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On triangular billiards

Jan-Christoph Puchta

Abstract. We prove a conjecture of Kenyon and Smillie concerning the nonexistence of acute
rational-angled triangles with the lattice property.
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In a recent paper[4] on Billiards on rational-angled triangles, R. Kenyon and
J. Smillie proved the following theorem:

Theorem 1. Let T be an acute non-isosceles rational angled triangle with angles
a, B and v, which can be written as p17/q, pem/q and p3w/q with g < 10000 .
Then T is a polygon with the lattice property if and only if (o, B,7) is one of the
Sfollowing:

(m/4,7/3,57/12), (n/5,7/3,7x/15), (2x/9,7/3,47/9).

They further showed, that the restricition on g may be dropped, if the following
conjecture was true(see [4], p. 94f):

Conjecture 2. Let n,s,t be integers with (n,s) =1, 1 <s,t <n. Assume that
for all p with (p,n) =1 we have % < ps mod n + pt mod n < 37" . Then one of
the following conditions hold true: n <78, s+t=mn, s+2t=n, 2s+t=n,
or n is even, and |t —s| =% .

In this note we will prove this conjecture:
Theorem 3. Conjecture 2 is true.

Note that the classification of non-obtuse rational angled triangles with the
lattice-property is complete, since the cases of isosceles and right angled triangles
are completely solved in [4], too.

By direct calculation, R. Kenyon and J. Smillie showed, that Theorem 3 is true
for n < 10000. We will use this fact at several steps in the proof.
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The proof will depend on several facts concerning the distribution of relative
prime residue classes, collected in the next Lemma. We write g(n) for the Jacob-
sthal function, given by the maximal difference of consecutive integers relatively
prime to n, and w(n) for the number of distinet prime factors of n .

Lemma 4.

—_

We have g(n) <2400 | If w(n) < 12, we have g(n) < w(n)?.

2. Assume that (a,d,n) = 1. Then in every interval [z, z+ g(n)| there is some
integer v, such that (n,dv+a)=1.

For all d > 2 there exists some a with (d,a) =1 and & <a <32,

If m s the product of the first w(n) prime numbers, then g(n) < g(m).

5. We have g(30) =6, g(210) = 10, ¢(2310) = 14, ¢(30030) = 22, ¢(510510)
— 26, ¢(9699690) = 34.

e

Proof: The first statement was proven by Kanold[3]. To prove the second
statement note first that it is trivial if (d,n) =1, for if dd’ =1 (mod n), then
the integers dd'v + d’a are consecutive (mod n), and none is coprime to n,
contradicting the definition of g. Now without loss we may assume that n is
squarefree. If (d,n) = e > 1, the integers dv + a are coprime to n if and only
if they are coprime to n/e, thus using the case (n,d) = 1 we get that there is
some v € [z,z+ g(n/e)] such that (dv + a,n) =1. The third statement follows
for d > 30 from the first one, for 3 < d < 30 by direct inspection. The fourth
statement was proven by Iwaniec[1]. The fifth statement can be checked by direct
computation.

Note that the fourth and fifth statement together greatly improve the first one
for w(n) <8.

Note further that the asymptotic behaviour of ¢ is much better understood,
using e.g. the result of Iwaniec[2], it is easy to show that there are at most finitely
many exceptions to conjecture 2. The difficult part of the proof of Theorem 3 is to
give an upper bound for n and find properties on the would-be-counterexample
which makes it feasible to rule out these finitely many values.

To prove our Theorem, we first note that we may choose s = 1, since otherwise
we replace p by p’ = ps~! (mod n). Then we have 7+1<t<n—2. Inthe
first step we exclude odd values of n.

Assume that n is an odd counterexample to Theorem 3. Define the integer
k by the relation 1—2% <ic< I—Qk%, and a =t — (1 —2"%)n. Since n is
odd, 2% is relatively prime to n, hence we get 2% 4 2%t mod n > 5 . But we have
26t = (28 —1)n+2%a, hence 2%(a+1) > %, ie. a > 55 —1. By the definition
of k, we have a < 547, thus ¢ = [n(l_ﬁ>] . Write t:n(l—ﬁ)—a.

Next we give an upper bound for 2% Write ¢ = n — b. The cases b = 1
and b = 2 are excluded, since we would have s+t =mn resp. 2s+t =n. If

pe [ﬁ7 %} , we have pt mod n+p < 3, thus if there is some p in this interval

relatively prime to n, we are done. Thus we have

g—m<9(n)
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The left hand side is decreasing with b, thus if b < y/n the left hand side is at

least % , and for n > 10000 this is > 4 . Hence we obtain the bound
vn < 3g(n). By Lemma 4 this implies w(n) <4, thus g(n) <10 and n < 300.
Thus we may suppose b > /n.

Let ¢ < 25%1 be an odd prime, and define the integer { by the relation 2* <
q < 21 Assume that ¢ fn. Then (¢287!,n) =1, thus we get ¢2¥~'¢t mod n +
g2kt > 5 . Using the relation ¢ = n (1 — zk%) —a with 0 < & < 1, this becomes

2t mod n+ g2 > g
g, k—1 k—1 i
v 2 o+ g2 > 3
n qnr k1
5 " ot +4q > 0
Since ¢ > 2/ 4 1, this implies
n k—1 k+1 n
O<_F+q2 S—F‘FQ < F+ﬁ

hence 2! > \/n. Thus n is divisible by all odd primes < \/n. Using the
elementary bound 6(n) > n/2, where 0(z) = > . logp, this implies 2n >

eV™/2 which in turn implies n < 121. However, Theorem 3 is true for all n <
10000, thus we conclude that it is true for all odd n .

Thus assume that (n,t) is a counterexample to Theorem 3 with n even.

We show that ¢ cannot be too close to n/2 or to n. The proofs for these two
cases run parallel, and we will only give the first one. Set ¢ = 5 +b. Let p be
any integer relatively prime to n, in particular, p is odd. Then we have

pt:%erpE—ngbp (mod n)

thus if n is a counterexample to our Theorem, we conclude that bp & [n/2,3n/2—
n 3n

pl,ie p¢ [%, = — %] . The case b =1 is excluded, thus the upper bound of this

interval is > %, thus in particular we have p ¢ [%7 %] . But the only conditions

imposed on p were that p is odd and coprime to n . Since all even integers are
not coprime to n, we get that the interval [%7 %] contains no integer relatively
prime to n. Hence g(n) > 2, thus b > ey o e > n/2+ 2507y - In the same
way we have t<n—#(n).

Set w = (t,n). As p runs over all integers relatively prime to n, pt runs over
all integers with (pt,n) = w, and pt mod n has period n/w . Hence there is some
p < njw, relatively prime to n with pt =w (mod n). But then pt mod n+p <
w+ n/w, and this is < n/2, unless w=1,2,n/2 or n. The last two cases are
trivially excluded. Thus we are left with the cases w =1,2. Now % is a rational
number with denominator > y/n, thus applying Dirichlet’s Theorem we find an
integer d < y/n and some e < d, such that ‘% - e‘ & ﬁ .

Assume that d = 1. Then |2

;—e‘ < %, and because n/2 < t < n, we
conclude ¢ > n — /n. Together with the bound proved above we obtain the
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inequality +/n > % ,1e. 2g(n) > +/n. Using the first statement of Lemma 4,
this yields w(n) <4, thus n < 1156, but for n < 10000 the Theorem is already
proven. In the same way we exclude the case d = 2. Now assume d > 2. Then by
Lemma 4, statement 3, we find some a relatively prime to d with 2 <a< 12
Let p be an integer relatlvely prime to n which also satisfies p = ae™! (mod d).
Note that the right hand side exists, since (e,d) =1. Write p = kd + a’. Then
we have

pen | pyn px/— p\/—
t =—+ 0—— = ken + — 2 = 4
=g T s T

where € is some real number of absolute value < 1. But pt mod nis >3 —p,

thus either the right hand side is > % — p, which yields

(mod n)

or the right hand side is negative, which yields

an pf

d

From now on, we will only consider the ﬁrst inequality, because the second one
can be dealt with similarly, but gives a little stronger bounds. By the choice
of a we have a/d < 5/12, thus we get p(% + 1) > n/12. By Lemma 4,
statement 2, p can be chosen to be < d(g(n)+1). Thus we obtain the inequality
(vVr+d)(g(n)+1) > n/12. Since d < /n, we finally conclude g(n) > /n/24—1.
The bound g(n) < 2¢(") shows that this is only possible for w(n) < 9. Now
the improved bound g(n) < w(n)? lowers the bound to 7, and we can use the
fifth statement from Lemma 4 to conclude n < (24 - 27)%, thus w(n) < 6 and

< (24-23)% = 304704 .

Assume that p is some prime number, such that the least positive residue of
ep (mod d) is in the interval [d/12,5d/12]. Then by the argument above, we

get p(% +1) >n/12 or p|n. Hence all primes p which satisfy this congruence
condition, have to divide n. By the bounds given above, it suffices to find 7 such
primes to exclude the pair (n,d) .

To finish the proof of Theorem 3, note first that d < /304704 = 552 . Choose
some d, and compute pmax = % . Count the number of residue classes a
relatively prime to d, with d/12 < a < 5d/12, and call this number N .Count the
prime numbers up to pmax in all reduced residue classes (mod d), and choose
those N sequences with the least number of primes in it. If n is a counterexample
to Theorem 3, and d is corresponding in the sense described above, then n is
divisible by all these prime numbers, in particular there are at most 6 such primes.

Doing this for all d < 552, we found no d such that there could correspond
some n giving a counterexample to Theorem 3.

All computations were performed on a Silicon Graphics Indy workstation using
Mathematica 3.0.
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