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On triangular billiards
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Abstract We prove a conjecture of Kenyon and Smillie concerning the nonexistence of acute
rational-angled triangles with the lattice property

Mathematics Subject Classi¯cation 2000 58F99 11N25

Keywords Polygonal billiards Veech property Jacobsthal function

In a recent paper[4] on Billiards on rational-angled triangles R Kenyon and
J Smillie proved the following theorem:

Theorem 1 Let T be an acute non-isosceles rational angled triangle with angles

® ¯ and ° which can be written as p1¼ q p2¼ q and p3¼ q with q · 10000

Then T is a polygon with the lattice property if and only if ®; ¯; ° is one of the

following:

¼ 4; ¼ 3; 5¼ 12 ; ¼ 5; ¼ 3; 7¼ 15 ; 2¼ 9; ¼ 3; 4¼ 9 :

They further showed that the restricition on q may be dropped if the following
conjecture was true see [4] p 94f :

Conjecture 2 Let n; s; t be integers with n; s 1 1 · s; t < n Assume that
for all p with p; n 1 we have n

2 < ps mod n + pt mod n < 3n
2 Then one of

the following conditions hold true: n · 78 s + t n s + 2t n 2s + t n
or n is even and jt¡ sj

n
2

In this note we will prove this conjecture:

Theorem 3 Conjecture 2 is true

Note that the classi¯cation of non-obtuse rational angled triangles with the

lattice-property is complete since the cases of isosceles and right angled triangles

are completely solved in [4] too
By direct calculation R Kenyon and J Smillie showed that Theorem 3 is true

for n · 10000 We will use this fact at several steps in the proof
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The proof will depend on several facts concerning the distribution of relative

prime residue classes collected in the next Lemma We write g n for the Jacob-
sthal function given by the maximal di®erence of consecutive integers relatively
prime to n and n for the number of distinct prime factors of n

Lemma 4

1 We have g n · 2 n If n · 12 we have g n · n 2

2 Assume that a; d; n 1 Then in every interval [x;x + g n ] there is some

integer º such that n; dº + a 1
3 For all d > 2 there exists some a with d; a 1 and d

12 < a < 5d
12

4 If m is the product of the ¯rst n prime numbers then g n · g m
5 We have g 30 6 g 210 10 g 2310 14 g 30030 22 g 510510

26 g 9699690 34

Proof: The ¯rst statement was proven by Kanold[3] To prove the second
statement note ¯rst that it is trivial if d; n 1 for if dd0 ´ 1 mod n then
the integers dd0º + d0a are consecutive mod n and none is coprime to n
contradicting the de¯nition of g Now without loss we may assume that n is
squarefree If d;n e > 1 the integers dº + a are coprime to n if and only
if they are coprime to n e thus using the case n; d 1 we get that there is
some º 2 [x; x + g n e ] such that dº + a; n 1 The third statement follows

for d > 30 from the ¯rst one for 3 · d · 30 by direct inspection The fourth
statement was proven by Iwaniec[1] The ¯fth statement can be checked by direct
computation

Note that the fourth and ¯fth statement together greatly improve the ¯rst one

for n · 8
Note further that the asymptotic behaviour of g is much better understood

using e g the result of Iwaniec[2] it is easy to show that there are at most ¯nitely
many exceptions to conjecture 2 The di±cult part of the proof of Theorem 3 is to
give an upper bound for n and ¯nd properties on the would-be-counterexample
which makes it feasible to rule out these ¯nitely many values

To prove our Theorem we ¯rst note that we may choose s 1 since otherwise

we replace p by p0 ´ ps¡1 mod n Then we have n
2 + 1 < t < n¡ 2 In the

¯rst step we exclude odd values of n
Assume that n is an odd counterexample to Theorem 3 De¯ne the integer

k by the relation 1¡ 1
2k < t

n < 1 ¡ 1
2k+1 and a : t ¡ 1¡ 2¡k n Since n is

odd 2k is relatively prime to n hence we get 2k +2kt mod n > n
2 But we have

2kt 2k ¡ 1 n + 2ka hence 2k a + 1 > n
2 i e a > n

2k+1 ¡ 1 By the de¯nition
of k we have a < n

2k+1 thus t £n ¡1 ¡ 1
2k+1 ¢¤ Write t n ¡1¡ 1

2k+1 ¢ ¡ ®
Next we give an upper bound for 2k Write t n ¡ b The cases b 1

and b 2 are excluded since we would have s + t n resp 2s + t n If
p 2 h n

2 b¡1 ; n
b i we have pt mod n+p < n

2 thus if there is some p in this interval
relatively prime to n we are done Thus we have

n
b ¡

n
2 b¡ 1 < g n
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The left hand side is decreasing with b thus if b < pn the left hand side is at
least n pn¡2

pn pn¡1
and for n > 10000 this is > pn

3 Hence we obtain the bound
pn < 3g n By Lemma 4 this implies n · 4 thus g n · 10 and n < 300

Thus we may suppose b > pn
Let q < 2k+1 be an odd prime and de¯ne the integer l by the relation 2l <

q < 2l+1 Assume that q
6 jn Then q2k¡l; n 1 thus we get q2k¡lt mod n +

q2k¡l > n
2

Using the relation t n ¡1 ¡ 1
2k+1 ¢¡® with 0 < ® < 1 this becomes

q2k¡lt mod n + q2k¡l >
n
2

n¡
qn

2l+1 ¡ q2k¡l® + q2k¡l >
n
2

n
2 ¡

qn
2l+1 + q2k¡l > 0

Since q ¸ 2l + 1 this implies

0 < ¡
n

2l+1 + q2k¡l · ¡
n

2l+1 + 2k+1 · ¡
n

2l+1 + pn

hence 2l+1 ¸ pn Thus n is divisible by all odd primes · pn Using the

elementary bound µ n > n 2 where µ x Pp·x log p this implies 2n >
epn 2 which in turn implies n < 121 However Theorem 3 is true for all n <
10000 thus we conclude that it is true for all odd n

Thus assume that n; t is a counterexample to Theorem 3 with n even
We show that t cannot be too close to n 2 or to n The proofs for these two

cases run parallel and we will only give the ¯rst one Set t n
2 + b Let p be

any integer relatively prime to n in particular p is odd Then we have

pt
pn
2

+ bp ´ ¡
n
2

+ bp mod n

thus if n is a counterexample to our Theorem we conclude that bp
62 [n 2; 3n 2¡p] i e p

62 £
n
2b ; 3n

2b ¡ p
b ¤ The case b 1 is excluded thus the upper bound of this

interval is ¸ n
b thus in particular we have p

62 £
n
2b ; n

b ¤ But the only conditions

imposed on p were that p is odd and coprime to n Since all even integers are

not coprime to n we get that the interval £
n
2b ; n

b ¤ contains no integer relatively
prime to n Hence g n > n

2b thus b > n
2g n i e t > n 2 + n

2g n In the same

way we have t < n¡ n
2g n

Set w t; n As p runs over all integers relatively prime to n pt runs over
all integers with pt;n w and pt mod n has period n w Hence there is some

p < n w relatively prime to n with pt ´ w mod n But then pt mod n + p ·w + n w and this is · n 2 unless w 1; 2; n 2 or n The last two cases are

trivially excluded Thus we are left with the cases w 1; 2 Now t
n is a rational

number with denominator > pn thus applying Dirichlet's Theorem we ¯nd an
integer d ·pn and some e · d such that

¯
¯

dt
n ¡ e

¯
¯

< 1pn
Assume that d 1 Then

¯
¯

t
n ¡ e

¯
¯

< 1pn
and because n 2 < t < n we

conclude t > n ¡ pn Together with the bound proved above we obtain the
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inequality pn > n
2g n i e 2g n > pn Using the ¯rst statement of Lemma 4

this yields n · 4 thus n < 1156 but for n < 10000 the Theorem is already
proven In the same way we exclude the case d 2 Now assume d > 2 Then by
Lemma 4 statement 3 we ¯nd some a relatively prime to d with d

12 < a < 5d
12

Let p be an integer relatively prime to n which also satis¯es p ´ ae¡1 mod d
Note that the right hand side exists since e; d 1 Write p kd + a0 Then
we have

pt
pen

d
+ µ

ppn
d

ken + a0en
d

+ µ
ppn

d ´
an
d

+ µ
ppn

d
mod n

where µ is some real number of absolute value < 1 But pt mod n is > n
2 ¡ p

thus either the right hand side is > n
2 ¡ p which yields

an
d

+ ppn
d

>
n
2 ¡ p

or the right hand side is negative which yields

an
d ¡

ppn
d

< 0

From now on we will only consider the ¯rst inequality because the second one

can be dealt with similarly but gives a little stronger bounds By the choice

of a we have a d · 5 12 thus we get p
pn
d + 1 > n 12 By Lemma 4

statement 2 p can be chosen to be · d g n +1 Thus we obtain the inequality
pn+d g n +1 > n 12 Since d · pn we ¯nally conclude g n > pn 24¡1

The bound g n < 2 n shows that this is only possible for n · 9 Now
the improved bound g n · n 2 lowers the bound to 7 and we can use the

¯fth statement from Lemma 4 to conclude n < 24
¢

27 2 thus n · 6 and
n < 24

¢
23 2 304704

Assume that p is some prime number such that the least positive residue of
ep mod d is in the interval [d 12; 5d 12] Then by the argument above we

get p
pn
d + 1 > n 12 or pjn Hence all primes p which satisfy this congruence

condition have to divide n By the bounds given above it su±ces to ¯nd 7 such
primes to exclude the pair n; d

To ¯nish the proof of Theorem 3 note ¯rst that d · p304704 552 Choose

some d and compute pmax
10000

100 d+1
Count the number of residue classes a

relatively prime to d with d 12 < a < 5d 12 and call this number N Count the

prime numbers up to pmax in all reduced residue classes mod d and choose

those N sequences with the least number of primes in it If n is a counterexample
to Theorem 3 and d is corresponding in the sense described above then n is
divisible by all these prime numbers in particular there are at most 6 such primes

Doing this for all d · 552 we found no d such that there could correspond
some n giving a counterexample to Theorem 3

All computations were performed on a Silicon Graphics Indy workstation using

Mathematica 3 0
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