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Transitively twisted flows of 3-manifolds

Hiromichi Nakayama

Abstract. A non-singular C1 vector field X of a closed 3-manifold M generating a flow ¢
induces a flow of the bundle NX orthogonal to X. This flow further induces a flow Py of the
projectivized bundle of N X. In this paper, we assume that the projectivized bundle is a trivial
bundle, and study the lift Zp; of Py; to the infinite cyclic covering M x R. We prove that the
flow Zy; is not minimal, and construct an example of ¢ such that Zy; has a dense orbit. If ¢
is almost periodic and minimal, then Zy; is shown to be classified into three cases: (1) All the
orbits of Zy; are bounded. (2) All the orbits of Zy; are proper. (3) Zyy is transitive.

Mathematics Subject Classification (2000). 37B05, 37C27.

Keywords. Angular flow, transitive, minimal, almost periodic.

1. Introduction

Let M be a closed 3-dimensional manifold, and X, a non-singular C! vector field
of M. Denote by ¢; the flow generated by X. Let TM denote the tangent bundle
of M and let NX denote the quotient bundle of TM by the 1-dimensional bundle
tangent to X. For any ¢, the derivative Dy, of ¢, induces a flow on N X, denoted by
Ny, which is called the infinitesimal flow of ¢;. Let PX denote the projectivized
bundle (J, ¢ 5 ((NzX —0)/v ~ kv) (v € N,X —0,k € R—0), where N, X is the
fiber of NX at z. Then Ny also induces a flow on PX, which is denoted by Py;.
The flow Py, represents the angular part of N;.

In this paper, we assume that PX is a trivial bundle (in particular, if H>(M) =
0). We parametrize PX by M xR/Z, i.e. each fiber is the 1-dimensional projective
space P!, which is identified with S* and is parametrized by R/Z. Denote by [s]
the element of P! represented by s € R and by 7 : M x R — PX the projection
(7(z,8) = (2,[s])). Then there is a unique flow Zy; of M x R which is a lift of
Py, (See §2). We call it the angular flow of ;.

In this paper, we are concerned with dense orbits of Zy;. It will be shown
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in §3 (Corollary 3) that there is a C°° flow whose angular flow has a dense orbit
(i.e. transitive). However it is impossible that all the orbits of Zp; are dense (i.e.
minimal), which will be shown in §2 (Corollary 1). We will further prove in §2
that, if ¢, is almost periodic and minimal, then Zy; is classified into the following
three cases (Corollary 2).

(1) All the orbits of Ly, are bounded.

(2) All the orbits of Ly, are proper.

(3) Ly is transitive.

The author wishes to thank the referee of this paper, who informed the author
of the brilliant history of this subject as follows: In 1976 in an international con-
ference on Dynamical systems at IMPA, Rio de Janeiro, Brazil, Alberto Verjovsky
delivered a conference in which he constructed a flow, (which he called the “induc-
tance” flow) canonically associated to a smooth nonsingular flow, ¢, : M — M,
defined on a closed, smooth 3-manifold and corresponding to the vector field X.
This flow was constructed with the specific purpose to be applied to the so-called
Gottschalk conjecture which states that no minimal flow exists on the 3- sphere. If
G2 (M) denotes the Grassmannian bundle of oriented 2-planes tangent to M and
if N C Go(M) denotes the subset of G5(M) of two planes which contain the line
field generated by the nonsingular vector field X then N is the total space of a
locally trivial fibre bundle 7 : N — M which, in particular, is the trivial bundle,
N = M x S if H*(M,Z) = 0. Via the action of Dy;, on N we obtain a flow
g: : N — N, which is an extension of ¢y, i. e. o g = ¢rom. This is the “induc-
tance” flow of Verjovsky. The name is an obvious reference to Ampere’s Law. The
flow g; preserves the circles which are the fibres and send each circle onto its image
by projective transformations of ST = P'. At that conference attended, in partic-
ular, Dennis Sullivan, the late Michael Herman and Etienne Ghys who after the
conference gave some ideas related to the talk. In particular, Etienne Ghys could
prove that no minimal transversely conformal flow could exist in the 3-sphere.
In this case the action of g; on the fibres is, after conjugation, by rotations. A
natural question that arose from that conference was: Under what conditions is a
smooth minimal flow on a 3-manifold tangent to a foliation, such is the case of the
horocycle flow on PSL(2,R)/T where I" is a co-compact discrete subgroup. Such
manifolds can be homology 3-spheres (such is the case of Brieskorn manifolds V}, 4 »
with % + % + % < 1). Some months later after the conference cited before, Michael

Herman constructed an example of a smooth diffeomorphism of the 2-torus 772,
such that its differential acts minimally on the space of lines tangent to the torus
and it is isotopic to the identity. Therefore, the flow which is the suspension of this
diffeomorphism, and defined on the 3-torus 7% can never be tangent to a foliation.
Michael Herman never published his result, however, he wrote an excellent paper,
in collaboration with Albert Fathi, in which they proved, in particular, that if a
compact manifold S admits a smooth locally-free action of the torus 7" (n > 1)
then S admits a smooth minimal action of R*~!. For » = 1, S admits a minimal
diffeomorphism. Actually this was previously given by Anosov and Katok ([1]).
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In this paper, we use the idea of the above construction of the minimal flows
to construct a flow whose angular flow is transitive but not minimal. The author
would like to express his gratitude to Shigenori Matsumoto, who communicated
to the author the construction of Alberto Verjovsky which inspired of this modi-
fication from the minimality to the transitivity.

2. Dense orbits of angular flows

First we give a precise definition of the angular flow Zy;. We define ® : PX xR —
PX by ®(z,[s],t) = Pyi(z,[s]) for 2 € M and [s] € P'. Then there is a map
¥:MxRxR— M xR satisfying mo¥ = $o(7 x id ) and ¥(z,0,0) = (z,0) for
some z € M.
MxRxR -5 MxR
rxid | O |«
PX xR -2 pX

Then we have ¥(z,5,0) = (z,s) for any z and s. We define the angular flow
Lo - M xR — M xR by Zpi(z,5) = ¥(z,s,t). Then Ly, is a lift of Py, by
definition, i.e. moZp; = Pyprom. For any w (0 £ w £ 1), we obtain n\W(z, s, u(t1 +
ta)) = 7w (¥(z, s, ut1), uts). Hence we have U(z,s,t1 +1t2) = ¥(¥(z,s,t1),t2),
which implies that Z¢; is a flow of M x R. Conversely, it can be shown that a
flow of M x R which is a lift of Py, is Zepy,.

Remark. If Py; is generated by a vector field, then Zy; is generated by its lift
on M x R. We define Zg; in terms of isotopy as above because ¢, is assumed to
be of C! and, furthermore, we will construct a flow with the transitive angular
flow in §3 by using these isotopies.

Let O(z,s) denote the orbit of Zy; passing through (z,s) € M x R, and
let O (z,s) (resp. O_(z,s)) denote the positive (resp. negative) semiorbit
{Zpi(z,8);t 2 0} (resp. {ZLoi(z,s);t < 0}). Denote by p; (4 = 1,2) the i-th
projection of M x R and M x P!, The orbit O(z, s) is called upper bounded (resp.
lower bounded) if {psZpi(2,s); t € R} is upper (resp. lower) bounded. The upper
(resp. lower) bounded semiorbit is defined in the same way.

Next we show two general properties concerning with lifts needed later.

Lemma 1. There is C > 0 such that, if |paL, (2, 8) —paley, (2,8)] 2 1, then
|]92450L2 (z7 8) —pgliptl (Z7 5)| < C|t2 - t1|
for any (z,8) € M xR, t; € R and t; € R.

Proof. Without loss of generality, we can assume that ¢, is greater than ¢;. Let d
denote the metric of P! induced from the natural metric of R/Z. Since Py is a con-
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tinuous flow of a compact manifold, there is C' > 0 such that d(paPy:(z, [s]), [s]) <
1/2 for any z € M, [s] € P! and [t| < 1/C. Hence |p2Z¢i(2,s) — s| = 1/2 implies
that [¢t|] = 1/C for any z € M and s € R. Here we assume that psZ¢;, (2, s)
is less than paZyy,(z,s). Let n denote the largest integer smaller than or equal
to paler,(2,8) — paler, (2,8). Then n is greater than or equal to 1 by assump-
tion. We take a finite sequence {b;};—01,.. 2 such that ;1 = by < by < -+- <
ban S t2 and paZes;(20,80) = paler (20,80) +3/2 (5 = 1,2,---,2n). Then
lp2Zpn, ., (20, 80) — P2Lws, (20, s0)| = 1/2. Hence we have b; 1 —b; 2 1/C. Thus
we obtain that to —t1 2 2n/C 2 (n+1)/C > |paZLpr, (2, 8) —paLey, (2,8)]/C. We
can show the lemma in the same way in case where psZyy, (2, s) is greater than
2Lt (2, 8).- O

Lemma 2. Let 7: M xR — M xR denote the shift defined by 7(z,s) = (z,s+1).

Then Ly commutes with T.

Proof. By definition, we have
7 (2, 8)
= nlpi(z,8+1)
= Py w(z,s+1)
= Py w(z,5) = ®(n(z,s),t).

Therefore, (z,s,t) — 7 1ZLp7(2, s) is a lift of ® satisfying 771 Zpy7(2,0) = (2,0).
Thus we obtain 7' Zy, 7 = Zip,. |

Let Y be a topological space. For a homeomorphism g : ¥ — Y and a
continuous function » : Y — R, we define a homeomorphism ¢ of ¥ x R by
¥(z,8) = (g(z2), s+ h(z)), which is called a cylinder homeomorphism. Gottschalk
and Hedlund ([3]) studied cylinder homeomorphisms and showed several impor-
tant properties. Though the angular flow Zy; does not satisfy that paZe(z, $2) —
poLpi(z,81) = 8o — 51, the following argument similar to that of Gottschalk and
Hedlund is valid by Lemma 2.

Lemma 3. Let (20, s0) be a point of M xR. If there are sequences {un fn—12.. C
R and {vp}n=12.. CR such that u, < v, and

max{psZLpy, (20, 50), P2 Lpy, (20, 80) } + 1
S max{p2Zps(20,50); un St S vp}

(T65p~ min{PQA‘Pun(Zm 30)71’24‘191171 (207 30)} -n
Z min{pglapt(zo, 30) ; Up § t é vn})?

then there is an orbit of Ly, which is upper (resp. lower) bounded.

Proof. We only prove the existence of upper bounded orbit of Ly, in case where
max{p2Zpy, (20, $0), P2Lpv, (20, 0)} + 7 = max{paZLyi(20,50); un S ¢ < vp}.
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Let wy, be the time between w,, and v,, such that psZe, (20, s0) is the maximum
of {paZLei(z0,80); un <t < v,}. By lemma 1, there is C > 0 such that w, —
u, > n/C and v, —w, > n/C. Hence we have lim, ., w, — v, = oo and
limy, o0 vy, — Wy = 0.

Let (2p, sn) = L, (20, s0). Denote by |s| the largest integer smaller than or
equal to s. For any ¢ satisfying u,, —w, <t < v, — w,, we have

P2Lpt(2n, sn — |sn])
= paLipet™ " Lipu, (20, 50)
= p2LPtiw, (20, 50) — | 50
< poLpy, (20, 80) — | sn], because u,, £t 4w, S v,

= 5= L)

<1

By taking a subsequence, we can assume that (z,, s, — | $»]) converges to some
point (Zeo, So0) as 1 — 00. Then we can show p2Z¢; (200, S00) S 1 for any ¢ € R as
follows: Suppose on the contrary that there is t € R such that psZyi(200, Se0) > 1.
Then there is a neighborhood U of (24, $o0) such that paZyi(z,s) > 1 for any
(2,8) € U. For a sufficiently large n, (2n, s, —| sn|) is contained in U and wu,, —w,, £
t < v, —wy,. However this contradicts the above consideration that psZyi(2y, sn —
| sn]) is less than 1. Thus O(zw, $o) is an upper bounded orbit. O

Lemma 4. If Zyp: has a bounded positive (negative) semiorbit, then there is a
bounded orbit of L. Moreover, if ¢, is minimal (i.e. all the orbits of ¢, are
dense), then all the orbits of Ly are bounded.

Proof. If Zyp, has a bounded positive (resp. negative) semiorbit, then its w-limit
(resp. a-limit) set K is a non-empty compact invariant set. Then an orbit con-
tained in K is bounded in the positive and negative time. For any (2o, sg) of K,
the orbit O(zg, so + n) is bounded for any n € Z, because Ly, commutes with
7. Hence, O(zo, s) is also bounded for any s € R. If ¢, is further assumed to be
minimal, then 7(K) is the whole manifold M. Therefore, all the orbits of Zp; are
bounded. (|

The orbit O(z, s) is called proper if lim;_ oo p2Zipi(z,8) = +00 or —oo and
lims_, oo p2Zpi(2, 8) = +00 or —o0. Then O(z, s) is a closed set of M x R.

Theorem 1. If Zyp; has an orbit which is not proper, then there are an upper
bounded orbit and a lower bounded orbit.

Proof. We will only show that O(z, s) is proper for any (z,s) € M x R if no orbits
of Ly, are upper bounded. We can prove in the same way that O(z, s) is proper
for any (z,s) € M x R if no orbits of Zy, are lower bounded.
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Suppose that there is a point (z,s) of M x R such that O, (z,s) (resp.
O_(z,8)) is not upper bounded and lim; oo p2Zei(z,8) # oo (resp.
limy , oo paZpi(2,8) # +00). Then there exist a number C and a sequence
{tn}tn=12.. C R such that lim, o t, = +oc (resp. —o0) and paZyy, (z,8) £ C.
Since O (z, s) (resp. O_(z, s)) is assumed not to be upper bounded, there is a se-
quence {uy }n—12,.. C Rsuch that poZp,,, (2,8) > C+n and uy, > t, (resp. u, <
ty). Thus there is an increasing (resp. decreasing) sequence {vy, }rn—1,2... C R such
that poZe,, (z,8) £ C and poZip,, (2,8) > C+n (n=1,2,---). By Lemma
3, there is an upper bounded orbit, which contradicts the assumption. Thus we
conclude that lim;_ 4o paZei(z,8) = +00 (resp. limy,_oo p2Lyi(z, 8) = 4o00) if
O, (z,5) (resp. O_(z,s)) is not upper bounded. We can prove in the same way
that lim; oo paZpi(z,8) = —o0 (resp. limi, oo p2Zei(z, 8) = —o0) if O4(z,s)
(resp. O_(z, s)) is not lower bounded.

If no orbits of Zy; are upper bounded, then no positive (resp. negative) semior-
bits are bounded by Lemma 4, which implies lim;_, o p2Zpi(z, 8) = Lo (resp.
limy—, oo p2Zpi(z, s) = £o0) for any (z,s) € M x R by the above consideration.
Therefore the orbit passing through (z, s) is proper. O

Corollary 1. Zy; is not minimal.

A subset A of R is called syndetic if R = {a + k;a € A, k € K} for some
compact set K of R, and a flow ¢, of M is called almost periodic if, for any £ > 0,
there is a syndetic set A such that d(z, ¢,(2)) < € for any z € M and a € A, where
d is a metric of M. In this case, we can further analyze the orbit structure of Ly,
as follows.

Theorem 2. Let ¢, be an almost periodic minimal flow. If no orbits of Ly, are
bounded and Zyp; has an upper bounded positive semiorbit and a lower bounded
positive semiorbit, then Ly, is transitive.

Proof. Let W1 and W5 be arbitrary open sets of M xR. We have only to show that
(Uycr £o:(Wa))Nn Wy # B (Theorem 9.20 of [3]). There are open sets Uy and Us of
M and open intervals I} = (ay,by) and Iy = (aq, by) satisfying Uy x I} € Wy and
Uy x Iy C Wy. Then it is enough to show that (| J,cp Zpe(Us x I2))N (U x I1) # 0.

First claim that there are a connected open set V5 contained in Us; and a
syndetic set A such that ¢, (V2) is contained in Uy for any a € A. Let z1 be a
point of U;. Then there is € > 0 such that the e-ball B.(z1) with center z; is
contained in Uy. By the minimality of ¢, there is ¢; € R such that ¢y (z4) is
contained in Us. Since ¢, is almost periodic, there is a syndetic set A’ such that
d(pa(z),x) <e/2 for any x € M and a € A’. Let V5 be a connected component of
Uz Ny, (Beja(z1)). For any y € Vo, we have d(¢_s, (y), 1) < £/2. Furthermore,
we obtain d(w,—t, (v), p—¢,(y)) < £/2 for any a € A’. Hence d(p,—4, (y),z1) < &,
which implies that ¢, 4 (y) € U;. Since {a —t1; a € A’} is also syndetic, we
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conclude the claim. In particular, there is C; > 0 such that, for any ¢ € R, there
is w satisfying —C1/2 < v £ C1/2 and @41 (Va) C Uy. Hence, for any ¢ € R,
there is v (0 £ v < Cy) satisfying ¢;1,(Va) C Uy by the above consideration for
t+(C1/2).

The set {z; OL(z, s) is lower bounded for any s € R} is a nonempty invariant
set of M. Hence it is dense in M by the minimality of ¢;. Furthermore, the set
{z; O1(z, s) is upper bounded for any s € R} is also dense in M. Thus there are
points (z1, 1) and (29, s9) of Vo x I such that Oy (zy, s1) is lower bounded and
O, (22, 82) is upper bounded. By Lemma 4, O, (z1, s1) is not upper bounded and
O, (22, s2) is not lower bounded.

Denote by Cs the minimal of {paZpi(z1,s1);t = 0}. By Lemma 1, there
is C3 > 1/C such that, if [paZpi(z,s) — paley(z,8)| = 1, then |paZpi(z,s) —
polipy(z,8)| < Cslt —u| forany z€ M, se R, t € R and v € R.

We claim that there exists Cy > 0 such that max{psZp,(21,81);t £ v <
t+C4} > by +C1Cs for any t 2 0. If not, there is a positive sequence {¢,," }n—12....
such that Cy § pgécptn/+u(217sl) é by + C1C3 for 0 é u § n. Let (207 So) be an
accumulating point of {¢y, /(21, s1)}n=1,2,... Then the positive semiorbit starting
from (20, so) is bounded, which contradicts the assumption by Lemma 4.

We choose to 2 0 such that poZey, (29, 89) is less than ay — C3(Cy + Cy).
Since C3(Cy + C4) > 1, we have paLpy,+4(22,82) < ay for 0 £t £ Cy + Cy by
the choice of C3. By the choice of Cy, there is t3 such that 0 < ¢3 < C4 and
P2LPtyr1s(21,81) > by + C1Cs. Furthermore, by the choice of C, there is t4
(0 =t4 = Cq) such that ¢y, 14,14, (Vo) C Uy. Here we have po Loy, 14, 14,(21,81) >
by because C1C3 > 1. On the other hand, we have poZyy, 11,11, (22,82) < ay
because 0 < 3 + ¢4 £ C1 4+ Cy. In consequence, we obtain that ¢, 4,44, (Va) C
Ui, poZpiyrtart,(21,81) > by and padpr, 1i,14,(22,82) < ai. This implies that
Lptyitart, (Vo x I2) intersects Uy x Iy O

Corollary 2. Let ¢; be an almost periodic minimal flow. Then Ly, is classified
into three cases:

(1) All the orbits of Zy: are bounded.

(2) All the orbits of Zpr are proper.

(3) Ly is transitive.

Proof. If Zyp; has a bounded orbit, then all the orbits of Zy; are bounded by
Lemma 4. If Z¢; has no bounded orbits and there is an orbit which is not proper,
then there are an upper bounded orbit and a lower bounded orbit by Theorem 1,
and furthermore Zyp; is transitive by Theorem 2. |

3. Construction of transitive angular flows

In this section, we will construct a C* flow of T° whose angular flow is transitive
by using a suspension of a toral diffeomorphism.
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Let TT? denote the tangent bundle of 72. Denote by PT? the projectivized
bundle |, cq2 (I2T% —0) /v ~ kv) (k € R—0), where T,T? is the tangent space of
T? at z. Then PT? is a trivial bundle. We parametrize PT” by T?xP! = T?xR/Z.
Denote by 7 : T? x R — PT? the natural projection (7 (z,s) = (z, [s])).

Let G denote the set of C° isotopies of T2 from id obtained by identifying
homotopic ones (i.e. G = {F : T? x I — T?; F is a C* map, F|(T? x {t}) is a
C* diffeomorphism for any ¢ € [ = [0,1] and F|(T? x {0}) =id }/ ~, where two
isotopies are identified if they are homotopic with the end points fixed in the sense
of paths of diffeomorphisms). Then G is a complete metrizable space with respect
to the induced C* topology ([2]). Let I, = F|(T?x{t}) for F € G and ¢ € I. Then
DF, induces a bundle map PF, : PT? — PT?. We define PF : PT? x [ — PT?
by PF(z,[s],t) = PFy(z,[s]). Then there is a lift ' : T? xR x I — T? xR of PF
such that F(z,0,0) = (z,0) for some z € T2

T2xRxT 25 T2 xR
nxid | O K
PT2x1 5 p72

Here we remark that ﬁ(zg 5,0) = (2, s) for any z € T? and s € R by the property
of lifts. We define the angular lift ZF : T> xR — T2 x R by £LF(z,5) = F(z,s,1).
Then ZF is a lift of PF}.

Let F' and F” be isotopies of G. Denote by F'F’ the isotopy {FioF”;}y<;<; and

by F~! the isotopy {Ffl}ogél. Then the following properties hold.

Proposition 1.
(1) LFLF = Z(FF'
(2)  Z(F =P

Let I be an isotopy of G. Now T° is obtained by identifying 72 x {0} and
T? x {1} of T? x I by id. We define a flow ¢, of T° = {(z,u); z € T?, u € S'}
by @i(2z,u) = (Fui:F H(2),u+1t) (In order to construct a G flow of T2, we need
some modification along 77 x {0} and T? x {1}). The flow ¢, is the image of the
flow (z,u) — (z,u+t) by (2, u) — (F,(2),u). Then ¢, is the suspension flow of F}.
Denote by X the vector field generating ¢,. Then the projectivized bundle PX
can be identified with (|, pe (177 — 0/v ~ kv)) x S (k # 0). By construction
of ZF, the time one map of the angular flow Zy; restricted to 7?2 x {0} coincides
with ZF' (This is the reason why we take the lift F satisfying ﬁ(,@ 5,0) = (2, s) for
any z € T? and s € R). Thus it is enough to construct an isotopy F of G whose
angular lift is transitive in order to construct a flow of T® whose angular flow is
transitive.

Theorem 3. There is an isotopy F : T? x I — T? of G whose angular lift LF is
transitive.
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Let {U;};—12 ... be a countable base of T2 x R. Let

iy = {Fec; (| 2P wn)nu; 70},
neZ
In order to prove that there is an isotopy F' of G whose angular lift ZF'is transitive,
we have only to show that 90T = [, ;9;; is not empty ([3]).

Let Rg : T? x I — T? (§# € S' = R/Z) denote the isotopy defined by
Ry(z,y,t) = (z +t0,y) where 2,y € S' = R/Z and t € I = [0,1]. Then the
angular lift ZRy satisfies ZRy(z,y,8) = (x + 0,y,s). Let H denote the subset
{FRyF7'; F € @G, 0 € S'} of G, where FRgF~! = {Ft(Rg)thl}ogtgl. Denote
by H its closure in G. Since G is a complete metrizable space, H is also a complete
metrizable space, and is a Baire space. In order to prove H N 9% is not empty (in
particular, 90t # (), we have only to show H N M;; is an open dense set in H by
Baire’s category theorem.

First remark that 2;; is an open set in H if M, is open in G. On the other
hand, if there is n € Z such that ZI™(U;) N U; is not empty, then (ZI")"(U;)NU;
is also nonempty for any F’ of G sufficiently near F'. Thus 9;; is open in G.

The remaining part of the proof of Theorem 3 is to show that 1;; is dense in
H, whose key lemma is the following.

Lemma 5. For any open sets U and V of T? x R, there is an isotopy F' of G such
that (Upe g1 LRoZF(U))NLF(V) # 0.

Proof. We take sufficiently small cubes Cy = (21, 22) X (y1,v2) X (81, s2) contained
in U and Cy = (2, 24) x (y],95) x (s}, s5) contained in V satisfying (z1,z2) N
(2}, 25) = 0 (See Figure 1). By moving and twisting id, we obtain an isotopy F'
of G such that

Ft|{(x,y); T <z<zm2, YES'} — id (t € [07 1])7 (1)

LE(Cy)N{(z,y,8); 2 €S, y1 <y <ya, s1 <s<s2}#0D. (2)

Since Upeg1 ZRo(C1) = {(z,y.8);z € Sy <y < 2,81 < s < s} and
ZF(Cy) = Cy, it is concluded that ZF(Cy) intersects | Jy g1 ZRo(£F(C1)). Hence
we have (| Jyeg1 LReZF(U)) N LF (V) is not empty. O

Remark. If we can take an isotopy F' of Lemma 5 such that ZF(V) intersects
every circle {(z,y,s); z € S} instead of (2), then there is an isotopy F such that
ZF' is minimal ([1],[2]). However this is impossible, which is closely related to the
non-minimality of Zg; (Corollary 1).

The following proof is the modification of the proof for the minimality, which
was given by Anosov and Katok ([1]). They showed that a compact manifold
admits a smooth minimal flow if it admits a smooth, locally-free action of the
torus 72 (see also [2] in the higher dimensional case).
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Upest £Rp(C1)

Q

e

Figure 1

Let g : T? — T? (0 € S') denote the rotation of 72 defined by rp(z,y) =
(x4 0,y) for z,y € S.

Lemma 6. Let U and V be open sets of T? x R. For any rational number p, there
is an isotopy F of G such that

(1) rpFyr, t = F; for any t €1,

(2) (Ugesr £ReLF(U))NLE(V) # 0.

Proof. Denote by n : T? x R — T2/rp x R the natural projection. By Lemma 5,
there is an isotopy F” : T? /r,x I — T?/r,, fromid such that ({(Jyeg1 ZRoZF'n(U))
NZLF'n(V) # 0. Let z} be a point of 7?/r,, and let zy € T2 be a lift of 2. Then
there is a lift F': T? x I — T? of I satisfying F(20,0) = zo. By construction, F
is also an isotopy from id .

T2 ] L 72
! O ]

T2)r, x I 25 T2,

Since the isotopy (z,t) — 7,Fyr, () is also a lift of F” satisfying r,Fyr, (20) =
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zp, We obtain rthrp*1 = F, foranyt e I.

Since Jpe g1 ZRoZLF'n(U) N LEF'n(V) is not empty, there are § € S, (21,s1) €
U and (z9,s9) € V satisfying ZRyZF'n(21,81) = £F'n(22,52). On the other
hand, we have nof’ = ﬁ/o(n x id ). Hence, nZF = ZF'y. Since LRynLF (21, 81) =
UZF(ZQ, 82), there is 8’ € S* such that ZR@/ZF(Zh 81) = ZF(ZQ, SQ). O

Let S? = {(x,y,2) € R®; 22 +y?+ 2% = 1}. For the #-rotation along the z-axis,
the argument similar to Lemmas 5 and 6 are valid because it is enough to consider
sufficiently small open sets U and V. Thus we can construct such a flow of S
from the Hopf fibration.

Lemma 7. For any rational number p, R, is contained in M;; N H for any i
and j.

Proof. Let p be an arbitrary rational number. By Lemma 6, there is an isotopy F'
of G such that r,Fyr, ™t = F, (t € I) and (Uge g1 ZRoZF 2 (Uy))NZLF~H(U;) # 0.
Hence the subset {§ € S'; ZFZRoZF 1 (U;) N U; # 0} of S* is a non-empty
open set. Let {a}r=12.. be a sequence of irrational numbers converging to p.
For any k, there is an integer ny, such that ZF/ZR,, o, ZF~1(U;) N U; # 0. Thus
(Upez(£FZLRg, ZF~1)™(U;)) N Uy is not empty, which implies that FR,, F~! is
contained in 9Mi;; N H and FRpr1 eMy;NH.

Let Ag : T?x I — T? (s € [0, 1]) denote the 1- parameter family of the isotopies
defined by

i ) nEzE =—F
Mgz, 8) = . L+s
F<1+s1>i;1+sTth<1+s1>i;1+s ~1(z) 17 s Ei5l
Then we have
As(z,1) = Flfzfs rpFlz::S () =7,
Ao(z,t) = 1rep(2)
and
Ai(z,t) =Fy rip Ft_l(z).
Thus R, is identified with FR,F~! in G, which is contained in 90%;; N H. O

Lemma 8. 9M;; N H is dense in H for any i and j.

Proof. We have only to show that F'IZ,F ! is an element of M;; N H for any
rational number p and F' € G because this implies that H C 9M;; N H. We choose
open sets Uj, and U, of T? xR from the countable base {U;} so that Uy, is contained
in ZF~1(U;) and U, is contained in ZF~*(U;). By Lemma 7, R, is an element
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of My N H. Hence there is an isotopy F’ of My N H sufliciently near R,. By
definition, we have

| (F2F 2P (U) N U;

nez
= LF(|J(LF"£FHU) N £F7H(U))
nez
> LF(|JLF Y U)nty) #0.
neZ
Thus we conclude that F/F'F~1 is contained in M;;NH, and FRPF_1 eM; NH.

O

Corollary 3. There is a C™ flow ¢, of T® such that L, is transitive.
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