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Commentarii Mathematici Helvetici

Une formule de Plancherel pour l'algµebre de Hecke d'un
groupe r¶eductif p-adique

Volker Heiermann

R¶esum¶e Nous montrons un th¶eorµeme de Paley-Wiener matriciel pour l'algµebre de Hecke d'un
groupe r¶eductif p-adique La preuve est bas¶ee sur une analogue de la formule de Plancherel

Mathematics Subject Classi¯cation 2000 Primary 22E35 Secondary 11F70 22E50

Mots-cl¶es Th¶eorµeme de Paley-Wiener matriciel formule de Plancherel algµebre de Hecke

repr¶esentations d'un groupe r¶eductif p-adique

Fixons un corps local non archim¶edien F Soit G l'ensemble des points F -
rationnels d'un groupe r¶eductif connexe G d¶e¯ni sur F Fixons un sous-groupe

ouvert compact K maximal sp¶ecial de G On munit tout sous-groupe alg¶ebrique

ferm¶e H de G de la mesure de Haar invariante µa gauche pour laquelle mes H\K
1 Lorsque M est un sous-groupe de L¶evi de G ou plus pr¶ecis¶ement l'ensemble
des points F -rationnels d'un facteur de L¶evi d'un sous-groupe parabolique de G
d¶e¯ni sur F notons Xnr M le groupe des caractµeres non rami¯¶es de M d¶e¯ni
en 1 2 C'est une vari¶et¶e alg¶ebrique complexe isomorphe µa C£ d oµu d d¶esigne la
dimension du tore d¶eploy¶e maximal dans le centre de M Pour une repr¶esentation
cuspidale irr¶eductible ¾; E de M on notera O¾ f¾­ÂjÂ 2 Xnr M g son orbite
inertielle L'application Xnr M O¾ Â

7

¾ ­Â d¶e¯nit de fa»con naturelle une

structure de vari¶et¶e alg¶ebrique complexe sur O¾ Une fonction complexe ' sur
O¾ sera dite polynomiale resp rationnelle si la fonction Â

7 ' ¾ ­ Â est
polynomiale resp rationnelle sur Xnr M

Lorsque P est un sous-groupe parabolique de L¶evi M on d¶esigne par iG
P

le
foncteur d¶e¯ni par l'induction parabolique unitaire Si M et K sont en bonne

position relative on d¶e¯nit l'espace iK
P\KE des applications f : K E invariantes

µa droite par un sous-groupe ouvert de K et v¶eri¯ant f muk ¾ m f k pour tout
m 2 M \K; u 2 U \K et k 2 K La restriction µa K d¶e¯nit un isomorphisme de

iG
P

E sur iK
P\KE et l'espace iKP\KE ne change pas si on remplace ¾ par un ¶el¶ement

de son orbite inertielle O¾ Toutes les repr¶esentations iG
P

¾0 ¾0 2 O¾ se r¶ealisent
donc dans le même espace iK

P\KE Ceci permet d'introduire la notion naturelle
d'une application polynomiale sur O¾ µa valeurs dans Hom iK

P\KE; iKP 0\KE ou
dans iK

P\KE ­ iKP 0\KE_ cf [W] IV 1 et VI 1 P 0 d¶esignant un deuxiµeme sous-
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groupe parabolique de L¶evi M
L'op¶erateur d'entrelacement JP 0jP ¾0 est d¶e¯ni pour ¾0 dans un certain ouvert

Zariski dense de O¾ C'est une application lin¶eaire de iK
P\KE dans iK

P
0\KE qui

v¶eri¯e JP 0jP ¾0 iGP¾0 g iGP0
¾0 g JP 0jP

¾0 pour tout g 2 G ¾0 2 O¾ On

a h JP 0jP
¾0 v g ; e_i Z

U\U0nU 0
hv u0g ; e_idu0 pour v 2 iK

P\KE et e_ 2 E_ si

l'int¶egrale µa droite est convergente L'application O¾ Hom iK
P\KE; iKP0\KE ; ¾0

7 JP 0jP
¾0 est rationnelle i e il existe une fonction polynomiale p sur O¾ telle

que l'application ¾0
7

p ¾0 JP 0jP ¾0 soit polynomiale sur O¾ Pour la preuve de

ces r¶esultats et d'autres propri¶et¶es des op¶erateurs d'entrelacement nous renvoyons

le lecteur µa [W] Remarquons que la plupart des r¶esultats qui y sont expos¶es sont
dus µa Harish-Chandra

Fixons un tore d¶eploy¶e maximal A0 de G par rapport auquel K est en bonne

position Le groupe K est donc le ¯xateur d'un point sp¶ecial de l'appartement
associ¶e µa A0 dans l'immeuble de G Notons W G : W G; A0 le groupe de Weyl
d¶e¯ni relatif µa ce tore Si M est semi-standard i e M ¶ A0 et si w 2 W G

on dispose d'un isomorphisme ¸ w : iGPE iGwP wE; v
7

vw; vw g : v w¡1g
entre les repr¶esentations iG

P
¾ et iGwP w¾

Notons C1c G l'espace des fonctions complexes lisses µa support compact sur
G Il est bien connu que l'on peut associer µa tout ¶el¶ement f de C1c G un endo-
morphisme iG

P
¾ f de l'espace vectoriel iG

P
E Nous le noterons

bf
G P; ¾ i e on

pose

bf
G P; ¾ : Z

G
f g iGP ¾ g dg:

Notre but est le r¶esultat suivant:

0 1 Th¶eorµeme ¶Etant donn¶e pour chaque classe d'¶equivalence d'une repr¶esen-
tation cuspidale irr¶eductible ¾; E¾ d'un sous-groupe de L¶evi semi-standard M
de G et tout sous-groupe parabolique P de L¶evi M un endomorphisme 'P;¾ de

l'espace vectoriel iK
P\KE¾ tels que la famille f'P;¾g P;¾ v¶eri¯e les propri¶et¶es suiv-

antes:
1 Pour tout P; ¾ l'application 'P;O : O End iK

P\KE¾ ¾0
7 'P;¾0 est

polynomiale sur l'orbite inertielle O de ¾;
2 Il existe un sous-groupe ouvert compact de G par lequel toute composante

'P;¾ est invariante µa gauche et µa droite;
3 Pour tout P; ¾ et tout w 2 WG on a ¸ w ± 'P;¾ 'wP w¡1;w¾ ± ¸ w ;
4 Pour tout P; ¾ et tout P 0; ¾ on a l'identit¶e d'applications rationnelles

JP 0jP
¾ ± 'P;¾ 'P 0;¾ ± JP 0jP ¾ ;

alors il existe une fonction f dans C1c G telle que 'P;¾
bf
G P; ¾ pour tout

P; ¾

R¶eciproquement il est bien connu que pour f dans C1c G la famille

f bf
G P; ¾ g P;¾ v¶eri¯e les propri¶et¶es 1 - 4 du th¶eorµeme 0 1 Pour les propri¶et¶es
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2 µa 4 c'est une v¶eri¯cation directe et imm¶ediate La propri¶et¶e 1 r¶esulte par
exemple d'arguments de la th¶eorie des B-familles de repr¶esentations admissibles

utilis¶es dans la partie B de cet article
La propri¶et¶e 2 ¶equivaut µa dire que l'image de 'P;O

est contenue dans un sous-
espace de dimension ¯nie de l'image de l'application canonique iGP E ­ iG

P
E_

End iG
P

E et qu'il n'existe qu'un nombre ¯ni de P; O avec 'P;O 6
0 cf [W]

th¶eorµeme VIII 1 2
Notre d¶emonstration de ce th¶eorµeme est bas¶ee sur une analogue de la formule

de Plancherel de Harish-Chandra Elle a donc l'avantage d'expliciter la fonction

f du th¶eorµeme La preuve utilise le r¶esultat suivant qui sera prouv¶e dans la partie
B:

0 2 Proposition Soit f'P;Og P;O
comme dans le th¶eorµeme Pour tout P; O

il existe une application polynomiale »P;O : O iKP\KEO­iKP\KE_
O

oµu EO
: E¾

pour un ¾ 2 O et oµu P d¶esigne le sous-groupe parabolique oppos¶e de P µa image

dans un espace de dimension ¯nie telle que

'P;O ¾ X
w2W ;w O O

JP jwP ¾ ± ¸ w ­ JP jwP ¾_ ± ¸ w »P;O w¡1¾ ;

pour tout ¾ 2 O

Ici on a identi¯¶e 'P;O
¾ 2 End iK

P\KE µa un ¶el¶ement de iK
P\KE ­ iK

P\KE_

Plus pr¶ecis¶ement choisissons »P;O
et posons ³P;O ¾ JP jP

¾ ¡1­1 »P;O ¾

Pour ¾ 2 O notons EG
P;¾ l'application lin¶eaire qui associe µa un ¶el¶ement v ­ v_ de

iK
P\KEO ­ iKP\KE_

O

la fonction g
7 h iG

P
¾ g v; v_i g 2 G Fixons ¾ 2 O Avec

' 'P;O
posons

f' g Z
Re Â ¹ÀP 0

EG
P;¾­Â ³P;O ¾ ­ Â g¡1 dIm Â ;

pour g 2 G La partie r¶eelle d'un caractµere non rami¯¶e ¶etant d¶e¯nie dans 1 2 la
notation ¹ ÀP 0 est justi¯¶ee par le fait que l'on peut trouver ¹ dans la chambre de

Weyl de P tel que les pôles Â de la fonction dans l'int¶egrale v¶eri¯ent h®_; Re Â i <
h®_;¹i pour toute racine ® positive pour P Grâce au th¶eorµeme des r¶esidus la
valeur de l'int¶egrale ne d¶epend alors pas du choix de ¹ v¶eri¯ant cette condition

On montrera cf A 3 1-2 :
1 La fonction f'P;O

ne d¶epend que de 'P;O
;

2 La fonction f'P;O
appartient µa C1c G ;

Notons [O] fw¾j¾ 2 O; w 2 W G
g la classe de W G-conjugaison de O

et M le sous-groupe de L¶evi semi-standard sous-jacent µa O Posons f'[O]
c [O] P P 0;O0 f'P 0;O0

oµu c [O] est une constante pr¶ecis¶ee dans 3 2 la somme
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portant sur les couples P 0; O
0 form¶es d'une orbite inertielle O

0 w O w 2 W G

et d'un sous-groupe parabolique de L¶evi wMw¡1 Alors on a par ailleurs

3 df'[O] P; ¾ 0 si ¾
62 [O];

4 df'[O] P; ¾ 'P;¾ si ¾ 2 [O];

5 RG f'[O] g f'[O0] g dg 0 si [O]
6

[O
0];

6 La fonction f' P[O] f'[O]
v¶eri¯e 'P;¾

bf P; ¾ pour tout P; ¾

Cet article est divis¶e en deux parties Dans la partie A nous prouvons tous

les r¶esultats annonc¶es dans l'introduction µa l'exception de la proposition 0 2 Sa
preuve est le contenu de la partie B Les deux parties peuvent être lues ind¶ependam-
ment seules certaines d¶e¯nitions et notations introduites dans la section A 1 seront
utilis¶ees sans rappel dans la partie B

Remarquons que J N Bernstein a annonc¶e une preuve du th¶eorµeme 0 1 par une

m¶ethode di®¶erente de la nôtre

L'essentiel de ce travail a ¶et¶e r¶ealis¶e alors que l'auteur s¶ejournait µa l'Universit¶e
Paris 7 au sein de l'¶equipe "Th¶eorie des Groupes" Ce s¶ejour a ¶et¶e ¯nanc¶e par une

bourse Feodor Lynen de la fondation Alexander von Humboldt en correspondance

avec M -F Vign¶eras Cette bourse comprenait une participation ¯nanciµere de

l'Universit¶e Paris 7 venant du r¶eseau "G¶eom¶etrie arithm¶etique alg¶ebrique" soutenu
par le programme "Formation et Mobilit¶e des Chercheurs" de l'Union Europ¶eenne

Mon tuteur auprµes de la fondation Alexander von Humboldt ¶etait E -W Zink

Mes remerciements vont par ailleurs tout particuliµerement µa J -L Waldspurger
µa qui je dois l'id¶ee pour ce travail et qui m'a bien accompagn¶e durant sa r¶ealisation

Finalement je remercie le rapporteur qui a examin¶e mon article pour son travail
trµes soigneux

A Une analogue de la formule de Plancherel

1 On garde les notations et d¶e¯nitions de l'introduction On notera q le cardinal
du corps r¶esiduel de F vF la valuation discrµete de F normalis¶ee telle que vF F£
Z et jjF la valeur absolue donn¶ee par jxjF q¡vF x pour x dans F£

Les d¶e¯nitions et notations qui seront introduites dans la suite pour le groupe

r¶eductif G et munies du symbôle G seront ensuite utilis¶ees pour tout groupe

r¶eductif M en rempla»cant G par M sans que cela soit dit explicitement

1 1 Notons AG le tore d¶eploy¶e maximal dans le centre de G et Gder le groupe

d¶eriv¶e de G Posons X¤ G HomF G; Gm et X¤ S HomF Gm; S lorsque
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S est un tore

1 1 1 Posons a¤0 X¤ A0 ­Z R a¤G X¤ AG ­Z R et aG¤0 X¤ A0\Gder ­Z R
On a une d¶ecomposition a¤0 a¤G © aG¤0 Lorsque S est un tore d¶eploy¶e dans A0
on notera § S l'ensemble des racines pour l'action adjointe de S dans l'algµebre

de Lie de G Soit P; M un couple parabolique semi-standard i e P est un
sous-groupe parabolique de G M un facteur de L¶evi de P et on a M ¶ A0
L'ensemble § AM est l'ensemble des projections non nulles dans a¤M d'¶el¶ements

de § A0 suivant la d¶ecomposition a¤0 a¤M © aM¤0 On notera § P l'ensemble
des racines pour l'action adjointe de AM dans l'algµebre de Lie du radical unipotent
de P

1 1 2 On ¯xera pour la suite un couple parabolique semi-standard P0; M0 avec

P0 minimal On a alors M0 ZG A0 et AM0 A0 L'ensemble § A0 est un
systµeme de racines dans aG¤0 Remarquons que ce systµeme de racines peut ne pas

être r¶eduit Les ¶el¶ements de § P0 s'identi¯ent aux racines positives dans § A0
pour un certain ordre sur aG¤0 La base de § A0 correspondant µa cet ordre sera
not¶e ¢ Un couple parabolique P; M sera dit standard s'il est semi-standard
et P ¶ P0 On a une bijection ­ 7 P­;M­ entre les sous-ensembles de ¢ et
les couples paraboliques standard les racines dans § A0 de restriction triviale µa

AM­ ¶etant les combinaisons lin¶eaires de ­
1 1 3 Posons a0 X¤ A0 ­Z R aG X¤ AG ­Z R et aG

0
X¤ A0 \Gder ­Z R

Les espaces a0 et a¤
0

sont duaux l'orthogonal de aG dans a¤
0

est aG¤0
et celui de

aG
0

est a¤G

1 1 4 Si M est un sous-groupe de L¶evi semi-standard il existe une notion de

coracine ®_ associ¶ee µa une racine ® 2 § AM C'est un ¶el¶ement de aM On en
d¶eduit pour tout sous-groupe parabolique P de L¶evi M une notion de chambre

de Weyl dans a¤M qui est l'ensemble des ¶el¶ements positifs pour P

1 1 5 On d¶e¯nit une application H0 : M0 Hom X¤ M0 ; R ' a0 par hÂ;H0 m i
vF Â m Soit P; M un couple parabolique semi-standard Un ¶el¶ement

a 2 AM sera dit positif pour P si h®; H0 m i ¸ 0 pour tout ® 2 § P On
dira qu'il est strictement positif si l'on a l'in¶egalit¶e stricte pour tout ® 2 § P

1 2 La restriction X¤ G X¤ AG induit un isomorphisme X¤ G ­Z R a¤G
Le groupe Xnr G des caractµeres non rami¯¶es de G est par d¶e¯nition l'image de

l'homomorphisme a¤
G;C a¤G ­R C Hom G; C£ qui associe µa ¸ ® ­ s le

caractµere Â¸ tel que Â¸ g j® g j
s
F Son noyau est de la forme 2¼i

log q RG oµu RG
d¶esigne un r¶eseau de rang maximal dans X¤ G ­Z Q L'homomorphisme munit
Xnr G d'une structure de vari¶et¶e alg¶ebrique complexe isomorphe µa C£ d avec
d rang de AG Sa restriction µa a¤G induit un isomorphisme avec le sous-groupe
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des caractµeres r¶eels µa valeurs > 0 La partie r¶eelle d'un caractµere non rami¯¶e Â
not¶e Re Â est l'unique ¶el¶ement ¸ de a¤G qui v¶eri¯e Â¸ jÂj On notera Xnr

im G
le sous-groupe de Xnr G form¶e des Â tels que Re Â 0

1 2 1 On munit Xnr
im AG de la mesure de Haar de masse totale 1 et Xnr

im G de la
mesure de Haar pour laquelle la restriction Xnr

im G Xnr
im AG pr¶eserve locale-

ment les mesures Lorsque ¾ est une repr¶esentation de G on notera StabXnr
im G ¾

le sous-groupe de Xnr
im G form¶e des caractµeres Â tels que ¾ ' ¾ ­ Â Ce sous-

groupe ne change pas si on remplace ¾ par un autre ¶el¶ement de son orbite inertielle
O ce qui permettra d'¶ecrire StabXnr

im G O

1 2 2 Soit P; M un couple parabolique semi-standard Soit r une fonction ra-
tionnelle sur Xnr M Supposons qu'il existe un nombre ¯ni d'hyperplans de la
forme

h¸; ®_i c dans a¤M ® 2 § P tels que tout pôle Â de r soit de la forme

Â Â¸ avec ¸ sur un de ces hyperplans Il r¶esulte du th¶eorµeme des r¶esidus que

l'int¶egrale RXnr
im M r Â0Â dÂ reste constante si Â0 varie dans l'ouvert de Xnr M

d¶e¯ni par les in¶egalit¶es
hRe Â ; ®_i < hRe Â0 ; ®_i Â parcourant les pôles de r

® 2 § P
On ¶ecrira plus simplement RRe Â ¹ÀP 0 r Â d Im Â pour la valeur de cette

int¶egrale
L'expression RRe Â ¹¿P 0 r Â d Im Â aura la signi¯cation ¶evidente

1 2 3 Proposition: Soient D un ouvert de a¤G et Ã une fonction holomorphe dans

l'ouvert de Xnr G form¶e des points Â avec Re Â 2 D Fixons ¹ 2 D
Alors pour tout Â0 2 Xnr G Re Â0 ¹ on a

X
a2AG\KnAG

Â¡1
0 a Z

Re Â ¹
Ã Â Â a dIm Â X

Â

Ã ÂÂ0 ;

la somme portant sur les ¶el¶ement de Xnr
im G de restriction triviale µa AG

Preuve: Ceci r¶esulte de la th¶eorie de Fourier sur un tore ¤

1 3 Fixons un sous-groupe de L¶evi semi-standard M de G Notons P M l'ensemble
des sous-groupes paraboliques P de G de la forme P MU Fixons une repr¶esenta-
tion irr¶eductible cuspidale ¾; E de M Soient P; P 0 2 P M Les points oµu
l'application rationnelle Xnr M Hom iK

P\KE; iKP0\KE Â
7 JP 0jP ¾ ­ Â a

un pôle ou bien oµu JP 0jP
¾­Â n'est pas inversible sont de la forme Â Â¸ avec ¸

sur un nombre ¯ni d'hyperplans de a¤M de la forme
h®_; ¸i c ® 2 § P 0 \§ P

Soit P 00 2 P M Il existe une fonction rationnelle jP jP 0jP 00
sur l'orbite iner-

tielle O de ¾ telle que JP jP 0 ¾ ­ Â JP 0jP 00 ¾ ­ Â jP jP 0jP 00 ¾ ­ Â JP jP 00 ¾ ­ Â
pour tout Â Si P 00 P on ¶ecrira plus simplement jP jP 0 jP jP 0jP 00 L'¶egalit¶e
jP jP 0jP 00 ¾ ­ Â 1 vaut si d P jP 00 d P jP 0 + d P 0jP 00 d P jP 00 d¶esignant le
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nombre d'hyperplans s¶eparant les chambres de Weyl de a¤M correspondant µa P et
P 00 respectivement cf [W] IV 1 12

1 3 1 Le th¶eorµeme suivant est un r¶esultat cl¶e pour la suite A notre connaissance il
est paru pour la premiµere fois en tous cas le cas temp¶er¶e dans les papiers de Cas-
selman et dans ceux de Harish-Chandra sans que nous nous sentions comp¶etent
de l'attribuer µa l'un ou l'autre Il nous a sembl¶e que ce que nous faisons relµeve

davantage de Casselman Harish-Chandra adoptant un point de vue trµes analy-
tique

Soit P 0; M 0 un couple parabolique semi-standard Posons W M;M 0

W M0

nfw 2 W G
j wMw¡1

µ M 0
g et identi¯ons ses ¶el¶ements µa certains ¶el¶ements

de W G Les formules qui suivent seront essentiellement ind¶ependantes du choix
d'une telle identi¯cation Pour w 2 W M; M 0 d¶e¯nissons P

0w
;

e
P

0w 2 P M par
P

0w
w¡1M 0w \ P w¡1U 0w et

e
P

0w
w¡1M 0w \ P w¡1U 0w

D¶esignant par ±P 0 le module de P 0 on d¶e¯nit une constante

° G M 0 : Z
U0

±P 0 mP 0 u0 du0;

oµu pour tout ¶el¶ement g de G on a not¶e g uP 0 g mP 0 g kP 0 g la d¶ecomposition
correspondant µa la d¶ecomposition G P 0K Cette d¶e¯nition de ° G M 0 ne

d¶epend pas du choix de P 0 cf [W] p 5 3
Pour v 2 iK

P\KE v_ 2 iK
P\KE_ Â 2 Xnr M et a 2 AM0 posons cP 0jP

¾ ­
Â; w v­v_ a hiM 0

wP\M0 w ¾­Â a ¸ w JP
0wjP ¾­Â v jM 0 ; ¸ w J

e
P

0wjP
¾_­

Â¡1 v_ jM 0iM 0

Th¶eorµeme Soient v 2 iKP\KE et v_ 2 iK
P\KE_ Il existe t > 0 de sorte que pour

tout Â 2 Xnr M et tout a 2 AM 0 tel que
h®; H0 a i > t pour tout ® 2 § P 0 on

ait

hiGP ¾ ­ Â a v; v_i ° GjM 0 ¡1±
1 2
P 0 a X

w2W M;M 0

cP 0jP ¾ ­ Â; w v ­ v_ a :

Preuve: Notons
h; iP 0 le produit bilin¶eaire de Casselman cf [Cs] proposition

4 2 3 et th¶eorµeme 4 2 4 Pour ¼; V une repr¶esentation lisse de G d¶esignons

par ¼P 0 ; VP 0 la repr¶esentation de M 0 dans le module de Jacquet VP 0 de V et
par jP 0 : V VP 0 la projection canonique Il est prouv¶e dans [W] au cours

de la d¶emonstration du lemme VI 2 1 qu'il existe t > 0 de sorte que pour tout
Â 2 Xnr M et tout a 2 AM 0 tel que

h®; H0 a i > t pour tout ® 2 § P 0 on ait

hiGP ¾ ­ Â a v; v_i hiGP ¾ ­ Â P 0 a jP v ; jP v_ iP 0 :

Tout se ramµene donc au calcul du produit bilin¶eaire de Casselman Ce calcul
est e®ectu¶e dans [W] relatif au module de Jacquet faible dans la preuve de la
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proposition V 1 1 Celui relatif au module de Jacquet suit les même lignes: d'une

caract¶erisation des produits bilin¶eaires M 0-invariants sur iK
P\KE P 0 £ iK

P\KE_ P 0

analogue au cas temp¶er¶e on d¶eduit l'existence de constants ° P; w; ¾ ­ Â tels
que

hjP 0 v ; jP 0 v_ iP 0 X
w2W M:M 0

° P; w; ¾ ­ Â cP 0jP
¾ ­ Â; w v ­ v_ 1 :

pour tous v 2 V v_ 2 V _
On refait alors les arguments de [W] dans la preuve de la proposition V 1 1

pour montrer que ° P; w; ¾ ­ Â ° G M 0 ¡1 pour tout w 2 W M;M 0 ¤

1 3 2 Le r¶esultat suivant sera utile lors des applications du th¶eorµeme 1 3 1

Lemme Soit w 2 W M; M 0 On a

JP0wjP
¾0 JP jP

¾0 ¡1 jP 0wjP
¾0 ¡1JP0wjP

¾0

en tout point ¾0 de l'orbite inertielle de ¾ en lequel ces op¶erateurs sont d¶e¯nis

Preuve: Par la formule du produit cf [W] p 55 on a

JP
0wjP

¾0 JP jP
¾0 jP

0wjP
¾0 JP

0wjP
¾0 :

¤

1 4 Soient ¼; V et ¼0; V 0 deux repr¶esentations irr¶eductibles cuspidales de G
Supposons que les restrictions µa AG de leurs caractµeres centraux coÄ³ncident Pour
v 2 V v_ 2 V _ v0 2 V 0 et v0_ 2 V 0_ posons

I v; v_; v0; v0_ Z
AGnG

h¼ g v; v_i hv0; ¼0_ g v0_idg:

Th¶eorµeme cf [Ca] Theorem 1 3 et [Cs] proposition 5 2 4

i Si ¼
6' ¼0 alors I v; v_; v0; v0_ 0 pour tous v v_ v0 et v0_

ii Si ¼; V ¼0; V 0 il existe un r¶eel d ¼ > 0 appel¶e le degr¶e formel de ¼

tel que I v; v_; v0; v0_ d ¼ ¡1
hv; v0_ihv0; v_i pour tous v v_ v0 et v0_

L'expression I v; v_; v0; v0_ ne change pas si on tord ¼ et ¼0 par un même

caractµere non rami¯¶e On en d¶eduit que le degr¶e formel de ¼ reste invariant si
on remplace ¼ par un ¶el¶ement de son orbite inertielle O On peut donc poser
d O : d ¼
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2 Fixons un couple parabolique standard P; M de G et une repr¶esentation
cuspidale unitaire irr¶eductible ¾; E de M Notons O l'orbite inertielle de ¾ Soit
» : O iKP\KE ­ iKP\KE_ une application polynomiale µa image dans un espace

de dimension ¯nie Posons ³ ¾0 JP jP
¾0 ¡1 ­ 1 » ¾0 pour tout ¾0 2 O et

f³ g Z
Re Â ¹ÀP 0

EG
P;¾­Â ³ ¾ ­ Â g¡1 d Im Â :

2 1 Proposition: La fonction f³ appartient µa C1c G

Preuve D'aprµes 1 2 2 et 1 3 la fonction f³ est bien d¶e¯nie Il est clair qu'elle
est lisse Il reste donc µa montrer que son support est compact Comme » est
une somme ¯nie de fonctions Xnr M C Â

7

p Â v ­ v_ avec p fonction
polynomiale sur Xnr M et v ­ v_ 2 iKP\KE ­ iKP\KE_ il su±t de consid¶erer le
cas oµu » est une telle fonction

Par la d¶ecomposition de Cartan on a

G KM+
0 K avec M+

0 fm 2 M0j 8® 2 ¢ h®; H0 m i ¸ 0g:

Par ailleurs KmK Km0K si et seulement si H0 m H0 m0 Posons A+
0

A0 \M+
0 On observe que M0 est l'ensemble des points F -rationnels d'un groupe

r¶eductif d¶e¯ni sur F qui est le produit presque direct du tore d¶eploy¶e maximal
dans son centre et d'un groupe anisotrope L'ensemble des points F -rationnels
de ce tore ¶etant A0 il existe un compact C de A+

0
tel que M+

0 CA+
0

Par
un argument de K ¡ C-¯nitude - l'ensemble des transform¶es d'un ¶el¶ement de V
par un compact de G engendre un sous-espace de dimension ¯nie de V - il su±t
alors de montrer que pour tout v 2 iKP\KE tout v_ 2 iK

P\KE_ et toute fonction

polynomiale p sur Xnr M la fonction sur A+
0

d¶e¯nie par

a
7

Z

Re Â ¹ÀP 0
p Â hiGP ¾ ­ Â a JP jP

¾ ­ Â ¡1v; v_id Im Â *

est µa support compact
Supposons d'abord G semi-simple Alors ¢ est une base de a¤0 Pour £ µ ¢ et

t0; t ¸ 0 posons A+
0

£; t; t0 fa 2 A+0jh®; H0 a i · t 8® 2 £ et h®; H0 a i >
t0

8® 2 ¢¡£g et A+0 £; t : A+0 £; t; t
On va montrer l'existence d'une fonction £; t 7 f £; t £ ½ ¢ t ¸ 0

telle que la fonction * soit nulle en tout a 2 A+
0

£; t;f £; t Ceci implique

la proposition dans le cas semi-simple: Comme A+
0 S£µ¢ A+

0
£; t pour tout

t ¸ 0 il su±t d'en d¶eduire que pour tout £ µ ¢ et tout t ¸ 0 la restriction de

* µa A+
0

£; t est µa support compact
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E®ectuons une r¶ecurrence d¶ecroissante sur £ µ ¢ Comme ¢ est une base

de a¤0 A+
0

¢; t est compact pour tout t ¸ 0 Soit £ ½ ¢ Si * est non nulle
en a 2 A+

0
£; t alors £0 f® 2 ¢jh®; H0 a i · f £; t g contient strictement

£ Par suite a 2 S£0¾£ A+
0

£0; f £; t Or par hypothµese de r¶ecurrence la
restriction de l'application * µa cette r¶eunion est µa support compact

Fixons £ ½ ¢ t ¸ 0 et montrons l'existence de f £; t Posons P 0; M 0

P£; M£ Il existe un compact C£ ½ A0 C¡1
£ ½ A+

0
tel que tout ¶el¶ement de A+

0puisse s'¶ecrire sous la forme a a£a0ca avec a£ 2 AM 0 a0 2 A0\M 0der et ca 2 C£
On a h®;H0 a0 i · 0 pour tout ® 2 ¢ ¡ £ et l'ensemble des H0 a0 avec a 2
A+

0
£; t est ¯ni En particulier a 2 A+

0
£; t; t0 implique a£ 2 A£ \A+

0
£; t; t0

Par ailleurs comme ® a ® aa¡1
£ pour tout ® 2 £ on en d¶eduit l'existence

d'un compact C
0£

de A0 tel que aa¡1
£ 2 C

0£
pour tout a 2 A+

0
£; t

Lorsque a et ¾­Â parcourent respectivement A+
0

£; t et l'ensemble des points

J¡1
P jP

-r¶eguliers de O l'ensemble des iG
P

¾­Â aa¡1
£ JP jP

¾­Â ¡1v reste donc dans

un espace de dimension ¯nie Il r¶esulte donc de la formule de Casselman 1 3 1
qu'il existe t0 ¸ t tel que pour tout a 2 A+

0
£; t; t0 on ait

hiGP ¾ ­ Â a JP jP
¾ ­ Â ¡1v; v_i

° GjM
0 ¡1±

1 2
P 0 a X

w2W M;M 0

cP 0jP ¾ ­ Â; w JP jP
¾ ­ Â ¡1v ­ v_ a :

En particulier le coe±cient matriciel est nul si W M;M 0 ;L'¶etude de * se ramµene donc µa celle de

a
7

Z
Re Â ¹ÀP 0

p Â cP 0jP ¾ ­ Â; w JP jP
¾ ­ Â ¡1v ­ v_ a d Im Â **

pour tout w 2 W M;M 0 Fixons w 2 W M; M 0

Pour a 2 A+
0

notons ra la fonction rationnelle Â
7

p Â cP 0jP ¾­Â; w JP jP
¾­

Â ¡1v ­ v_ a0ca d¶e¯nie sur Xnr M Comme l'ensemble form¶e des aa¡1
£ a0c0

a

a 2 A+
0

£; t est contenu dans le compact C
0£

il r¶esulte d'un argument de C
0£

-

¯nitude que les fonctions ra a 2 A+
0

£; t sont en nombre ¯ni
Par ce qui pr¶ecµede et aprµes avoir e®ectu¶e le changement de base Â

7

w¡1Â
l'¶etude de ** se ramµene µa celle de

a
7

Z
Re Â w¹

Â a£ ra w¡1Â d Im Â ; ***

oµu ¹ a ¶et¶e choisi su±samment positif dans la chambre de Weyl de P dans a¤M
On d¶eduit de 1 3 et de 1 3 2 que les pôles des fonctions rationnelles Â

7

ra w¡1Â a 2 A+
0

£; t qui sont en nombre ¯ni sont de la forme Â¸ avec
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¸ sur un nombre ¯ni d'hyperplans de a¤M de la forme
h®_; ¸i c avec ® 2

§ wP w¡1 \ § wP
0w
w¡1

A l'aide de la d¶ecomposition a¤
wMw¡1 a¤M 0 © aM 0¤

wMw¡1 on d¶e¯nit Â¹0 2
Xnr wMw¡1 pour ¹0 2 a¤M0

Supposons ¹0 dans la chambre de Weyl pos-
itive de P 0 dans a¤M0

Soit ® 2 § wP w¡1 \ § wP
0w
w¡1 Alors ou bien

® 2 § wP w¡1 \ M 0 ou bien ®jAM0 2 § P 0 Dans le premier cas
h¹0; ®_i 0

alors que
h¹0; ®_i > 0 dans le deuxiµeme D'autre part hw¹; ®_i À 0 puisque

® 2 § wPw¡1 et ¹ À 0 L'int¶egrale dans *** ne change donc pas de valeur
pour a 2 A+

0
£; t si on remplace w¹ par w¹ + ¹0 avec ¹0 dans la chambre de

Weyl positive de P 0 dans a¤M 0

L'ensemble des fonctions rationnelles Â
7 ra w¡1Â a 2 A+

0
£; t ¶etant ¯ni

on peut choisir tw ¸ t0 tel que pour tout a 2 A+
0

£; t; tw Â
7

Â a£ soit µa
d¶ecroissance rapide par rapport µa Â

7 ra w¡1Â lorsque Re ÂjAM0
devient trµes

positif dans la chambre de Weyl de P 0 dans a¤M0

On a donc vu que pour a 2 A+
0

£; t; tw l'int¶egrale dans *** reste invariante

si on remplace w¹ par w¹ + ¹0 ¹0 2 a¤M 0
et ¹0 >P 0 0 alors que la fonction µa

l'int¶erieur de l'int¶egrale converge vers 0 si ¹0 devient trµes positif dans la chambre de

Weyl de P 0 Ceci prouve que l'expression *** est nulle en tout a 2 A+
0

£; t; tw
On pourra alors prendre pour f £; t le plus grand des tw

Consid¶erons maintenant le cas d'un groupe r¶eductif qui n'est pas semi-simple On
a A0 AG A0 \Gder C 0 avec C 0 compact Les morphismes de restriction donnent
lieu µa une suite exacte 0 Xnr G £ X Xnr M Xnr M \ Gder 0 oµu
X d¶esigne un sous-ensemble ¯ni de Xnr

im M form¶e de caractµeres de restriction
triviale µa AG M \ Gder On identi¯e Xnr

im G µa un sous-groupe de Xnr
im M au

moyen de ce morphisme On a donc un isomorphisme Xnr
im M Xnr

im G £ X
Xnr

im M \Gder

Choisissons ¹ su±samment positif dans la chambre de Weyl de P dans a¤M et
tel que

h¹;Hi 0 pour H 2 aG Par ce qui pr¶ecµede et un argument de C0-¯nitude

l'¶etude de * se ramµene µa celle de

Z

Â¹ Xnr
im M\Gder

Z

Xnr
im G £X

p Â0ÂG ÂG aG

hiGP ¾ ­ Â0ÂG a0 JP jP
¾ ­ Â0ÂG ¡1v; v_id Im ÂG d Im Â0

#
pour aG; a0 dans AG£ A+

0 \Gder Il reste donc µa montrer l'existence de compacts

CG et C0 de AG et A+
0 \ Gder respectivement tels que # soit nul si aG; a0

62
CG £ C0

Remarquons d'abord que si a0 2 A+
0 \Gder

hiGP ¾ ­ Â0ÂG a0 JP jP
¾ ­ Â0ÂG ¡1v; v_i

hiG
der

P\Gder ¾ ­ Â0 a0 JP\GderjP\Gder ¾ ­ Â0 ¡1vjG
der ; v_

jG
deri;
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et que l'on peut remplacer ci-dessus RXnr
im G £X par jX j RXnr

im G
Comme Â0

7

RXnr
im G p Â0 ÂG ÂG aG d Im ÂG est une application polynomiale sur Xnr M \

Gder et que M \Gder est un sous-groupe de L¶evi semi-standard du groupe semi-
simple Gder l'existence de C0 r¶esulte du cas semi-simple consid¶er¶e pr¶ec¶edemment
L'int¶egrale sur Xnr

im G portant sur une fonction polynomiale en ÂG l'existence de

CG est imm¶ediate ¤

2 2 Lorsque f est un ¶el¶ement de C1c G et que P 0 M 0U 0 est un sous-groupe

parabolique de G posons

fP 0 m0 ±P 0 m0 1 2 Z
U 0

f m0u0 du0 pour m0 2 M 0:

2 2 1 Lemme cf [S] p 109 On a fP 0 2 C1c M 0

2 2 2 Lemme Soit ¼; V une repr¶esentation lisse de G et v 2 V Si P 0 M 0U 0

est un sous-groupe parabolique et H un sous-groupe ouvert compact de G qui laisse

v invariant et qui admet une d¶ecomposition d'Iwahori H U 0\H M 0\H U 0\H par rapport au couple parabolique P 0; M 0 alors on a

Z
U 0\H

¼ u0a vdu0
mes U 0 \H

mes H
Z

H
¼ ha vdh:

pour tout a 2 AM0 strictement positif pour P 0 En particulier l'¶el¶ement de V ¶egal
µa cette int¶egrale est invariant par H

Preuve Notons uP 0 h mP 0 h uP 0 h la d¶ecomposition d'un ¶el¶ement h 2 H selon

la d¶ecomposition H H \U 0 H \M 0 H \U 0 Comme par choix de a 2 AM 0

a¡1 H \ U 0 a µ H \ U 0 on trouve grâce µa l'invariance de v par H que ¼ ha v
¼ uP 0 h a v L'¶egalit¶e du lemme en suit par int¶egration partielle ¤

2 2 3 Proposition Soit P 0; M 0 un couple parabolique semi-standard et sup-
posons

dimM 0 · dim M Alors on a

i f³ P 0 0 si M 0 et M ne sont pas conjugu¶es;
ii

° GjM f³ P 0 m0 X
w2W M;M

Z
Re wÂ ¹wÀP 0 0

EM
M;w ¾­Â ¸ w JP

0w jP
¾­Â ­¸ w JP

0wjP ¾_­Â¡1 » ¾­Â m0¡1 dIm Â

si M 0 M
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Preuve Comme » est une combinaison lin¶eaire d'applications de la forme Â
7

p Â v­v_ il su±t de montrer la proposition dans le cas oµu » est une telle fonction
Soit H un sous-groupe ouvert compact de K admettant une d¶ecomposition

d'Iwahori relative µa P 0; M 0 et laissant v et v_ invariant Soit a 2 AM 0 strictement
positif pour P 0 Posons U

00
H \ U 0 On a U 0 S1l 0 a¡lU

00
al Par suite

±P 0 m0 ¡1 2 f³ P 0 m0

Z
U0

f³ m0u0 du0

lim
l 1

Z
a¡lU

00
al

Z
Re Â ¹ÀP 0

EG
P;¾­Â ³ ¾ ­ Â u0¡1m0¡1 dIm Â du0

lim
l 1

±P 0 al ¡1 Z
U

00

Z
Re Â ¹ÀP 0

p Â

hiGP ¾ ­ Â al JP jP
¾ ­ Â ¡1iGP ¾ ­ Â m0¡1 v; iGP ¾_ ­ Â¡1 u0al v_idIm Â du0:

En posant vm0 iGP ¾ ­ Â m0¡1 v et v_l RU
00
iG
P

¾_ ­ Â¡1 u0al v_du0 ceci
devient µa l'aide du th¶eorµeme de Fubini ¶egal µa

lim
l 1

±P 0 a ¡l Z
Re Â ¹ÀP 0

p Â hiGP ¾ ­ Â al JP jP
¾ ­ Â ¡1vm0 ; v_l idIm Â :

Il r¶esulte du lemme 2 2 2 que v_l reste dans un espace de dimension ¯nie pour
l À 0 On peut donc appliquer le th¶eorµeme 1 3 1 et on trouve

hiGP ¾ ­ Â al JP jP
¾ ­ Â ¡1vm0 ; v_l i

° GjM
0 ¡1±P 0 al 1 2 X

w2W M;M 0

cP 0jP
¾ ­ Â; w JP jP

¾ ­ Â ¡1vm0 ­ v_l al

pour l assez grand
Le i de la proposition en r¶esulte aussitôt Supposons dans la suite M 0 M
Observons que

¸ w J
e
P

0wjP
¾_ ­ Â¡1 v_l 1

Z
U

00

J
e
P

0wjP
¾_ ­ Â¡1 iGP ¾_ ­ Â¡1 u0al v_ w¡1 du0

Z
U

00

J
e
P

0wjP
¾_ ­ Â¡1 v_ w¡1u0al du0

±P 0 al 1 2w ¾_ ­ Â¡1 al Z
a¡lU

00
al

J
e
P

0wjP
¾_ ­ Â¡1 v_ w¡1u0 du0:
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Par suite

±P 0 m0 ¡1 2 f³ P 0 m0

° GjM 0 ¡1 lim
l 1 X

w2W M;M

Z
Re Â ¹ÀP 0

p Â

h ¸ w JP
0wjP

¾ ­ Â JP jP
¾ ­ Â ¡1vm0 1 ;

Z
a¡lU

00
al

J
e
P

0wjP
¾_ ­ Â¡1 v_ w¡1u0 du0idIm Â :

Fixons w 2 W M; M et calculons la limite correspondante Il r¶esulte de

1 3 et de 1 3 2 qu'il existe un nombre ¯ni d'hyperplans de la forme
h¸; ®_i c

® 2 § P \§ P
0w

tels que tout pôle de la fonction dans l'int¶egrale soit de la forme

Â¸ avec ¸ sur un de ces hyperplans On peut donc remplacer ci-dessus ¹ ÀP 0
par ¹w ÀP

0w
0 Or alors liml 1 Ra¡lU

00
al J

e
P

0wjP
¾_ ­ Â¡1 v_ w¡1u0 du0

¸ w JP
0wj

e
P

0w
¾_ ­ Â¡1 J

e
P

0w jP
¾_ ­ Â¡1 v_ 1 En appliquant 1 3 2 et la for-

mule de produit pour les op¶erateurs d'entrelacement on en d¶eduit que le terme

correspondant µa w dans la somme ci-dessus est ¶egal µa

Z

Re Â ¹wÀP
0w

0

p Â h ¸ w JP
0w jP

¾­Â vm0 1 ; ¸ w JP
0w jP

¾_­Â¡1 v_ 1 idIm Â ;

d'oµu la formule ii ¤

2 3 Proposition Soit ¾0;E0 une repr¶esentation irr¶eductible cuspidale d'un
sous-groupe de L¶evi semi-standard M 0 de dimension inf¶erieure ou ¶egale µa celle de

M Soit P 0 2 P M 0 Alors on a

i
bf³ ¾0; P 0 0 si M 0 et M ne sont pas conjugu¶es;

ii

° GjM jStabXnr
im M ¾0 j¡1

bf³ ¾0; P 0

d ¾0 ¡1 X
w2W M;M ;¾02w O

JP 0jwP ¾0 ¸ w ­ JP 0jwP ¾0_ ¸ w » w¡1¾0

si M 0 M

Pour la preuve de cette proposition on utilisera les deux lemmes suivants oµu ¸ et
½ d¶esignent respectivement l'action par translations µa gauche et µa droite de G sur
C1c G
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2 3 1 Lemme Soit ¾0; E0 une repr¶esentation cuspidale de M 0 P 0 2 P M 0

Alors on a
bf
G
³ ¾0; P 0 g; h ¸ g ½ h f³

b
P 0

M 0

¾0;M 0

Preuve Il su±t de combiner les lemmes VII 1 2 et VII 1 1 i de [W] qui y
sont prouv¶es par des arguments qui se g¶en¶eralisent des repr¶esentations de carr¶e
int¶egrable aux repr¶esentations cuspidales voir ¶egalement la remarque au sujet de

la preuve de la proposition 2 4 puisque f³ est µa support compact ¤

2 3 2 Lemme On a ¸ g ½ h f³ f³0 oµu ³ 0 ¾ ­ Â iGP ¾ ­ Â ­ iGP ¾_ ­Â¡1 g; h ³ ¾ ­ Â

Preuve de la proposition
La partie i de la proposition est une cons¶equence imm¶ediate des lemmes 2 2 3

i et 2 3 1

Pour prouver la partie ii ¶ecrivons » ¾ ­ Â Pi2I pi ¾ ­ Â vi ­ v_i avec I
un ensemble ¯ni vi ­ v_i 2 iK

P\KE ­ iK
P\KE_ et pi une fonction polynomiale en

Â 2 Xnr M
Supposons M 0 M A l'aide de 2 2 3 ii on trouve avec e0 2 E0 et e0_ 2 E0_

° GjM h f³
b
P 0

M ¾0; M e0; e0_i
X
i2I

X
w2W M;M

Z

M
Z

Re wÂ ¹wÀP 0 0
pi ¾ ­ Â

h ¸ w JP
0w jP

¾ ­ Â vi 1 ; w ¾ ­ Â _ m ¸ w JP
0w jP

¾_ ­ Â¡1 v_i 1 idIm Â

h¾0 m e0; e0_idm

X
i2I

X
w2W M;M

Z

AMnM
h¾0 m e0; e0_i Z

AM\KnAM

Z
Re wÂ ¡¹w¿P 0 0

pi ¾ ­ Â¡1

h ¸ w JP
0w jP

¾ ­ Â¡1 vi 1 ; w ¾ ­ Â¡1 _ m ¸ w JP
0wjP

¾_ ­ Â v_i 1 i
Â¾0 a w ÂÂ¡1

¾ a Z
AM\K

Â¾0 wÂ¾ ¡1 ²a d²a dIm Â da dm:

Comme AM \K est compact de mesure 1 l'int¶egrale sur AM \K n'est non nulle
que si Â¾0 jAM\K wÂ¾jAM\K et sa valeur est alors 1 Dans ce cas Â¾0 wÂ¾ ¡1

est la restriction µa AM d'un certain ¶el¶ement wÂw de Xnr M
A l'aide de la th¶eorie de Fourier sur un tore cf 1 2 3 on trouve alors
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X
i2I

X
w2W M;M

X
Â2ker Xnr

im M Xnr
im AM

pi ¾ ­ ÂwÂ Z

AM nM
h¾0 m0 e0; e0_i

h ¸ w JP
0wjP

¾ ­ ÂwÂ vi 1 ;

w ¾ ­ ÂwÂ _ m ¸ w JP
0wjP

¾_ ­ Â¡1
w Â¡1 v_i 1 idm

d ¾0 ¡1
j StabXnr

im G ¾0 j

X
i2I

X
w2W M;M ;w¡1¾02O

pi w¡1¾0
h ¸ w JP

0w jP
w¡1¾0 vi 1 ; e0_i

he0; ¸ w JP
0w jP w¡1¾0_ v_i 1 i

par 1 4 si Re wÂw <P 0 ¡¹w pour tout w Comme les deux applications sont
rationnelles sur l'orbite inertielle de ¾0 on a l'¶egalit¶e partout

A l'aide des lemmes 2 2 1 2 2 3 2 3 1 et 2 3 2 on en d¶eduit le r¶esultat ¶enonc¶e

¤

2 4 Proposition Soit O
0 une orbite inertielle d¶e¯nie relative µa un sous-groupe de

L¶evi semi-standard de G Supposons que O
0 et O ne soient pas conjugu¶ees Soit

³ 0 une application rationnelle sur O
0 v¶eri¯ant les propri¶et¶es analogues µa celles de

³ relatives µa O
0

Alors on a
Z

G
f³ g f³0 g dg 0:

Preuve Suite µa la proposition 2 3 les arguments dans la d¶emonstration de la
proposition VII 2 2 dans [W] se g¶en¶eralisent sans problµeme aprµes avoir remarqu¶e
que si ¾ est une repr¶esentation unitaire alors pour tout v 2 iK

P\KE et tout v_ 2
iK
P\KE_ il existe v1 2 iK

P\KE et v_1 2 iK
P\KE_ tels que

hiGP ¾ ­ Â g v; v_i
hiGP ¾ ­ Â¡1 g¡1 v1; v_1 i pour tout Â 2 Xnr M et tout g 2 G ¤

2 4 1 Corollaire Soit ¾0; E0 une repr¶esentation irr¶eductible cuspidale d'un
sous-groupe de L¶evi M 0 de G Supposons que ¾0 ne soit conjugu¶ee µa aucun ¶el¶ement
de O

Alors on a
bf³ ¾0; P 0 0

Preuve Notons O
0 l'orbite inertielle de ¾0 Comme

bf³ :; P 0 est polynomiale sur
O

0 il su±t de prouver le corollaire pour ¾0 unitaire Choisissons une fonction
polynomiale non identiquement nulle j1 sur O

0 telle que l'op¶erateur rationnel
j1JP jP

soit r¶egulier On va montrer que
h bf³ ¾0; P 0 v0; v0_i 0 pour tout v0­v0_ 2

iK
P

0\KE0 ­ iK
P

0\KE0_
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Par la remarque dans la preuve de la proposition 2 4 on peut choisir v
01­v

01
_ 2

iK
P

0\KE0 ­ iK
P

0\KE0_ tel que
hiGP ¾0 ­ Â0¡1

g v0; v0_i hiGP ¾0 ­ Â0 g¡1 v
01
; v0_1 iSoit p une fonction polynomiale sur O

0 Posons »0 ¾0 ­ Â0 p ¾0 ­ Â0 j1 ¾0 ­Â0 JP jP
¾0 ­ Â0 v

01 ­ v0_1 pour Â0 2 Xnr M 0 Par choix de j1 cette application
est polynomiale en Â0

Posons ³0 ¾0­Â0 : J¡1
P jP

¾0­Â0 ­1 »0 ¾0­Â0 p ¾0­Â0 j1 ¾0­Â0 v
01­v0_1 :

On a vu que f³0 est une fonction lisse µa support compact La proposition 2 4
s'applique µa f³ et f³0 Comme ³ 0 est r¶eguliµere en tout Â0 on obtient

0 Z

G
f³ g f³0 g dg

Z

G

Z
Re Â0 0

f³ g p ¾0 ­ Â0 j1 ¾0 ­ Â0 hiGP 0
¾0 ­ Â0 g¡1 v

01
; v0_1 i dÂ0 dg

Z
Re Â0 0

Z
G
f³ g p ¾0 ­ Â0 j1 ¾0 ­ Â0

hiGP 0
¾0 ­ Â0 g v0; v0_i dg dÂ0

Z
Re Â0 0

p ¾0 ­ Â0 j1 ¾0 ­ Â0
h bf³ ¾0 ­ Â0; P 0 v0; v0_i dÂ0:

Ceci ¶etant vrai pour toute fonction polynomiale p sur O
0 on en d¶eduit que

h bf³ ¾0 ­ Â0; P 0 v0; v0_i 0 pour tout Â0 2 Xnr
im M 0 et en particulier pour Â0 1

¤

3 Notons £ l'ensemble des couples P; O form¶es d'un sous-groupe parabolique

semi-standard P MU et de l'orbite inertielle d'une repr¶esentation irr¶eductible
cuspidale de M Notons PW £ l'ensemble des familles ' f'P;Og P;O 2£ dont
les composantes sont des applications polynomiales qui v¶eri¯ent les conditions 1
- 4 du th¶eorµeme 0 1

3 1 Soit ' 2 PW £ Choisissons pour tout couple P; O une application polyno-
miale »P;O

v¶eri¯ant les conclusions de la proposition 0 2 relatives µa 'P;O Notons

³P;O l'application rationnelle donn¶ee par ³P;O
¾ JP jP

¾ ¡1 ­ 1 »P;O
¾ pour

¾ 2 O

3 1 1 Proposition Soient P; O P 0; O
0 dans £ et ¾0 2 O

0

Alors[f³P;O P 0; ¾0

° GjM 0 ¡1d ¾0 ¡1
j StabXnr

im M ¾0 j
½ 'P 0;O0 ¾0 ; si O

0 et O sont conjugu¶es;
0; sinon:

Preuve Le corollaire 2 4 1 prouve que[f³P;O P 0; ¾0 0 si O
0 et O ne sont pas

conjugu¶es
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Si ¾0 2 O et P P 0 l'¶egalit¶e [f³P;O P 0; ¾0 ° GjM 0 ¡1d ¾0 ¡1'P 0;O0 ¾0

r¶esulte imm¶ediatement des propositions 2 3 ii et 0 2
Si P

6

P 0 celle-ci se d¶eduit de l'identit¶e JP 0jP
¾0 ­ JP jP 0 ¾0_ ¡1 'P;¾0'P 0;¾0 :

Si ¯nalement ¾0 2 w O w 2 W G l'identit¶e ¸ w ­¸ w [f³P;O w¡1P 0; w¡1¾0[f³P;O
P 0; ¾0 et ce que l'on vient de prouver dans le cas ¾0 2 O impliquent que[f³P;O P 0; ¾0 'P 0;O0 ¾0 ¤

3 1 2 Corollaire La fonction f³P;O
ne d¶epend pas du choix de »P;O

Preuve Ceci r¶esulte de la proposition 3 1 1 puisque l'ensemble des transform¶ees

de Fourier ff³P;O
P 0; ¾0

g P 0;¾0
d¶etermine la fonction f³P;O

: en e®et il est prouv¶e
dans [BZ] cf proposition 2 12 que pour tout f 2 C1c G f 6 0 il existe une

repr¶esentation lisse irr¶eductible ¼ de G telle que ¼ f 6 0 ¤

On pourra donc ¶ecrire f'P;O
µa la place de f³P;O

3 1 3 Corollaire L'¶egalit¶e f'P;O f'P 0;O0
vaut si O et O

0 sont conjugu¶es

Preuve La preuve est analogue µa celle du corollaire 3 1 2 ¤

3 2 Lorsque P MU; O 2 £ posons [O] fw¾jw 2 W G; ¾ 2 Og W M; O
fw 2 W M; M jw O Og c [O] jP M j¡1

jW
M

jjW
G
j¡1

jW M; O j ° GjM
d O j Stab Xnr

im M O j¡1 et f'[O] c [O] P P 0;O0 2£; O0µ[O] f'P 0;O0

Il r¶esulte de 3 1 1 que la fonction f'[O]
v¶eri¯e les propri¶et¶es 3 et 4 ¶enonc¶ees

dans l'introduction La propri¶et¶e 5 est une cons¶equence directe de 2 4
Aprµes avoir rappel¶e qu'il r¶esulte de la proposition 2 12 dans [BZ] qu'un ¶el¶ement

de C1c G est d¶etermin¶e par ses transform¶ees de Fourier cf remarque dans la
preuve du corollaire 3 1 2 on s'aper»coit que l'on a montr¶e le r¶esultat suivant:

Th¶eorµeme Soit ' dans PW £ La fonction

f' X
P;O 2£

c [O] f'P;O ;

est l'unique ¶el¶ement de C1c G qui v¶eri¯e
bf' P; ¾ 'P;O ¾ pour tout P; O 2

£ ¾ 2 O

3 2 2 Corollaire Pour que ' soit un ¶el¶ement de PW £ il faut et il su±t qu'il
existe f dans C1c G telle que 'P;O

¾
bf P; ¾ pour tout P; O 2 £ ¾ 2 O
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B Une relation polynomiale

1 1 Si ¼; V est une repr¶esentation lisse de G et P MU un sous-groupe

parabolique de G notons ¼P la repr¶esentation lisse de M dans le module de

Jacquet VP de V Lorsque U1 est un sous-groupe ouvert compact de U ¶ecrivons

V U1 pour l'ensemble des ¶el¶ements v 2 V tels que RU1
¼ u vdu 0 Le noyau

V U de la projection canonique jP : V VP est la r¶eunion des V U1 U1
parcourant les sous-groupes ouverts compacts de U

L'ensemble des ¶el¶ements de V invariants pour l'action par un sous-groupe ou-
vert H de G sera not¶e V H

1 2 Soit O l'orbite inertielle d'une repr¶esentation irr¶eductible cuspidale de M Un
point ¾ de O sera dit W M; M -r¶egulier si w¾

6' ¾ pour tout w 2 W M; M
Rappelons que les fonctions rationnelles jP jP

P 2 P M sont toutes ¶egales µa une

même fonction not¶ee j et que tout point W M; M -r¶egulier de O est r¶egulier
pour j

Un ¶el¶ement ¾ de O sera dit en position g¶en¶erale s'il v¶eri¯e les deux propri¶et¶es

suivantes:
i le caractµere central de ¾ est W M; M -r¶egulier;
ii j ¾

6

0

Fixons ¾ 2 O L'ensemble des Â 2 Xnr M avec ¾ ­ Â en position g¶en¶erale est
Zariski dense dans Xnr M Deux applications rationnelles sur O sont donc ¶egales

dµes qu'elles coÄ³ncident sur l'ensemble des points en position g¶en¶erale

1 3 Proposition Soient ¾; E une repr¶esentation irr¶eductible cuspidale de M
et P 0 2 P M Supposons ¾ en position g¶en¶erale Alors l'application

iGP 0E ¡ M
w2W M;M

wE ; v
7 M

w2W M;M

JP jwP 0 w¾ ¸ w v 1

se factorise par iGP 0 E P Elle induit un isomorphisme

iGP 0
¾ P ¡ M

w2W M;M

w¾:

Preuve: Le r¶esultat ¶enonc¶e relatif au module de Jacquet faible dans [W] au
cours de la preuve de V 1 1 se g¶en¶eralise sans problµeme au cas cuspidal ¤

2 Soit B l'anneau des fonctions r¶eguliµeres d'une vari¶et¶e alg¶ebrique a±ne com-
plexe La notion d'une B-famille de repr¶esentations admissibles a ¶et¶e d¶e¯nie dans

[BD]: ce sont les couples ¼; V form¶es d'un B-module V et d'un homomorphisme

¼ : G AutB V tels que: pour tout v 2 V le stabilisateur de v dans G est un
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sous-groupe ouvert et pour tout sous-groupe ouvert H de G le sous-module des

invariants V H est un B-module plat de type ¯ni
Le r¶esultat suivant a ¶et¶e montr¶e par Casselman dans le cas d'une repr¶esentation

admissible cf [Cs] propositions 4 1 4 et 4 1 6 Sa preuve se g¶en¶eralise au cas

d'une B-famille de repr¶esentations admissibles

Proposition Soient ¼B ; VB une B-famille de repr¶esentations admissibles de G
P MU un sous-groupe parabolique semi-standard et H un sous-groupe ouvert
compact de G admettant une d¶ecomposition d'Iwahori par rapport µa P; M

Alors il existe un sous-groupe ouvert compact U1 de U tel que V H
B \ VB U µ

VB U1 Les espaces V H
B a : ¼B 1HaH VB avec a 2 AM positif pour P et

v¶eri¯ant aU1a¡1
µ H \ U sont tous ¶egaux µa un même espace not¶e SH

P VB Le

foncteur de Jacquet induit un isomorphisme SH
P VB VB H\M

P de B-modules

Preuve Le B-module V H
B est de type ¯ni grâce µa la B-admissibilit¶e de ¼B Comme

B est noeth¶erien le module V H
B \ VB U est ¶egalement de type ¯ni L'existence

de U1 est alors imm¶ediate

Pour montrer que le foncteur de Jacquet induit un isomorphisme VB H
a

VB H\M
P pour tout a 2 AM v¶eri¯ant les hypothµeses de la proposition on peut

g¶en¶eraliser les arguments de [Cs]: le th¶eorµeme 3 3 de [Cs] qui est le seul r¶esultat qui
utilise l'admissibilit¶e reste valable sans cette hypothµese cf [BD] proposition 3 5 2
Quant µa l'¶egalit¶e des espaces VB H

a
on se ramµene comme dans [Cs] proposition

4 1 6 µa VB Ha1a2 µ VB Ha1
Ces deux espaces sont ¶egaux puisque VB H

a1
est

isomorphe µa VB H\M
P

et que le compos¶e VB Ha1a2
VB Ha1

VB H\M
P

est
¶egalement un isomorphisme ¤

3 Fixons un couple parabolique semi-standard P;M et une repr¶esentation
irr¶eductible cuspidale ¾; E de M Choisissons un sous-groupe ouvert compact H
de G admettant une d¶ecomposition d'Iwahori par rapport µa tout couple parabolique

semi-standard On peut en trouver aussi petit que l'on veut
Notons B BM l'anneau des fonctions r¶eguliµeres sur la vari¶et¶e alg¶ebrique

Xnr M Comme dans [W] on d¶eduit de ¾; E les B-familles de repr¶esentations

admissibles ¾B ; EB et ¼B ; VB iGP¾B ; iGPEB de M et G respectivement
Rappelons que la B-famille alg¶ebrique ¾B ; EB est d¶e¯nie par

EB : E­C B et ¾B m e­b : ¾ m e­bmb; pour m 2 M; e 2 E et b 2 B;

oµu pour m 2 M on a not¶e bm 2 B le polynôme d¶e¯ni par

bM Â : Â m ; pour tout Â 2 Xnr M :

La classe d'isomorphie de ¾B ;EB et ¼B ; VB ne change donc pas si on remplace

¾ par un ¶el¶ement de sa classe inertielle On pourra donc ¶ecrire iG
P

EO;B si on ne

veut distinguer aucun ¶el¶ement de O



408 V Heiermann CMH

3 1 Pour Â 2 Xnr M notons EÂ et VÂ respectivement les espaces des repr¶esentati-
ons ¾­Â et iG

P
¾­Â On dispose de morphismes de sp¶ecialisation spÂ : EB EÂ

et spÂ : VB VÂ qui commutent avec l'action du groupe Ainsi toute application
polynomiale sur Xnr M µa valeurs dans E ou iK

P\KE correspond µa un ¶el¶ement
de EB ou VB et vice versa On ¶ecrira ¶egalement E¾0 V¾0

et sp¾0
si on ne veut

distinguer aucun ¶el¶ement de O
Le lemme suivant est une cons¶equence imm¶ediate des d¶e¯nitions:

Lemme Soit P 0 2 P M L'¶egalit¶e spÂ SH
P 0 VB SH

P 0 VÂ vaut pour tout
Â 2 Xnr M

3 2 Pour b 2 B notons b_ l'¶el¶ement de B qui v¶eri¯e b_ Â b Â¡1 On d¶esignera
par E_B_ l'espace E_B

muni de la structure de B-module pour laquelle la multi-
plication scalaire B £ E_B

E_B
est donn¶ee par b; e_B 7 b_e_B Le produit de

dualit¶e h; i sur E £ E_ induit par extension des scalaires une forme B-lin¶eaire M -
¶equivariante

h; iB sur EB £E_B_ On en d¶eduit une forme bilin¶eaire G-¶equivariante

h; iB sur VB £ V _B_ Pour Â 2 Xnr M spÂ h; iB induit alors par passage au quo-
tient le produit de dualit¶e entre VÂ et V _

Â¡1

Proposition Soit P 0 2 P M Les B-modules SH
P 0 VB et SH

P 0
V _B_ sont libres

de type ¯ni et en dualit¶e par h; iB
Preuve En compl¶etant une base de EH\M en une base de E on voit que EH\M

B
est un B-module libre de rang ¶egal µa la dimension de EH\M On sait que VB H\M

P 0

possµede une ¯ltration ¯nie dont les sous-quotients sont des B-modules libres iso-
morphes µa EH\M

B On en d¶eduit que VB H\M
P 0

est libre de même rang que les

espaces VÂ
H\M
P 0

ou V _
Â¡1

H\M
P 0 Â 2 Xnr M Il en est de même pour VB H\M

P 0

Fixons des bases fvigi2I et fv_i gi2I de SH
P 0

VB et SH
P 0

V _B_ Il su±t de montrer
que la matrice

hvi; v_j iB i;j est inversible i e que son d¶eterminant d appartient
µa B£ Or dans le cas contraire d serait contenu dans un id¶eal maximal mÂ de B
correspondant µa un point Â de Xnr M En sp¶ecialisant en Â il en r¶esulterait que

la forme bilin¶eaire spÂ h; iB restreinte µa SH
P 0 VÂ £ SH

P 0
V _

Â¡1
serait d¶eg¶en¶er¶ee

Ceci est faux cf [Cs] th¶eorµeme 4 2 4

¤

3 3 Notons O l'orbite inertielle de ¾ Rappelons que toute repr¶esentation lisse E0

de M admet une d¶ecomposition E0 E0

O © E0 hors O telle que tout sous-
quotient de E0

O soit dans O et qu'aucun sous-quotient de E0 hors O ne le soit
Pour P 0 2 P M notons SH

P 0 VB O le sous-B-module de SH
P 0 VB form¶e des

¶el¶ements µa image dans VB H\M
P 0 O D¶e¯nissons de fa»con analogue SH

P 0
V _B_ O_

SH
P 0 VÂ hors O etc



Vol 76 2001 Une formule de Plancherel pour l'algµebre de Hecke 409

3 3 1 Lemme Les espaces SH
P 0 VB O et SH

P 0
V _B_ hors O_ sont orthogonaux

Preuve Soient v 2 SH
P 0 VB O et v_ 2 SH

P 0
V _B_ hors O_ Il su±t de montrer

que sp¾0 hv; v_iB 0 si ¾0 2 O est en position g¶en¶erale Fixons un tel ¾0

On est donc ramen¶e µa montrer que
hv; v_i 0 pour v 2 SH

P 0 V¾0 O et v_ 2
SH

P 0
V _¾0_ hors O_ Rappelons cf [Cs] paragraphe 4 qu'il existe un produit

bilin¶eaire M-¶equivariant h; iP 0 sur jP 0 V¾0 £ jP 0
V _¾0_ tel que

hv; v_i hjP 0 v ; jP 0
v_ iP 0 :

Comme par la proposition 1 3 jP 0 V¾0 'Lw2W M;M wE¾0 et que par choix de

¾0 jP 0
V _¾0_ 'Lw2W M;M wE_¾0_ il su±t de consid¶erer le cas jP 0 v 2 wE¾0

et
jP 0

v_ 2 w0E_¾_ Par choix de v et v_ ou bien un des ¶el¶ements jP 0 v et jP 0
v_

est nul ou bien w
6

w0 La repr¶esentation ¾0 ¶etant en position g¶en¶erale les espaces

wE¾0 et w0E¾0 n'ont pas d'entrelacement si w
6

w0 On en d¶eduit que dans tous

les cas
hjP 0 v ; jP 0

v_ iP 0 0 ¤

3 3 2 Corollaire Les B-modules libres SH
P 0 VB O et SH

P 0
V _B_ O_ sont en

dualit¶e par h; iB
Preuve Il su±t de rappeler que SH

P 0 VB SH
P 0 VB O © SH

P 0 VB hors O ¤

3 4 On suppose dans cette section que EH\M
6

0

3 4 1 Lemme Soit P 0 2 P M Tout sous-quotient non nul V 0 de VB en tant
que G-module v¶eri¯e V

0P
0 O 6 0

Preuve D'aprµes [BD] proposition 2 8 on a une injection

V 0 M
P 002P M

iGP 00 V
0P

00 O :

Par suite V
0P

00 O 6 0 pour au moins un P 00 2 P M Ceci ¶equivaut µa dire qu'il
existe ¾00 2 O avec

0
6

HomM V
0P

00 ; ¾00 HomG V 0; iGP00
¾00 :

D¶eduisons-en ¾0 2 O avec HomM V
0P

0 ; ¾0
6

0: Par r¶ecurrence sur le nombre

d'hyperplans radiciels s¶eparant P 0 et P 00 on se ramµene µa P 00 et P 0 adjacents Il
faut distinguer deux cas:

Si wP 00
6

P 0 ou w¾00
62 O pour tout w 2 W M; M l'op¶erateur d'entrelacement

JP 0jP 00 ¾00 est bien d¶e¯ni et inversible d'oµu par composition un ¶el¶ement non nul
de HomG V 0; iGP0

¾00 HomM V
0P

0 ; ¾00
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Dans le cas contraire choisissons w 2 W M; M et ¾0 2 O avec iGwP 00 w¾00

iGP0
¾0 En composant avec ¸ w on trouve donc un ¶el¶ement non nul de

HomG V 0; iGP0
¾0

On en d¶eduit que V
0P 0 O 6 0 ¤

3 4 2 Proposition
Tout sous-G-module V 0 de VB est engendr¶e par V 0 \ SP 0 V H

B O

Preuve Notons V 00 le sous-G-module engendr¶e par cet ensemble On a l'¶egalit¶e
V 00

P 0

H\M
O V

0P0

H\M
O d'oµu V 0 V 00 H\M

P 0 O 0 par exactitude du foncteur
de Jacquet Comme H a ¶et¶e choisi tel que EH\M

6

0 il suit de 3 4 1 que V 0 V 00

¤

4 Rappelons que les ensembles £ et PW £ ont ¶et¶e d¶e¯nis en A 3 On dira qu'un
¶el¶ement ' de PW £ a la propri¶et¶e P en P; O si 'P;O v¶eri¯e les conclusions

de la proposition 0 2 On dira ¶egalement que 'P;O
a la propri¶et¶e P

Fixons pour tout P; O 2 £ un sous-groupe ouvert compact distingu¶e H
H O de K admettant une d¶ecomposition d'Iwahori par rapport µa tout couple
parabolique semi-standard et tel que tout ¶el¶ement de O admette des invariants

par rapport µa H \M On peut par ailleurs supposer H O
0 H si O et O

0 sont
conjugu¶es ce que l'on fera d¶esormais

Pour P 0; O
0

2 £ O
0 conjugu¶e µa O on peut donc parler grâce µa 3 3 2 de la

projection 'H;P 0;O0

P;O
de iG

P
EO;B sur SH

P 0 iGP EO;B O
0 de noyau ¶egal µa l'intersection

des noyaux des ¶el¶ements de SH
P 0 iG

P
EO_;B_ O

0_ Si P 0; O
0 P; O on ¶ecrira

plus simplement 'H
P;O

4 1 Soit P; O 2 £ H H O Rappelons que tout ¶el¶ement 'B de EO;B ­B
EO_;B_ ou de iGP EO;B­B iG

P
EO_;B_ correspond par l'application de sp¶ecialisation

spÂ µa une application polynomiale sur Xnr M µa valeurs respectivement dans

EO­EO_ ou dans iK
P\KEO­ iK

P\KEO_ et vice versa On ¶ecrira 'B ¾ sp¾ 'B
Notons que 'H;P 0;O0

P;O
¾ est la projection de iG

P
E¾ sur SH

P 0 iG
P

E¾ O
0 de noyau

¶egal µa l'intersection des noyaux des ¶el¶ements de SH
P 0 iG

P
E_¾_ O

0_

4 1 1 Lemme Soient P 00 2 P M ¾ 2 O et w 2 W G Supposons ¾ en position
g¶en¶erale Alors on trouve pour P 0; O

0

2 £ O
0 conjugu¶e µa O

i JP 00jP
¾ SH

P 0 iG
P

E¾ O
0 SH

P 0 iG
P

00 E¾ O
0 ;

ii ¸ w SH
P 0 iG

P
E¾ O

0 SH
P 0 iGwP wE¾ O

0 :

Preuve Il est clair par d¶e¯nition de SH
P 0

que l'image de SH
P 0 iG

P
E¾ O

0 par les

op¶erateurs JP 00jP
¾ et ¸ w est contenu dans SH

P 0 iG
P

00E¾ et SH
P 0 iGwP wE¾ respec-

tivement Il r¶esulte de la proposition 1 3 que tout sous-quotient de cette image

est en fait un ¶el¶ement de O
0 Ceci prouve l'inclusion Les op¶erateurs consid¶er¶es
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¶etant bijectifs pour ¾ en position g¶en¶erale l'inclusion inverse s'en d¶eduit par un
argument de sym¶etrie ¤

4 1 2 Lemme Avec les notations et hypothµeses du lemme 4 1 1 on trouve

i JP 00jP
¾ 'H;P 0;O0

P;O
¾ 'H;P 0;O0

P 00;O
¾ JP 00jP

¾ ;

ii ¸ w 'H;P 0;O0

P;O
¾ 'H;P 0;O0

wP;w O
w¾ ¸ w :

Preuve Pour v 2 SH
P 0 iG

P
E¾ O

0 les deux ¶egalit¶es sont imm¶ediates grâce au

lemme 4 1 1 Si v est dans le noyau de 'H;P 0;O0

P;O
¾ il r¶esulte du lemme 4 1 1 grâce

µa la propri¶et¶e d'adjonction de JP 00jP
¾ et de ¸ w que JP 00jP ¾ v resp ¸ w v

est un ¶el¶ement du noyau de 'H;P 0;O0

P 00;O
¾ resp 'H;P 0;O0

wP;w O
w¾ ¤

4 2 Lemme Pour tout P; O 2 £ il existe un ¶el¶ement ' dans PW £ avec

'P;O 'H O
P;O

Preuve Si O
0 w O w¡1 avec w 2 W posons 'P 0;O0 'H;P;O

P 0;O0
Sinon 'P 0;O0 0

Les propri¶et¶es 1 et 2 du th¶eorµeme 0 1 sont v¶eri¯¶ees par d¶e¯nition de 'H;P;O
P 0;O0

Les propri¶et¶es 3 et 4 r¶esultent des ¶egalit¶es i et ii du lemme 4 1 2 ¤

4 3 Posons W M; O fw 2 W M; M jw O Og

Lemme Supposons: si on a un ¶el¶ement ' de PW £ et P; O v¶eri¯ant 'P;O'H
P;O

avec H H O alors cet ¶el¶ement v¶eri¯e P en P; O
Alors la propri¶et¶e P est v¶eri¯¶ee pour tout ' de PW £ en tout P; O

Preuve Fixons P; O Posons VB£V _B_ iGP EO;B£iG
P

EO_;B_ Montrons d'abord
que tout ¶el¶ement ' de PW £ qui v¶eri¯e 'P;O 2 SH

P VB O ­B SH
P

V _B_ O_ a

la propri¶et¶e P en P; O :
En e®et de 4 2 et de nos hypothµeses il r¶esulte l'existence d'une application

polynomiale »P;O
sur O telle que pour ¾ 2 O

'H
P;O

¾ X
w2W M;O

JP jwP ¾ ¸ w ­ JP jwP ¾_ ¸ w »P;O w¡1¾ :

On en d¶eduit que

'P;O ¾ 'P;O
¾ 'H

P;O
¾

X
w2W M;O

JP jwP ¾ ¸ w ­ JP jwP ¾_ ¸ w 'P ;O
w¡1¾ »P;O w¡1¾ ;

le produit dans la premiµere ligne d¶esignant la composition dans l'algµebre End iG
P

E¾

Comme ¾
7 'P ;O

w¡1¾ est polynomiale on a une relation du type voulu
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L'ensemble des ¶el¶ements 'P;O
de VB ­ V _B_ qui sont la composante en P; O

d'un ¶el¶ement de PW £ est un sous-G£G-module de VB­V _B_ Le sous-ensemble
form¶e des ¶el¶ements 'P;O

qui v¶eri¯ent par ailleurs la propri¶et¶e P en est un G£G-
sous-module Par ce qui pr¶ecµede ils ont la même intersection avec SH

P VB O ­SH
P

V _B_ O_ qui est non nulle par 4 2 Il r¶esulte alors de 3 4 2 appliqu¶e au sous-
groupe parabolique P £ P de G £ G et µa la repr¶esentation de M £ M d'espace

EO;B ­ EO_;B_ ' EO ­ EO_ B que ces deux ensembles sont en fait ¶egaux d'oµu
le lemme ¤

5 Pour terminer la preuve de la proposition 0 2 il reste µa montrer que 'H O
P;O

a la
propri¶et¶e P pour tout P; O 2 £ Fixons P; O Posons E EO

et H H O
On notera parfois pour ¾ 2 O par E¾ l'espace E s'il est muni de la repr¶esentation
¾

5 1 Lemme Soient ¾ dans O P 0 2 P M et v un ¶el¶ement non nul de iK
P 0\KE H

µa support dans P 0 \K H Soit a 2 AM v¶eri¯ant les propri¶et¶es de la proposition
du num¶ero 2 relatives µa P 0 et iG

P
0E¾

Alors iG
P

0
¾ 1HaH v est un ¶el¶ement non nul de SH

P 0 iG
P

0 E¾ µa support dans

P 0 \K H dont la valeur en 1 est proportionelle µa ¾ a v 1

Preuve Notons v¾ l'¶el¶ement de iG
P

0 E¾ dont la restriction µa K est ¶egal µa v ¶Ecrivons

P 0 MU 0 Pour k 2 K on trouve

iGP 0
¾ 1HaH v k

mes HaH
mes H Z

H

iGP 0
¾ ha v k dh

mes HaH
mes H Z

H

v¾ kha dh:

Pour que kha 2 supp v¾ il faut que kh 2 P 0aHa¡1 P 0a H \ U 0 a¡1 Comme

a est positif pour P 0 a H \ U 0 a¡1
µ H \ U 0 d'oµu k 2 P 0 \K H La fonction

iG
P

0
¾ 1HaH v est donc bien µa support dans P 0 \K H

Sa valeur en 1 est mes HaH
mes H

Z
H

v¾ ha dh On calcule cette int¶egrale selon la

d¶ecomposition H H\U 0 H\M 0 H\U 0 D¶esignant par uP 0 h mP 0 h uP 0 h
la d¶ecomposition d'un ¶el¶ement h 2 H suivant cette d¶ecomposition on trouve

v¾ ha ±
1 2
P 0 a ¾ a v¾ a¡1uP 0 h a puisque a¡1mP 0 h uP 0 h a 2 H par choix

de a Comme a¡1uP 0 h a 2 supp v¾ µ P 0 H \ U 0 seulement si a¡1uP 0 h a 2
H \ U 0 la deuxiµeme assertion du lemme est imm¶ediate ¤

5 2 Fixons une base feigi2I de EH\M Notons fe
_i gi2I la base duale de E_ H\M

et vi resp v_i l'¶el¶ement de iKP\KE H resp iK
P\KE_ H µa support dans P \K H resp P \K H v¶eri¯ant vi 1 ei resp v_i 1 e

_i
5 2 1 Lemme Soit ¾ un point en position g¶en¶erale de O Alors vi 2 SH

P iGP E¾ O
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et de plus si w 2 W M; M

JP jwP w¾ ¸ w vi 1 c1
½ 0; si w 6 1;

ei; si w 1;

oµu c1 est une constante non nulle qui ne d¶epend pas du choix de ¾

Preuve D'aprµes le lemme 5 1 vi 2 SH
P iGP E¾ Grâce µa la proposition 1 3 il su±t

alors de prouver la derniµere assertion Soit w 2 W M; M On a

JP jwP w¾ ¸ w vi 1 Z

U\wUw¡1
vi;¾ w¡1u du;

si cet op¶erateur d'entrelacement est d¶e¯ni par des int¶egrales convergentes Par la
d¶ecomposition de Bruhat w¡1u 2 PH seulement si w 1 Alors

RU\wUw¡1 vi;¾ u du mes H \ U ei Le cas g¶en¶eral s'en d¶eduit par prolonge-
ment analytique ¤

5 3 Lemme Soit ¾ 2 O en position g¶en¶erale Les ensembles f JP jwP ¾ ¸ w
vigw2W M;O ;i2I et f JP jwP ¾_ ¸ w v_i gw2W M;O ;i2I forment des bases de

SH
P iG

P
E¾ O et SH

P iG
P

E_¾_ O_ respectivement On a

h JP jwP ¾ ¸ w vi; JP jw0P ¾_ ¸ w0 v_j i c2±w;w0 ±i;j ;
oµu c2 est une constante non nulle qui ne d¶epend pas du choix de ¾

Preuve On va utiliser l'isomorphisme de la proposition 1 3 Soit w0 2 W M; O
On trouve

JP jw0P w0¾ ¸ w0 JP jwP ¾ ¸ w vi 1

JP jw0P w0¾ Jw0P jw0wP w0¾ ¸ w0w vi 1

jP jw0P jw0wP w0¾ JP jw0wP w0¾ ¸ w0w vi 1 :

Grâce µa 5 2 1 ceci n'est non nul que si w0 w¡1 et alors

JP jw0wP w0¾ ¸ w0w vi 1 c1ei 2 w¡1E Par ailleurs jP jw¡1P jP
w¡1¾ 1

On a donc bien une base de SH
P iG

P
E¾ O puisque son image est une base de

Lw2W M;O
wE¾

Soient w; w0 2 W M; O i; j 2 I Alors

h JP jwP
¾ ¸ w vi; JP jw0P ¾_ ¸ w0 v_j i

h¸ w0¡1 Jw0P jP
¾ JP jwP ¾ ¸ w vi; v_j i

hJP jw0¡1P w0¡1¾ Jw0¡1P jw0¡1wP w0¡1¾ ¸ w0¡1w vi; v_j i
jP jw0¡1jw0¡1wP w0¡1¾ hJP jw0¡1wP w0¡1¾ ¸ w0¡1w vi; v_j i:
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Le support de v_j ¶etant P \K H et l'¶el¶ement µa gauche ¶etant invariant par H ceci
n'est non nul que si JP jw0¡1wP w0¡1¾ ¸ w0¡1w vi 1

6

0 Par 5 2 1 ceci n'est
possible que si w w0 Dans ce cas jP jw¡1P jP

w¡1¾ 1 et l'expression ci-dessus

devient par 5 2 1

Z
M\K

Z
U\K

Z

H\U
c1h w¡1¾ m ei; w¡1¾_ m e_j idududm mes H \ U c1±i;j ;

d'oµu le lemme ¤

5 4 Posons »w ¾ c¡1
2 Pi2I vi ­ v_i pour tout ¾ 2 O On v¶eri¯e que c'est une

application polynomiale sur O Par ce qui pr¶ecµede on a

X
w2W M;O

JP jwP
¾ ¸ w ­ JP jwP ¾_ ¸ w »w w¡1¾

X
w2W M;O

c¡1
2 X

i2I
JP jwP ¾ ¸ w vi ­ JP jwP ¾_ ¸ w v_i :

En se rappelant que l'on a identi¯¶e iGP E¾­iG
P

E_¾_ µa un sous-espace de EndC iG
P

E¾

on d¶eduit de 5 3 que cette expression est ¶egale µa 'H
P;O

¾ pour ¾ en position
g¶en¶erale Par prolongement analytique ces deux applications sont donc ¶egales

Lemme Posons » ¾ jW M; O j¡1 Pw2W M;O
»w ¾ Pour tout ¾ 2 O on a

'H
P;O

¾ X
w2W M;O

JP jwP ¾ ¸ w ­ JP jwP ¾_ ¸ w » w¡1¾ :

Preuve En utilisant les rµegles de composition pour les op¶erateurs d'entrelacement
ainsi que les propri¶et¶es de 'H

P;O
relatives aux op¶erateurs d'entrelacement on trouve

en e®et:

X
w;w02W M;O

JP jwP ¾ ¸ w ­ JP jwP ¾_ ¸ w »w0 w¡1¾

X
w;w02W M;O

JP jww0P ¾ ¸ ww0 ­ JP jww0P ¾_ ¸ ww0 »w0 w0¡1w¡1¾

X
w2W M;O

JP jwP ¾ ¸ w ­ JP jwP ¾_ ¸ w X
w02W M;O

jP jwP jww0P ¾ ¡1

jP jwP jww0P ¾ ¡1 JP jw0P w¡1¾ ¸ w0 ­ JP jw0P w¡1¾_ ¸ w0 »w0 w0¡1w¡1¾

X
w2W M;O

jP jwP ¾ ¡1 JP jwP ¾ ¸ w ­ JP jwP ¾_ ¸ w 'H
P;O w¡1¾

jW M; O j 'H
P;O

¾ :

¤
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