¢ — 1)[ X; 4], qui est une application
affine de End4(A?) dont ’application tangente est la multiplication & gauche par

I’endomorphisme 2¢ — 1. Or, comme ¢ est idempotent dans Endz(zq), on a la
décomposition en somme directe de sous-A-modules :

End4(A%) = - End4(A?) @ (1 — ¢) - End4(A?),

et la multiplication & gauche par 2¢) — 1 est bien de déterminant =+1.

L’algebre localisée A; ; est par conséquent intersection complete étale sur A
(1.1.3), et comme la réduction modulo 7 de Ay, i.e. A[X|/(R;;), est clairement
isomorphe & A puisque (2¢) — 1) est inversible, la A-algébre A; ¢ est un voisinage
étale de () dans A.

Nous étudions maintenant le probleme de la commutation entre ¢ et 7-3.

Comme 7o commute & ¢ (puisque ma = 9° — ) et que R est nul dans
Enda, ,(Aqf9), I'égalité (1) donne :

[, 7] = —x(2¢ — 1)~ (B, 78] + [, 75]8) -
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Notons [t; ;] la matrice de ’endomorphisme [¢, 73] relative & la base canonique
de Ay ;7. Le développement de la derniere égalité donne lieu & une égalité de la
forme :
t11 t11
N P
2% tq,q

oll Q est une matrice & ¢ lignes et colonnes et a coefficients dans Ay ;. Comme le
déterminant de 1—7-Q est congruent & 1 modulo 7, le vecteur (¢11,...,%q,4) (et
done le commutateur [, 7/3]) est nul dans la localisation A. := (A1 f)daet(1-7-Q)
qui est bien une intersection compléete étale sur A; ; (donc sur A) et un voisinage
de (7) dans A4 ¢ (donc dans A).

Gréce & la commutation de ¢ et 73 dans End4_(A. 7), le développement de la
différence (¢ +73)? —(+73) est égal & R d’apres (1), et o+ 3 est un idempotent
de Enda_(A%) qui reléve ¢, puisque R = 0 dans Enda_(A?) par construction.

— Lorsque 'idéal I est de type fini : I = (mq,...,7n) avec m > 1

Notons A’ := A/7-A. On peut supposer, par hypothese de récurrence sur m,
quil existe une intersection complete étale A. sur A’ et un relevement idempotent
¢’ € Endar(AL?) de ¢ € End4(A?) .

Soit AL = A'[Zy,...,Z,)/(f1,..., f}) une présentation de A telle que 1’616
ment de A. défini par det[df//0Z; ] est inversible. La surjection canonique A —»
A’ induit une surjection A[Zy,..., 7, — A'[Zy,...,Z,] et I'on a le diagramme

commutatif :
A ¥ 14[Z17 /(f177fn)

s Zn)
A ——s A = AHy, ..., Bul/(H; -1 Jo)
ou f; désigne un relevement de f/ dans A[Zy, ..., Z,]. La A-algebre A, localisa-
tion de A[Zy,...,Z,)/(f1,..., fn) par det[0f;/0Z;], est clairement une intersec-
tion complete lisse, voisinage étale de I dans A et le diagramme induit suivant est
commutatif :
A —— A,
mod ‘n'li i mod 71
Al —— AL
Il existe alors, toujours par hypothese inductive, une A.-algebre, intersection
complete étale (A.)., voisinage de (m1) dans A. (donc intersection complete

étale et voisinage de I dans A), telle que ¢’ se reléve en un idempotent ¢ €
End(As)s((AE)Eq)~

— Lorsque I est un idéal non nécessairement de type fini de R
La relation ¢? — ¢ € I-Enda(A?) admet des explicitations de la forme > — ¢ =

ZZj zr, @k, avec zx € I C R et p, € Enda(A?). Notons I’ Iidéal (de type
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fini) de R engendré par I'ensemble {x1,...,2¢}. On a ¢ — ¢ € I’'Enda(A%) et
lexistence d’un voisinage étale A, de I’ dans A (donc de I dans A) de méme que
le relevement idempotent 1, résulte de 1’étude précédente.

Ceci étant, posons M. := im(z.). Comme 1. est un endomorphisme idempo-
tent, on a A = M_®im(1—1.) et M, est un A.-module projectif de type fini. La

* ] 17 & b 7 L
présentation AZ L., A? — M, — 0 est donc un relevement de la présentation
de module projectif (1), ce qui termine la démonstration du théoreme pour ce type
de présentations.

On reprend maintenant la donnée d’une présentation de module projectif de la
forme générale (o) :
Aar LA Lo,
Fixons une section & de II et notons ¢ := & o II. D’apres ’étude précédente,
il existe une A-algebre Az, intersection complete étale sur A et voisinage de I
dans A, telle que I'idempotent ¢ € End4(A%) se releve en un idempotent Ys €
Enda, (A%). Notons L; € Homga_ (AE, AY) un relevement quelconque de L et
posons Lz = (1 —4z) o Ly de sorte que la réduction modulo I de Lz s’identifie
toujours a L :
P Le q
Az (1—gpe)oLs ~°¢

l !
AP Al M —0

o]

Mais, si Lg releve bien L, rien n’assure a priori que son conoyau soit projectif, ce
pour quoi il suffirait que 'on ait im(Lz) = im(1 — ¢z) puisque 3z est idempotent.
Or, le conoyau K de l'inclusion im(Lz) C im(1 — ¢z) est un Aszmodule de type
fini dont la réduction modulo I est nulle, autrement dit, on a I-IC = K. Il existe
par conséquent un élément g de Az congruent & 1 modulo I, tel que le foncteur
de localisation Az, ®4, (-) annule £ (Nakayama). On pose alors A, 1= Az, et
L. = ida_®Ls. (On remarquera que la A-algebre A, est toujours intersection
complete étale sur A et voisinage de I dans A.)

L’image de L. s’identifie bien maintenant & I'image de I'idempotent id 4, ®(1 —
1z) de supplémentaire M, .= im(ida, ®vz). Le A.-module M. est donc projectif
de type fini, et nous avons la présentation :

L
AP —5 AT — M, -0
qui est un relevement de (o). O
1.2.4. Remarque. La preuve de lexistence du relévement idempotent de ¢ se
simplifie remarquablement dans le cas ot Iidéal I est nilpotent (plus généralement

lorsque chaque élément de I est nilpotent). Dans ce cas on peut prendre A, = A.
En effet, pour tout relevement  de ¢, I’endomorphisme 1 — 2¢ est inversible
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puisque de déterminant +1 + z avec z nilpotent. D’autre part, on a 2 — ¢ = o
avec o € I''Enda(A?) pour un certain idéal de type fini I’ C I. L’élément o
commute clairement & 1 et si o € (I')"- End 4 (A?), on pose :

Y=+ (1-29) e,
de sorte que ¢’ releve toujours ¢ et vérifie :
2 F__ —2 D . N\2r q
P = = (1=-2¢) “a =1 a' € (I')"-Enda(A?).

L’itération de cette idée permet, grace a la nilpotence de I', de construire un
relevement idempotent 1. € End (A7) de .

1.3. Relévements lisses des algébres lisses

La démonstration du théoréeme suivant est une transcription presque littérale de
celle de Renée Elkik (cf. [E] §4 p. 580) qui prouvait 'existence de relevements
lisses lorsque le couple (R, I) était supposé hensélien ncethérien.

1.3.1. Théoréme. Toute R-algébre lisse se reléve en une R-algébre lisse.

Démonstration. Soit B une R—a_lgébre_ lisse et fixons une présentation finie de
R-algebre : B = R[Xy,..., Xn]/J. Le B-module J fuT > est alors projectif de type
fini. Notons C := Sg(J/J?) la B-algébre symétrique de J/J?. Le schéma affine

associé a C, noté Spec(C), est le fibré conormal & Spec(B) dans le plongement
Spec(B) C A% déterminé par la présentation ci-dessus (1.1.4). Le morphisme de

“sec-

B-algebres oo : C — B, nul sur J/J?, donne le morphisme de schémas
tion nulle” Spec(ag) : Spec(B) — Spec(C). Notons f : Spec(C) — Spec(B) le
morphisme structural ; on a f o Spec(oo) = idg .. 5)-

Ces données étant conformes aux hypotheses _
de la proposition 1.1.6-(b), on peut fixer pour la Spec(C) «—— Spec(C)
suite une R-algébre (intersection complete) lisse 1] Iﬁ“mn uille
C qui releve C, d’on le diagramme des mor- (D) Spec(B)
phismes canoniques (D) ci-apres. [Vautre part, .
le C-module M = C_7®§ (7/72) est projectif Spec(R) ——— Spec(R)
de type fini et, quitte & remplacer C par un voi-
sinage étale de I dans C, il existe un C-module projectif de type fini M dont la
réduction modulo T est isomorphe & M (propriété de relevement du couple (R, I)
(1.2.3)). L’algébre D := S& (M) est lisse sur C (et donc sur R) puisque M est
projectif de type fini.

Complétons le diagramme (D) par les morphismes canoniques indiqués ci-
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dessous :
Spec (Sg(M)) = Spec(D) «——— Spec (C ®p C) = Spec (S5(M))
section nulle I T A ZI I section nulle
Spec(C) «—— Spec(C)
f l [ section nulle (D/)

(D)  Spec(B)

Spec(R) «—— Spec(R)

ot A désigne la “section diagonale” du morphisme structural de Spec(C ®p C)

vers Spec(C_). Il s’agit du morphisme de schémas associ¢ au momorphisme de
C-algebres 0 : S5(M) — C défini par la forme C-linéaire :

Slar: M =Cop (T/T2) — C =Sy (T/T?)

cRU — cv

(1)

Comme D est I'algebre symétrique de M, 'homomorphisme M——»M
6 admet un relevement en un morphisme de C-algebres § : D — 4 Mi R} lS\H
C, si et seulement si, la forme C-linéaire 5\1\7 : M — C se e hal
releve en une forme C-linéaire 6|,, : M — C'. L'existence du ¢—C
relevement d|,, est conséquence du fait que M est un C-module projectif (cf.
diagramme ci-apres, ol les lignes correspondent & la réduction modulo I'). On note
A : Spec(C') — Spec(D) la section du morphisme structural Spec(D) — Spec(C)

correspondante & ¢. Le morphisme de schémas A prolonge section diagonale A :

Spec(C) <Sp%c(5)> Spec (C ®@p C) = Spec (S5(M))

I |-

Spec(C) Spﬁc(é) Spec (S&(M))

Nous avons donc le diagramme commutatif suivant :

ol les morphismes horizontaux correspondent a la réduction modulo I et ou
I'équivalence B = C/SM résulte de la définition de & (1) (Spec(B) apparait,
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heuristiquement parlant, comme l'intersection de la section nulle et de la sec-
tion diagonale de la fibration Spec(Sgi(M)) — Spec(C)). Enfin, la R-algébre
B := C/5M est un relevement de B par construction. Nous prouvons dans la
suite que B est lisse sur R.

Considérons la suite d’applications :

M 5 c do/R QE/E v Qé/ﬁ - M, (%)

ol 7 est la surjection donnée par la seconde suite fondamentale associée a 1’ho-
momorphisme structural de R-algebres de B dans C. Les applications § et 7
sont C-linéaires et lorsque 'on tensorise chaque terme de () par C/0M = B,
lapplication idg ®(dg /B © d) le devient également ; le morphisme de C-modules
idg ®(Fodg,509) : B&og M — B®g M est alors lidentité d’apres la définition
méme de ¢ dans (1).

Ceci étant, le C-module Qg /g est projectif car C' est lisse sur R, et le mor-
phisme 7 se reléeve en un morphisme de C-modules v. On a :

l l

O —— Qg5 =M

ol les morphismes verticaux correspondent a la réduction modulo I.
La suite (%) tensorisée par B se releve donc en une suite de morphismes de
C-modules :

id d, 0d i v
Boo M 229 B Qom 922 Bog M

| ¢ T

dont la composée, notée &, est I'identité modulo I. Le conoyau de £ est donc annulé
par la réduction modulo I, autrement dit, on a I-coker(§) = coker(¢). Comme M
est de type fini, 'annulateur dans C de coker(¢) contient un élément de la forme
g =1+ xzc, avec z € I (Nakayama), de sorte que, quitte & remplacer C par le
localisé C, (voisinage ouvert de I dans C'), on peut supposer ¢ surjectif. Mais
alors ker(£) est facteur direct de B ®c M puisque B ®c M est un B-module
projectif. Il s’ensuit que ker(¢) est un B-module (donc un C-module) de type fini
qui est également annulé par la réduction modulo I. En remplacant, si besoin,
une fois de plus C par un nouveau voisinage de I dans C, on peut supposer le
morphisme £ bijectif.
D’autre part, on a la factorisation de idp ®(de/r 0 d) en :

()

9
((56]]\%2 — B®O QC’/R

idp ®(dc/Rrod) T

B®c M 2
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ou d est le morphisme de la premiere suite fondamentale associée & la surjection
canonique C — B = C/éM . La bijectivité de £ implique que le morphisme 9
admet une rétraction et la R-algeébre B est lisse d’apres le corollaire 0.2.3. O

1.4. A propos de I'unicité des relevements d’une algeébre lisse

Le dernier théoréme montre que pour tout couple (R, I) les R-algebres lisses
admettent des relevements lisses. Une question naturelle alors est de savoir a quelle
condition deux relevements d’une méme algebre lisse sont isomorphes.

Lorsque l'idéal I n’est pas nilpotent, on construit facilement des exemples de
relevements non isomorphes. Il suffit, par contre, que I'idéal I soit nilpotent pour
que tout relévement soit unique & isomorphisme (non canonique) prés. Le résultat
suivant est di a Grothendieck.

1.4.1. Proposition ([SGAi]). Soient R un anneau arbitraire et I un idéal nil-
potent del?. Soient Ay et Ay deuzr R-algébres lisses dont les réductions Ay et Ag
sont des R-algébres isomorphes. Alors, les R-algébres A, et Ao sont isomorphes.

1.4.2. Remarque sur les relevements formellement lisses. Pour tout couple
(R,I) et chaque m = 1,2, ..., notons v, : R/I™" — R/I™ la surjection ca-
nonique. Le complété séparé I-adique de R est la limite du systéme projectif

défini par les vp,, i.e. R = lim,, R/I™. Le noyau de v,, est I'idéal de carré
nul I™ /1™ C R/Im+1 et un argument inductif sur m = 1,2, ..., permet de

construire de proche en proche un relevement A, lisse sur R, := R/I"™ d'une R-
algebre lisse donnée A et ceci pour chaque entier positif m. Le théoreme précédent
affirme que ces relevements sont toujours deux a deux isomorphes pour chaque
m fixé. Pour toute suite (A,,)m=12.. de tels relevements, la limite projective
A est une ﬁ—algébre compléte et séparée isomorphe & toute autre algebre A’
ainsi construite. Lorsque I’anneau R est en plus ncethérien (ou que I/I 2 est de
type fini) les réductions modulo I de A sont des R,,-algébres isomorphes aux
algebres lisses A,,, pour tout m ; on dit que A™ est un relevement “I-formellement
lisse” de A. Dans le cas ncethérien on montre, toujours & ’aide de 1.4.1, que deux
relevements I-formellement lisses complets et séparés d’une méme R-algebre lisse
sont isomorphes ([SGA;]). En particulier, lorsque A est un relevement lisse sur R
deAZ, les relevements formellement lisses complets et séparés de A sont isomorphes
a A:=lim,, A/I"™A. On a donc :

1.4.3. Proposition. Soient R un anneau naethérien et Ay et Ay deuxr R-algébres
lisses dont les réductions Ay et Ay sont des R-algébres isomorphes. Alors, les
algeébres Ay et Ao sont isomorphes.
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2. Reléevements des morphismes

2.0.1. Définition. Soit ~ : A — B un morphisme de R-algebres, on appelle
“relévement de h” la donnée des relevements d’algebres pg : A — A et pp : B —
B et d’'un morphisme de R-algébres h : A — B, tels que pgoh = hopa. Soit, en
termes de diagramme commutatif :

A —B
PAL lpB
A" .B

2.1. Relévements de morphismes a source lisse

Dans cette section nous allons étudier les questions des relevements de morphismes
Rel-3,4. Les théoréemes concernant ces questions découlent du résultat technique
2.1.2 dont la preuve utilise & plusieurs reprises la remarque suivante.

2.1.1. Scolie sur les algébres étales. Soient B un anneau et B, une B-algebre

d’homomorphisme structural noté ¢ : B — B.. Soit K un B+ B,
—_— etale
l PB

idéal dans B et notons ( ) le foncteur de réduction modulo ,, l

K. Lorsque ¢ est étale, Z I’est également (propriété stable par B-f 5
changement de base). Le lemme suivant donne une condition étale £
simple permettant de relever une algebre étale sur B.

Lemme. Soit & : B — B. un homomorphisme d’anneauz

et supposons B, intersection compléte étale sur B. Il existe B _rﬂ—'s_"') B,
alors une B-algébre B, intersection compléte étale sur B, et l fals
un homomorphisme surjectif pp, : B, — B, de réduction pA_ c ipB
modulo K bijective, tels que le diagramme ci-aprés est com- B ——=— Be

mutatif.

Démonstration. Soit B, = B[X1,...,Xn]/(f1,..., fn) une présentation de B,
telle que I'élément de B, défini par det[0f;/0X;] est inversible. Posons B’ :=
B[Xy,..., Xu]/(f1,. -, fn), OU fi est un relevement de f; dans B[X1,..., X,]. Le
localisé B, = B:iet[@fi/an] vérifie alors les conditions requises (cf. 1.1.3). d

La propriété énoncée dans la proposition suivante est 1’analogue algébrique
de la propriété de Monsky—Washnitzer qui définit les algébres trés lisses; nous y
reviendrons dans 3.3.
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2.1.2. Théoréme. Soit A une R-algébre lisse et donnons-nous :

e Une paire d’homomorphismes de R-algébres A B B
AL L B, ou p est surjectif de noyau 2 i . 7
noté K (K = B compris). 4 4
&

e Un homomorphisme de R-algébresh : A — B C
vérifiant  =p o h.
Alors :
a) Pour chaque entier strictement positif n, il existe une applicationn, : A — B
telle que :
- I7n
(i) pB o = hopa, ol
(i) pon. = ¢, PAL lpB
(iil) vy © Ny est un morphisme de R-algébres. N
A—— B
ot vy, B— B/((I-B) N K)" désigne la surjection canonique.
— K = I Vn B
A B A——B A omm e
(I-B)n K)*
\pl + \‘ﬁl = \pl
v i AW
G c c ’

(L’homomorphisme py, est celui induit par p.)

b) Il existe un voisinage étale B, de I K dans B, intersection compléte sur B,
dont on note € : B — B, l’homomorphisme structural et p:. : B, — C [’homo-
morphisme induit par p, et il eriste un morphisme de R-algébres h, : A — B,
tels que hy =Zoh et ¢ = p, o h.. En d’autres termes, on a un diagramme :

..... g
2 E £ ) th £ %
A B A—— B A----+=- +B.,«—B
5 .
\"l + x”l - X l /
2] C C
Démonstration.

e Cas o1 A est intersection compléte lisse
Soit A=R[X1,..., Xn]/(fr+1, ..., fm) une présentation de A en tant qu’inter-
section complete lisse sur R et notons v : R[Xy,...,X;n] — A la surjection

canonique.
a) L’existence des applications 7, de Iassertion (a) vérifiant (i) et (ii) équivaut
a l'existence de morphismes de R-algebres oy, : R[X1,..., X;n] — B rendant
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commutatifs diagrammes :

R[Xiy,..., Xn] —= > B R[X1,..., Xy —= > B
,,l lp v h ?
A—*% ¢ A— ¢ .C (D)
la condition (iii) s’exprime alors par I'inclusion :
on((Ffrits-- fm)) € (IB) N K)". (%)

Nous allons démontrer 'existence de «,, par induction sur ’entier n.

Lorsque n = 1, la condition (*) est automatiquement vérifiée par tout homo-
morphisme «; rendant les diagrammes (D) commutatifs, il suffit donc de prou-
ver son existence. Comme &; est alors uniquement déterminé par 1'égalité
@, = h o7, nous sommes encore réduits & prouver seulement ’existence d’un
relevement oy (X;) € p!(p(v(X;))) de @i(X;), pour chaque i = 1,...,m.
L’assertion résulte donc de prouver que, pour tout ¢ € C, la réduction modulo
I de la fibre p~(c) se surjecte sur la fibre (). Soit b € 5~ (&). Pour chaque
relevement b € B de b, on a c—p(b) = >.;%j¢c5, avecz; € I et ¢; € C. Comme
p est surjective, il existe b; € B tel que p(b;) = ¢; et alors b’ = b+ Zj z;b;
est bien un relevement de b vérifiant p(b') = c.

Supposons avoir défini o, pour € > 1 et soit apry @ R[X4,...,Xn] — B un
morphisme de R-algébres donné par :

¢
o1 (X;) = ae(X;) + by, avech; € (I'B)NK), (%)
pour j = 1,..., m. Les conditions (i) et (ii) de ’assertion (a) pour n = £+ 1
sont alors clairement satisfaites et 1’étude de la condition (iii) nous ameéne a

considérer, pour chaque k =r+1, ..., m, le début d’'un développement en série
de puissances par rapport aux variables b; :

o1 (fr) = fr(ce(X) +0)

by
Ofk Ofr - ;
_aé(fk)+|:aX17.“7aXm (a@(X)) b: s g
ou X et I;désignent respectivement les m-uplets (X1, ..., Xy ) et (b1,...,bm),
op(X) désigne (ce(X1),. .. (X)) et 8%%(045()?)) est ’élément de B obtenu
a partir de g}; (X1,...,Xn) en remplagant X; par a,(X;); enfin, les points

de suspension rassemblent des termes appartenant a l’idéal ((I ‘B)n K ) 24

Le regroupement de ces développements pour £k = r + 1,..., m, donne alors
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Iégalité de vecteurs de B™~" modulo ((I-B) N I()22 3
afr+l . af'r+1

aer1(fri1) e(fr+1) 0X, 0Xy, L[
: ~ : +1 co (X)) | D
cer1(fm) ae(fm) fm  Ofm b
90X 0X

C’est maintenant que le fait que A est intersection compléte lisse intervient
de maniere cruciale. En effet, dans ce cas nous savons d’apres le lemme 1.1.2
(b) que les classes des différentielles df, 1, ...,dfn, dans A ® Qgx,, . x,./R
sont linéairement indépendantes et que le sous- A-module qu’elles engendrent :
Adfpy1 @@ Adf, = A™7 est un facteur direct dans A® Qg(x, . x,.|/R
= A™. 1l existe alors une matrice [a; | € M ") (A) qui inverse & droite
la matrice de M™=")*"(A) définie par [dfy/0X; ](X). Pour chaque couple
(4, k), soit P;  un relevement dans R[X1,..., X;n] de a;1; on a alors I’égalité

modulo idéal (fri1,..., fm) :
afr+1 L afr+1
6X1 aXm . Pl,r+1 ce Pl,m
; .| (X) ; o 2w, (1)
O Prvit o Pom
0X1 0Xm
a laquelle on applique a, pour obtenir I’égalité modulo ((I~B) N K)é :
8fr—i—l afr+1
8X1 8Xm . Ql,'r’+1 Ql,m
. > (CM(X)) : : = 1y rxm—r, (0)
% % Qm,’r’+1 Qm,m
0X, 0 Xm
ot 'on a noté Q; = (P} ) € B. On pose alors :
by Qirs1 -+ Qum | [aelfre1)
bm Qm,r+1 Qm,m al(fm)
de sorte que les éléments b; appartiennent bien a ((I -B)N K )Z conformément
a notre choix initial (x). Il s’ensuit que ’on a, pour tout k =r+1,...,m:

2¢
arr1(fy) € (IB)NK)™,
grace aux égalités (1) et (o), ce qui termine la démonstration de ’assertion (a)
lorsque A est intersection compléte lisse.
b) I. Réduction au cas ou 'idéal K est principal

On commence par observer qu’un homomorphisme a,, de la question (a) in-
duit un homomorphisme %, : A — B lorsque ay(fz) = 0, pour tout k =
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r+1,...,m. Lorsque c’est le cas, on peut prendre B, := B et h, := h, et
Passertion (b) est vérifiée. Dans le cas contraire, on applique (a) pour n =1 et
I’'on considere I'idéal K’ := (by,...,b,_,) € K de B engendré par les éléments
b, := a1(frrs). Pour chaque £ =1,...,m —r, notons By := B/(by,...,bs). On
a la suite finie de surjections canoniques de B-algebres :

vYo,1 V1,2 V2,3 Vm—r—1,m—r
B —: By B By —....... " S By,

ou By = By_1/(be). Notons aussi, pour chaque £ :

e v, : B — By la surjection canonique (on a vg g1 0 vy = Veiq),

e p, : B, — C la surjection induite par p, de noyau K, := v,(K) (on a
Peove =p),

e hy : A — B, '’homomorphisme 7 o h.

On remarquera que pour chaque £ =0,1,...,m —r, la paire de morphismes de
R-algebres A -2 C £~ By et le morphisme de R-algebres h, : A — B, sont
des données conformes aux hypotheéses du théoréme.

Lorsque ¢ = m — r, ’homomorphisme v, _, o 1 s’annule sur (fri1,..., fm) et
induit, par conséquent, un morphisme de R-algebres by, . 1 A — B, _, =:
B,,,_, . vérifiant (b) par construction. Supposons maintenant que pour un cer-
tain “niveauw” € € {1,...,m — r} Passertion (b) est vérifiée; autrement dit,
supposons qu’il existe un voisinage étale ¢, : By — By, de I K intersection
complete sur By et un morphisme de R-algebres hy. : A — B, . vérifiant
ELE =Zpo0 }_m tels que le diagramme suivant est commutatif :

ol gj_y : By — By_1,. est un voisinage étale de I-IK, intersection complete
sur Be_1, qui releve g¢ et ol v,_4 , est la surjection induite (2.1.1).

La paire de morphismes de R-algebres A & By, b K By . et le mor-
phisme de R-algebres £p_40 he1: A— B ¢—1,e sont & nouveau conformes aux
hypotheses du théoreme, mais cette fois le noyau de 1/27175 est l'idéal princi-
pal de By_1 .- engendré par by (2.1.1). 1l s’ensuit que si (b) est vérifiée pour
toute R-algébre B et tout idéal K C B principal, il existe un morphisme de
B-algebres € | 1 By_1,. — By_1., tel que By_1 . est intersection complete
sur B,_ .+ et voisinage étale de I-b;, donc de I-K, et un morphisme de R-
algebres hy_1.: A — By_1 ., tels que le diagramme précédent se complete en
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un nouveau diagramme commutatif :

N ol : S 7 5 3 / ] = 7 —
ou vy, est induite par ey | & partir de vy_, ,, et oW &) 08y johe 1 =he1..
La composée e,y :==¢] ;o0e, | : By_1 — By_1. est alors un voisinage étale
de I-K, intersection complete sur By_1, et (b) est vérifiée au niveau ¢ — 1.

Un argument par induction montre alors que (b) est vérifiée pour £ = 0.

1I. Cas ou l'idéal K est principal.

Nous vérifions dans cette partie I’assertion (b) lorsque K est un idéal principal
de B de générateur noté bg.

— Cas ot I'idéal I C R est principal de générateur .

Il existe, d’apres (a), un morphisme as : R[X1,..., X,s] — B de R-alggbres
tel que les diagrammes (D) sont commutatifs et tel que I'on a, pour tout k =
r+1,...,m

ag(fk) € ((IB) N K) (7T bK)
autrement dit, as(fr) = 7-bi Sk pour un certain Sy € B.

Nous procédons maintenant de maniére analogue & la démonstration de (a)
dont nous reprenons la notation vectorielle, en particulier X = (X1,..., Xm).
Pour chaque k =r+1,...,m, soit ﬁk = (Pik, ..., Pni)le muplet d’éléments
de R[X1, ..., X;n] de I'égalité (i) de la preuve de (a). Posons Q; 1 := aa( P 1),
Qk = (Q1k,---,Qmp), et considérons le morphisme de R-algebres :

RIX1, ..., Xm] —2— B[Z, 11, ..., 7]
déterminé par Dégalité B(X) = ax(X) + Y eyt 7b-GQr Zi .
On a le développement en série de puissances par rapport aux variables Zj :
ﬁ(fk()?)) = fr (042()?) + Yt mbyc-Gr Zk)

Qiri1 ~ Qim | [Zri1
0 (9 - n s .
= mbg-Sy + bk {a)ﬁ B } (aa(X)) : : 2 a
m Qm,r+1 e Qm,m Zm
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et 'on introduit les éléments :

X
R, = w S B[ZTJrl, . ,Zm]
7T~bK
(on diminue d’une unité les exposants de m-bx dans les développements en
série précédents). Nous avons ainsi Pégalité dans (B[Z,11,..., Zm])"  mo-
dulo 7-bg :
afr+1 afr+1
Rr+1 ST+1 8X1 6Xm . Ql,r+1 e Ql,m Zr+1
= N R C | (ea(X) ] ; ;
Ry, Sm aﬂ % Qm,’r+1 Qm,m L,
0X1 0Xm
(00)
et la composition de 3 avec la surjection canonique vp :
A ve  BlZry1,-- s Zm
R[Xy,...,Xp|—— B[Z/14,..-, 2, =: B!
[ ly m] [ r+1 m] (RH—I, ., Rm)
A=R[X1,...,Xm] Y
(fr+1,---1fm)
s’annule, par construction, sur l'idéal (f;+1,..., fm) et induit un morphisme

de R-algebres noté v: A — B'.
On remarque alors que le déterminant de la matrice jacobienne [0R;/0Z;]
modulo 7-bg est égal a :

Ofrt Ofry
OR, ox x| [@ur e Qi
/ gﬁg a _g)f(v:b Qm,r+1 e Qm,m
af, af,
afxtl an:Tl _ [Pur+t o Pim
~ g | det S (X) =1
ggg - —g)fgfn Pmﬂ’+1 S35 Pm’m

d’apres 1'égalité (i}) de la preuve de (a). La localisation B. := Byuor, /o7,
est, par conséquent, une B-algebre intersection complete étale.
Notons h : A — B, la composée de v et du morphisme structural B’ — B,.

La réduction modulo 7-bg identifie B’ et B.. Notons B := B/(r-bk). La
B-algebre B ®g B’ apparait alors, d’apres (o), comme le quotient :
E[ZT+17 > o oy Zm]
(Zr+1 +- Sr+17 ey Zm + Sm)

qui est clairement isomorphe a B. Par conséquent, B, est bien un voisinage
étale de (m-bg) dans B, et la réduction modulo I de h s’identifie & h.
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[’assertion (b) est ainsi vérifiée & chaque fois que A est intersection compléte
lisse et que I est principal, et ceci, quel que soit I'idéal K C B d’apres la partie
(I) de cette preuve.

— Cas ou l'idéal I C R est quelconque

Nous montrons que le cas général se ramene au cas ou I est principal essen-
tiellement de la méme maniere que dans la partie (I).

Soit ay : R[X4,..., X;»] — B un morphisme de R-algebres tel que les dia-
grammes (D) sont commutatifs et tel que, pour chaque k =r+1,...,m, on
ait az(fk) E IbKB, i.€. ag(fk) = Zl 7Tk7¢~bK~bk7¢, avec Ty ; € I et ka‘ € B.
L’ensemble de ces égalités fait apparaitre l'ensemble fini {my;} = {m1,..., 7}
d’éléments de I dont on note I' = (7, ..., n;) l'idéal dans R qu’il engendre.
Notons pour £ € {1,...,t} : Ry, Ag, By, Cy, @o, pe, les réductions modulo
lidéal (71, ..., m) des objets correspondants ; on appellera le nombre ¢ le “degré
de réduction”. L’idéal I' rend compte de lobstruction au relevement de h
vérifiant (b) avec B, = B, en particulier (b) est vérifiée avec B, = B au degré
de réduction t. Notons h; un tel relevement ; on a les diagrammes analogues a
(D) :

R B R, B;

lp / lpt
@ %
A———C Ay R C; (Dy)
ou celui de droite correspond & la réduction modulo lidéal (7y,..., ) C R.

L’assertion (b) peut étre vérifiée maintenant par récurrence sur le nombre ¢ ; le
cas t = 0 est trivial et le cas t = 1 a déja été traité. Dans le cas général, ’asser-
tion (b) est vérifiée par hypotheése inductive pour les données A1, By, C1, etc;
il existe donc une intersection complete lisse €1 : By — B ., voisinage étale de
I.K, et un morphisme de Ri-algebres hy . : A — Bi, tel que &; o h= EL&
et tels que le diagramme suivant est commutatif :

% B.—% B
V{l ............. l”l
hie e
A, B, B,
P £
o
C,

ol vy est la surjection canonique, ¢’ : B — B, est un voisinage étale de I. K
intersection complete qui releve £1, et v} est la surjection induite par &’ a par-
tir de 4 (2.1.1). En particulier, By .+ s’identifie & la réduction modulo 71 de
B,:. Notons p, : B., — C la surjection induite par ¢’ & partir de p; on a
p = pr o0&’ et p; s'identifie & la réduction modulo 71 de p.r. On a ainsi les
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données suivantes :

R Be' Rl Bl,S
hl,s
lpe' l Py
A— ¢ o R S

et comme le passage de R a R, se fait par réduction modulo 'idéal principal
(my), Dassertion (b) est vérifiée pour ces données. On a donc une B,/ -algebre
intersection complete lisse ¢” : B., — B,., voisinage étale de I K, et un mor-
phisme de R-algebres h, : A — B, tel que p.soh. = ¢ et tel que, par réduction
modulo 71, h. coincide avec hy . oc”. Enfin, la composée ¢ :=¢” 0¢’ : B — B,
fait de B, une B-algebre intersection complete voisinage étale de I- K et 'as-
sertion (b) est vérifiée pour les données d’origine : A, B, C, ¢, p, h.

Le théoreme est donc prouvé lorsque A est intersection complete lisse sur R.

e Cas ou A est lisse mais pas nécessairement intersection compléte

Par la proposition 1.1.6-(b), il existe un A-module projectif N tel que ’algebre
symétrique S% (IN) est une intersection compléte lisse sur R. Notons ¢+ : A <
S*(IN) le morphisme structural et 7 : S% (IN) — A le morphisme de A-algebres
nul sur IN. Tout morphisme de R-algébres ¢ : A — A’ se factorise alors canoni-
quement en :

A & k3 S*A (N) (¢Oﬂ—) A/

| ¢ )

En particulier, on a pour les données ¢, p et h du théoreme, les factorisations :

- _ (hom) _
A< S4(N) B A sy
\< ) F + \< ) "’l
Pom = Pom
(4 (4 \_
c C

ot po(hoT) = (p o 7). Les énoncés (a) et (b) pour A résultent alors immédiatement
des mémes énoncés pour S (V). O

2.1.3. Corollaire. Etant donnés un morphisme de R-algébres h: A — B et des
relévements pa : A — A et pp : B — B, ot A est lisse, il existe une B-algébre
B, , intersection compléte et voisinage étale de I dans B, et un morphisme de
R-algébres h : A — B, qui reléve h. Soit, en termes de diagramme commutatif :

Pa PB
N
A——— B
ou € : B — B, désigne Uhomomorphisme structural et ou pp_ est ’homomor-
phisme induit par € a partir de pg.
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Démonstration. Cas particulier du théoreme 2.1.2 avec K = B. (Il

2.2. Homotopies des relevements a source lisse de morphismes homo-
topes

Dans cette partie, qui est un complément naturel au théoreme 2.1.3, nous allons
étudier le lien qui relie deux relevements d’un méme homomorphisme modulo I.
Nous montrerons que deux tels relevements sont toujours “homotopes au voisinage
étale de I preés”.

2.2.1. Définition. Soit I un idéal dans R. Deux morphismes de R-algebres
ug,u1 . A — B seront dits “homotopes au wvoisinage étale de I prés” lorsqu’il
existe :

e un voisinage étale B|T|. de I, de (T') et de (1 —T") dans B[T] dont on note
¢ : B[T'] — B[T]. 'homomorphisme structural et po.,pi . : B[T]. — B les
morphismes de B[T]-algebres induits par ¢ a partir de pg et py respectivement.

¢ un morphisme de R-algebres h: A — B[], vérifiant p; . o h = u;.

En d’autres termes, on a un diagramme :
. B[T]5<—€ BI[T] T T

h/’/ Poe  po|p1 Do § 21
g Dle
. i 3

A 0 B 0 1

uy

Lorsque, en plus, B[T]. est intersection compléte sur B[T], on dira que ug et
wuy sont “homotopes au voisinage étale de I intersection compléte prés”.

Dans le cas ol 'homomorphisme ¢ est un isomorphisme, ce qui se produit
par exemple lorsque B € Alg(R), on parlera simplement d’“homotopie”. Plus
généralement : deux morphismes de R-algebres wo,uy; : A — B sont dits “ho-
motopes” lorsqu’il existe un morphisme de R-algébres h : A — BI[T] tel que
p;oh =wuy, ou p; : B[T] — B est la surjection de B-algebres qui fait correspondre
p; : T+ i. En d’autres termes, on a un diagramme commutatif :

BI[T] T T
/ Do | P I’OI Ipl
A +> B 0 1

2.2.2. Théoréme. Soit A une R-algébre lisse. Deur morphismes de R-algébres
ug,uy : A — B, dont les réductions modulo I sont homotopes (par exemple
égales), sont homotopes au voisinage étale de I intersection compléte prés.
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Démonstration. Considérons les morphismes de R-algebres p: B[T] — B @ B et
¢ : A — B ® B définis respectivement par p(P(1T)) = (P(0), P(1)) et ¢(a) =
(uo(a), ui(a)). L’homomorphisme p est surjectif de noyau K = (T(1-T')) et 'on a

foh = & pour toute homotopie h : A — B[] entre @ et @;. Le théoréme apparait

alors comme cas particulier du théoreme 2.1.2 appliqué & A . Ba B« BT
eta h: A— B[ O

3. Relevements et complétion I-adique

Dans cette derniere section, I’anneau R est supposé noethérien.

3.1. Complétion I-adique

On munit R de la topologie I-adique et I’on note Rle complété séparé I-adique
de R. Une R-algébre A est considérée munie de la topologie I-adique et A désigne
le complété séparé de A pour cette topologie. Notons, pour chaque m € N, A, 1=
A/I™ A. L’algtbre A est isomorphe & la limite du systéme projectif défini par
les surjections canoniques v, 1(A) : A, 1 — A,,. Ona A = A/(I.A) =
A, /(I-A,) = A/(I-A). Pour tout morphisme de R-algébres o : A; — Ay, on
note & : :41 — :42 le morphisme induit.

Les correspondances A ~ A et a ~ & définissent un foncteur de “complétion”
de Alg(R) vers la sous-catégorie pleine Alg. (R) des R-algebres I-adiquement
completes et séparées.

3.2. Complétion I-adique faible

Pour toute R-algebre A, Monsky et Washnitzer définissent dans [MW] Dalgebre
A" des éléments z € A admettant une représentation comme somme infinie :

z = ijo D@55 48 ) (*)

(Pentier n et les éléments x4, ..., z, sont fixes et indépendants de j, ils dépendent
uniquement de z) dans laquelle :

e 1y,...,x, €A,
® p; € I.R[X,...,X,], pour tout j € N;
deg p;

e ’ensemble { }jen est borné.

Jj+1

3.2.1. Définition ([MW]). Une R-algebre A est dite “faiblement compléte”
lorsque l'application canonique A — Al est bijective. Une R-algebre faiblement
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complete A est dite de “type fins” lorsqu’il existe un sous-ensemble fini S C A tel
que A est I'unique sous-algebre faiblement complete de A qui contient S.

On notera Alg;.(R) (resp. Alg..;(R)) la sous-catégorie pleine de Alg(R) dont
les objets sont les algebres faiblement completes (resp. de type fini).

3.2.2. Théoréme ([MW]). Pour toute R-algébre (de type fini) A, Ualgéhre Al
est faiblement compléte (de type fini).

3.2.3. Théoreme ([MW]). Pour toute R-algébre A et tout entier positif m,
Vapplication canonique AJ(I™-A) — AT/(I™ AT) est un isomorphisme.

3.2.4. Théoréme ([MW]). Pour tout morphisme de R-algébres oo : A — B, il
existe un et un unique morphisme ot - AT = BT compatible & o. Le morphisme
ol est la restriction de @ : A — B.

Les correspondances A ~ AT et o ~» af déterminent donc un foncteur de
“complétion faible” qui factorise le foncteur de réduction modulo I (et méme I™,
pour tout m), et qui factorise également le foncteur de complétion.

1. A
Alg(R) o Alge(R) ~n Alg, (R)

S O

Alg(R)

Les probléemes de relevements que nous avons étudiés dans les sections précé-
dentes se posent maintenant pour la réduction modulo I de Alg  (R) (resp. de
Alg;.(R)) vers Alg(R).

Rappelons que pour toute R-algebre lisse A, la catégorie Alg  (R) contient les
relevements formels A™ de [SGA4] (cf. rem. 1.4.2). Lorsque en plus A est une
R-algebre lisse qui releve A, sa complétion A (resp. AT) appartient & Alg (R)

(resp. Alg.;(R)) et releve également A (3.2.3). Tous ces relevements sont I-
formellement lisses.

3.2.5. Proposition. L’anneau R étant neethérien, soit : ¢ : A — B un mor-
phisme plat (par exemple lisse) de R-algébres dont la réduction & : A — B est
un 1somorphisme. Alors :

a) Le morphisme o : A— B est bijectif.
b) Si BT est faiblement compléte de type fini, ol Al — BT est bijectif.

Démonstration. Les applications induites par ¢ :

I"A (» I™B
Yy = prtlg
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sont des isomorphismes pour tout m puisque 1’on a :

maA  I"A B = ImA B = I"B
Im+1A = Im+1A ®Z = Im+1A ®A = Im+1B
grace a la platitude de B sur A. On en déduit, par un argument inductif sur m,
que les applications :

A B
M T"A = I'B
sont bijectives pour tout m et (a) est démontrée.
Dans (b), I'injectivité de ! résulte de celle de @ (3.2.4) et sa surjectivité est
conséquence du théoreme 3.1 de [MW] qui affirme que sur une algébre faiblement
complete de type fini, un systeme de générateurs modulo I est générateur. ([l

3.3. Relévements trés lisses

La propriété d’algebres suivante a été introduite par Monsky et Washnitzer dans

[MW]. Notons Alg, (R) I'une des catégories Alg (R), Alg;.(R), Alg;..;(R).

3.3.1. Définition. Une algebre A € Alg, (R) est dite “trés lisse dans Alg, (R)”
lorsque les deux conditions suivantes sont vérifiées :

o L’algebre A est lisse sur R.

e Pour toute paire de morphismes de R-algebres B —2» C <~ A, o B,C €
Alg, (R) et p est surjectif (de noyau arbitraire), et pour chaque morphisme de
R-algebres h : A — B vérifiant & = o h, il existe un relévement h: A — B
de h, tel que ¢ =poh.

A B A—'-B Ariites B
xpl + x’l — Xpl
c c c

Le théoreme 2.1.2-(b) affirme que toute R-algebre lisse vérifie I'analogue
algébrique (modulo des voisinages étales) de la propriété ci-dessus. Ce théoreme
permet de répondre a la question de Monsky et Washnitzer qui demandaient dans
[MW] si une R-algébre lisse admettait des relevements tres lisses dans Alg, (R).

3.3.2. Théoréme. Soit R un anneau ncethérien.

a) Toute algébre dans Alg.(R) qui est I-formellement lisse est trés lisse dans
Alg (R). Une R-algébre lisse admet des relévements trés lisses dans Alg  (R).
Deuz relévements trés lisses dans Alg (R) d’une méme R-algébre lisse sont
isomorphes.
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b) Soit A une R-algébre lisse. Pour tout relévement A de A, lisse sur R, Ualgébre
AT est un relévement trés lisse de A dans Algg (R). Pour tout autre relévement
A’ de A, lisse sur R, les algébres AT et A'" sont isomorphes.

Démonstration.

a) Soit A un relevement R-lisse de A. Par complétion du théoreme 2.1.2-(b)
appliqué & A et & B,C € Alg (R), l'algebre A est tres lisse moyennant le fait
que la complétion du voisinage étale £ : B — B, est un isomorphisme (3.2.5).
Deux tels relevements sont isomorphes puisque I-formellement lisses complets
et séparés (1.4.2).

b) En raisonnant comme dans (a), on montre par complétion faible de 2.1.2-(b) que
AT est tres lisse dans Alg;.,;(R) (donc dans Alg;.(R)). Le reste de lassertion
est le th. 3.3 de [MW]. O

Nous énoncons, pour terminer, les analogues des théoremes 2.1.3 et 2.2.2 pour
les relévements tres lisses (les démonstrations en sont identiques). On note Alg, (R)
I'une des catégories Alg (R), Alg;.(R).

3.3.3. Définition. Soit B € Alg,(R). Notons B(T") la complétion de ’algebre
des polynémes B[T] dans la catégorie Alg,(R) et soient pg,p1 : B{T) — B les
morphismes de B-algebres déterminés respectivement par les égalités po(7T) = 0 et
p1(T) = 1. Soit A € Alg,(R) et up,u1 : A — B deux morphismes de R-algebres.
On appelle “homotopie de u vers v dans Alg,(R)” la donnée d'un morphisme de
R-algebres h: A — B(T) tel que u=ppohetv=p;oh.

3.3.4. Théoréme. Soit R un anneau nethérien et soient A, B € Alg,(R), ot A
est trés lisse. Alors :

a) Tout morphisme @: A — B admet un relévement u: A — B.

b) Pour toute paire de morphismes de R-algébres ug,u; : A — B, dont les
réductions modulo I, wg,u; : A — B, sont homotopes, les morphismes ug
et uy sont homotopes dans Alg, (R).

3.4. La cohomologie de Monsky—Washnitzer

Dans cette partie le couple (R, I) est constitué d’un anneau de valuation discrete
de caractéristique nulle R et de son idéal maximal I := (7). On note k := R/I le
corps résiduel et K le corps de fractions de R.

En 1968, dans l'article [MW], Monsky et Washnitzer posent les fondements
pour une théorie cohomologique a la de Rham a coefficients dans le corps K pour
les schémas lisses sur k. L’une des premieres difficultés que rencontre la théorie est
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celle du relevement plat sur R d’une algebre lisse sur k. Inspirés par les travaux de
Grothendieck de [G] (1959), les auteurs sont emmenés & considérer les relevements
formels A d’une k-algebre lisse A donnée. Ce sont des R-algebres complétes et
séparées qui relévent A et qui sont deux & deux isomorphes (1.4.2).

Lorsque A est un relevement lisse sur R de A, le complété séparé A =
lim,,, A/(7"™) est m-formellement lisse et 'on a A% ~ A. Monsky et Washnitzer
considerent alors la sous-algebre A C A (3.1), posent :

_ Qi
ol 0 désigne I’adhérence de 0 pour la topologie m-adique, et introduisent le “com-
plexe de de Rham”

QAL K) = Ny AT K) (%)

de différentielle induite par celle du complexe de de Rham Q*(?l; IAQ) et dont ’ho-
mologie est le candidat proposé par les auteurs pour la “cohomologie (de de Rham)
I-adique de A”.

Mais pour que cette définition ait un sens intrinseéque par rapport a la donnée
de A, on est amené & vérifier que les morphismes entre deux R-algebres lisses A
et B se relevent en des morphismes entre A' et BT et que deux tels relevements
définissent un méme morphisme entre les homologies des complexes (x) associés.
Monsky et Washnitzer avaient remarqué que ces propriétés découlaient de “l’exis-
tence des relévements trés lisses dans la catégorie Alg,.(R)” (cf. 3.3.4). C’est un
point que I’article [MW] n’avait pas réglé en dehors du cas, pour 'essentiel, ol A
est une k-algebre intersection complete lisse, ce qui suffisait pour les applications
que les auteurs avaient en vue.

Dans Particle [E], paru en 1973 et qui concerne les algébres sur un couple
(R, I) neethérien hensélien, Elkik prouve qu'il existe des relevements lisses sur R
pour toute R-algebre lisse, mais n’aborde pas le probleme des relevements des
morphismes (et de leurs homotopies) dont I’existence sera établie ultérieurement
a l'aide du théoreme d’approximation d’Artin ([A, B]) (cf. [vdP]). En effet, bien
que pour tout morphisme de R-algebres h : A — B et tous relevements A et
B, lisses sur R, de Aet B respectlvement la restriction dun relevement formel
h°° A — B i la sous- algebre A" ne soit pas nécessairement & valeurs dans BT
le théoreme d’Artin affirme qu’il existe une approximation h' : Al — Bt de h°°
modulo I. Dans cette approche, qui est I’approche habituelle aujourd’hui, les pro-
priétés des relevements tres lisses dans Alg; (R) sont établies par approximation
des relévements formels. Une des motivations de ce travail a été de supprimer a la
fois ce type de relevement et 1'utilisation du théoreme d’Artin.

Rappelons pour terminer que méme si 1’on sait que le relevement Al est tres
lisse, pour qu’une correspondance de la forme :

A~ Hip(A;K) = h*(oﬁﬁo(AT;K) s ﬁl(AT;K) TN _>) (o)
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constitue un foncteur défini sur la catégorie des k-algebres lisses, il est encore
nécessaire de prouver que deux morphismes homotopes entre deux algebres tres
lisses dans la catégorie Alg;..;(R) induisent un méme et unique morphisme entre
les homologies des complexes (o) associés. C’est ce qu’affirme le théoréme d’homo-
topie de Monsky—Washnitzer (th. 5.5 [MW]) sous I'hypothese que le couple (R, I)
est un anneau de valuation discrete de caractéristique nulle.
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