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Commentarii Mathematici Helvetici

Embedding and knotting of °at compact surfaces in 3-space

Peter R¿gen

Abstract In 3-space any compact surface with nonempty boundary is isotopic to a °at zero
Gaussian curvature surface and two such °at surfaces are isotopic through °at surfaces if and
only if they are isotopic through ordinary surfaces Hereby the isotopy classes of °at surfaces

are in one-to-one correspondence with the isotopy classes of ordinary surfaces which have no
constraint on their curvature Applied to Seifert surfaces we get: Any simple closed space curve
can be deformed until it bounds a °at orientable surface

Mathematics Subject Classi¯cation 2000 58D10 53A05

Keywords Isotopy classes of °at compact surfaces in 3-space developable surfaces Seifert
surfaces

1 Introduction

A °at surface in euclidean 3-space is an embedded surface with zero Gaussian
curvature everywhere The main result of this paper Theorem 13 is that the

isotopy classes of °at surfaces are in one-to-one correspondence with the isotopy
classes of ordinary surfaces which have no constraint on their curvature Theorem
13 is the °at analogue of the main theorem in [3] by Herman Gluck and Liu-Hua

Pan

Theorem 1 H Gluck and L -H Pan [3] a In 3-space any compact orientable
surface with nonempty boundary can be deformed into one with positive curvature
b Any two such surfaces with positive curvature can be deformed into one another

through surfaces of positive curvature if and only if they can be deformed into one

another through ordinary surfaces preserving their natural orientations

At the end of this paper we discus the analogous problem concerning compact
negatively curved surfaces with nonempty boundaries This elaboration leads to
Conjecture 14 that describes the isotopy classes of compact negatively curved
surfaces with nonempty boundaries

It is well known that a closed compact °at complete surface embedded in 3-
space does not exist even though the torus has a °at metric However part a
of Theorem 13 ensures that a °at surface exists in every isotopy class of compact
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surfaces with nonempty boundary Hence the nonempty boundaries allow °at
surfaces in 3-space to be arbitrarily knotted and twisted For instance a torus

with one hole may be embedded as a °at surface in 3-space with any knot tied on
it This explains the title of this paper Part b of Theorem 13 ensures that any
two isotopic °at surfaces are isotopic through °at surfaces

A simple closed curve in 3-space bounds an orientable compact embedded sur-
face that is a Seifert surface By part a of Theorem 13 this surface is isotopic
to a °at surface The boundary of this °at surface has the same knot type as the

given curve Hence an immediate consequence of Theorem 13 is
Corollary 2 Any simple closed space curve can be deformed until it bounds an
orientable compact embedded °at Seifert surface

Corollary 2 leaves open the possibility that any simple closed space curve

bounds a °at surface In a coming paper by the author it will be shown that
this is not the case and furthermore a set of necessary and in a weakened sense

su±cient conditions for a knot or link to generically bound a °at immersed surface

without planar regions will be given
The strategy of the proof of Theorem 13 is: A compact connected surface with

nonempty boundary deformation contracts to a \topological" spine that is to a

¯nite number of simple closed curves in 3-space that all intersect in one common
point See Figure 1 Under isotopy of an embedded surface through embeddings

a topological spine is mapped to topological spines of all surfaces in the isotopy
By a small deformation it may be assumed that topological spines do not intersect
the boundaries of the surfaces on which they lie

Consider a MÄobius strip and an orientable cylinder in 3-space The topological
spines of each of these two surfaces consist of one simple closed curve in 3-space If
two such curves represent the same knot type then the two topological spines are

isotopic but the two surfaces are not isotopic In order to tell if two surfaces with
isotopic spines are isotopic we attach the number of times the surface \twists"y

around each closed curve in a topological spine to this closed curve

De¯nition 3 Let r be a simple closed curve on an embedded surface S in 3-space

Let N" r ½ S be a tubular neighbourhood of radius " > 0 of r in S and let the

orientations of r and each component of @N" r be given by a preferred direction
of traversion of N" r Then the MÄobius twisting number Mtn r; S for " > 0
su±ciently small is given by Mtn r; S 1

2 link r; @N" r
In the above de¯nition link r; @N" r is the total linking number between r

and the link @N" r that is link r; @N" r is the sum of the linking numbers

between r and all one or two components of @N" r Reversing the preferred
direction of traversion of N" r reverses the orientation of r and of each component
of @N" r Hereby the linking number s between these curves are unchanged

y The de¯nition of this \twisting number" is given in [7] where it is denoted \the twisting
number" To avoid con°ict with the \twist" from \link twist+writhe" we here introduce the
phrase \MÄobius twisting number" and the notation Mtn for the in [7] introduced \twisting
number"
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The MÄobius twisting number is thus independent of the direction of traversion of
N" r used to de¯ne it As the linking number is invariant under ambient isotopy
an immediate consequence of De¯nition 3 is

Proposition 4 The MÄobius twisting number of a simple closed curve on an em-
bedded surface in 3-space is invariant under isotopy through simple closed curves

on the surface and invariant under isotopy of the surface through embedded sur-
faces in 3-space

Consider a tubular neighbourhood of one closed curve in a spine of a surface

that is a closed strip In [7] it is proven that a closed strip in 3-space is up
to ambient isotopy given by the knot type and the MÄobius twisting number of a
simple closed curve traversing the strip once A given surface may be reconstructed
by gluing together such tubular neighbourhoods of each closed curve in a spine It
follows that if two surfaces have isotopic spines and the MÄobius twisting numbers

of the corresponding closed curves in each spine are equal then the two surfaces

are in fact isotopic Topologically the isotopy classes of compact surfaces with
nonempty boundaries may be described as follows

Proposition 5 The isotopy class of compact surface with nonempty boundary
is determined by the isotopy class of a spine of the surface with MÄobius twisting

numbers attached to each closed curve in the spine

In [3] surfaces of positive curvature are considered and the natural choice of
\twisting number" is the self-linking number of each loop in the spine The self-
linking number of a given curve is the linking number between the given curve and
a curve obtained by slightly pushing the given curve along the principal normals
see eg [6] When restricted to positive curvature surfaces the MÄobius twisting
number given by De¯nition 3 agrees with the self-linking number Curves on °at
surfaces may have vanishing curvature and worse °at surfaces may be unori-
entable Hence in the case of °at surfaces the self-linking number can not be

used as a \twisting number"
Given a curve on a surface the envelope of the tangent planes of the surface

along the curve de¯nes when regular a °at surface Neighbourhoods of this curve

on the two surfaces are isotopic through the normal exponential map on either of
the two surfaces However the above envelope fails to give a regular surfaces if
the tangent of the curve is in an asymptotic direction on the surface This is e g

the case on the left hand side of Figure 3 For the positive curvature surfaces

considered in [3] this construction always works but only isotopies of orientable
°at surfaces may be constructed this way

Let S0 and S1 be two °at surfaces isotopic through °at surfaces let a0 be a
closed curve on S0 and denote a0's image on S1 under this isotopy by a1 If a0 and
a1 both have non-vanishing curvature they need not have the same self-linking
number If not then in the curve isotopy from a0 to a1 there is at least one curve

with one point of zero curvature At this point this curve is in an asymptotic
direction on the corresponding surface Even from an isotopy of °at surfaces it



592 P R¿gen CMH

Figure 1 A °at model surface built on a slightly modi¯ed spine The original \topological"
spine is indicated by dotted arcs The two closed strips are a plus three twisted right-hand
trefoil knot and a plus one half twisted unknot MÄobius strip

is thus in general not possible to rebuilt the surfaces as envelopes of the tangent
planes along curves

To avoid problems with the asymptotic directions the procedure taken here is
to ¯rst unwind the asymptotic directions rulings along the curves in the spines

as shown on ¯gure 3 for then to construct the main part of the isotopies of °at
surfaces such that the asymptotic directions rulings never are in the directions

of the curves of the spines Hereby a neighbourhood of each curve in a spine can
be parametrized as a globally ruled °at strip

A °at model surface is shown in Figure 1 Let p be the point of intersection
of the closed curves in a topological spine Then a °at model surface built on
this spine is planar in a region containing p in its interior By Proposition 4 the

MÄobius twisting number is invariant under isotopy through simple closed curves

on the surface Hence the simple closed curves of a spine may be chosen freely on
the planar region of a model surface Each closed curve in the spine is an axis of
a °at globally ruled strip coinciding with the planar region such that the closed
curve has the desired MÄobius twisting number with respect to this ruled strip The

planarity of the region containing p makes it possible to glue the strips and this
planar region together to make a regular surface

For some closed curves the MÄobius twisting numbers they can have on globally
ruled °at surfaces are bounded form above from below or both from above and
below This is proven in the next section which also shows a way to deform a given
curve isotopy such that any MÄobius twisting number of °at globally ruled surfaces

is obtainable
Making the construction of °at model surfaces su±ciently canonical an isotopy

of °at model surfaces through °at model surfaces is obtained from an isotopy of a
spine with MÄobius twisting numbers attached Hereby any given surface isotopy
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induces a °at model surface isotopy The main result of this paper then follows

by proving that any compact surface with nonempty boundary is isotopic to a

°at model surface and that if the given surface is °at then there is an isotopy
through °at surfaces to a °at model surface Hence a crucial step for the proof of
Theorem 13 is to construct su±ciently canonical globally ruled °at strips This is
done in the following section

2 Flat closed strips in 3-space

A closed strip in 3-space is an embedding of the MÄobius strip or the orientable
cylinder both with boundary into 3-space In [4] it is proven that except for
the §1 2-twisted unknotted MÄobius strips the isotopy class of a closed strip is
uniquely given by the knot type of its boundary or by the oriented link type of its

boundary in case of orientable closed strips

Proposition 6 Let r be a simple closed space curve Assume the curvature of
r vanishes only on a ¯nite set of intervals and points and assume the limit of
the torsion of r vanishes wherever curvature vanishes Then the following two
statements are equivalent

For any half integer t the curve r is an axis of a °at ruled surface St such
that Mtn r; St t

The torsion of r takes both signs

Furthermore we may choose two intervals I+ and I¡ with positive resp negative

torsion on which the rulings are steered and on the remainder of r the rulings may
be chosen orthogonal to r
Remark 7 From the proof of Proposition 6 below it follows that on an interval
with orthogonal rulings these rulings are uniquely given when one ruling is speci¯ed

in one point Hereby Proposition 6 gives a for our purpose su±ciently canonical
construction of °at globally ruled closed strips For related results see [1]

Before proceeding with the proof of Proposition 6 we need to introduce some

notation and to do calculations leading to Equation 2 5 that steers the possible
choices of vector ¯elds giving °at ruled surfaces along a given axis Let r : R LZ
R3 be a closed space curve parametrized by arc length s and let v be a choice of
trivialization of the normal bundle i e a closed unit normal vector ¯eld v along

r such that link r; r + "v 0 for " > 0 su±ciently small If t denotes the unit
tangent vectors to r and u t £ v then ft; v; ug is an orthonormal basis for R3

for each point on r By orthogonality there are Frenet like equations

t0 av +bu
v0 ¡at +cu
u0 ¡bt ¡cv

;

where primes indicate di®erentiation with respect to s and a; b; c : R LZ R are

periodic functions
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A ruled surface with r as axis is given by f s; t r s + tq s for some vector
¯eld q along r This surface is regular if

0
6

@f s; t
@s £

@f s; t
@t t s + tq0 s £ q s :

Along r that is for t 0 this gives @f s;0
@s £

@f s;0
@t t s £ q s By continuity

and compactness the ruled surface is regular in a neighbourhood of r if q is never
parallel to the tangents to r Hereby q may be written as

q ®t+ cos µv + sin µu

where ®; µ : R LZ R are cylinder coordinates see Figure 2 Using these co-
ordinates the ruled surface closes up if and only if there exists an integer p such
that µ L ¡ µ 0 ¼p and ® L ¡1 p® 0 As link r;r + "v 0 for " > 0
su±ciently small the axis r has MÄobius twisting number Mtn r; f p 2 on such
a ruled surface

As @
2f

@t2 0 the Gaussian curvature K ¡m2

j
@f
@s£

@f
@t j

2 ¡h @2f
@s@t

@f
@s

@f
@t i

j
@f
@s£

@f
@t j

2 is zero if

and only if 0 h @
2f

@s@t
@f
@s

@f
@ti [q0 t+ tq0 q] [t q q0] t ¢ q £ q0

q0 ®0t + ®av + ®bu¡ µ0 sin µv ¡ a cos µt + c cos µu
+ µ0 cos µu¡ b sin µt¡ c sin µv

0 [t q q0]

¯̄̄
¯̄̄

1
0 cos µ ®a ¡ µ0 sin µ ¡ c sin µ
0 sin µ ®b + µ0 cos µ + c cos µ

¯
¯
¯
¯
¯
¯

®b cos µ + µ0 + c ¡ ®a sin µ

m

µ0 ® a sin µ ¡ b cos µ ¡ c

We can rewrite t0 setting a · cos Á and b · sin Á See Figure 2 For · > 0

the angle Á is well-de¯ned up to an integral multiple of 2¼ This gives

µ0 ®· sin µ cos Á ¡ cos µ sin Á ¡ c ®· sin µ ¡ Á ¡ c: 2 1

The famous formula: link equals twist plus writhe holds if curvature has zeros

[5] The linking number between r and r + "v is chosen to be zero So it follows

that
Tw r; v

1

2¼
Z

L

0
v s 0

¢ u s ds
1

2¼
Z

L

0
c s ds ¡Wr r :

For ® ´ 0 and µ constant Equation 2 1 yields that the ruled surface given by
r s +t cos µ v s +sin µ u s is °at if and only if c ´ 0 Let ~v be the unique unit
normal vector ¯eld along r such that ~v 0 v 0 and ~v has c ´ 0 Note that in
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v

u

b Á

n

µ

q¡ ®t

t0 ·n

Figure 2 The Frenet frame and the projection q¡ ®t of the ruling q in the normal plane
spanned by the frame v u

general ~v does not close up since ~v is twisted Tw r; v less than v Using this new
non-closed frame ~v and setting ~u t£ ~v we obtain q ®t+ cos µv + sin µu

®t + cos ~µ~v + sin ~µ~u and
~µ0 ®· sin³~µ ¡ ~Á´ : 2 2

A necessary and su±cient condition for the °at surface to close up and to have

MÄobius twisting number Mtn r; f p 2 for a given p 2 Z is that
~µ L ¡ ~µ 0 p¼ ¡Wr r and ® L ¡1 p® 0 : 2 3

We need to describe the frame ~v using the Frenet Apparatus For this let I be

an interval where r has positive curvature By orthogonality ~v may be written as

~v cos vn + sin vb and the Frenet equations give

~v0 ¡v0 sin vn + cos v ¡·t + ¿b + v0 cos vb¡ ¿ sin vn:

The ruled surface with r as axis and ~v as rulings is °at if and only if
0 c [t ~v ~v0]

¯̄
¯̄
¯̄

1
0 cos v ¡v0 sin v ¡ ¿ sin v
0 sin v ¿ cos v + v0 cos v

¯
¯
¯
¯
¯
¯

¿ + v0

Hence on the interval I where r has positive curvature the vector ¯eld ~v is given
by

~v s cosµ¡ Z
s

s0

¿ s ds + kI¶n s + sin µ¡ Z
s

s0

¿ s ds + kI¶b s 2 4

for some constant kI On a straight segment of r where r has zero curvature a
similar calculation shows that the vector ¯eld ~v is constant on this segment By
the assumption that torsion vanishes whenever curvature vanishes the vector ¯eld



596 P R¿gen CMH

~v is C1 along r From the equations

t0 ·n

· cos ~Á~v + · sin ~Á~u

· cos ~Á µcos µ¡ Z ¿ s ds + kI¶n + sin µ¡ Z ¿ s ds + kI¶b¶

+ · sin ~Áµ¡ sinµ¡ Z ¿ s ds + kI¶n + cos µ¡ Z ¿ s ds + kI¶b¶

it follows that
1 cos ~Á cos µ¡ Z

s

s0

¿ s ds + kI¶¡ sin ~Á sin µ¡Z
s

s0

¿ s ds + kI¶

cos µ~Á¡ Z
s

s0

¿ s ds + kI¶ :

Hence

~Á s Z
s

s0

¿ s ds¡ kI modulo 2¼:

Thus if · > 0 on I then for s 2 I Equation 2 2 may be written as

~µ0 s ® s · s sin µ~µ s ¡ Z
s

s0

¿ s ds + kI¶ : 2 5

If · 0 then ~µ0 0 and ~v0 ~u0 0

Proof of Proposition 6 The strategy for constructing °at ruled strips in the fol-
lowing is to freely choose ® whereby ~µ is given by Equation 2 5 and an initial
value of ~µ If ¿ > 0 on some interval I+ then by a proper choice of ® ~µ can
decrease arbitrarily much on this interval and if ¿ < 0 on an interval I¡ then ~µ
can increase arbitrarily much on this interval Assuming the torsion takes both
signs such intervals I+ and I¡ may be chosen not to contain 0 Choosing ® 0
on [0; L] n I+ [ I¡ the angle ~µ is constant on [0; L] n I+ [ I¡ By controlling ®
on I+ and I¡ the desired di®erence see 2 3 ~µ L ¡ ~µ 0 p¼ ¡Wr r can be

obtained for any p 2 Z and ® L ¡1 p® 0 0 is trivially ful¯lled On the

other hand if the torsion of r has constant sign then the possible MÄobius twisting
numbers are as a consequence of Equation 2 5 bounded either from above or
from below

Consider an isotopy between two closed curves such that all curves in this
isotopy possess points with both positive and negative torsion Proposition 6
ensures that for any given MÄobius twisting number each curve in this isotopy is
an axis of a globally ruled closed strip giving the desired MÄobius twisting number
This will be made into an isotopy of °at closed strips below This construction
is the cornerstone in the proof of the following lemma As mentioned in the
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Figure 3 Left an unavoidable non transversal intersection between curve and rulings Right a
local deformation of the surface pulling the label o® the bottle such that the deformed
surface can be locally parametrized as a ruled surface

introduction this lemma is crucial for the proof of Theorem 13 and it was posed
as a question to the author by Herman Gluck

Lemma 8 Two °at closed strips in 3-space are isotopic through ordinary closed
strips in 3-space if and only if they are isotopic through °at closed strips

Proof Let Hu u 2 [0; 1] be an isotopy between two °at closed strips H0 and
H1 and let ai ½ Hi be a topological spine of Hi i 0; 1 Closed strips may by
contracting the boundaries be considered as neighbourhoods of their spines

Sublemma 9 A neighbourhood of ai on Hi can possibly modulo an isotopy of
Hi be parametrized as a globally ruled °at surface with ai as axis I e ai is
transversal to the rulings of Hi

Proof By the characterization of °at surfaces given in [8] the surface Hi is piece-
wise ruled That is on a compact subset of Hi namely the closure of the set of
points called parabolic points where one of the principal curvatures is non-zero
rulings are given by the zero principal curvature directions We call these the

ruled regions The remainder of Hi consists of planar points i e points with both
principal curvatures equal to zero and is indeed a union of planar regions Within
a neighbourhood of a curve a planar region can be parametrized as a ruled surface

with this curve as axis The only restriction is that the rulings must be chosen in
the plane de¯ned by the region and the rulings may not cross the tangents to the

curve in order to get a regular surface containing the curve

The ruled regions of Hi form a compact set Hence the spine ai may be

chosen such that ai has transversal intersections with the rulings except in a ¯nite

number of points Figure 3 shows why non-transversal intersections are in general
unavoidable and it indicates how this problem may be avoided by a slight isotopy
that makes the surface planar in a neighbourhood of a non-transversal intersection
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Let q be a point of non transversal intersection between a ruling and a spine

The parabolic points are dense in the ruled regions of Hi Hence perhaps by a
slight deformation of ai the point q may be assumed to be a parabolic point on
Hi

Consider the unique curve c on Hi through q c 0 and orthogonal to the

rulings Let v be a vector ¯eld along c giving the directions of the rulings of the

surface In a neighbourhood of q the surface is given by f s; t c s + tv s

¡" · s · " The curve ai is locally given by f g t ; t where g 0 0 g0 0 0
and it may be assumed that g00 0 < 0 As q is a parabolic point one of the

principal curvatures k 6 0 By the choice of the curve c this curve has curvature

greater than or equal to jkj at the point q Consider the plane P through q
orthogonal to the ruling through q and the projection of c onto P ¼ c An isotopy
of a neighbourhood of q on c to ¼ c along normals to P can be constructed using
a partition of unity As ¼ c has curvature jkj > 0 at q non-vanishing curvature is
preserved during this isotopy Hereby the torsion vanishes on this neighbourhood
Within the plane P the projection ¼ c is made straight in a smaller neighbourhood
of q

An isotopy as constructed in the proof of Proposition 6 of Hi that makes Hi
planar in a region containing q in its interior can be constructed using the rulings

given by vu ¡" v ¡" vu is orthogonal to cu and the ruled surface given by
fu s; t cu s + tvu s is °at By compactness of Hi this isotopy can be assumed
to go through embeddings

On the deformed part of the surface now given by f1 s; t c1 s + tv1 s
the curve given by t 7 f1 g t ; t lies in a plane for t in a neighbourhood of zero
Note that since the parametrization of this curve is ¯xed with respect to axes

and rulings all transversal intersections have remained so during the constructed
isotopy In the constructed planar region rulings may be chosen such that they
are all transversal to the curve See Figure 3 A neighbourhood of the curve given
by t 7 f1 g t ; t on the isotoped surface may thus be parametrized as a ruled
surface with this curve as axis

By such local isotopies that only concern neighbourhoods of the non transversal
intersections between ai and the rulings of Hi a curve ~ai on fHi is obtained such
that a neighbourhood of ~ai on fHi can be parametrized as a globally ruled surface

with ~ai as axis Note that on a °at globally ruled MÄobius strip the rulings globally
are only projectively well-de¯ned

Sublemma 10 The axis ai of Hi can possibly modulo an isotopy of Hi be

assumed to have non-vanishing curvature

Proof Recall that the curvature of ai as space curve · the geodesic curvature ·g
and the normal curvature ·n ful¯ll the equation ·2 ·2

g
+ ·2

n By Sublemma 9

ai is transversal to the rulings of Hi So the normal curvature ·n s is zero if and
only if ai s is a planar point Hence the curvature of ai vanishes if and only if
ai has zero geodesic curvature in a planar point of Hi
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Figure 4 An unavoidable vanishing of curvature of spines on a planar region of a °at surface

First consider the case that ai has zero curvature in ai s and that ai s
does not lie in the interior of a planar region of Hi By a local isotopy of ai on Hi
through axes of Hi the zero of ai's geodesic curvature can be moved to a parabolic
point giving ai non-vanishing curvature at ai s

Otherwise ai has zero curvature in ai s and a neighbourhood of ai s on Hi
consists of planar points only See Figure 4 Let R denote the planar region of Hi
containing ai s and let P be the plane containing R Deforming ai on R it may
be assumed that the geodesic curvature of ai vanishes in a ¯nite number points

only Let ai s denote one of these points Deforming along the normals to P
and thus ¯xing the projection of ai onto the plane P a neighbourhood of ai s
on Hi may be lifted through cylinder surfaces to make the normal curvature of
the deformed ai at ai s non-zero As the projection of the deformed surface into
the plane P only has vanishing curvature at the point ai s this ¯nally gives ai
non-vanishing curvature everywhere

Sublemma 11 The self-linking numbers of the axes a0 and a1 can possibly
modulo an isotopy of Hi be assumed to be equal

Proof Using an isotopy as constructed in Sublemma 9 it may be assumed that
H0 has a planar region R and by Sublemma 10 it may be assumed that the ai
i 0; 1 have non-vanishing curvature Hereby the self-linking numbers of a0 and
a1 are de¯ned but they need not be equal

Figure 5 shows how to increase the self-linking number by one using an iso-
topy through °at surfaces By interchanging up and down on this ¯gure the

self-linking number is instead decreased by one Hence by inserting a ¯nite num-
ber of \bumps" on the planar region R any given self-linking number can be

obtained

Sublemma 12 The torsion of the axis ai can possibly modulo an isotopy of
Hi be assumed to take both signs preserving non-vanishing curvature and the
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Figure 5 On the top a planar space curve the thick curve together with a curve pushed o®
along its principal normals At the bottom a °at surface obtained by an obvious isotopy of the
above plane through °at surfaces The left bump goes away from the viewer and the right
bump goes towards the viewer The thick curve on the °at surface has positive curvature and
the thin curve is pushed o® along its principal normals The two crossings between these
curves are positive Hence the self-linking number of the thick curve is increased by one

self-linking number of ai
Proof By an isotopy eg as indicated on Figure 5 it may be assumed that Hi
does not lie in a plane Hence there is a region of Hi in which one of the principal
curvatures k is non-zero By Proposition 2 in [8] p 279 the geodesic torsion i e

the torsion of a geodesic curve with unit tangent x see Prop 3 in [8] p 281 is
¿g x k sin µ cos µ where µ is the angle between x and the principal direction
with zero principal curvature As the principal curvature k 6 0 in the considered
region an axis can be isotoped to contain a geodesic segment with positive torsion
and a geodesic segment with negative torsion

By sublemmas 10 and 11 there exists an isotopy between the two axes through
positive curvature curves This fact is due to H Gluck and L -H Pan [3] and is
more detailed described in [2] Denote such an positive curvature isotopy between
the axes ai of Hi i 0; 1 by au s a s; u : S1

£ [0; 1] R3 This curve isotopy
may be assumed to be smooth as it is made by performing a ¯nite number of
smooth versions of Reidemeister moves In particular the non-vanishing curvature

and the torsion vary continuously with the family parameter u
On each curve au consider the osculating plane Pu to the point au 0 By

compactness there is a common "-ball around au 0 in Pu such that the planar
projection of au to Pu is regular and has non-vanishing curvature for all u 2 [0; 1]
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Fixing these planar projections all curves can be isotoped to be planar within an
² 2-ball of au 0 preserving non-vanishing curvature

For " 2 > ± > 0 there is a family Au u 2 [0; 1] of a±ne transformations of 3-
space such that Au au ¡± 0; 0; 0 and Au au ± 1; 0; 0 for all u 2 [0; 1]
and such that Au Pu is the xy-plane Note that the image of a °at surface

under an a±ne transformation is °at Furthermore a±ne transformations map
rulings to rulings Choosing ± > 0 su±ciently small compactness ensures that
the x-axis can be used as a parameter of the pieces of the curves s

7

Au au s
lying in between 0; 0; 0 and 1; 0; 0 Hence locally the curve isotopy is given by
[0; 1] £ [0; 1] 3 x; u 7 x; fu x ; 0 Now all fu are isotoped to be identical for
x 2 [1 3; 2 3] and to give positive curvature on a slightly larger interval Points

with zero curvature may be introduced but as they occur in a plane they do not
disturb the construction of rulings that still remains See Proposition 6 The

constructed planar curve-piece that is identical for all curves in the isotopy is now
rolled onto a cylinder as on Figure 3 read from the right hand side to the left
hand side By the proof of Sublemma 12 the resulting space curve-piece has

both positive and negative torsion which may even be chosen constant on two
sub-intervals using circular helices This common curve segment is referred to as

the §¿ -segment We are now in possession of the requisite axes Hence we need
only specify their rulings to complete the proof

Along the curve s
7

A0 a0 s or just A0 a0 there is a ruling vector ¯eld
q0 parametrizing a neighbourhood of A0 a0 on A0 H0 This vector ¯eld is
given by the image under A0 of the rulings of H0 along a0 Specifying one ruling

q0 s the rulings along A0 a0 may be changed continuously to be orthogonal
to the curve and equal to q0 s at A0 a0 s except for one segment where

A0 a0 has positive torsion and another with negative torsion The existence of
these segments is ensured by Sublemma 12 The twisting of the rulings that occur
during this change is compensated for within these two segments Also the twisting
of the rulings caused by keeping the rulings orthogonal to the isotoped segment
under the isotopy inserting the §¿ -segment is compensated for within these two
segments Fixing the space curve and one ruling outside the §¿ -segment the

rulings may be isotoped to be orthogonal to the curve outside the §¿ -segment
while only compensating inside the §¿ -segment

During the curve isotopy from A0 a0 to A1 a1 with the §¿ -segment inserted
on all curves the rulings outside the §¿ -segment are given by a choice of one

orthogonal ruling in one point of each curve and demanding that the rulings are

orthogonal to the curves and that they give a °at surface Hereby the rulings

at the endpoints of the §¿ -segment vary continuously during the isotopy This
makes it possible to control the rulings on the §¿ -segment to match the boundary
conditions of Equation 2 5

By performing the preparations of the rulings on A0 a0 and the curve itself
\time reversed" on A1 a1 the curve isotopy from A0 a0 to A1 a1 gives rise to a
surface isotopy through globally ruled °at strips from A0 H0 to A1 H1 Pulling



602 P R¿gen CMH

this isotopy back using the a±ne mappings Au the desired isotopy from H0 to H1

through globally ruled °at strips is constructed

3 Flat surfaces in 3-space

We are now ready to prove the main theorem of this paper which implies that the

isotopy classes of °at surfaces are in one-to-one correspondence with the isotopy
classes of ordinary surfaces which have no curvature constraint
Theorem 13 a In 3-space any compact surface with nonempty boundary is
isotopic to a °at surface b Two such °at surfaces are isotopic through °at
surfaces if and only if they are isotopic through ordinary surfaces

Proof Part b Let Su u 2 [0; 1] be an isotopy between two °at compact connect-
eded surfaces with nonempty boundaries In order to prove part b an isotopy
from S0 to S1 through °at surfaces must be constructed

Let s0 ½ S0 be a topological spine of S0 and denote the images of this spine

under the isotopy by su ½ Su Similarly let p0 2 s0 be the intersection point of
the closed curves in s0 and let pu 2 Su be p0's images under the isotopy From
now on only neighbourhoods of the spines su on the surfaces Su are considered

By local isotopies as constructed in the proof of Sublemma 9 it may be as-
sumed that S0 is planar in a neighbourhood of p0 and that S1 is planar in a
neighbourhood of p1 A partition of unity between Su and the tangent plane to
Su at pu makes Su planar in an "-neighbourhood of pu By compactness there is
a common " > 0 such that all the surfaces Su can be locally isotoped through em-
beddings to be planar in an "-neighbourhood of the images of p0 on each surface

Thus it may be assumed that each surface Su is planar in an "-neighbourhood of
pu for a ¯xed " > 0

By Proposition 4 a simple closed curve a on S0 has a MÄobius twisting number
Mtn a; S0 that is invariant under isotopy of a on S0 So the closed curves in the

spine s0 may be chosen freely on the planar "-neighbourhood of p0 of S0 Hence

the spine s0 and thus also its images su each may considered as a planar "-disk
together with a ¯nite number of simple curves aiu starting and ending in pairwise

disjoint points on the boundary of this disk Furthermore each of these curves

has a MÄobius twisting number attached
The idea of this proof is as follows: A surface isotopy is given This isotopy

induces curve isotopies aiu u 2 [0; 1] of the curves in the spine Then an isotopy of
closed °at strips Siu u 2 [0; 1] is constructed such that the aiu's have the required
MÄobius twisting numbers on these °at strips i e for all i and u Mtn ¡aiu; Siu¢
Mtn ¡ai

0; S0¢ Furthermore all the closed °at strips Siu are constructed such that
they coincide with the planar "-neighbourhoods of pu on Su Smoothing the edges

between the closed strips Si
u and the planar "-disks then gives an isotopy between

S0 and S1 through °at surfaces
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Restricting S0 to a neighbourhood of the simple closed curve ai
0 and taking

the image of this set under the given isotopy de¯nes an isotopy between two °at
closed strips Si

0 and Si
1 By Lemma 8 these two °at closed strips are isotopic

through °at closed strips All except for two of the local isotopies see the proof
of Lemma 8 concern only the ruled regions of Si

0 and of Si
1 Hence they do not

change the planar "-disks of these two surfaces The remaining local isotopies

that ensure that neither Si
0 nor Si

1 is contained in a plane and that the self-linking
numbers of their spines are equal can be applied anywhere on these surfaces and
can therefore be kept away from their planar "-disks

The choice of rulings on the globally ruled °at strips in the isotopy between
Si

0 and Si
1 constructed in the proof of Lemma 8 is except for the segments with

positive and negative torsion that can be kept away from the "-disks always

orthogonal to the curves These rulings are speci¯ed by one ruling in one point
of each axis and by demanding that the corresponding ruled surfaces are °at To
each axis we now specify one ruling in a point lying in the planar "-disk such
that this ruling together with the tangent to the axis in this point form an ortho
normal basis of this plane By the orthogonality of the rulings the ruled surfaces

coincide with the planar "-disks This follows from Equation 2 4 as planar curves

have zero torsion
The curves in the spines su are pairwise disjoint outside the "-disks Hence

compactness ensures that a su±ciently small neighbourhood of the spines in the

isotopy of °at surfaces between S0 and S1 now constructed is in fact embedded
By the compactness of S0 it in general consists of ¯nitely many connected com-

ponents The proof given in the connected case carries over to the general case

without changes except that one needs an index corresponding to an enumeration
of the connected components The proof of part b is completed

To prove part a it is as above enough to consider the case that S is connected
Let S be a compact connected surface with nonempty boundary and let s ½ S be a

topological spine of S It may be assumed that S is planar in a neighbourhood N
of the point in which the curves in the spine s intersect Again consider a spine s
of S as a ¯nite number of closed curves ai entering the planar "-disk { each with
a MÄobius twisting number attached

Claim: It may be assumed that each ai has non-vanishing curvature Note

that ai has zero curvature in ai s if and only if the geodesic curvature of ai is
zero in ai s and a0i s is an asymptotic direction Then the proof of this claim is
analogous to the proof of Sublemma 10

We may assume that each ai has a §¿ -segment which is kept away from the

planar part N of the surface S This can be done preserving non-vanishing curva-

ture

A neighbourhood of the curve ai on S is isotopic to a part of the ruled surface

with ai as axis and rulings qi chosen such that they together with the tangents

of ai form ortho normal bases of the tangent planes of S along ai As S may be
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unorientable these rulings are only projectively well-de¯ned Such an isotopy may
be constructed using the normal exponential map and compactness

Each ai now ful¯lls the conditions of Proposition 6 Hence a vector¯eld vi
along ai exists such that the hereby de¯ned surface is °at and such that the

MÄobius twisting number of ai with respect to this surface is the same as the

MÄobius twisting number of the surface de¯ned by ai and qi Furthermore the

vector ¯eld vi may be chosen to equal qi on the planar part N of S

Using the cylinder coordinates as in Proposition 6 the vector¯elds vi and qi
are given by ®vi ; µvi resp 0; µqi By construction the surface isotopy induced
by the vector¯eld isotopy

[0; 1] 3 u 7 u®vi ; uµvi + 1 ¡ u µqi
is the identity on the planar part on S and it makes a neighbourhood of the curve

ai into a °at surface Doing this for each closed curve in the spine of S completes

the proof of part a and hereby the proof of Theorem 13

4 Remark on the isotopy classes of negatively curved surfaces

The isotopy classes of °at surfaces are described by Theorem 13 and the isotopy
classes of positive curvature surfaces are described by Theorem 1 These theorems

raise the question: Is there a result analogous to Theorem 1 and Theorem 13
concerning the isotopy classes of negatively curved surfaces The answer to this
question is in the negative As pointed out below the lack of umbilic points on
negatively curved surfaces subdivide each isotopy class of surfaces containing an
orientable closed strip into countably in¯nitely many isotopy classes of negatively
curved surfaces

By Proposition 5 the isotopy class with no curvature restriction of a compact
surface S with nonempty boundary is determined by the isotopy class of a spine

s of S with a MÄobius twisting number attached to each closed curve Assume S is
negatively curved By negative curvature the principal directions corresponding

to positive resp negative principal curvature de¯ne two smooth line-¯elds along a
closed curve on S in case a tubular neighbourhood of this curve on S is orientable

Assume S containes an orientable closed strip and let s be a spine on S Denote

by ai a closed curve in the spine s - or rather a simple closed smooth curve isotopic
to ai on S such that a neighbourhood of ai on S is orientable The rotation of the

principal directions relative to the tangents of ai when traversing ai once de¯nes

a half integer valued index By continuity this rotational index is independent
of deformations of ai through simple closed curves on S and it is independent of
isotopy of S through negatively curved surfaces

Figure 6 shows parts of two negatively curved ruled surfaces with the same

axis The rulings asymptodic directions are othogonal to this axis on both of
these surfaces There is thus no rotation of the asymptotic directions given by the

rulings with respect to the axis Hence the rotations of the principal directions
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Figure 6 Parts of two negatively curved ruled surfaces with the same axis

with respect to the axis are equal for the two surfaces However the contribu-
tions to the MÄobius twisting number of the axis on the two surface pieces di®er by
one Hence the rotational index is independent of the MÄobius twisting number
Considering isotopy of negatively curved surfaces through negatively curved sur-
faces each closed curve with an orientable neighbourhood in a spine has thus an
index additional to and independent of its MÄobius twisting number This causes

the claimed subdivision of the isotopy classes of ordinary compact surfaces with
nonempty boundary and motivates

Conjecture 14 a In 3-space any compact surface with nonempty boundary
is isotopic to a negatively curved surface b Any two such negatively curved
surfaces S1 and S2 are isotopic through negatively curved surfaces if and only if
there exists an isotopy through ordinary surfaces between S1 and S2 such that for
each simple closed curve with integer MÄobius twisting number on S1 this curve

and its image on S2 under this isotopy have equal rotational indices with respect
to the principal directions on the respective surfaces These indices depend only
on the regular homotopy classes of the curves

The reason why the rotational index does not cause subdivision of isotopy
classes in the case of °at surfaces containing orientable strips or positive curvature

surfaces is that non negatively curved surfaces may have umbilic points planar
regions on °at surfaces Hence the above rotational index is generally not well-
de¯ned on °at or positive curvature surfaces As shown on Figure 3 the isotopies

constructed in this paper use planar regions to unwind the principal directions

rulings such that all rulings are transversal to the axes A similar remark applies

to the positive curvature model surfaces used in [3] where positive curvature strips



606 P R¿gen CMH

are pieced together on a spherical umbilic surface piece Hence even though the

°at model surfaces used here and the positive curvature model surfaces used in
[3] easily can be changed into \negatively curved model surfaces" they can only
produce surfaces with zero net rotation of the principal directions with respect to
each closed curve with an orientable neighbourhood in a spine All other isotopy
classes of negatively curved surfaces have to be treated using other model surfaces

or perhaps using entirely di®erent methods
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