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On simply laced Lie algebras and their minuscule represen-
tations

Jacob Lurie

Abstract. In this paper we adapt a known construction for the simply laced, semisimple Lie
algebras (over Z ), and thereby obtain a very simple construction for all minuscule representa-
tions of those Lie algebras (again over Z ). We apply these results to give explicit formulas for
tensors invariant under the exceptional algebras Eg and Er .
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1. Introduction

The Lie algebra Eg may be defined as the algebra of endomorphisms of a 27-
dimensional complex vector space Mc which annihilate a particular cubic poly-
nomial. This raises a natural question: what is this polynomial? If we choose a
basis for Mg consisting of weight vectors {X,} (for some Cartan subalgebra of
Eg ), then any invariant cubic polynomial must be a linear combination of mono-
mials X, X,r Xy where w+ w +w” = 0. The problem is then to determine
the coeflicients of these monomials.

Of course, the problem is not yet well-posed, since we still have a great deal
of freedom to scale the basis vectors X, . If we work over the integers instead of
the complex numbers, then much of this freedom disappears. The Z-module M
then decomposes as a direct sum of 27 weight spaces which are free Z-modules
of rank 1. The generators of these weight spaces are well-defined up to a sign.
Using a basis for M consisting of such generators, a little bit of thought shows
that the invariant cubic polynomial may be written as a sum

E €w,w/,w”Xwa/ w’

wtw’ +w’ =0

where €y v = £1. The problem is now reduced to the determination of the
SIgNS €y w’ ' . However, this problem is again ill-posed, since the X,, are only
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well-defined up to a sign.

This problem is resolved by examining more carefully what we mean by work-
ing “over Z”. First, let us consider the problem of constructing the (split) Lie
algebra of Eg over Z . We know that this algebra should be a direct sum of the
corresponding cocharacter lattice of rank 6 and 72 “root spaces” which are free
Z -modules of rank 1. Since there is no canonical choice of generator for these
root spaces, one again encounters sign ambiguities which makes it difficult to give
a direct definition of the Lie bracket. The set I' of roots has a two-fold cover T’
consisting of all possible generators for root spaces. Moreover, this covering has
a natural partially defined “multiplication” which arises from the Lie bracket. It
turns out that this two-fold covering and its “multiplication” have a particularly
transparent structure which is best understood by considering a two-fold covering
A of the entire root lattice A. This leads to a known (see [6]) construction of
E¢ , and every other simply-laced Lie algebra, over the integers.

The same ideas likewise may be applied to give a construction of all minuscule
representations of simply laced algebras (again over Z). We will describe this
construction, together with a formalism which allows one to characterize multilin-
ear maps between such representations. In particular, our formalism will apply to
the cubic form on the representation M of Eg, and enable us to determine the
SIENS €y 007w’ -

Let us now summarize the contents of this paper. In §2 we will summarize
the background material on which we draw. Much of this material (root systems,
quadratic forms over Fs, del Pezzo surfaces) is standard, while some (such as the
connection between unitary structures and (+1)-extensions) is more obscure.

In §3 our work begins. First we show how to construct a Lie algebra, given
the data of a double cover of its root lattice. We then develop a formalism which
enables us to build its minuscule representations in an analogous way. Using this
formalism, we will also be able to construct a number of natural multilinear maps
between minuscule representations. .

In §4, we apply our formalism to study an extension W of the Weyl group W
of a (simply-laced) semisimple Lie algebra. Using this group, we will then show
that the invariant multilinear maps constructed in §4 are the only ones which
exist.

Finally, in §5 and §6, we specialize to the cases of Eg and E,. In these
cases our formalism leads to explicit descriptions of the minuscule representations
of these algebras, and of the invariant forms they carry.

Notation and Terminology

If M is a free module over a commutative ring R (for example a vector space over
a field), we denote the dual module by MY . If zy,...,z, is a basis for M, then

we let 27, ...,z) denote the dual basis for MY . We will denote the symmetric
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and exterior powers of M by S"(M) and A™M, respectively. These we regard
as quotients of the n-fold tensor power of M. If S is an R -algebra, we let Mg
denote M ®g S (we will use this convention only in the case R =Z,so S can be
an arbitrary ring).

A bilinear form f(z,y) defined on a group M is said to be alternating if
f(z,z) =0 for all z. Note that this implies f(z,y) = —f(y,z), but the converse
fails in general when 2 is not invertible.

The symmetric group S,, acts on M®" . Correspondingly we get a norm (or
symmetrization) map M®" — M®"  given by the formula

mi ... R0 My — ng(l)@)...@mg(n)
gES,

This map induces a map from coinvariants to invariants; that is, a map ¢ :
S"(M) — (M®")S»  The image of an element of S"(M) under this map is
called its polarization; it is a symmetric tensor. One also has a natural map
¢ (M®?)5» — §"(M) in the other direction, given by restricting the projection.
The composites ¢ o1 and ¢ o ¢ are both simply multiplication by n! = [S,].
If n! is invertible in R, then ¢ and ¢ are both isomorphisms, which permits
us to identify S"™(M) with the collection of symmetric tensors. Working over the
integers (as we shall throughout this paper), one must be careful at the primes
dividing n!.

We let (£1) denote the two-element group of units of the ring Z. In what
follows we will frequently be concerned with extensions of groups (or sets) by
(£1) . We follow the following general convention: if G is some object (such as a
group), then G will generally denote a (1) -extension of G . The extension will
be specified in context. Elements of G will be denoted by g, and the image of g
in G will be denoted g .

If ¢ is a prime power, we denote by F, a finite field with ¢ elements. If
K C L is a finite extension of fields and =z € L, we let Tr(z) € K denote the
trace of z. If S is a finite set, we let |S| denote the cardinality of S.

If L is a Lie algebra acting on a module M, we write M = {m € M : Lim =
0} . Elements of M are said to be invariants under L .

In what follows, we will discuss the Lie algebras of simply-laced, simply con-
nected, semisimple groups which are split over Z . The restriction to simply-laced
groups is essential to what follows. However, our discussion could easily be mod-
ified so as to apply to groups over an arbitrary ground scheme which are not
necessarily simply connected; their Lie algebras contain the Lie algebras of the
simply-connected analogues with finite index. To simplify our exposition, we will
leave these modifications to the reader.
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2. Background
2.1. Quadratic Forms

In this section we briefly review some basic facts on quadratic forms. For details,
we refer the reader to [2], Chapter 6.3. Let R be a commutative ring. A quadratic
space over R isa projective R-module M of (finite) constant rank, equipped with
a function ¢ : M — R which possesses the following properties:

o q(Am)=Nq(m).
e The function (z,y) = g(z+y) — ¢(x) — ¢(y) is R-linear in each variable. It is
called the bilinear form associated to q.

Such a function ¢ is said to be a quadratic form on M.

By definition, (z,z) = ¢(2z) — 2¢(xz) = 2q(z). If 2 is not a zero-divisor in
R, then g is determined by (z,z) : there is a one-to-one correspondence between
quadratic forms ¢ on M and symmetric bilinear forms (,) having the property
that (z,z) is always divisible by 2. (For this reason, a quadratic space over Z
is also called an even lattice.) Thus, if 2 is invertible in R, quadratic forms and
symmetric bilinear forms are essentially the same thing. At the other extreme,
note that (z,z) =0 if 2=0 in R, so (,) is an alternating bilinear form.

If {,) induces an isomorphism of M onto its dual, we say g is nondegenerate.
If 2 is not invertible in R, this is impossible unless M has even rank (as one sees
by base change to a field of characteristic 2 ).

If M has even rank and ¢ is nondegenerate on M, then we may associate to
(M, ¢) a cohomology class in H}, (SpecR,Z/2Z), called the discriminant of q.
This cohomology class classifies the center of the even part of the Clifford algebra
associated to (M, q) , which is a finite étale R -algebra of rank 2. The discriminant
is additive (relative to the obvious notion of “direct sum” for quadratic spaces).

Example 2.1.1. Suppose (M, q) is a quadratic space, with M a free R-module
of rank 2n . If xq,...,x9, is a basis for M, then

A= ((%%‘W

is an R -valued matrix; its determinant D is called the determinant of (M, ¢) and
is well-defined up to the square of a unit in R . Note that D is invertible in R if
and only if ¢ is nondegenerate.

Assume now that R is local, (M, q) is nondegenerate, and 2 is a unit in R.
An easy argument shows that we may choose zq,...,zs, so that the matrix A
is diagonal. On the other hand, consider the product X = zizs...z9, in the
Clifford algebra of (M, q). A simple argument shows that the center of the even
part of the Clifford algebra is the free R-module generated by 1 and X . It
follows by an easy computation that

X2 — (_l)nq(g;l)q(xg) e o q(fCZn)

Il
—
I
et
=

3
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Thus, under the canonical identification
H} (SpecR,Z/2Z) ~ R* /R*?

obtained from Kummer theory, we see that the discriminant of (M, q) is repre-
sented by (—1)"D.

In the special case R = Fy (which is really the only case of interest to us),
the cohomology group H} (SpecR,Z/2Z) is isomorphic to Z/2Z ; in this case the
discriminant is also called the Arf invariant of ¢. Quadratic forms of rank 2n
with Arf invariant 0 are distinguished by the fact that they have 227~1 4 2n—1
isotropic vectors, while the forms with Arf invariant 1 have only 2271 — on—1
isotropic vectors (a vector v € V is isotropicif g(v) = 0). Alternatively, quadratic
spaces over Fo with Arf invariant 0 may be characterized by the existence of an
n -dimensional subspace on which ¢ vanishes identically. For proofs of these facts,
we refer the reader to [2].

Note that if (M, q) is a quadratic space over R and R — R’ is any ring
homomorphism, we get a natural induced quadratic space (Mg/,qr/) over R’.
We will generally be interested in quadratic spaces over Fy which arise from even
lattices via “reduction modulo 2”7. The result of such an operation is described
in the following result:

Theorem 2.1.2. Let A be an even lattice (that is, a quadratic space over Z ),
(V,q) the associated quadratic space over Fo . Assume A is nondegenerate over
Q. Via the form {,) we may identify A with a subgroup of AV having finite
index d. Then (V,q) is nondegenerate if and only if d is odd. Its Arf invariant
s equal to

0 4fd==1 (mod 8)
1 ifd==3 (mod 8)

Proof. Note that d is the absolute value of the determinant of A ; hence the
reduction of d modulo 2 is equal to the determinant of (V,q). This proves the
first claim. For the second, let R = Z(,) denote the localization of Z at the
prime 2. Since d is odd, Ar is a nondegenerate quadratic space over R; let =
denote its discriminant. Over Q, the discriminant classifies the finite extension
Q[vEd] (or QxQ, in the case d = £1). Here the sign is chosen so that +d =1
(mod 4), so 2 does not ramify in the corresponding quadratic extension of Q.
It follows that z classifies the étale R -algebra which is the integral closure R’
of R in Q[vZ£d|. Then the Arf invariant of (V,q) is 0 or 1 depending on
whether or not the prime 2 splits or remains prime in Q[v/%d]. Our hypotheses
imply that 2 cannot ramify in this extension, so we may write +d = 4k + 1.
Then R/ = R[12AEL V;"“H] is obtained by adjoining to R a root of the polynomial
22—z —k . Modulo 2, this equation has a solution if and only if & is even; that
is, if d =41 (mod 8). O
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If (M,q) is a quadratic space, we denote by O(M, q) the group of all R-
automorphisms of M compatible with the form ¢. For any z € M with ¢(x)
invertible in R, the map

re i m—m—qz)"Hm, z)z

is a 2-torsion element of O(M, q), loosely understood as “reflection in the hyper-
plane corresponding to z”. If R is a field and ¢ is nondegenerate, then these
reflections generate O(M, ¢) unless R = Fy, M has dimension 4, and the Arf
invariant of (M, q) is trivial (for a proof, see the first chapter of [4]).

Finally, we recall for later use the statement of Witt’s extension theorem (see
also [4]):
Theorem 2.1.3. Assume that R is a field and that q is nondegenerate. If U
and U’ are subspaces of M and « : U — U’ is an isomorphism such that
q(u) = q(a(w)), then o admits an extension to an element of O(M,q) .

2.2. Root Lattices

In this section we will review the facts that will be needed concerning simply laced-
root systems. For details, proofs, or a discussion of non-simply laced root systems,
we refer the reader to [3].

Let us fix a bit of terminology. A lattice is a free Z-module of finite rank
equipped with a symmetric bilinear form (,). We will generally be interested in
lattices A satisfying the following additional conditions:

e A is positive definite: (A, A) >0 for any A#0.
o Theset I'={a € A: (o, a) =2} generates A as a Z-module.

These two properties characterize those lattices which arise as root lattices of
simply laced, semisimple algebraic groups. Note that the second condition implies
that A is an even lattice, since it is generated by even elements. Consequently we
may define ¢ : A — Z by the equation

A A

4(A) = =

For the remainder of this subsection we will assume A is such a lattice, corre-
sponding to such an algebraic group G. We shall refer to I' as its set of roots;
this is a finite set. Note that if o and 3 are roots, then « + 8 is a root if and
only if {(a, ) =—1.

If « is a root, then

ra(Y) =7 — ()
is an automorphism of A. The set of all such reflections generates a group W
called the Weyl group. Since I is finite, W -stable, and generates A, W is a
finite group.
Via the bilinear form (,), we may identify A with a subset of the dual lattice
AY . The pairing (,) then extends to a Q-valued bilinear form on AY. The
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quotient AY/A is a finite group which is naturally dual to the center of the simply
connected group G.

Since A is positive definite, each coset C of A in AY contains finitely many
elements which have minimal norm (v, v). The collection of such elements of C
will be denoted by Cy ; they are called minuscule weights. We let ¢ denote the
value of (v,v) on Cp. Note that according to our convention, 0 és a minuscule
weight.

Example 2.2.1. Consider the free Z -module M spanned by generators eq,...,e,,
where (e;,e;) =0;;. Let s=e14+...+¢e,,andset A, 1 ={AeM: () s)=0}.

It is clear that A, is even and positive-definite. Moreover, the set

{)\EAn_li()\,)\>:2}:{€i—€jii7éj}

generates A,_1, so that A, has the three properties listed above; it is the
root lattice of the group G = SL,,. The group W may be identified with the
symmetric group S,, , which acts by permuting the e; .

Since M is nondegenerate, we may identify the dual AY , of A, ; with
M/Zs . Thus the group AY /A, 1 may be identified with M/(Zs + A, 1) ~
Z/nZ , the isomorphism induced by the map A — (A, s) (mod n), defined for
A€ M. If C denotes the coset of A, | in AY | corresponding to 0 < k < n
via this isomorphism, then the minuscule weights of C are precisely the images
of the elements of the set

{eh tep o+ 6ik}1§i1<i2<~~<ik§n

in M/Zs. The norm (v,v) of such a weight is @ )
Example 2.2.2. Let M denote the free Z -module spanned by generators ey,....e,
satifying (e;,e;) = 05, s =e1+ ...+ ey, andset D, = {AeM:(\s) =0
(mod 2)}.

Once again it is easy to see that D, is positive definite and even, and the set

AeDL: (AN =2} = {de; e i £ 4}

generates D, if » > 1, so D,, has the three properties enumerated above. In
fact, D,, is the root lattice of the group G = Spin(2n). The group W may be
identified with a semidirect product of the symmetric group S,, and its natural
representation on D, /2M; it acts by permuting the e; and changing an even
number of signs.

The lattice D)/ may be identified with M+2s C M, so the quotient DY /D,,
is isomorphic to Z/4Z (if n is odd, so s ¢ D,, ) or Z/2Z x Z/2Z (if n is even,
so s€ Dy ).

The sets of minuscule weights corresponding to the four cosets of D,, in DY
are {0}, {£e;} and the Weyl group orbits of 1s and (s —e;). The norms of
these four classes of weights are 0, 1, 7, and 7, respectively.

Note that if n = 2, D, actually decomposes as a direct sum A; & A;. If
n =3, D, isisomorphicto A, .
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Example 2.2.3. Once again, let M denote the free Z -module spanned by gen-
erators egp, ..., €, , and set

-1 ifi=45=0
(esej)=¢ 1 ifi=5>0
0 otherwise

Let s =3¢p—(e1+...4e,),and let E, ={xeM:{\s)=0}. E, is an
even lattice of rank n. M has signature (n,1), so E, is positive-definite if and
only if (s,s) =n — 9 is negative; that is, if » < 8. Finally, one may check that
E, is generated by T'={A € E,, : (\,\) =2} ifand only if n > 3.

Again, M is nondegenerate, so we may identify EY with the quotient M/Zs.
Thus E)/E, is isomorphic to M/Zs + E, ~ Z/{s, s)Z ; this cyclic group is
generated by the image of e; . In the next subsection we will give a geometric in-
terpretation of the minuscule weights of the coset corresponding to this generator.

E3 is isomorphic to the direct sum of A; and Ay, E4 is isomorphic to Ay,
and Ej is isomorphic to D5 . However, the lattices Eg, E-, and Eg are new;
they correspond to the exceptional groups with the same names.

If A and A’ are two lattices possessing the three properties listed at the
beginning of this section, then the orthogonal direct sum A @ A’ shares those
properties. A basic result in the theory of root systems asserts that every such
lattice may be obtained as an orthogonal direct sum of lattices of the form A,,, D,
(n>4), Eg, Er, and Eg in a unique manner. On the other hand, the lattices
just mentioned are irreducible, in the sense that they cannot be further decomposed
in the same way. The situation for irreducible root lattices is summarized in the
following:

A AY/A |Col lc
Avy | Z/nZ () ——
Doy, | ZIOZ % Zf2Z | 1,221 dp 9271 0,%,1,%
Dant1 Z/AZ 1,277 dp 42,27 | 0,20t 2ntl
Eg Z/37Z 1,27,27 0,22
E; Z/27 1,56 0,3
Es {0} 1 0

We will need one more concept from the theory of root systems: that of a
root basis, or system of simple roots. A root basis is a subset A C I' which
freely generates A, such that in the expression for any element o € I' as a linear
combination of elements of A, the coefficients which appear are either all positive
or all negative. The basic fact we shall need is that root bases exist, and the Weyl
group W acts transitively on them (in fact, it acts simply transitively).

We conclude with a generalization of a well-known fact concerning the action
of the Weyl group on the minuscule weights.
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Theorem 2.2.4. Let C,C',C" € AV/A be such that C+C' +C"”" =0. Then
{le,d, ") e Cox Chx Cl e+ + " =0}
consists of a single Weyl group orbit.

Proof. Clearly it suffices to treat the case when A is irreducible. For this, we
apply the classification and verify the result directly in each case. We give details
for A, , the most interesting case. There we may identify AY/A with the group
Z/(n+1)Z.1If 0 <i<n and C is the corresponding coset, we may identify the
minimal elements of C with i-element subsets of {0,...,n}. Given three cosets
which sum to 0, there is a corresponding triple 0 <4,j,k <n with i+7+k=0
(mod n+1). If i=j=%k=0 the result is obvious, while if i1+j7+k>n+1 we
may replace each coset with its negative and reduce to the case i +j+k <n+1.
Finally, if i + 4+ k = n+ 1, then the assertion is equivalent to the evident fact
that the symmetric group S, 11 acts transitively on the set of triples (X,Y,Z) of
disjoint subsets of {0,...n} having respective sizes i, j, and k. ([l

Corollary 2.2.5. Let C € AV/A . Then W acts transitively on Cy .
Proof. Apply the last theorem to the cosets C,—C, and A. O

2.3. del Pezzo Surfaces

In this section, we review the connection between del Pezzo surfaces and excep-
tional root lattices. For more details, see [13].

We will invoke this discussion only sparingly in the rest of this paper, so the
present section may be safely omitted by a reader who is unfamiliar with classical
algebraic geometry.

For simplicity, we work over the complex numbers. Let S denote the surface
obtained by blowing up P? at n distinct points pi,...,p,. Then H%*(S,Z) is
the free lattice on generators H, Ei,...E,, where H is the pullback of the
hyperplane class on P? and the E; are the classes of the exceptional divisors.
The negative of the intersection pairing endows H?(S,Z) with the structure of a
lattice, isomorphic to the lattice M we used in the construction of the exceptional
lattices.

We let Kg denote the canonical bundle (the top exterior power of the holo-
morphic cotangent bundle) of S. Let s = —ci(Kg) € H?*(S,Z). Then s —
3H—(E1+...+E,). If n <8 and the points p1,...,p, arein general position,
then —Kg is ample (surfaces with this property are called del Pezzo surfaces). We
will henceforth assume this to be the case. Then the lattice

E, ={z e H%S,Z):2Us =0}

may be identified with the primitive cohomology of S (relative to an embedding
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of S in projective space via some power of the anticanonical bundle —Kg ).

Of particular interest to us are the “lines” on S ; that is, effective divisors E on
S with E.(—=Kg) =1 (such divisors map to lines if we map S to projective space
via its “anti-canonical series”). The Hodge index theorem implies that E.E < 0.
Since the arithmetic genus of E is

1
5(EE+EKs)

we see that E is a smooth rational curve with self-intersection —1. Conversely,
suppose E is any divisor with EEE = EXKg = —1. Then Kg — E cannot be
effective (it has negative intersection with the ample class —Kg ), so h%(S,E) =
h9(S,Kg —E) = 0, and the Riemann-Roch theorem implies

RO(S,E) > 1+ %(E.E ~KsE)=1

so that E is an effective class.

We can give the “lines” on S a lattice-theoretic interpretation, as follows.
Note that if ¢ € H2(S,Z) is the class of a line E, then (e,s) = —e.s = 1, so
that the image of e is a generator of EY/E, . Let ¢ denote the image of e in
EY . One easily calculates that (¢/,e’) = 2=2_ If ¢’ € EY is any other lattice
element representing the same coset of E,, , then ¢’/ =¢’ 4+ X for A € E,, , so that
(e",e") = (e/,e') (mod 2). If n <8, then

10 —n

9—n

)

which implies that (¢/,€e’) < (€”,€"”) . If equality holds, one easily checks that e’
is the image of the class of a unique “line” on S. Thus, for n < 8, the “lines” on
S correspond bijectively to the elements in EY of minimal length among those
representing a fixed generator of EY/E,, . For n = 8, this argument breaks down.
The 240 lines on S correspond to the 240 roots of the Eg lattice.

Example 2.3.1. If n < 6 and the points pi,...,p, are chosen in general po-
sition, then —Kg is actually very ample and gives rise to an embedding of S in
P°" as a surface of degree 9 — n. For n = 0, the image surface contains no
lines. If n =1, S contains a single line: the exceptional divisor of the blow up.
If n =2, S contains three lines: the two exceptional divisors and the proper
transform of the line joining the two chosen points in P2. For n =3 or 4, the
same reasoning shows that we get 6 and 10 lines, respectively.

If n=5, —Kg embeds S in P* as an intersection of two quadric hypersur-
faces. In this case S contains 16 lines. In addition to the 5 exceptional divisors
and the proper transforms of the 10 lines joining the 5 chosen points, we have
the proper transform of the conic passing through the 5 points.

If n=6, —Kg embeds S in P3 as a smooth cubic surface. In this case S
contains 27 lines (6 exceptional divisors, 15 proper transforms of lines, and 6
proper transforms of conics). This situation is much-studied in classical geometry;
we will return to it in our discussion of Eg .
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If n =7, —Kg is not very ample, but still has no base locus. It induces
a map to P?, which realizes S as a double cover of the plane branched over
a smooth quartic curve A . In this case S contains 56 “lines” (7 exceptional
divisors, 21 proper transforms of lines, 21 proper transforms of conics, and the
proper transforms of the 7 cubics which pass through all 7 points and are double
at one of the points), which project two-to-one onto the 28 bitangents to A.

If n =8, —Kg corresponds to a pencil of plane cubics passing through the
points pq,...,ps . This linear series has a nonempty base locus: the ninth point
of intersection of the pencil. There are 240 “lines” on S.

2.4. (1) -Extensions

Let A be an abelian group. In this section we will be concerned with groups A
which are eztensions of A by (£1). In other words, we want to study exact
sequences of the form

0 (+1) >A—>A—0

Note that since the group (£1) has no nontrivial automorphisms, such an
extension is necessarily central.

Two (£1)-extensions of A are isomorphic (as extensions of A) if there
is an isomorphism between them (as groups) compatible with the maps to A.
Isomorphism classes of (£1)-extensions are classified by the cohomology group
HY(A, (£1)).

Since A is abelian, the group law A x A — A is a group homomorphism.
Consequently we get a sequence of natural maps

H?(A, (£1)) H?(A x A, (£1))

Hom(H2(A x A, Z), (£1))
Hom(H1(A,Z) ® Hi (A, Z), (£1))
Hom(A ® A, (£1))

R 11l

More concretely, we can associate to any (£1)-extension A of A a bilinear
Z/27 -valued form (,) : A x A — Z/2Z by the equation

(_1)(z7y> _ gggflgfl

One can easily show that (;) is well-defined, bilinear, and strictly alternating
(that is, (a,a) =0 for any a € A). Thus the above construction actually yields
a natural transformation

¢ : H2(A, (£1)) — Hom(A?A, Z/27)

Suppose now that A is annihilated by 2. Then we can define a finer invariant
of A as follows. For v € A, define ¢(v) € Z/2Z by the equation

(1)1 =32 e (£1)
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It is easy to verify that ¢ is a quadratic form on the F5-vector space A . In fact,
q(v +u) — g(v) — q(u) = (v,u) is the alternating form defined above. In other
words, we get a natural transformation

¢ H2(A, (£1)) — S*(A)Y

In simple cases, these invariants completely characterize the extensions:

Theorem 2.4.1. If A is a finitely generated, free Zi -module then ¢ is an isomor-
phism. If A is a finite-dimensional Fo -vector space, then ¢’ is an isomorphism.

Proof. Using the Kiinneth formula, one sees that it suffices to prove these assertions
in the cases where A =7 and A = Fy, respectively. In these cases, it is easy to
check the result directly. (Il

Let us now return to the general case. If A is any (1) -extension of an
abelian group A, we will write Aut(g) to denote its group of automorphisms as
an extension of A ; that is, the collection of all automorphisms leaving (£1) C A
stable (this is frequently, but not always, the full automorphism group of 1~%)
This group acts naturally on the quotient A ~ 1~%/(:|:1>7 so we get a natural
homomorphism Aut(A) — Aut(A). The kernel of this homomorpism consists of
those ¢ : A — A which have the form (@) = e(a)a, where e(a) € (£1) C A.
One can easily check that such a map is a homomorphism if and only if ¢ : A —
(£1) is a homomorphism. In other words, we have an exact sequence

0 — Hom(A, (1)) — Aut(A) — Aut(A)

This sequence is generally not exact on the right. Indeed, any ¢ € Aut(g)
induces an automorphism of A which must preserve any structure invariantly

associated to the extension A . Thus, if A =V is a finite-dimensional Fs -vector
space, we get a factorization

Aut(V) = O(V, q) C Aut(V)

The map on the left is surjective; this follows from the fact that the extension A
is classified up to isomorphism by ¢. Thus we actually get a short exact sequence

0— VY = Aut(V) = O(V, q) = 0

Similar reasoning may be applied in case A is a finitely-generated free Z-
module. In this case the sequence takes the form

0 — Hom(A, (£1)) — Aut(A) — Aut(A, (,)) — 0

where Aut(A,(,)) denotes the “symplectic group” of all automorphisms of A
compatible with the alternating form (, ).
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2.5. Unitary Structures and (+1)-extensions

If V is an F5-vector space, extensions of V by (+1) correspond bijectively to
quadratic forms on V. For any quadratic form ¢, there is an extension % , Unique
up to isomorphism, such that o> = (—1)2®) . However, there is no functorial
manner in which V may be associated to the pair (V,q). Indeed, the natural
surjection Aut(\N/) — O(V, q) does not split in general. However, this surjection
may well split over some large subgroup of O(V,q). Correspondingly, one might
hope to define v functorially in terms of (V,q) and some additional data. We
will now show that this is possible when given a Hermitian structure on V.

In what follows, we fix a generator w for the multiplicative group of Fj.
Let V be an F,4-vector space equipped with a Hermitian form A . That is,
h :VxV — F; is map which is linear in the first variable and satisfies the
law h{z,y) = h(y,z), where T = 22 denotes the nontrivial automorphism of Fy
over Fy. Then g(v) = h(v,v) € Fy defines a quadratic form on the underlying
F, -vector space; the associated symplectic form is given by (u,v) = Tr(h(u,v)).

We define a group V as follows. The elements of V are formal symbols 47,
where v € V. We define multiplication so that

oa = (—1)Tr@hny Ty

(—2)y = 2(—y) = —(2y)
It is easy to see that V is a group. The element 0 is the identity of V, and

—0 is a central involution. The quotient of V by the subgroup generated by
—0 is canonically isomorphic to V again; thus V is a (£1)-extension of V.
Furthermore, for v € V, @ is a lift of v and 72 = (=1)Tr@a))§ = (=1)9)0 | as
desired.

Let G denote the group of all semilinear automorphisms of V compatible with
the form ¢ . That is, an element g € G is an F5 -linear orthogonal transformation
of (V,q) with the property that g(tv) = o4(t)g(v) , where o, is an automorphism
of F4 over Fy. The assignhment g — o4 is a homomorphism from G to Gal(Fy :
F3) whose kernel is the unitary group U(V,h). We define an action of G on V
as follows:

| £g(v) if o4 is the identity
9(£7) 4{ +(—1)4™g(v) otherwise

In particular, the map V — V given by multiplication by w € F} lies in the
unitary group, giving a canonical automorphism of V of order 3, which we will
denote by w.

Theorem 2.5.1. Let V be some (£1) extension of an Fy -vector space V' such
that the associated quadratic space (V,q) 4s 2n -dimensional and nondegenerate.

The definition of W gives a one-to-one correspondence between the following types
of data:
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o Fy-structures on V, together with Hermitian forms h inducing the quadratic
Jorm q and isomorphisms V =V over V. _
o FBlements g € Aut(V) of order 3 such that g fizes only the center of V.

Such data exist if and only if the Arf invariant of (V,q) is equal to n.

Proof. One direction is clear: given an Fj4-structure on V together with a Her-
mitian form %~ and an isomorphism V =~ V, the automorphism @ pulls back to
an automorphism of V with the appropriate properties. We must now show that
if g € Aut(V) has order 3 and fixes only the center of V| then from g we may
reconstruct the rest of the data on V.

Since g must fix the center, we have an induced action of g on V. Since ¢
has order 3,

0=¢g-1=(g—-1D({1+g+g?

annihilates V. On the other hand, since ¢ has no fixed points on V, g —1 is
invertible so 14+ g4 ¢> = 0. Thus we may define an action of F; on V by setting
wv = g(v) .

We define h as follows. Let (,) denote the alternating form associated to ¢q.
Since v + wov + w?v vanishes, we have (v,u) + (wv,u) + (wW?v,u) =0 for any w.
Thus either all three of these terms vanish, in which case we set h(v,u) =0, or
(wiv,u) = (Wv,u) =1 and {(whv,u) = 0, in which case we set h(v,u) = w™F.
One easily checks that A is a Hermitian form on V. For any v € V we have
{(v,v) =0, and so h(v,v) = {wv,v) = (w?v,v). On the other hand,

q(v) = g(w*v) = g(v + wv) = q(v) + g(wo) + (v, wv) = (v, wo)

so that A induces the given form ¢ on V. B .
For & € V, set e = 0g(0)g*(@). We define a map ¢ : V — V by the rule
¢(¥) = e5v . For v, € V, we have

eva = Diig(vu) g2 (T0) = egeq(—1) w9+ (ug” @)+ {g(u),g* ()
Since (g(u), g*(v)) = {(u, g(v)) , the exponent is equal to
(u,g*(v)) = (u,w?v) = Tr h(u, w*v) = Tr (wh(u,v))
From this it follows that ¢(va) = ¢(¥)¢(w) , so ¢ is a group homomorphism.

Using the commutative diagram

0— Z/2Z — V — V —0

! l¢ !
0— Z/R2Z — V — V —0

we see that ¢ is an isomorphism. The automorphism @ carries +v to +wv; to
see that this goes over to the automorphism g € Aut(V), we need to check that
€5 = €4(v) - Lhat is, we need to know that
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In other words, we must show that @ commutes with g(7)g?(¢) . The commutator
is given by
(v, 9(v) + g (v)) = (v, w0 +w?v) = (v,0) =0

as required. This completes the reconstruction of our original data from the auto-
morphism g¢. It is easy to see that the recipe we just gave is the only one possible,
which completes the proof of the main claim.

For the last point, note that all nondegenerate Hermitian spaces (V,h) over
F, split as direct sums of one-dimensional nondegenerate Hermitian spaces over
F, . In such a space, ¢ is nonzero on all three nonzero vectors, so (V,q) has Arf
invariant 1. Inductively we see that a nondegenerate quadratic space admitting
a compatible Hermitian structure must have Arf invariant n . On the other hand,
nondegenerate quadratic spaces of even dimension are classified up to isomorphism
by their Arf invariant, so if (V, ¢) has Arf-invariant n then it admits a compatible
Hermitian structure. Since (£1) extensions of F;-vector spaces are classified up
to isomorphism by the associated quadratic form, it follows that an isomorphism
V =~V always exists. O

By Theorem 2.1.2, we see that Theorem 2.5.1 applies in particular in case
V =A/2A where A is aroot lattice of type Eg, Eg,or A, (n=0,2 (mod 8)).
We will make use of this in our discussion of Eg .

3. Constructions

We assume now, and throughout the rest of this paper, that A is a positive definite
lattice generated by I' = {a € A : (o, ) =2} . We let V denote the F;-vector
space A/2A . The form

qg:AN—7Z

q(\) = %

descends to an F -valued quadratic form on V which we also denote by ¢.
The Z-valued bilinear form (,) induces a Z/2Z -valued bilinear form which
we will also denote by (,). Since A is even, (,) is alternating (interpreted as
a Z/2Z-valued form), and therefore classifies some (1) -extension A of A .
Similarly, the form ¢ classifies a (1) -extension V of V. Either of these may

be recovered from the other. Indeed, if we start with V, we can set
A=AxyV={\3)eAxV:A=v (mod 2)}
Suppose instead that we begin with the extension A. One can easily check

that the map
¢:A— A
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X - (—1)‘1()‘)X2

is a group homomorphism. The image of ¢ is a normal subgroup of A . Tt is not
hard to see that the cokernel of ¢ isa (£1)-extension of V corresponding to the
quadratic form ¢ .

The extension A will play a crucial role in resolving sign ambiguities when
A is the root lattice of a simply-laced semisimple group G. Over the integers,
the corresponding Lie algebra is almost completely determined by the lattice A .
We say “almost” because, as noted earlier, the covering A is determined only
up to noncanonical isomorphism. All of our constructions will be functorial in
A . However it is impossible to make our constructions functorial in A itself.
Indeed, the Weyl group W of A acts on A, but generally does not act on the
corresponding Lie algebra.

The lattice A itself may be identified with the tangent space to a maximal
torus. The remainder of the Lie algebra is a direct sum of root spaces, each
of which is a free Z-module of rank 1. However, there is no canonical choice
of generator for these root spaces, and this makes it difficult to describe the Lie
bracket. To resolve this problem, we will actually introduce two generators for each
root, space, corresponding to the two preimages of a root in A . These generators
will be indexed by the set I', the preimage of T" in A .

3.1. The Lie Algebra L
In this section, we outline a well-known construction of the simply laced (split)

Lie algebras over Z ; this construction may be found, for example, in [6]. Let L/
denote the free abelian group generated by symbols X5 where ¥ € I', modulo

the relations X_5 = —X5. For x € (1), we let ¢, denote the corresponding
element of Z . Now set L = A@L’. We endow L with a bilinear bracket operation
[,] as follows:

[AMA]=0 for A, X €A,
[)\7X§] = —[)(a7 /\].: </\7 ’y>/X§ for Ae A.
[X:{, X;/] = X&y l.f ¥+ ’Y/E I.
5, X5/] = 0 otherwise.
Theorem 3.1.1. L is a Lie algebra over Z .

Proof. One easily sees that the above definition is compatible with the relation

X = —Xp . To complete the proof, we must show that the bracket is alter-
nating ( [X, X] = 0) and that the Jacobi identity holds ( [X,[Y,Z]] + [Y, [Z, X]] +
[Z,[X,Y]] = 0). The skew-symmetry is obvious from the definitions; we must

check the Jacobi identity. By symmetry it suffices to consider four cases:

e xz,y,z € A. Then all brackets vanish and we are done.
e z,y €A, z=X5. Then [z,[y,2]] + [y, [2,2]] + [2 [z, 9]] = (&, ) (y, ") X5 —
(v, 7) (=, ") X5 +0=0.
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o zelN, y=X5, 2=X5 .l v++ =0, then
[z, [y, 2I] + [y, [z, 2]] + [z, [z, 9]l = 0 — (2,7)e55:7 + (@, Y)ez57" = 0
If v++' €', then
[, [y, 21l + [y, [z, 2]] + [2, [z, 9]l = (2,7 + V) X557 — (2,7) K55 + (&, 7) X575
Since v+ is aroot, {(v,7) = —1,s0 33 = =¥’ ; then X355 = —X55 and

the result follows.
If v++"#0 isnot in ', then all three terms vanish.

¢ = Xg, v= Xﬁ , 2= X5 . There are two cases to consider. First suppose
a+pB+y=0.Then f+y=—-a€cl',sothat [z [y,z2]] = [X5, X5 ] = 5570
Similarly [y, [z,z]] = eg%ﬁ and [z, [z,y]] = apY - Since «a + 3 is a root, we
must have (o, ) = —1 so aB — — & similarly ay = —~ya and gﬁ = —ﬁ:@r.
Thus apy = fya =a8 = =£1, so

[, [y, 2]l + v [z, 2]] + [z, [2,9]] = £(a + B +7) =0

Now suppose a++v #£ 0. If [z, [y, 2]|+[y, [2, z]]+][z, [z, y]] is to be nonzero, at
least one term, say [z, [y, z]] must be nonzero. Without loss of generality 54+
and a+ B+~ are both roots; in other words (3,+v) = —1 and (o, 8+7) = —1.
Since the asymmetry of the bracket is known, we may further assume (possibly
switching ¥ and z) that (o, 8) < —1 and («&,v) > 0. If (e, 3) = —1, then
ly,[2,2]] =0, [z, [y, 2]] = X5 and [z, [2,y]] = X555 . But these cancel since
564 = a7 =~
Finally, suppose that {a, 8) = —2, so that & = —3. Then [z, [y, z]] = Xa[ﬂ —
€5%5. ¥ [l =0, and [z, [z,9]] = [2, (aB)a] = —(v,a)ez52, and the sum
vanishes once again.

O

Theorem 3.1.2. L¢ is a simply-laced, semisimple Lie algebra over C , with root
lattice A .

Proof. Recall ([12], Chapter VI) that semisimplicity of a complex Lie algebra is
equivalent to the nondegeneracy of the Killing form

(X, Y)e =Tr{Z — [X, [V, Z]]}
An easy computation shows that
Lc=Ac® P (CXia® CX, =)
+acl

is an orthogonal decomposition of Le into nondegenerate subspaces. Thus Lc
is semisimple. A¢ is obviously a Cartan subalgebra, identified with its dual via
the Killing form. The root spaces for this Cartan subalgebra are spanned by the
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Xz . Identifying Ac with its dual via (,), we see that the roots span exactly the
lattice A C Ac. O

Over Z, the Killing form is far from nondegenerate. We can define a “better”
symmetric bilinear form (,) on L as follows:

AN = ()
(A Xg) = (X5,A) =0

€. ifat+p=0
- T as
(Xa, Xﬁ) { 0 otherwise

An easy computation shows that (,) is an L-invariant pairing of L® L —
Z . Furthermore, the restriction of (,) to the orthogonal complement of A is
irreducible. It follows that the absolute value of the determinant of (,) is equal to
[AV/A]. If A isirreducible, then the irreducibility of the adjoint representation
of Lc implies that (,)r = ¢(,) for some constant ¢. We can determine ¢ by
evaluating both sides on a root . We obtain

2¢ = (a, @), = Z(,@, a)?=2 Z (B, a)?
B (8,c)>0

Thus c=4+|{B: (3, a) =1}.
The values of ¢ are given in the following table:

A c
An,1 2n
D, |4n—4
Eq 24
E-, 36
Es 60

See Chapter 1.4 of [14] for a calculation of this constant for more general Lie
algebras and a discussion of its relationship to the “bad primes” of a Lie algebra.
Remark 3.1.3. If, in the definition of (,);, we compute traces with respect to
representations other than the adjoint representation, we can do a little better.
Using the standard representations of A, and D, , we get ¢ =1 and ¢ = 2,
respectively. The nontrivial minuscule representations of Eg and E; give ¢ =6
and ¢=12.

3.2. Cosets C e AV/A

Recall that a representation of a semisimple Lie algebra (over C) is said to be
minuscule if the Weyl group acts transitively on its nonzero weights. There is one
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minuscule representation corresponding to each element of AY/A (we will later
show how to construct this representation); it is characterized by the property that
its highest weight vector has minimal length (within that coset). We will take this
as our starting point.

Let C be a coset of A in AY. Recall that tc denotes the minimal value
attained by () on C. We write Co = {z € C : (z,z) = tc}; by 2.2.5, this
consists of a single orbit under the Weyl group.

Before we begin, we will need a few combinatorial facts about the set Cj.
Since all elements of Cy have the same length, no three of them can lie on a line.
For some lines, we can be even more specific:

Lemma 3.2.1. Let v € Cy and let o be a root. Then v+ ta € Cq if and only
ift=0 ort=—{,v).

Proof. v — {a,v)a is the image of v under the reflection through the hyperplane
orthogonal to « ; since Cp is invariant under W we must have v — (o, v)a € Cy .

For the “only if” direction, note that v,v — (o, v)a, and v+ ta all lie on a
line. It follows that these three points are not distinct; either ¢t =0, ¢t = —{a,v),
or {a,v)y =0 #t. In the last case, Weyl invariance gives v — tax € Cp, and we
get a contradiction since {v —ta, v,v + ta} is a set of distinet collinear points of
Cyp . O

Lemma 3.2.2. If ve Cy, acl, then [{(v,a)| <1.

Proof. Replacing o by —a if necessary we may assume (v, «) > 0. By minimality
we must have

(v —a,v—a) > (v,v)

Using (a, @) = 2, this gives (v,a) <1 as desired. O

Lemma 3.2.3. Let v € Cy, and let o, be roots with o+ 3 # 0. Assume
v+aeCoand v+a+p € Cy. Then (a,8) =0 4f v+ 3 € Cy and —1
otherwise.

Conversely, if {a,3) = —1 and v+ a+ 3 € Cqy, then either v+ a € Cy or
v+ ﬂ cCyp.

Proof. Since v+ « € Cy, we have (v,a) = —1; similarly (v + o, 8) = (v, 3) +
{a,8) = —=1.1If v+ € Cy, weget (v,8)=—1 and thus (o, 5) =0.

Now suppose v + 3 ¢ Cy. Then v + 3 is not the image of v under the
reflection 73 corresponding to 3, so (v,8) # —1. Then (v, ) > 0 so we must
have (a,B) < —1. Since a # —f; we also have (a,) > —1, proving the
assertion.

For the converse, note that o+ (8 is a root. Thus v+ a+ 3 € Cy just means
—1={v,a+ ) = (v,a)+ (v, 5) . Without loss of generality we have (v,a) = —1,
(v, B) = 0, which proves v +a € Cg. O
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3.3. The Category C

In order to construct the minuscule representation corresponding to a coset of A
in AV, we will need some sort of data analogous to the two-fold cover A of A.
The most straightforward approach is to attempt to embed A in some (£1) -
extension AV of AV. Unfortunately, this is not always possible (though this idea
has its merits, which will be spelled out in §3.5 and §3.9). In general, the best
we can hope for is to cover the cosets of A “one at a time”. _

We let € denote the category whose objects are maps 7 : C — A, where C
is a A-torsor (that is, a set on which the group A acts on the left, freely and
transitively) and = is A -equivariant. Here A acts on AY by translations by
elements of its quotient group A.

If 7: C—AY and 7/ : €' — AY are objects of €, a morphism from 7 to 7’
isa A- -equivariant map ¢ : C — C’ such that 7o qb = 7. Such a morphism is
necessarily invertible, so € is a groupoid.

We now show that € has the structure of a monoidal category. To begin, let
us define the tensor product of two objects of €.

Let 7 : C — AV be an object in C. There is also a natural right action of A
on C , by the formula

2y = (=1) @3y

One easily checks that the left and rlght actions of A commute with one another.
_ Now suppose 7 : C — AY and 7 : C’ — AV both lie in €. Define 7 ® 7’ :
CxzC" — AY by the formula (r®@7 )(c x ) =m(C)+7'(¢"). One readily checks

that 7 ® 7’ is an object of C ; further there are natural isomorphisms
(reor)eor" ~7&(r' @)

which constitute an associativity constraint for €.

The natural map 7o : A — A — AV gives rise to a canonical “identity” object
of €. Furthermore one can define C~! = {¢=!: &€ C}; this has a left A action
given by 7¢~! = (¢y71)~! and a map to AV given by (7~ 1)(¢71) = —nx(c).

One has canonical isomorphisms mo®7 ~ 7, T®my ~ 7, and r@n oy
7l @ (the last defined so that ¢x ¢! — 1 € A ). Thus we have a monoidal

structure (with duality) on the category C.

3.4. Minuscule Representations

We are now ready to construct the minuscule representations of .. Fix an object
7 of €. Let Cog denote 7=1(Cp). Let M, denote the free abelian group gener-
ated by symbols {YE}EGCTO , modulo the relations Y_; = —Y;. Thus, the rank of
M is equal to the cardinality of Cg.
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We define a bilinear map [,]: L ® M; — M as follows:

(z,0)Yz ifz el
[, Ys] = Y5z ifx = X5 and v+ c € G
0 ife=X5 andy+c¢Cy

Theorem 3.4.1. The map described above defines an action of L on Mj .

Proof. We must show that the relation [[z,y], u] = [z, [y, u]] — [y, [z, u]] is satisfied.
Since this relation is trilinear we may assume w = Yz . If z,y € A the result is
obvious. If z € A, y= X5, then

[z ), u] = (=, 1)[X7, Yel = (2,7) V52
(with the understanding that Ysz =0 if v+ c ¢ Co.) Meanwhile the left side is
[z, Y5e] — (=, Y5z = ((y + ¢, 2) — (¢, 7)) Y5z

as desired. The case where # = X5, y € A is handled by the same reasoning.
Thus we are reduced to considering the case where z = X5, y = X5/ . There

are several cases, depending on the value of n = (vy,4’). Suppose first that
n = —2. Then

([, 2] = (7' (v), 0 ¥z
[z, [y, 2]] vanishes unless (v,c) = 1, in which case [z,[y,z]] = Y55/¢. Similarly
ly, |z, z]] = Yar5z if (o, ¢) = —1 and vanishes otherwise. Since ¥ and 5’ commute

and —2 < {a,y) < 2, we get

[, [y, 2]] = [y, [z, 2]] = (@, ") Y555 = &35 (7, 0) ¥z
as desired.
If n=—1,then [z,y] = X535 . If v++"+ ¢ ¢ Co there is nothing to prove.
Otherwise, [[z,y], 2] = Y355 . By Lemma 3.2.3 we have without loss of generality
v 4+cé¢Cqyand vy+ce€Cq, so |z,ly,2]] =0 and

—[y, [z, 2]] = —[X5/, Yaz| = —Y5:50 = Va5

as needed.

If n =0, then [z,y] = 0, so we just need to show [z, [y,z]] = [v, [z, 2]] .
If (v, = 0, then 73 = 5'5. Without loss of generality we may assume
[z,[y,2]] # 0; then v+~ +¢,v + ¢ € Cy. It suffices to show that both sides
are equal to Ys5/ = Y5/55, which in turn follows from the fact that v+ c € Cyp,
again by Lemma 3.2.3.

If » > 0, we have again [z,y] = 0 so the left side vanishes. Lemma 3.2.3
shows that ¢,c+ ', and ¢+ ~' 4+« cannot all lie in Cg, so [z, [y, 2]] vanishes.
Similarly [y, [z, 2]] vanishes and we are done. O

Consequently we get a functor 7w ~» M, from the groupoid € to the category
of representations of L. The automorphism group of any object = € € is (£1);
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this group acts on M , multiplying by (£1). We will later show that this is the
full automorphism group of M, (as a representation of L. ).

Clearly M, decomposes into weight spaces corresponding to the elements of
Cp. Thus over C, M, is a minuscule representation corresponding to the coset
C; in particular it is irreducible. In fact, a much stronger irreducibility result
holds:

Theorem 3.4.2. Let R be a commutative ring, and let M C (Mz)r be a sub-
module invariant under the action of Lr . Then M = a(My)r for some ideal
aCR.

Note that this result does not hold for the adjoint representation of L (for
example, M = 2pgl, is an invariant subspace of sly over Z which has index 4,
and hence is not of the above form).

Proof. Each element of M can be written as a sum

Z k&Y

ceCo
where k_z; = —k;. Let K be the set of all coefficients k; which occur in such
decompositions, and let a be the ideal generated by K. Clearly M C a(Mz)r,
so it suffices to verify the reverse inclusion. For this, it suffices to show that for
any k € K and any ¢, we have kYz € M.

We now apply the fact that W operates transitively on Cy. Since W is
generated by the reflections r, and
(X5, Yzl = Yo, d =ra(c)
when (o, ¢) = —1, it suffices to verify that for each nonzero k € K, there is some
¢ with kY; € M.
Consider all sums
s= > kYzeM

ceCyo
such that ks = k for some ¢. We know that at least one such sum exists.
Therefore we may consider the one with the minimal number of nonzero terms. If
s has only one nonzero term, then kY; = s € M and we are done. Otherwise,
we may assume that k = ks and that k; # 0 for ¢ # d. The transitivity of W
implies that the sets {a € T : {a,¢) = —1} and {a €T : (a,d) = —1} have the
same size. Since ¢ # d, these sets are not identical; therefore there is a root «
with (a,¢) = —1 < {a,d) . Then [Xg,s]| liesin M, contains k as a coeflicient,
and has fewer nonzero terms, a contradiction. O

3.5. Cosets of Odd Order

The isomorphism class of an object m € € is determined by the image of 7 in
AV . This makes the category € almost superfluous; it is necessary only because
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every object has non-trivial automorphisms (in fact, the automorphism group of
any object in € is (£1) assuming {(,) is nondegenerate on A ). However, it is
possible to canonically associate an object of € to every coset of odd order, thus
simplifying our formalism in this case.

Let A, denote the union of all cosets of A in AY having odd order. Then
there is a canonical isomorphism A,/2A, =~ A/2A = V. Let A, denote the fiber
product A, Xy V. This is a (£1) -extension of A, containing A . For any coset
C of A in A,, its preimage C in KO is a A -torsor. Moreover, the composite

7rc:(~3—>/~\o—>AOQAV

is an object of €, naturally associated to the coset C. Furthermore, there are
canonical isomorphisms 7y >~ g, 7_g >~ 7y : , Te ® Ty >~ Toqcr , determined
by the group structure on Ag .

3.6. Multiplication

We now show how the monoidal structure on the category € manifests itself in
the world of Lie algebra representations. Let m and ' be objects in €. We
define a map ¢~ : Mz ® My — Mrgy . Set

vy [ Yew ifetd e (CH T
brn (Yo, Yor) = { 0 otherwise

Theorem 3.6.1. The map ¢ is L -invariant.

Proof. For ease of notation, let us just write ¢ for ¢r . The A-invariance
of ¢ is clear, so it suffices to show that for any & € ', ¢ C, @ € @77 we
have [Xg, ¢(Yz, Ya)] = ¢([Xa, Yz], Yar) + ¢(Yz, [ X5, Yer]) . Both sides are integral
multiples of Yzzz which vanishes unless (a,a+c+¢’) < 1, or in other words
{a, c+ ') < —1. Thus we may assume without loss of generality that (a,c) = —1
and («,¢) <0.

First suppose {a,c) = 0. Then the last term vanishes, so we just need to
prove that [Xz,0(Ys, Ya)] = ¢(Yas, Yar). If ¢+ ¢ ¢ (—C — C')g, the left side
vanishes, but so does the right side since a+ ¢+ ¢’ is the result of applying the
simple reflection r, to ¢+ ¢’ and therefore does not lie in (—C — C’)g. On the
other hand, if ¢+ ¢ € (=C —C')g, then a+c+ ¢ € (—C — C')p by the same
reasoning and both sides are equal to Yzzz .

Now assume (c,¢’) = —1. Then (o, ctc’) = —2, so we have ¢+’ ¢ (—C—C')g
and ¢(Yz, Yz) = 0. Thus we are reduced to showing ¢(Yzz, Yo ) +¢(Ys, Yaw ) = 0.
If a+c+c ¢ (—C—C")p, both terms vanish and we are done. Otherwise, the
sum is equal to Yzzz + Yzaze , which vanishes since ¢a = —ac. O

Example 3.6.2. Let 75 : A — AV denote the identity of €. We have Ag = {0},
so Mg, is arank 1 Z-module. It has a canonical generator corresponding to
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the identity element of A . Correspondingly there are canonical isomorphisms
My ® Mg, — My, My, ® My = M, . These isomorphisms are given by the maps
¢, and ¢ -, together with the identity constrints = S n®@m and 5
mo ® w. Thus our construction above is compatible with the identity constraints
on C.

Example 3.6.3. There is a natural isomorphism 7 ® 71 ~ 7g ; composing with
@x x-1, We get an L-invariant pairing

M;®@M;-1 = Z

One may easily check that this is a perfect pairing of M, with M_-. .

3.7. Commutativity

If # and 7’ are objects of C, then 7 ® 7’ and 7’ ® 7 have the same image in
AV, so they are isomorphic. We now show how to single out a particularly nice
choice of isomorphism between them.
Given any element v € C, note that (v,v) = t¢ (mod 2Z) . This is because
v=1wvg+ A, where A € A and vy has minimal length, so
{v,v) = {vo,v0) + 2{\, v0) + (A, \) = tc (mod 27Z)
Thus, for any v € C, v € C’, we have tcicr = (v+v',v+v") =tc+ic +2{v,v’)
(mod 2Z) . Thus, if we set
_toto —tc ~to
tc,c —
2
then (v,v') — tc o is always an integer.
Now let 7 : 6 JN AY and 7’ : ¢/ — AV be objects in €. We define a map
i — Cel 5C0'eC by the rule

N (TRT) = (_1)<vv> to. o i @ F

One easily checks that 7, 5+ is a well-defined isomorphism in the category C.
Remark 3.7.1. Although 7 is functorial and the compositions 7y s 07 » nat-
urally give the identity, the isomorphisms e do not define a commutativity
constraint on the category €. This is because

(777r,7r’ X idﬂ”)(idw Y 777r’,7r”) # Nre@w! w!
in general. Indeed, these isomorphisms are off by a sign (—1){¢""} where
2{C,C",C"} =tcycyor —toyor —toyor —toryor +to+to +ton
Remark 3.7.2. Suppose C and C’ are cosets of odd order. Then the composite
e Qe X Torer X T @ T

differs from the isomorphism 7. r., by the sign (—1)c." (where the latter is
well-defined since (C,C’) has odd denominator).
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Remark 3.7.3. If C is n-torsion, then (nC,C) = (A,C) =0 € Q/Z. Thus
tc € (C,C) C 1(nC,C) liesin 17Z.

Suppose C is a 2-torsion element of AY/A, and let v € C have minimal
length. If = : C — AY is an object of € covering the coset C and 7 is a

preimage of v, then
777!',71'/17® /’l\}/ = (—1)(U7v>*t0,c;l‘)’® /’l\)/

Using the fact that C+ C = A, we see that tcc = —tc, 80 N = (—1)%C.

We will call a 2-torsion coset C orthogonal if tc is an integer, and symplec-
tic otherwise. In a moment we will justify this terminology by showing that it
reflects the nature of the invariant bilinear forms on the corresponding (self-dual)
minuscule representation.

Let us now consider the commutativity properties of the maps ¢ /.
Theorem 3.7.4. The diagram

Mﬂ— ® Mﬂ-/ ~ M.n./ ® M7r

commutes.

Proof. The commutativity translates directly into the condition that 7y - (00") =
"0 when v € Cy, v/ € Cp, and v+ v € (C+ C')y. But then

toror = <U + 2}/,2} + 1}/> - <7}7 ’U> + <1}/7 1}/> + 2(”7 Q)/> =tc+ito+ 2<U7 7/>

so that (v,v') =tc, and the result follows from the definition. O

Now let 7:C — AV be any object of €. We have a natural multiplication
¢ﬂ,‘n’ : Mﬂ' ® Mﬂ' = M‘n’®7r

A special case of the commutativity above shows that ¢ (2, y) =M, ¢ (y,z).
Here 7 » is an automorphism of 7®7 . Thus ¢  is symmetric or antisymmetric
depending as nr  is trivial or nontrivial. The triviality of 7, » can be checked
on an element 7®7 , where v € Cg. We see that 7;e-(0®7) = (=1)clCg®7,
so the relevant sign is

t20

(-1
Example 3.7.5. If C is 2-torsion, then ¢, defines a bilinear form on M; .
Since toc = 0, the above calculation shows that this form is symmetric or al-
ternating, depending on the sign (—1)%¢ . In other words, M, is an orthogonal
representation if C is orthogonal, and a symplectic representation if C is sym-
plectic.
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3.8. Examples

Let us now discuss the results of these constructions in various cases. First, let us
briefly outline what happens in the reducible case. If A is an orthogonal direct
sum of smaller lattices A;, we may take A to be a central product of the groups
A; . The Lie algebra L may be identified with the product of the corresponding
algebras L; . There is a natural multifunctor

P:HGiw@

which allows us to make a functorial identification

Mp{m.} ~ ® MM

The multifunctor P is “linear” with respect to the monoidal category struc-

tures. With respect to the product decomposition above, the maps ¢ may be
computed componentwise. In other words, we can reduce everything to the case
when A is irreducible. We now consider this case.
Example 3.8.1. Suppose A = A,,_;. Then L is sl,(Z), the Lie algebra of
endomorphisms of Z™ having trace 0. There is an isomorphism of AY/A with
Z/nZ . Fix m € € having image corresponding to 1 € Z/nZ ; we may identify
My, with Z™, the standard representation of L. If we set =, = W?k for 0 <k <
n, then My, is naturally isomorphic to A*(My, ), If k+&’ < n, then the natural
map Mg, ® My, — Mg, o is just exterior multiplication. Note 7y and m,
are isomorphic, but not canonically: the choice of isomorphism corresponds to the
specification of an orientation on Z"™ . The remaining bilinear maps (corresponding
to k+ k' > n) have a similar interpretation as exterior multiplication between
exterior powers of the dual of the standard representation.

Note from this example that the two natural maps ¢rer 77 © (¢r- ®1) and
G wen © (1 ® ¢rr rr) from My ® My @ Myr to Mrgrigrr need not coincide.
For example, take n = 2 and fix an isomorphism w9 — 79 corresponding to a
symplectic form [,] on M = My, ; then we get two maps M@M &M — M which
are given respectively by

(v@u®w) — [v, ujw

and
(v®u@w) — [u,wlv

Thus our maps ¢ - are not compatible with the associativity constraints on €.
Example 3.8.2. Let A =D,,. Then L is the Lie algebra of Spin,,, . There are
four cosets of A in AY . The corresponding representations of L are the trivial
representation, the standard representation on 72", and the two half-spin rep-
resentations A* . The only really interesting multiplicative structures we obtain
are maps
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77" @ AT - AT

(and “transposes” thereof). These have a natural interpretation in terms of the
action of the corresponding Clifford algebra (which contains Z”" ) acting on its
spin representation (isomorphic to AT @& A7 ).

If A =DEg, then L is a form of the Lie algebra Eg over Z. AY/A is trivial,
so there are no nontrivial minuscule representations. The other two exceptional
cases, Eg and Er, are more interesting and we will discuss them in §5 and §6.

3.9. The Category 8§

For cosets of odd order, we were able to simplify things by considering objects of
C of the form 7c. We now develop an analogous formalism to handle cosets of
order 2. We define a new category 8 as follows. An object of § is a pair (7,e)
where 7 is an object of € and e : 7 ®® — 7 is an isomorphism. A morphism
(m,e) — («/,€') in 8 isamorphism ¢ : # — 7’ of underlying C-objects satisfying
the compatibility condition e = ¢’ o (¢ ® ¢)

Remark 3.9.1. Roughly speaking, objects of § parametrize self-dual minuscule
representations of L, where we keep track of the isomorphism of the representation
with its dual via the isomorphism e.

There is a natural product operation on §:

(me)@(r,e)=(rer,(e®e) o (1N ®1))

This product is functorial. It is also associative: the natural isomorphism (7 ®
)@ " ~7® (v’ @ 7") is compatible with any e,e’, e’ . To see this, note that
both of the corresponding maps

(ror @r")@ (@7 @7") — m
differ from the symmetrically defined isomorphism
(e®e ®e)o(1@Nyronmaol)o(lR1® N »®1®1)

by the same sign (_1){0,0’,0”} . Consequently the isomorphism classes of objects
of § form a group which surjects naturally onto the group of 2-torsion elements
of AV/A . The kernel of this surjection is canonically isomorphic to (+1).

If (w,e) is any object of 8, the map e defines a morphism of € objects
7®7 =~ 7y . This prolongs to an isomorphism of 8-objects (7, e)®(m,e) ~ (7, ¢’),
where € : my ® mg — @ is determined by the compatibility ¢ o (e ® ) =
eoo (e®e)o (ide @ Nr e ® ids), where ey 1 mg ® mo = mo is the standard map.
¢/ and e differ by the sign of 7; » . This determines the group structure on the
isomorphism classes of elements of § .

The group KU provides particularly nice representatives (in C) for cosets of
odd order. Let us now attempt to handle cosets of order 2 in the same way.
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For any obJect E = (x :C = AY ,e) of 8, we let AE be the disjoint union
Ag =AUC. A isa group which operates on C on the right and on the left.
Together with the map e: C x C— A, we get a multiplication operation on AE

Clearly the identity of A serves as an 1dent1ty element for A. and multiplicative
inverses exist. The associative law is more subtle. For & € Ag , let us write

[0 ifgeA
deg(?) _{ 1 otherwise

Theorem 3.9.2. For Z,§,% € Ap, #(§3) = (—1)2tc des(®@) des(®) des(®) (373

Proof. If any of Z, 7, and Z has degree 0 then Z(yz) = (Z§)Z, so the result is
clear. The functlons Tz — Z(y2), (x@z glve two isomorphisms CoCeC — C

which differ by a sign e = +1. Take T =9 =z, where z € Cy. Then Ze(z,Z) =
ee(F,F)T, so that e = (—1){®2% = (—1)%c as desired. O

Consequently Ag isa group if and only if C is orthogonal. If C is symplectic,
as is the case for the nontrivial coset of the root lattice of E;, then /~\E satisfies
a more complicated “graded-associative law”.

Remark 3.9.3. Here is another way to view the construction of KE Let C!
denote the i-fold product of C with itself (as a A-bitorsor). Then E specifies
an isomorphism between C? and A. The square of E is an isomorphism of Ct
with A , which is independent of the choice of E . Using this isomorphism, we can
define a group structure on the disjoint union H = C°J[C![JC2]JC®. Then,
if we identify E with an element of 62 then E generates a subgroup of H of
order 2. This subgroup is normal if C is orthogonal; if C is symplectic, then the
normal subgroup generated by E is {%E, iO} In either case, we define AE to
be the quotient of H by the subgroup generated by E. This is equipped with a
group law if C is orthogonal, and a “nonassociative” group law if C is symplectic.

4. The Group W

The Weyl group of a semisimple group G is usually defined as a quotient N(T)/T,
where T is a maximal torus of G and N(T) its normalizer. For many purposes
it is important to consider representatives of elements of the Weyl group inside of
G . However, since the sequence

0—-T—=N(T)—W-=0

does not split in general, one must first pass to some extension of W . Tits ([15])
observed that one can get by with a finite extension by working with algebraic
groups over Z and restricting the above sequence to Z-valued points (on which
it is still exact). T(Z) is a finite 2-torsion abelian group, so the Z -points of N(T)
constitute a finite extension W of W which actually lies in G . In this section,
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we will give a combinatorial construction of this group and analyze its structure,
for the case of simply-laced groups.

Remark 4.0.4. Our notation W violated our convention in that W is not a
central extension of W by (£1). We trust that no confusion will result.

4.1. Construction of W

Fix a basis A CT' of simple roots. Recall ([11], Chapter 1.9) that W may be
presented by generators {r,}aca subject to the relations:

r2 =1
2 —
(o, B) =0 = rorp = rarg (4.1)
(o, B) = =1 == rorpra = 137073

We will construct an extension of W by giving a slightly more complicated set
of generators and relations. To begin with, W should contain the Z-points of a
torus in the associated group. For simplicity, we work with the simply-connected
form; then T(Z) may be naturally identified with V = A/2A. For v in V or
A, we will write e, to denote the corresponding element of W. Let A denote

the preimage of A in A. We now define W to be the free group generated over
V by formal symbols {ng(}&6 x subject to the following relations:

n_yg — na
n2 — €
a — Ca
Ny = Cr, (v)Na (4 2)

An equivalent presentation is given in [15].

Example 4.1.1. For the lattice Ay, W is isomorphic to Z/47Z , generated by
any symbol n,, .

If we set each e, equal to the identity, the relations (4.2) for the ng reduce
to the relations (4.1) for the r, . Hence we have an exact sequence

VvV — WoW o 0
We will soon show that this sequence may be extended by 0 on the left.

4.2. Representations of U

We will now investigate the structure of the group W . The group V acts on
itself by conjugation; the kernel of this action contains —1 so we get an induced
action of V.on V. For 1€V, ael, set
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v if {a,v) =0
av  otherwise

nal®)  {

One readily verifies that the relations above are satisfied, so we get an action
of W on V compatible with the action of W on V. There is also a natural
action of W on A (via W). Moreover these two actions induce the same action
on A/2A . Thus we obtain a natural action of W on

AcAxyV={\0)eAxV:A=0v (mod 2)}

Representations of L also give rise to representations of W. Let M be any
representation of L. on which the action of each generator X5 is nilpotent. Then
each exp(X5) is an automorphism of Mg = M ®z Q. Thus we may define
an automorphism ny = exp(X5)exp(—X5-1)exp(X5). If M decomposes into
( AY -valued) weight spaces under the action of L, then V acts on M by the rule

o(z) = (1) Nz

whenever z lies in the weight space corresponding to A. A slightly tedious cal-
culation shows that this induces an action of W on Mgq .

In the special case M = M, of the representations constructed in the last
section, the square of the action of any Xz is zero; thus exp(Xz) = 1+ X5,
and the automorphism ns is actually defined on M, itself (before making a base
change to Q). This property also holds for representations of L. that are obtained
by taking tensor products of representations of the form M, .

Let us compute the action of ng on M, . If {a,¢) =0, then Y5 is invariant
under exp(Xg) and exp(—Xg-1). If {a,c) = —1, then
exp(Xz) exp(—X5-1) exp(X3)Ys = Yzz. Similarly if {(o,c¢) =1 we get nzYs; =
_‘Y&*I’E .

In particular, n2Y: = (=1)(*9Y5 . If we define an action of V on M, by
ex(Yz) = (=1)9 Yz, then the above calculation shows that n2 = e, . It is clear
that ngz and n; commute when (o, 3) = 0. Moreover if (o, ) = —1, then a
quick calculation shows that nNENENE = NENaN; - Consequently we get an action

of W on M, . Note that this action permutes the generators Yz. Thus W acts
on the set Cy (in a manner compatible with the action of W on Cy ).
Our analysis provides the setting for the following theorem:

Theorem 4.2.1. The group W acts in a natural way on the groups K, f, and
each representation My . If g,h € W are such that g and h induce the same
automorphism of A and of M, for every m € C, then g=h.

Proof. Let z = gh™'. Since W acts faithfully on A, the image of z in W is
the identity; thus we may assume z = e, for some A € A. We also know that z
acts trivially on V, which implies that (A, v) is even forevery v € A. If A ¢ 2A,
then there is some v € AY with (A, v) odd. Let C be the coset of v ; then (X, c)
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is odd for all ¢ € C. Choose 7:C — AV in € to have image C. Then z acts
on M, by multiplication by —1, contrary to the hypothesis. (I

The above proof also shows the following:
Corollary 4.2.2. The natural map V — W is injective.

We now show that the group W is independent of the choice of simple roots
A . Before doing this, we need to make some preliminary remarks. First, we will
study the action of W on A more closely.

Lemma 4.2.3. Let ,g, &EFQJNX, and let g=nj cEW.
B if{a,f =2
Bo if (o, B) = —1
o@={ & B =0
—éfl& if {a, 3) =1
-B7%& if (o, B) =2

Proof. We assume (o, 3) < 0, the other cases being analogous. It suffices to
show that both sides are have the same images in both A and V. For A this is
obvious. In V, we have g(a) = a if (o, B) is even and g(&) = Ba otherwise.
This proves the result in case {(a,3) is 0 or —1. If (o, 8) = =2, then g(a)=a
in V. On the other hand, & and —32& differ by —32 which lies in the kernel
of the projection A=V, Il

Note that W s generated by the symbols ng, a € A. Consequently every
g € W has some minimal expression as a product of these generators; the minimal
number of generators required we will call the length of g.

We now investigate the action of W on sets of the form Co 5
Lemma 4.2.4. Let 7:C — AV be an object of C, 7€ Co, ael', ge W. If
{a,v) = —1 then g(av) = g(a)g(?) .

Proof. Both expressions make sense because (a,v) = —1 implies that a@ € 66 ,
and also the fact that W preserves lengths shows that (g(«), g(v)) = —1 so that
also g(@)g(v) € Co. Using induction on the length of g, we can easily reduce
to the case where ¢ has length 1; say g = ng . We will assume (3,v) <0, the
other cases being analogous.

First suppose (3,v) = 0, so g(v) = v. Since o+ v € Cpy, we see that
—1<{(B,a) <1.1If {B,a) = —1, then g(ad) = Bav = g(a)g(v) as desired. If
(B, ) =0, then g(aw) = av = g(a)g(v). If {B,a) =1, then g(av) = —B_laﬁ =
9(@g(®). .

Now suppose (B,v) = —1. Then ¢(¥) = Bv. We have 0 < (B,a) < 2. If
{B,a) =0, then

(&) = Bav = apv = g(a@)g(v)
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If (8,a) =1, then

g(@®) = & = &B BT = (—B ' &)(BV) = 9(@)g (D)
Finally, if (3, ) =2, then

g(&0) = —p~Law = —F2Ban = (—f28)(Fv) = g(@)g(B)

and the proof is complete. O

To show that the groupjﬁ does not depend on the choice of root basis A, we
first define elements nz € W in general. Pick any « € I, and set

where @ is chosen so that & = @(3) and 8 € A

Lemma 4.2.5. The above definition is independent of the choice of w .

Proof. 1t suffices to show that the equation defining nz actually holds when & €
A . To verify this, we need to show that both sides induce the same transformations
of A, V, and each M, . In the first two cases this is easy, so we concentrate on
the third. _
Let 7 :C — AY be an object of €, and let ¢ € Cy. We must show that
ngwYs = @nBYg
If {(8,¢) =0, both sides are equal to wY; and there is nothing to prove. We will
assume that (3,c¢) = —1, the other case being analogous. We must show that
WYe = Yo = OV = Y0

which is just a special case of Lemma 4.2.4. O

Now if we replace A with any other system A’ of simple roots, we get an
alternative system of generators nj for W these generate W and are subject
to the same relations since they differ from the old generators by conjugation.
Moreover one easily checks that this new description of W is compatible with the

actions of W on A and M, described above.
Note that nz = n_5-1 . To see this, it suffices to check that both elements of

W induce the same transformation on A, \77 and each M, . On A, both induce
the simple reflection corresponding to +a . For V, this follows from the fact that
& and —a~ ! have the same image in V. For the M, , this follows from our
earlier calculations.

Theorem 4.2.6. Let 7 : C — AV be an_object of €. There is a unique action
of W on C which extends the action of W on Cq and such that the left action

A xC — C is W -equivariant.



Vol. 76 (2001) On simply laced Lie algebras and their minuscule representations 547

Proof. Uniqueness is obvious. Pick v € (Njo, and let ¢(v) = F,0 for g € w.
We define an action of W on the whole of C by the formula g(Xﬁ) = g(X)ﬁgﬁ
Clearly this definition does not change if we replace v by —v. We know that W
acts transitively on Cp. Thus, in order for this definition to be independent of
the choice of ¥, it is necessary and sufficient that Fg, = ,9(35). This cocycle
condition is also equivalent to the fact that we have defined an action; that is, that
(gh)o = g(hv) .

We prove the cocycle condition is satisfied by induction on the length of h. If
the length of A is zero, there is nothing to prove. If the length of h is > 1, then
we may write h as a product h’R” where b’ and h” have smaller length. Then,
using the inductive hypothesis we get

Yoh = Fgnr = Ygn'gh' (Vg ) = Vg gV )gh' (Fn) = Vgg (I ' (Fw1)) = Vg9 (3n)
as required.

We are thus reduced to proving the result in the case h has length 1 ; that is,
h = ng . Replacing & with —&~! if necessary, we may assume that (o, v) <0.
If {(o,v) =0, then h(v) = 7, so 7, is the identity, and g, = 7, as desired.
Otherwise (a,v) = —1; then h(v) = &v, and we must show that g(av) =
g(@)g(v) . This is precisely the statement of 4.2.4. O

Remark 4.2.7. Let 7: C—AY and 7/ :C’' = AV be e objects in €. The group
W acts on_( C and C’ , compatibly with its action on A thus we get an induced
action of W on C X3 C’ In fact, this agrees with the actlon defined above (for
the object m®@x’). ThlS follows from the uniqueness statement and the fact that
&= x , being a map of L-modules, is W—equivariant.

Remark 4.2.8. The group W acts on V and A, ina compatible manner; thus
it acts on A, . This action leaves C stable for any coset C of odd order. We
claim this agrees with the action defined above on C. In view of the uniqueness
statement of the last theorem, it suffices to check the agreement on C,, and for
generators of W . This follows easily from our earlier calculations.

4.3. The Structure of W

The Weyl group W acts orthogonally on V via some homomorphism % : W —
O(V,q). This homomorphism is covered by the action of W on V we have
defined, which gives a homomorphism 1/1 W — AutV. Restricting 1/1 to VC W
one gets automorphisms of V that are trivial on V. Recall that this group is
canonically isomorphic to VY . Thus we have a commutative diagram:

00— V — W — % — 0

! L9 L9 (4.3)
0— V¥V — Aut(V) — O(V,q) —0
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Here the map V — VY simply corresponds to the pairing {,) (mod 2).
Lemma 4.3.1. If ' is irreducible, then the kernel of 1 is either trivial or +1,
depending on whether or not —1 € W .

Proof. Suppose w € W induces the identity on V. Then for any root «,
w(e) is another root which is congruent to « modulo 2A. Since T' is simply
laced, one easily sees that w(a) = eqa where e, = £1. If (o, ) = —1, then
—1 = (w(a),w(B)) = encpler,B) = —€a€p, 50 €¢q = €5. This implies that the
function e is constant on each component of the Dynkin diagram corresponding
to a choice of simple roots. Since I' is irreducible and the simple roots generate
A, we see that w = +£1, as desired. O

Remark 4.3.2. Our entire construction could be carried out starting not with
the root lattice A, but with any lattice containing A and contained in AV .
Such lattices correspond to forms of the associated group other than the simply
connected form. .

In particular, if we began with AY , we would get an extension W’ of W by
VY, which could be identified with the Z -points in the normalizer of a torus in
a split adjoint semisimple group over Z . One has a diagram analogous to 4.3 as
above, but the left column is replaced by the identity isomorphism

AR Al
Consequently we may identify W’ with the fiber product Aut(\~7) Xo(v,q) W, the

set of all pairs (a,w) € Aut(\~/) x W which induce the same automorphism of V.
Remark 4.3.3. Under the map ¢, the reflection r, goes to the “reflection”

v — v — (v, )

The image of ¢ is the subgroup of O(V,¢) generated by such reflections.
Remark 4.3.4. In the case of Eg, AY/A has order 3. Hence the natural map
V — VV is an isomorphism. The element —1 is not in the Weyl group so that
is injective. The quadratic form ¢ is nondegenerate on V. Since the 36 pairs of
roots all go over to nonisotropic vectors in V, we see that (V,q) has nontrivial
Arf invariant and every non-isotropic element is the image of a root. Hence the
image of 1 is group generated by all reflections: that is, all of O(V,¢q). Thus
is an isomorphism. Our diagram now shows that 1; is an isomorphism.

For other groups, such as E;, the situation is more complicated. Let us
now investigate the diagram 4.3 more closely. There is an induced “snake ho-
momorphism” § from the kernel of the representation of W on V to the group
AV/(A+2AY).

Theorem 4.3.5. The map § vanishes.
Proof. Clearly it suffices to prove this in the case I' is irreducible. If 4 is injective

there is nothing to prove. Otherwise, we may assume that —1 lies in the Weyl
group. Let w € W be a lifting of —1 € W. Then w acts on A covering the
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map A - A ; hence we get @(7) = (—1)4 ™31 where ¢ : A — Z/2Z is some
function. Since W acts by automorphisms, ¢’ is forced to satisfy the equation
qd(v+u)=q¢ W)+ ¢ (w)+ {(v,u). Thus ¢ differs from ¢ by a linear functional,
so we may write ¢'(v) = q(v) + (\,v) for some well-defined A € V¥ . Since the
automorphism

7 — (—1)1Wg!

is trivial on V, the desired result is equivalent to the assertion that A lies in the
image of V.

Dually, this is equivalent to the assertion that the form on V defined by pairing
with A vanishes on the kernel of the natural map V — V