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On simply laced Lie algebras and their minuscule represen-
tations

Jacob Lurie

Abstract. In this paper we adapt a known construction for the simply laced, semisimple Lie
algebras (over Z ), and thereby obtain a very simple construction for all minuscule representa-
tions of those Lie algebras (again over Z ). We apply these results to give explicit formulas for
tensors invariant under the exceptional algebras Eg and Er .
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1. Introduction

The Lie algebra Eg may be defined as the algebra of endomorphisms of a 27-
dimensional complex vector space Mc which annihilate a particular cubic poly-
nomial. This raises a natural question: what is this polynomial? If we choose a
basis for Mg consisting of weight vectors {X,} (for some Cartan subalgebra of
Eg ), then any invariant cubic polynomial must be a linear combination of mono-
mials X, X,r Xy where w+ w +w” = 0. The problem is then to determine
the coeflicients of these monomials.

Of course, the problem is not yet well-posed, since we still have a great deal
of freedom to scale the basis vectors X, . If we work over the integers instead of
the complex numbers, then much of this freedom disappears. The Z-module M
then decomposes as a direct sum of 27 weight spaces which are free Z-modules
of rank 1. The generators of these weight spaces are well-defined up to a sign.
Using a basis for M consisting of such generators, a little bit of thought shows
that the invariant cubic polynomial may be written as a sum

E €w,w/,w”Xwa/ w’

wtw’ +w’ =0

where €y v = £1. The problem is now reduced to the determination of the
SIgNS €y w’ ' . However, this problem is again ill-posed, since the X,, are only
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well-defined up to a sign.

This problem is resolved by examining more carefully what we mean by work-
ing “over Z”. First, let us consider the problem of constructing the (split) Lie
algebra of Eg over Z . We know that this algebra should be a direct sum of the
corresponding cocharacter lattice of rank 6 and 72 “root spaces” which are free
Z -modules of rank 1. Since there is no canonical choice of generator for these
root spaces, one again encounters sign ambiguities which makes it difficult to give
a direct definition of the Lie bracket. The set I' of roots has a two-fold cover T’
consisting of all possible generators for root spaces. Moreover, this covering has
a natural partially defined “multiplication” which arises from the Lie bracket. It
turns out that this two-fold covering and its “multiplication” have a particularly
transparent structure which is best understood by considering a two-fold covering
A of the entire root lattice A. This leads to a known (see [6]) construction of
E¢ , and every other simply-laced Lie algebra, over the integers.

The same ideas likewise may be applied to give a construction of all minuscule
representations of simply laced algebras (again over Z). We will describe this
construction, together with a formalism which allows one to characterize multilin-
ear maps between such representations. In particular, our formalism will apply to
the cubic form on the representation M of Eg, and enable us to determine the
SIENS €y 007w’ -

Let us now summarize the contents of this paper. In §2 we will summarize
the background material on which we draw. Much of this material (root systems,
quadratic forms over Fs, del Pezzo surfaces) is standard, while some (such as the
connection between unitary structures and (+1)-extensions) is more obscure.

In §3 our work begins. First we show how to construct a Lie algebra, given
the data of a double cover of its root lattice. We then develop a formalism which
enables us to build its minuscule representations in an analogous way. Using this
formalism, we will also be able to construct a number of natural multilinear maps
between minuscule representations. .

In §4, we apply our formalism to study an extension W of the Weyl group W
of a (simply-laced) semisimple Lie algebra. Using this group, we will then show
that the invariant multilinear maps constructed in §4 are the only ones which
exist.

Finally, in §5 and §6, we specialize to the cases of Eg and E,. In these
cases our formalism leads to explicit descriptions of the minuscule representations
of these algebras, and of the invariant forms they carry.

Notation and Terminology

If M is a free module over a commutative ring R (for example a vector space over
a field), we denote the dual module by MY . If zy,...,z, is a basis for M, then

we let 27, ...,z) denote the dual basis for MY . We will denote the symmetric
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and exterior powers of M by S"(M) and A™M, respectively. These we regard
as quotients of the n-fold tensor power of M. If S is an R -algebra, we let Mg
denote M ®g S (we will use this convention only in the case R =Z,so S can be
an arbitrary ring).

A bilinear form f(z,y) defined on a group M is said to be alternating if
f(z,z) =0 for all z. Note that this implies f(z,y) = —f(y,z), but the converse
fails in general when 2 is not invertible.

The symmetric group S,, acts on M®" . Correspondingly we get a norm (or
symmetrization) map M®" — M®"  given by the formula

mi ... R0 My — ng(l)@)...@mg(n)
gES,

This map induces a map from coinvariants to invariants; that is, a map ¢ :
S"(M) — (M®")S»  The image of an element of S"(M) under this map is
called its polarization; it is a symmetric tensor. One also has a natural map
¢ (M®?)5» — §"(M) in the other direction, given by restricting the projection.
The composites ¢ o1 and ¢ o ¢ are both simply multiplication by n! = [S,].
If n! is invertible in R, then ¢ and ¢ are both isomorphisms, which permits
us to identify S"™(M) with the collection of symmetric tensors. Working over the
integers (as we shall throughout this paper), one must be careful at the primes
dividing n!.

We let (£1) denote the two-element group of units of the ring Z. In what
follows we will frequently be concerned with extensions of groups (or sets) by
(£1) . We follow the following general convention: if G is some object (such as a
group), then G will generally denote a (1) -extension of G . The extension will
be specified in context. Elements of G will be denoted by g, and the image of g
in G will be denoted g .

If ¢ is a prime power, we denote by F, a finite field with ¢ elements. If
K C L is a finite extension of fields and =z € L, we let Tr(z) € K denote the
trace of z. If S is a finite set, we let |S| denote the cardinality of S.

If L is a Lie algebra acting on a module M, we write M = {m € M : Lim =
0} . Elements of M are said to be invariants under L .

In what follows, we will discuss the Lie algebras of simply-laced, simply con-
nected, semisimple groups which are split over Z . The restriction to simply-laced
groups is essential to what follows. However, our discussion could easily be mod-
ified so as to apply to groups over an arbitrary ground scheme which are not
necessarily simply connected; their Lie algebras contain the Lie algebras of the
simply-connected analogues with finite index. To simplify our exposition, we will
leave these modifications to the reader.
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2. Background
2.1. Quadratic Forms

In this section we briefly review some basic facts on quadratic forms. For details,
we refer the reader to [2], Chapter 6.3. Let R be a commutative ring. A quadratic
space over R isa projective R-module M of (finite) constant rank, equipped with
a function ¢ : M — R which possesses the following properties:

o q(Am)=Nq(m).
e The function (z,y) = g(z+y) — ¢(x) — ¢(y) is R-linear in each variable. It is
called the bilinear form associated to q.

Such a function ¢ is said to be a quadratic form on M.

By definition, (z,z) = ¢(2z) — 2¢(xz) = 2q(z). If 2 is not a zero-divisor in
R, then g is determined by (z,z) : there is a one-to-one correspondence between
quadratic forms ¢ on M and symmetric bilinear forms (,) having the property
that (z,z) is always divisible by 2. (For this reason, a quadratic space over Z
is also called an even lattice.) Thus, if 2 is invertible in R, quadratic forms and
symmetric bilinear forms are essentially the same thing. At the other extreme,
note that (z,z) =0 if 2=0 in R, so (,) is an alternating bilinear form.

If {,) induces an isomorphism of M onto its dual, we say g is nondegenerate.
If 2 is not invertible in R, this is impossible unless M has even rank (as one sees
by base change to a field of characteristic 2 ).

If M has even rank and ¢ is nondegenerate on M, then we may associate to
(M, ¢) a cohomology class in H}, (SpecR,Z/2Z), called the discriminant of q.
This cohomology class classifies the center of the even part of the Clifford algebra
associated to (M, q) , which is a finite étale R -algebra of rank 2. The discriminant
is additive (relative to the obvious notion of “direct sum” for quadratic spaces).

Example 2.1.1. Suppose (M, q) is a quadratic space, with M a free R-module
of rank 2n . If xq,...,x9, is a basis for M, then

A= ((%%‘W

is an R -valued matrix; its determinant D is called the determinant of (M, ¢) and
is well-defined up to the square of a unit in R . Note that D is invertible in R if
and only if ¢ is nondegenerate.

Assume now that R is local, (M, q) is nondegenerate, and 2 is a unit in R.
An easy argument shows that we may choose zq,...,zs, so that the matrix A
is diagonal. On the other hand, consider the product X = zizs...z9, in the
Clifford algebra of (M, q). A simple argument shows that the center of the even
part of the Clifford algebra is the free R-module generated by 1 and X . It
follows by an easy computation that

X2 — (_l)nq(g;l)q(xg) e o q(fCZn)

Il
—
I
et
=

3
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Thus, under the canonical identification
H} (SpecR,Z/2Z) ~ R* /R*?

obtained from Kummer theory, we see that the discriminant of (M, q) is repre-
sented by (—1)"D.

In the special case R = Fy (which is really the only case of interest to us),
the cohomology group H} (SpecR,Z/2Z) is isomorphic to Z/2Z ; in this case the
discriminant is also called the Arf invariant of ¢. Quadratic forms of rank 2n
with Arf invariant 0 are distinguished by the fact that they have 227~1 4 2n—1
isotropic vectors, while the forms with Arf invariant 1 have only 2271 — on—1
isotropic vectors (a vector v € V is isotropicif g(v) = 0). Alternatively, quadratic
spaces over Fo with Arf invariant 0 may be characterized by the existence of an
n -dimensional subspace on which ¢ vanishes identically. For proofs of these facts,
we refer the reader to [2].

Note that if (M, q) is a quadratic space over R and R — R’ is any ring
homomorphism, we get a natural induced quadratic space (Mg/,qr/) over R’.
We will generally be interested in quadratic spaces over Fy which arise from even
lattices via “reduction modulo 2”7. The result of such an operation is described
in the following result:

Theorem 2.1.2. Let A be an even lattice (that is, a quadratic space over Z ),
(V,q) the associated quadratic space over Fo . Assume A is nondegenerate over
Q. Via the form {,) we may identify A with a subgroup of AV having finite
index d. Then (V,q) is nondegenerate if and only if d is odd. Its Arf invariant
s equal to

0 4fd==1 (mod 8)
1 ifd==3 (mod 8)

Proof. Note that d is the absolute value of the determinant of A ; hence the
reduction of d modulo 2 is equal to the determinant of (V,q). This proves the
first claim. For the second, let R = Z(,) denote the localization of Z at the
prime 2. Since d is odd, Ar is a nondegenerate quadratic space over R; let =
denote its discriminant. Over Q, the discriminant classifies the finite extension
Q[vEd] (or QxQ, in the case d = £1). Here the sign is chosen so that +d =1
(mod 4), so 2 does not ramify in the corresponding quadratic extension of Q.
It follows that z classifies the étale R -algebra which is the integral closure R’
of R in Q[vZ£d|. Then the Arf invariant of (V,q) is 0 or 1 depending on
whether or not the prime 2 splits or remains prime in Q[v/%d]. Our hypotheses
imply that 2 cannot ramify in this extension, so we may write +d = 4k + 1.
Then R/ = R[12AEL V;"“H] is obtained by adjoining to R a root of the polynomial
22—z —k . Modulo 2, this equation has a solution if and only if & is even; that
is, if d =41 (mod 8). O
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If (M,q) is a quadratic space, we denote by O(M, q) the group of all R-
automorphisms of M compatible with the form ¢. For any z € M with ¢(x)
invertible in R, the map

re i m—m—qz)"Hm, z)z

is a 2-torsion element of O(M, q), loosely understood as “reflection in the hyper-
plane corresponding to z”. If R is a field and ¢ is nondegenerate, then these
reflections generate O(M, ¢) unless R = Fy, M has dimension 4, and the Arf
invariant of (M, q) is trivial (for a proof, see the first chapter of [4]).

Finally, we recall for later use the statement of Witt’s extension theorem (see
also [4]):
Theorem 2.1.3. Assume that R is a field and that q is nondegenerate. If U
and U’ are subspaces of M and « : U — U’ is an isomorphism such that
q(u) = q(a(w)), then o admits an extension to an element of O(M,q) .

2.2. Root Lattices

In this section we will review the facts that will be needed concerning simply laced-
root systems. For details, proofs, or a discussion of non-simply laced root systems,
we refer the reader to [3].

Let us fix a bit of terminology. A lattice is a free Z-module of finite rank
equipped with a symmetric bilinear form (,). We will generally be interested in
lattices A satisfying the following additional conditions:

e A is positive definite: (A, A) >0 for any A#0.
o Theset I'={a € A: (o, a) =2} generates A as a Z-module.

These two properties characterize those lattices which arise as root lattices of
simply laced, semisimple algebraic groups. Note that the second condition implies
that A is an even lattice, since it is generated by even elements. Consequently we
may define ¢ : A — Z by the equation

A A

4(A) = =

For the remainder of this subsection we will assume A is such a lattice, corre-
sponding to such an algebraic group G. We shall refer to I' as its set of roots;
this is a finite set. Note that if o and 3 are roots, then « + 8 is a root if and
only if {(a, ) =—1.

If « is a root, then

ra(Y) =7 — ()
is an automorphism of A. The set of all such reflections generates a group W
called the Weyl group. Since I is finite, W -stable, and generates A, W is a
finite group.
Via the bilinear form (,), we may identify A with a subset of the dual lattice
AY . The pairing (,) then extends to a Q-valued bilinear form on AY. The
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quotient AY/A is a finite group which is naturally dual to the center of the simply
connected group G.

Since A is positive definite, each coset C of A in AY contains finitely many
elements which have minimal norm (v, v). The collection of such elements of C
will be denoted by Cy ; they are called minuscule weights. We let ¢ denote the
value of (v,v) on Cp. Note that according to our convention, 0 és a minuscule
weight.

Example 2.2.1. Consider the free Z -module M spanned by generators eq,...,e,,
where (e;,e;) =0;;. Let s=e14+...+¢e,,andset A, 1 ={AeM: () s)=0}.

It is clear that A, is even and positive-definite. Moreover, the set

{)\EAn_li()\,)\>:2}:{€i—€jii7éj}

generates A,_1, so that A, has the three properties listed above; it is the
root lattice of the group G = SL,,. The group W may be identified with the
symmetric group S,, , which acts by permuting the e; .

Since M is nondegenerate, we may identify the dual AY , of A, ; with
M/Zs . Thus the group AY /A, 1 may be identified with M/(Zs + A, 1) ~
Z/nZ , the isomorphism induced by the map A — (A, s) (mod n), defined for
A€ M. If C denotes the coset of A, | in AY | corresponding to 0 < k < n
via this isomorphism, then the minuscule weights of C are precisely the images
of the elements of the set

{eh tep o+ 6ik}1§i1<i2<~~<ik§n

in M/Zs. The norm (v,v) of such a weight is @ )
Example 2.2.2. Let M denote the free Z -module spanned by generators ey,....e,
satifying (e;,e;) = 05, s =e1+ ...+ ey, andset D, = {AeM:(\s) =0
(mod 2)}.

Once again it is easy to see that D, is positive definite and even, and the set

AeDL: (AN =2} = {de; e i £ 4}

generates D, if » > 1, so D,, has the three properties enumerated above. In
fact, D,, is the root lattice of the group G = Spin(2n). The group W may be
identified with a semidirect product of the symmetric group S,, and its natural
representation on D, /2M; it acts by permuting the e; and changing an even
number of signs.

The lattice D)/ may be identified with M+2s C M, so the quotient DY /D,,
is isomorphic to Z/4Z (if n is odd, so s ¢ D,, ) or Z/2Z x Z/2Z (if n is even,
so s€ Dy ).

The sets of minuscule weights corresponding to the four cosets of D,, in DY
are {0}, {£e;} and the Weyl group orbits of 1s and (s —e;). The norms of
these four classes of weights are 0, 1, 7, and 7, respectively.

Note that if n = 2, D, actually decomposes as a direct sum A; & A;. If
n =3, D, isisomorphicto A, .
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Example 2.2.3. Once again, let M denote the free Z -module spanned by gen-
erators egp, ..., €, , and set

-1 ifi=45=0
(esej)=¢ 1 ifi=5>0
0 otherwise

Let s =3¢p—(e1+...4e,),and let E, ={xeM:{\s)=0}. E, is an
even lattice of rank n. M has signature (n,1), so E, is positive-definite if and
only if (s,s) =n — 9 is negative; that is, if » < 8. Finally, one may check that
E, is generated by T'={A € E,, : (\,\) =2} ifand only if n > 3.

Again, M is nondegenerate, so we may identify EY with the quotient M/Zs.
Thus E)/E, is isomorphic to M/Zs + E, ~ Z/{s, s)Z ; this cyclic group is
generated by the image of e; . In the next subsection we will give a geometric in-
terpretation of the minuscule weights of the coset corresponding to this generator.

E3 is isomorphic to the direct sum of A; and Ay, E4 is isomorphic to Ay,
and Ej is isomorphic to D5 . However, the lattices Eg, E-, and Eg are new;
they correspond to the exceptional groups with the same names.

If A and A’ are two lattices possessing the three properties listed at the
beginning of this section, then the orthogonal direct sum A @ A’ shares those
properties. A basic result in the theory of root systems asserts that every such
lattice may be obtained as an orthogonal direct sum of lattices of the form A,,, D,
(n>4), Eg, Er, and Eg in a unique manner. On the other hand, the lattices
just mentioned are irreducible, in the sense that they cannot be further decomposed
in the same way. The situation for irreducible root lattices is summarized in the
following:

A AY/A |Col lc
Avy | Z/nZ () ——
Doy, | ZIOZ % Zf2Z | 1,221 dp 9271 0,%,1,%
Dant1 Z/AZ 1,277 dp 42,27 | 0,20t 2ntl
Eg Z/37Z 1,27,27 0,22
E; Z/27 1,56 0,3
Es {0} 1 0

We will need one more concept from the theory of root systems: that of a
root basis, or system of simple roots. A root basis is a subset A C I' which
freely generates A, such that in the expression for any element o € I' as a linear
combination of elements of A, the coefficients which appear are either all positive
or all negative. The basic fact we shall need is that root bases exist, and the Weyl
group W acts transitively on them (in fact, it acts simply transitively).

We conclude with a generalization of a well-known fact concerning the action
of the Weyl group on the minuscule weights.
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Theorem 2.2.4. Let C,C',C" € AV/A be such that C+C' +C"”" =0. Then
{le,d, ") e Cox Chx Cl e+ + " =0}
consists of a single Weyl group orbit.

Proof. Clearly it suffices to treat the case when A is irreducible. For this, we
apply the classification and verify the result directly in each case. We give details
for A, , the most interesting case. There we may identify AY/A with the group
Z/(n+1)Z.1If 0 <i<n and C is the corresponding coset, we may identify the
minimal elements of C with i-element subsets of {0,...,n}. Given three cosets
which sum to 0, there is a corresponding triple 0 <4,j,k <n with i+7+k=0
(mod n+1). If i=j=%k=0 the result is obvious, while if i1+j7+k>n+1 we
may replace each coset with its negative and reduce to the case i +j+k <n+1.
Finally, if i + 4+ k = n+ 1, then the assertion is equivalent to the evident fact
that the symmetric group S, 11 acts transitively on the set of triples (X,Y,Z) of
disjoint subsets of {0,...n} having respective sizes i, j, and k. ([l

Corollary 2.2.5. Let C € AV/A . Then W acts transitively on Cy .
Proof. Apply the last theorem to the cosets C,—C, and A. O

2.3. del Pezzo Surfaces

In this section, we review the connection between del Pezzo surfaces and excep-
tional root lattices. For more details, see [13].

We will invoke this discussion only sparingly in the rest of this paper, so the
present section may be safely omitted by a reader who is unfamiliar with classical
algebraic geometry.

For simplicity, we work over the complex numbers. Let S denote the surface
obtained by blowing up P? at n distinct points pi,...,p,. Then H%*(S,Z) is
the free lattice on generators H, Ei,...E,, where H is the pullback of the
hyperplane class on P? and the E; are the classes of the exceptional divisors.
The negative of the intersection pairing endows H?(S,Z) with the structure of a
lattice, isomorphic to the lattice M we used in the construction of the exceptional
lattices.

We let Kg denote the canonical bundle (the top exterior power of the holo-
morphic cotangent bundle) of S. Let s = —ci(Kg) € H?*(S,Z). Then s —
3H—(E1+...+E,). If n <8 and the points p1,...,p, arein general position,
then —Kg is ample (surfaces with this property are called del Pezzo surfaces). We
will henceforth assume this to be the case. Then the lattice

E, ={z e H%S,Z):2Us =0}

may be identified with the primitive cohomology of S (relative to an embedding
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of S in projective space via some power of the anticanonical bundle —Kg ).

Of particular interest to us are the “lines” on S ; that is, effective divisors E on
S with E.(—=Kg) =1 (such divisors map to lines if we map S to projective space
via its “anti-canonical series”). The Hodge index theorem implies that E.E < 0.
Since the arithmetic genus of E is

1
5(EE+EKs)

we see that E is a smooth rational curve with self-intersection —1. Conversely,
suppose E is any divisor with EEE = EXKg = —1. Then Kg — E cannot be
effective (it has negative intersection with the ample class —Kg ), so h%(S,E) =
h9(S,Kg —E) = 0, and the Riemann-Roch theorem implies

RO(S,E) > 1+ %(E.E ~KsE)=1

so that E is an effective class.

We can give the “lines” on S a lattice-theoretic interpretation, as follows.
Note that if ¢ € H2(S,Z) is the class of a line E, then (e,s) = —e.s = 1, so
that the image of e is a generator of EY/E, . Let ¢ denote the image of e in
EY . One easily calculates that (¢/,e’) = 2=2_ If ¢’ € EY is any other lattice
element representing the same coset of E,, , then ¢’/ =¢’ 4+ X for A € E,, , so that
(e",e") = (e/,e') (mod 2). If n <8, then

10 —n

9—n

)

which implies that (¢/,€e’) < (€”,€"”) . If equality holds, one easily checks that e’
is the image of the class of a unique “line” on S. Thus, for n < 8, the “lines” on
S correspond bijectively to the elements in EY of minimal length among those
representing a fixed generator of EY/E,, . For n = 8, this argument breaks down.
The 240 lines on S correspond to the 240 roots of the Eg lattice.

Example 2.3.1. If n < 6 and the points pi,...,p, are chosen in general po-
sition, then —Kg is actually very ample and gives rise to an embedding of S in
P°" as a surface of degree 9 — n. For n = 0, the image surface contains no
lines. If n =1, S contains a single line: the exceptional divisor of the blow up.
If n =2, S contains three lines: the two exceptional divisors and the proper
transform of the line joining the two chosen points in P2. For n =3 or 4, the
same reasoning shows that we get 6 and 10 lines, respectively.

If n=5, —Kg embeds S in P* as an intersection of two quadric hypersur-
faces. In this case S contains 16 lines. In addition to the 5 exceptional divisors
and the proper transforms of the 10 lines joining the 5 chosen points, we have
the proper transform of the conic passing through the 5 points.

If n=6, —Kg embeds S in P3 as a smooth cubic surface. In this case S
contains 27 lines (6 exceptional divisors, 15 proper transforms of lines, and 6
proper transforms of conics). This situation is much-studied in classical geometry;
we will return to it in our discussion of Eg .
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If n =7, —Kg is not very ample, but still has no base locus. It induces
a map to P?, which realizes S as a double cover of the plane branched over
a smooth quartic curve A . In this case S contains 56 “lines” (7 exceptional
divisors, 21 proper transforms of lines, 21 proper transforms of conics, and the
proper transforms of the 7 cubics which pass through all 7 points and are double
at one of the points), which project two-to-one onto the 28 bitangents to A.

If n =8, —Kg corresponds to a pencil of plane cubics passing through the
points pq,...,ps . This linear series has a nonempty base locus: the ninth point
of intersection of the pencil. There are 240 “lines” on S.

2.4. (1) -Extensions

Let A be an abelian group. In this section we will be concerned with groups A
which are eztensions of A by (£1). In other words, we want to study exact
sequences of the form

0 (+1) >A—>A—0

Note that since the group (£1) has no nontrivial automorphisms, such an
extension is necessarily central.

Two (£1)-extensions of A are isomorphic (as extensions of A) if there
is an isomorphism between them (as groups) compatible with the maps to A.
Isomorphism classes of (£1)-extensions are classified by the cohomology group
HY(A, (£1)).

Since A is abelian, the group law A x A — A is a group homomorphism.
Consequently we get a sequence of natural maps

H?(A, (£1)) H?(A x A, (£1))

Hom(H2(A x A, Z), (£1))
Hom(H1(A,Z) ® Hi (A, Z), (£1))
Hom(A ® A, (£1))

R 11l

More concretely, we can associate to any (£1)-extension A of A a bilinear
Z/27 -valued form (,) : A x A — Z/2Z by the equation

(_1)(z7y> _ gggflgfl

One can easily show that (;) is well-defined, bilinear, and strictly alternating
(that is, (a,a) =0 for any a € A). Thus the above construction actually yields
a natural transformation

¢ : H2(A, (£1)) — Hom(A?A, Z/27)

Suppose now that A is annihilated by 2. Then we can define a finer invariant
of A as follows. For v € A, define ¢(v) € Z/2Z by the equation

(1)1 =32 e (£1)



526 J. Lurie CMH

It is easy to verify that ¢ is a quadratic form on the F5-vector space A . In fact,
q(v +u) — g(v) — q(u) = (v,u) is the alternating form defined above. In other
words, we get a natural transformation

¢ H2(A, (£1)) — S*(A)Y

In simple cases, these invariants completely characterize the extensions:

Theorem 2.4.1. If A is a finitely generated, free Zi -module then ¢ is an isomor-
phism. If A is a finite-dimensional Fo -vector space, then ¢’ is an isomorphism.

Proof. Using the Kiinneth formula, one sees that it suffices to prove these assertions
in the cases where A =7 and A = Fy, respectively. In these cases, it is easy to
check the result directly. (Il

Let us now return to the general case. If A is any (1) -extension of an
abelian group A, we will write Aut(g) to denote its group of automorphisms as
an extension of A ; that is, the collection of all automorphisms leaving (£1) C A
stable (this is frequently, but not always, the full automorphism group of 1~%)
This group acts naturally on the quotient A ~ 1~%/(:|:1>7 so we get a natural
homomorphism Aut(A) — Aut(A). The kernel of this homomorpism consists of
those ¢ : A — A which have the form (@) = e(a)a, where e(a) € (£1) C A.
One can easily check that such a map is a homomorphism if and only if ¢ : A —
(£1) is a homomorphism. In other words, we have an exact sequence

0 — Hom(A, (1)) — Aut(A) — Aut(A)

This sequence is generally not exact on the right. Indeed, any ¢ € Aut(g)
induces an automorphism of A which must preserve any structure invariantly

associated to the extension A . Thus, if A =V is a finite-dimensional Fs -vector
space, we get a factorization

Aut(V) = O(V, q) C Aut(V)

The map on the left is surjective; this follows from the fact that the extension A
is classified up to isomorphism by ¢. Thus we actually get a short exact sequence

0— VY = Aut(V) = O(V, q) = 0

Similar reasoning may be applied in case A is a finitely-generated free Z-
module. In this case the sequence takes the form

0 — Hom(A, (£1)) — Aut(A) — Aut(A, (,)) — 0

where Aut(A,(,)) denotes the “symplectic group” of all automorphisms of A
compatible with the alternating form (, ).
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2.5. Unitary Structures and (+1)-extensions

If V is an F5-vector space, extensions of V by (+1) correspond bijectively to
quadratic forms on V. For any quadratic form ¢, there is an extension % , Unique
up to isomorphism, such that o> = (—1)2®) . However, there is no functorial
manner in which V may be associated to the pair (V,q). Indeed, the natural
surjection Aut(\N/) — O(V, q) does not split in general. However, this surjection
may well split over some large subgroup of O(V,q). Correspondingly, one might
hope to define v functorially in terms of (V,q) and some additional data. We
will now show that this is possible when given a Hermitian structure on V.

In what follows, we fix a generator w for the multiplicative group of Fj.
Let V be an F,4-vector space equipped with a Hermitian form A . That is,
h :VxV — F; is map which is linear in the first variable and satisfies the
law h{z,y) = h(y,z), where T = 22 denotes the nontrivial automorphism of Fy
over Fy. Then g(v) = h(v,v) € Fy defines a quadratic form on the underlying
F, -vector space; the associated symplectic form is given by (u,v) = Tr(h(u,v)).

We define a group V as follows. The elements of V are formal symbols 47,
where v € V. We define multiplication so that

oa = (—1)Tr@hny Ty

(—2)y = 2(—y) = —(2y)
It is easy to see that V is a group. The element 0 is the identity of V, and

—0 is a central involution. The quotient of V by the subgroup generated by
—0 is canonically isomorphic to V again; thus V is a (£1)-extension of V.
Furthermore, for v € V, @ is a lift of v and 72 = (=1)Tr@a))§ = (=1)9)0 | as
desired.

Let G denote the group of all semilinear automorphisms of V compatible with
the form ¢ . That is, an element g € G is an F5 -linear orthogonal transformation
of (V,q) with the property that g(tv) = o4(t)g(v) , where o, is an automorphism
of F4 over Fy. The assignhment g — o4 is a homomorphism from G to Gal(Fy :
F3) whose kernel is the unitary group U(V,h). We define an action of G on V
as follows:

| £g(v) if o4 is the identity
9(£7) 4{ +(—1)4™g(v) otherwise

In particular, the map V — V given by multiplication by w € F} lies in the
unitary group, giving a canonical automorphism of V of order 3, which we will
denote by w.

Theorem 2.5.1. Let V be some (£1) extension of an Fy -vector space V' such
that the associated quadratic space (V,q) 4s 2n -dimensional and nondegenerate.

The definition of W gives a one-to-one correspondence between the following types
of data:
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o Fy-structures on V, together with Hermitian forms h inducing the quadratic
Jorm q and isomorphisms V =V over V. _
o FBlements g € Aut(V) of order 3 such that g fizes only the center of V.

Such data exist if and only if the Arf invariant of (V,q) is equal to n.

Proof. One direction is clear: given an Fj4-structure on V together with a Her-
mitian form %~ and an isomorphism V =~ V, the automorphism @ pulls back to
an automorphism of V with the appropriate properties. We must now show that
if g € Aut(V) has order 3 and fixes only the center of V| then from g we may
reconstruct the rest of the data on V.

Since g must fix the center, we have an induced action of g on V. Since ¢
has order 3,

0=¢g-1=(g—-1D({1+g+g?

annihilates V. On the other hand, since ¢ has no fixed points on V, g —1 is
invertible so 14+ g4 ¢> = 0. Thus we may define an action of F; on V by setting
wv = g(v) .

We define h as follows. Let (,) denote the alternating form associated to ¢q.
Since v + wov + w?v vanishes, we have (v,u) + (wv,u) + (wW?v,u) =0 for any w.
Thus either all three of these terms vanish, in which case we set h(v,u) =0, or
(wiv,u) = (Wv,u) =1 and {(whv,u) = 0, in which case we set h(v,u) = w™F.
One easily checks that A is a Hermitian form on V. For any v € V we have
{(v,v) =0, and so h(v,v) = {wv,v) = (w?v,v). On the other hand,

q(v) = g(w*v) = g(v + wv) = q(v) + g(wo) + (v, wv) = (v, wo)

so that A induces the given form ¢ on V. B .
For & € V, set e = 0g(0)g*(@). We define a map ¢ : V — V by the rule
¢(¥) = e5v . For v, € V, we have

eva = Diig(vu) g2 (T0) = egeq(—1) w9+ (ug” @)+ {g(u),g* ()
Since (g(u), g*(v)) = {(u, g(v)) , the exponent is equal to
(u,g*(v)) = (u,w?v) = Tr h(u, w*v) = Tr (wh(u,v))
From this it follows that ¢(va) = ¢(¥)¢(w) , so ¢ is a group homomorphism.

Using the commutative diagram

0— Z/2Z — V — V —0

! l¢ !
0— Z/R2Z — V — V —0

we see that ¢ is an isomorphism. The automorphism @ carries +v to +wv; to
see that this goes over to the automorphism g € Aut(V), we need to check that
€5 = €4(v) - Lhat is, we need to know that
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In other words, we must show that @ commutes with g(7)g?(¢) . The commutator
is given by
(v, 9(v) + g (v)) = (v, w0 +w?v) = (v,0) =0

as required. This completes the reconstruction of our original data from the auto-
morphism g¢. It is easy to see that the recipe we just gave is the only one possible,
which completes the proof of the main claim.

For the last point, note that all nondegenerate Hermitian spaces (V,h) over
F, split as direct sums of one-dimensional nondegenerate Hermitian spaces over
F, . In such a space, ¢ is nonzero on all three nonzero vectors, so (V,q) has Arf
invariant 1. Inductively we see that a nondegenerate quadratic space admitting
a compatible Hermitian structure must have Arf invariant n . On the other hand,
nondegenerate quadratic spaces of even dimension are classified up to isomorphism
by their Arf invariant, so if (V, ¢) has Arf-invariant n then it admits a compatible
Hermitian structure. Since (£1) extensions of F;-vector spaces are classified up
to isomorphism by the associated quadratic form, it follows that an isomorphism
V =~V always exists. O

By Theorem 2.1.2, we see that Theorem 2.5.1 applies in particular in case
V =A/2A where A is aroot lattice of type Eg, Eg,or A, (n=0,2 (mod 8)).
We will make use of this in our discussion of Eg .

3. Constructions

We assume now, and throughout the rest of this paper, that A is a positive definite
lattice generated by I' = {a € A : (o, ) =2} . We let V denote the F;-vector
space A/2A . The form

qg:AN—7Z

q(\) = %

descends to an F -valued quadratic form on V which we also denote by ¢.
The Z-valued bilinear form (,) induces a Z/2Z -valued bilinear form which
we will also denote by (,). Since A is even, (,) is alternating (interpreted as
a Z/2Z-valued form), and therefore classifies some (1) -extension A of A .
Similarly, the form ¢ classifies a (1) -extension V of V. Either of these may

be recovered from the other. Indeed, if we start with V, we can set
A=AxyV={\3)eAxV:A=v (mod 2)}
Suppose instead that we begin with the extension A. One can easily check

that the map
¢:A— A
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X - (—1)‘1()‘)X2

is a group homomorphism. The image of ¢ is a normal subgroup of A . Tt is not
hard to see that the cokernel of ¢ isa (£1)-extension of V corresponding to the
quadratic form ¢ .

The extension A will play a crucial role in resolving sign ambiguities when
A is the root lattice of a simply-laced semisimple group G. Over the integers,
the corresponding Lie algebra is almost completely determined by the lattice A .
We say “almost” because, as noted earlier, the covering A is determined only
up to noncanonical isomorphism. All of our constructions will be functorial in
A . However it is impossible to make our constructions functorial in A itself.
Indeed, the Weyl group W of A acts on A, but generally does not act on the
corresponding Lie algebra.

The lattice A itself may be identified with the tangent space to a maximal
torus. The remainder of the Lie algebra is a direct sum of root spaces, each
of which is a free Z-module of rank 1. However, there is no canonical choice
of generator for these root spaces, and this makes it difficult to describe the Lie
bracket. To resolve this problem, we will actually introduce two generators for each
root, space, corresponding to the two preimages of a root in A . These generators
will be indexed by the set I', the preimage of T" in A .

3.1. The Lie Algebra L
In this section, we outline a well-known construction of the simply laced (split)

Lie algebras over Z ; this construction may be found, for example, in [6]. Let L/
denote the free abelian group generated by symbols X5 where ¥ € I', modulo

the relations X_5 = —X5. For x € (1), we let ¢, denote the corresponding
element of Z . Now set L = A@L’. We endow L with a bilinear bracket operation
[,] as follows:

[AMA]=0 for A, X €A,
[)\7X§] = —[)(a7 /\].: </\7 ’y>/X§ for Ae A.
[X:{, X;/] = X&y l.f ¥+ ’Y/E I.
5, X5/] = 0 otherwise.
Theorem 3.1.1. L is a Lie algebra over Z .

Proof. One easily sees that the above definition is compatible with the relation

X = —Xp . To complete the proof, we must show that the bracket is alter-
nating ( [X, X] = 0) and that the Jacobi identity holds ( [X,[Y,Z]] + [Y, [Z, X]] +
[Z,[X,Y]] = 0). The skew-symmetry is obvious from the definitions; we must

check the Jacobi identity. By symmetry it suffices to consider four cases:

e xz,y,z € A. Then all brackets vanish and we are done.
e z,y €A, z=X5. Then [z,[y,2]] + [y, [2,2]] + [2 [z, 9]] = (&, ) (y, ") X5 —
(v, 7) (=, ") X5 +0=0.
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o zelN, y=X5, 2=X5 .l v++ =0, then
[z, [y, 2I] + [y, [z, 2]] + [z, [z, 9]l = 0 — (2,7)e55:7 + (@, Y)ez57" = 0
If v++' €', then
[, [y, 21l + [y, [z, 2]] + [2, [z, 9]l = (2,7 + V) X557 — (2,7) K55 + (&, 7) X575
Since v+ is aroot, {(v,7) = —1,s0 33 = =¥’ ; then X355 = —X55 and

the result follows.
If v++"#0 isnot in ', then all three terms vanish.

¢ = Xg, v= Xﬁ , 2= X5 . There are two cases to consider. First suppose
a+pB+y=0.Then f+y=—-a€cl',sothat [z [y,z2]] = [X5, X5 ] = 5570
Similarly [y, [z,z]] = eg%ﬁ and [z, [z,y]] = apY - Since «a + 3 is a root, we
must have (o, ) = —1 so aB — — & similarly ay = —~ya and gﬁ = —ﬁ:@r.
Thus apy = fya =a8 = =£1, so

[, [y, 2]l + v [z, 2]] + [z, [2,9]] = £(a + B +7) =0

Now suppose a++v #£ 0. If [z, [y, 2]|+[y, [2, z]]+][z, [z, y]] is to be nonzero, at
least one term, say [z, [y, z]] must be nonzero. Without loss of generality 54+
and a+ B+~ are both roots; in other words (3,+v) = —1 and (o, 8+7) = —1.
Since the asymmetry of the bracket is known, we may further assume (possibly
switching ¥ and z) that (o, 8) < —1 and («&,v) > 0. If (e, 3) = —1, then
ly,[2,2]] =0, [z, [y, 2]] = X5 and [z, [2,y]] = X555 . But these cancel since
564 = a7 =~
Finally, suppose that {a, 8) = —2, so that & = —3. Then [z, [y, z]] = Xa[ﬂ —
€5%5. ¥ [l =0, and [z, [z,9]] = [2, (aB)a] = —(v,a)ez52, and the sum
vanishes once again.

O

Theorem 3.1.2. L¢ is a simply-laced, semisimple Lie algebra over C , with root
lattice A .

Proof. Recall ([12], Chapter VI) that semisimplicity of a complex Lie algebra is
equivalent to the nondegeneracy of the Killing form

(X, Y)e =Tr{Z — [X, [V, Z]]}
An easy computation shows that
Lc=Ac® P (CXia® CX, =)
+acl

is an orthogonal decomposition of Le into nondegenerate subspaces. Thus Lc
is semisimple. A¢ is obviously a Cartan subalgebra, identified with its dual via
the Killing form. The root spaces for this Cartan subalgebra are spanned by the
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Xz . Identifying Ac with its dual via (,), we see that the roots span exactly the
lattice A C Ac. O

Over Z, the Killing form is far from nondegenerate. We can define a “better”
symmetric bilinear form (,) on L as follows:

AN = ()
(A Xg) = (X5,A) =0

€. ifat+p=0
- T as
(Xa, Xﬁ) { 0 otherwise

An easy computation shows that (,) is an L-invariant pairing of L® L —
Z . Furthermore, the restriction of (,) to the orthogonal complement of A is
irreducible. It follows that the absolute value of the determinant of (,) is equal to
[AV/A]. If A isirreducible, then the irreducibility of the adjoint representation
of Lc implies that (,)r = ¢(,) for some constant ¢. We can determine ¢ by
evaluating both sides on a root . We obtain

2¢ = (a, @), = Z(,@, a)?=2 Z (B, a)?
B (8,c)>0

Thus c=4+|{B: (3, a) =1}.
The values of ¢ are given in the following table:

A c
An,1 2n
D, |4n—4
Eq 24
E-, 36
Es 60

See Chapter 1.4 of [14] for a calculation of this constant for more general Lie
algebras and a discussion of its relationship to the “bad primes” of a Lie algebra.
Remark 3.1.3. If, in the definition of (,);, we compute traces with respect to
representations other than the adjoint representation, we can do a little better.
Using the standard representations of A, and D, , we get ¢ =1 and ¢ = 2,
respectively. The nontrivial minuscule representations of Eg and E; give ¢ =6
and ¢=12.

3.2. Cosets C e AV/A

Recall that a representation of a semisimple Lie algebra (over C) is said to be
minuscule if the Weyl group acts transitively on its nonzero weights. There is one
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minuscule representation corresponding to each element of AY/A (we will later
show how to construct this representation); it is characterized by the property that
its highest weight vector has minimal length (within that coset). We will take this
as our starting point.

Let C be a coset of A in AY. Recall that tc denotes the minimal value
attained by () on C. We write Co = {z € C : (z,z) = tc}; by 2.2.5, this
consists of a single orbit under the Weyl group.

Before we begin, we will need a few combinatorial facts about the set Cj.
Since all elements of Cy have the same length, no three of them can lie on a line.
For some lines, we can be even more specific:

Lemma 3.2.1. Let v € Cy and let o be a root. Then v+ ta € Cq if and only
ift=0 ort=—{,v).

Proof. v — {a,v)a is the image of v under the reflection through the hyperplane
orthogonal to « ; since Cp is invariant under W we must have v — (o, v)a € Cy .

For the “only if” direction, note that v,v — (o, v)a, and v+ ta all lie on a
line. It follows that these three points are not distinct; either ¢t =0, ¢t = —{a,v),
or {a,v)y =0 #t. In the last case, Weyl invariance gives v — tax € Cp, and we
get a contradiction since {v —ta, v,v + ta} is a set of distinet collinear points of
Cyp . O

Lemma 3.2.2. If ve Cy, acl, then [{(v,a)| <1.

Proof. Replacing o by —a if necessary we may assume (v, «) > 0. By minimality
we must have

(v —a,v—a) > (v,v)

Using (a, @) = 2, this gives (v,a) <1 as desired. O

Lemma 3.2.3. Let v € Cy, and let o, be roots with o+ 3 # 0. Assume
v+aeCoand v+a+p € Cy. Then (a,8) =0 4f v+ 3 € Cy and —1
otherwise.

Conversely, if {a,3) = —1 and v+ a+ 3 € Cqy, then either v+ a € Cy or
v+ ﬂ cCyp.

Proof. Since v+ « € Cy, we have (v,a) = —1; similarly (v + o, 8) = (v, 3) +
{a,8) = —=1.1If v+ € Cy, weget (v,8)=—1 and thus (o, 5) =0.

Now suppose v + 3 ¢ Cy. Then v + 3 is not the image of v under the
reflection 73 corresponding to 3, so (v,8) # —1. Then (v, ) > 0 so we must
have (a,B) < —1. Since a # —f; we also have (a,) > —1, proving the
assertion.

For the converse, note that o+ (8 is a root. Thus v+ a+ 3 € Cy just means
—1={v,a+ ) = (v,a)+ (v, 5) . Without loss of generality we have (v,a) = —1,
(v, B) = 0, which proves v +a € Cg. O



534 J. Lurie CMH

3.3. The Category C

In order to construct the minuscule representation corresponding to a coset of A
in AV, we will need some sort of data analogous to the two-fold cover A of A.
The most straightforward approach is to attempt to embed A in some (£1) -
extension AV of AV. Unfortunately, this is not always possible (though this idea
has its merits, which will be spelled out in §3.5 and §3.9). In general, the best
we can hope for is to cover the cosets of A “one at a time”. _

We let € denote the category whose objects are maps 7 : C — A, where C
is a A-torsor (that is, a set on which the group A acts on the left, freely and
transitively) and = is A -equivariant. Here A acts on AY by translations by
elements of its quotient group A.

If 7: C—AY and 7/ : €' — AY are objects of €, a morphism from 7 to 7’
isa A- -equivariant map ¢ : C — C’ such that 7o qb = 7. Such a morphism is
necessarily invertible, so € is a groupoid.

We now show that € has the structure of a monoidal category. To begin, let
us define the tensor product of two objects of €.

Let 7 : C — AV be an object in C. There is also a natural right action of A
on C , by the formula

2y = (=1) @3y

One easily checks that the left and rlght actions of A commute with one another.
_ Now suppose 7 : C — AY and 7 : C’ — AV both lie in €. Define 7 ® 7’ :
CxzC" — AY by the formula (r®@7 )(c x ) =m(C)+7'(¢"). One readily checks

that 7 ® 7’ is an object of C ; further there are natural isomorphisms
(reor)eor" ~7&(r' @)

which constitute an associativity constraint for €.

The natural map 7o : A — A — AV gives rise to a canonical “identity” object
of €. Furthermore one can define C~! = {¢=!: &€ C}; this has a left A action
given by 7¢~! = (¢y71)~! and a map to AV given by (7~ 1)(¢71) = —nx(c).

One has canonical isomorphisms mo®7 ~ 7, T®my ~ 7, and r@n oy
7l @ (the last defined so that ¢x ¢! — 1 € A ). Thus we have a monoidal

structure (with duality) on the category C.

3.4. Minuscule Representations

We are now ready to construct the minuscule representations of .. Fix an object
7 of €. Let Cog denote 7=1(Cp). Let M, denote the free abelian group gener-
ated by symbols {YE}EGCTO , modulo the relations Y_; = —Y;. Thus, the rank of
M is equal to the cardinality of Cg.
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We define a bilinear map [,]: L ® M; — M as follows:

(z,0)Yz ifz el
[, Ys] = Y5z ifx = X5 and v+ c € G
0 ife=X5 andy+c¢Cy

Theorem 3.4.1. The map described above defines an action of L on Mj .

Proof. We must show that the relation [[z,y], u] = [z, [y, u]] — [y, [z, u]] is satisfied.
Since this relation is trilinear we may assume w = Yz . If z,y € A the result is
obvious. If z € A, y= X5, then

[z ), u] = (=, 1)[X7, Yel = (2,7) V52
(with the understanding that Ysz =0 if v+ c ¢ Co.) Meanwhile the left side is
[z, Y5e] — (=, Y5z = ((y + ¢, 2) — (¢, 7)) Y5z

as desired. The case where # = X5, y € A is handled by the same reasoning.
Thus we are reduced to considering the case where z = X5, y = X5/ . There

are several cases, depending on the value of n = (vy,4’). Suppose first that
n = —2. Then

([, 2] = (7' (v), 0 ¥z
[z, [y, 2]] vanishes unless (v,c) = 1, in which case [z,[y,z]] = Y55/¢. Similarly
ly, |z, z]] = Yar5z if (o, ¢) = —1 and vanishes otherwise. Since ¥ and 5’ commute

and —2 < {a,y) < 2, we get

[, [y, 2]] = [y, [z, 2]] = (@, ") Y555 = &35 (7, 0) ¥z
as desired.
If n=—1,then [z,y] = X535 . If v++"+ ¢ ¢ Co there is nothing to prove.
Otherwise, [[z,y], 2] = Y355 . By Lemma 3.2.3 we have without loss of generality
v 4+cé¢Cqyand vy+ce€Cq, so |z,ly,2]] =0 and

—[y, [z, 2]] = —[X5/, Yaz| = —Y5:50 = Va5

as needed.

If n =0, then [z,y] = 0, so we just need to show [z, [y,z]] = [v, [z, 2]] .
If (v, = 0, then 73 = 5'5. Without loss of generality we may assume
[z,[y,2]] # 0; then v+~ +¢,v + ¢ € Cy. It suffices to show that both sides
are equal to Ys5/ = Y5/55, which in turn follows from the fact that v+ c € Cyp,
again by Lemma 3.2.3.

If » > 0, we have again [z,y] = 0 so the left side vanishes. Lemma 3.2.3
shows that ¢,c+ ', and ¢+ ~' 4+« cannot all lie in Cg, so [z, [y, 2]] vanishes.
Similarly [y, [z, 2]] vanishes and we are done. O

Consequently we get a functor 7w ~» M, from the groupoid € to the category
of representations of L. The automorphism group of any object = € € is (£1);
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this group acts on M , multiplying by (£1). We will later show that this is the
full automorphism group of M, (as a representation of L. ).

Clearly M, decomposes into weight spaces corresponding to the elements of
Cp. Thus over C, M, is a minuscule representation corresponding to the coset
C; in particular it is irreducible. In fact, a much stronger irreducibility result
holds:

Theorem 3.4.2. Let R be a commutative ring, and let M C (Mz)r be a sub-
module invariant under the action of Lr . Then M = a(My)r for some ideal
aCR.

Note that this result does not hold for the adjoint representation of L (for
example, M = 2pgl, is an invariant subspace of sly over Z which has index 4,
and hence is not of the above form).

Proof. Each element of M can be written as a sum

Z k&Y

ceCo
where k_z; = —k;. Let K be the set of all coefficients k; which occur in such
decompositions, and let a be the ideal generated by K. Clearly M C a(Mz)r,
so it suffices to verify the reverse inclusion. For this, it suffices to show that for
any k € K and any ¢, we have kYz € M.

We now apply the fact that W operates transitively on Cy. Since W is
generated by the reflections r, and
(X5, Yzl = Yo, d =ra(c)
when (o, ¢) = —1, it suffices to verify that for each nonzero k € K, there is some
¢ with kY; € M.
Consider all sums
s= > kYzeM

ceCyo
such that ks = k for some ¢. We know that at least one such sum exists.
Therefore we may consider the one with the minimal number of nonzero terms. If
s has only one nonzero term, then kY; = s € M and we are done. Otherwise,
we may assume that k = ks and that k; # 0 for ¢ # d. The transitivity of W
implies that the sets {a € T : {a,¢) = —1} and {a €T : (a,d) = —1} have the
same size. Since ¢ # d, these sets are not identical; therefore there is a root «
with (a,¢) = —1 < {a,d) . Then [Xg,s]| liesin M, contains k as a coeflicient,
and has fewer nonzero terms, a contradiction. O

3.5. Cosets of Odd Order

The isomorphism class of an object m € € is determined by the image of 7 in
AV . This makes the category € almost superfluous; it is necessary only because
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every object has non-trivial automorphisms (in fact, the automorphism group of
any object in € is (£1) assuming {(,) is nondegenerate on A ). However, it is
possible to canonically associate an object of € to every coset of odd order, thus
simplifying our formalism in this case.

Let A, denote the union of all cosets of A in AY having odd order. Then
there is a canonical isomorphism A,/2A, =~ A/2A = V. Let A, denote the fiber
product A, Xy V. This is a (£1) -extension of A, containing A . For any coset
C of A in A,, its preimage C in KO is a A -torsor. Moreover, the composite

7rc:(~3—>/~\o—>AOQAV

is an object of €, naturally associated to the coset C. Furthermore, there are
canonical isomorphisms 7y >~ g, 7_g >~ 7y : , Te ® Ty >~ Toqcr , determined
by the group structure on Ag .

3.6. Multiplication

We now show how the monoidal structure on the category € manifests itself in
the world of Lie algebra representations. Let m and ' be objects in €. We
define a map ¢~ : Mz ® My — Mrgy . Set

vy [ Yew ifetd e (CH T
brn (Yo, Yor) = { 0 otherwise

Theorem 3.6.1. The map ¢ is L -invariant.

Proof. For ease of notation, let us just write ¢ for ¢r . The A-invariance
of ¢ is clear, so it suffices to show that for any & € ', ¢ C, @ € @77 we
have [Xg, ¢(Yz, Ya)] = ¢([Xa, Yz], Yar) + ¢(Yz, [ X5, Yer]) . Both sides are integral
multiples of Yzzz which vanishes unless (a,a+c+¢’) < 1, or in other words
{a, c+ ') < —1. Thus we may assume without loss of generality that (a,c) = —1
and («,¢) <0.

First suppose {a,c) = 0. Then the last term vanishes, so we just need to
prove that [Xz,0(Ys, Ya)] = ¢(Yas, Yar). If ¢+ ¢ ¢ (—C — C')g, the left side
vanishes, but so does the right side since a+ ¢+ ¢’ is the result of applying the
simple reflection r, to ¢+ ¢’ and therefore does not lie in (—C — C’)g. On the
other hand, if ¢+ ¢ € (=C —C')g, then a+c+ ¢ € (—C — C')p by the same
reasoning and both sides are equal to Yzzz .

Now assume (c,¢’) = —1. Then (o, ctc’) = —2, so we have ¢+’ ¢ (—C—C')g
and ¢(Yz, Yz) = 0. Thus we are reduced to showing ¢(Yzz, Yo ) +¢(Ys, Yaw ) = 0.
If a+c+c ¢ (—C—C")p, both terms vanish and we are done. Otherwise, the
sum is equal to Yzzz + Yzaze , which vanishes since ¢a = —ac. O

Example 3.6.2. Let 75 : A — AV denote the identity of €. We have Ag = {0},
so Mg, is arank 1 Z-module. It has a canonical generator corresponding to
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the identity element of A . Correspondingly there are canonical isomorphisms
My ® Mg, — My, My, ® My = M, . These isomorphisms are given by the maps
¢, and ¢ -, together with the identity constrints = S n®@m and 5
mo ® w. Thus our construction above is compatible with the identity constraints
on C.

Example 3.6.3. There is a natural isomorphism 7 ® 71 ~ 7g ; composing with
@x x-1, We get an L-invariant pairing

M;®@M;-1 = Z

One may easily check that this is a perfect pairing of M, with M_-. .

3.7. Commutativity

If # and 7’ are objects of C, then 7 ® 7’ and 7’ ® 7 have the same image in
AV, so they are isomorphic. We now show how to single out a particularly nice
choice of isomorphism between them.
Given any element v € C, note that (v,v) = t¢ (mod 2Z) . This is because
v=1wvg+ A, where A € A and vy has minimal length, so
{v,v) = {vo,v0) + 2{\, v0) + (A, \) = tc (mod 27Z)
Thus, for any v € C, v € C’, we have tcicr = (v+v',v+v") =tc+ic +2{v,v’)
(mod 2Z) . Thus, if we set
_toto —tc ~to
tc,c —
2
then (v,v') — tc o is always an integer.
Now let 7 : 6 JN AY and 7’ : ¢/ — AV be objects in €. We define a map
i — Cel 5C0'eC by the rule

N (TRT) = (_1)<vv> to. o i @ F

One easily checks that 7, 5+ is a well-defined isomorphism in the category C.
Remark 3.7.1. Although 7 is functorial and the compositions 7y s 07 » nat-
urally give the identity, the isomorphisms e do not define a commutativity
constraint on the category €. This is because

(777r,7r’ X idﬂ”)(idw Y 777r’,7r”) # Nre@w! w!
in general. Indeed, these isomorphisms are off by a sign (—1){¢""} where
2{C,C",C"} =tcycyor —toyor —toyor —toryor +to+to +ton
Remark 3.7.2. Suppose C and C’ are cosets of odd order. Then the composite
e Qe X Torer X T @ T

differs from the isomorphism 7. r., by the sign (—1)c." (where the latter is
well-defined since (C,C’) has odd denominator).
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Remark 3.7.3. If C is n-torsion, then (nC,C) = (A,C) =0 € Q/Z. Thus
tc € (C,C) C 1(nC,C) liesin 17Z.

Suppose C is a 2-torsion element of AY/A, and let v € C have minimal
length. If = : C — AY is an object of € covering the coset C and 7 is a

preimage of v, then
777!',71'/17® /’l\}/ = (—1)(U7v>*t0,c;l‘)’® /’l\)/

Using the fact that C+ C = A, we see that tcc = —tc, 80 N = (—1)%C.

We will call a 2-torsion coset C orthogonal if tc is an integer, and symplec-
tic otherwise. In a moment we will justify this terminology by showing that it
reflects the nature of the invariant bilinear forms on the corresponding (self-dual)
minuscule representation.

Let us now consider the commutativity properties of the maps ¢ /.
Theorem 3.7.4. The diagram

Mﬂ— ® Mﬂ-/ ~ M.n./ ® M7r

commutes.

Proof. The commutativity translates directly into the condition that 7y - (00") =
"0 when v € Cy, v/ € Cp, and v+ v € (C+ C')y. But then

toror = <U + 2}/,2} + 1}/> - <7}7 ’U> + <1}/7 1}/> + 2(”7 Q)/> =tc+ito+ 2<U7 7/>

so that (v,v') =tc, and the result follows from the definition. O

Now let 7:C — AV be any object of €. We have a natural multiplication
¢ﬂ,‘n’ : Mﬂ' ® Mﬂ' = M‘n’®7r

A special case of the commutativity above shows that ¢ (2, y) =M, ¢ (y,z).
Here 7 » is an automorphism of 7®7 . Thus ¢  is symmetric or antisymmetric
depending as nr  is trivial or nontrivial. The triviality of 7, » can be checked
on an element 7®7 , where v € Cg. We see that 7;e-(0®7) = (=1)clCg®7,
so the relevant sign is

t20

(-1
Example 3.7.5. If C is 2-torsion, then ¢, defines a bilinear form on M; .
Since toc = 0, the above calculation shows that this form is symmetric or al-
ternating, depending on the sign (—1)%¢ . In other words, M, is an orthogonal
representation if C is orthogonal, and a symplectic representation if C is sym-
plectic.
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3.8. Examples

Let us now discuss the results of these constructions in various cases. First, let us
briefly outline what happens in the reducible case. If A is an orthogonal direct
sum of smaller lattices A;, we may take A to be a central product of the groups
A; . The Lie algebra L may be identified with the product of the corresponding
algebras L; . There is a natural multifunctor

P:HGiw@

which allows us to make a functorial identification

Mp{m.} ~ ® MM

The multifunctor P is “linear” with respect to the monoidal category struc-

tures. With respect to the product decomposition above, the maps ¢ may be
computed componentwise. In other words, we can reduce everything to the case
when A is irreducible. We now consider this case.
Example 3.8.1. Suppose A = A,,_;. Then L is sl,(Z), the Lie algebra of
endomorphisms of Z™ having trace 0. There is an isomorphism of AY/A with
Z/nZ . Fix m € € having image corresponding to 1 € Z/nZ ; we may identify
My, with Z™, the standard representation of L. If we set =, = W?k for 0 <k <
n, then My, is naturally isomorphic to A*(My, ), If k+&’ < n, then the natural
map Mg, ® My, — Mg, o is just exterior multiplication. Note 7y and m,
are isomorphic, but not canonically: the choice of isomorphism corresponds to the
specification of an orientation on Z"™ . The remaining bilinear maps (corresponding
to k+ k' > n) have a similar interpretation as exterior multiplication between
exterior powers of the dual of the standard representation.

Note from this example that the two natural maps ¢rer 77 © (¢r- ®1) and
G wen © (1 ® ¢rr rr) from My ® My @ Myr to Mrgrigrr need not coincide.
For example, take n = 2 and fix an isomorphism w9 — 79 corresponding to a
symplectic form [,] on M = My, ; then we get two maps M@M &M — M which
are given respectively by

(v@u®w) — [v, ujw

and
(v®u@w) — [u,wlv

Thus our maps ¢ - are not compatible with the associativity constraints on €.
Example 3.8.2. Let A =D,,. Then L is the Lie algebra of Spin,,, . There are
four cosets of A in AY . The corresponding representations of L are the trivial
representation, the standard representation on 72", and the two half-spin rep-
resentations A* . The only really interesting multiplicative structures we obtain
are maps
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77" @ AT - AT

(and “transposes” thereof). These have a natural interpretation in terms of the
action of the corresponding Clifford algebra (which contains Z”" ) acting on its
spin representation (isomorphic to AT @& A7 ).

If A =DEg, then L is a form of the Lie algebra Eg over Z. AY/A is trivial,
so there are no nontrivial minuscule representations. The other two exceptional
cases, Eg and Er, are more interesting and we will discuss them in §5 and §6.

3.9. The Category 8§

For cosets of odd order, we were able to simplify things by considering objects of
C of the form 7c. We now develop an analogous formalism to handle cosets of
order 2. We define a new category 8 as follows. An object of § is a pair (7,e)
where 7 is an object of € and e : 7 ®® — 7 is an isomorphism. A morphism
(m,e) — («/,€') in 8 isamorphism ¢ : # — 7’ of underlying C-objects satisfying
the compatibility condition e = ¢’ o (¢ ® ¢)

Remark 3.9.1. Roughly speaking, objects of § parametrize self-dual minuscule
representations of L, where we keep track of the isomorphism of the representation
with its dual via the isomorphism e.

There is a natural product operation on §:

(me)@(r,e)=(rer,(e®e) o (1N ®1))

This product is functorial. It is also associative: the natural isomorphism (7 ®
)@ " ~7® (v’ @ 7") is compatible with any e,e’, e’ . To see this, note that
both of the corresponding maps

(ror @r")@ (@7 @7") — m
differ from the symmetrically defined isomorphism
(e®e ®e)o(1@Nyronmaol)o(lR1® N »®1®1)

by the same sign (_1){0,0’,0”} . Consequently the isomorphism classes of objects
of § form a group which surjects naturally onto the group of 2-torsion elements
of AV/A . The kernel of this surjection is canonically isomorphic to (+1).

If (w,e) is any object of 8, the map e defines a morphism of € objects
7®7 =~ 7y . This prolongs to an isomorphism of 8-objects (7, e)®(m,e) ~ (7, ¢’),
where € : my ® mg — @ is determined by the compatibility ¢ o (e ® ) =
eoo (e®e)o (ide @ Nr e ® ids), where ey 1 mg ® mo = mo is the standard map.
¢/ and e differ by the sign of 7; » . This determines the group structure on the
isomorphism classes of elements of § .

The group KU provides particularly nice representatives (in C) for cosets of
odd order. Let us now attempt to handle cosets of order 2 in the same way.
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For any obJect E = (x :C = AY ,e) of 8, we let AE be the disjoint union
Ag =AUC. A isa group which operates on C on the right and on the left.
Together with the map e: C x C— A, we get a multiplication operation on AE

Clearly the identity of A serves as an 1dent1ty element for A. and multiplicative
inverses exist. The associative law is more subtle. For & € Ag , let us write

[0 ifgeA
deg(?) _{ 1 otherwise

Theorem 3.9.2. For Z,§,% € Ap, #(§3) = (—1)2tc des(®@) des(®) des(®) (373

Proof. If any of Z, 7, and Z has degree 0 then Z(yz) = (Z§)Z, so the result is
clear. The functlons Tz — Z(y2), (x@z glve two isomorphisms CoCeC — C

which differ by a sign e = +1. Take T =9 =z, where z € Cy. Then Ze(z,Z) =
ee(F,F)T, so that e = (—1){®2% = (—1)%c as desired. O

Consequently Ag isa group if and only if C is orthogonal. If C is symplectic,
as is the case for the nontrivial coset of the root lattice of E;, then /~\E satisfies
a more complicated “graded-associative law”.

Remark 3.9.3. Here is another way to view the construction of KE Let C!
denote the i-fold product of C with itself (as a A-bitorsor). Then E specifies
an isomorphism between C? and A. The square of E is an isomorphism of Ct
with A , which is independent of the choice of E . Using this isomorphism, we can
define a group structure on the disjoint union H = C°J[C![JC2]JC®. Then,
if we identify E with an element of 62 then E generates a subgroup of H of
order 2. This subgroup is normal if C is orthogonal; if C is symplectic, then the
normal subgroup generated by E is {%E, iO} In either case, we define AE to
be the quotient of H by the subgroup generated by E. This is equipped with a
group law if C is orthogonal, and a “nonassociative” group law if C is symplectic.

4. The Group W

The Weyl group of a semisimple group G is usually defined as a quotient N(T)/T,
where T is a maximal torus of G and N(T) its normalizer. For many purposes
it is important to consider representatives of elements of the Weyl group inside of
G . However, since the sequence

0—-T—=N(T)—W-=0

does not split in general, one must first pass to some extension of W . Tits ([15])
observed that one can get by with a finite extension by working with algebraic
groups over Z and restricting the above sequence to Z-valued points (on which
it is still exact). T(Z) is a finite 2-torsion abelian group, so the Z -points of N(T)
constitute a finite extension W of W which actually lies in G . In this section,
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we will give a combinatorial construction of this group and analyze its structure,
for the case of simply-laced groups.

Remark 4.0.4. Our notation W violated our convention in that W is not a
central extension of W by (£1). We trust that no confusion will result.

4.1. Construction of W

Fix a basis A CT' of simple roots. Recall ([11], Chapter 1.9) that W may be
presented by generators {r,}aca subject to the relations:

r2 =1
2 —
(o, B) =0 = rorp = rarg (4.1)
(o, B) = =1 == rorpra = 137073

We will construct an extension of W by giving a slightly more complicated set
of generators and relations. To begin with, W should contain the Z-points of a
torus in the associated group. For simplicity, we work with the simply-connected
form; then T(Z) may be naturally identified with V = A/2A. For v in V or
A, we will write e, to denote the corresponding element of W. Let A denote

the preimage of A in A. We now define W to be the free group generated over
V by formal symbols {ng(}&6 x subject to the following relations:

n_yg — na
n2 — €
a — Ca
Ny = Cr, (v)Na (4 2)

An equivalent presentation is given in [15].

Example 4.1.1. For the lattice Ay, W is isomorphic to Z/47Z , generated by
any symbol n,, .

If we set each e, equal to the identity, the relations (4.2) for the ng reduce
to the relations (4.1) for the r, . Hence we have an exact sequence

VvV — WoW o 0
We will soon show that this sequence may be extended by 0 on the left.

4.2. Representations of U

We will now investigate the structure of the group W . The group V acts on
itself by conjugation; the kernel of this action contains —1 so we get an induced
action of V.on V. For 1€V, ael, set
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v if {a,v) =0
av  otherwise

nal®)  {

One readily verifies that the relations above are satisfied, so we get an action
of W on V compatible with the action of W on V. There is also a natural
action of W on A (via W). Moreover these two actions induce the same action
on A/2A . Thus we obtain a natural action of W on

AcAxyV={\0)eAxV:A=0v (mod 2)}

Representations of L also give rise to representations of W. Let M be any
representation of L. on which the action of each generator X5 is nilpotent. Then
each exp(X5) is an automorphism of Mg = M ®z Q. Thus we may define
an automorphism ny = exp(X5)exp(—X5-1)exp(X5). If M decomposes into
( AY -valued) weight spaces under the action of L, then V acts on M by the rule

o(z) = (1) Nz

whenever z lies in the weight space corresponding to A. A slightly tedious cal-
culation shows that this induces an action of W on Mgq .

In the special case M = M, of the representations constructed in the last
section, the square of the action of any Xz is zero; thus exp(Xz) = 1+ X5,
and the automorphism ns is actually defined on M, itself (before making a base
change to Q). This property also holds for representations of L. that are obtained
by taking tensor products of representations of the form M, .

Let us compute the action of ng on M, . If {a,¢) =0, then Y5 is invariant
under exp(Xg) and exp(—Xg-1). If {a,c) = —1, then
exp(Xz) exp(—X5-1) exp(X3)Ys = Yzz. Similarly if {(o,c¢) =1 we get nzYs; =
_‘Y&*I’E .

In particular, n2Y: = (=1)(*9Y5 . If we define an action of V on M, by
ex(Yz) = (=1)9 Yz, then the above calculation shows that n2 = e, . It is clear
that ngz and n; commute when (o, 3) = 0. Moreover if (o, ) = —1, then a
quick calculation shows that nNENENE = NENaN; - Consequently we get an action

of W on M, . Note that this action permutes the generators Yz. Thus W acts
on the set Cy (in a manner compatible with the action of W on Cy ).
Our analysis provides the setting for the following theorem:

Theorem 4.2.1. The group W acts in a natural way on the groups K, f, and
each representation My . If g,h € W are such that g and h induce the same
automorphism of A and of M, for every m € C, then g=h.

Proof. Let z = gh™'. Since W acts faithfully on A, the image of z in W is
the identity; thus we may assume z = e, for some A € A. We also know that z
acts trivially on V, which implies that (A, v) is even forevery v € A. If A ¢ 2A,
then there is some v € AY with (A, v) odd. Let C be the coset of v ; then (X, c)
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is odd for all ¢ € C. Choose 7:C — AV in € to have image C. Then z acts
on M, by multiplication by —1, contrary to the hypothesis. (I

The above proof also shows the following:
Corollary 4.2.2. The natural map V — W is injective.

We now show that the group W is independent of the choice of simple roots
A . Before doing this, we need to make some preliminary remarks. First, we will
study the action of W on A more closely.

Lemma 4.2.3. Let ,g, &EFQJNX, and let g=nj cEW.
B if{a,f =2
Bo if (o, B) = —1
o@={ & B =0
—éfl& if {a, 3) =1
-B7%& if (o, B) =2

Proof. We assume (o, 3) < 0, the other cases being analogous. It suffices to
show that both sides are have the same images in both A and V. For A this is
obvious. In V, we have g(a) = a if (o, B) is even and g(&) = Ba otherwise.
This proves the result in case {(a,3) is 0 or —1. If (o, 8) = =2, then g(a)=a
in V. On the other hand, & and —32& differ by —32 which lies in the kernel
of the projection A=V, Il

Note that W s generated by the symbols ng, a € A. Consequently every
g € W has some minimal expression as a product of these generators; the minimal
number of generators required we will call the length of g.

We now investigate the action of W on sets of the form Co 5
Lemma 4.2.4. Let 7:C — AV be an object of C, 7€ Co, ael', ge W. If
{a,v) = —1 then g(av) = g(a)g(?) .

Proof. Both expressions make sense because (a,v) = —1 implies that a@ € 66 ,
and also the fact that W preserves lengths shows that (g(«), g(v)) = —1 so that
also g(@)g(v) € Co. Using induction on the length of g, we can easily reduce
to the case where ¢ has length 1; say g = ng . We will assume (3,v) <0, the
other cases being analogous.

First suppose (3,v) = 0, so g(v) = v. Since o+ v € Cpy, we see that
—1<{(B,a) <1.1If {B,a) = —1, then g(ad) = Bav = g(a)g(v) as desired. If
(B, ) =0, then g(aw) = av = g(a)g(v). If {B,a) =1, then g(av) = —B_laﬁ =
9(@g(®). .

Now suppose (B,v) = —1. Then ¢(¥) = Bv. We have 0 < (B,a) < 2. If
{B,a) =0, then

(&) = Bav = apv = g(a@)g(v)
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If (8,a) =1, then

g(@®) = & = &B BT = (—B ' &)(BV) = 9(@)g (D)
Finally, if (3, ) =2, then

g(&0) = —p~Law = —F2Ban = (—f28)(Fv) = g(@)g(B)

and the proof is complete. O

To show that the groupjﬁ does not depend on the choice of root basis A, we
first define elements nz € W in general. Pick any « € I, and set

where @ is chosen so that & = @(3) and 8 € A

Lemma 4.2.5. The above definition is independent of the choice of w .

Proof. 1t suffices to show that the equation defining nz actually holds when & €
A . To verify this, we need to show that both sides induce the same transformations
of A, V, and each M, . In the first two cases this is easy, so we concentrate on
the third. _
Let 7 :C — AY be an object of €, and let ¢ € Cy. We must show that
ngwYs = @nBYg
If {(8,¢) =0, both sides are equal to wY; and there is nothing to prove. We will
assume that (3,c¢) = —1, the other case being analogous. We must show that
WYe = Yo = OV = Y0

which is just a special case of Lemma 4.2.4. O

Now if we replace A with any other system A’ of simple roots, we get an
alternative system of generators nj for W these generate W and are subject
to the same relations since they differ from the old generators by conjugation.
Moreover one easily checks that this new description of W is compatible with the

actions of W on A and M, described above.
Note that nz = n_5-1 . To see this, it suffices to check that both elements of

W induce the same transformation on A, \77 and each M, . On A, both induce
the simple reflection corresponding to +a . For V, this follows from the fact that
& and —a~ ! have the same image in V. For the M, , this follows from our
earlier calculations.

Theorem 4.2.6. Let 7 : C — AV be an_object of €. There is a unique action
of W on C which extends the action of W on Cq and such that the left action

A xC — C is W -equivariant.
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Proof. Uniqueness is obvious. Pick v € (Njo, and let ¢(v) = F,0 for g € w.
We define an action of W on the whole of C by the formula g(Xﬁ) = g(X)ﬁgﬁ
Clearly this definition does not change if we replace v by —v. We know that W
acts transitively on Cp. Thus, in order for this definition to be independent of
the choice of ¥, it is necessary and sufficient that Fg, = ,9(35). This cocycle
condition is also equivalent to the fact that we have defined an action; that is, that
(gh)o = g(hv) .

We prove the cocycle condition is satisfied by induction on the length of h. If
the length of A is zero, there is nothing to prove. If the length of h is > 1, then
we may write h as a product h’R” where b’ and h” have smaller length. Then,
using the inductive hypothesis we get

Yoh = Fgnr = Ygn'gh' (Vg ) = Vg gV )gh' (Fn) = Vgg (I ' (Fw1)) = Vg9 (3n)
as required.

We are thus reduced to proving the result in the case h has length 1 ; that is,
h = ng . Replacing & with —&~! if necessary, we may assume that (o, v) <0.
If {(o,v) =0, then h(v) = 7, so 7, is the identity, and g, = 7, as desired.
Otherwise (a,v) = —1; then h(v) = &v, and we must show that g(av) =
g(@)g(v) . This is precisely the statement of 4.2.4. O

Remark 4.2.7. Let 7: C—AY and 7/ :C’' = AV be e objects in €. The group
W acts on_( C and C’ , compatibly with its action on A thus we get an induced
action of W on C X3 C’ In fact, this agrees with the actlon defined above (for
the object m®@x’). ThlS follows from the uniqueness statement and the fact that
&= x , being a map of L-modules, is W—equivariant.

Remark 4.2.8. The group W acts on V and A, ina compatible manner; thus
it acts on A, . This action leaves C stable for any coset C of odd order. We
claim this agrees with the action defined above on C. In view of the uniqueness
statement of the last theorem, it suffices to check the agreement on C,, and for
generators of W . This follows easily from our earlier calculations.

4.3. The Structure of W

The Weyl group W acts orthogonally on V via some homomorphism % : W —
O(V,q). This homomorphism is covered by the action of W on V we have
defined, which gives a homomorphism 1/1 W — AutV. Restricting 1/1 to VC W
one gets automorphisms of V that are trivial on V. Recall that this group is
canonically isomorphic to VY . Thus we have a commutative diagram:

00— V — W — % — 0

! L9 L9 (4.3)
0— V¥V — Aut(V) — O(V,q) —0
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Here the map V — VY simply corresponds to the pairing {,) (mod 2).
Lemma 4.3.1. If ' is irreducible, then the kernel of 1 is either trivial or +1,
depending on whether or not —1 € W .

Proof. Suppose w € W induces the identity on V. Then for any root «,
w(e) is another root which is congruent to « modulo 2A. Since T' is simply
laced, one easily sees that w(a) = eqa where e, = £1. If (o, ) = —1, then
—1 = (w(a),w(B)) = encpler,B) = —€a€p, 50 €¢q = €5. This implies that the
function e is constant on each component of the Dynkin diagram corresponding
to a choice of simple roots. Since I' is irreducible and the simple roots generate
A, we see that w = +£1, as desired. O

Remark 4.3.2. Our entire construction could be carried out starting not with
the root lattice A, but with any lattice containing A and contained in AV .
Such lattices correspond to forms of the associated group other than the simply
connected form. .

In particular, if we began with AY , we would get an extension W’ of W by
VY, which could be identified with the Z -points in the normalizer of a torus in
a split adjoint semisimple group over Z . One has a diagram analogous to 4.3 as
above, but the left column is replaced by the identity isomorphism

AR Al
Consequently we may identify W’ with the fiber product Aut(\~7) Xo(v,q) W, the

set of all pairs (a,w) € Aut(\~/) x W which induce the same automorphism of V.
Remark 4.3.3. Under the map ¢, the reflection r, goes to the “reflection”

v — v — (v, )

The image of ¢ is the subgroup of O(V,¢) generated by such reflections.
Remark 4.3.4. In the case of Eg, AY/A has order 3. Hence the natural map
V — VV is an isomorphism. The element —1 is not in the Weyl group so that
is injective. The quadratic form ¢ is nondegenerate on V. Since the 36 pairs of
roots all go over to nonisotropic vectors in V, we see that (V,q) has nontrivial
Arf invariant and every non-isotropic element is the image of a root. Hence the
image of 1 is group generated by all reflections: that is, all of O(V,¢q). Thus
is an isomorphism. Our diagram now shows that 1; is an isomorphism.

For other groups, such as E;, the situation is more complicated. Let us
now investigate the diagram 4.3 more closely. There is an induced “snake ho-
momorphism” § from the kernel of the representation of W on V to the group
AV/(A+2AY).

Theorem 4.3.5. The map § vanishes.
Proof. Clearly it suffices to prove this in the case I' is irreducible. If 4 is injective

there is nothing to prove. Otherwise, we may assume that —1 lies in the Weyl
group. Let w € W be a lifting of —1 € W. Then w acts on A covering the
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map A - A ; hence we get @(7) = (—1)4 ™31 where ¢ : A — Z/2Z is some
function. Since W acts by automorphisms, ¢’ is forced to satisfy the equation
qd(v+u)=q¢ W)+ ¢ (w)+ {(v,u). Thus ¢ differs from ¢ by a linear functional,
so we may write ¢'(v) = q(v) + (\,v) for some well-defined A € V¥ . Since the
automorphism

7 — (—1)1Wg!

is trivial on V, the desired result is equivalent to the assertion that A lies in the
image of V.

Dually, this is equivalent to the assertion that the form on V defined by pairing
with A vanishes on the kernel of the natural map V — VY . Any element of this
kernel may be represented in the form 2y, where p € AV . Let 7 : C — AY be
such that 7(f) = p. Since 2u € A, there is an isomorphism e: 7 ® 7 ~ 7y . Let
E = (7, e). Working in Ag, we have by definition

() (FR)" = (=17 e
We have seen that the group W acts naturally on each torsor (~]7 compatible

with all morphisms in C. Hence W acts naturally on Ag compatibly with its
multiplication. Thus

(=17 = (EE)EEE") = FEECE") = £E((EE°)E") = £(EE")* = +1
where the sign depends on whether C is orthogonal or symplectic. On the other

hand, q(2p) = M = 2(p, ) is even or odd depending on whether or not C
is orthogonal or symplectic. It follows that

q(2p) = ¢'(2p) (mod 2)
and so A(2u) =0 as desired. O

Consequently we get a short exact sequence of finite abelian groups:

0— (AN2AY)/2A — ker¢) — kertp — 0

Remark 4.3.6. We may describe this extension more explicitly. Let us assume
once again that —1 € W, and consider a lifting of —1 to some w &€ ker .
Then @? is the image of some class A € V. To determine ), consider a finite-
dimensional representation V of L¢ having highest weight p € AY . Recall that
W, may be identified with a group of C -points of the associated simply connected
group, so it acts on V in a manner compatible with its action on AY . Let Y
be a weight vector for s, so that Y¥ is a weight vector for u¥ = —p. Since
—1 e W, V isself-dual via some L-invariant pairing (,). Then (,} is also Weyl-
invariant, so we get (Y, Y%?) = (Y%, V%) = (Y% (~1)AY) . Thus (A, p) = +1
depending on whether the representation V is orthogonal or symplectic.
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Remark 4.3.7. Let S denote the finite abelian group of isomorphism classes of
objects in §. Our results suggest a kind of “duality” between the exact sequences

0— (AN2AY)/2A — ker ¢ — kertp — 0

and )
O—><ﬂ:1>—>S—>(Av05A)/A—>0

4.4. Invariant Tensors

Let «: Ci — AV be objects of € for 1 < i <k, and write M; for M, .. An
element of M = M; ® - -- ® My has the form

z = me,..aYe ® - @Y,
c:€(Ci)o

where the coefficients satisfy the relation

mC1,~--,Cz’41,*Cz'ycz'+1,---,ck - _mcl7-~-YC¢—1YCz’YC¢+1,~--,Ck

so each term in the sum is independent of the representatives {¢;} chosen to
represent the {c;}. We have the same description of elements of Mg for any
commutative ring R : one only needs to allow the coefficients to take values in R .
If = is invariant under the action of the whole of L, then it is invariant under
the action of W . This in turn is equivalent to mg .. 5 = Mas,.. a6 for all
weW.
If k¥ = 3, more information is available:
Lemma 4.4.1. Suppose that k = 3 and that x € Mgr is Lg -invariant. The
coefficient mz, 3, z, vanishes unless ¢y +ca+c3 =0.

Proof. Over Z, this follows from the A -invariance of x. However, we want to
give a proof that is valid over an arbitrary commutative ring.

To show that ¢ + ¢y 4+ ¢3 = 0, it suffices to show that (a,c1 +co+c3) =0
for every o € I'. Replacing oo by —a if necessary, we may assume k = (o, ¢1 +
cg+c3) <0.If k=0 we are done. If k= —1, then o € A does not annihilate
x , a contradiction.

Suppose k < —1. Then (e, ¢;) <0 for each ¢. Without loss of generality,
(e, ¢1) = —1. Then the coefficient of Yz ® Yz, ® Yz, in Xsz is mg, 5,5, - The
L -invariance of z then implies that this coefficient vanishes. (I

Using this, we can easily prove the following:
Theorem 4.4.2. Let k = 3. Then (Mg)*™® is a free R-module of rank 1 if
Ci+Cy+C3=0¢€ AY/A, and vanishes otherwise.

Proof. The vanishing follows from the lemma we just proved. For the second
claim, fix a triple ¢i,¢s,¢3 such that ¢y + ¢ + ¢g3 = 0. This induces a map
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¥ (Mp)"™ — R
T = 1, 2 s
Since W acts transitivelyﬁi)n the collection of triples {(ay, as, a3) € C§ x C3 x
C3:a; +as +az =0}, the W-invariance of = € (Mr)*® shows that all nonzero
coeflicients of x are determined by mz, 3, z, . This proves that ¢ is injective. For

the surjectivity, we choose an isomorphism 7! ® 72 ~ (73)~!. The “transpose”

of the multiplication map ¢g1 2 gives rise to an element = of (Mg)“®  with
P(x) ==+1. O

Corollary 4.4.3. Let w be an object of €, M = M, . Then all Ly -endomor-
phisms of Mg are given by scalar multiplication by elements of R .

Proof. Apply Theorem 4.4.2 to =, =1, and 7o . O

Using this, we can finally prove our claim concerning the automorphism group
of the representations M, .
Corollary 4.4.4. Let w be an object of C, M = M, . Fvery Lgr -automorphism
of Mr s given by scalar multiplication by a unit in R. In particular, every
automorphism of M is given by multiplication by £1 .
Remark 4.4.5. These results do not generalize in a simple way to invariant
tensors of degree k > 3. We will see this when we examine E; in the case k=4 .

5. The Lie Algebra Eg

Let C be a 3-torsion element of AY/A , and let 7 : C — AV have image C. Let
7 be a generator for the rank 1 Z-module (M, ® M, ® Mﬂ)L . We can choose
an isomorphism 7 ® 7 ~ 7! so that 5 corresponds to the map ¢ . This map
is symmetric or skew-symmetric depending on the sign (—l)ztO*tZTC ; since toc =
t_c =tc, we see that 5 is symmetric in the first two factors if 3tc =0 (mod 4)
and antisymmetric otherwise. Exactly the same reasoning applies to symmetry
when other factors are exchanged. Thus 7 is either completely symmetric or
completely antisymmetric.

This applies in particular if C is a generator of AY/A when A = Eg, which
we will assume for the remainder of this section. We have seen that to = %, S0
that n is completely symmetric. Thus we see that the minuscule representation
M, is a rank 27 Z-module equipped with a symmetric trilinear form 7. This
section is devoted to the study of 7.

Remark 5.0.6. To avoid cumbersome notation, we will actually study the in-
variant cubic polynomial on M, , rather than the invariant form. The polynomial
lives in S® M, , while the invariant form lives in SS(MWV) . Up to replacing 7« by

71, there is no difference.
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5.1. The Weyl Group of Eg4

Before diving in to the study of Eg , we collect here a few facts concerning its Weyl
group. The computations necessary to justify the numerical assertions which follow
are elementary, so we leave them to the reader.

We saw earlier that the Weyl group W of Eg is isomorphic to the orthogonal
group of the nondegenerate 6-dimensional Fy quadratic space, which has Arf
invariant 1. This group has order 273*5. Theorem 2.5.1 shows that V admits
an Hermitian structure which induces its quadratic form. The automorphisms of
V which preserve this Hermitian structure form a subgroup of W isomorphic to
the unitary group Usz(2), which has order 223%. Its center has order 3, and it
is isomorphic to the centralizer of its center in W (a fact which underlies what
follows).

Another subgroup of W will be relevant in what follows. Since V has Arf in-
variant 1, a maximal isotropic subspace U C V is 2-dimensional. The stabilizer
of such a subspace is a maximal parabolic subgroup P of W, and has index 45 in
W . In P there is a unique nontrivial transformation which is the identity when
restricted to U~ : this is a central involution ¢ € P, and P is the centralizer of o
in W. By Witt’s extension theorem, W acts transitively on the isotropic planes
contained in V. Thus there are precisely 45 such planes.

For more details we refer the reader to [5].

5.2. The Invariant Cubic

Since A has index 3 in AY, we have A, =AY . Note that if vg,v1,v2 € Co are
such that vy +v1 + vy =0, then (v; +v;,v; +v;) = (vg, vy) = tc, S0 We cannot
have v; = v;. It follows that as o ranges over the symmetric group Ss3, all 6
terms £Y~— ®Y;~~ ® Y;~ are distinct. Consequently, the symmetric tensor n

Ve (0) Vo (1) Vo (2)
is the polarization of an integral cubic polynomial ©(z) € S* M, . More explicitly,
we may write this cubic as a sum

O(z) = > (@' &" )Y Y Yo

{w,w w”}CCo,wtw +w”’=0

Remark 5.2.1. Returning for the moment to the situation of general A, suppose
C is a coset of odd order in AY/A. If v,/ € Cy have the same reduction
modulo 2A, (recall that A, is the union of all cosets € AY/A having odd order),
then v — v’ € AN2A, = 2A. Then %”/ € C, contradicting the minimality of
{v,v) = {v',v’) . Thus the reduction map Co — A,/2A, = A/2A is injective.
This remark applies in particular to the case of Eg: the triples {w,w’,w"}
appearing in the above sum are determined by their reductions {w,w’,w”} in
V. Any such triple consists of the nonzero elements in some plane of V. Since

to = % is divisible by 4, ¢ vanishes identically on such a plane. Moreover, the
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Weyl group acts on the set of triples {w,w’,w”} which sum to zero compatible
with its action on the isotropic 2-planes of V. Since W — O(V,q) is surjective
in this case, Witt’s extension theorem implies that W acts transitively on the
isotropic planes. Thus there are precisely 45 terms in the expression for ©,
which correspond bijectively to the 45 isotropic planesin V.

In order to get a more explicit formula for © , we need to choose a set of genera-
tors for its weight spaces. In order to do this, we need to introduce some additional
data. Note that V is a 6-dimensional quadratic space over Fy with Arf invari-
ant 1, so it admits a compatible Hermitian structure by Theorem 2.5.1. Fix an
element w € Aut(\Nf) of order 3 with only central fixed points. This determines a
Hermitian form h on V characterized by the property that Tr(h(v,v’)) = (v, ') .
Using the identification of S/ with the group V provided by Theorem 2.5.1, we
get canonical liftings vz € V for each v € V. If & is clear from context we will
simply write 7 instead of 7.

Now we have a canonical basis for M, given by {Y¥5}yec, . Given a triple
{v,v’,v"} of nonzero elements in an isotropic plane, we can ask: in the invariant
cubic, what is the sign on the term Y3;Yy Yy 7 This is easily computed: we know
the sign to be given by

T — (_ 1)Tr(wh(v,v')+wh(u,v")+wh(v',v"))

Using the fact that v” = v+’ and that h(v,v) = q(v) =0, we see that the sign
is given by (—1)Tr(wh(v'0"))

Since v’ + v” = v is isotropic, we have 0 = (v/,v"”) = Tr(h(v’,v”)) so that
h(v',v") € Fo. If h(v',v”) = 0, then since h(v',v") = q(v') = 0 = q(v”') =
h(v”,v"), h must vanish on the entire F4-vector space generated by v’ and v” .
Since V is nondegenerate, this vector space can be at most 1-dimensional and we
see that v/ and v are linearly dependent. Conversely, if v’ and v” are linearly
dependent, than Ah(v’,v”) is a multiple of h(v’,v") = ¢g(v’) = 0. Therefore the
sign 700" is 1 if {w,w’,w"”} span an Fy-linein V, and —1 otherwise.

There are 27 nonzero isotropic vectors in V and the multiplicative group
F; acts freely on them. The 9 orbits correspond bijectively to 9 terms in the
invariant cubic with coefficient 1, while the other 36 terms have coefficient —1
(assuming the form to be written in terms of the canonical basis obtained from @ ).
Note that although the basis Yz depends on the choice of @, the signs in the cubic
form depend only on the induced F,-structure on V. They are even unchanged
if the F4-structure is altered by an automorphism of F,4 . (For example, we could
replace w with @2 ; this has the effect of replacing & with (—1)‘1(”)57 and in
particular leaves every generator Yy for M, unchanged.) Thus, we have proven
the following:

Theorem 5.2.2.

O(z) = Z Yo Yo Yorr — Z Yo Yo Yo
p={0,w v’ w"}CV g={0v, v’ w"}CV

where p ranges over the 9 isotropic planes in V which are F4-invariant and g
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ranges over the remaining 36 isotropic planes which are not.

5.3. Combinatorics of the Signs

The goal of this section is to prove that our explicit description of the cubic
invariant under Eg, as given in the last section, is “optimal” in some sense. We
continue to assume I is the root system of Eg, and C € AY/A is nontrivial. We
will frequently identify C, with its image in V.

Let us introduce some terminology. Let X denote the set of all isotropic 2-
dimensional subspaces of V. If z,y € X, we call z and y adjacentif zNy is
nontrivial. Note that for = € X , any isotropic vector orthogonal to all of z must
lie in z, since otherwise the 3-dimensional subspace spanned by that vector and
z would be totally isotropic, contradicting the fact that A/2A has Arf invariant
1. Consequently, if z,y € X are not adjacent then the restriction of (,) to z xy
is nondegenerate, so (z @ v, q|(z ® y)) is a nondegenerate quadratic space of Arf
invariant 0. ¢ cuts out a split quadric surface in P(x @), which has two rulings
by lines. P(z) and P(y) are lines of the quadric which do not meet, hence they
belong to the same ruling, together with some other line P(z). In this situation
we will say that =, y and z are collinear. The quadric surface has another ruling
by lines, corresponding to another collinear triple z’,%’, 2’ , which we will refer to
as the conjugate triple to {z,y,z}. The following easy fact will be needed in the
next section:

Theorem 5.3.1. W acts transitively on the collinear (noncollinear) triples of
nonadjacent elements of X .

Proof. In both cases this is a consequence of Witt’s extension theorem. |

A basis is a choice 7 € 66 of preimage for each v € Cy. Every basis B
determines a map sg: X — {+1}, given by {v,v’,v"} — 090" . A signing is an
element of {#1}X which arises in this way. If s is a signing, we let X, = {z €
X 1 s(z) =1}, and |s| = |Xs] .

A marking is an element g € Aut(\~/) of order 3 with only central fixed points.
We saw in the last section that every marking determines a basis B with |sg| =9.
If g is a marking then ¢2 is also a marking, which we will refer to as the conjugate
marking; we have seen that conjugate markings determine the same basis.

Every basis B (in this combinatorial sense) gives a Z-basis for M, with
respect to which we may write the invariant cubic as

Z SB (Z’)YﬁYﬁ/ Yﬁ'/
z={0v,v" w"}eX

Thus, |s| is the number of terms in the corresponding expression for © in which
the coefficient 1 appears.
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There are 227 possible choices of basis, and some will be better than others.
One might ask if it is possible to choose a basis B such that sp is constant; that
is, all the signs in the invariant cubic are the same. This is in fact impossible:
there does not exist a basis B such that |sg| = 0. This naturally leads us to
ask: what is the minimal value of |sg|, and for what “optimal bases” is this value
achieved? This question is answered by the following result:

Theorem 5.3.2. For any basis B, we have |sg| > 9, and equality holds if and
only if B is the basis associated to some marking.

The proof of this result will occupy the rest of this section. Our first objective is
to determine the basic relationships between the various objects we are considering.

Note that the group VV acts freely on the collection of all basis: if B is a
basis, then set A\B = {(—=1)*")5:5 € B} . VV also acts freely on the collection of
markings via right multiplication inside Aut(\N/) . If g is a marking with associated
basis B, then the basis associated to g\ is the set

By = {7 € Cp : 30560’ 5 =0 € V}

But
FONFEA F = (—1)MOTAFM())g059"

Thus Bgx = g(M)B, .
Theorem 5.3.3. o There are 5120 markings.
o Two markings determine the same basis if and only if they are conjugate.

o There are 2% bases. Two bases determine the same signing +f and only if they
differ by the action of VY . Thus there are 221 signings.

Proof. We begin with the third claim. For any pair of bases B = {7} and
B’ = {4}, we can define a function A : Co — %1 by the rule A(v) =76 . Our goal
is to show that X\ extends to a linear functional on V if and only if sg = sp/.
One direction is obvious; for the other, note that sg = sps translates into the
statement that A(v 4+ v’) = A(v) + A(v') whenever (v,v') =0.

Let ze V. If £ =0,set f(z)=0;if 2 #0 but g(z) =0 set f(z)=A(z).
Finally, if g(z) = 1, then choose y such that (y,z) =1 and ¢(y) =0 (there are
12 such choices for vy ), and set f(z) = A(y) + Az +y) . We first show that f is
well-defined. For this, we must show that if ¢(z) =1 and y,y’ are chosen with
(v, 2) = (¥ 2) =1, q(y) = q(y') =0, then A(y) +A(z+y) =Ay') + Mz +¥).
If y = 4 + x this is obvious. Replacing v’ by z + ¢’ if necessary, we may
assume (y,y’) = 1. We may rewrite the desired equality as A(y) + Az + ') =
AY') + Az +y), which follows since both sides are equal to A(z+ vy + ') by our
assumption on A.

Now we must show that f is linear. Note that the relation f(z + y) =
f(@) + f(y) is symmetric in z, vy, and 2z = f(z+y). If any of =, y, and
z is zero, the result is obvious, so assume otherwise. If ¢(z) = q(y) = q(2) =0
the result follows from our assumption on A. If ¢(z) = ¢q(y) =0, q(z) =1, the
result follows from the definition of f(z). So now assume g¢(z) = ¢(y) =1. We



556 J. Lurie CMH

can choose w with (z,w) = (y,w) =1, ¢g(w) =0 (there are 4 such choices for
w ). Then

f@) + f(y) = Mw) + Mz + w) + Aw) + My +w) = fz+w) + [y + w) = [(2)

by the case just handled.

Now we verify the second statement. Suppose two markings g and ¢’ deter-
mine the same basis. Then they determine the same signing s. Pick v € Cg;
the results of the last section show that for v € =, s(z) = 1 if and only if
x = {v,g(v),g*(v)}. The same is true of ¢’ so we get ¢'(v) € {g(v),g*(v)}.
Replacing ¢’ by its conjugate if necessary, we may assume g(v) = g’(v). Now
we claim that ¢ and ¢’ induce the same Fj-structure on V. Note that K =
{w : {v,w) = 1,q(w) = 0}, together with v, spans V, so it suffices to check
equality for w € K. The above argument shows that either g(w) = g'(w) or
g*(w) = ¢'(w). But {(v,w) =1 implies {(g(v), g(w)) = 1, which is impossible in
the latter case.

Thus g and ¢’ induce the same action on V, so g’ = g\ for some A € VV.
Our earlier analysis now applies to show that B, = By, = g(A\)B,, which gives
A=0and g=¢ .

For the first statement, note that VY acts freely on the set of markings, and
its orbits correspond to all possible F,-structures on V compatible with ¢. The
number of such orbits is equal to the index of U(V,h) in O(V,q), which is

273%

If g is a marking, let us write s, for sg, . We will call such signings special.

The proposition above shows that there are 40 special signings. Note that if
s is special, corresponding to some F,-structure on V, then X, consists of
all isotropic Fj-lines in V. No two distinct F4-lines meet nontrivially, so the
elements of X; are pairwise nonadjacent. Consequently, for z,y € X, there is
a unique z € X such that =z, y, and z are collinear. In fact, this 2z also lies in
X, . The situation is summarized by the following proposition.
Theorem 5.3.4. If s is special, x,y € X, , then there is a unique z € X, with
collinear to x and y . This notion of “collinear” endows X, with the structure of
a two-dimensional affine space over Fs. There are 12 collinear triples {x,y,z}
in Xs, and X — X is a disjoint union of the 12 congugate triples {z',y’,2'} .

Proof. We will postpone a proof of the assertions regarding the structure of X
until the next section. Granting these for the moment, let us prove the last claim.
Since we know X — X, has 36 elements, it suffices to show that given dis-
tinct collinear {zo,yo,20},{z1,91,21} C X5, the conjugate triples {z{,v(, 2}
and {z},y}, 21} are disjoint. If not, then without loss of generality z{ = z},
and z{, meets zo0, o, 20, Z1, Y1, and z; nontrivially. Since p,¢ € X,
meet nontrivially if and only if they coincide and z{, — {0} has 3 elements, the
set {zo,vo0, 20, %1,Y1,21} can contain at most 3 elements, thus {zg,y0,20} =
{z1,y1, %1}, contrary to our assumption. O
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Lemma 5.3.5. Let s be a special signing, s’ any signing. Suppose XN Xy =10
(XsN Xy ={z})). Then Xo has at least 12 elements (Xs contains at least 8
elements not adjacent to x) .

Proof. Consider V to be endowed with the Fj-structure corresponding to s.
We can choose bases B and B’ so that s = sg, s’ = sp/; then there is some
function € : Cy — %1 such that v € B if and only if ¢(v)v € B'.

For each y € X, (X; — {z}), v ¢ Xy . Thus the set of {v € y — {0} :
e(v) = —1} is odd. Note that FJ acts freely on the 36 elements of X — X, .
Let {z,wz,w?z} denote an orbit. Then zUwzUw?z consists of 0 together with
three isotropic Fj4-lines. Each of these isotropic lines contains an odd number
of v with e(v) = —1 (if 2 is not adjacent to z). So zU wz U w?z contains
an odd number of nonzero v with e(v) = —1. Consequently, we see that one of
{z,wz,w’2} contains an odd number of nonzero v with e(v) = —1. Say 2 does,
then s'(z) = —s(z) =1.

We have shown that every FJ -orbit on X — X, (whose members are adjacent
to z ) meets Xy . An easy count shows that there are 12 (8) such orbits, and the
proposition follows. Il

We may now prove a weak version of our main result.

Lemma 5.3.6. Suppose s is a signing with |s| <9. Then |s|=9.

Proof. There are 40 special signings s’, each of which assumes the value 1 on
% of the elements of X . By homogeneity, for each x € X, there are 8 special
signings that are positive on z. Thus there are at most 72 pairs (z,s’) where
s(z) =¢(x) =1 and ¢ is special. By the Pigeonhole Principle, there is a special
signing s for which Xy N X, has size at most 1. If X, N X, is empty, then
|s| > 12, a contradiction. Otherwise, there is some z € X;N X, and X, contains
at least 8 other elements not adjacent to x. Thus |s| > 9 and we are done. O

We must now show that if |s| =9, s is special. Our basic strategy is to find
special signings s’ which approximate s, in the sense that X,;NX, may be made
large. So we need to obtain some tools for measuring the size of X, N X,/ .

Lemma 5.3.7. Let s be an arbitrary signing and s’ special. Then
[s| = | Xs N Xs| + k& (mod 2)

where k is the number of lines in the affine space Xg meeting X, is an odd
number of points.

Proof. Each element of X, either lies in X or lies in a triple {z’,%/, 2’} conju-
gate to a line {z,y,2} of X . Since there are an even number of lines, it suffices
to show that for every such triple {z,y,z2},

| XN {z,y, 2} +1=|X: N {2, ¢, 2"} (mod 2)
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or in other words, s(x)s(y)s(z) = —s(2’)s(y')s(z’). Let s = sp, s’ = sp/, and
let €:Co— %1 be such that ¥ € B if and only if ¢(v)v € B’. Then

vew—{0}

Since the nonzero elements of Uy U z and the nonzero elements of zUy U 2, it
suffices to verify that ¢'(z)s'(y)s'(z) = —s'(2)s'(y')s'(#’) , which is obvious. O

Corollary 5.3.8. Let s be a signing with |s| =9, and let s’ be a special signing.
Then |Xs N Xg| cannot be equal to 2 or 4. If | XsNXo| =3 then | XsN Xy

is a line of Xy .

Proof. Let K = X, N Xy . Then the lemma implies that 9 = |K| + &k (mod 2),
where k is the number of lines in X, meeting K in an odd number of points.
But k is readily computed directly: if |K| = 2, then & = 6. If |K| = 4 then
k = 8 if K contains a line of Xy and k = 6 otherwise. If |[K| =3 and K is
not a line, then k£ = 3. In each case we get a contradiction. O

Lemma 5.3.9. Let s be a signing, s’ a special signing. Then |s| > | X:NXs|+k,
where k is the number of of lines in Xy meeting X exactly twice.

Proof. 1t suffices to show that for each line {z,y,2} C Xy meeting X, exactly
twice, the conjugate line {z’,y’,2'} meets Xy . Assume z,y € X,. Write
s = s, 8 = spr, and let € : Cg — &1 be such that v € B if and only if
e(v)v € B’. Then on z — {0} and y — {0}, ¢ assumes the value —1 an even
number of times, while on z — {0} it assumes the value —1 an odd number
of times. Consequently € assumes the value —1 an odd number of times on
(zUyUz)—{0} = (2’ Uy’ Uz') —{0}. Without loss of generality, ¢ assumes the
value —1 an odd number of times on z’ — {0}. Then s(z’) = —s'(z') =1, so
2’ € X, as desired. O

Corollary 5.3.10. Let s be a signing with |s| = 9, and let s’ be a special
signing. Then |X; N Xo| cannot be 5,6,7, or 8.

Proof. Let K = X;N X, . The lemma shows that 9 > |[K| + &, where k is the
number of lines of Xy meeting K exactly twice.

If |[K| = 8, then any of the four lines through the unique element of X, — K
meets K exatly twice. Thus 9 > 8 + 4, a contradiction.

If |K| =7, any line meeting Xy — K meets K exactly twice except for the
line joining the two points of Xy — K. Thus 9 > 7+ 6, a contradiction.

Suppose |[K|=6. If X —K is a line, then k=8 is the number of lines not
parallel to this line, so 9 > 6 +8. If X, — K is not a line, then a line meets K
exactly twice if and only if it meets Xy —K exactly once,so k=6 and 9 > 6+6.

Finally, suppose |K|=5. If X, —K contains a line, then k=7 and 9 > 547
If Xs» — K does not contain a line, we need to work a little harder. Let K be the
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union of the lines {z,y,2} and {z,y’,2'}. The last lemma shows that X, meets
the lines conjugate to yy’, yz’, 2y’ and 2z . Consequently, we see that each of
{y, 2,9/, 2’} is adjacent to two other points of X, , and each point of X, — X/
is adjacent to two points in {y, z,v’,2’}. Thus z is the only point in X which
is not adjacent to another point of X,. Consequently, for any special s” such
that | XN Xgv| =1, we get XN Xov = {x}. Suppose there are n such special
signings s” . For any other special signing, |Xs:NXs~| > 3. Counting the number
of pairs {(w,s") : w € Xy} in two different ways, we get 72 > n + 3(40 — n),
so that n > 24 . On the other hand, there are exactly 8 special signings s’ with
z € Xg» , so that n <8, a contradiction. ([

/

Lemma 5.3.11. Let s be a signing, s’ a special signing, and suppose |Xs N Xy|
s a line in X, . Then there is another special signing s"” with | X, N Xgn| > 3.

Proof. Let {z,y,z} C Xy be aline parallel to X;NX, . Write s = sp, ¢ = sp/,
and let 7 € B if and only if e(v)v € B’. Then since {z,y, 2z} does not meet X,
e assumes the value —1 an odd number of times on z—{0}, y—{0}, and z—{0},
hence on (zUyUz) —{0}. If {z',9’,2'} is the conjugate line, then without loss
of generality, ¢ assumes the value —1 an odd number of times on z’, so that
s(z') = =s/(2’) = 1. It suffices to show that we can choose s’ special so that
XeNXy C X and 2/ € Xy .

Consider V to be endowed with an Fy -structure corresponding to s’ . The line
X N X corresponds to an Fy-subspace M C V on which ¢ is nondegenerate.
Correspondingly we may decompose V=M@ M1 as F,-Hermitian spaces. We
may define a new F4-structure on V which is the same on M, but conjugated
by the nontrivial automorphism of F4 on ML . This gives rise to new special
signing s”’. Since the F,-structures agree on M, we get X, N Xy C Xy, To
complete the proof, we show that 2’ € X, .

By construction, z’ is not adjacent to any element of X, N X,,. Thus z’
meets M trivially, so it projects isomorphically to Mt . Thus we may identify z’
with {m + g(m) : m € M'}, where g : M+ — M is some F;-linear map. ¢ is
isotropic on z’; thus

0= g(m + g(m)) = q(m) + q(g(m)) + (m, g(m)) = q(m) + q(g(m))

so that g is an isometry. Thus g(M') is a 2-dimensional subspace of M on
which ¢ has Arf invariant 1. There are precisely two such subspaces, and these
are permuted by FJ ; since this group has odd order, it permutes them trivially,
so g(M+) is an F4-linein M.

Given Fy-structureson M and M* | the condition that 2’ be an F4-subspace
of V isthat g be F4-linear. An F5-isomorphism of two one-dimensional F,-
vector spaces is either linear or antilinear. Since we know z’ ¢ X, g is not
linear with respect to the original F,-structure on M+ . Thus it is linear with
respect to the twisted structure and we get 2’ € X~ as desired. (I
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We can now give the proof of Theorem 5.3.2:

Proof. We have seen that |s| = 9. Choose s’ special so that n = | X, N Xy| is
as large as possible. If n <1, then X; N Xy <1 always, so that

72 :{(x,s’) cxe XN Xe} :Z|XsﬁXs/| <40

Thus n > 1. On the other hand, Corollary 5.3.8, Lemma 5.3.10 and Corollary
5.3.11 imply that n # 2,3,4,5,6,7,8. Thus n =9, and X; = Xy, 80 s =3 is
special. (I

Remark 5.3.12. There are other ways to understand our optimal expression for
the cubic form. For example, one may identify the group Eg with the set of
automorphisms of

HOm(Vo, Vl) D Hom(Vl, VQ) D HOHl(VQ, Vo)
preserving the cubic form

(¢,¢',¢") — det(¢) + det(¢') + det(¢”) + Tr(¢" 0 ¢' 0 ¢)

Here the V,; are taken to be free modules of rank 3 equipped with specified
generators of the A%(V;) (so that the determinants are well defined). See [1] for
details. One sees immediately that with respect to a choice of basis of the V;,
the cubic form is expressed as a sum of 45 monomials with 36 plus signs and
9 minus signs. Thus, (the negative of) this expression of the cubic is associated

to some marking g € W C Eg. Choose bases {v;,v],v]'} for the V; so that the
associated volume form on each V; is given by v; Av)Av) , and consider the maps
g; defined by the condition that g;(v;) = v}, g:(v]) =2, g:;(v]) = v;. Together

these maps induce a transformation of
HOIH(\/VO7 Vl) D HOI’I](\/Vl7 Vg) D HOI’H(\/VQ7 Vo)

which is the required marking.

It is not difficult to check that the centralizer of a marking g € Eg is a sub-
group of the form H = (SLs x SLs x SL3)/us, where ps is a central subgroup
embedded diagonally. Under the action of the group H , a nontrivial minuscule
representation of Eg decomposes as above:

V ~ Hom(Vo, Vi) ® Hom(Vy, Va) & Hom(Vs, Vo)

Of course, ¢ is not a marking with respect to a maximal torus of H , since g is
central in H .
5.4. Cubic Surfaces

Let S be a smooth cubic surface (over the complex numbers). For general back-
ground on such surfaces, we refer the reader to [9].
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Recall that we may identify A with the primitive cohomology of S (that is,
the collection of all classes = € H?(S,Z) having zero intersection with —Kx ) and
AV with the quotient of H*(S,Z)/Zeci(Kg) . Via this identification, the elements
of Cgy are precisely the images of the funademental classes of the 27 lines on S.

Three vectors sum to zero in AY if and only if their sum in H*(S,Z) is a
multiple of the hyperplane class. Since a line has degree 1, we see that three
weights of M; sum to zero if and only if the three corresponding lines constitute
a hyperplane section of S. In other words, we may identify X (the collection of
isotropic planes in V) with the collection of tritangent planes to S.

The following fact will be needed later:

Lemma 5.4.1. Let () denote the abelian group generated by symbols {gr} , where
L ranges over the lines on 7., subject to the relations:

gr, + i + gL = 0if LUL UL” is a hyperplane section of Z

The natural map ¢ : Q — AV is an isomorphism.

Proof. It is easy to see that ¢ is surjective. Realize S as P? blown up at 6
points {p;} . For each index 7, the exceptional divisor E; over p; is a lineon 7,
as is the proper transform C; of a conic passing through the remaining 5 points.
The other lines on 7 are the proper transforms L;; of lines joining p; and p;.
Let Qo denote the subgroup of @ generated by the gg,. Then AY/¢(Qp) is
isomorphic to Z/3Z. Thus ¢(Qo) has rank 6; and ¢|Qg is an isomorphism
onto its image. Thus, to prove ¢ is injective, it suffices to show that /@y has
size <3. Let gj, denote the image of g, in Q/Qp .

Since E;, L;;, and C; are coplanar, we see that gfw + géj = 0. Applying
this twice, we see that gﬁij = gﬁkj for any 4,7, k. Applying this twice, we see
that g]’%j does not depend on 7 or j; let us denote this element of G/Gy by
g{,. From g]’%j -+ géj = 0, we see that géj = —g}., so g{ generates G/Gg. If
a,b,c,d e, f are all distinct, then Lg, Leg, and L.y are coplanar. It follows
that 0=g; , +g1,, +g£ef = 3¢}, , so that Q/Qo has size at most 3 as required.
O

For nonzero isotropic z € V, we let [, denote the corresponding line of S.
Then {, meets [, if and only if (z,y) = 0, in which case z and y generate
an element of X corresponding to the tritangent hyperplane spanned by [, and
Iy, . Hence each line of S meets precisely 10 of the other 26 lines. Moreover,
since V has no totally isotropic 3-dimensional subspaces, given any p € X and
any nonzero isotropic # not contained in p, = ¢ p- so that the form y — (z,z)
vanishes on precisely one nonzero element of p. Thus given a tritangent plane to
S meeting S in [UI’UI"”, each of the other 24 lines meets exactly one of [, I/,
and 1" .

Of particular interest to us are Fckard planes: tritangent planes meeting S in
three concurrent lines. The point of concurrency of these lines is called an Eckard
point of S. Suppose p and p’ are Eckard points of S. The corresponding
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elements of X are adjacent exactly when the line pp’ is contained in S. In this
case we shall say that p and p’ are adjacent.

Lemma 5.4.2. Suppose p and p’' are non-adjacent Eckard points of S, corre-
sponding to z,2' € X . Then pp’ meets S in a third point p” which is also an
Eckard point of S. If " € X 4s the corresponding element, then x,z’ x" are
collinear (in our combinatorial sense).

Proof. One easily shows that p” is distinct from p and p’. Let P and P’ be
the tangent planes to S at p and p’. Then P meets S in three lines lp, [y,
and [y, P’ inlines [j, {1, and [} . Rearranging the indices if necessary, we may
assume /; and [/ meet for all i. Then [/; and [/ span a tritangent hyperplane
Qi , containing a third line !/ of S. Since @); contains both p and p’, it contains

the line pp’ and hence also p” . If p” was a point of [;, then [; C S would be
forced to coincide with pp” = pp’, contrary to the assumption that p and p’ are
non-adjacent. Similarly p” is not a point of I}, so p” must belong to /. It
follows that [, lf, ] all meet at p” | so that p” is a third Eckard point of S.
Furthermore, the lines {lo,{1,2,4),11,15,1,1/, 15} may be identified with the 9
points on a quadric surface over Fy (the zero locus of ¢ on the projectivization
of the four-dimensional Fj-space spanned by x and z’), which is ruled by lines

corresponding to p, p’, and p” so that z, z’, and z” are collinear. O

We would now like to obtain an explicit formula for the invariant cubic form in
terms of the combinatorics of the 27 lines on a cubic surface. However, this is im-
possible without specifying some additional data, since the signs are not uniquely
determined until we choose a basis for M;. What we need is some geometric
analogue of our notion of a marking. This should take the form of additional data
on S, which permit us to distinguish 9 of the tritangent hyperplanes from the
other 36. Recall that a marking determines an element of the Weyl group W of
order 3 which does not fix any element of AY . In view of this, the following is a
natural definition:

Definition 5.4.3. A signing of a smooth cubic surface S is an action of the group
G = pg of 3rd roots of unity on S, such all G-invariant elements of HZ(S, Z)
are multiples of the hyperplane class ¢;(K) .

A general cubic surface does not carry a signing (in a moment we shall obtain
a characterization of exactly which cubic surfaces do admit signings). However,
we shall soon see that signed cubics exist, which is all that we shall need.

Note that a marking of S determines an F,-structure on V. This admits a
lifting to a marking g € Aut(\~/) , which determines a special signing s, . Moreover
sy depends only on the marking of S and not on the further choice of g. Thus,
we are motivated to study signed cubic surfaces.

Let S be a signed cubic surface, and let V = HO(S7K\S/). There exists a
representation of G on the canonical bundle Kg so that S — P(VV) is G-
equivariant (for example, the representation induced by the action of G on V).
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Let x denote the identity character of G = p3. We have a decomposition V =
Vo @ Vi@ Vs, into isotypics for the characters x°, x', and x?. Let d; denote
the dimension of V;. Twisting the representation of G on Kg by a character
and applying an automorphism of G if necessary, we may assume without loss of
generality that do > dy > ds .

Theorem 5.4.4. dy = 3, di = 1, and dy = 0, and the cubic defining S is
contained in the x° -isotypic of S*(V) .

Proof. Let z € HZ(S, Z) be the class of a line contained in S, g € G a generator
of G. Then z + 29 + 29 is G -invariant, hence a multiple of the hyperplane
class. From this we see that every G-orbit of lines on S is a plane section of
S. Since such a plane section is spanned by the three lines in which it meets
S, it is necessarily stable under G. Thus the 9 orbits of G on the 27 lines
give us 9 planes in P? stable under G, corresponding to 9 distinct G -stable
1-dimensional subspaces of V. Such a subspace must be contained in an isotypic
V;. If d; <2, the linear functions in V; vanish on a line I; C P(V"Y), hence any
such tritangent must contain the three points of intersection of [; with S. Since
any point of S is contained in at most three lines of S, V; can contain the linear
forms cutting out at most 3 tritangent planes. If d; <1, then V; contains only
one line. Hence do =d1 =2, do =0 and dyp =2, di = dy =1 are ruled out by
numerical considerations. If dop = 4, then G acts trivially on S and we do not
have a signing. This proves the first claim.

For the second, note that the other isotypics of V are of the form V; ®S?*(Vy)
and V{®V{®Vj; hence any cubic in these spaces is reducible. Since S is smooth,
its defining equation must lie in S*(V)g . O

We have the decomposition S*(V)y = S*(Vo)@S*(V1), so the defining equation
of S has the form

flz,y,2) +w® =0

In other words, S is a cyclic 3-fold cover of the plane branched over the cubic
curve A cut out by f, and G is the Galois group for the covering.

Let us proceed under the assumption that S is a such a cover of P? | branched
over a smooth cubic curve A . In this case, it is easy enough to identify the 27
lines on S. If [ is a flex line of A, then S; =S xp2 [ is a cyclic three-fold cover
of [ totally branched over a point; in other words, S; (a hyperplane section of S)
consists of three lines meeting in a point. Thus, the 27 lines break into 9 orbits
under the action of G, and each orbit is may be considered as a 3-fold cover of
one of the 9 flex lines to C. We see that for any = € H*(S,Z) which is the
class of a line, = + g(x) + g*(x) is the hyperplane class. (Here g is a generator
of the Galois group G of S over P?.) It follows that 1+ g+ g annihilates
the primitive cohomology of S, so that the action of G on S is a signing of S.
In other words, we have establishes that the signed cubics are none other than
the cyclic cubics: cubic surfaces that may be expressed as cyclic 3-fold covers of
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the plane branched over a smooth plane cubic. For our purposes the important
consequence is that signed cubic surfaces exist.

Now, if S is a cyclic cubic, we may identify A C P? with a particular hyper-
plane section of S. The above analysis shows that each of the 9 flex points of
A is an Eckard point of S. If s is the signing determined by the signing of S,
then X, consists of those = € X for which the corresponding plane meets S in
a G-orbit of lines; these are precisely the tritangent planes lying over the 9 flex
lines to A. In other words, we may identify X, with the 9 flex points of the
plane cubic A . Since we have established that “geometric” and “combinatorial”
collinearity have the same meaning, this proves that our combinatorial notion of
collinearity provides X, with the structure of a two-dimensional affine space over
F3 . This proves Theorem 5.3.4, as promised.

We can now give a formula for the invariant cubic in terms of the geometry of
S as follows:

Theorem 5.4.5. Let S be a cyclic 3 -fold cover of P? branched over a smooth
cubic curve A . Introduce a variable Y] for each of the 27 lines of S, and for
each tritangent plane P let

Ve =[]V

Icp

Then the cubic invariant under Eg may be written in the form
0= ¥, - Y%
P P

where the first sum is taken over all flex points p € C (with P, the corresponding
Eckard plane) and the second sum over the remaining 36 tritangent planes.

We will close this section with a few amusing remarks related to signed cubic
surfaces; these remarks will not be needed later, so they may be safely omitted if
the reader desires. These result were obtained earlier in [8].

Let us examine the automorphism group of a signed cubic S. Automorphisms
of S commuting with the action of G will act on P2 =S/G , necessarily preserv-
ing the branch locus C. Conversely, any automorphism of P? preserving C can
be extended to an automorphism of S in three different ways. The automorphism
group H of the general plane cubic has order 18; it is a semi-direct product of
Z/27 acting by inversion on the group Hy of 3-torsion points of the associated
elliptic curve. Thus we see that any cyclic cubic has carries an action of a group
H , where H is a central extension of H by G.

For any flex point p € C, there is a unique element of H of order two which
stabilizes p. Let o, denote a preimage of this element in H . Then o, permutes
the three lines of S which meet at p; since o, commutes with the action of G,
it must permute the three lines in an alternating fashion. Altering the choice of
op by an element of G, we may arrange that o, fixes the three lines. Then 012,
is the identity on a plane and stabilizes three lines not contained in that plane, so
it must act trivially on P2 and hence on S.
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Consequently, H is a semidirect product of Z/2Z with I:To, the preimage of
Hy in H . This last group is a Heisenberg extension corresponding to the Weil
pairing on Hpy . From this description, we see that the projection H — H admits
a section over a subgroup H' C H if and only if Hy € H'. In particular, if p,p’,

/

and p” are distinct flex points of C, then the subgroup of H generated by o, ,
o, and o, is isomorphic to S* (its imagein H )if p, p’, and p” are collinear,
and all of H otherwise.

In fact, the existence of the involution o, does not require that S be a cyclic
cubic, but only the existence of an Eckard point p on S. Let us return to the situa-
tion of a general cubic surface S, defined by a homogeneous cubic f(w,z,y,z) =0
and having an Eckard point p = (1:0:0:0). Let us assume the corresponding
Eckard plane is given by z = 0. Then f(w,0,y,z) is a product of three linear
factors, each of which vanishes where y =z = 0. Thus f has the form

cz® + 1(w,y, 2)z* + q(w,y, 2)z + g(y, 2)

Since S is nonsingular at (1 :0:0:0), we must have ¢(1,0,0) # 0. Replacing
w by an appropriate linear combination of w, y, and z, we may assume that
q(w,y,2) = w? + ¢'(y,z) for some ¢ . Finally, by adding a multiple of = to w,
we may arrange that

flz,y, z,w) = d2® + U (y, 2)a* + (W’ + ¢'(y,2))z + g(y, 2)

Note that this equation is invariant under the involution o, of P? carrying
(w,z,y,2) to (—w,z,y,2). This involution fixes p and the plane defined by
w = 0, which meets S in a smooth cubic C since a singular point of C would
also be a singular point of S.

Note that any line or plane containing p is fixed setwise, but not pointwise,
by o, . In particular, o, stabilizes the three lines which meet at p, and every
tritangent plane that contains one of these lines. Note that any line stable under
op has two fixed points under o, ; thus it is either contained in the plane w = 0
or meets p. Since the plane section of S cut out by w = 0 is smooth, any line
of S stable under o, passes through p. On the other hand, a line [ of S not
passing through p lies in a unique tritangent plane meeting S in [Ul’UI"” | where
" meets p. Then we must have o,(l) =1', o,(l') =[. In particular, the action
of o, on the 27 lines is determined by incidence relations among the lines. We
leave it to the reader to verify that this involution ¢, agrees with the involution
defined above in the case S is cyclic.

Now we would like to study the relationships between the involutions o, as p
varies over the Eckard points of S. The following fact is basic to what follows:

Lemma 5.4.6. An automorphism o of a smooth cubic S which fixes all 27 lines
setwise must be the identity.

Proof. Since S is anticanonically embedded in P3, & extends to an automor-
phism of P3. o must fix all points of intersection of lines of S which meet.
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But among such pairwise intersections there are 5 points, no four of which are
coplanar. Thus o is trivial on P2 henceon S. (I

Now suppose p,p’,p” are collinear, non-adjacent Eckard points. Since o,
stabilizes the line joining p, p’, and p”, and has only two fixed points on this
line, we see that o, must permute {p/,p”’} nontrivially. The same reasoning
applies to the involutions o, , o, . Thus we get a surjective homomorphism ¢
from the subgroup of Aut(S) generated by the involutions ¢, , o, , o, to the
symmetric group Ss .

Theorem 5.4.7. ¢ is an isomorphism.

Proof. Since automorphisms of S are determined by their action on the 27 lines,
the behavior of the involutions o,, o, and o, are determined by incidence
relations among the 27 lines, and the Weyl group W acts transitively on collinear
triples of elements of X , it suffices to verify this in the case where S is a cyclic
cover of P? branched over a smooth conic C, and p,p’,p” are collinear flex points

of C. But this follows from our analysis of the group H given earlier. Il

Now suppose that p, ¢, and r are Eckard points which are nonadjacent

but not collinear. The argument above (this time using the fact that W acts
transitively on noncollinear, pairwise nonadjacent triples of elements of X ) applies
again to show that the group generated by o, , o4, and o, does not depend on
the cubic S. If S is a cyclic cover of P? branched over C and p,q, and r are
nonadjacent flex points of C, then this group is the group H defined above. In
particular, this group has a central subgroup G whose action gives a signing of
S. Thus we have proven:
Theorem 5.4.8. Suppose S is a smooth cubic surface with three nonadjacent,
noncollinear FEckard points p, q, and r. Then the plane spanned by p, q and
r meets S in a smooth cubic curve C, and S is isomorphic to a cyclic 3 -fold
cover of that plane branched over C.

In other words, the classes of signed cubics, cyclic cubics, and cubics with
three noncollinear pairwise nonadjacent Eckard points coincide. (One could be
more precise. For example, a signing of a cubic is equivalent to an identification
of that cubic with a three-fold cover of P? and of pz with its Galois group.)

5.5. Defining Eg

Over the complex numbers, one can define the Lie algebra Eg as the collection of
endomorphisms of a 27 -dimensional complex vector space which leave annihilate
a cubic polynomial on that vector space. We now show that this description of Eg
is valid over an arbitray commutative ring. Aside from its intrinsic interest, this
proof will serve as a nice “warm-up” for the next section, where we will investigate
the more difficult problem of defining E- .



Vol. 76 (2001) On simply laced Lie algebras and their minuscule representations 567

In the following, we let M = M, be a nontrivial minuscule representation of
L, and we write Mr = (M;)r = (Mz) ®z R for any commutative ring R. Let
© be the invariant cubic polynomial on M constructed earlier.

Theorem 5.5.1. Let R be a commutative ring. Then Ly is the Lie algebra of
all endomorphisms of Mg which annihilate © .

Proof. Let 1/ be the Lie algebra of all endomorphisms of Mgr which annihilate
© . Note that Mp has a natural AV grading; it decomposes into weight spaces
My = RY; . This induces a AY grading of Endg(Mp). Since © is homogeneous
of degree 0, I/ is a graded submodule of Endr(Mg). Thus I/ decomposes into
weight spaces L/, (a € AY). By construction we have

LoMa € Maga

We need only show that each weight space L., is contained in Lgr . Choose

z € L. If z =0 there is nothing to prove. Otherwise, we may assume that

z induces a nontrivial map My — M, for some A € Cy. Note that this

implies o € A. There are several cases to consider, depending on the value of

Ao+ XN =2 (mod Z):

o (N atA)= % . Then A=a+X,s0 aa=0. Thus x leaves each weight space
M,, stable. Suppose z acts on M,, by the scalar f(x). From the invariance of
O, wesee that f(a)+f(8)+f(v) =0 whenever o, 3,y € Cy are weights which
sum to zero. By Lemma 5.4.1, f is induced by a homomorphism AY — R, or
equivalently an element of Agr, which proves z € Agr C Ly .

o (Ma+A)=1.Then (o,a)={a+Xa+A)—2(a, )—(M\NA) =250 ael.
Choose & € I' over a, A € Cg over A. It is clear that z annihilates ¥
unless p+ o € Cy (that is, unless (o, p) = —1). If u+ a € Cy, we have
xY; = ¢, Y for some scalars ¢, € Co. If (u,A\) = =2, then there is some
v € Cqy with p+v+ A =0; this implies (o, v) =2 which is impossible. Thus
for p # X\, we must have (u,\) = %7 so that v = —pu+ —XA — a liesin Cy.
Examining the coefficient of Yz Y;5Y5 in z(©), we deduce that ¢, = cx.
Thus = = ¢y X5 € Lr and we are done.

e (\a+A == Then (o,0) =4, (\,a) =—2. Then A\ = —2 + X, where
(N,a) =0. If pe Cqy is also such that p+ a € Cy, then we may apply the
same reasoning to write p = —§ +p'. Then (A, p) = (=5, -5) + (N, ).
Since (N, X) = (/,p') = 1, we must have (N,p/) > —1. Thus (A, pu) > 2.
Since (A, p) =3 (mod Z), we get (A, p) =3, andso A= p.

Now choose p,v € Cy — {A} such that X+ p+ v = 0. The coefficient of
Y YzYs in 2(0) is £c, where z(Y5) = c¢Y, 5. The invariance of © shows
that ¢ =0, which contradicts the choice of A.

O
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6. The Lie Algebra E;

In this section, we will discuss the case in which A is the root lattice of E; . Then

A has index 2 in AV, so it has one nontrivial coset C. Fix E = (7, ¢e) € § with

7:C — AV having image C. We have tc = 3/2, so that the corresponding

representation M, is self-dual and symplectic.

It is well-known that the representation M, of dimension 56 has an invariant
quartic form. We would like to write this form down in some nice way, analogous
to what we have already done for Eg. This is more difficult for a number of
reasons:

e The map 1; C W — Aut(\~/) is no longer an isomorphism. Indeed, ¢ is a
surjection with kernel —1 €¢ W, and QZ|V has kernel and cokernel isomorphic
to Z/2Z . The snake sequence breaks into short exact pieces 0 — Z/2Z —
ker ¢ — Z/2Z — 0 and 0 — Z/2Z — coker¢) — 0. Since V, is symplectic,
our earlier calculations show that the first of these sequences is not split. Since
the image of ¢ hasindex 2 in Aut(V), it is a normal subgroup. On the other
hand, this group has a unique subgroup Auto(\N/) of index 2, consisting of

automorphisms which act trivially on the center of V. Thus we get a short
exact sequence 0 — Z/4Z — W — Autp(V) — 0, a rather more complicated
situation.

e Our formalism for constructing trilinear forms on minuscule representations
can no longer be applied, and there seems to be no simple analogue for tensor
products of four or more representations.

e Since the coset C has even order, we no longer have a nice representative n¢ in
€ or the group A, at our disposal. We instead work with an arbitrary =« cov-
ering C together with an isomorphism e : 7 ® 7 >~ g , and the corresponding
covering Ag of AV defined in §3.9.

¢ For Eg, the Weyl group W acts transitively not only on the weights of the
fundamental representation, but on 45 triples of weights that sum to zero. The
analogous statement for E- is false: W has three distinct orbits on quadruples
of weights which sum to zero: those quadruples of the form {z,z, —z, —z} (of
which there are 28 ), those of form {z,y, —z, —y} (for z # y, there are 378
of these), and the remaining 630 “general” quadruples {w,z,y, 2} for which
no pairwise sums vanish.

e In order to get our most explicit description of the cubic form invariant un-
der Eg, we chose a clever basis for the fundamental representation which was
invariant under a large subgroup of W . This subgroup (the centralizer of an
element of order 3 having no nontrivial fixed points in A ) acts transitively on
the weights and has only two orbits (of size 9 and 36) on triples of weights
that summed to zero, corresponding to two different signs. The same approach
could be applied to Er, but the results are not nearly so spectacular. For
example, it is impossible to find a subgroup G € W which acts transitively
on the set Cy and stabilizes a basis B C Cy . For suppose such a pair (G,B)
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did exist. Since Autg(V) is a perfect group, kerqz ~ Z/47Z is central in w.
Choose a generator w for kerzz . Since w centralizes G, G must also stabilize
the bgsis B? . Since G acts transitively on Co~72it follows that either B¥ = B
or BY = —B. In either case, we have —B = BY = B, a contradiction.

Despite these obstacles, we can still salvage a bit of our old analysis. In partic-
ular, we will find that the object Ag serves as a satisfactory “stand-in” for A,,
even though the former is not associative.

6.1. The Invariant Quartic

To begin, let K denote the collection of all ordered 4-tuples (w,z,y,2) € C?
with w+xz+y+2=0. We let Ky denote the subset consisting of all 4-tuples of
the form (z,z, —z, —z) or some permutation thereof, K; the subset of 4-tuples
which are some permutation of (z,y, —z,—y) (z#y), and Ky =K — (KqUKy)
the collection of “general” elements of K. We let I~(7 Ko7 I~(17 and K, denote
the preimages of these sets in Cj .

Lemma 6.1.1. Let (0,%,7,%) € Ko. Then the expression (wz)(§3) € Ag is
symmetric in w, T, Yy, and Z .

Proof. The equation w + x +y + 2z = 0 implies that —% = —(w,w) = {(w,z) +

(w,y)+ (w, z) . Since w and z have the same length and w # —z, (w,z) > —3.
On the other hand, (w,z) =tc modulo Z, so (w,z) > —% . Summing the same
inequalities over y and z, we see that equality must hold, so (w,z) = (w,y) =
(w,z) = —1 . Then wz = (—1){*~*°zw = zw, and similarly for other pairwise
products. This shows that the expression above is unchanged by exchanging w
with =z or y with 2. To complete the proof, it suffices to show invariance under
interchange of = and y. This follows from the associativity properties of the
product:

(02)(yz) = w(@(yz)) = —w((29)z) = —w((y2)7) = w(y(2?)) = (wy)(2z)
O

If w+ x4+ y+ 2 =0 because of some pairwise cancellations, say w+2z =0 =
y + 2z, then the above result no longer holds, because wz # zw . In this case,
one must be more careful in how one chooses to form the product. Given such a
triple w,Z, 7, Z, one can assume (switching ¢ and Z if necessary) that 2(z,y) =3
(mod 4). Then 2(w,z) = 2(—z,—y) = 2(x,y) = 3 (mod 4) as well. Then one
has wz = Zw, Ty = yx . Moreover, z +y = —(w + z), so Wz commutes with
Zy. Thus the four-fold product (wz)(Zy) is independent of the order in which
the factors are chosen, provided that the pairs (Z,7) and (w,2) are multiplied
first. Moreover, this pairing is entirely intrinsic to the quadruple (w,z,7,z).

Thus, whenever we have an ordered quadruple Q = (w,z,y,%) € K, we may
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associate a well-defined sign € by the formula

e = (@%)(7)
where we assume the tuple has been reordered so 2(w, z) = 2(y, 2) =3 (mod 2).
The discussion above guarantees that €5 is well-defined and is unchanged if we

apply a permutation to C~2 .
Note that € 5 changes sign whenever any of its arguments changes sign. For

any quadruple @ cK , we let Y@ denote the product
Ye®Y;® Yg ®Ys

in M®*; then e@Y@ is a well-defined element of M®* depending only on the
underlying 4-tuple @ = (w,z,y,z) € K; we denote this element by Yg. (Since
the definition of the sign €5 involves an even number of applications of e, Yg is
even independent of the choice of e .)

We are now in a position to describe the form invariant under E;:
Theorem 6.1.2. The tensor

=23 Yo- > Yp-2> YoeM¥

QEeKo QEKy QEeK:2

is L -invariant.

Proof. By construction, © is A-invariant and W -invariant. Let & € IN“; we
must show that [&,0] = 0. The quantity [&,©] is a weight vector for «; we
must show that the coefficent ¢ of the monomial Y3Y3Y;Y: vanishes whenever
w4+ x+y+ 2z = . Without loss of generality,

_IS <w7a> < <x7a> S(%a) < <Z,CM> Sl

and the middle quantities sum to (o, a) =2. If (w,a) = (z,a) =0 and (y,a) =
(z,a) = 1, the proof that ¢ = 0 proceeds just as in the trilinear case (one needs
only W -invariance).

Otherwise, we have (w,a) = —1, (z,a) = (y,a) = (z,a) = 1. The relevant
contributions come from terms of the form [Xz, Yy o—a,y,2)] (and similarly with y
or z in place of x ) and the coefficient contributed by such a term is Ckeé where
@ ={w,a'2,5,2} € K, . Here Cj = 2,—1,—2 accordingly as £ =0,1,2. We
must show the sum of these contributions is 0.

Note that

—1l=A{a,w)=(w+z+y+ 2z w) :;+(ﬂc7w)+<y7w>+<z7w>

Thus it is impossible to have (z,w),{(y,w), and (z,w) all smaller than than
—%, so at least one of x,y, or z isequal to —w. If z =y = 2 = —w, then
a=wtztytrz=w—-—w—w—w=—-2w,s0 2= {a,a)= (2w, —2w) =6,

a contradiction. Suppose z =y = —w, 2z # —w. Then z —a = —w. Now
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Q = (@,%,5,0 13) € Ko, while Q' = (#,51%,7,2),Q" = (@,%,& '§,3) € Ky .
Thus it suffices to show that egp = eg = eg~ . By symmetry, it suffices to show
the equality on the left side. For this we just invoke the definition: note that

(w,z —a) = (w,z) — (w,a) = —F and (z,y) = (w,w) = 3/2, so

G = @)@ D)
— @Ea)ED)
— @) @Ew)
— (@ 9 Ew)
- (@D EE)
— —@ (@)
— (@ 3)(@()
— (@ 9)a)G@)

e
Q

Now let us suppose_z = —w , but =,y # —w. Then z+y = «a,s0 = #y and
Q= (w,2,7,a 1“)€K27Whﬂe

Q=(@a'%,5,9) # (@58 7,7 =Q"

both lie in K; . Reasoning as above, it suffices to show that

6@ = _6@/ = _6@//
By symmetry it suffices to show the first equality. Since y —a = —x # w, we have
(y — a,w) < % so (y,w) < % Since y # —w, {(y,w) > _73 , 50 {y,w) = _717 and

e = FO)(([@'%)3) = —(FD)(F(@ 7)) = —¢5

as required. O

6.2. Defining E-

Over the complex numbers, E; can be defined as the algebra of automorphisms of
its 56 -dimensional representation which leave invariant a symplectic form and an
invariant quartic polynomial. However, this description is not valid over a field of
characteristic 2. First, the object we want to consider is not the invariant quartic,
but its polarization, a symmetric tensor in M4 . Even if the quartic polynomial
is written (over Z ) in “lowest terms”, its polarization is divisble by 2. Hence we
consider instead the polarization divided by 2 ; this is the tensor

0=2> Yo- ) Yp-2> Yg
QeKo QEK QEK:2

which we constructed in the last section. The problem now is that the “interesting
part” of this tensor is the third term, which still vanishes in characteristic 2.
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Consequently, we must be more careful if we are to give a description of E; which
is valid in all characteristics.

In order to do this, we need to consider all invariant tensors of degree 4. Be-
fore proceeding, note that the symplectic form on M gives rise to an L -invariant
isomorphism of M with its dual. Thus the distinction between covariant and con-
travariant tensors disappears, and we can (and shall) identify © with a multilinear
form on M.

Over the complex numbers, we have the decomposition Mc ® Mg =~ A’Me @
S*(M¢) . Neither of these summands is irreducible: M has an invariant symplectic
form, so A’Mc¢ contains a copy of the trivial representation and SZ(MC) con-
tains a copy of the adjoint representation. However, one can easily check that the
residual representations are irreducible, so Mc® M¢ is a direct sum of four noni-
somorphic irreducible representations. Since —1 € W | all of these representations
are self-dual. Thus (Mc ® Mc ® Mg ® Mg)¥e is four dimensional.

It is not hard to see where all these invariant tensors come from. Let [,]
denote the invariant symplectic form on M (say, corresponding to the isomorphism
e:m®m ~my ). Via this form we may identify M with its dual. Thus we get 3
invariant tensors corresponding to the forms

‘1)1 : (w7x7yvz) = [mx][y,z]
(I)Q : (w7$7y72) = [w,y][z,x]
®s : (w,z,y,2) — [w, 2][z, 9]

Together with the form © , these generate the space of invariant 4 -tensors over
C. Over Z, the picture is rather similar: (M@M®M®M)¥ is a free Z-module
of rank 4. Moreover, the tensors ©, &1, ®,, and P3 are well-defined elements
of this module. However, they do not generate the full module, only a submodule
of index 2. The full module of L-invariants is generated by ®;, &, ®3 and

O+ &1 + Py + Pa
2

(the integrality of which follows readily from our formula for ©). Note that ¥
is not completely symmetric, but it is invariant under the all alternating permu-
tations of four letters. Furthermore, it obeys the following simple transformation
law under odd permutations:

P —

V(w,z,y,2) + [w, z]ly, 2] + [w, y][2, 2] + [w, 2| [z, y] = ¥(z,w,y, 2)

Our goal now is to prove that E, may be identified with the collection of endo-
morphisms of M leaving invariant ¥ € M®* and the symplectic structure on M .
For this we will need some preliminary results.

Lemma 6.2.1. Let Gy be the free abelian group generated by symbols {g.}ecc, ,
subject to the relations

g—c = —9c
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atbtctd=0=gs+gp+getga=0
Then the natural homomorphism Gr — AV is an isomorphism.

Proof. Since every element of T' is a sum of two elements of Cy and I' generates
A, A is contained in the image of ¢ . Together with Cp, A generates AV, so ¢
is surjective.

Pick ¢ € Co, and let J = {go € Co: {c,¢/) = 5L} . Let G’ be the quotient of
G by the subgroup generated by g,. Then G’ is generated by the images g/, of
the elements of J which satisfy the relations

stytz=—c=>g+g,+d

By 5.4.1, G’ is a quotient of the weight lattice of Eg, and is therefore free of
rank 6. Since G surjects onto a Z-module of rank 7, G must be free of rank
7, and ¢ must be an isomorphism. O

Lemma 6.2.2. Let a €T, pve{veCy: {v,a)=—1}. Then either p+v =
—o or (p,v)=1%.
Proof. If (uﬂ/):%?then {(p+v,p+vy=2,s0 p+v isaroot 3. Then

<a7ﬁ> = (a,u>+(a7y> = -2

so 8= —«, as desired. Il

Theorem 6.2.3. Let R be a commutative ring. Then Lgr is the Lie algebra of
all endomorphisms of Mg leaving [,] and ¥ invariant.

Proof. Our proof follows that of Theorem 5.5.1. We let L’ denote the Lie algebra
of all endomorphisms of My leaving [,] and ¥ invariant. Note that Mg has
a natural AY -grading into weight spaces My = RY; . This induces a grading of
Endr(Mg). Since [,] and ¥ are homogeneous of degree zero, I is a graded
R-submodule of Endr(Mg). Thus, we get a decomposition of L’ into weight
spaces L/, having the property that

LMy € Masa

We need only show that each root space L/, is contained in Lg . Let z € L/, .
If = =0 there is nothing to prove. Otherwise there is some A € Cp such that =
induces a nontrivial map My — My, . Then « € A. There are several cases to
consider:
o (Ma+ A= % . Then A=a+ A, s0 a=0. Then z stabilizes each weight
space M, , so it acts by some scalar f(u) on that space.
From the invariance of [,], we see that f(—A) = —f(\). The invariance of ¥
then that if a,b,¢,d € Cy with a+b+c+d =0, then f(a)+f(b)+f(c)+f(d) =
0. Thus f induced a well-defined homomorphism G» — R . By Lemma 6.2.1,
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f is induced by a homomorphism AY — R, or equivalently an element of Ag ,
which proves z € Ag C Ly .

e (\a+ A < 3. Let 2Y5; = kYz. Choose v,pu,v € Co such that (A +
a, v, 1, V) € Ko and 4, p, v # A . One easily checks that v+a, pta, v+a & Cq .
The invariance of ¥ implies that

\I’(ZEYX7 Y%,7 Y/Nu Yf,) + \IJ(YVX7 :(:Y%Y%Y;;)
+ i, 36, 365, Yo 1 TN, 3, 3, ) = B

Examining the left side, we see that the only nonvanishing term is

W(kYz Y5,Y;,Y;) = £k . This forces k=0 and we are done.

e (MA+a)=42. Then a is actually a root in I'.
Pick a el lying over o . Then

- kHYaﬁ lf <CM, /J,> = -1
Bl = { 0 otherwise

To show that z is a multiple of X € Ly, it suffices to show that the scalars
k, are all the same. Let p and v be such that (e, pu) = (,v) = —1. If
1+ v = —a, then the invariance of [,] implies

0= [:IZY‘TJJ?}/;] —+ [Y;Nu fo,] = ﬂ:(/ﬂu — /f,,)

so k, = k,. Otherwise, (u,a+v) = _71 by Lemma 6.2.2, so we can find
v,6 € Co with (u,(a+v),v,0) € Ky. Since there are 5 choices for the pair
(v,9), we may assume that v,0 # —a —p, 7,0 # —a —v . Applying Lemma
6.2.2 again, we see that (v, a) = (§,a) = 0. Applying the invariance of ¥ and
using the fact that z annihilates Y5 and Y5, we get

0= \I!(xY,}Y;,Ygﬂ%) + \II(Y,%xY},?Y%}%) = :f:(k?u — kl,)

Thus k, =k, and we are done.
O

Remark 6.2.4. If 2 is invertible in R, then the above result holds with ¥

replaced by the symmetric tensor © (since the invariance of the ®; follows from

the invariance of the symplectic form on M ). Thus, away from the prime 2, we

recover the classical description of E; .

Remark 6.2.5. Our construction of the invariant tensors @ and ¥ can be

applied to minuscule representations other than the fundamental representation

of Er. We have used only the fact that C is symplectic and that ¢ = % . This

is also the case for the following representations:

e The 3rd exterior power of the standard representation of slg .

e The half-spin representation(s) of Spin,,

e The tensor product of the standard representations of sl and Spin,, , for any
n.
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There is one other case for which tc = % , and that is the representation of

sly x sl which is the tensor product of the two standard representations. This
representation is not self-dual, so there is no analogue of W, but there is an
interesting invariant symmetric quadrilinear form: the tensor product of the two
determinant forms.
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