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Commentarii Mathematici Helvetici

Quasihyperbolic boundary conditions and capacity: HÄolder
continuity of quasiconformal mappings

Pekka Koskela Jani Onninen and Jeremy T Tyson

Dedicated to Olli Martio on the occasion of his honorary doctorate at the University
of JyvÄaskylÄa

Abstract We prove that quasiconformal maps onto domains which satisfy a quasihyperbolic
boundary condition are globally HÄolder continuous in the internal metric The primary improve-
ment here over existing results along these lines is that no assumptions are made on the source

domain We reduce the problem to the veri¯cation of a capacity estimate in domains satisf-
ing a quasihyperbolic boundary condition which we establish using a combination of a chaining
argument involving the Poincar¶e inequality on Whitney cubes together with Frostman's theorem

We also discuss related results where the quasihyperbolic boundary condition is slightly
weakened; in this case the HÄolder continuity of quasiconformal maps is replaced by uniform
continuity with a modulus of continuity which we calculate explicitly

Mathematics Subject Classi¯cation 2000 Primary 26B35; Secondary 30C65 30F45
31B15 46E35

Keywords Quasiconformal map HÄolder continuity quasihyperbolic boundary condition con-
formal capacity Frostman's theorem

1 Introduction

It is well-known that quasiconformal maps are locally well-behaved with respect
to distance distortion If f : ­ ­0 is a K -quasiconformal mapping between
domains ­;­0

½ Rn n ¸ 2 then f is locally HÄolder continuous with exponent
® K1 1¡n i e

jf x ¡ f y j · Mjx¡ yj
® 1 1

whenever x and y lie in a ¯xed compact set E in ­ Here M is a constant
depending only on K and E which can in general tend to in¯nity as the distance

All authors supported by the Academy of Finland project 39788 J T T also
supported by an NSF Postdoctoral Research Fellowship The research for this paper was
done while J T T was a visitor at the University of JyvÄaskylÄa during the winter of
2000 He wishes to thank the department for its hospitality
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from E to the boundary of ­ tends to zero To conclude global HÄolder continuity
for the map f that is to conclude that 1 1 holds for all x; y 2 ­ it is necessary
to make some geometric assumptions on the domains ­ and ­0 An early result
along these lines was obtained by Becker and Pommerenke [3] who considered the

case of simply connected domains in the plane If f : D ­0
½ C is a conformal

mapping then f is globally ¯ -HÄolder continuous 0 < ¯ · 1 if and only if the

hyperbolic metric ½­0 in ­0 satis¯es a logarithmic growth condition

½­0 z0; z ·
1

¯ log
dist z0; @­0

dist z; @­0
+ C0; 1 2

where z0 f 0 and C0 < 1 Here dist ¢; @­0 denotes the Euclidean distance

to the boundary of ­0

To extend this result to multiply connected domains and to higher dimensions

Gehring and Martio [5] replaced the hyperbolic metric ½­0 with the quasihy-
perbolic metric k­0 see section 2 for the de¯nition By [5 Theorem 3 17] if
f : ­ ­0 is a K -quasiconformal mapping between domains ­;­0 Rn

n ¸ 2 and if there exists 0 < ¯ · 1 so that the quasihyperbolic metric k­0

satis¯es a logarithmic growth condition

k­0 x0;x ·
1

¯ log
dist x0; @­0

dist x; @­0
+ C0 1 3

for some each x0 2 ­0 and a constant C0 C0 x0 < 1 then f is HÄolder
continuous on each open ball B ½ ­ with an exponent ® and constant M which
depend only on n K and the constants ¯ and C0 but are independent of B If
in addition ­ is su±ciently nice [5 p 204] then f is globally HÄolder continuous

with exponent ® Here \niceness" of the source domain ­ means that any two
points in ­ can be joined by a curve whose length is no more than a ¯xed constant
multiple of the distance between the points and that stays su±ciently far away
from the boundary when measured in a certain averaged sense To compare this
with the result of Becker and Pommerenke in the plane recall that the hyperbolic
and the quasihyperbolic metrics are comparable in simply connected plane domains

by the Koebe distortion theorem
We now state our principal result In what follows we denote by ±­ x; y the

internal distance between a pair of points x; y 2 ­ i e the in¯mum of the lengths

of curves in ­ joining x to y
Theorem 1 1 Let ­;­0 Rn n ¸ 2 be domains and assume that ­0 satis¯es

a quasihyperbolic boundary condition of the form 1 3 for some ¯ 2 0; 1] Then
any quasiconformal mapping f : ­ ­0 satis¯es the global HÄolder condition

jf x ¡ f y j · M±­ x; y ®

for all x; y 2 ­ where 0 < ® · 1 and M < 1 which depend only on the data
If ­ is a quasiconvex domain that is ­ satis¯es the ¯rst part of the \niceness"

assumption in the previous paragraph: any two points in ­ can be joined by a
curve whose length is no more than a ¯xed constant multiple of the Euclidean
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distance between the two points then the internal metric ±­ and the Euclidean
metric in ­ are bi-Lipschitz equivalent We thus have the following corollary to
Theorem 1 1

Corollary 1 2 Let ­ ­0 and f be as in Theorem 1 1 and assume in addition
that ­ is quasiconvex Then f satis¯es the global HÄolder condition

jf x ¡ f y j · Mjx¡ yj
®

for all x; y 2 ­ where 0 < ® · 1 and M < 1 which depend only on the data
We emphasize a fundamental distinction between Theorem 1 1 and the result

of Gehring and Martio: in Theorem 1 1 we make no assumptions whatsoever on
the initial domain ­ In Corollary 1 2 quasiconvexity is used only to convert
between the internal and the Euclidean metrics in ­ Our results are new even
in the case of conformal maps between planar domains at least in the in¯nitely
connected case : 1

Corollary 1 3 Let ­ C be a quasiconvex domain and let ­0 C be a
conformally equivalent domain which satis¯es 1 2 Then any conformal map

f : ­ ­0 is globally ® -HÄolder continuous for some 0 < ® · 1 which depends

only on the data
Our results address the question of global length distortion Astala and Koskela

[2] study the question of global volume distortion where again the relevant hy-
pothesis is the logarithmic growth condition on the quasihyperbolic metric in the

target domain By Theorem 1 2 of [2] if f : ­ ­0 is a K -quasiconformal map
onto a domain ­0 satisfying 1 3 then jf 0j 2 Lp ­ for some p > n depending
only on n K and the constants in 1 3

Our proof of Theorem 1 1 relies on certain capacity estimates in domains sat-
isfying the quasihyperbolic boundary condition Speci¯cally we establish the fol-
lowing result
Theorem 1 4 Let ­ be a proper subdomain of Rn n ¸ 2 with diameter one

which satis¯es 1 3 Let Q0 denote a ¯xed Whitney cube containing the basepoint
x0 Then there exists a constant M < 1 depending only on n ¯ and C0 so
that

cap E; Q0;­ ¸
1

M µlog
1

diam E¶
1¡n

1 4

for all continua E ½ ­
Here cap E; F;­ denotes the n -capacity between a pair of disjoint continua

E and F in the domain ­ see section 2

1 In connection with the global regularity of planar quasiconformal maps the reader may also
be interested in the following recent result of Bishop [4 Theorem 5 1]: there exists an absolute

constant K0 < 1 so that to any simply connected planar domain ­ there corresponds a
K0 -quasiconformal mapping f : ­ D which is Lipschitz in the internal metric on ­
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We prove Theorem 1 4 by a chaining argument involving the Poincar¶e inequality
on Whitney cubes in ­ This ingredient in the proof was already used by Herron
and Koskela in [9] to prove a special case of Theorem 1 4 To prove the general
case we introduce a new technique in this context: the use of a Frostman measure

on the continuum E In a companion paper [13] we use this technique to verify
global Poincar¶e inequalities in domains satisfying 1 3

Theorems 1 1 and 1 4 answer in the a±rmative Questions 8 4 and 8 3 respec-
tively in [9] see also Conjecture 5 2 in [12]

We brie°y outline the structure of the paper In section 2 we present a number
of technical lemmas relating to the geometry of Whitney cubes and quasihyperbolic
geodesics which will be of importance in the proof of Theorem 1 4 Section 3
contains the proofs of Theorems 1 1 and 1 4 In section 4 we study domains which
satisfy weaker versions of the quasihyperbolic boundary condition 1 3 In this
case we can no longer show global HÄolder continuity for quasiconformal mappings

onto such domains but we are able to establish global uniform continuity with a
modulus of continuity which we calculate explicitly

1 1 Notations and de¯nitions

We denote by Rn n ¸ 1 the Euclidean space of dimension n For a cube

Q ½ Rn with center x and side length s Q and for a factor ¸ > 0 we denote
by ¸Q the dilated cube which is again centered at x but has side length ¸s Q
We denote the Lebesgue measure in Rn by m although we usually abbreviate

dm x dx For a domain ­ ½ Rn we denote by ±­ the internal metric in ­
i e ±­ x; y inffdiamE : E a connected set in ­ joining x to y g We say
that ­ is quasiconvex if the internal metric ±­ is bi-Lipschitz equivalent to the

Euclidean metric equivalently if there exists a constant L < 1 so that any two
points x; y 2 ­ are contained in a connected set E in ­ with diam E · Ljx¡yj

For an increasing function ' : [0;1 [0;1 with ' 0 0 we denote
by H1' the Hausdor® ' -content : H1' E inf

Pi ' ri where the in¯mum
is taken over all coverings of E ½ Rn with balls B xi; ri i 1; 2; : : : When

' t ts for some 0 < s < 1 we write H1s H1'
For disjoint compact sets E and F in the domain ­ we denote by cap E; F;­

the conformal or n - capacity of the pair E; F ;

cap E; F;­ inf
u

Z
­jruj

n dx;

where the in¯mum is taken over all continuous functions u in the Sobolev space

W1;n ­ which satisfy u x · 0 for x 2 E and u x ¸ 1 for x 2 F

For K ¸ 1 and ­;­0 as above we say that a homeomorphism f : ­ ­0 is
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K -quasiconformal if
1

K
cap E; F;­ · cap E0;F0;­0 · K cap E; F;­

whenever E and F are disjoint compact sets in ­ where E0 f E and F0

f F For the basic theory of quasiconformal maps we refer the reader to the

book [17] of VÄaisÄalÄa

Let ­ be a bounded domain in Rn n ¸ 2 Set s ­ n¡1 2 diam­ We

denote by W W ­ a Whitney decomposition of the domain ­ into Whitney
cubes Q i e the cubes in W have pairwise disjoint interiors ­ [Q2W Q and
vertices in the set

2¡Ns ­ ¢ Zn : f 2¡js ­ l1; : : : ; 2¡js ­ ln : j 2 N; l1; : : : ; ln 2 Zg

and satisfy diam Q · dist Q; @­ · 4 diam Q for each Q 2 W For the existence

of such a decomposition we refer to Stein's book [16 VI 1] For any ¸ 1 <
¸ < 5 4 the expanded collection of cubes f¸Q : Q 2 Wg has bounded overlap
speci¯cally

sup
x2­ XQ2W

Â¸Q x · 12n < 1:

See e g [16 VI 1 3 Proposition 3] For j 2 N we let Wj denote the collection
of cubes Q 2 W for which diamQ 2¡j diam­

2 Preliminary results on the quasihyperbolic metric
Throughout this section ­ will denote a proper subdomain in the Euclidean
space Rn n ¸ 2 Recall that the quasihyperbolic metric k­ in the domain ­ is
de¯ned to be

k­ x; y inf
°

k­ ¡ length ° ;

where the in¯mum is taken over all recti¯able curves ° in D which join x to y
and

k­ ¡ length ° Z
°

ds
dist x; @­

denotes the quasihyperbolic length of ° in D This metric was introduced by
Gehring and Palka in [7] A curve ° joining x to y for which k­ ¡ length °
k­ x; y is called a quasihyperbolic geodesic Quasihyperbolic geodesics joining
any two points of a proper subdomain of Rn always exist see [6 Lemma 1] If
° is a quasihyperbolic geodesic in ­ and x0; y0 2 ° we denote by ° x0; y0 the

portion of ° which joins x0 to y0

When x and y are su±ciently far apart k­ x; y is roughly equal to the

number N x; y of Whitney cubes Q that intersect a quasihyperbolic geodesic °
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joining x to y More precisely

N x; y C · k­ x; y · CN x; y

for all x; y 2 ­ with jx¡ yj ¸ dist x; @­ 2 where C C n

Let ¯ 2 0; 1] and ¯x a basepoint x0 2 ­ Following Gehring and Martio [5]
we say that ­ satis¯es a ¯ -quasihyperbolic boundary condition if for some each
x0 2 ­ there exists a constant C0 C0 x0 < 1 so that

k­ x0; x ·
1

¯ log
dist x0; @­
dist x; @­ + C0 2 1

for all x 2 ­ Then ­ is bounded in fact diam­ · 2 ¯ eC0¯ dist x0; @­
by [5 Lemma 3 9] The value of ¯ is necessarily less than or equal to one as a
consequence of the following simple estimate c f [7] :

k­ x0; x ¸ log
dist x0; @­
dist x; @­ 2 2

for all x 2 ­
The following result of Smith and Stegenga [14 Theorem 3] is fundamental to

our work A more general version of this result will be proved below in Lemma
4 6

Lemma 2 1 Let ­ Rn satisfy the quasihyperbolic boundary condition 2 1
Then there exists a ¯nite constant C1 C1 ¯; C0 so that for all x1 2 ­ we

have

k­ x0;x ·
1

¯ log
dist x0; @­

length ° x; x1
+ C1

whenever ° is a quasihyperbolic geodesic joining x0 to x1 and x 2 °
For the remainder of this section we assume that ­ satis¯es the quasihyper-

bolic boundary condition 2 1 for some ¯ · 1 Our ¯rst lemma controls the

number of Whitney cubes of a given size or larger which can intersect a given
quasihyperbolic geodesic
Lemma 2 2 Let ° be a quasihyperbolic geodesic in ­ starting at the basepoint
x0 Then there exists a constant C C n; ¯; C0 so that

cardfQ 2 W1 [ ¢ ¢ ¢ [Wj : Q\ ° 6 ;g · Cj
for all j ¸ 1 Here card S denotes the cardinality of the set S

Proof Assume that we have N Whitney cubes Q1; : : : ; QN satisfying s Qi ¸2¡j diam­ and Qi \ ° 6 ; i 1; : : : ; N Fix ¸ 9
8

so that the dilated cubes

¸Qi have bounded overlap If we let °i denote the part of the curve ° which lies

in the cube ¸Qi then the quasihyperbolic lengths of the curves °i are uniformly
bounded from below:

k­ ¡ length °i ¸
length ° \ ¸Qi

supfdist x; @­ : x 2 ¸Qig ¸
1

C n > 0
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for i 1; : : : ; N
In order to apply Lemma 2 1 let x1 2 QN \ ° If N is chosen su±ciently

large relative to n then one of the cubes ¸Qi N 2 · i · N will be disjoint
from ¸QN and hence will satisfy dist Qi; QN ¸ c2¡j diam­ for some c > 0

Let x denote the terminal point of exit of ° from the cube Qi By Lemma 2 1

1

C n
N
2 ·

N 2

Xi 1

k­ ¡ length °i · k­ x0;x

·
1

¯ log
dist x0; @­

length ° x; x1
+ C1

·
1

¯ log
dist x0; @­
dist Qi; QN

+ C0

· C n; ¯; C0 j:
The lemma follows

We now ¯x a Whitney cube Q0 and assume that x0 is the center of Q0 For
each cube Q 2 W we choose a quasihyperbolic geodesic ° joining x0 to the

center of Q and we let P Q denote the collection of all of the Whitney cubes

Q0 2 W which intersect ° Then we de¯ne the shadow S Q of the cube Q to
be

S Q [Q12W
Q2P Q1

Q1:

Shadows of Whitney cubes de¯ned in this manner have been used for example
to investigate the questions of when Euclidean domains satisfy global Poincar¶e
inequalities [14 xx6-7] and when the boundaries of domains are removable for
quasiconformal and/or Sobolev functions [11]

Informally speaking our next lemma says that the amount of overlap of the

shadows of Whitney cubes of a ¯xed size is bounded
Lemma 2 3 There exists a ¯nite constant C C n;¯; C0 so that

XQ2W1[¢¢¢[Wj
ÂS Q x · Cj

for every j ¸ 1 and x 2 ­
Proof Since the Whitney collection W has bounded overlap we may without
loss of generality work with the disjoint interiors of the Whitney cubes If
Q1; : : : ; QN 2 W1[ ¢ ¢ ¢[Wj are such that F : S Q1 \ ¢ ¢ ¢\S QN is nonempty
then F contains an entire Whitney cube; in particular it contains its center point
x But then the chosen quasihyperbolic geodesic joining x0 to x intersects each
of the cubes Qi i 1; : : : ; N Then the result follows from Lemma 2 2

We now estimate the size of the shadow of a Whitney cube Q in terms of the

size of Q
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Lemma 2 4 There exists C C n; ¯; C0 so that

diam S Q · C dist x0; @­ 1¡¯ diam Q ¯

for all Q 2 W

Proof We ¯rst show that diam Q1 · C dist x0; @­ 1¡¯ diam Q ¯ for each cube

Q1 ½ S Q If Q1 Q this is obvious so assume Q1 6 Q Let x1 denote the

center of Q1 let ° be a quasihyperbolic geodesic joining x0 to x1 and let x
be any point in Q \ ° It is clear that the Euclidean length of that portion of
° which lies in Q1 is at least c diam Q1 for some constant c c n > 0 We

apply Lemma 2 1 together with 2 2 to deduce that

log
dist x0; @­
dist x; @­ · k­ x0; x ·

1

¯ log
dist x0; @­

diam Q1
+ C1:

The desired result follows since dist x; @­ ¼ diam Q
It thus su±ces to show that the set Z consisting of all of the centers of cubes

contained in S Q satis¯es diam Z · C dist x0; @­ 1¡¯ diam Q ¯ To this end
let x1; x2 2 Z Choose points x0

1 and x0
2 in °x1 \Q and °x2 \Q respectively

where °x denotes the chosen quasihyperbolic geodesic joining x to x0 Then

jx1 ¡ x2j · length °x1 x0
1;x1 + diam Q + length °x2 x0

2;x2

· diamQ + C dist x0; @­ e¡¯k­ x0;x01 + C dist x0; @­ e¡¯k­ x0;x02

· diamQ + C dist x0; @­ 1¡¯ dist x0
1; @­ ¯

+ C dist x0; @­ 1¡¯ dist x0
2; @­ ¯

· diam­ 1¡¯ diam Q ¯ + C dist x0; @­ 1¡¯ diam Q ¯

by Lemma 2 1 and 2 2 Since diam­ · C ¯; C0 dist x0; @­ the result follows

3 Proofs of Theorems 1 1 and 1 4

We now begin the proofs of our main results Theorem 1 4 has been proved in
Theorem 6 1 of [9] in the special case when E is a closed ball or cube in ­
Our proof makes use of the ideas of the proof in [9] but introduces an important
new ingredient: a Frostman measure on the continuum E We also make use of
the lemmas in the preceding section

Proof of Theorem 1 4 Let ­ ½ Rn n ¸ 2 be a domain with diameter one

which satis¯es 2 1 for some 0 < ¯ · 1 and let E ½ ­ be a continuum Let
u 2 W1;n ­ be a test function for the n -capacity of the pair Q0; E in ­ i e

u : ­ [0; 1] is a continuous function and u x 1 for x 2 E and u x 0 for
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x 2 Q0 Recall that our goal is to show that

Z
­jru x j

n dx ¸
1

M µlog
1

diam E¶
1¡n

:

For each x 2 E let Q x denote the Whitney cube containing x Recall
that the path P Q x consists of the collection of all of the Whitney cubes which
intersect the quasihyperbolic geodesic joining x0 to the center of Q x We de¯ne

a subpath P0 Q x ½ P Q x as follows: P0 Q x fQs; : : : ; Qfg consists of
a chain of Whitney cubes which begins with the terminal cube Qs Q x and
continues back along the path P Q x until it reaches the ¯rst cube Qf for
which diam Qf ¸ 1

5
diam E Note that it is possible that Qf Qs Since

adjacent Whitney cubes Q1 and Q2 have diam Q1 · 5 diam Q2 we must have

diam Q · diam E for all Q 2 P0 Q x
We ¯rst claim that without loss of generality we may make some initial assump-

tions regarding the average values of u on the cubes in P0 Q x namely that
R Q x u y dy ¸ 1

2
and

R Qf u x dx · 1
2 In the following two paragraphs we will

brie°y indicate why these simpli¯cations can be made but the short reason is that
the other cases are covered by existing results in the literature The remaining
case which we leave to the end is where we must make use of a new argument
involving a Frostman measure on E

First suppose that
R Q x u y dy · 1

2 for some x 2 E Then we can ¯nd
a subset F of Q x whose Hausdor® 1 -content H11 F is comparable to the

diameter of Q x and for which u y · 1
2 for all y 2 F Recall that the enlarged

cube ¸Q x is a subset of ­ for some ¸ > 1 e g ¸ 9
8 We divide the proof

into two cases according whether E ½ ¸Q x or E \ Rn
n ¸Q x 6 ; In the

former case E and F are subsets of the cube ¸Q x and so

Z
­jru x j

n dx ¸ Z
¸Q x

jru x j
n dx ¸ cap E; F; ¸Q x ¸

1

M µlog
1

diam E¶
1¡n

by a standard estimate for conformal capacity see [18] In the latter case

H11 E\¸Q x ¸ diam E\¸Q x ¼ diam Q x Then we have two compact sets

E \ ¸Q x and F in the cube ¸Q x both of which have Hausdor® 1 -content
comparable from below to diam Q x In this situation a straightforward maxi-
mal function argument cf the proof of Theorem 5 9 in [8] can be employed to
deduce that

Z
­jru x j

n dx ¸ Z
¸Q x jru x j

n dx ¸ c n ¸
1

M µlog
1

diam E¶
1¡n

since the diameter of E is · 1
Next we suppose that the ¯nal cube Qf in the path P0 Q x satis¯es

R Qf u x dx ¸ 1
2 Then we have two cubes Q0 and Qf in the domain ­ and a

continuous L1;n function u satisfying u ´ 0 on Q0 and
R Qf u x dx ¸ 1

2 In
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this case we may invoke an earlier proof of Theorem 1 4 for the special case when
E is a closed cube in ­ see [9 Theorem 6 1] to deduce that

Z
­jru x j

n dx ¸
1

M µlog
1

diamQf
¶

1¡n

¸
1

M µlog
1

diam E¶
1¡n

since diam Qf ¸ 1
5

diam E

Thus as stated above we assume that
R Q x u y dy ¸ 1

2 for all x 2 E and

that the path P0 Q x consists of Whitney cubes all of which have diameter

· diam E and for which the ¯nal cube Qf satis¯es
R Qf u x dx · 1

2 In this
situation a straightforward chaining argument involving the Poincar¶e inequality
on the Whitney cubes in the path P0 Q x c f [10 pp 519-520] or [15 Lemma
8] yields the estimate

1 · C XQ2P0 Q x

diam QZ
Q
jru y j dy: 3 1

We now choose a Frostman measure ¹ on the continuum E for the growth
function ' r log 1 r ¡n i e a Borel measure supported on E satisfying

¹ E \B x; r · log 1 r ¡n 3 2

for all balls B x; r and

¹ E ¸
1

C n H1' E ¸
1

C n µlog
1

diam E¶¡
n

: 3 3

See for example Theorem 5 1 12 in [1]
Integrating 3 1 over the set E with respect to the Frostman measure ¹ and

applying HÄolder's inequality we see that

¹ E · C Z
E XQ2P0 Q x

µZ
Q
jru y j

n dy¶
1 n

d¹ x :

We now interchange the order of summation and integration to deduce that

¹ E · C XQ2W
diam Q·diam E

¹ S Q \ E µZ
Q
jru y j

n dy¶
1 n

:
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Applying HÄolder's inequality again leads to

¹ E · C0
BB@

XQ2W
diam Q·diam E

¹ S Q \E n n¡1 1
CCA

1¡1 n

0
@

XQ2W

Z
Q
jru y j

n dy1
A

1 n

· C0
BB
@

XQ2W
diam Q·diam E

¹ S Q \E 1+1 n¡1 1
CCA

1¡1 n

µZ
­jru y j

n dy¶
1 n

:

3 4

We require an estimate for terms of the form

XQ2W
diam Q·diam E

¹ S Q \ E 1+±

for ± > 0 which we give in the following lemma:

Lemma 3 1 Let ­ be a domain in Rn with diameter one which satis¯es 2 1
and let ± > 0 Suppose that ¹ is a Borel measure on Rn which satis¯es the

growth condition ¹ B x; r · log 1 r ¡a for some a > 1 ± Then there exists
a constant C C n; a; ±;¯; C0 so that

XQ2W
diam Q·diam E

¹ S Q \E 1+± · C¹ E µlog
1

diam E¶
1¡a±

for any set E ½ ­
We defer the proof of this lemma momentarily To complete the proof of

Theorem 1 4 we apply Lemma 3 1 in 3 4 with ± 1 n ¡ 1 ; note that a
n > 1 ± The measure ¹ satis¯es the requisite growth condition by 3 2 and we

see that

¹ E · C n; ¯; C0 ¹ E 1¡1 n µlog
1

diam E¶¡
1 n

µZ
­jru y j

n dy¶
1 n

:

Thus by 3 3 we see that

Z
­jru y j

n dy ¸
1

C n;¯; C0
¹ E µlog

1

diam E¶ ¸
1

M µlog
1

diam E¶
1¡n

for some ¯nite constant M M n; ¯; C0 The proof is complete

Remark 3 2 The proof of Theorem 1 4 shows that 1 4 holds for some compact
sets which are not continua as well Indeed the required Frostman measure ¹
can be found on E whenever E has positive Hausdor® dimension
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Proof of Lemma 3 1 We may choose j0 2 N with j0 · C log 1 diam E so that
diam Q · diam E implies Q 2 Wj for some j ¸ j0 The growth condition on ¹
implies that

XQ2W
diam Q·diam E

¹ S Q \E 1+± · 1

Xj j0
XQ2Wj

¹ S Q \ E ¹ S Q \E ±

· 1

Xj j0
XQ2Wj

¹ S Q \ E µlog
1

diam S Q ¶¡
a±

· C n;¯; C0 1

Xj j0
XQ2Wj

¹ S Q \E µlog
1

diam Q¶¡
a±

· C n;¯; C0 1

Xj j0

j¡a±

XQ2Wj
¹ S Q \E :

3 5
where the third line follows from Lemma 2 4

For j 2 Z set aj PQ2Wj ¹ S Q \ E and let Aj a1 + ¢ ¢ ¢ + aj We

apply summation by parts to the right hand side of 3 5 to see that

1

Xj j0

j¡a±aj · C n; ¯; C0; a; ± 2
4

j¡a±
0 Aj0 + 1

Xj j0

j¡1¡a±Aj3
5

;

where we used the estimate jj¡a± ¡ j ¡ 1 ¡a±
j · C a; ± j¡1¡a±

By Lemma 2 3 Aj · C n; ¯; C0 ¹ E ¢ j for each j and so

XQ2W
diam Q·diam E

¹ S Q \E 1+± · C n; ¯; C0; a; ± 2
4

j¡a±
0 Aj0 + ¹ E 1

Xj j0

j¡a±

3

5

:

The sum converges since a± > 1 and we see that

XQ2W
diam Q·diam E

¹ S Q \ E 1+± · C n; ¯; C0; a; ± ¹ E j1¡a±
0

· C n; ¯; C0; a; ± ¹ E µlog
1

diam E¶
1¡a±

which completes the proof of the lemma

Proof of Theorem 1 1 Let f : ­ ­0 be a K -quasiconformal map onto a domain
­0 satisfying 2 1 We may scale the domain ­0 to have diameter one; this
introduces a constant into the HÄolder coe±cient for f which depends only on

¯ C0 and dist x0; @­0 Fix a Whitney cube F0 Q0 in ­0 with center x0
and let F f¡1 F0 Since F0 Q0 is a Whitney cube 3

2Q0 ½ ­0 Let
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F̂ f¡1 3
2Q0 By elementary properties of quasiconformal mappings there

exists ± ± n;K > 0 so that the set of points x 2 Rn with dist x; F · ± diam F
is contained in F̂

Let x; y 2 ­ Note that f is automatically HÄolder continuous as a map from
the compact subset F̂ ½ ­ with the Euclidean hence also the internal metric
into ­0 ; the HÄolder data depends only on n K and dist f¡1 x0 ; @­ Thus

we may assume that either x or y is in ­ n F̂
; without loss of generality let this

be the case for x
Next note that if ±­ x; y ¸ 1

4 ± diam F then

jf x ¡ f y j
±­ x; y ® · C n; K

diam­0

diam F ® · C n; K; ¯; C0; ®; dist f¡1 x0 ; @­
for any choice of ® Thus it su±ces to verify the HÄolder condition in the case

4±­ x; y < ± diam F · dist x; F Choose a continuum E ½ ­ joining x to y
with diam E · 2±­ x; y < 1

2 ± diam F Then diam E < 1
2 ± diam F · dist E;F

by a simple calculation A fundamental property of the conformal capacity see

Fact 3 1 e of [9] states that in this case

cap E;F;­ · C n µlog
dist E; F

diamE ¶
1¡n

:

Set E0 f E By Theorem 1 4

cap E0;F0;­0 ¸
1

M µlog
1

diam E0
¶

1¡n

with M M n; ¯; C0 Hence

µlog
1

diam E0
¶

1¡n

· C n KM µlog
dist E; F

diam E ¶
1¡n

· C n KM µlog
1
2 ± diam F
diam E ¶

1¡n

;

or
diam E0 · C diam E ®

for some ® depending only on n K ¯ and C0 and C depending on these

parameters as well as on the values dist x0; @­0 and dist f¡1 x0 ; @­ Since

jx0¡y0j · diam E0 and diam E · 2±­ x; y the proof of Theorem 1 1 is complete

4 Weaker quasihyperbolic boundary conditions and
uniform continuity for quasiconformal maps

Our arguments in the previous two sections are robust enough to apply under
weaker geometric hypotheses and still yield global regularity properties of quasi-
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conformal maps In this section we give a sample of the type of results which may
be obtained It is not clear at precisely what level of generality our technique can
be made to apply see Remark 4 4 and Example 4 5

We begin with a simple modi¯cation of 2 1 replacing the logarithmic growth
of the quasihyperbolic metric with growth no more than a power of the logarithm
De¯nition 4 1 Let ­ ½ Rn with ¯xed basepoint x0 2 ­ and let s ¸ 1 We

say that ­ satis¯es a quasihyperbolic boundary condition with exponent s if there

exist constants ¯ > 0 and C0 < 1 so that

k­ x0; x ·
1

¯ µlog+ dist x0; @­
dist x; @­ ¶

s

+ C0 4 1

for all x 2 ­ Here log+ t maxflog t; 0g
As before domains satisfying 4 1 are always bounded with diameter con-

trolled by a constant depending only on s ¯ and C0 However note that it is
no longer the case that a change of the basepoint x0 will a®ect only the constant
C0 rather it may a®ect the choice of ¯ as well For this reason we ¯x once and
for all a choice of basepoint x0 which as before we take to be the center of a

¯xed Whitney cube Q0

In this section we will prove the following analogues of Theorems 1 4 and 1 1
for domains satisfying 4 1

Theorem 4 2 Let ­ be a domain in Rn n ¸ 2 with diameter one which
satis¯es 4 1 for some s ¸ 1 Then there exists M < 1 depending only on n
s ¯ and C0 so that

cap E; Q0;­ ¸
1

M µlog
1

diamE¶
s2 1¡n

4 2

for all continua E ½ ­
Corollary 4 3 Let f : ­ ­0 be a K -quasiconformal between domains ­;­0

½
Rn n ¸ 2 and assume that ­0 satis¯es 4 1 for some s ¸ 1 Then f : ­ ­0

is uniformly continuous as a map from ­; ±­ to ­0 with modulus of continuity

f t C expf¡c log 1 t 1 s2

g 4 3

where C C n; K; s; ¯; C0; dist f¡1 x0; @­ < 1 and c c n;K; s; ¯; C0 > 0

For any convex increasing function Ã : [0;1 [0;1 we may consider a
quasihyperbolic boundary condition of the form

k­ x0; x · Ã µlog+ dist x0; @­
dist x; @­ ¶ ; x 2 ­; 4 4

and ask when it is the case that quasiconformal maps onto domains satisfying 4 4
are uniformly continuous in the internal metric By considering the situation for
conformal maps of simply connected planar domains see the following remark
we can derive an integral condition su±cient for global uniform continuity It is
reasonable to conjecture that the integral condition 4 7 remains su±cient even
in higher dimensions and for quasiconformal maps
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Remark 4 4 Suppose that f : D ­0 is a conformal map onto a planar domain
satisfying a growth condition on the hyperbolic metric of the form

½­0 f 0 ; f z · Ã µlog+ dist f 0 ; @­0

dist f z ; @­0
¶ 4 5

for z 2 D where Ã is as above A su±cient condition for global uniform conti-
nuity of f is that there exist a function ' integrable over the interval [0; 1 for
which

sup
µ2[0;2¼]

jf 0 reiµ j · ' r : 4 6

By combining 4 5 with the Koebe distortion theorem 1¡ jzj jf 0 z j ¼
dist f z ; @­0 and using the inequality ½­0 f 0 ;f z ½D 0; z ¸ log 1

1¡jzj
we

see that 4 6 holds with

' r C
1

1 ¡ r
expf¡Ã¡1 log

1

1¡ r g

for some absolute constant C < 1 Thus the integral condition

Z
1

0

expf¡Ã¡1 log
1

1 ¡ t g
dt

1¡ t < 1;

equivalently
Z

1
0

e¡Ã¡1 s ds < 1; 4 7

is su±cient for global uniform continuity of f Note that 4 7 allows for growth
functions Ã signi¯cantly larger than those considered in De¯nition 4 1

Example 4 5 The following example shows that 4 7 is essentially the sharp
integral condition on Ã for global uniform continuity of f Suppose that Ã is a
growth function as above for which

Z
1

0
e¡Ã¡1 s ds 1: 4 8

Let M M x be the solution to the di®erential equation

M0 x eÃ¡1 M x ; M 0 0:

The divergence of the integral in 4 8 guarantees that M x is ¯nite for all 0 ·x < 1 Set g x expf¡Ã¡1 M jxj g and

­0 fz x + iy 2 C : jyj < g x g

and let f be a conformal map of D onto ­0 satisfying f 0 0 Note that ­0

is unbounded and so f is not uniformly continuous However we claim that the

quasihyperbolic metric in ­0 satis¯es the growth condition

k­0 0; z · C1Ã µlog+ dist 0; @­0

dist z; @­0
+ C2¶
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for some constants C1 and C2
To see this note that dist z; @­0

¼ g x ¡ jyj · g x · 1 for all z x + iy 2­0 Thus

k­0 0; z · Z
jxj

0

dt
dist t; @­0

+ Z
jyj

0

dt
dist x + it; @­0

· C Z
jxj

0

dt
g t

+ C Z
jyj

0

dt
g x ¡ t

C Z
jxj

0
eÃ¡1 M t dt + C log

g x
g x ¡ jyj

CM jxj + C log
g x

g x ¡ jyj

· CÃ µlog+ g 0

g x ¶ + C log+ dist 0; @­0

dist z; @­0
+ C

· C1Ã µlog+ dist 0; @­0

dist z; @­0
+ C2¶ :

We turn now to the proofs of Theorem 4 2 and Corollary 4 3 beginning with
an analog of the result of Smith and Stegenga [14 Theorem 3] which appears in
Lemma 2 1

Lemma 4 6 Let ­ satisfy 4 1 Then there exists C1 C1 s;¯; C0 < 1 so
that for all x1 2 ­ we have

k­ x0; x ·
2s¡1

¯ µlog+ dist x0; @­
length ° x; x1

¶
s

+ C1 4 9

whenever ° is a quasihyperbolic geodesic joining x0 to x1 and x 2 °
Proof Fix x1 2 ­ and a quasihyperbolic geodesic ° joining x0 to x1 in ­
Thus ° is a recti¯able arc in ­ and

k­ y1; y2 Z
° y1;y2

ds
dist x; @­

for each pair of points y1; y2 2 ­ Assume that 4 9 is false then for every
~C ¸ 1

2¯ + C0 there exists a point y0 2 ° so that

2s¡1

¯ µlog+ dist x0; @­
length ° y0; x1

¶
s

+ ~C < k­ x0; y0 : 4 10

Let L : length ° y0;x1 De¯ne recursively yk 2 ° yk¡1;x1 so that
length ° yk¡1; yk 2¡kL for k 2 N For k 0; 1; 2; : : : let
±k supfdist x; @­ : x 2 ° yk ;x1 g

Combining 4 10 and 4 1 and using the relation A + B s · 2s¡1 As + Bs

valid for A;B ¸ 0 and s ¸ 1 we see that for all x 2 ° y0; x1 the following
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chain of inequalities holds:

2s¡1

¯ µlog+ dist x0; @­
L ¶

s

+ ~C < k­ x0; y0 · k­ x0; x

·
1

¯ µlog+ dist x0; @­
dist x; @­ ¶

s

+ C0

·
1

¯ µlog+ L
dist x; @­ + log+ dist x0; @­

L ¶
s

+ C0

·
2s¡1

¯ µlog+ L
dist x; @­ ¶

s

+
2s¡1

¯ µlog+ dist x0; @­
L ¶

s

+ C0:

Thus ±0 L · expf¡2¡1+1 s¯1 s
~C ¡ C0

1 s
g · e¡12 Now we can choose ~C ¸1

2¯ + C0 so that the ratio L ±0 is so large that

¡l
og+ L ±0

k+1
¢

s · ¯
2s¡1

2¡k L ±0
k 4 11

for all k 2 N We will prove by induction that ±k¡1 L · ±0 L k for all k 2 N
This is trivially true when k 1 ; assume it holds for some k ¸ 1 Combining
4 10 the induction hypothesis and 4 11 we see that for all x 2 ° yk; x1 we

have

2s¡1

¯ µlog+ dist x0; @­
L ¶

s

+ ~C +
2s¡1

¯ ¡l
og+ L ±0

k+1
¢

s

< k­ x0; y0 + 2¡k L ±0
k · k­ x0; y0 + 2¡kL ±k¡1

· k­ x0; y0 + k­ yk¡1; yk · k­ x0;x ·
1

¯ µlog+ dist x0; @­
dist x; @­ ¶

s

+ C0

·
2s¡1

¯ µlog+ L
dist x; @­ ¶

s

+
2s¡1

¯ µlog+ dist x0; @­
L ¶

s

+ C0

and so ±k L · ±0 L k+1 which completes the proof of the induction
Since

0 < dist x1; @­ · ±k · L ±0 L k+1 · L e¡ 1
2

k+1

for all k ¸ 1 we have a contradiction and thus the lemma is proved

Armed with this lemma we can prove Theorem 4 2 and Corollary 4 3 in much
the same way as in the previous section For the sake of brevity we only sketch the

main ideas indicating along the way how the various lemmas must be modi¯ed
Recall that in Theorem 4 2 we assume that the diameter of ­ is one

First Lemmas 2 2 and 2 3 take the following form: if ­ satis¯es 4 1 for some

s ¸ 1 then

cardfQ 2 W1 [ ¢ ¢ ¢ [Wj : Q \ ° 6 ;g · Cjs
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for all j and all quasihyperbolic geodesics ° which start at x0 furthermore

XQ2W1[¢¢¢[Wj
ÂS Q x · Cjs

for every j 2 N and x 2 ­
Next in Lemma 2 4 the HÄolder-type bound for the diameter of the shadow of

a Whitney cube Q in terms of the diameter of Q is replaced by the estimate

diam S Q · Ã diam Q ;

where Ã t C dist x0; @­ expf¡¯1 s log dist x0;@­t
1 s

g
Finally Lemma 3 1 reads as follows: if ± > 0 and if ¹ is a Borel measure on

Rn which satis¯es the growth condition 2

¹ B x; r · log 1 r ¡s2 ± log log 1 r ¡b

for some b > 1 ± then there exists a constant C C n; ±; s; ¯; C0 so that

XQ2W
diam Q·diam E

¹ S Q \ E 1+± · C¹ E µlog log
1

diam E¶¡
b±

:

Now Theorem 4 2 follows by repeating the proof of Theorem 1 4 The Frostman
measure ¹ is now chosen to satisfy

¹ E \ B x; r · log 1 r ¡s2 ± log log 1 r ¡n

for all balls B x; r and

¹ E ¸
1

C n µlog
1

diam E¶¡
s2 ±

µlog log
1

diam E¶¡
n

:

Estimating the n -capacity as before we ¯nd that

capn E; Q0;­ ¸
1

M µlog
1

diam E¶
s2 1¡n

:

The proof of Corollary 4 3 follows the argument used to prove Theorem 1 1

2 The use of the log log term in this growth condition is strictly speaking not necessary if we

are just interested in obtaining uniform continuity but it leads to a slightly sharper modulus of
continuity If we instead require that ¹ B x; r · log 1 r ¡as2

for some a > 1 ± n¡ 1

then we can show Theorem 4 2 with 4 2 replaced by

cap E; Q0;­ ¸ 1 M log 1 diam E s 1¡n ¡as s¡1

and Corollary 4 3 with 4 3 replaced by

f t C expf¡c log 1 t s+as s¡1 n¡1 ¡1
g:
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