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Embedding and knotting of flat compact surfaces in 3-space

Peter Rggen

Abstract. In 3-space, any compact surface with nonempty boundary is isotopic to a flat (zero
Gaussian curvature) surface and two such flat surfaces are isotopic through flat surfaces if and
only if they are isotopic through ordinary surfaces. Hereby the isotopy classes of flat surfaces
are in one-to-one correspondence with the isotopy classes of ordinary surfaces which have no
constraint on their curvature. Applied to Seifert surfaces we get: Any simple closed space curve
can be deformed until it bounds a flat orientable surface.

Mathematics Subject Classification (2000). 58D10, 53A05.

Keywords. Isotopy classes of flat compact surfaces in 3-space, developable surfaces, Seifert
surfaces.

1. Introduction

A flat surface in euclidean 3-space is an embedded surface with zero Gaussian
curvature everywhere. The main result of this paper, Theorem 13, is that the
isotopy classes of flat surfaces are in one-to-one correspondence with the isotopy
classes of ordinary surfaces which have no constraint on their curvature. Theorem
13 is the flat analogue of the main theorem in [3] by Herman Gluck and Liu-Hua
Pan.

Theorem 1. (H. Gluck and L.-H. Pan, [3]) (a) In 3-space, any compact orientable
surface with nonempty boundary can be deformed into one with positive curvature.
(b) Any two such surfaces with positive curvature can be deformed into one another
through surfaces of positive curvature if and only if they can be deformed into one
another through ordinary surfaces, preserving their natural orientations.

At the end of this paper we discus the analogous problem concerning compact
negatively curved surfaces with nonempty boundaries. This elaboration leads to
Conjecture 14 that describes the isotopy classes of compact negatively curved
surfaces with nonempty boundaries.

It is well known that a closed compact flat complete surface embedded in 3-
space does not exist even though the torus has a flat metric. However, part (a)
of Theorem 13 ensures that a flat surface exists in every isotopy class of compact
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surfaces with nonempty boundary. Hence, the nonempty boundaries allow flat
surfaces in 3-space to be arbitrarily knotted and twisted. For instance, a torus
with one hole may be embedded as a flat surface in 3-space with any knot tied on
it. This explains the title of this paper. Part (b) of Theorem 13 ensures that any
two isotopic flat surfaces are isotopic through flat surfaces.

A simple closed curve in 3-space bounds an orientable compact embedded sur-
face, that is, a Seifert surface. By part (a) of Theorem 13 this surface is isotopic
to a flat surface. The boundary of this flat surface has the same knot type as the
given curve. Hence, an immediate consequence of Theorem 13 is

Corollary 2. Any simple closed space curve can be deformed until it bounds an
orientable compact embedded flat (Seifert) surface.

Corollary 2 leaves open the possibility that any simple closed space curve
bounds a flat surface. In a coming paper by the author it will be shown that
this is not the case and furthermore a set of necessary and in a weakened sense
sufficient conditions for a knot or link to generically bound a flat immersed surface
without planar regions will be given.

The strategy of the proof of Theorem 13 is: A compact connected surface with
nonempty boundary deformation contracts to a “topological” spine, that is, to a
finite number of simple closed curves in 3-space that all intersect in one common
point. See Figure 1. Under isotopy of an embedded surface through embeddings,
a topological spine is mapped to topological spines of all surfaces in the isotopy.
By a small deformation it may be assumed that topological spines do not intersect
the boundaries of the surfaces on which they lie.

Consider a Mébius strip and an orientable cylinder in 3-space. The topological
spines of each of these two surfaces consist of one simple closed curve in 3-space. If
two such curves represent the same knot type, then the two topological spines are
isotopic, but the two surfaces are not isotopic. In order to tell if two surfaces with
isotopic spines are isotopic, we attach the number of times the surface “twists” !
around each closed curve in a topological spine to this closed curve.

Definition 3. Let r be a simple closed curve on an embedded surface S in 3-space.
Let N.(r) C S be a tubular neighbourhood of radius € > 0 of v in S and let the
orientations of v and each component of ON:(r) be given by a preferred direction
of traversion of Ng(r). Then the Mobius twisting number Mtn(r,S), for ¢ > 0
sufficiently small, is given by Mtn(r,S) = % link (r, ON.(r)).

In the above definition, link (r, 9N.(r)) is the total linking number between r
and the link N, (r), that is, link (r, 9N:(r)) is the sum of the linking numbers
between r and all (one or two) components of dN,.(r). Reversing the preferred
direction of traversion of N, (r) reverses the orientation of r and of each component
of dN.(r). Hereby the linking number(s) between these curves are unchanged.

T The definition of this “twisting number” is given in [7], where it is denoted “the twisting
number”. To avoid conflict with the “twist” from “link=twist+writhe” we here introduce the
phrase “Mobius twisting number” and the notation Mtn for the in [7] introduced “twisting
number”.
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The Mobius twisting number is thus independent of the direction of traversion of
N:(r) used to define it. As the linking number is invariant under ambient isotopy
an immediate consequence of Definition 3 is

Proposition 4. The Mobius twisting number of a simple closed curve on an em-
bedded surface in 3-space is invariant under isotopy through simple closed curves
on the surface and invariant under isotopy of the surface through embedded sur-
faces in 3-space.

Consider a tubular neighbourhood of one closed curve in a spine of a surface,
that is a closed strip. In [7] it is proven that a closed strip in 3-space is, up
to ambient isotopy, given by the knot type and the Mdébius twisting number of a
simple closed curve traversing the strip once. A given surface may be reconstructed
by gluing together such tubular neighbourhoods of each closed curve in a spine. It
follows that if two surfaces have isotopic spines, and the Md&bius twisting numbers
of the corresponding closed curves in each spine are equal, then the two surfaces
are in fact isotopic. Topologically, the isotopy classes of compact surfaces with
nonempty boundaries may be described as follows.

Proposition 5. The isotopy class of compact surface with nonempty boundary
is determined by the isotopy class of a spine of the surface with Mébius twisting
numbers attached to each closed curve in the spine.

In [3] surfaces of positive curvature are considered, and the natural choice of
“twisting number” is the self-linking number of each loop in the spine. The self-
linking number of a given curve is the linking number between the given curve and
a curve obtained by slightly pushing the given curve along the principal normals,
see eg. [6]. When restricted to positive curvature surfaces, the Mébius twisting
number given by Definition 3 agrees with the self-linking number. Curves on flat
surfaces may have vanishing curvature, and (worse) flat surfaces may be unori-
entable. Hence, in the case of flat surfaces, the self-linking number can not be
used as a “twisting number”.

Given a curve on a surface, the envelope of the tangent planes of the surface
along the curve defines (when regular) a flat surface. Neighbourhoods of this curve
on the two surfaces are isotopic through the normal exponential map on either of
the two surfaces. However, the above envelope fails to give a regular surfaces if
the tangent of the curve is in an asymptotic direction on the surface. This is e.g.
the case on the left hand side of Figure 3. For the positive curvature surfaces,
considered in [3], this construction always works, but only isotopies of orientable
flat surfaces may be constructed this way.

Let Sg and S; be two flat surfaces isotopic through flat surfaces, let ag be a
closed curve on Sp, and denote ap’s image on S; under this isotopy by a;. If ag and
a; both have non-vanishing curvature, they need not have the same self-linking
number. If not, then in the curve isotopy from ag to ay, there is at least one curve
with one point of zero curvature. At this point this curve is in an asymptotic
direction on the corresponding surface. Even from an isotopy of flat surfaces it
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Figure 1. A flat model surface built on a slightly modified spine. The original “topological”
spine is indicated by dotted arcs. The two closed strips are a plus three twisted right-hand
trefoil knot and a plus one half twisted unknot (Mobius strip).

is thus in general not possible to rebuilt the surfaces as envelopes of the tangent
planes along curves.

To avoid problems with the asymptotic directions, the procedure taken here is
to first unwind the asymptotic directions (rulings) along the curves in the spines,
as shown on figure 3, for then to construct the main part of the isotopies of flat
surfaces such that the asymptotic directions (rulings) never are in the directions
of the curves of the spines. Hereby a neighbourhood of each curve in a spine can
be parametrized as a globally ruled flat strip.

A flat model surface is shown in Figure 1. Let p be the point of intersection
of the closed curves in a topological spine. Then a flat model surface built on
this spine is planar in a region containing p in its interior. By Proposition 4, the
Mobius twisting number is invariant under isotopy through simple closed curves
on the surface. Hence, the simple closed curves of a spine may be chosen freely on
the planar region of a model surface. Each closed curve in the spine is an axis of
a flat globally ruled strip coinciding with the planar region, such that the closed
curve has the desired M6bius twisting number with respect to this ruled strip. The
planarity of the region containing p makes it possible to glue the strips and this
planar region together to make a regular surface.

For some closed curves the Mébius twisting numbers they can have on globally
ruled flat surfaces are bounded form above, from below, or both from above and
below. This is proven in the next section which also shows a way to deform a given
curve isotopy such that any Mdbius twisting number of flat globally ruled surfaces
is obtainable.

Making the construction of flat model surfaces sufficiently canonical, an isotopy
of flat model surfaces through flat model surfaces is obtained from an isotopy of a
spine with Mobius twisting numbers attached. Hereby any given surface isotopy
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induces a flat model surface isotopy. The main result of this paper then follows
by proving that any compact surface with nonempty boundary is isotopic to a
flat model surface, and that if the given surface is flat, then there is an isotopy
through flat surfaces to a flat model surface. Hence, a crucial step for the proof of
Theorem 13 is to construct sufficiently canonical globally ruled flat strips. This is
done in the following section.

2. Flat closed strips in 3-space

A closed strip in 3-space is an embedding of the Mobius strip or the orientable
cylinder, both with boundary, into 3-space. In [4] it is proven that, except for
the +1/2-twisted unknotted (Mébius) strips, the isotopy class of a closed strip is
uniquely given by the knot type of its boundary or by the oriented link type of its
boundary, in case of orientable closed strips.

Proposition 6. Let r be a simple closed space curve. Assume the curvature of
r wvanishes only on a finite set of intervals and points and assume the limit of
the torsion of v vanishes wherever curvature vanishes. Then the following two
statements are equivalent.

For any half integer t, the curve v is an aris of a flat ruled surface S;, such

that, Mtn(r, S;) = t.

The torsion of v takes both signs.
Furthermore, we may choose two intervals 1, and I_ with positive resp. negative
torsion on which the rulings are steered and on the remainder of v the rulings may
be chosen orthogonal to r.

Remark 7. From the proof of Proposition 6 below it follows that on an interval
with orthogonal rulings, these rulings are uniquely given when one ruling is specified
in one point. Hereby, Proposition 6 gives a, for our purpose, sufficiently canonical
construction of flat globally ruled closed strips. For related results see [1].

Before proceeding with the proof of Proposition 6, we need to introduce some
notation and to do calculations leading to Equation 2.5 that steers the possible
choices of vector fields giving flat ruled surfaces along a given axis. Let r : R/LZ —
R3 be a closed space curve parametrized by arc length s, and let v be a choice of
trivialization of the normal bundle, i.e., a closed unit normal vector field v, along
r, such that link(r,r + ev) = 0 for ¢ > 0 sufficiently small. If t denotes the unit
tangent vectors to r and u = t x v, then {t, v, u} is an orthonormal basis for R3
for each point on r. By orthogonality, there are Frenet like equations

t = av +bu
v, = —at +cu
uv = bt —cv

where primes indicate differentiation with respect to s and a, b, ¢ : R/LZ — R are
periodic functions.
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A ruled surface with r as axis is given by f(s,t) = r(s) +tq(s) for some vector
field q along r. This surface is regular if

of(s,t)  0f(s,t)

07 =20 % S8 (6(s) +ta(5)) x als)

Along r, that is for ¢ = 0, this gives % X % =t(s) x q(s). By continuity

and compactness the ruled surface is regular in a neighbourhood of r if q is never
parallel to the tangents to r. Hereby q may be written as

q = at + cos v +sin fu

where «, 0 : R/LZ — R are cylinder coordinates, see Figure 2. Using these co-
ordinates, the ruled surface closes up if and only if there exists an integer p such
that O(L) — 8(0) = 7p and «(L) = (—1)Pa(0). As link(r,r +ecv) =0 for £ > 0
sufficiently small, the axis r has Mébius twisting number Mtn(r, f) = p/2 on such
a ruled surface.

_[2%c or of
o 550t ds It
af |2

as X o

z . .
is zero if

2 . —
As % = 0 the Gaussian curvature K = " =
as X bt

. 2
and only if 0 = {88582 % %} =[q t+tqd q=[tqd]=t (axd).

q = o't + cav + abu — @' sin fv — a cos 6t + ccos fu

+ ¢’ cos fu — bsin Ot — csin Ov

=[t qd]
1 * *
0 cosf aa—0'sinf —csind

0 sinf ob+ 0 cosh 4 ccosl
= abcosO+ 0 +c— aasinb
3
0 =

afasin® —bcosf) — ¢

We can rewrite t’ setting a = k cos ¢ and b = ksin ¢. See Figure 2. For x > 0,
the angle ¢ is well-defined up to an integral multiple of 27. This gives

0’ = ar (sinf cos ¢ — cosfsin @) — c = axsin (§ — ¢) — c. (2.1)

The famous formula: link equals twist plus writhe holds if curvature has zeros
[5]. The linking number between r and r + v is chosen to be zero. So it follows
that

I I
Thfr, o) — _/ et uufe— . | el — B0,
2 0 2 0
For a = 0 and 6 constant, Equation (2.1) yields that the ruled surface given by
r(s)+t(cos(0)v(s)+sin(f)u(s)) is flat if and only if ¢ = 0. Let ¥ be the unique unit
normal vector field along r such that ¥(0) = v(0) and ¥ has ¢ = 0. Note, that in
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t' = kn

q—oat

Figure 2. The Frenet frame and the projection q — at of the ruling q in the normal plane
spanned by the frame v, u.

general v does not close up since v is twisted Tw(r, v) less than v. Using this new
(non-closed) frame v and setting 1 = t x v, we obtain q = at + cos v +sin fu =
at + cos 0V + sin fu and

§' = aksin (5 = qE) . (2.2)

A necessary and sufficient condition for the flat surface to close up and to have
Mébius twisting number Mtn(r, f) = p/2 for a given p € Z is that

O(L) —0(0) = pr — Wr(r) and (L) = (—1)Pa(0). (2.3)

We need to describe the frame v using the Frenet Apparatus. For this let I be
an interval where r has positive curvature. By orthogonality, ¥ may be written as
v = cosvn + sinvb and the Frenet equations give

v/ = —v'sinvn + cosv (—kt + 7b) + v’ cosvb — 7 sinvn.

The ruled surface with r as axis and v as rulings is flat if and only if
O=c=[t v V]
1 * *
=|0 cosv —v'sinv—7sinv
0 sinv 7Tcosv+v cosv
=747

Hence, on the interval I, where r has positive curvature, the vector field v is given
by

(s) = cos <_ / sl -1 /ﬁ) n(s) + sin (- / Sl /ﬁ) bls)  (24)

S0 S0
for some constant k;. On a straight segment of r (where r has zero curvature), a

similar calculation shows that the vector field v is constant on this segment. By
the assumption that torsion vanishes whenever curvature vanishes, the vector field
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v is C! along r. From the equations
t' = kn

— K COS PV + K sin i

mosq?(cos (—/T(s)d$+k1>n+sin< /T der/fI) )
+ ksin ¢ (—sin (—/T(s)ds + kl) n + cos < 7(s)ds + /ﬁ) b)
A

it follows that

1 = cos ¢ cos <— /S 7(s)ds + k1> — sin gsin
= cos ((} - /S 7(s)ds + /ﬂ) .

qg(s) = /S 7(s)ds —k; modulo 2.

S0

7( ds+k1>

Hence,

Thus if £ > 0 on I, then for s € I, Equation (2.2) may be written as
0'(s) = as)k(s) sin (5(3) - / 7(s)ds + k1> . (2.5)
50
If K = 0 then @ = 0 and ¥/ = @' = 0.

Proof of Proposition 6. The strategy for constructing flat ruled strips in the fol-
lowing is to freely choose a whereby @ is given by Equation 2.5 and an initial
value of . If 7 > 0 on some interval I, then, by a proper choice of «, 6 can
decrease arbitrarily much on this interval and if 7 < 0 on an interval I_ then
can increase arbitrarily much on this interval. Assuming the torsion takes both
signs, such intervals, I1 and I_, may be chosen not to contain 0. Choosing o = 0
on [0,L]\ (I. UI_) the angle @ is constant on [0,L]\ (I UI_). By controlling o
on I, and I_, the desired difference, see (2.3), 6(L) — 6(0) = pr — Wr(r) can be
obtained for any p € Z and «(L) = (—1)?«(0) = 0 is trivially fulfilled. On the
other hand, if the torsion of r has constant sign, then the possible Mobius twisting
numbers are, as a consequence of Equation (2.5), bounded either from above or
from below.

Consider an isotopy between two closed curves such that all curves in this
isotopy possess points with both positive and negative torsion. Proposition 6
ensures that for any given Moébius twisting number each curve in this isotopy is
an axis of a globally ruled closed strip giving the desired Mobius twisting number.
This will be made into an isotopy of flat closed strips below. This construction
is the cornerstone in the proof of the following lemma. As mentioned in the
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D

Figure 3. Left, an unavoidable non transversal intersection between curve and rulings. Right, a
local deformation of the surface (pulling the label off the bottle), such that the deformed
surface can be locally parametrized as a ruled surface.

introduction, this lemma is crucial for the proof of Theorem 13, and it was posed
as a question to the author by Herman Gluck.

Lemma 8. Two flat closed strips in 3-space are isotopic through ordinary closed
strips in 3-space if and only if they are isotopic through flat closed strips.

Proof. Let H,, v € [0,1], be an isotopy between two flat closed strips Hy and
H; and let a; C H; be a topological spine of H;, i = 0,1. Closed strips may, by
contracting the boundaries, be considered as neighbourhoods of their spines. O

Sublemma 9. A neighbourhood of a; on H; can (possibly modulo an isotopy of
H;) be parametrized as a globally ruled flat surface with a; as azxis. lLe., a; is
transversal to the rulings of H;.

Proof. By the characterization of flat surfaces given in [8], the surface H; is piece-
wise ruled. That is, on a compact subset of H;, namely the closure of the set of
points, called parabolic points, where one of the principal curvatures is non-zero,
rulings are given by the zero principal curvature directions. We call these the
ruled regions. The remainder of H; consists of planar points, i.e., points with both
principal curvatures equal to zero, and is indeed a union of planar regions. Within
a neighbourhood of a curve a planar region can be parametrized as a ruled surface
with this curve as axis. The only restriction is that the rulings must be chosen in
the plane defined by the region and the rulings may not cross the tangents to the
curve in order to get a regular surface containing the curve.

The ruled regions of H; form a compact set. Hence, the spine a; may be
chosen such that a; has transversal intersections with the rulings except in a finite
number of points. Figure 3 shows why non-transversal intersections are in general
unavoidable and it indicates how this problem may be avoided by a slight isotopy
that makes the surface planar in a neighbourhood of a non-transversal intersection.
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Let ¢ be a point of non transversal intersection between a ruling and a spine.
The parabolic points are dense in the ruled regions of H;. Hence, perhaps by a
slight deformation of a;, the point q may be assumed to be a parabolic point on
H;.

Consider the unique curve ¢ on H; through q = ¢(0) and orthogonal to the
rulings. Let v be a vector field along ¢ giving the directions of the rulings of the
surface. In a neighbourhood of q, the surface is given by f(s,¢) = c(s) + tv(s),
—e < s < . The curve a; is locally given by f(g(t),t), where g(0) =0, ¢’(0) =0,
and it may be assumed that ¢/(0) < 0. As q is a parabolic point, one of the
principal curvatures k # 0. By the choice of the curve c, this curve has curvature
greater than or equal to |k| at the point q. Consider the plane P through g
orthogonal to the ruling through g and the projection of ¢ onto P, 7(c¢). An isotopy
of a neighbourhood of q on ¢ to #(c) along normals to P can be constructed using
a partition of unity. As w(c) has curvature |k| > 0 at q, non-vanishing curvature is
preserved during this isotopy. Hereby the torsion vanishes on this neighbourhood.
Within the plane P the projection 7(c) is made straight in a smaller neighbourhood
of q.

An isotopy, as constructed in the proof of Proposition 6, of H; that makes H;
planar in a region containing q in its interior can be constructed using the rulings
given by v, (—¢) = v(—¢), v, is orthogonal to c,, and the ruled surface given by
f.(s,t) = cu(s)+1tvy(s) is flat. By compactness of H; this isotopy can be assumed
to go through embeddings.

On the deformed part of the surface, now given by fi(s,t) = c1(s) + tvi(s),
the curve given by ¢ — f1(g(¢),t) lies in a plane for ¢ in a neighbourhood of zero.
Note, that since the parametrization of this curve is fixed with respect to axes
and rulings, all transversal intersections have remained so during the constructed
isotopy. In the constructed planar region, rulings may be chosen such that they
are all transversal to the curve. See Figure 3. A neighbourhood of the curve given
by ¢ — f1(g(¢),t) on the isotoped surface may thus be parametrized as a ruled
surface with this curve as axis.

By such local isotopies that only concern neighbourhoods of the non transversal
intersections between a; and the rulings of H;, a curve a; on H; is obtained, such
that a neighbourhood of a; on H; can be parametrized as a (globally) ruled surface
with a; as axis. Note that on a flat globally ruled Mdébius strip the rulings globally
are only projectively well-defined. O

Sublemma 10. The aris a; of H; can (possibly modulo an isotopy of H;) be
assumed to have non-vanishing curvature.

Proof. Recall that the curvature of a; as space curve s, the geodesic curvature g,
and the normal curvature s, fulfill the equation x* = s + . By Sublemma 9,
a; is transversal to the rulings of H;. So the normal curvature x,(s) is zero if and
only if a;(s) is a planar point. Hence, the curvature of a; vanishes if and only if
a; has zero geodesic curvature in a planar point of H;.
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Figure 4. An unavoidable vanishing of curvature of spines on a planar region of a flat surface.

First, consider the case that a; has zero curvature in a;(s) and that a;(s)
does not lie in the interior of a planar region of H;. By a local isotopy of a; on H;
through axes of H;, the zero of a;’s geodesic curvature can be moved to a parabolic
point giving a; non-vanishing curvature at a;(s).

Otherwise, a; has zero curvature in a;(s) and a neighbourhood of a;(s) on H;
consists of planar points only. See Figure 4. Let R denote the planar region of H;
containing a;(s), and let P be the plane containing R. Deforming a; on R, it may
be assumed that the geodesic curvature of a; vanishes in a finite number points
only. Let a;(s) denote one of these points. Deforming along the normals to P,
and thus fixing the projection of a; onto the plane P, a neighbourhood of a;(s)
on H; may be lifted through cylinder surfaces to make the normal curvature of
the deformed a; at a;(s) non-zero. As the projection of the deformed surface into
the plane P only has vanishing curvature at the point a;(s), this finally gives a;
non-vanishing curvature everywhere. O

Sublemma 11. The self-linking numbers of the azes ag and a; can (possibly
modulo an isotopy of H;) be assumed to be equal.

Proof. Using an isotopy as constructed in Sublemma 9, it may be assumed that
Hjy has a planar region R and by Sublemma 10 it may be assumed that the a;,
1 = 0,1, have non-vanishing curvature. Hereby the self-linking numbers of ag and
a; are defined, but they need not be equal.

Figure 5 shows how to increase the self-linking number by one using an iso-
topy through flat surfaces. By interchanging up and down on this figure the
self-linking number is instead decreased by one. Hence, by inserting a finite num-
ber of “bumps” on the planar region R, any given self-linking number can be
obtained. O

Sublemma 12. The torsion of the axis a; can (possibly modulo an isotopy of
H;) be assumed to take both signs (preserving non-vanishing curvature and the
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Figure 5. On the top a planar space curve (the thick curve) together with a curve pushed off
along its principal normals. At the bottom a flat surface obtained by an obvious isotopy of the
above plane through flat surfaces. The left bump goes away from the viewer and the right
bump goes towards the viewer. The (thick) curve on the flat surface has positive curvature and
the (thin) curve is pushed off along its principal normals. The two crossings between these
curves are positive. Hence, the self-linking number of the thick curve is increased by one.

self-linking number of a;).

Proof. By an isotopy, eg. as indicated on Figure 5, it may be assumed that H;
does not lie in a plane. Hence, there is a region of H; in which one of the principal
curvatures k is non-zero. By Proposition 2 in [8] p. 279, the geodesic torsion, i.e.
the torsion of a geodesic curve with unit tangent x (see Prop 3 in [8] p. 281), is
Ty(x) = ksin@cos@, where 0 is the angle between x and the principal direction
with zero principal curvature. As the principal curvature k £ 0 in the considered
region, an axis can be isotoped to contain a geodesic segment with positive torsion
and a geodesic segment with negative torsion. O

By sublemmas 10 and 11, there exists an isotopy between the two axes through
positive curvature curves. This fact is due to H. Gluck and L.-H. Pan [3] and is
more detailed described in [2]. Denote such an positive curvature isotopy between
the axes a; of H;, i = 0,1, by a,(s) = a(s,u) : St x [0, 1] — R3. This curve isotopy
may be assumed to be smooth as it is made by performing a finite number of
smooth versions of Reidemeister moves. In particular, the non-vanishing curvature
and the torsion vary continuously with the family parameter .

On each curve a,, consider the osculating plane P, to the point a,(0). By
compactness, there is a common &-ball around a,(0) in P, such that the planar
projection of a,, to P, is regular and has non-vanishing curvature for all » € [0, 1].
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Fixing these planar projections, all curves can be isotoped to be planar within an
€¢/2-ball of a,(0) preserving non-vanishing curvature.

For /2 > § > 0, there is a family A, u € [0, 1], of affine transformations of 3-
space, such that, A, (a,(—0)) = (0,0,0) and A,(a,(d)) = (1,0,0) for all u € [0, 1]
and such that A, (P,) is the zy-plane. Note, that the image of a flat surface
under an affine transformation is flat. Furthermore, affine transformations map
rulings to rulings. Choosing é > 0 sufficiently small, compactness ensures that
the z-axis can be used as a parameter of the pieces of the curves s — A, (a,(s))
lying in between (0,0,0) and (1,0,0). Hence, locally the curve isotopy is given by
[0,1] x [0,1] 3 (z,u) — (z, fu(x),0). Now all f, are isotoped to be identical for
z € [1/3,2/3] and to give positive curvature on a slightly larger interval. Points
with zero curvature may be introduced, but as they occur in a plane they do not
disturb the construction of rulings that still remains. See Proposition 6. The
constructed planar curve-piece that is identical for all curves in the isotopy is now
rolled onto a cylinder (as on Figure 3 read from the right hand side to the left
hand side). By the proof of Sublemma 12, the resulting space curve-piece has
both positive and negative torsion which may even be chosen constant on two
sub-intervals using circular helices. This common curve segment is referred to as
the £7-segment. We are now in possession of the requisite axes. Hence, we need
only specify their rulings to complete the proof.

Along the curve s — Ag (ag(s)) (or just Ag(ag)), there is a ruling vector field
qop parametrizing a neighbourhood of Ag(ag) on Ag (Hg). This vector field is
given by the image under Ag of the rulings of Hy along ay. Specifying one ruling
qo(s*), the rulings along Ag(ag) may be changed continuously to be orthogonal
to the curve and equal to qp(s*) at Ag(ap(s*)) except for one segment where
Ap(ap) has positive torsion and another with negative torsion. The existence of
these segments is ensured by Sublemma 12. The twisting of the rulings that occur
during this change is compensated for within these two segments. Also the twisting
of the rulings, caused by keeping the rulings orthogonal to the isotoped segment
under the isotopy inserting the £7-segment, is compensated for within these two
segments. Fixing the space curve and one ruling outside the +7-segment, the
rulings may be isotoped to be orthogonal to the curve outside the +7-segment
while only compensating inside the +7-segment.

During the curve isotopy from Ap(ag) to Aq(ay) (with the £7-segment inserted
on all curves) the rulings outside the +7-segment are given by a choice of one
orthogonal ruling in one point of each curve and demanding that the rulings are
orthogonal to the curves and that they give a flat surface. Hereby the rulings
at the endpoints of the £7-segment vary continuously during the isotopy. This
makes it possible to control the rulings on the +7-segment to match the boundary
conditions of Equation (2.5).

By performing the preparations of the rulings on Ag(ag) and the curve itself
“time reversed” on Aj(ay) the curve isotopy from Ag(ag) to Aj(ay) gives rise to a
surface isotopy through globally ruled flat strips from Ag (Hp) to A1 (Hy). Pulling
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this isotopy back using the affine mappings A,, the desired isotopy from Hy to Hy
through globally ruled flat strips is constructed. O

3. Flat surfaces in 3-space

We are now ready to prove the main theorem of this paper, which implies that the
isotopy classes of flat surfaces are in one-to-one correspondence with the isotopy
classes of ordinary surfaces which have no curvature constraint.

Theorem 13. (a) In 3-space, any compact surface with nonempty boundary is
wsotopic to a flat surface. (b) Two such flat surfaces are isotopic through flat
surfaces if and only if they are isotopic through ordinary surfaces.

Proof. Part (b). Let S, u € [0, 1], be an isotopy between two flat compact connect-
eded surfaces with nonempty boundaries. In order to prove part (), an isotopy
from Sy to S through flat surfaces must be constructed.

Let sp C Sp be a topological spine of Sy and denote the images of this spine
under the isotopy by s, C Sy. Similarly let pg € so be the intersection point of
the closed curves in sg, and let p,, € S,, be po’s images under the isotopy. From
now on only neighbourhoods of the spines s, on the surfaces S, are considered.

By local isotopies, as constructed in the proof of Sublemma 9, it may be as-
sumed that Sp is planar in a neighbourhood of pg and that S; is planar in a
neighbourhood of p1. A partition of unity between S, and the tangent plane to
Sw at py makes S, planar in an e-neighbourhood of p,. By compactness, there is
a common £ > 0 such that all the surfaces, S,,, can be locally isotoped through em-
beddings to be planar in an s-neighbourhood of the images of pg on each surface.
Thus it may be assumed that each surface S, is planar in an e-neighbourhood of
P for a fixed € > 0.

By Proposition 4 a simple closed curve a on Sy has a Mobius twisting number
Mtn (a, Sg) that is invariant under isotopy of a on Sy. So the closed curves in the
spine sgp may be chosen freely on the planar e-neighbourhood of pg of Sg. Hence,
the spine sg, and thus also its images s,,, each may considered as a planar e-disk
together with a finite number of simple curves af, starting and ending in pairwise
disjoint points on the boundary of this disk. Furthermore, each of these curves
has a Mobius twisting number attached.

The idea of this proof is as follows: A surface isotopy is given. This isotopy
induces curve isotopies a’,, u € [0, 1] of the curves in the spine. Then an isotopy of
closed flat strips S, u € [0, 1], is constructed such that the a’’s have the required
Mobius twisting numbers on these flat strips, i.e., for all 7+ and v Mtn (af“ SZ) =
Mtn (aio7 So). Furthermore all the closed flat strips S¢, are constructed such that
they coincide with the planar e-neighbourhoods of p, on S,,. Smoothing the edges
between the closed strips S and the planar e-disks then gives an isotopy between
So and S; through flat surfaces.



Vol. 76 (2001) Embedding and knotting of flat surfaces 603

Restricting Sg to a neighbourhood of the simple closed curve a) and taking
the image of this set under the given isotopy defines an isotopy between two flat
closed strips, Sj and Si. By Lemma 8, these two flat closed strips are isotopic
through flat closed strips. All except for two of the local isotopies (see the proof
of Lemma 8) concern only the ruled regions of S§ and of S%. Hence, they do not
change the planar e-disks of these two surfaces. The remaining local isotopies,
that ensure that neither S§ nor S¢ is contained in a plane and that the self-linking
numbers of their spines are equal, can be applied anywhere on these surfaces, and
can therefore be kept away from their planar e-disks.

The choice of rulings on the globally ruled flat strips in the isotopy between
S§ and S¢ constructed in the proof of Lemma 8 is (except for the segments with
positive and negative torsion that can be kept away from the e-disks) always
orthogonal to the curves. These rulings are specified by one ruling in one point
of each axis and by demanding that the corresponding ruled surfaces are flat. To
each axis we now specify one ruling in a point lying in the planar e-disk such
that this ruling together with the tangent to the axis in this point form an ortho
normal basis. of this plane. By the orthogonality of the rulings, the ruled surfaces
coincide with the planar e-disks. This follows from Equation 2.4, as planar curves
have zero torsion.

The curves in the spines s, are pairwise disjoint outside the e-disks. Hence,
compactness ensures that a sufficiently small neighbourhood of the spines in the
isotopy of flat surfaces between Sy and Sy, now constructed, is in fact embedded.

By the compactness of Sp, it in general consists of finitely many connected com-
ponents. The proof given in the connected case carries over to the general case
without changes except that one needs an index corresponding to an enumeration
of the connected components. The proof of part (b) is completed.

To prove part (a) it is, as above, enough to consider the case that S is connected.
Let S be a compact connected surface with nonempty boundary and let s C S be a
topological spine of S. It may be assumed that S is planar in a neighbourhood N
of the point in which the curves in the spine s intersect. Again, consider a spine s
of S as a finite number of closed curves a; entering the planar e-disk — each with
a Mobius twisting number attached.

Claim: It may be assumed that each a; has non-vanishing curvature. Note,
that a; has zero curvature in a,;(s) if and only if the geodesic curvature of a; is
zero in a;(s) and a}(s) is an asymptotic direction. Then the proof of this claim is
analogous to the proof of Sublemma 10.

We may assume that each a; has a +7-segment which is kept away from the
planar part N of the surface S. This can be done preserving non-vanishing curva-
ture.

A neighbourhood of the curve a; on S is isotopic to a part of the ruled surface
with a; as axis and rulings, q;, chosen such that they together with the tangents
of a; form ortho normal bases of the tangent planes of S along a;. As S may be
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unorientable, these rulings are only projectively well-defined. Such an isotopy may
be constructed using the normal exponential map and compactness.

Each a; now fulfills the conditions of Proposition 6. Hence, a vectorfield v;
along a; exists, such that the hereby defined surface is flat and such that the
Méobius twisting number of a; with respect to this surface is the same as the
Mobius twisting number of the surface defined by a; and q;. Furthermore, the
vector field v; may be chosen to equal q; on the planar part N of S.

Using the cylinder coordinates as in Proposition 6, the vectorfields v; and q;
are given by (aw,, 0y, ) resp. (0,0q,). By construction, the surface isotopy induced
by the vectorfield isotopy

[07 1] Su (uavi7uevi + (1 - u)ech)

is the identity on the planar part on S, and it makes a neighbourhood of the curve
a; into a flat surface. Doing this for each closed curve in the spine of S completes
the proof of part (a) and hereby the proof of Theorem 13. O

4. Remark on the isotopy classes of negatively curved surfaces

The isotopy classes of flat surfaces are described by Theorem 13 and the isotopy
classes of positive curvature surfaces are described by Theorem 1. These theorems
raise the question: Is there a result analogous to Theorem 1 and Theorem 13
concerning the isotopy classes of negatively curved surfaces? The answer to this
question is in the negative. As pointed out below, the lack of umbilic points on
negatively curved surfaces subdivide each isotopy class of surfaces containing an
orientable closed strip into countably infinitely many isotopy classes of negatively
curved surfaces.

By Proposition 5, the isotopy class (with no curvature restriction) of a compact
surface S with nonempty boundary is determined by the isotopy class of a spine
s of S with a M&bius twisting number attached to each closed curve. Assume S is
negatively curved. By negative curvature, the principal directions corresponding
to positive resp. negative principal curvature define two smooth line-fields along a
closed curve on S in case a tubular neighbourhood of this curve on S is orientable.

Assume S containes an orientable closed strip and let s be a spine on S. Denote
by a; a closed curve in the spine s - or rather a simple closed smooth curve isotopic
to a; on S such that a neighbourhood of a; on S is orientable. The rotation of the
principal directions relative to the tangents of a;, when traversing a; once, defines
a half integer valued index. By continuity, this rotational index is independent
of deformations of a; through simple closed curves on S and it is independent of
isotopy of S through negatively curved surfaces.

Figure 6 shows parts of two negatively curved ruled surfaces with the same
axis. The rulings (asymptodic directions) are othogonal to this axis on both of
these surfaces. There is thus no rotation of the asymptotic directions given by the
rulings with respect to the axis. Hence, the rotations of the principal directions
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Figure 6. Parts of two negatively curved ruled surfaces with the same axis.

with respect to the axis are equal for the two surfaces. However, the contribu-
tions to the Mobius twisting number of the axis on the two surface pieces differ by
one. Hence, the rotational index is independent of the Mdbius twisting number.
Considering isotopy of negatively curved surfaces through negatively curved sur-
faces, each closed curve with an orientable neighbourhood in a spine has thus an
index additional to and independent of its Mdbius twisting number. This causes
the claimed subdivision of the isotopy classes of ordinary compact surfaces with
nonempty boundary and motivates

Conjecture 14. (a) In 3-space, any compact surface with nonempty boundary
is isolopic to a negatively curved surface. (b) Any two such negatively curved
surfaces, S1 and Sg, are isotopic through negatively curved surfaces if and only if
there exists an isotopy through ordinary surfaces between S and So, such that for
each simple closed curve with integer Mobius twisting number on Sy, this curve
and its image on So, under this isotopy, have equal rotational indices with respect
to the principal directions on the respective surfaces. (These indices depend only
on the regular homotopy classes of the curves.)

The reason why the rotational index does not cause subdivision of isotopy
classes in the case of flat surfaces containing orientable strips or positive curvature
surfaces is that non negatively curved surfaces may have umbilic points (planar
regions on flat surfaces). Hence, the above rotational index is generally not well-
defined on flat or positive curvature surfaces. As shown on Figure 3, the isotopies
constructed in this paper use planar regions to unwind the principal directions
(rulings) such that all rulings are transversal to the axes. A similar remark applies
to the positive curvature model surfaces used in [3], where positive curvature strips
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are pieced together on a spherical (umbilic) surface piece. Hence, even though the
flat model surfaces used here and the positive curvature model surfaces used in
[3] easily can be changed into “negatively curved model surfaces”, they can only
produce surfaces with zero net rotation of the principal directions with respect to
each closed curve with an orientable neighbourhood in a spine. All other isotopy
classes of negatively curved surfaces have to be treated using other model surfaces
or perhaps using entirely different methods.
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