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Einstein manifolds with convex boundaries

Jean-Marc Schlenker

Abstract. Let (M,8M) be a compact m-+ 1 -manifold with boundary with an Einstein metric
go , with ricg, = —mgo and with pinched negative curvature, such that M is convex and um-
bilical. Let hg be the induced metric on @M . Then any metric close enough to hg is induced
on OM by an Einstein metric g with ric, = —mg on M. A similar (but slightly weaker) result
applies to Ricci-flat manifolds.

Résumé. Soit (M,OM) une m + 1 -variété compacte & bord, munie d’une métrique d’Einstein
go, avec ricg, = —mgo et & courbure négative pincée, telle que OM est convexe et ombilique.
Soit ho la métrique induite sur M . Alors toute métrique suffisamment proche de hg est
induite sur M par une métrique d’Einstein g avec ric, = —mg sur M. Un résultat similaire
(un peu plus faible) s’applique aux variétés Ricci-plates.

Mathematics Subject Classification (2000). 53C25; 53C45.

Keywords. Einstein manifolds; convex; boundary; umbilic; surface; isometric embeddings.

1. Introduction

A well-known theorem of Nirenberg [Nir53] asserts that any smooth metric on S?
with curvature K > 0 admits a unique smooth isometric embedding in R?. An
analogous result was proved by Aleksandrov [Ale58] and Pogorelov [Pog73] (see
[Lab89] for a modern proof and more) in the hyperbolic space: any smooth metric
on 8% with curvature K > —1 admits a unique isometric embedding into H? .
Since those embedded spheres are convex and bound a ball, those results can be
reformulated as follows:

Theorem 1. [Nirenberg, Aleksandrov, Pogorelov] Let Ky € {—1,0}. For any
smooth metric h on OB® with curvature K > Ko , there exists a unique smooth
metric g on B with constant curvature Ko which induces h on B> .

The “modern” proof of this theorem has 3 parts:
1. the operator ¢ sending a convex embedding to its induced metric is Fredholm
(with index 0) at each (strictly) convex embedding;
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2. T¢ is injective at each of those points, i.e. convex surfaces are rigid;

3. ¢ is proper.

It is then possible to apply the Nash-Moser inverse function theorem to obtain

that ¢ is a bijection between the relevant spaces of immersions and of metrics.
The hyperbolic version of theorem 1 has been extended by Labourie [Lab92],

partially solving a conjecture of Thurston:

Theorem 2. [Labourie] Let (M,0M) be a compact 3-manifold with boundary
which admits a complete conver co-compact hyperbolic metric. Any metric h on
OM  with curvature K > —1 is induced by a hyperbolic metric g on M.

The uniqueness of g was also conjectured by Thurston, but is still unknown
(at least to the author).

The main goal of this paper is to give a partial extension of theorems 1 and 2
to higher dimensions. For dimensional reasons, it is not possible to do so in the
setting of constant curvature spaces; we will try, given a metric on dM , to show
that it is induced on OM by an Einstein metric on M. This makes sense since,
in dimension 3, the Einstein metrics are just the constant curvature metrics.

We are not able, however, to obtain a global existence and uniqueness result
as in theorem 1. This is because we only have the equivalent of point (1) of the
sketch of proof above, and partially of point (2) since we prove the rigidity result
we need only for metrics close to one for which M is umbilical.

In the whole paper, (M,dM) is a compact, C>* (m+1)-manifold with bound-
ary (m > 2). Since we will always assume that M admits an Einstein metric, it
will be implicit that M is in fact analytic. In the negatively curved case, we have:

Theorem 3. Let go be an Einstein metric on M, with ricg, = mKogo , Ko <0.
Suppose that OM s strictly convex, umbilical, with a C* induced metric ho and
that, at each point:

2m(—Ko) 4m(—Ko)
2 Y K _ 2Ty 1

Bmt 1 O TS T By M)
Then there exists a neighborhood Uy of hg in the space of C°° metrics on OM

such that, for each h € Uy , there exists an Finstein metric g on M (with ricy =
mKog ) inducing h on OM .

Kmax S -

Here Ky and Kp.x are, at each point of M , the minimum and the maximum
of the sectional curvatures of go. Equation (1) can be considered as a pinching
condition because of the additional hypothesis that go is Einstein. (1) means
that go can not be “too far” from having constant curvature. This is necessary
to obtain a local rigidity result which is crucial in the proof.

e}
Technically, the following condition is necessary. Call Ry, the curvature op-
erator acting on symmetric 2-tensor, and let ap be the highest eigenvalue of its
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restriction to trace-free symmetric 2-tensors. It is necessary that:

(3m + 1)ag + Kom(m +3) <0. (2)

This makes sense since (see [Bes87], 12.70) f{go preserves trace-free symmetric
2-tensors. It is proved in [Bes87], 12.71 that:

ap < min{(m — 1)Kpax — mKo,mKo — (m + 1)Kpin}

where Kiin, Kinax are the minimum and maximum of the sectional curvature of
g . This shows that (1) implies (2).

The proof actually shows a little more: g is “locally unique”, i.e. the operator
0 sending an Einstein metric on M to the induced metric on the boundary is a
bijection from a neighborhood of g in the space of Einstein metrics on M to a
neighborhood of hg in the space of metrics on OM .

Each example of Einstein manifold with negative curvature and convex, um-
bilical boundary satisfying (1) provides an application of this result. For instance,
starting with a hyperbolic ball leads to:

Example 1. Let hg be the canonical metric on S™ , and choose R > 0. There
erists a neighborhood Uy of R™hg in T'(S2T*S™) such that each h € Uy is

induced by an Einstein metric g with ric, = —mg on B™TL.

Theorem 3 can also be used to understand Einstein deformations of “fuchsian-
like” group actions on H™*! . Namely, if a group I' has a discrete co-compact
action p on H™ , then p extends naturally to an action on H™'! leaving in-
variant a totally geodesic hyperplane Py >~ H™ . The set My of points of H™+1
at distance at most 79 of Py has a convex, umbilical boundary, and so has the
quotient My ~ Mg/p(I'). The metric induced on dMy has constant sectional
curvature —1 4 tanh?(ro) . Now:

Example 2. There exists a neighborhood Uy of hg in T™°(S2T*OMg) such that
each h € Uy is induced by an Einstein metric g with ric, = —mg on Mo .

Other examples of Einstein metrics with umbilical boundary are provided by
the following extension of the previous example (see e.g. [RS98] for a proof, it is
also almost in [Bes87]):

Proposition 1. Let hy be an Einstein metric with ric,, = —(m — 1)hg on a
m -manifold N . Let M = N x [—rq,ro] with the “warped product” metric:

go = dt® + coshz(t)ho .

(M, go) is an Einstein manifold (with ticg, = —mgo ) with uwmbilical boundary.
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Theorem 3 can of course be used in this setting, too, if hg is close enough to
having constant curvature, since then gy satisfies (1).

The result in the Ricci-flat case is slightly weaker than in the negatively curved
case:

Theorem 4. Let ho be the canonical metric on S™ , and choose R > 0. There
exists a neighborhood Uy of R™hg in ['®(S2T*S™) such that each h € Uy is
induced by a Ricci-flat metric g on B™T1 .

Theorem 4 works with flat metrics only because the analog of the pinching
hypothesis in theorem 3, applied to a Ricci-flat metric, implies that it is flat. Flat
metrics are therefore necessary to show the rigidity (with respect to infinitesimal
deformations preserving the induced metric on the boundary) of metrics with an
umbilical boundary. On the other hand, it is known (see [RS98]) that Ricci-flat
metrics on manifolds with (convex or concave) umbilical boundaries are rigid, in
the sense that they admit no 1-parameter deformation preserving the induced met-
ric on the boundary, under rather general hypothesis (for instance if their boundary
is connected). The methods used to prove those rigidity results in [RS99], [RS98],
based on a “Schlafli formula” for Einstein manifolds with boundaries, are very
different from those we use here (using a more classical Weitzenbock formula).

As in the case of surfaces, it seems necessary to use the Nash-Moser theorem in
the proof of theorems 3 and 4, and the implicit function theorem in Banach spaces
does not seem to apply. This is related to a “loss of derivative” phenomenon which
should be made clear in section 2. For this reason, it is not obvious how to give
results outside the C*° category.

It would be interesting to know whether the metrics on M provided by theo-
rems 3 and 4 are actually the unique Einstein metrics (of given scalar curvature)
inducing h on M. It should also be pointed out that theorem 1 also applies
to the sphere S%, where we have no Einstein equivalent. Theorems 1 and 2 have
Lorentz analogs, too, where H3 or R3 are replaced by one of the Lorentz space-
forms R3, H? or S} (see [Sch96], [LS00]). Again, analogs of theorem 3 and 4
might exist in this setting, with a Lorentz metric on M.

Another possible interpretation of the lorentzian results in dimension three,
however, can be obtained through a classical duality. They indicate that an inter-
esting phenomenon also happens (at least in some cases) when one tries to replace
the metric induced on the boundary in theorem 1 by its third fundamental form.
For instance, if h is a smooth metric on S? with curvature K < 1 and if all
closed geodesics of (S?,h) have length L > 27, then there exists a unique hy-
perbolic metric ¢ on B?® such that the third fundamental form of B2 is h (see
[Sch96]). Moreover, a direct consequence of [LS00] is that, if ¥ is a compact sur-
face of genus at least 2, and if A is a smooth metric on ¥ with curvature K < 1
such that all closed geodesics of (i, h) have L > 27, then there exists a unique
“fuchsian” hyperbolic metric ¢ on ¥ x [—1,1] such that the third fundamental
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form of each connected component of the boundary is h; the condition on the
lengths of the closed geodesics is necessary here, see [Sch96, 1.S00, Sch98]. Thus
one might wonder whether analogs of theorems 3 and 4 are possible with the third
fundamental form instead of the induced metric on the boundary.

The results above can be compared to those of Graham and Lee [GL91], who
show that the conformal structure at infinity of H™ , when slightly changed, re-
mains the conformal structure at infinity of a complete, Einstein, asymptotically
hyperbolic metric. This result has recently been extended by O. Biquard [Biq00]
to other rank-one symmetric spaces of non-compact type. It would be interesting
to know whether theorems 3 and 4 can also be extended to deformations of e.g.
Kahler-Einstein metrics.

Finally, it would be interesting to know whether the kind of results given above
could be obtained by using the Ricci flow, with boundary conditions implying e.g.
that the boundary remains umbilical. The relationship between the Ricci flow and
Einstein manifolds is particularly clear in the work of R. Ye [Ye93], and Y. Shen
[She96] proved a short time existence result for the Ricci flow on manifolds with
umbilical boundary that might prove very relevant here.

This paper was significantly improved thanks to many important remarks from
an anonymous referee. I would like to thank him for his efforts.

2. Deformations of Einstein metrics

This section contains the basic setup necessary to understand, from an analytical
viewpoint, the deformations of Einstein manifolds, with scalar curvature m(m +
1)Ko, where Ky = —1, on the (m + 1)-manifold with boundary (M,0M). We
then give the outline of the proof of the main result, leaving the most technical
parts for the next sections. We give at the end of the section some details on the
modifications necessary to handle the case Ko =10.

We will use an implicit function theorem, in the Nash-Moser category, which is
very similar to theorem 3.3.4 in [Ham82], and we refer the reader to [Ham82] for
the definitions of tame Fréchet manifolds, etc. Let F be a smooth tame Fréchet
manifold, let G be a smooth tame Fréchet space, and let V be a smooth tame
vector bundle over F , with a smooth tame connection I'. Let P: F — G be a
smooth tame map of manifolds, and let @ : F — V be a smooth tame section.
Suppose that the map:

DPxDI'Q:TF—-GxV

is a smooth tame linear vector bundle morphism which is an isomorphism at points
where @ = 0, and that there exists another smooth tame linear vector bundle
morphism V which is an approximate left and right inverse of DP x DT'Q , in the
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sense that, for all f € F and for all (g,v) € G x Vy:

(DsP x DFQ) o V(g,v) = (g,0) + ¢"(Q(f), (9,7))
and that, for all f € F and all F e T;F:

Vo (DsP x D'Q)(F) = F +¢(Q(f), F) ,

where ¢! and ¢" are smooth tame bilinear maps at each point f € F, and are
smooth tame sections of the corresponding bundles over F,ie. V*® (G X V)*®
(GxV) and V*@ T*F @ TF respectively. Then:

Theorem 5. If fo € F is such that P(fo) = go € G and that Q(fo) =0, then
there exist neighborhoods Wi and Wy of fo and go respectively, such that, for
each g € Wy, there exists a unique f € Wy such that Q(f) = 0 and that
P(f) = g. Moreover, the solution f = S(g) is defined by a smooth tame map
from Wy to Wy,

The proof of this theorem can be done just like the proof of theorem 3.3.4 in
[Ham82]. More precisely, theorem 3.3.4 of [Ham82] is proved by reducing it to
an application of theorem 3.3.1, which contains a quadratic error; this quadratic
error is necessary to prove theorem 3.3.4 because such an error comes from the
choice of the connection I'. Theorem 5 can likewise be proved as an application
of theorem 3.3.1 of [Ham82], with an additional quadratic error term coming from
the error term in theorem 5.

In the proof of theorems 3 and 4, F is the space of (smooth) Riemannian
metrics on M (modulo diffeomorphisms fixing M ), while G is the space of
(smooth) metrics on OM. V is the bundle over F of sections of the bundle of
symmetric quadratic forms over M satisfying an equation (depending on a metric
g on M) which is always realized for ric, — mKopg. P is the map sending a
metric on M to the induced metric on 0M, and @ is the section of V' sending
g to ric; — mKog .

We now introduce some notations that will be useful in the proof. If ¢ is a
metric on M, we call §, the divergence acting on symmetric 2-forms on M if

(e1,"++ ,em+1) is a moving frame on M , then:
m+1
(gh)(@) = = (De,h)(z, 1)
i=1

where D is the Levi-Civita connection of g. The adjoint 7 of J, acts on 1-forms
as:

(Dgw)(y) + (Dyw)(=)) .

o =

(Ogw)(z,y) =

We also call:
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e M the space of compact, (smooth) Riemannian metrics on (M,0M) with
sectional curvature K < —ko and Ricci curvature ric < —kg, for a constant
ko > 0 small enough (e.g. ko = 0.1), and such that OM is strictly convex.
M is a tame Fréchet manifold.

e R the space of (smooth) sections of S?T*M , i.e. quadratic forms on the
tangent of M, so that M C R.

e M, = T,M the tangent space to M at g € M. M, almost does not
depend on g, it is canonically isomorphic to R for all ¢, but nonetheless we
consider M, as the fiber over g € M of a bundle M over M.

¢ Dy the group of smooth diffeomorphisms of M fixing oM .

o Vi =TqDo the space of smooth vector fields on M vanishing on the bound-
ary, acting on M by pull-back.

e V| the space of smooth vector fields on M orthogonal to the boundary.

o My= M/Dy the space of metrics modulo diffeomorphisms fixing oM .

M, s the space of elements G € M, such that 2§,G + dtr,G = 0. We
consider it as the fiber at ¢ of a vector bundle Ms over M.

e M, s, the space of elements G € My s such that tr,G = 0 on M, also
considered as the fiber at g of a vector bundle Ms; over M.

e R,; the space of elements R € R such that (20, + dtry)R = 0; Rys is
canonically isomorphic to M, s , but we keep two notations because M 5 will
be considered as the tangent space to My at g and will contain the variations
of g, while R, s will be seen as the fibre over g of a bundle Rs over M and
will contain the variations of ric, — mKog .

e N the space of Riemannian metrics on 6M .

e Ny =TpN for he N.

e O: M — N the operator sending a metric on M to the induced metric on
OM , and also the linearized operator from M, to Ny, . When ¢ is implicit,
we might use I instead of dg, since Jg is called the “first fundamental form”
of the immersion of M in M. Using O, we obtain a bundle N over M,
with fiber Ny, at g € M.

o for h e N', pe Ny, Ny, = N,/uC>®(0M), where a function f on IM
actson Ny, by n—n—+ fu.

When needed, we will denote with an exponent k the set of sections of any
of the functional spaces above which are in the Sobolev space H* (up to the
boundary).

Proposition 2. Mg is a tame Fréchet manifold. M,Mgs,Ms ;N and R; are
smooth, tame vector bundles over M . Moreover, they are equivariant under the
action of Dy, and thus define smooth, tame vector bundles over Mgy which we
denote by MO,M%Mg’t,NO and 'Rg respectively.

The proof is in section 3.

A basic point is that the tangent space to My at a point g can be identified
with Mgﬁ . This is done as follows.
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Lemma 1.

1. Let go € Mg, and let g € M an element of the equivalence class go. Then
Tgo Mo =M,/ Vy.

2. For each k € N* and each G € M’; , there erists a unique vector field V &
V’8+1 such that G+ 2(5;‘\/ IS M’g“ﬁ .

3. The map Il; : G— G+ 265V defines a projection from M’; to M’;& which
is a smooth, tame bundle morphism over M .

4. 1l is equivariant under Do , and thus defines a map Hg : Mg — Mgﬁ which
is a smooth, tame bundle morphism over My .

5. For each k € N* and each g € M, there exists C > 0 such that, for all
GeM;:

IG = Ty (Gl < CI(25, -+ dery )Gl s 3)

The proof of this lemma is in section 3.

We also need a connection I' on Ry s; we can define one as follows. Let
(9t)tcio,1) be a smooth one-parameter family of metrics in M, and let (r:)co,1)
be a smooth one-parameter family in R such that r, € Ry, 5. ) € Ry =~ My,
so we define Dgér :=1Iy(r}) . Then Dg(,)r eMy, s=Ry 5.

Proposition 3. ' defines a smooth and tame connection on Rs as a bundle
over M, and also on RY as a bundle over My. For each g € M and each
k € N* | there exists C >0 such that, in the setting described above:

I = Dggrll e < Cll(20g, + dtrgy ol e - (4)

Its definition shows that I' defines a smooth, tame connection on R, while point
(4) of lemma 1 indicates that it has the required equivariance property to define
a (smooth, tame) connection on RY. The upper bound comes from point (5) of
lemma 1.

For g € M, define r(g) :=ric, — mKog. r will be the section @ of V used
in theorem 5. Taking the trace of the differential Bianchi identity shows that:

(204 + dtry)ric, =0,

while it is clear that:
(204 + dtry)g =0 .

Therefore r is a section of Ry s as a vector bundle over M. Moreover, it is
invariant under the action of Dy, because, for v € Dy and g € M:

£ .
uTicy = TiCyxg .

This shows that r is a section of RY. It is then easy to show from its definition
that:
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Proposition 4. r is a smooth, tame section of Rg .

There is a natural operator 9 : M — N sending a metric g € M to the
induced metric dg on IM. Since Dy is made of diffeomorphisms fixing the
boundary, 9 is invariant under the action of Dy on M, so O can be considered
as an operator from My to N'. We will also call & the linearized operator
TyMy — TN at a point g € My. O will be the operator P appearing in
theorem 5. We leave to the reader the proof of the:

Proposition 5. 9 is a smooth, tame operator from Mgy to N .

From now on, we call 1T the second fundamental form of the boundary oM .
When g € M,y is such that ric, < 0 and that OM is strictly convex for g,
finding G € My such that 0G = H (for a given H € Ny, ) boils down to
finding G’ € My s such that G’ = H mod I, ie. such that there exists
feC®(M) with 0G' = H + fII. This is because of the:

Lemma 2. Suppose that g € M has ricy, < 0, and that OM is strictly convex
for g. Let G' € Mys. There is a unique V € V| such that G :=G' +24;V €
Mys:; V=jfn on OM for some f € C®(OM). Moreover, G = 9G' — 2f1I.
The mapping:
Fg: Mys — Mys, x C*(OM)
G = (G f)

defines a smooth, tame isomorphism of vector bundles over M . Moreover, it is
equivariant under Dy and thus defines a smooth, tame vector bundle isomorphism

FO M8 — MY, x C(0M) .

The proof is also in section 3. Note that using metric variations G with
trg(G) =0 on OM makes sense because, when the variation G of g is subject
to the equations implying that ¢ remains Einstein, its trace on M is essentially
determined by its trace on M . This point should become clear at the beginning
of section 5. It will not, however, be used formally in the proof.

We now have a section r of the vector bundle Rg over My, and an operator
d: Moy — N. Let ge M. Let h = g € N'. We will now define a linear
operator:

Vg ; TagN X Rgﬁ — Mgﬁ

and show later that V, defines a bundle morphism VJ : TAV? x R§ — MJ which
is an approximate left and right inverse of @ x D'r (with a quadratic error term
as in theorem 5).

The infinitesimal variation of r associated to an infinitesimal variation G of
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g is given by the following well-known formula (see [Bes87]):

P = DiDyG — 2 Ry G — 2678,G — D,ydtry(G) . (5)

A classical problem here is that this operator is elliptic in G but strongly degen-
erate, because of its invariance under the group of diffeomorphisms of M. The
“classical” solution (see [DeT81, GL91, Bes87, Biq00]) is to introduce another, el-
liptic non-degenerate problem, and to show that its solutions are actually solutions
of the original problem. This should be done here with some care regarding the
boundary conditions. Namely, one should add some conditions at the boundary
which will later ensure that, when ¢ is Einstein, solutions of the “new” (elliptic
non-degenerate) system are also solutions of the elliptic degenerate system — this
is basically the content of proposition 6 below, although this proposition is not
used formally in the proof.

Moreover, the equation which is then obtained is elliptic non-degenerate in M ,
but is still not an elliptic boundary problem. To get one, it is necessary to “get
rid of” the trace part of the metric variation, so as to obtain on the boundary a
metric variation which is the desired one, but only on the orthogonal to the second
fundamental form. It is then necessary to add a normal deformation of OM in M
to obtain the full variation of the metric induced on the boundary.

Let ge M, and let (H,R) € TogN X Ry 4. Consider the following system:

D!D,G-2R,G=R onM

trgG =0 (6)
(204 +dtry)G=0 on OM
0G = Hmod Il

Then:
Lemma 3. (6) is an elliptic boundary problem on M with index 0.

The proof is in section 4.
Lemma 4. If r(g) = 0 and OM is strictly conver and umbilical for g, and if
g satisfies (1) (or (2)), then the only solution of (6) for R =0 and H =0 is
G=0.

The proof is in section 5. As a consequence, we have by the open mapping
theorem that:

Corollary 1. There is a neighborhood W, of g in M such that, for ¢ € W,
the only solution of (6) for R=0 and H=0 is G=0.

All this shows that, for ¢’ € W, and (H,R) € Ny X Ry 5, there is a unique
solution G’ € M of (6) and a unique f & C*(0M) such that H = 90G" — 2fIL.
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Let Vg (H,R) = I (G') + ]—"97,1(07 f) (where F, comes from lemma 2). This
defines a mapping V, : Nay X Ry s — My 5.

Moreover, it is not difficult to check that equation (6), being defined geomet-
rically, is equivariant under the action of Dy . Together with point (4) of lemma
1, this show that the definition of V is also equivariant. Therefore, it actually
defines a bundle morphism over Mg . Thus:

Lemma 5. Vy s smooth and tame. The bundle morphism V is equivariant
under Do and thus defines a smooth, tame bundle morphism V© : N° XRg — Mg .

Finally, we will check in section 6 the following lemma:
Lemma 6. Let go € Mg . There exists a neighborhood Wy, of go in Mg such
that, for each g € Wy, , there exist smooth, tame bilinear maps:
I .10 0 0
qg Ry X M5 — Mg
and:
gy Ry 5 X (Nag X Ry 5) — (Nag X Ry 5)

such that q" and ¢' are smooth, tame sections of the corresponding vector bundles
over My and that, for each G &€ Mg -

V00 (8 x DG = G+ ¢} (r(g), G) (7)

and, for each (H,R) € Npg x 7?,275 g
(9% D'r) o Vo(H,R) = (H,R) + q5(r(9), (H,R)) (8)
An important motivation for the proof of this lemma is the following remarkable
fact, which appeared in slightly different forms in previous works (see e.g. [Bes87,
Biq00]). It implies for instance that, when r = 0, a solution of G (6) has

(26 + dtr)G = 0 not only on dM , but in the whole of M, so that R =7'. The
proof is in section 6. It is not, however, used formally in the proof.

Proposition 6. Let g€ M and G € M, . Suppose that:

D!DyG—2R; G=R

with:
(26, + dtry)R + (26, + dtry)r(g) =0,
where (5; and trg are the variations of &, and try, corresponding to the variation

G of g. Suppose further that:
(204 + dtry)G =0 on OM .
Then (204 + dtrg)G=0 on M, so that G My;.
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We can now apply the Nash-Moser implicit function theorem 5, with P = 0
and @ = r; propositions 4 and 5 show that d x DI'r is a smooth tame bundle
morphism, while V, is the approximate local inverse we need. Note that lemma
6 implies that, when r =0, Vg is actually the inverse of @ x DU'r, which is then
an isomorphism. This leads to theorem 3 and 4, which we can reformulate in the
following slightly more precise way:

Theorem 6. Let gy € r1(0) C Mg be such that OM is (strictly) conver and
umbilical. Suppose that either Ko = —1 and g satisfies (1) (or (2)), or Ko =0

and g is flat. Then O is a bijection from a neighborhood of go in v~ (0) to a
neighborhood of dgo in N .

It should be pointed out that the method described above, although it might
seem complicated, is necessary because a straightforward approach based on the
implicit function theorem for Banach spaces (directly solving an elliptic problem
with some additional condition on the boundary so that G induces a given metric
variation on dM ) apparently doesn’t work. This is because the degree of smooth-
ness that one can obtain in the metric variation on dM is different for the parts
of G corresponding respectively to the deformation of the metric in M (among
those with a given a given trace, which vanishes on the boundary) and to the
normal displacement of M. It is therefore necessary to go to the Fréchet cate-
gory and use the Nash-Moser theorem. Although it might not seem too obvious,
this is actually very similar to the classical approach of isometric immersions of
surfaces (see [Ham82], 111.2.1), where the two components that appear are the
normal displacement of the surface (again) and the action of tangent vector fields,
see [Ham&2).

The proof in the case where Kg = 0 is similar, but some modifications are
necessary. The definition of M has to be changed, so that M contains a neigh-
borhood of the metric on the unit ball in R™*!. Lemmas 1 and 2 still hold in the
neighborhood of this flat metric, although the hypothesis made in the statement
of lemma 2 exclude this case; more precisions are given on this point in section 3.
The lemmas 3 and 4 still apply around this flat metric, and the rest of the proof
does not vary from the negatively curved case.

What remains of this paper contains the proofs of the statements above. Section
3 deals with lemmas 1 and 2, section 4 with lemma 3, and section 5 with lemma
4. Section 6 gives the proof of proposition 6 and of lemma 6.

3. Equations on vector fields

We give in this section the proofs of lemmas 1 and 2, which involve the resolution
of vector-valued elliptic equations on M. We will be concerned first with the case
Ko = —1, and give at the end of the section details on what has to be changed to
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handle the case Kog=0.
The first point to tackle is the proof of proposition 2, which we recall here.

Proposition 2. Mg is a tame Fréchet manifold. M, Mgy s, Mgs: and Ry s are
equivariant under the action of Dy , and thus define smooth, tame vector bundles
over My which we denote by MO7M2767M87M and 72875 respectively.
Remember that, if go,g € My, there exists a unique map h : M — M, in the
homotopy class of the identity, which is the identity on &M and which is harmonic
between (M, go) and (M,g).

The existence of h was proved in [Ham75|, while the uniqueness comes from
standard methods for harmonic maps, i.e. a negative upper bound on the Lapla-
cian of the distance between gg and g. Note that both the existence and the
uniqueness of h use the curvature and convexity hypothesis appearing in the
definition of M .

Moreover, for g close enough to go, h is a diffeomorphism. This identifies a
neighborhood of gp in My with a neighborhood of gg in the set M of metrics
g on M satisfying a partial differential operator expressing that the identity is
harmonic between go and g (see [GL91]). Thus one can show that M is a tame
Fréchet manifold. Finally, the manifold structures induced on M by different
choices of gp can be seen to be compatible, so that M is a tame Fréchet manifold.

That M defines a smooth, tame vector bundle M° over M, is clear. M, s
is defined by a simple first order P.D.E., it is therefore the fiber over ¢ € M of
a smooth tame vector bundle M over M . Moreover, Dy acts in a natural way
on Ms: if GeEMy; and u € Do, then "G € My, 5, because:

(20,09 + dtrye g u*G = u* (28, + dtrg)G) =0 . (9)

Therefore, M, s can be considered also as the fibre over g € My of a bundle M;
over My, and it is easy to see that M is smooth and tame.

It is also clear that N defines a smooth, tame bundle over M, and quite
obvious that one can associate to it a smooth, tame bundle N° over M , because,
for g € M, the Ny, for different values of u € Dy are canonically identified.
Finally, the proof concerning Rs is almost the same as for M; .

Now the first result related to equations on vector fields was lemma 1.

Lemma 1.

1. Let go € My, and let g € M an element of the equivalence class go. Then
TQOMO o~ Mg/Vo s

2. For each k € N* and each G € M’gC there exists a unique vector field V €
Vit such that G+ 253V € MF ;.

3. The map 1l; : G — G+ 20,V defines a projection from M’; to M’;a which
is a smooth, tame bundle morphism over M .
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4. Il is equivariant under Dy , and thus defines a map Hg : Mg — Mgﬁ which
is a smooth, tame bundle morphism over My .
5. For each k € N* and each g € M, there exists C > 0 such that, for all
GeM;:
IG = Ty (@)l e < CII (26, + dbry)Gll e+ -

The first point is clear, because T1qDo = Vo .
For the second point, we have to show that, for any G € Mg, there exists a
unique V € Vg such that:

(26, + dtr)(G 4 265V) =0 ,

or that:
2(269(5; —dog)V = —(20,G + dtr,G) .

An easy computations (see e.g. [Bes87], [RS98]) shows that

2040, — dog = DDy —ricyg = DDy — mKog , (10)
so our problem boils down to proving that there exists a unique solution of:
2(D;DyV —mKoV) = —(26, +dtry)G on M
V = 0 on oM .

Define:
F: VI — R
V — fM ||DgV||2 — mKo||V|]?dv + fM((Q(Sg + dtry)G, Vydu .

F is strictly convex, and moreover it is coercive; this is clear if Ko < 0, and, if
Koy =0, it follows from the Poincaré inequality for vector fields vanishing on OM :

ac,vveva/ (Dw, Dv) zc/ (v,0)dV .
M M

Therefore, F admits a unique minimum Vy on V} , which for classical elliptic
reasons is smooth. Then, for all v € Vo, (Ty,F)(u) =0, and it follows in a very
classical way that:

2(D:D, Vo — mKoVo) = —28,G — dtry(Q)

as needed.

The third point is easy: II, is a projection because it is clearly the identity on
M, 5 , while its definition shows that it is smooth and tame.

For the fourth point, let ¢ € M and G € M. By definition, II,G =
G+26;V, where V is the unique element of Vg such that (234+dtrg)(I;G) =0.
Let w € Dy. Then it is straightforward to check that, because all terms are defined
geometrically:

(2B0g + e ) (Gt 2650y (uV)) = (25, + dbr,)(G +253V)) =0,
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so that, by definition of II:
My g(uw*G) = w* (11, G)
which is the required equivariance property.
Finally, to prove the upper bound in the fifth point, note that, by definition:
I, (G) -G =25V,
where V € Vg is such that:
(20, + dtry) (20, V) = —(20, + dtry)G ,
so that, by (10):
2(DyDy —ricg )V = —(24y + dtry)G .
Now D7Dy —ric, is elliptic and positive definite, so standard arguments indicate

that there exists C > 0 such that ||V gx < C||(204 + dtrg )Gl gr—1 .
Finally, we need to prove the:

Lemma 2. Suppose that g € M has ric, <0, and that OM s strictly convex
for g. Let G' € My ;. There is a unique V € V1 such that G := G’ +26;V €
Mys:; V= fn on OM for some f € C®(OM). Moreover, 0G = 0G" — 2f1.
The mapping:
Fo: Mys — Mg x C°(0M)
G = (G )

defines a smooth, tame isomorphism of vector bundles over M . Moreover, it is
equivariant under Dy and thus defines a smooth, tame vector bundle isomorphism

FO: M3 — MY, x C®(8M) .

Since trydyV = —0,V and (26, + dtry)d; = D;Dy —ricy , we only need to find
V € V| such that:
{ D!D,V —ric, V. = 0 on M

25,V = tr,G’ ondM. WL

We will show that (11) is elliptic with index 0, and then that solutions are unique.
The existence of a solution V for any G’ follows.
Consider the auxiliary problem:

D;D,V — (1 —t)ric,V +tV tW on M
2(1 =)0,V —2¢(D,, V,n) (1-t)try,G  ondoM
for ¢ € [0,1]. (12) is an elliptic boundary value problem. We check this using the
notations in [Sch95]. The principal symbol of the equation in M is:
Psym(D*D)(z,v)V = ||v|*V .
Choose z € OM, and a chart around z such that oM ~ R™ C R™t! around
z . The space of bounded solutions of the relevant ODE at (z,?) € T,,0M is

Mg ={V(s) | Vi(s) = Vie 177}

(12)
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where V; is the i*" coordinate of V in the chart.

The principal symbols of the boundary conditions are V; for 1 <i <m (this
corresponds to the condition that V.€ V), and

m
—205Vimy1 +2i(1 =) &V .
i=1
Now the corresponding linear operator is obviously injective, so (12) is elliptic for
te0,1].
For t =1 it is simply (including the condition that V € V | , which translates
as “V|n on OM”):

DZDQV +V=W on M
—2(D,V,n) =0 on M . (13)
Vn

It is easy to show, by the same minimization procedure as in the proof of propo-
sition 1, that (13) has a unique solution for any W . (13) therefore has index 0,
and, by the deformation invariance of the index, (11) has index 0 too.

To prove that the solutions of (11) are unique, we have to show that any solution
for G =0 is zero. If V is such a solution, then:

oz/mwﬂ—mﬂym:/nmwkﬁmww@+/(mww@.
M M a

M
(14)
Now ric, <0, and, since 6,V = 0, we have for any moving frame (e;)ien,, on

oM :
(DaV,V) = f(DuV,n) = —f > (De,(fn),e:) = f°H ,
i=1

where H is the mean curvature of M. Since dM is convex by our hypothesis,
H > 0, so the boundary term in (14) is positive, so V.= 0 on M. This proves
the existence and uniqueness of V in the lemma.

The deformation induced by 26;V on OM is easy to compute: for m € OM
and z,y € T,,0M:

2(6,V)(z,y) = 9(D2V,y)+g9(DyV,2) = g(Da(fn),y)+9(Dy(fn),z) = =2fll(z,y) .

The smoothness and tameness of F is a consequence of its definition by solution
of some elliptic PDEs; we leave it to the reader. Finally, the injectivity of F is
obvious, because if F(G') =0, then G’ corresponds to a metric variation which
is zero inside M, and to a null deformation of the boundary, so that G’ is trivial.
F is therefore an isomorphism since equation (11) has index 0.

To check that F is equivariant, let w € Dy . Then:

(200 g +dtung ) (U G/ 4265 V) = (20ung+dtrysg) (u*(G'+26;V)) =
= u*((20, +dtry)(G'+25;V)) =0 .
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Moreover, on OM :
trys g (W G') = u*(tr,G') = 0 .

Finally, its definition shows that F does not depend on w, so that:
fu*g(u*G/) - (U’*Gaf) ’

which is the equivariance property we need.

If Ko = 0, it is enough to consider metrics which are close to the metric on
the unit ball in R**! . Lemma 1 can then be proved just as in the case Kg = —1,
but the crucial point is now that the Ricci curvature of the metric in the ball
remains smaller than the first eigenvalue of the Laplacian acting on vector fields
(for Dirichlet boundary values). The same applies to lemma 2.

4. Ellipticity of a boundary value problem

This section contains the proof of the following lemma of section 2:

Lemma 3. The system:

D!D,G—2R,G=R onM

trgG = O (15)
(26 + dtry )G =0 on OM
0G = H mod Il

is an elliptic boundary problem on M with index 0.
Consider, for ¢ € [0,1], the deformed problem:

D:D,G-2R,G=R onM
tI‘g(G) =0 (16)
(204 + (1 —t)dtry)G =0 on OM
0G—(1—t)H | I

For ¢ =0, (16) is the same as (15), while, for ¢ = 1, it becomes:

D:D,G—2R,G=R on M

tl“gG =0 (17)
0,G=0 on oM
oG | I

Then consider the further deformation:
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D:D,G — 2(1 — 1) ﬁgG+tG R onM

trog(0G) + (1 — t)G(n,n) = (18)
(1 -1)0,G —t(D,G)(n) = on oM
oG || ]I

For ¢ =0, (18) is the same as (17), and, for ¢ =1, it becomes:
D*DG+G=R onM

—(D,,G)(n) =0
( )(8(;:0} on OM

because G has to be parallel to 1T and traceless, so it must vanish. Then:

(19)

Proposition 7. For all t € [0,1], (16) is elliptic.
Proposition 8. For all t € [0,1], (18) is elliptic.
Proposition 9. The problem (19) has a unique solution for R € M, .

By proposition 9, (19) is elliptic with index 0; then by propositions 7 and 11
and the invariance of the index, (15) is also elliptic with index 0, and lemma 3
follows.

Proof of proposition 7: Since ellipticity is invariant under diffeomorphism, we
can work in a chart sending &M to R™ C R™*"!  and such that, at the image of
z (which we still call z) T is diagonal with (positive) eigenvalues IIy,--- 1L, .

Ellipticity only depends on the principal symbols of the relevant operators, so
we can remove all the terms which do not appear in the principal symbols of either
the operator on M or the boundary conditions, and we are left with the following
problem, where ; is the derivation with respect to the i** coordinate:

—ZmH 2G =0 on M

tr(G) =0 (20)
—2 Y Gk + (1= 1)dtr(G) =0, 1<k<m+1 on &M
G| I

The principal symbol of (20) on M s, for y € RTH :

m—+1
Psym(— Y 97)(y,v)C = [[o]*G

so the space of bounded solutions of the relevant ODE for z € R™ and v €
T.R™, v # 0, is the following space of functions from R, to the space of
(m+1) X (m+ 1) symmetric matrices:

M5 = {(Gjr()1<jhsmi | Giul(s) = GI e 1715}
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The principal symbols of the boundary conditions are:

tr(G)
2||7-J||Gm+1,k — 2 Z;n:1 f}jGj,k + (1 — t)iﬁktr((}), 1<k<m
20181 Gt i1 = 203250 55Gymir — (1= 0)]5]|tr(G)
Tt (BG)

(21)

where 71 is the projection to the hyperplane orthogonal to 1. We need to
prove that the operator /\/l; 5= C(m+1)/2 Jefined by those principal symbols
is injective. 7

If (Gjr(s))i<jr<mst € M;i , then the boundary conditions in (21) are 0 if

and only if there exists u such that:

tr(G) =0
2”6”Gm+1,k — 2z Zm:1 ﬁijk ~+ (1 — t)i@ktr((}) =0, 1<kE<m
20|9l1Gmt1,my1 = 26350 05Gimer — (L = )]|2[tr(G) = 0
Gx =0, 1<j£k<m
G, = ully, 1<k<m
(22)
Gmt1,m .
Then u = ——Lf——trzﬂ)“ , and:
10l Grg1,k — 101 Gpe = 0 1<k<m
||@||Gm+1,m+1 —’ngnzl 6jGj,m+1 =0 )
Gy =0 1<j#k<m (23)
Gmt1,m
Gk = —=%rn T e 1<k<m

Replacing the second equation in the first and using the last equation of (23) shows
that:

18] 20 (D) Gt 1,m+1 = LD, D) Gt 1, met1 -

But 1 is positive definite, so that tr(I[)||5|? > I(2,%), and Gpi1me1 =0. It is
then easy to check from (23) that (G; ;)1<ij<m+1 =0, as needed. O

Proof of proposition 8: As above, we use a coordinate system and remove the
terms which do not appear in the principal symbol. We are left with:

S R2G =0  onM
tr(aG) + (1 - t)Gm+17m+1 =0
— O 1Gmi 1,k —(1—15)2?1:139'(33',1@ =0, 1<k<m+1 on OM
oG || It
(24)
which is elliptic if and only if (18) is (and has the same index).
The space M;ﬂ is the same as above in the proof of proposition 7, and we

have to check again that the linear operator from M7 _ to C™™m+1/2 defined

x,U

by the principal symbols of the boundary conditions is injective.
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The principal symbols of the boundary conditions are now:

Y1 Gig + (1 = 1) G 1mr1
[12]1Gomg1,p — (1 =) 35701 93Gyp, 1<k <mt 1 (25)
oL (8G)
If (ijﬂ(s
5)

J1<j k<m+1 € M;“ﬁ , then the condition that the boundary condi-
tions in (25) ar

)
are 0 is that there exists u such that:

21 Ghg + (1= 1)Gmitmi1 =0

ol Gm1p = (1 =) 3255, 85CGy0 =0 1<k <m+1 (26)

Gy =0 1<j#k<m

G = ull 1<k<m

Then uw = _O*t);}r% , and:

5| Grmg1,k — i(1 — )0k G =0 | <k<m
9t tmr1 —4(1 =) 352 95Gjme1 =0 .
Gjx =0 1<jAk<m (27)

G = — =T 1<k<m

Replacing the last equation in the first and using the second equation of (27) shows
that:

181t (M) G 1,mr1 = (1 = 6)° Gt 14118, 0)
But again tr(II)||5]|? > I(9,) so that Gpi1ms1 =0, and, from (26), G =0 as
needed. O

Proof of proposition 9: The proof is by minimization again, this time of the
functional:

F(G) = [ IDGI” + |Gl - 2(R, G)do
M

which is convex and coercive on the vector space of H! sections of M, which
verify the boundary conditions. O
5. Rigidity
We prove in this section the following lemma of section 2:
Lemma 4. If r(go) =0 and OM is strictly conver and umbilical for go, and if
go satisfies (1) (or (2)), then the only solution of (6) for R=0 and H =0 is
G=0.

We suppose that go satisfies the hypothesis of the lemma and that G € My, s
is a variation of go such that 9;G =0 which is a solution of (6) with R =0.
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Taking the trace of the first equation of (6) shows that:
Ay, trg, G = mKotry, G (28)

Integrating by parts shows that, since tr(G) =0 on oM:
/ (G, A gy trgy G — mKotr gy Gy — / D4, G2 = mKol|Glldv = 0
M M

and both terms are non-negative, so that ¢ry,,G =0 on M. Moreover, proposition
6 shows that (2d,, + dtrg,)G =0 on M. But tr,, G =0, so that J,,G =0 on
M.

Since H =0 and since 0M is umbilical, there exists u : 9M — R such that:

Ya € OM, Vz,y € T,0M, G(z,y) = u(a)go(z,y)

and, since tr,,G =0, G(n,n) = —mu(a).
For m € OM , we call b the unique vector in T,,0M such that:

Vo € T, 0M, G(z,n) = go(z,b)

and also the dual 1-form on M. We overline all the natural objects on M
to distinguish them from the same objects on M, and we choose an orthonormal
moving frame (e;)1<;<m on OM. To keep readable notations, we apply an implicit
summation to repeated indices, and consider G both as a symmetric 2-form and
as a linear morphism TM — TM .

The proof rests on two Weitzenbdck formulas. The first is:

/ ||D90G||2dv:/ 2Ry, G7G)dv+(m+3)/ w(3b)da—
M M oM

—/ (m+ 1) Hu? + 2H||b||* + 21(b, b)da (29)
oM

For the second, consider the operator of exterior differentiation on T*M -valued
forms on M :

dP : C®°(AFT*M ® T*M) — C°(A* 1 T*M @ T*M)

and call 6P its adjoint. A straightforward computations shows that ¢é° acts as
dg, on symmetric 2-forms, when they are considered as 1-forms with values in
T*M . Therefore, 6°G = 0. But (see [Bes87], 12.69):

(6°dP 4 dP5P)G = DZ, Dy, G— Ry, G + G oricy, (30)

‘We will use this formula to obtain:
/ [|dPG|2dw = / (Rgy G,G) + mKo(G,G)dv— (31)
M M

xS 2
—(m—1)/8Mu(5b)da—/6M(H||b|| — (b, b))da
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The proof of lemma 4 follows; by taking a linear combination of equations (29)
and (31) with coefficients m — 1 and m + 3 respectively, we find that:

/M (m — 1)y, GII? + (m + 3)[| PG| Pdv <

g/ (3m +1) Ry, G,G) + Kom(m + 3)(G, Gdv
M

because the boundary term is non-positive, while it is clear that the left-hand side
is non-negative. Moreover, with the hypothesis of lemma 4, the right-hand side
is non-positive (this is why we need equation 1 or equation (2)). Both sides are
therefore zero. If Ko = —1, this already shows that G=0.

If Ko =0, the boundary term has to be zero too:

/8 (m — 1)((m + 1)2Hu? + 2H||b||? + (b, b)) + (m + 3)(H||b]|* — (b, b))da = 0
M

so u=2>b=0 on OM, therefore G=0 on M, and so G=0 on M because
DG=0. 3
To prove (29), we use that D} Dy, G =2 Ry, G (from (6)) to find that:

/ IDy, G20 = / (D% D, G, ) — / (DG, G)da
M M OM

- /<2f{goG7G>—J
M
Then:
. / 00((DaG)(e), Ges) + go((DaG)(r), G da
oM
G)

= /6MU90((Dn (ei), i) + bigo((DnG)(e:), ) + go((DrG)(n), Gn)da

But:
90((DnG)(€:), €:) + go((DnG)n, n) = d(trg, G)(n) =0

and G is symmetric, so that:

90((DnG)(ei),n) = go((DnG)(n), &)

Therefore:
J = / 90((DrG)(n),b —un+ Gn)da
oM

= [ a(DuG)m). 20— (m -+ Dun)ia
OM

Now
550G =0 = (DuG)(n) + (De, Qe
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- / g0((De, G)(e5), (m -+ 1)un — 2b)da (32)
oM

But:
go((DEiG)(e’i)7b) = ei‘G(e’h b) - G(Deie’h b) - G(6i7DEz’b)

and D,y = D,y + l(z,y)n, so that:

90((De, G)(e€:),b) = e;.(uble;)) — ub(De,e;) — W(es, €,)G(b, n)—

—G(e;, De,b) — (e, 0)G(e;,n)
so

b(e;)Dule;) — H||b||> — (b, b)
= go(b,Du) — H|[b||* — 1(b,b) (33)

90((De; G)(e:),b)

On the other hand:

go((De,G)(e;),n) = e€;.G(e;,n) — G(Dg,es,n) — Gley, De,n)
= e;.ble;) — b(De,e;) + (e, e;)mu + Gle;, Be;)
= (D, b)(e;) + mHu + Hu
= —(@b) + (m+1)Hu (34)

Replacing (33) and (34) in (32) gives:
J= / —(m + Du(db) + (m + 1)>Hu® — 2go(b, Du) + 2H||b||* + 21(b, b)da
oM

from which (29) follows by integration by parts of go(b, Du).
The proof of (31) is similar:

D2, D ;D _ DV (n. . "
A/[Hd Gl2ds = AAQ PG, Gydv /6M<(d G)n, ), G)d

= /<5DdDG+dD5DG,G>dU—/ {(dPG)(n,.),G)da
M OM

I

/ (Rgo G +mKoG,G)dv — I/
M
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from (30) and (6), with:

7o /go((dDG)(n7ei)7Gei)da

oM
= /go((DnG)(ei) — (D¢, G)(n),ue; + byn)da

oM

= [ DG es e+ 1DaG) 1) = DG, 5) — B Do, G,
M

= / —u(DnG)(n,n) — b;(De; G)(es,¢5) — u(De, G)(n, ;) — by(De, G)(m,n)da
M

— / —(De, G)(b,e5) — (DpG)(n,n)da
M

= / —ej.(ub(e;)) + G(De,b,e5) + G(b, D, e5) + mdu(b) + 2G(Dyn, n)da
oM

= / —du(b) + (e;, €;)G(b,n) + l(e;, b)G(n, ;) + mdu(b) — 2G(Bb, n)da
oM

= /(m — 1)du(b) + H||b||* + (b, b) — 21I(b,b)da
M

_ /(m — )du(b) + H|B|J? — T1(b, b)da
M

and (31) follows. This ends the proof of lemma 4. O

6. Bilinear error terms

We finish here the proof of theorem 6 by giving the proof of lemma 6. First, we
will prove proposition 6. For this, we will use an analogous, non-linear result. For
g e M, let:

¢, M = M
h —  ric, —mKoh + 65(28, + dtry)h

The following proposition is a slight extension of lemma 1.6 of [Biq00]:
Proposition 10. Suppose that ric, < 0, and that ®4(h) = p with (26, +

dtrp)p = 0. If (20, + dtrg)h = 0 on OM, then (20, + dtrg)h = 0 on M,
and ric, —mKoh=p on M.
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Taking the trace of the differential Bianchi identity shows that:
26 ricy, + dSy, = (2(511 + dtI'h)I‘iCh =0, (35)
where S;, is the scalar curvature of h. But:

(265, + dtl‘h)q)g(h) = (20p +dtrp)p =0,

so that, by definition of ®, and (35):
(20,05 — doy)(20,h + dtryh) =0 . (36)
Setting ¢ = 2§,k + dtrgh and using (10) shows that:
(DD, —ricy)e=0. (37)

Integrating against ¢ and using that ¢ =0 on M leads to:

/ ((DEDy, —ricy, e, cydv = / IDne|l? = (ricpe, cydv =0 (38)
M M

and ric, < 0, so that, (using again that ¢ =0 on M) ¢ =0 on M. It is
then obvious from the definition of ®, (and the hypothesis that ®,(h) =p ) that
I“iCh — mKoh =p.

The proof of proposition 6 is then a simple consequence of proposition 10 and
of its proof; linearizing each step of the proof of proposition 10 gives a proof of
proposition 6.

Proof of lemma 6: Choose g € M and G € Mys. By lemma 2, G =
Go — 25;\/, with Go € Mys: and V € V. We will show (7) first for Gg, then
for =257V .

Let (H,R)= (0 x D'r)Go, and let G} = V,(H,R) € M, ;. The variation of
r associated to Gg is:

y' = DyD,Go — 6,(26, + dtry)Go — 2 ﬁg Go =DDyGo -2 Io{g Go .
But r is a section of Ry, ie.
(204 + dirg)r="0 .
Linearizing this equality shows that:
(205 + dtrg)r’ + (207, + dtr})r(g) =0 .

If r(g) = 0, this already shows that r’ € Ry, so that R :=D§ r = Il (') =
r’. Gp is then a solution of the equation used to define G{, and they satisfy the
same boundary conditions, so that G{j = Gy by uniqueness of the solution of (6).

If r(g) # 0, the same idea shows that G{ is “close” to Gg:

(26, + dirg)r’ = —(20) + dx))r = g (r(9),Co) |
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where qig(r(g)7 Gyg) is smooth, tame and bilinear. Therefore, by equation (4) of
proposition 3:
R - ’I"/ - qé,g(r(g% GO) ’

where qlm is smooth, tame and bilinear. Then Gy and Gf, are solutions respec-
tively of:
D!D,Go —2 Ry Go =/
and of:
T*D,Gh— 2R, G =R,
with the same boundary conditions. Thus:

GO - G6 - qé,g(r(g)7 GO) )

where again qéhq is smooth, tame and bilinear. This shows (7) for Gg .

Consider now the term —26;V . Let V= fn on oM. If r(g) =0, then:
(8 x D"r)(—20%V) = (2f1L,0) .

The solution of (6) for (H,R) = (2f1I,0) is obviously 0, because the component
of H parallel to II doesn’t appear in the equation (6). The definition of V, then
shows that V,(2fI,0) = —257V , and this proves (7) for this term when 7(g) = 0.

If r(g) # 0, the same idea will again prove (7). Then 9(-26;V) = 2fI, and
the variation of r associated to —26;V is:

/ —_—

r=—Lyr= qéll,g(r(g)vv) ;

where qﬁL 4 is smooth, tame and bilinear. The definition of I' then shows that:
DEZJ;VT - qé,g(r(g)7v) 3

where qé7g is also smooth, tame and bilinear. The solution G’ of (6) for (H,R) =
(2f]I7D1:25*V7") is then small, again because the component of H parallel to Il
does not count:

G = Qé’g (T(g)7V) ’
where qé’ 4 Is again smooth, tame and bilinear. So we finally obtain that:
Vg0 (8,DFr)(=203V) = =263V + ¢b ,(r(9), V) .
This finishes the proof of (7).

Now choose (H,R) € Ny x Rys5. Let G = V,(H,R) and (H',R’) = (9 %
DF7)G, and let f : OM — R be the function such that H — 2fI is trace-free
for T on OM. By definition of V,, G =TII,(G') + F;l(O,f) , where G’ is the
solution of (6). Thus, by definition of TI, and of F,, G = G’ + 20;V, where
V € V| . One essily checks that 0II,(G') = 0G’, so that H' = H .
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The variation of r associated to the variation G of g is:
v = DiD, G — 8525, + dtr, )G’ —2 Ry G + Lyr
while, by definition of G':
D;DQG’ -2R,G'=R.

Consequently:
r=R-— 35(204 + dtrg)G' + Lyr .

By definition of I':
R :=DLr = ,(r') =R — 95(205 + dtrg)G' + Lyr + 25;\7\7’ ,

where W’ is the unique element of Vg such that (28, + dtr,)(D5r) = 0. Since
the vector field (2d,+ dtry)G’ vanishes on OM by (6), it can be incorporated into
W', so as to obtain that:

R :=R+ Lyr+ 200W
where W € Vg is such that:
(264 + dtrg)(Lyr +20,W) =0,
because (26, + dtryg)R =0 by definition of R. That is:
R' =R+, (Lvr) .

Now it is quite easy to check, from the definition of Il, , that there exists C(g) >0
such that:
| Lvr = Hg(Lyr)ll < Clg Lyl -

As a consequence:
IR = R|| < (1 + Clg)l £yl -

If 7(g) =0, then R’ =R, and the proof of (8) follows. If 7(g) # 0, then:
R'—R=qf ,(r(9),V) ,
where qig 18 smooth, tame and bilinear, so that, by definition of V:
R’ —R = g5 ,(r(9), (H,R)) ,

and g5 , is smooth, tame and bilinear. This proves (8). O
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