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Modular categories of types B,C and D

Anna Beliakova and Christian Blanchet

Abstract. We construct four series of modular categories from the two-variable Kauffman poly-
nomial, without use of the representation theory of quantum groups at roots of unity. The spe-
cializations of this polynomial corresponding to quantum groups of types B, C and D produce
series of pre-modular categories. One of them turns out to be modular and three others satisfy
Bruguieres’ modularization criterion. For these four series we compute the Verlinde formulas,
and discuss spin and cohomological refinements.

Mathematics Subject Classification (2000). 57M25, 57TR56.

Keywords. Modular category, modular functor, TQFT, 3-manifold, quantum invariants, Ver-
linde formula

Introduction

Modular categories are tensor categories with additional structure (braiding, twist,
duality, a finite set of dominating simple objects satisfying a non-degeneracy axi-
om). If we remove the last axiom, we get a pre-modular category. A pre-modular
category provides invariants of links, tangles, and sometimes of 3 -manifolds. Any
modular category yields a Topological Quantum Field Theory (TQFT) in dimen-
sion three [18].

In this paper we give an elementary construction of modular and pre-modular
categories arising from the Kauffman skein relations, without use of the repre-
sentation theory of quantum groups at roots of unity. Our method is based on
the skein-theoretical construction of idempotents in the Birman-Murakami-Wenzl
(BMW) algebras given in [2]. This work follows the program of Turaev and Wenzl
[19, 20]. We give four specifications of parameters « and s (entering the Kauff-
man skein relations) which lead to different series of modular categories. In each
case, the quantum parameter s is a root of unity and 4« is a power of s. The

order | of s? plays a key role in the discussion. When [ is odd, then either
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s8 = —1 or s = 1. We note that the two cases are quite different: only one

of them lead to a modular category, the other one produces a non-modularizable
pre-modular category.

It is well-known that the link invariant associated with the fundamental rep-
resentation of the quantum group of type A, is a specialization of the Homfly
polynomial. Taking the fundamental representations of the quantum groups of
types B,, C, or D, one obtains specializations of the Kauffman polynomial
[17]. More generally, with each of these quantum groups at a root of unity ¢ a
pre-modular category can be associated [9]. The order of ¢ determines the level
k of the category. It turns out that categories obtained from the quantum groups
of types A, and Ay, where g is (n+ k) th root of unity, are isomorphic; here
one has to consider either a non standard choice of the framing parameter, or the
projective subcategory. The isomorphism interchanges the rank n and the level
k of the category and it is known as the level-rank duality. This duality has no
natural explanation in the context of quantum groups, because the roles of the
parameters n and k are completely different there.

In our setting, both parameters n and k serve to restrict the size of the
Weyl alcove, and we have natural symmetries interchanging them. Therefore,
each of our (pre-)modular categories has its level-rank duality partner. In fact,
all our specializations of parameters can be interpreted in two different ways as a
quantum group specialization. Accordingly, we denote our categories by pairs of
the letters B, C and D (we use just one of them if both coincide). Our main
results can be formulated as follows.

e We recover the symplectic (C in our notation) and BC series of modular
categories already obtained by Turaev and Wenzl [20]. These series are con-
structed by killing negligible morphisms in the idempotent completed Kauffman
category. In the BC case we further use Bruguieres’ modularization procedure
[7]. This could be avoided here by considering a subcategory (see [20, 9.9]).

¢ We obtain two new series of modular categories in the orthogonal case:
one in the even orthogonal case (D series) and one in the mixed odd-even
orthogonal case ( BD series). All of them are constructed by using Bruguiéres’
modularization procedure.

e Except for the even orthogonal categories, we describe explicitly the repre-
sentative sets of simple objects and state the Verlinde formulas, which give the
dimensions of the TQFT modules. In the even orthogonal case, the complete
description of the set of simple objects depends on a tricky computation which
has still to be done.

e We find a correspondence between our categories and categories obtained
by the quantum group method. We show that the categories constructed here
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give a complete set of 3-manifold invariants that can be obtained from quantum
groups of types B, C and D by using non-spin modules.

The paper is organized as follows. In the first section we give the general
definitions and theorems concerning pre-modular and modular categories. This
includes Bruguieres’ modularization criterion, and an explicit description of a mo-
dularization functor for a modularizable pre-modular category whose transparent
simple objects are invertible. In the second section we recall the main definitions
and properties of the minimal idempotents in the BMW algebras constructed in
[2]. In the third section we construct the completed BMW category and use it in
order to define series of pre-modular categories. In Section 4, studying transparent
objects in these categories, we show that the symplectic category is modular and
three other series satisfy Bruguieres’ modularization criterion. Then for modular
categories we describe the representative sets of simple objects, give the Verlinde
formulas and discuss spin and cohomological refinements. In the last section we
explain how our pre-modular categories can be interpreted in terms of quantum
groups.

Conventions. The manifolds throughout this paper are compact, smooth and
oriented. By a link we mean an isotopy class of an unoriented framed link. Here,
a framing is a non-singular normal vector field, up to homotopy. By a tangle
in a 3-manifold M we mean an isotopy class of a framed tangle relative to the
boundary. Here the boundary of the tangle is a finite set of points in M , together
with a nonzero vector tangent to M at each point. Note that a framing together
with an orientation is equivalent to a trivialization of the normal bundle, up to
homotopy. By an oriented link we mean an isotopy class of a link together with
a trivialization of the normal bundle, up to homotopy. By an oriented tangle
we mean an isotopy class of a tangle together with a trivialization of the normal
bundle, up to homotopy relative to the boundary. Here the boundary of the tangle
is a finite set of points in M , together with a trivialization of the tangent space to
OM at each point. In the figures, a convention using the plane gives the preferred
framing (blackboard framing).

1. Pre-modular categories and modularization
1.1. Pre-modular and modular categories

A ribbon category is a category equipped with a tensor product, braiding, twist
and duality satisfying compatibility conditions [18]. If we are given a ribbon
category A, then we can define an invariant of links whose components are colored
by objects of A. This invariant extends to a representation of the A -colored
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tangle category and more generally to a representation of the category of A-

colored ribbon graphs [18, 1.2.5]. Using the ribbon structure of A, we get traces

of morphisms and dimensions of objects, for which we will use the terminology
quantum trace and quantum dimension. More precisely, for any X € Ob(A) and

f € End(X) we denote by (f) € End(trivial object) the quantum trace of f

and by (X) = (lx) the quantum dimension of X . Throughout this paper [Lx

denotes the identity morphism of X .

Let k be a field. A ribbon category will be said to be k-linear if the Hom
sets are k-vector spaces, KEnd(trivial object) = k, and composition and tensor
product are bilinear. We call an object X of A simple if the map v — wulx
from k = End(trivial object) to End(X) is an isomorphism.

Definition 1.1. A modular category [18], over the field k, is a k-linear ribbon

category in which there exists a finite family I" of simple objects satisfying the

four axioms below.

1. (Normalization axiom) The trivial object is in T".

2. (Duality axiom) For any object A € T", its dual A\* is isomorphic to an object
inI'.

3. (Domination axiom) For any object X of the category there exists a finite de-
composition Lx =, fi lx,g:, with A\; €I f; € Hom(X, X\;), g: € Hom(A;, X)
for every 7.

4. (Non-degeneracy axiom) The following matrix is invertible.

S = (Saw)ruer

where Sy, € k is the endomorphism of the trivial object associated with the

(A, ) -colored, 0-framed Hopf link with linking +1 .

It follows that I is a representative set of isomorphism classes of simple objects.
If we remove the last axiom, we get a definition of a pre-modular category.

Definition 1.2. An object A of a pre-modular category A is called transparent,

if for any object w in A
\/ B y’
x\u /7» u .

Such an object is also called a central object. It is enough to have the above
equality for any p in a representative set of simple objects. Note that a category
containing a nontrivial transparent simple object can not be modular, simply be-
cause the row in the S-matrix corresponding to this transparent object is colinear
to the row of the trivial one. In the next subsection we show that the absence of
nontrivial transparent simple objects implies (under a mild assumption) that the
category is modular.
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1.2. Properties of pre-modular categories

We will first give some general facts about pre-modular categories. Let A be a
pre-modular category and let T'(A) be a representative set of isomorphism classes
of its simple objects. We denote by w the Kirby color, ie. w = Zker(A)(A))\.
We use here the same notation as before for traces and dimensions. In addition,
we suppose that A has no nontrivial negligible morphisms (we quotient out by
negligible morphisms if necessary). Note that a morphism f € Homa(X,Y) is
called negligible if for any g € Homa (Y, X) (fg) =0.

Proposition 1.1. (Slding property) For every v € I'(A), the following holds on
E'I’LdA(I/) s

Here the dashed line represents a part of the closed component colored by w.
This part can be knotted or linked with other components of a ribbon graph
representing the morphism. Note that the morphism is unchanged if we reverse
the orientation of this closed component.
Proof. For ¢;,d; e T(A), i=1,..,n, j=1,..,m, we put
Homa(c1 ® ... @ Cpydi ® ... @ dpy ) i= Hgll""ﬁ:”.

£ & 0 Av A A 5 2 v
With this notation the modules H;", Hp,., H).", Hp\y. . HYY and HY,,
are mutually isomorphic, as well as the modules H,,,«x+, H Avp”and all obtained

from them by cyclic permutation of colors. For example, the map ¥ : H 2" — H ;),,*

2

and its inverse are depicted below.

AV V7 I8 v A v
— . [ g ]
m n u

Identifying these modules along the isomorphisms we get a symmetrized multi-
plicity module H K - here only the cyclic order of colors is important. We will
represent the elements of H**" by a circle with one incoming line (colored with
1) and two outgoing ones (colored with A and v ), the cyclic order of lines is
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(Avp) . The module H#"™" is dual to H**" . The natural pairing is non-
degenerate, since we have no negligible morphisms. We denote by a; , i € M#" |
a basis of H™*" _and by b; the dual basis with respect to this pairing. Applying
the domination axiom we get that the natural map @,H**" ® H*' " — Hv
is an isomorphism. By writing the identity of A® v in the basis corresponding to
(a; ® bj), we get the following decomposition formula (fusion formula):

AN VA

| = 3 )

AET(A) Sy A seivpt

= > > Ml

A gelivp®

nel(A)

In the first and third equalities we use the fusion formula, the second equality
holds by isotopy.
O

A more general statement is shown in [1].

Lemma 1.2. (Killing property) Suppose that {(w) is nonzero. Let A € T'(A),
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then the following morphism is nonzero in A if and only if A is transparent.

>
B

Proof. If A is transparent, then this morphism is equal to {w) I, , which is nonzero.
Conversely, if this morphism is nonzero, it is equal to ¢l for some 0 # c € k.
Then, for any v € T'(A), we have

(

The second equality holds by the sliding lemma. O

Proposition 1.3. A pre-modular category A with (w) # 0 which has no non-
trivial transparent simple object is modular.

Proof. We have to check the non-degeneracy axiom. Let us denote by S the matrix
whose (A, @) entry is equal to the value of the 0-framed Hopf link with linking
-1 and coloring of the components A, i. Then we have that

k<j> _ S and M<>V> =
v

| {v)

v AY

We deduce that the (A, ) entry of the matrix SS is equal to the invariant of the
colored link depicted below.

‘w

v
v)

—~

By using (1) and the killing property we obtain the formula
SS = (W)l ,

where [ is the identity matrix, which proves the invertibility of the S matrix. O
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1.3. Bruguiéres’ criterion

A process of constructing modular categories from pre-modular ones is called a
modularization. Our reference for such construction is Bruguieres” work [7]. See
also [13] for an analogous development in the context of *-categories. Bruguiéres
considers abelian ribbon linear categories. Direct sums may be defined in a formal
way, and a pre-modular category with direct sums is an abelian category. From
now on our pre-modular categories are supposed to be equipped with direct sums
(we add them if necessary) and hence are abelian.

Definition 1.3. A modularization of a pre-modular category A is a modular ca-
tegory A together with a ribbon k-linear functor F : A — A which is dominant,
i.e. any object of A is a direct factor of F(X) for some A € Ob(A).

Definition 1.4. A simple object A of a pre-modular category A is bad if for any
p in a representative set of simple objects T'(A), one has Sy, = (A\){u) .

Definition 1.5. For any A € T'(A), its twist coefficient ¢, is defined by the

equality given below.
p l A
A A

The following fact was claimed in Corollary 3.5 of [7].

Theorem 1.4 (Bruguiéres’ criterion). Let k be an algebraically closed field of
zero characteristic. Then an abelian pre-modular category A over k is modulari-
zable if and only if any bad object X is transparent, has twist coefficient tx = 1
and quantum dimension (X) € N.

If A is modularizable, then its modularization is unique up to equivalence.
Remark. Clearly, any transparent object is bad. If (w) # 0, then any bad object
is transparent. This follows from the killing property. Using this fact, Bruguieres
statement can be slightly simplified [1].

1.4. Modularization functor

We want now to describe the modularization functors explicitly. The main idea
consists of adding morphisms to the pre-modular category, that make transparent
simple objects isomorphic to the trivial one.

For the remainder of this section we consider a pre-modular category A with
(w) # 0, whose transparent simple objects have twist coefficient and quantum
dimension equal to one. This corresponds to Bruguieres’ particular case [7, Section
4] and to Miiger abelian case [13, Section 5]. The tensor product of two transparent
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simple objects is then a transparent simple object, and isomorphisms classes of
transparent simple objects form a group G under tensor multiplication. We will
follow the description of the modularization functor given in the proof of [7, Lemma
4.3]. As before, let T'(A) be the representative set of simple objects of A.

If A is self-dual (i.e. any object is isomorphic to its dual), then G is isomorphic
to (Z/2Z)I71, where T is the set of independent generators of G. This covers
all cases considered in the next sections.

In general, G is isomorphic to @Y _Z/k;,Z, ki 1|k; , and admits the following
presentation by generators and relations: G = {t1, ...7tp;tfi =1,i=1,..,p}. We
fix, for each i, a transparent simple object representing the 7th generator of G
and denote it by the same letter ¢;. Let 7 = {¢1,...4,} be the set of generating
transparent simple objects. We denote by G the set of representatives of G
defined by 7 ,i.e.

Gr = {®it?i;ti eT,0<n; < kl}
Furthermore, we choose for each ¢ an isomorphism &; : fz ~ trivial object .

Let us define a category A’ as follows. We set Ob(A’) = Ob(A), we will

however use the notation F for the functor from A to A’, and
Homa/ (F(X),F(Y)) :=®wea, Homa(X, Y @ W) .

For composition, we proceed as follows. Let f € Homa(X,Y ® W), g €
Homa(Y,7Z @ W) with W, W' € G7. Since the objects of Gy are transpa-
rent, we get a canonical isomorphism X : Z@ W @ W — Z® (®;t;%). We define
F(g)F(f) =X(g® lw)f, if n; <k; for every i; otherwise we compose the right
hand side of the previous formula with the isomorphisms 1,,, 4, ® ®; in order to
reduce the exponents. Associativity results from the property

P l, =1, 0 (2)

which is a consequence of

1, ®1;, = 3
t: ® 1y, ti\ [ (3)
These are properties ( F ) in [7]; here we use that the transparent simple objects
are invertible, so that ¢; ® ¢; is simple, and that their quantum dimensions and
twist coeflicients are equal to one.
We define the category A as the idempotent completion of A’. It results from
[7, Section 4] that A is a modularization of A .

Remark. The category A is called sometimes a modular extension of A by
G . Analogously, a modular extension of A by any subgroup G’ of G can be
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constructed. This gives a pre-modular category whose group of transparent objects
is G/G’.

The next problem is to construct a representative set I'(A) of simple objects
of A. There is an action of the group G on the set I'(A) of simple objects of A
by tensor multiplication. For X € T'(A), the dimension of Endz(F(X)) is equal
to the order d of the stabilizer subgroup Stab(X):={g€ Ggo X = X}.

If Stab(X) is cyclic, then the algebra Endj (F(X)) is abelian; it is isomorphic
to the group algebra of Stab(X), and F(X) decomposes in the category A into
d non-isomorphic simple objects.

In the non-cyclic case it can be shown (cf. [13, Section 5]) that Endx (F(X))
is a twisted group algebra. The computation of the cocycle describing this twisted
group algebra has to be done.

1.5. Generalized ribbon graphs

By Turaev’s theorem [18, Ch. I, Theorem 2.5] the morphisms of a ribbon category
A can be represented by A -colored ribbon graphs with coupons. More precisely,
there exists a functor from the category Riba of colored ribbon graphs to the
category A which respects the structures. We can extend the category Rib, by
allowing tangles such that one of the ends of a band colored with an object ¢ of
T is free. This means, it is connected neither to a coupon, nor to the source, nor
to the target. An example of such a tangle is depicted below. It is considered as
a morphisms from Y to X .

X

Y

This defines the extended category ﬁ\ﬁ)AT, which is also a ribbon category. We
extend the invariant of closed colored graphs, i.e the map Endg;, (trivial) — k
given by Turaev’s functor, in the following way. An extended closed colored graph
is sent to zero, if the number of its free ends colored by #; is not divisible by k;
for some 4. Otherwise, it is sent to the invariant of Ribs for a graph obtained
by closing the free ends with @, .

Using the properties (3), (2), we can show that Turaev’s functor extends to a

ol o -
functor from Rib, to the modular category A which coincides with the invariant
described above for closed morphisms.
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Remark. The modularization can be obtained from the ( k-linear) category Riby
by first quotienting by negligible morphisms (using the invariant

Endgp, (trivial) — k described above) and then completing with idempotents.
Direct sums are not needed here. This process was sketched in [4].

2. Idempotents of BMW algebras
2.1. Kauffman skein relations

Let M be a 3-manifold (possibly with a given finite set [ of points on the bounda-
ry, and a nonzero tangent vector at each point). Let k be a field containing the
nonzero elements o and s with s? # 1.

We denote by S(M) (resp. S(M,!)) the k-vector space freely generated by
links in M (and tangles in M that meet M in !) modulo the Kauffman skein

relations:
K| 2)
O-a

1
LIO = (%H) L.

We call S(M) the skein module of M . For example, S(S*) =~ k.

T

2.2. Birman-Murakami-Wenzl category

The Birman-Murakami-Wenzl (BMW) category K is defined as follows. An object
of K is a standard oriented disc D? C C equipped with a finite set of points and
a nonzero tangent vector at each point. Unless otherwise specified, we will use
the second vector of the standard basis (the vector v/—1 in complex notation). If
8= (D% 1) and v = (D? 1;) are two such objects, the module Homk(j3,v) is
defined as the skein module S(D? x [0, 1],y x 0I1{; x 1) . Composition is given by
stacking of cylinders. We will use the notation K(j3,v) for Homk(f,v) and Kg
for Endk(3) . The tensor product is defined by using j = j_11Ij; : D2IID? — D?
where, for e = =£1, j. : D* — D? is the embedding which sends z to &+ 1z.

The BMW category is a k-linear ribbon category. As before, we denote by
(f) € k the quantum trace of f € Kz. The BMW categories defined using the
parameters (o, s) and (o, —s~ 1) are isomorphic.
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Let us denote by n the object of K formed with the n points {(25 — 1)/n — 1;
j =1,..,n} equipped with the standard vector. Composition in the category
K provides a k-algebra structure on K,, = Endk(n), and we get the Birman-
Murakami-Wenzl (BMW) algebra.

The BMW algebra K,, is a deformation of the Brauer algebra (i.e. the cen-
tralizer algebra of the semi-simple Lie algebras of type B,C and D). It is known to
be generically semi-simple and its simple components correspond to the partitions

A=A, 0) with (A=Y =n—-2r, r=0,1,..,[n/2].

2.3. Idempotents

Let A be a partition with |A| = n. We denote by Oy the object of K formed
with one point for each cell of the Young diagram associated with A. If ¢ has
coordinates (4,7) (4-th row, and j-th column), then the corresponding point in
D? is % In [2] we have constructed minimal idempotents g € Ko, . Let
us recall their main properties in the generic case (i.e. with k = Q(a;, s) ).

Branching formula:

heli= >

ACp
[pl=Ix]+1

Here standard isomorphisms are used, in the first tangle between Oy®1 and O,
in the second tangle between [, ® 1 and [, . The second tangle times % will
be further denoted by @ ). Note that the quantum dimension (A) is nonzero

in the generic case.

Braiding coefficient: Let i) uw — XA = ¢ or 4) A\ — pu = ¢, where the cell ¢ has
coordinates (4,7). Let cn(c) be the content of the cell ¢: en(c) =j —i. Then
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o
) P _ SZC"(C)QM; i) A — a2 720n(c)g( - (5)
Ju y

Twist coefficient: A positive 2m -twist of |A| lines with gy inserted contributes
the factor alM g2 cercn(e)

— oA g2 cencn(e) (6)

Quantum dimensions: Let n € Z , we set
as® —alsT? s —s
[Plo=——— [nl=

s—s

—
s—s
Then the quantum dimension of A is given by the following formula
A — Mo+ [PL(7, 7)) dx(4,7)]
M= W= I] 23 I dlsils

Bes [P1(7,7)] Fex [ 5)]

#J

Here, hi(i,7) denotes the hook-length of the cell (i,5),i.e. hl(4,j) = X\ + )\JV -
i—j+1, A is the length of the i-th column of A and dyx(i,7) is defined by

dx(i, ) ANitA—i—j+1 if i<j
7 =
Al bt N =N it -1 0 i

Observe that
<)\>o¢,s - <)\>7ogvfs - <)\>o¢*175*1 - <)\v>a,75"1 * (8)

The formula (7) was first proved by Wenzl [21, Theorem 5.5]. If we define d} (i, 7)
by
(i ‘){/\1+Aj—i—j+1 if i<y
N =N it i—1 i iz,
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then we can write Wenzl’s formula as follows.
o' sEIER _ e mdalg)

N = H o Shl(5,3) _ g Shi(i,3) H

(#,9)EX (6,5)EX

b g3 Gd) | g1 g bdhG)

S%hl(ivj) + sféhl(ivj)

2.4. Idempotents in the non-generic case

By a non-generic case we understand a choice of parameters in the field k such
that s is a root of unity, or +a is a power of s. A typical example is given by
roots of unity in a cyclotomic field. As in the generic case, the idempotents g, are
obtained recursively by lifting to the BMW category the corresponding idempotent
yx in the Hecke category. The minimal idempotent y can be defined provided
the quantum integers [m] are not zero for m < Ay + AY , and g, can further be
obtained provided for some p C A, |p| =|A—1, g, is defined and its quantum
dimension is not zero. Under the above conditions, Wenzl path idempotent [21]
corresponding to a standard tableau ¢ with shapes A(t) = A and A(¢') = p is
defined and could be used here. The minimality property of the idempotent g, is

Ko, 9, = ko -

The generic formulas of the previous subsection hold provided they make sense. In
particular the branching formula is valid provided the minimal idempotents exist
for all diagrams obtained from A by adding one cell.

We will consider in the following the case where 4+« is a power of s, and
discuss which idempotents are obtained depending if s is a root of unity or not.
As explained in [21], in this case if we quotient out the BMW algebra by negligible
morphisms (the annihilator of the trace), then we get a semi-simple algebra.

If neither o, nor —a are powers of s but s is a root of unity, then we obtain
minimal idempotents corresponding to partitions A with A; +AY <1+ 1, where
[ is the order of s?. These diagrams are called [-regular in [21]. If we consider a
diagram g with gy + pY =1+ 1, obtained from an [-regular diagram by adding
one cell, then the generic element Y/u = [l]g, still can be defined and has nonzero
trace. This element satisfies ?“KDMY/M =0, since [l] =0 in our specialization.

Lemma 2.1. The element YM belongs to the radical of the algebra Kp, (the
intersection of the mazimal left ideals).

Proof. Let J be a maximal left ideal of K, . Suppose that J does not contain

57,“ then, using maximality of J, we get that the left ideal J + KDHY/M is equal
to Kp, . We further have that Io, = j + aY/“ J€J, aeKp,, and so
Y, =Y,j +Y,aY, =Y, is in the ideal J, which contradicts the hypothesis. [
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This shows that the algebra Kp, is not semi-simple in this case and if we
quotient out by negligible morphisms we will still have a non semi-simple algebra.

3. The completed BMW categories

In this section we define the completed BMW category and discuss specializations
of parameters for which the quotient of the completed BMW category by negligible
morphisms is a pre-modular category.

3.1. Completed BMW categories

Let C be a set of Young diagrams, such that the corresponding minimal idempo-
tents exist. This means that for each element of C the conditions described in
Section 2.4 are satisfied. In each case considered further this set will be the maxi-
mal set in which the recursive construction of the idempotents ¢, works (this set
corresponds to the affine Weyl alcove in the quantum group description).

We define the completed BMW category KC as follows. An object of K€ is
an oriented disc D? equipped with a finite set of points, with a trivialization of
the tangent space at each point (usually the standard one), labeled with diagrams
from C. Let g = (D%,1) = (D% XM, X)) be such an object. Then its
expansion E(3) = (D?,E(l)) is obtained by embedding the object [y in a
neighborhood of the point labeled by A® | according to the trivialization. The
tensor product g ay ® ... ® gaemy defines an idempotent 7z € Kz. We define
Homge (B,7) = nsK(E(3), E(y))m, . We will use the notation K¢(8,7) and Kg
similarly as in K.

The duality extends to K¢, and we obtain again a k-linear ribbon category.
Observe that the dual of an object is isomorphic to itself in a non-canonical way.

The equality of the categories K for the parameters (a,s) and (a, —s1)
extends to an isomorphism between the categories K¢ and K¢’ , where CY is
obtained from C by transposition of diagrams (i.e. exchange of rows and columns).
For further discussion of duality, it is useful to note that this change of the parame-
ter s switches a primitive [ th root of unity, into a primitive 2/ th root of unity if
! is odd.

We denote by A the object of K¢ formed by a disc with the origin labeled
by A. The minimality property of the idempotent g, implies that A is a simple
object in KC.

Recall that a morphism f € K¢(a, 3) is negligible if for any g € K¢(3,a)
one has (fg) = 0. Negligible morphisms form a tensor ideal in the category, and
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we obtain a quotient K¢/Neg which is a k-linear ribbon category. The duality
axiom is trivially satisfied here. Our aim is to discuss in which case this quotient
category happens to be pre-modular.

We first consider the generic case. Here the set C contains all Young diagrams.
We see from the branching formula that the completed category is semi-simple.
Isomorphism classes of simple objects correspond to all Young diagrams, so that
the category is not pre-modular. Moreover, from the braiding formula (5) we see
that there is no non-trivial transparent simple object, so that we could not get
a modularization even if we would consider an extended version of Bruguieres’
procedure.

We already have considered in Section 2.4 the case where s is a root of unity,
but neither o nor —a is a power of s. Here the quotient of the idempotent
completed category by negligible morphisms will not be semi-simple, because some
endomorphism algebras are not.

We will now consider the specializations where £« is a power of s. Recall
that INT! and K+1 denotes the column and the row Young diagrams with N+ 1
and K+ 1 cells, respectively. Let us consider the following system of equations
(INt1y =0 and (K + 1) =0, with N and K minimal. Note that, if +a is a
power of s, then at least one of these two equations has a solution. The first one

_g2N+1

is equivalent to « = or = 4sN~1. We have to consider 4 cases.

Case Cp: a=—s"T1 (N=n),

Case B,: a=s" (N=2n+1),

Case B_,: a=—s™ (N=2n+1),

Case D, : a=s""1 (N=2n),

The interpretation of the notation C,,, B,,, D,, is that the given specialization of
the Kauffman polynomial is obtained by using the fundamental representation of
the corresponding quantum group. The specializations B,, and B_,, are similar,
but they are not equivalent; one should think of the fundamental object in the B_,,
specialization as the deformation of the fundamental representation of so(2n+1),
with negative dimension —(2n+1).

The discussion of the equation (K + 1) is similar. Note that quantum dimen-
sions are unchanged if we replace s by —s~! and interchange rows with columns.
Here are the four cases.

Case Cp: a=s2k"1 (K=k),

Case By: a=s2F (K=2k+1),

Case B 1. a=—s2F (K=2k+1),

Case Dg: a= —s 2+ (K =2k),

We observe that, if (1IN*1) = (K41) =0 forsome N, K, then s is a root of unity.
We will consider the four cases corresponding to the vanishing of (IN+1)  and then,
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according to the order of s?, combine them with the condition corresponding to
the lowest K for which (K+ 1) vanishes.

The cases o =41, o = —s and o« = s~ ! will be excluded from the general
discussion given in the next subsections. If o = £1 we get a category with two
simple objects: the trivial object and A = 1. The second object is transparent
and the category is modularizable iff o« = 1. The corresponding link invariant is
trivial. If & = —s or « = s~ ', then the Kauffman polynomial is zero.

The case o = s (resp. a = —s~!) will be included in the general discus-
sion and give the categories DV'* | DBL* and DB * (resp. D¥! BD®! and
BD~*1). Note that the corresponding invariant of a link L = (Ly,...,L,,) is
equal to 282 :Lili  Here §I = m is the number of components, and L;.L; is
the self linking number (the framing coefficient). The category is modularizable if
s is either a primitive root of order 20, [ even, or a primitive root of odd order [.
One can show that the corresponding invariants of 3-manifolds are those known
as the U(1) invariants [12].

3.2. The symplectic case

In this subsection let o = —s***1 > 1. (For n =1 the specialized Kauffman
polynomial is the Kauffman bracket, and we will recover the TQFT’s obtained in
[5].)

If s is generic, then we can construct the idempotent ¢, for A in the set
L(Cp) ={MA <nt+1, A) <n},
and A has non-vanishing quantum dimension (see formula (9)) if it belongs to
P(C) = (A <)

From the branching formula we get that the category KI'(Cn) /Neg is semi-simple;

we will give more details in the proof of Proposition 3.2. A representative set of

simple objects is the infinite set I'(C,,), so that the category is not pre-modular.
The formula for the quantum dimension can be simplified as follows (see [2,

Prop. 7.6], compare [8]).

Proposition 3.1. Let o = —s*" "1 with s generic. Then, for a partition \ =

(A1, .y A ), we have

o 20+ 2+ 22y — 24]

[
& Prt2-2]

O = (=D

" Rr+2—i— 4] — i
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Let us suppose now that o = —s?"*1 with s2 a primitive [th root of unity
and [ > 2n+ 1. One can check that the above formula for quantum dimensions
is still valid provided [ > 2n+ 1. The condition { > 2n + 1 ensures that 17! is
the smallest column with vanishing quantum dimension. Note that for [ =2n+1
we have o = +1, and for [ = 2n+ 2, we have o« = —s. In the following we
discuss the equation (K4 1) =0 with K minimal according to { > 2n+ 3.

o If I >2n+4 iseven, then K=1/2—n—1=k, and a = —s?"t! = g7 261

This will be the C,, - Cy specialization.

o If I>2n+3 isoddand s = —1,then K=2k+1, o = —s??t1 = g2k

This will be the C,, - By specialization.

o If I >2n+3isoddand s =1, then K=1—-2n=2k+1, a= -1 =

s72F _ This will be the C,, - B_, specialization.

The specializations C,, - By and C,, - B_; are similar because of the symmetry
(o, 8) < (—a,—s) for quantum dimensions. Note however that the twist coeffi-
cient is not preserved under this symmetry, so that the modularization problems
will be distinct. We will show that the C, - C; and C,, - By specializations lead
to modular categories.

C™* category. Let us consider the C, - C; specialization of parameters with
nk>1,ie o=—s>"1 =321 and s is a primitive 2{th root of unity with
I =2n+ 2k + 2. We will use the following sets of Young diagrams:

T(C™F) = {MA <k +1,0 < kA <n+ 1A <n},
D(C™F)Y = A <K, AY <n}.

We can construct the minimal idempotent for each A € I'(C™*) | since the quan-
tum dimensions of these objects given by Proposition 3.1 do not vanish. Let
A€ T(C™E) | If p is obtained from A by adding one cell, then g, € T(C™*) can
be constructed. Moreover, if g is not in T'(C™*) | then (u) vanishes, and so 7,
is negligible.

The category C™* is defined as the quotient of the category K@) by
negligible morphisms.

CB™" and CB™ ¥ categories. In the case of the C,, - By (resp. C,-B_y)

specialization with n,k > 1 we have a = —s**"1 = 372 and s is a primitive

20 th root of unity (resp. a = —s?"t1 = —s72% and s is a primitive [th root of
unity), { =2n+ 2k + 1. We proceed as above with

C(CB™*) =T(CB™ %) = {\ A1+ X <26+ 2,0 <n+1,\ <n},
L(CB™F) = T(CB™ %) = {\ \{ + Xy < 2k + 1,0 < n},
CB™ = KI(®B™) /Neg, CB™—* = KI(CB™ ™)/ Neg .
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Proposition 3.2. For n,k > 1, the categories C™* , CB™* and CB™* with
representative sets of simple objects T(C™F) , T(CB™*) and I'(CB™ %), respec-
tively, are pre-modular.

Proof. We have to prove the dominating property. The proof is the same in all
cases, so we will use the notation I', I' for T'(A), I'(A) where A is one of
the categories mentioned in the claim. It is enough to show that the identity
morphism of the object n decomposes using the simple objects in I'. This is
done by induction on n. For the step from n to n+ 1, we have to decompose
I ® Iy, with A € I'. The key point is that any diagram obtained from A by
adding one cell is in T'. Hence we have that the branching formula holds and
gives the required decomposition, because the idempotents indexed by partitions
in T\ T are negligible. O

3.3. The odd orthogonal case

2n

We first consider the B,, specialization o = s . If s is generic, then we can

construct the idempotent g, for A in the set
LBn) ={NA] +2Ay <2n+2},

and A has non-vanishing quantum dimension (see formula (9)) if it belongs to
P(B,)={XNA +A) <2n+1}.

As we did before, we get that the category KT(Br) /Neg is semi-simple. A rep-
resentative set of simple objects is the infinite set T'(B,,), so that the category is
not pre-modular.

We have the following specialized formula for the quantum dimensions (see [2,
Prop. 7.6]).

Proposition 3.3. Let o = 7

, with s generic. For a partition A = (A1, ..., \n),

we have

<A>:ﬁ [+ Ay —3+1/2] I 20 4+ X =i+ X =5+ 1[N — i = Aj + 5]
U551 Br i~ 1] 1

1<i<j<n

In this case, the object 12711 plays a special role.

7 and s is generic. Then the object 12711

Lemma 3.4. Suppose that o = s
is transparent and it is the unique nontrivial transparent object in T'(B,). lIts

quantum dimension and twist coefficient are equal to one.

Proof. An object A € T'(B,,) is transparent if and only if for any (non-negligible)
4 in the branching formula for A, the braiding coefficient is equal to one. Indeed,
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if all braiding coefficients are equal to one, by summing over g the left hand sides
and right hand sides of (5) and applying the branching formula we have

]

Using this equality repeatedly we conclude that A is transparent. Conversely, if
A is transparent, its braiding coefficients are trivial.

The object 127t has only one braiding coefficient corresponding to the re-
moval of the last cell, and this coeflicient is one. (The two diagrams obtained by
adding one cell to 12"*! are negligible.) It remains to check that any nontrivial
A€ I(B,) distinct from 127! has at least one braiding coefficient distinct from
1. If p is obtained from such A by adding a cell in the first row, then (u) is not
zero, and the corresponding braiding coefficient in formula (5) is s*** £ 1. For a
column with j cells, the generic quantum dimension formula reduces to

Olol=1a-2 = jlo(L = dlo + i)

V) = 10
) ! (10)
This gives for 1?7+1
ey il 100 oy
[2n 4 1]!
The twist coefficient for 12711 js o2ntlg=2n(2n+1) — 1 O

Proposition 3.5. In the category KF(B“)/Neg,

a) the object 1271 ® 1271 4s isomorphic to the trivial object;

b) the objects 12" Tt @ X\ and X are isomorphic, where \ € I'(B,), and X is the
Young diagram such that A\ + 5\\1/ =2n+1 and )\;/ = 5\;/ for 7>1,

Proof. In the semi-simple category KI'(Br) /Neg we can decompose the identity of
the object 12"t ® 1271 as we did in formula (1).

2n+1 201
1 1 2n+1 2n+1
1 I
ai

W —

Z Z {u) b;
& ¢ 12n+1 12r|+1

Here all simple subobjects p are transparent and hence have dimension 1. By
comparing the dimensions we see that there is only one such p with multiplicity
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1. It should be trivial, because the duality gives a nonzero morphism from the
trivial to 12" 1@12" ! | We deduce that this duality morphism is an isomorphism,
which establishes a) .

We consider the morphism from 12771 @ X to A depicted below: the strings
corresponding to the points in (the expansion of) 1?"*1 are joined to the first
columns, the points which are not in the first column of A and A are joined
directly.

One wants to show that this morphism is nonzero. We first consider the case
where A = 17 has only one column. Let f € Hom(17 ® 12711 127T1=7) be the
morphism as above and g € Hom(12"T177 19 ® 127+1) be its mirror image with
respect to the target plane. Then (gf) = (1*"T1) = 1. In the general case, if we
insert conveniently the isomorphism considered in the particular case between and
Li2n+15x and 5 we obtain our nontrivial morphism. O

We suppose now that o = s?”, with s? a primitive {th root of unity, { >

2n 4 1. In the following we discuss the equation (K+ 1) =0, K minimal. If s
has order 2n 4+ 1 and s = 1, then o = s~ ! and the Kauffman polynomial is
trivial.
o If I >2n+2 iseven, then K=1—-2n+1=2k+1, aa= ¥ = —s 2k
this will be the B,, - B_; specialization.
o If I>2n+1 isodd and s = -1, then K=14+1—-2n =2k, o = s* =
—s72k+1 - this will be B, - Dy specialization.
o If [ >2n+3 isoddand s =1, then K= “Tl—n:k, a =g =g 21
will be the B,, - Cy specialization.

B~ F category. Here we consider the B, -B_j specialization (o = " =

728 with n,k > 1, s is a primitive 2 th root of unity, I = 2n + 2k . Let
PB™ M) =i A+ <2+ 1A+ X <2n+1}.

We can define idempotents for any A € I'(B™~*), and they have nonzero
quantum dimension. Our general procedure give some more idempotents whose
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dimension vanishes, namely for each A € [(B™ %)\ I'(B™»~*) with
DB ) ={ A+ X2 €26+ 2,0 + MY €2n+2, M + A < 2n+ 2k}

we have (\) = 0. We define the category B~ % as the quotient of the category
KI(B™™) by negligible morphisms.
Proposition 3.6. The category B» % is pre-modular.

Proof. Let T(B™ %) = ['(B™ F)u{12"*1®2k+1} . We show that T'(B™ %) is a set
of dominating simple objects. Asin the proof of Proposition 3.2, we decompose the
tensor products Iy ® Il , for W € ['(B™~*) . The sublte point here is that some
idempotent in the branching formula for the partition L = (2k,1?"~1) € I'(B™~F)
(i.e. Ly + LY = 2n + 2k) is missing. We will avoid this difficulty by using the
isomorphism in Proposition 3.5 which still holds for A € T'(B™—F) .

More precisely, if W = X is in T'(B™ %)\ {L}, then the branching formula
applies. If W = L, then we use the isomorphism between L and 1?"t!® 2k and
we get a decomposition of L ® 1 with subobjects (2k —1,1?%), (2k,1?"~!) and
1271 2%k +1. If W= 12""1® 2k + 1, then we get an isomorphism between
1’1 ®2k+1®1 and L. O

BD™* category. For the B, - Dy specialization with n,k > 1, we put [ =
2n+ 2k —1, s is a primitive root of unity of order 2/, and o = s?* = —g—2F+1
Let

C(BD™ ) = { A + Xo <2k, A + A <2n 1} .

We define the category BD™* and prove pre-modularity as we did above.

BC™"* category. The category BC™F for n,k > 1 with parameters (o, s) is
isomorphic to the category CB*" with parameters (o, —s~'). The isomorphism
sends any simple object A to AV . The representative set of simple objects is
[(BC™*) = {X; AV € T(CB*")} .

The specialization B_,, . Let us consider the case oo = —s?" . If s is generic, we
have I'(B,,) = I'(B_,). The object 12"*! remains transparent, but its twist co-
efficient is (—1). Therefore, the categories we get here will be non-modularizable.
Let us suppose that s? is a primitive root of unity of order I > 2n+1. Then
we have to consider the following cases.
o If I >2n+2 iseven, then K=1—-2n+1=2k+1, aa= —s?" = s 2k
this will be the B_,, - B; specialization.
o If I>2n+1 isodd and s =1,then K=14+1—-2n=2k, o = —s** =
—s72k+1 - this will be B_,, - D;, specialization.
o If I >2n+3 is odd and s' = —1, then K:%—n:k7 a=—s"=
s72*~1 will be the B_, - C}, specialization.
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The categories B~™% , BD~™# and BC~™* with n,k > 1 can be constructed
analogously to the previous case. We have T'(B~™") = I'(B™ %), I'(BD "™") =
['(BD™*) and I'(BC—™k) = I(BC™k) .

3.4. The even orthogonal case

In this subsection we suppose that o = s>*!

can construct the idempotent ¢, for A in the set

, n>1.1If s is generic, then we

T(D,) = {NA) +A) <20+ 1},
and A has non-vanishing quantum dimension (see formula (9)) if it belongs to
L(Bn) = {NA] + 2y <20}

We get that the category KT(Dn) /Neg is semi-simple. A representative set of
simple objects is the infinite set T'(D,,) .
We have the following specialized formula for the quantum dimension.

Proposition 3.7. Let o = s?" 1

we have

, with s generie. For a partition A = (A1, ..., \n),

i 2n — i —4][5 — 4]
B 2rt X —it X =gl —i =N +4]
=2 ]] Bn—i— 4l — 1 e

1<i<j<n

Suppose that s? is a primitive [th root of unity with { > 2n. We discuss the

equation (K+ 1) =0, K minimal.
o If | >2n iseven, then K=1—-2n+2=2k, o = s> 1 = —g 2Ft1: this
will be the D, - Dy specialization.
e If I>2n+1 isodd and s =1, then K=1—-2n+2=2k+1, a =
§27=1 = 372k - this will be D,, - By specialization.
e If Il >2n+1 isodd and s = —1, then K =1 —-2n+2 = 2k 1,

a=s"1=_s% will be the D, -B_; specialization.

D™ category. We consider the D,, - D specialization with n,k > 1. Let
D(D™*) = {A; A1 + Ag < 2k, A7 + A < 2n}) .

We define the category D™* and prove pre-modularity as above. The dominating
set of simple objects is here I'(D™*)U {1?" ® 2k} .
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3.5. The level-rank duality

As it was already mentioned, the Kauffman polynomial obtained with the parame-
ters (a,s) and (a,—s~ 1) are equal. The corresponding BMW categories are also
equal. From this we get an isomorphism between the constructed pre-modular ca-
tegories. The image of a simple object A is AV . In fact the categories are equal;
only the labelling of simple objects has changed. This provides the “level-rank”
duality isomorphism

between C™* and CF7, B™%~% and B~%", D™* and D*":

between CB™* and BCF™, BD™F and DB®", CB™ % and BC Fm

BD—"* and DBF—" .

Here we use that T(DB®™) = {\; X\ + Xy < 2n+1; A +AY < 2k} . In conclusion,
up to the level-rank duality, we have obtained the following seven series of pre-
modular categories.

Theorem 3.8. For n,k > 1 the categories C™%, 6 CB™k 6 CB™ k& Bm
BD™* | BD™™F and D™* are pre-modular.

4. Modularization of the completed BMW categories

In this section we discuss the modularization question for our series of pre-modular
categories.

4.1. Transparent simple objects

Let us first note that (w) = > cpa) (1)? is nonzero if A is one of the pre-
modular categories constructed in Section 3; the values of (w) are calculated e.g.
in [8]. Therefore, the results of Section 1.2 can be applied.
Lemma 4.1. i) There is no non-trivial transparent simple object in the category
cmok
i) The non-trivial transparent simple objects are 1?71, 2k+1, 12" T1®(2k+1)
in B™F category; 2k, 127, 12" ®2k in D™F category; 2k, 1271 12nt1g2k
in BD™* and BD™"™F categories; 2k + 1 in CB™* and CB™* categories.
The quantum dimensions of these objects are equal to one.
Corollary 4.2. The category C™* with T'(C™*) as a representative set of simple
objects is modular.
Proof of the Lemma. Recall that a simple object A is transparent if and only if
for any (non-negligible) p in the branching formula for A, the braiding coeflicient
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is equal to one. Then ) follows.

For ii) we verify that for each A mentioned in the lemma all braiding coef-
ficients are equal to one. Let us do it in the B™ % category for A\ = 2k + 1.
Then only p = 2k appears in the branching formula for A. We have A — p=c,
en(c) = 2k and the braiding coefficient is a 2574 = 77— — 1 Other cases
can be done analogously. We see that there is no other transparent simple object
in these categories.

The quantum dimensions can be calculated directly using (10) and

o Olaltlec = 2ol = 1o + i)
= i |

O

Lemma 4.3. For pre-modular categories constructed in Section 3 the transparent
simple objects form a group under tensor multiplication. This group is isomorphic
to Zo X Zo for D, B, and BD series and to Zo for CB series.

Proof. Tt is sufficient to show that the transparent simple objects have order 2,
i.e. any non-trivial transparent simple object t satisfies the equation: ¢ ® ¢ ~
trivial object. Clearly, ¢t ® t contains the trivial object and decomposes into a
sum of transparent simple ones. Comparing the quantum dimensions on the left
and right hand side of this decomposition formula we get the result. O

The twist coefficients of the transparent objects listed in Lemma 4.1 are equal

to 1, except for the objects (2k+1) and 1>"T'® (2k+1) in the B»~F category,
1271 and 12"*!'® 2k in BD™™* category, and (2k + 1) in CB™ % category,
whose twist coefficients are (—1). Applying Bruguieres’ criterion, we conclude.
Corollary 4.4. The categories D™* BD™k CB™* are modularizable and Bk,
BD—™* CB™~* are not modularizable.
Remark. The non-modularizable categories provide invariants of closed framed
3-manifolds (see [15]). Here a framing is a trivialization of the tangent bundle up
to isotopy. A choice of a framing is equivalent to the choice of a spin structure
and a 2-framing (or pj -structure) on the 3-manifold.

—n,k ——n,k ~
4.2. Modular categories CB , BD and D™".

Applying the modularization procedure described in Section 1 to the category

=k : :
CB™* we get the modular category CB"" with the following representative set
of simple objects

L(EB™") = (A AL < k,AY <l
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The stabilizer subgroup for all elements of T'(CB™*) is here trivial.

In the BD™F case, a simple object A\ with A\; = k has Stab(X) = Zy . The
algebra Endgf)n,k (M) is two-dimensional. It is generated by the tangle a, having
one free vertex colored by 2k. We normalize it such that a3 = 1. The minimal
idempotents of Endszn..(A) are py = 1/2(Ix%ay) . We define the simple objects
A+ by means of idempotents gupiE . Their quantum dimensions are (A\)/2. As a
result,

PBD™M = (A <k AY <} U AL A =k AY <n)

—~n,k
is the representative set of simple objects for the modular category BD"

In the D™* case, the diagrams belonging to the set 'y = {\; Ay < k, AY < n}
have the trivial stabilizer. An object X from T's = {\ A1 = kA <n A A <
k,AY = n} has the stabilizer equal to Z, . We decompose it into A+ analogously
to the previous case. An object from I's = {A\; Ay = k, A} = n} has the stabilizer
of order 4. The algebra Endg,..(A), A € I's, is either abelian or isomorphic to
the algebra of 2 x 2 matrices.

In the first case, A will decompose into the direct sum of four non-isomorphic
simple objects in the modular category D™ . In the second case A will decompose
into two isomorphic simple objects in D™k . It is a nontrivial open problem to
decide which alternative holds for a given A. The answer may differ for distinct .
To any A € T's correspond my € {1,4} simple objects in F(]S”k) If my=1,
we denote the object by 5\; if my =4, we denote the objects by LAy . Finally,
the representative set of simple objects F(]S”k) of the modular category D™k s

Di=T1U{p el U{ias; A els, m>\14}U{3\;>\€F3, myx=1}.

5. Verlinde formulas

Recall that by Turaev’s work any modular category A with a set T' of simple
objects gives rise to a TQFT. The dimension of the TQFT module associated with
a genus ¢ closed surface is given by the Verlinde formula:

g—l
dy(A) = (Z <A>2> > (29 (11)

el ael

In this section we calculate the dimensions of TQFT modules arising from the
modular categories constructed above.
Let us introduce the notation [n|, =s" —s " for n € Z.

Theorem 5.1. i) The genus g Verlinde formulas are

dg(C™F) = (—(2n + 2k + 2))"9~ D x
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N 2(1—g)
x> [T, IT W sl -, ;
k>l > > >0 \j=1 1<i<j<n
Rk n(g—1)
dy(CB™") = (=(2n + 2k + 1)) X
" 2(1—g)
X > 1121, T+ G0 -, ;
ntk>l > >0, >0 \j=1 1<i<j<n
(Nn k) 2(1-g)
dy(BD"
=2 Z H [ + o] [o — ay]
— 1)k(g—1 Jls Jls
(2n 42k — 1)Fo=1 ndk—1>ay>...>ap>0 \1<i<j<k
2(1—g)
+ > [T low oyl lei —ayl,
ntk—1>a>...>ap=0 \1<i<j<k
dy(D™F) 2(1-g)
(2n + 2k — 2) = ntk—2>11 > >, =0 1<i<j<n

+ 2% 3 TT (i)l —11)" 7+

ntk—1=l>... >, =0 1<i<j<n

2(1—
+ 2 > I1 (s + 11,1~ 151,77+
k=221 >... >0, >0 1<i<j<n

2(1—g)
+ 3> (ma—sy)?® [T+l - 1])" .
ntk—1=l1>...>0,>0 1<i<j<n

Here 6 =(n,n—1,...,1).

i) We have the following level-rank duality formulas.
dg(cn,k) _ dg(Ck’n) dg(f)n,k) _ dg(]’jk,n)

Remark. The Verlinde formula for C*? calculates the number of the spin struc-
tures with Arf invariant zero on the surface of genus g: dg(CH?) =29-1(1 4 29).
This fact should be interpreted via the corresponding TQFT, which is the is the
one associated with the well known Rochlin invariant of spin 3 -manifolds [6].
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Proof. i) We substitute Propositions 3.1, 3.3, 3.7 and calculations of Sections 4.4-
4.6 in [8] into (11).

Let us consider the C™% case in details. Here o = s~ 25~<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>