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Une formule de Plancherel pour P’algebre de Hecke d’un
groupe réductif p-adique

Volker Heiermann

Résumé. Nous montrons un théoréme de Paley-Wiener matriciel pour Palgébre de Hecke d’un
groupe réductif p-adique. La preuve est basée sur une analogue de la formule de Plancherel.

Mathematics Subject Classification (2000). Primary 22E35, Secondary 11F70 22E50.

Mots-clés. Théoreme de Paley-Wiener matriciel, formule de Plancherel, algébre de Hecke,
représentations d’un groupe réductif p-adique.

Fixons un corps local non archimédien F. Soit G l'ensemble des points F-
rationnels d'un groupe réductif connexe G défini sur F'. Fixons un sous-groupe
ouvert compact K maximal spécial de G. On munit tout sous-groupe algébrique
fermé H de G de la mesure de Haar invariante & gauche pour laquelle mes(HNK) =
1. Lorsque M est un sous-groupe de Lévi de G (ou plus précisément 1’ensemble
des points F-rationnels d'un facteur de Lévi d'un sous-groupe parabolique de G
défini sur F'), notons X™ (M) le groupe des caractéres non ramifiés de M (défini
en 1.2). C’est une variété algébrique complexe isomorphe & (C*)?, ou d désigne la
dimension du tore déployé maximal dans le centre de M. Pour une représentation
cuspidale irréductible (o, E) de M, on notera O, = {o®x|x € X" (M)} son orbite
inertielle. L application £™(M) — O, x — 0 ® X, définit de facon naturelle une
structure de variété algébrique complexe sur O,. Une fonction complexe ¢ sur
O, sera dite polynomiale (resp. rationnelle), si la fonction x — ¢(o ® x) est
polynomiale (resp. rationnelle) sur X" (M).

Lorsque P est un sous-groupe parabolique de Lévi M, on désigne par ig le
foncteur défini par l'induction parabolique unitaire. Si M et K sont en bonne
position relative, on définit I'espace i%8 ;- ' des applications f : K — E invariantes
a droite par un sous-groupe ouvert de K et vérifiant f(muk) = o(m)f(k) pour tout
meMNK,ueUNK et ke K. La restriction a K définit un isomorphisme de
igE sur ifngE et ’espace iflngE ne change pas si on remplace ¢ par un élément
de son orbite inertielle O,. Toutes les représentations iga/ , 0’ € O, se réalisent
donc dans le méme espace i&_ . Ceci permet d’introduire la notion naturelle
d’une application polynomiale sur O, & valeurs dans Hom(i% , E, i, E) ou
dans i B ® i, EY (cf. [W], IV.1 et VI.1), P’ désignant un deuxieme sous-
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groupe parabolique de Lévi M.

L’opérateur d’entrelacement Jp:|p(o’) est défini pour o’ dans un certain ouvert
Zariski dense de O,. C’est une application linéaire de i, E dans i¥, . E qui
vérifie Jp/ p(o’) (i%0")(g) = (i%0")(g)Jp p(0”) pour tout g € G, 0’ € O;. On
a ((Jpr p(o')v)(g),e") :/ (v(u'g),e”Vdu' pour v € iE L Eete’ € BV, si

Ununu’
I'intégrale a droite est convergente. L’application O, — Hom(i¥ . ,  F, i, E), 0’
— Jprp(0’), est rationnelle (i.e. il existe une fonction polynomiale p sur O, telle
que l'application o’ +— p(o’)Jp/ p(0”) soit polynomiale sur O, ). Pour la preuve de
ces résultats et d’autres propriétés des opérateurs d’entrelacement, nous renvoyons
le lecteur & [W]. Remarquons que la plupart des résultats qui y sont exposés sont
dus & Harish-Chandra.

Fixons un tore déployé maximal Ag de G par rapport auquel K est en bonne
position. (Le groupe K est donc le fixateur d’un point spécial de I'appartement
associé & Ag dans I'immeuble de G.) Notons W& := W (G, Ag) le groupe de Weyl
défini relatif & ce tore. Si M est semi-standard (i.e. M D Ap) et si w € W,
on dispose d'un isomorphisme A(w) : iGE — iS pwE, v = vy, v,(g) = v(wtg),
entre les représentations i$o et i&p(wo).

Notons CZ°(G) 'espace des fonctions complexes lisses & support compact sur
G. 1l est bien connu que ’on peut associer a tout élément f de C°(G) un endo-
morphisme (i%0)(f) de I'espace vectoriel i% E. Nous le noterons f ¢(P,o), i.e. on
pose

FoP.0) = /G F(6)(iG0)(g)ds.

Notre but est le résultat suivant:

(0.1) Théoréme. Etant donné pour chaque (classe d’équivalence d’une) représen-
tation cuspidale irréductible (o, E,) d’un sous-groupe de Lévi semi-standard M
de G, et tout sous-groupe parabolique P de Lévi M, un endomorphisme ¢p, de
Uespace vectoriel ifS ;- E, tels que la famille {Lppﬁ}(Pﬁ) vérifie les propriétés suiv-
antes:

1) Pour tout (P,o), Uapplication ppo : O — End(i¥_  E,), 0’ = ©op,, est
polynomiale sur Uorbite inertielle O de o;

2) 1l existe un sous-groupe ouvert compact de G par lequel toute composante
wpo est invariante a gauche et a droite;

3) Pour tout (P, o) et tout w € W, on a AM(w) 0 ¢po = @y py—1 wo © Aw);

4) Pour tout (P,o) et tout (P',0), on a lidentité d’applications rationnelles
Jpp(0) 0o opo = ppr e 0 Jpp(0);
alors il existe une fonction f dans C°(G), telle que pp, = ]/C\G(P,U) pour tout
(P, o).

Réciproquement, il est bien connu que, pour f dans C(G), la famille
{fE(P, a)}< p,o) Vérifie les propriétés 1) - 4) du théoreme 0.1. (Pour les propriétés
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2) & 4), c’est une vérification directe et immédiate. La propriété 1) résulte par
exemple d’arguments de la théorie des B-familles de représentations admissibles
utilisés dans la partie B de cet article.)

La propriété 2) équivaut a dire que I'image de ¢ p o est contenue dans un sous-
espace de dimension finie de I'image de ’application canonique i$F ® iZEY —
End(i$E), et quil n’existe quun nombre fini de (P,0) avec ppo # 0 (cf. [W]
théoreme VIII.1.2).

Notre démonstration de ce théoreme est basée sur une analogue de la formule
de Plancherel de Harish-Chandra. Elle a donc 'avantage d’expliciter la fonction
f du théoreme. La preuve utilise le résultat suivant qui sera prouvé dans la partie
B:

(0.2) Proposition. Soit {¢p o} p ) comme dans le théoréme. Pour tout (P, 0),
il existe une applz'catz’oz polynomiale Spo : O — il—ngEo@)i‘ngEé (0w Bp = E,
pour un o € O et ou P désigne le sous-groupe parabolique opposé de P) a image
dans un espace de dimension finie, telle que

ero@) = Y.  (Jpap@) o Aw)) ® (Jpwp(o¥) o Aw)) Epolw o),
weEW;w 0=0

pour tout o € O.
(Ici on a identifié pp (o) € End(if, < E) & un élément de iff , F® il  EY.)

Plus précisément, choisissons £p ¢ et posons (p (o) = (Jp‘p(a)fl ®1)¢polo).
Pour o € O, notons Egg I’application linéaire qui associe & un élément v ® v de
ik Eo ®i8 B la fonction g — ((i%0)(g)v,v"), g € G. Fixons o € O. Avec
¥ = ¥p,0, POSONS

_ G —1
folg) = /R o e (Crolo 30007 dIm(),

pour g € G. (La partie réelle d’'un caractére non ramifié étant définie dans 1.2, la
notation u > p 0 est justifiée par le fait que ’on peut trouver i dans la chambre de
Weyl de P tel que les poles x de la fonction dans 'intégrale vérifient (¥, Re(x)) <
{aV, u) pour toute racine « positive pour P. Grace au théoreme des résidus, la
valeur de 'intégrale ne dépend alors pas du choix de p vérifiant cette condition.)

On montrera (cf. A.3.1-2):

1) La fonction f,,, ne dépend que de ¢p o;

2) La fonction f,, , appartient & C2°(G);

Notons [0] = {woloc € O,w € W} la classe de W%-conjugaison de O
et M le sous-groupe de Lévi semi-standard sous-jacent & O. Posons fcp[o] =
([0) X (pr,0r) fopr orr OU €([O]) est une constante précisée dans 3.2, la somme
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portant sur les couples (P, ) formés d’une orbite inertielle O’ = w O, w € W,
et d’un sous-groupe parabolique de Lévi wMw 1. Alors on a par ailleurs

)f«:o(PU)fOSlUﬂ I;
4 ( 0)=y¢pssioe 0]

) fo
) o foe) () Tog @da — 051 (0] £ (O]
6) La fonction f, =3 ) fop Vérifie opo = f(P,a) pour tout (P, o).

Cet article est divisé en deux parties. Dans la partie A, nous prouvons tous
les résultats annoncés dans l'introduction a l’exception de la proposition 0.2. Sa
preuve est le contenu de la partie B. Les deux parties peuvent étre lues indépendam-
ment, seules certaines définitions et notations introduites dans la section A.1 seront
utilisées sans rappel dans la partie B.

Remarquons que J.N. Bernstein a annoncé une preuve du théoreme 0.1 par une
méthode différente de la noétre.

L’essentiel de ce travail a été réalisé alors que 'auteur séjournait & I’Université
Paris 7 au sein de ’équipe ” Théorie des Groupes”. Ce séjour a été financé par une
bourse Feodor Lynen de la fondation Alexander von Humboldt en correspondance
avec M.-F. Vignéras. Cette bourse comprenait une participation financiere de
I"Université Paris 7 venant du réseau ” Géométrie arithmétique algébrique” soutenu
par le programme ” Formation et Mobilité des Chercheurs” de I’'Union Européenne.
Mon tuteur aupres de la fondation Alexander von Humboldt était E.-W. Zink.

Mes remerciements vont par ailleurs tout particulierement a J.-L.. Waldspurger
a qui je dois I'idée pour ce travail et qui m’a bien accompagné durant sa réalisation.

Finalement je remercie le rapporteur qui a examiné mon article pour son travail
tres soigneux.

A. Une analogue de la formule de Plancherel

1. On garde les notations et définitions de 'introduction. On notera ¢ le cardinal
du corps résiduel de F', vp la valuation discréte de I’ normalisée telle que vp(F™) =
Z et || la valeur absolue, donnée par |z|p = ¢~2#(*) pour z dans F'<.

Les définitions et notations qui seront introduites dans la suite pour le groupe
réductif G et munies du symbole G seront ensuite utilisées pour tout groupe
réductif M, en remplacant GG par M, sans que cela soit dit explicitement.

1.1 Notons Aq le tore déployé maximal dans le centre de G et G le groupe
dérivé de G. Posons X*(G) = Homp(G,Gy,) et X.(S) = Homp(G,y,, S) lorsque
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S est un tore.

1.1.1 Posons af, = X*(A0)®zR, af, = X*(Ag)®zR et a§* = X*(AgNG*r) @7 R.
On a une décomposition afy = af, © ag*. Lorsque S est un tore déployé dans A,
on notera Y(S) ensemble des racines pour I'action adjointe de S dans ’algebre
de Lie de G. Soit (P, M) un couple parabolique semi-standard, i.e. P est un
sous-groupe parabolique de G, M un facteur de Lévi de P, et on a M D Ap.
L’ensemble Y:(Aps) est 'ensemble des projections non nulles dans a}, d’éléments
de X(Ag) suivant la décomposition afy = a}; @ a}*. On notera ¥(P) I'ensemble
des racines pour 'action adjointe de Aj; dans I’algebre de Lie du radical unipotent
de P.

1.1.2 On fixera pour la suite un couple parabolique semi-standard (Py, Mg) avec
Py minimal. On a alors My = Zg(Ap) et Anm, = Ap. L’ensemble 3(Ag) est un
systeme de racines dans ag*. Remarquons que ce systeme de racines peut ne pas
étre réduit. Les éléments de Y(Py) s’identifient aux racines positives dans Y(Agp)
pour un certain ordre sur af*. La base de ¥(Ag) correspondant & cet ordre sera
noté A. Un couple parabolique (P, M) sera dit standard, s’il est semi-standard
et P D Py. On a une bijection O — (P, Mq) entre les sous-ensembles de A et
les couples paraboliques standard, les racines dans Y.(Ag) de restriction triviale &
A, étant les combinaisons linéaires de €.

1.1.3 Posons ag = X« (4p) @z R, ag = Xu(Ag)®zR et ag = X*(AoﬁGder) ®7R.
Les espaces ag et af) sont duaux, I'orthogonal de ag dans afj est ag* et celui de

G *
ag est ag.

1.1.4 Si M est un sous-groupe de Lévi semi-standard, il existe une notion de
coracine ¥ associée 4 une racine @ € N(Apr). Clest un élément de apr. On en
déduit, pour tout sous-groupe parabolique P de Lévi M, une notion de chambre
de Weyl dans a}; qui est I’ensemble des éléments positifs pour P.

1.1.5 On définit une application Hg : Mg — Hom(X*(My),R) =~ ag par {x, Ho(m))
= wvp(x(m)). Soit (P,M) un couple parabolique semi-standard. Un élément
a € Apr sera dit positif pour P, si {a, Hp(m)) > 0 pour tout o € %(P). On
dira qu’il est strictement positif, si 'on a I'inégalité stricte pour tout o € 3(P).

1.2 La restriction X*(G) — X*(Ag) induit un isomorphisme X*(G) @z R — af,.
Le groupe X™(G) des caractéres non ramifiés de G est par définition I'image de
I'homomorphisme a¥, » = af; ®p C — Hom(G,C*) qui associe 4 A = a ® s le

caractere x tel que xa(g) = |a(g)]%. Son noyau est de la forme liquC% ol Rg

désigne un réseau de rang maximal dans X*(G) ®z Q. L’homomorphisme munit
X™(@) d’une structure de variété algébrique complexe isomorphe & (C*)¢ avec
d =rang de Aq. Sa restriction a af, induit un isomorphisme avec le sous-groupe
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des caracteres réels a valeurs > 0. La partie réelle d'un caractére non ramifié x,
noté Re(x), est l'unique élément A de af, qui vérifie x, = |x|. On notera Xy, (G)
le sous-groupe de X™(G) formé des x tels que Re(x) = 0.

1.2.1 On munit X, (A¢) de la mesure de Haar de masse totale 1, et Xi;(G) de la
mesure de Haar pour laquelle la restriction Xi,(G) — Xin(Ag) préserve locale-
ment les mesures. Lorsque o est une représentation de GG, on notera Stabae}g](G)(U)
le sous-groupe de X (G), formé des caracteres x tels que o ~ o0 ® x. Ce sous-
groupe ne change pas si on remplace ¢ par un autre élément de son orbite inertielle
O, ce qui permettra d’écrire Stabx?é(g)((?).

1.2.2 Soit (P, M) un couple parabolique semi-standard. Soit r une fonction ra-
tionnelle sur X™(M). Supposons qu’il existe un nombre fini d’hyperplans de la
forme (A, a¥) = ¢ dans a};, o € 3(P), tels que tout pdle x de r soit de la forme
X = X avec A sur un de ces hyperplans. Il résulte du théoreme des résidus que
l'intégrale [ X () 7(x,X)dx reste constante, si y, varie dans l'ouvert de X" (M)
défini par les inégalités (Re(x), ") < (Re(x,), "), x parcourant les péles de r,
a € X(P).

On écrira plus simplement fRe(x):u>>p0 r(x)d(Im(x)) pour la valeur de cette
intégrale.

L’expression fRe(x):u<<p0 r(x)d(Im(x)) aura la signification évidente.

1.2.3 Proposition: Soient D un ouwvert de af, et ¢ une fonction holomorphe dans
Vouwvert de X™(Q) formé des points x avec Re(x) € D. Fizons p € D.
Alors, pour tout x, € X" (G), Re(x,) = p, on a

~1g d]m
S xla) /Re<x>u¢(>‘) x() Zw (oK),

QGAGQK\AG

la somme portant sur les élément de Xiy(G) de restriction triviale & Ag.
Preuve: Ceci résulte de la théorie de Fourier sur un tore. O

1.3 Fixons un sous-groupe de Lévi semi-standard M de G. Notons P(M ) 'ensemble
des sous-groupes paraboliques P de GG de la forme P = MU . Fixons une représenta-
tion irréductible cuspidale (o, E) de M. Soient P, P’ € P(M). Les points, ol
I'application rationnelle X™ (M) — Hom(i%  E,i¥, E), x — Jpplo®x), a
un pole ou bien oll Jp/|p(0®x) n'est pas inversible, sont de la forme x = x avec A
sur un nombre fini d’hyperplans de a%; de la forme (@V,\) = ¢, o € B(P') N N(P).
Soit P” € P(M). 1l existe une fonction rationnelle Jpipripr sur lorbite iner-
tielle O de a, telle que Jp‘p/(d ®X)Jp/ p//(U®X) = jp‘p/‘p//(d & X)Jp‘p//(d & X)
pour tout x. Si P” = P, on écrira plus simplement jp pr = jp p/pr. L'égalité
Jppr pr(0 ®x) = 1 vaut si d(P|P") = d(P|P") + d(P'|P"), d(P|P") désignant le
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nombre d’hyperplans séparant les chambres de Weyl de a3, correspondant a P et
P’ respectivement (cf. [W], IV.1. (12)).

1.3.1 Le théoréme suivant est un résultat clé pour la suite. (A notre connaissance il
est paru pour la premiere fois (en tous cas le cas tempéré) dans les papiers de Cas-
selman et dans ceux de Harish-Chandra, sans que nous nous sentions compétent
de l’attribuer & I'un ou I'autre. Il nous a semblé que ce que nous faisons releve
davantage de Casselman, Harish-Chandra adoptant un point de vue tres analy-
tique.)

Soit (P’,M’) un couple parabolique semi-standard. Posons W(M,M’) =
WM\ {w € WE| wMw1 C M’} et identifions ses éléments & certains éléments
de W&, Les formules qui suivent seront essentiellement indépendantes du choix
d’'une telle identification. Pour w € W (M, M’), définissons P.,, P! € P(M) par
P, = (wM'w N P)w 0w et P, = (w™ M'w N P)w T w.

Désignant par dp/ le module de P’, on définit une constante

AG/M) = / T

7

oll pour tout élément g de G, on a noté g = upr(g)mp:(g)kp (g) la décomposition
correspondant & la décomposition G = P'K. (Cette définition de v(G/M’) ne
dépend pas du choix de P’ (cf. [W] p. 5, (3)).)

Pour v € if  E, vV € i (EY, x € X"(M) et a € Ay, posons cp/ p(o ®
X 0)(090)(@) = (a0 EX)) (@AW Ty 20X, (M) T, pl0V®

X0V ia b aa

Théoréme. Soientv € il E etvV € il EV. Il existet > 0, de sorte que pour
tout x € X" (M) et tout a € Ay tel que {o, Hy(a)) >t pour tout o € X(P'), on
ait

(iSo@x)(a)w,vY) =y(GIM) p2@) Y epiplo®x,w)(v®0Y)(a).
weW (M, M’)

Preuve: Notons {,)ps le produit bilinéaire de Casselman (cf. [Cs] proposition
4.2.3 et théoreme 4.2.4). Pour (w, V) une représentation lisse de G, désignons
par (wpr, Vpr) la représentation de M’ dans le module de Jacquet Vpr de V et
par jpr : V. — Vp: la projection canonique. Il est prouvé dans [W] au cours
de la démonstration du lemme VI.2.1 qu’il existe ¢ > 0, de sorte que pour tout
X € X"(M) et tout a € Ay tel que (o, Hy(a)) >t pour tout a € L(P’), on ait

(iE(0 ® x)(a)v,v") = (iE(0 @ x)p(@)ip(v), 7p(v")) .

Tout se ramene donc au calcul du produit bilinéaire de Casselman. Ce calcul
est effectué dans [W] relatif au module de Jacquet faible dans la preuve de la
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proposition V.1.1. Celui relatif au module de Jacquet suit les méme lignes: d’une
caractérisation des produits bilinéaires M’-invariants sur (i E) pr X (i~ EY )57
analogue au cas tempéré, on déduit I’existence de constants v(P,w, o ® x), tels
que

G (), ip@ )= Y. APwox)epplo®x,w)(vevY)(1).
weW (M.M’)

pour tousv € V, v¥ € VV.
On refait alors les arguments de [W] dans la preuve de la proposition V.1.1
pour montrer que v(P,w, s ® x) = v(G/M')~! pour tout w € W (M, M"). O

1.3.2 Le résultat suivant sera utile lors des applications du théoréeme 1.3.1.
Lemme. Soitw € W(M,M’). On a
JP;J\P(U/)Jﬂp(UIY1 = jp@\?(a/)fljpuﬁ(g/)
en tout point o' de lorbite inertielle de o en lequel ces opérateurs sont définis.
Prewve: Par la formule du produit (cf. [W] p. 55), on a
Tps 50" F5(0") = iy 50V Ty p (o).
O

1.4. Soient (w, V) et (n/, V') deux représentations irréductibles cuspidales de G.
Supposons que les restrictions & Ag de leurs caracteéres centraux coincident. Pour
veV,veVV, o eV et e V'V, posons

B, " o, 7y = / (rlg)n, oY) (o, 7™ (g)™)dg.
Ac\G

Théoréme. (cf. [Ca] Theorem 1.3 et [Cs] proposition 5.2.4)

i) Siw £, alors [{v,vY,v',v"Y) = 0 pour tous v, vV, v’ etv'V.

i) Si (m, V) = (7', V'), il existe un réel d(w) > 0, appelé le degré formel de =,
tel que I(v,vY,v',v") = d(m) "1 {v, 0"V} {0, v} pour tous v, vV, v/ et v'V.

L’expression I{v,v",v’,v’V) ne change pas, si on tord 7 et 7’ par un méme
caractére non ramifié. On en déduit que le degré formel de 7 reste invariant si
on remplace 7 par un élément de son orbite inertielle @. On peut donc poser

d(0) = d(r).
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2. Fixons un couple parabolique standard (P, M) de G et une représentation
cuspidale unitaire irréductible (o, ) de M. Notons O I'orbite inertielle de . Soit
£E:0 — z'l?fm KE ® if.fm EY une application polynomiale & image dans un espace

de dimension finie. Posons ((¢’) = (JF‘P(UI)_l ® 1)¢(0’) pour tout o’ € O et

felo) = | B (€0 90)(g HdlIm(x)).
Re(x)=p> p0

2.1 Proposition: La fonction f¢ appartient a C3°(G).

Preuve. D’apres 1.2.2 et 1.3, la fonction f¢ est bien définie. II est clair qu’elle
est lisse. Il reste donc & montrer que son support est compact. Comme £ est
une somme finie de fonctions X™ (M) — C, x — p(x) v ® vV avec p fonction
polynomiale sur X" (M) et v ® vV € i E®if  EV, il suffit de considérer le
cas ol & est une telle fonction.

Par la décomposition de Cartan, on a

G =KM;'K avec My ={m e M| Va € A {a, Hy(m)) >0}.

Par ailleurs, KmK = Km'K si et seulement si Ho(m) = Ho(m'). Posons Aj =
AgnN Ma” . On observe que My est ’ensemble des points F-rationnels d’un groupe
réductif (défini sur F') qui est le produit presque direct du tore déployé maximal
dans son centre et d’'un groupe anisotrope. L’ensemble des points F-rationnels
de ce tore étant Ag, il existe un compact C de AaL tel que MJ = C’Aar . Par
un argument de K — C-finitude - I’ensemble des transformés dun élément de V'
par un compact de GG engendre un sous-espace de dimension finie de V -, il suffit
alors de montrer que, pour tout v € il—;m KE, tout vV € if.fm EY et toute fonction

polynomiale p sur X" (M), la fonction sur Al définie par

ars PO)(i% (0 ® x)(@)Jp plo ® x) v,0")d(Im(x)) (%)
Re(x)=p>»p0

est & support compact.

Supposons d’abord G semi-simple. Alors A est une base de aj. Pour © C A et
t',t > 0, posons Ad(0,t,t') = {a € Al|(a, Hy(a)) <tVa €O et (a,Hy(a)) >
t' Vo€ A— 0O}, et AF(0,t) := AL (O,1,1).

On va montrer l'existence d’une fonction (©,¢t) — f(©,t), © C A, ¢t > 0,
telle que la fonction (*) soit nulle en tout a € A8L(97t7f(@7t)). Ceci implique
la proposition dans le cas semi-simple: Comme Aar =Ueca Aar (©,1) pour tout
t > 0, il suffit d’en déduire que, pour tout © C A et tout ¢ > 0, la restriction de
(*) a Ag((%?t) est & support compact.
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Effectuons une récurrence décroissante sur © C A. Comme A est une base
de af, AJ(A,t) est compact pour tout ¢ > 0. Soit © C A. Si (*) est non nulle
en a € Aar(@,t), alors © = {a € Al|{e, Hp(a)) < f(©,1)} contient strictement
©. Par suite, a € Ug/-o A(')F(G’?f(@7 t)). Or, par hypothese de récurrence, la
restriction de application (*) & cette réunion est & support compact.

Fixons © C A, ¢ > 0 et montrons l'existence de f(©,t). Posons (P, M') =
(Po, Mg). 1l existe un compact Cg C Ay, Cg)l C Ag, tel que tout élément de Aar
puisse s’écrire sous la forme a = aga’c, avec ag € Ay, a/ € AgNM'® et ¢, € Cg.
On a {(a, Hp(a’)) < 0 pour tout oo € A — O, et I’ensemble des Hg(a') avec a €
A(J)r(@ﬂf) est fini. En particulier, a € Aar(@7t7t/) implique ag € Ag N Ag(@,t,t/).

Par ailleurs, comme a(a) = a(aaél) pour tout « € ©, on en déduit l'existence
dun compact Cg de Ay, tel que aaél € Cg pour tout a € Aar(@ﬂt).

Lorsque a et 0 ® x parcourent respectivement Aar (©,t) et Pensemble des points
J%‘lp—réguliers de O, ’ensemble des ig(a®x)(aaél)JF‘P(J®X)_111 reste donc dans
un espace de dimension finie. Il résulte donc de la formule de Casselman (1.3.1),
qu’il existe tg > t, tel que, pour tout a € A(')"(@?t?to)7 on ait

(i%(0 ® x)(@) F5plo ® )10, 0")

:7(G|M/)—1511D//2(a) Z cp/‘p(a®X7w)(JF‘P(g®X)*lq;@q;v)(a).
weW (M, M)

En particulier, le coefficient matriciel est nul, si W (M, M’) = 0.
[’étude de (*) se ramene donc & celle de

a— p(x) cprip(o ® X, w)(']F\P(U ® X)*lz; ®@vY)(a)d(Im(x)) (**)
Re(X):H>>P0

pour tout w € W(M, M’). Fixons w € W(M, M').

Pour a € Aar, notons 7, la fonction rationnelle x +— p(x)cp/|p(oc®x, w)(JF|P(U®
x) lo®oV)(d'e,) définie sur ™ (M). Comme I’ensemble formé des aag'
a € Aar (©,1), est contenu dans le compact Cg, il résulte d'un argument de Cg-

— gl
=a'c,,

finitude que les fonctions r,, a € A(}L (©,¢), sont en nombre fini.
Par ce qui précéde et aprés avoir effectué le changement de base x — w1y,
Pétude de (**) se rameéne & celle de

a x(ae)ra(w ™ tx)d(Im(x)), (%)
Re(x)=wp

oll p a été choisi suffisamment positif dans la chambre de Weyl de P dans aj;.
On déduit de 1.3 et de 1.3.2 que les poles des fonctions rationnelles x +—
ro(w1x), a € A(')F(@,t)7 (qui sont en nombre fini) sont de la forme y, avec
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A sur un nombre fini d’hyperplans de a%; de la forme {(a¥,\) = ¢ avec a €
Y(wPw ™Y N S(wPw ).

A Taide de la décomposition @’ , ~—; = aj, @ ai\g/}‘w_l, on définit x,/ €
%m(wafl) pour p € aj;. Supposons p dans la chambre de Weyl pos-
itive de P’ dans a%,. Soit a € Y(wPw™') N X(wP.w ). Alors, ou bien
o € Y(wPw 1N M') ou bien @4, € N(P’). Dans le premier cas, (i/,a") = 0,
alors que {1/, a¥) > 0 dans le deuxigme. D’autre part, {(wpu, ") > 0, puisque
o € N(wPw 1) et p > 0. Lintégrale dans (***) ne change donc pas de valeur
pour a € AS“(@J&)7 si on remplace wpy par wp + ' avec p/ dans la chambre de
Weyl positive de P’ dans a%,,.

L’ensemble des fonctions rationnelles y — 7, (w 1x), a € Aar(@ﬂf), étant fini,
on peut choisir ¢, > tg tel que, pour tout a € AS’(Qt?tw), x — x(ag) soit a
décroissance rapide par rapport a x — r,(w ™ y), lorsque Re(x|a,, ) devient tres
positif dans la chambre de Weyl de P’ dans a},.

On a donc vu que, pour a € AS“(Q t,ty ), Vintégrale dans (***) reste invariante
si on remplace wp par wp + ¢/, @ € ajy et g’ >p 0, alors que la fonction a
I'intérieur de I'intégrale converge vers 0 si 1/ devient trés positif dans la chambre de
Weyl de P’. Ceci prouve que ’expression (***) est nulle en tout a € A(J)r(@7 t,tw).

On pourra alors prendre pour f(©,¢) le plus grand des %,,.

Considérons maintenant le cas d’'un groupe réductif qui n’est pas semi-simple. On
a Ag = Ag(AgNGIT)C” avec C’ compact. Les morphismes de restriction donnent
lieu & une suite exacte 0 — X™(G) x X — X™(M) — X" (M N Ge*) = 0, ot
X désigne un sous-ensemble fini de Xi (M) formé de caracteres de restriction
triviale & Ag(M N GI). On identifie X2 (G) & un sous-groupe de X2 (M) au
moyen de ce morphisme. On a donc un isomorphisme Xi- (M)/(X5(G) x X) —
X (M A Ger),

Choisissons p suffisamment positif dans la chambre de Weyl de P dans a}, et
tel que (i, H) = 0 pour H € ag. Par ce qui précéde et un argument de C’-finitude,
I’étude de (*) se ramene & celle de

/ / p(x'xa)xclac)
X XE (MNGaer) J XX (G)x X

(i3(0 @ X'xc)(@) T plo ® x'xa) 0,0V )d(Im(xa))d(Im(x))
(#)
pour (ag, a’) dans Agx (AaL NG Tl reste donc & montrer lexistence de compacts
Cq et Cy de Ag et ASr N G respectivement, tels que (#) soit nul si (ag, a’) &
CG X CO.
Remarquons d’abord que, si a’ € A(J)r P Geder

(i%(0 ® x'x6) (@) Jp plo ® X'xa) v, 0Y)

. d -
(i gta (0 ® X')(@) TP ata prcn (7. © X) ™0y g, V)
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et que 'on peut remplacer ci-dessus fx?}f}(G)xX par |X| fxﬂ;(G)' Comme ' —
- (@) p(x’ xa) xalag) d(Im(xa)) est une application polynomiale sur X™ (M N
G et que M N G est un sous-groupe de Lévi semi-standard du groupe semi-
simple G| Pexistence de C résulte du cas semi-simple considéré précédemment.

L’intégrale sur Xi (G) portant sur une fonction polynomiale en x, I'existence de
Ca est immédiate. O

2.2 Lorsque f est un élément de C°(G) et que P/ = M'U’ est un sous-groupe
parabolique de G, posons

for(m')=6p (mY2 | fim'v')du' pour m' € M’
U/

2.2.1 Lemme. (cf. [S] p.109) On a fpr € C°(M').

2.2.2 Lemme. Soit (7, V) une représentation lisse de G etv € V. Si P’ = M'U’
est un sous-groupe parabolique et H un sous-groupe ouvert compact de G qui laisse
v invariant et qui admet une décomposition d’Iwahori H = (U'NH)(M'0H)(U'N
H) par rapport au couple parabolique (P', M'), alors on a

/ (v a)vdu’ = M/ w(ha)vdh.
U'NH mes(H) H

pour tout a € Ay strictement positif pour P'. En particulier, l’'élément de V' égal
a cette intégrale est invariant par H.

Preuve. Notons up/(h)mp:(h)up-(h) la décomposition d’'un élément h € H selon
la décomposition H = (HNU')(HNM')(HNU’). Comme, par choix de a € Ay,

a Y (HNU"a C HNT’, on trouve grace a l'invariance de v par H que 7(ha)v =
m(up (h)a)v. L’égalité du lemme en suit par intégration partielle. O

2.2.3 Proposition. Soit (P, M’) un couple parabolique semi-standard, et sup-
posons
dim M’ < dim M. Alors on a

(i) (fe)pr =0 si M’ et M ne sont pas conjugués;

£i)
MM (f)p(m) = 3 /R

wew (a1, ) Y Re(wx)=pu>p/0

BY o (M) T, 50 ®X) © M)y p(0” ® X~ 1)E(0 @ X)) (m'™) dImi(x)

ss M= M.
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Preuve. Comme £ est une combinaison linéaire d’applications de la forme x —
p(x)v®ovY, il suffit de montrer la proposition dans le cas ou £ est une telle fonction.
Soit H un sous-groupe ouvert compact de K, admettant une décomposition
d’Twahori relative & (P, M) et laissant v et vV invariant. Soit a € A strictement
positif pour P’. Posons Uj = HNU'. Ona U =J;Zga 'Ujd". Par suite,

5o (' 12(f¢) pr (o)
— [ sctmtuyd
.

~ lim / / BS 0 (C(0 ® ) (' V) dTm(o)dus
a=tUfal JRe(x)=p>p0

l—o0

= lim (5p/(al)_1/ / 2(x)
l—o0 (/) RG(X):M>>PO

(if(0 ®x)(a') g plo ® x) (o ® x)(m' Vo, iE (0¥ © x ) (Wa' oV )dIm(x)du!

En posant vy, = (0 ® X)(m' N et v = [, i% (Y ® x ) (wd )wVdu, ceci
0

devient a 1’aide du théoreme de Fubini égal a

l—o0

lim §p:(a)™ /R o Op(x)(%'?(a @ x)(a")Jpp(0 ® X) " omr, v YdIm(x).
e(x)=pn>p

Il résulte du lemme 2.2.2 que v, reste dans un espace de dimension finie pour
[ > 0. On peut donc appliquer le théoreme 1.3.1, et on trouve

<ig(0®X)(al)‘]ﬁ‘p(a@X)ilvm/avlv)
=(GIM)op ()2 T epyplo @ X, w) (g plo @ X) o @) )(a)

weW (M, M’)

pour [ assez grand.
Le (i) de la proposition en résulte aussitét. Supposons dans la suite M’ = M.
Observons que

(Mw) Tz, plo¥ @ x o)1)

= [ el ©x il @ x D aoV ) w
ur e

:/ L ‘P(av ® x o) (w ' a)du’
vy e

—5p:(a!)Pe(oV @ x 1) () / o Ty ple X ) N
a— Oa
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Par suite,
8pr(m')"V2(f) e (m)
ey [ p(x)

wew (a,m) ¥ ReCO=1>p0

((Mw)Jpr |plo® X)Jﬁ\P(a ®X) 1om)(1),

[ gy e o3 e ) byl
a~ (’)a w

Fixons w € W(M, M) et calculons la limite correspondante. 1l résulte de
1.3 et de 1.3.2 qu'il existe un nombre fini d’hyperplans de la forme (X, a") = c,
a € L(P)NX(P)), tels que tout pdle de la fonction dans l'intégrale soit de la forme
xx avec A sur un de ces hyperplans. On peut donc remplacer ci-dessus p >>p 0
par gy, >p; 0. Or, alors limy . fa*lUéal(Jﬁup(Uv ® x DoY) (w v/ )du =
()\(w)JPu,JU;U/J (0¥ ® Xfl)JI;ﬂ,J‘P(aV ® x HoV)(1). En appliquant 1.3.2 et la for-
mule de produit pour les opérateurs d’entrelacement, on en déduit que le terme
correspondant a w dans la somme ci-dessus est égal a

POO(A(w)J py @ X)0m ) (1), (A(w) Ty p0¥ @x)oV)(1))dIm(x),

Re(x)=pw> pr 0
d’ott la formule (ii). O

2.3 Proposition. Soit (¢/, E') une représentation irréductible cuspidale d’un
sous-groupe de Lévi semi-standard M’ de dimension inférieure ou égale a celle de
M. Soit P' € P(M’). Alors on a

() ﬁ(0/7p/) =0 si M’ et M ne sont pas conjugués;

()
Y(GIM)|Stab g (1) (o)~ fe (o, P')
= d(e")! S Tpap@)AMw) @ Jpp(a™ A (w))E(w o)
weW (M, M),¢’cw O
st M’ = M.

Pour la preuve de cette proposition, on utilisera les deux lemmes suivants, ou A et

p désignent respectivement ’action par translations a gauche et a droite de G sur
C(@Q).
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2.3.1 Lemme. Soit (o', E') une représentation cuspidale de M’, P’ € P(M’).
Alors on a fE(a', P')(g,h) = (Mg)p(h) fo) p. ™ (o, M).

Preuve. 11 suffit de combiner les lemmes VII.1.2 et VIL.1.1 (i) de [W] qui y
sont prouvés par des arguments qui se généralisent des représentations de carré
intégrable aux représentations cuspidales (voir également la remarque au sujet de
la preuve de la proposition 2.4), puisque f; est & support compact. |

2.3.2 Lemme. On a (A(g)p(h)fe) = fer, ot (o ® x) = (i%(0c ® x) ® i%(cV ®
X" (g,h) (o ®x).

Preuve. (de la proposition)

La partie (i) de la proposition est une conséquence immédiate des lemmes 2.2.3
(i) et 2.3.1.

Pour prouver la partie (ii), écrivons {(0 ® x) = >, pi(0 ® x) v; ® v avec I
un ensemble fini, v; ® vy € ifngE ® ifngEV, et p; une fonction polynomiale en
x € X" (M).

Supposons M’ = M. A l'aide de 2.2.3 (ii), on trouve avec ¢’ € E’ et ¢’V € £V,

Y(GIM)(f) ™ (o', M)e', e)

:Z Z /M/R pi(0 ® x)

el weW (M, M) e(wx)=puw > pr0
((AMw)J p, 5o ® x)vi)(1), w(o ® x)* (M) (Nw) Jpy p(0” @ x Do Y1) dIm(x)
{

(w
a'(m)e’, eV Ydm

-> [ ey [ plo®x)
icl Am\M AmnK\Ap J Re(wx)=—pw < pr0

((Mw) T p, (o ©x o)1), wlo @ x )Y (m)(Mw) Ty p(0¥ © x)e) )(1))

X (@i )@ (orlwxn) Yeadea) dIm(x) da dm.
ApynK

weW (M, M)

Comme Ap; N K est compact de mesure 1, I'intégrale sur Ay N K n’est non nulle
que si Xo’ | Ak = WXo|Aynk €0 52 valeur est alors 1. Dans ce cas, ng(wxg)*l
est la restriction & Ay d’un certain élément wy,, de X" (M).

A T’aide de la théorie de Fourier sur un tore (cf. 1.2.3), on trouve alors
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B> ¥ plowxwx) [ (o))

i€1 weW (M, M) xcker(XE (M)— XM (Ay)) Au\M
((A(w)d b, 5lo @ xwx)vs)(1),
w(o ® xuwx)" (m)(Aw)Jpy plo¥ @ x x o) )(1))dm
= d(o') | Stabgm (0]

) S pile o) Aw) T, e ) (1), )

el weW (M,M),w=1lo’cO
(e, (AMw)Tpy p(w™ o™ ) )(1)

par 1.4, si Re(wyxy) <pr —p pour tout w. Comme les deux applications sont
rationnelles sur Porbite inertielle de ¢/, on a I’égalité partout.

A laide des lemmes 2.2.1, 2.2.3, 2.3.1, et 2.3.2, on en déduit le résultat énoncé.

O

2.4 Proposition. Soit O une orbite inertielle définie relative d un sous-groupe de
Lévi semi-standard de G. Supposons que O' et O ne soient pas conjuguées. Soit
¢ une application rationnelle sur O vérifiant les propriétés analogues & celles de
¢ relatives a O,

Alors on a

/ Teg) fo(g) dg=0.
G

Preuve. Suite a la proposition 2.3, les arguments dans la démonstration de la
proposition VII.2.2 dans [W] se généralisent sans probleéme, apres avoir remarqué
que, si o est une représentation unitaire, alors, pour tout v € igm xE et tout vV €

i BV, il existe v1 € i E et vy € & EVY, tels que (i%(0 ® x)(g)v,vY) =
(iS(c @ x 1) (g~ )v1,vY) pour tout x € X™(M) et tout g € G. O

2.4.1 Corollaire. Soit (o', E’) une représentation irréductible cuspidale d’un

sous-groupe de Lévi M’ de G. Supposons que o’ ne soit conjuguée a aucun élément
de O.
Alors on a fc(o!,P') =0.

Preuve. Notons O lorbite inertielle de ¢’. Comme ]?4(7 P’) est polynomiale sur
', il suffit de prouver le corollaire pour ¢’ unitaire. Choisissons une fonction
polynomiale non identiquement nulle j; sur @', telle que l'opérateur rationnel
J1J py soit régulier. On va montrer que (fe(o!, P’ ,v") = 0 pour tout v’ ®v"Y €
& kB @il g BV,
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Par la remarque dans la preuve de la proposition 2.4, on peut choisir v] ®v{" €
g : . ——] ; _
ik B @il BV, tel que (i6(o" @ ) (o', oY) = (i5(0" @) g~ L)l op).
Soit p une fonction polynomiale sur @’. Posons &'(0’' ® x') = p(o’ ® x')j1(0’ ®
X/)(JP\F(U/ ® x")v] @ v)Y) pour x’ € X™(M’'). Par choix de ji, cette application
est polynomiale en x/.

Posons {'(0'®x) = (Jﬁlp(d/®x/)®1)§’(0/®x/) = p(o’®x")j1(o’®x') (v ®vY).
On a vu que f est une fonction lisse & support compact. La proposition 2.4
s’applique & f: et fo,. Comme (’ est réguliére en tout x’, on obtient

OZ/ch(g) fer(g)dg

:/ / felg) (o’ @ X') j1(o’ ® x') (i% (0’ @ X') (g~ 1)y, 0)") dx' dg
G JRe(y')=0

N / / felg) plo’ @ x') (o ® X') (i% (0" ® X' ) (g)v',v") dg dx’
Re(x)=0 JG

7/ p(0’ @ X) 1(0" ® XN felo' @ /', Py, 0™} dy'.
Re(x/)=0

__Ceci étant vrai pour toute fonction polynomiale p sur @', on en déduit que
(fe(o! @ X', P’ ,v"Y) = 0 pour tout ' € Xim(M’) et en particulier pour ' = 1.
O

3. Notons © I'ensemble des couples (P, Q) formés d’un sous-groupe parabolique
semi-standard P = MU et de l'orbite inertielle d'une représentation irréductible
cuspidale de M. Notons PW(©) 'ensemble des familles ¢ = {¢p o}(po)ce dont
les composantes sont des applications polynomiales qui vérifient les conditions 1)
- 4) du théoreme 0.1.

3.1 Soit p € PW(®). Choisissons pour tout couple (P, @) une application polyno-
miale {p o vérifiant les conclusions de la proposition 0.2 relatives & ¢ p o. Notons
¢p,o l'application rationnelle donnée par (po(o) = (JF‘P(U)fl ® 1)6po(o) pour
oeO.

3.1.1 Proposition. Soient (P,0), (P, O) dans © et o' € O'.
Alors
fCP,O(P/7 0/)
ror(o!), si O et O ¢ fugués;
GIMY o'y Stabgy (I 570178 O O ot e

, sinon.

—

Prewve. Le corollaire 2.4.1 prouve que f¢,,(P',0’) = 0 si O’ et O ne sont pas
conjugués.
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Sio' € Oet P = P, égalité @(Pga/) = YGIM")Ld(o") Lppr o (o)
résulte immédiatement des propositions 2.3 (ii) et 0.2.

Si P #£ P, celleci se déduit de l'identité (Jp/p(o’) ® Jpp(a™) Vppo =
op g

Si finalement o’ € w O, w € W, lidentité (A(w)@A(w))fepo(w P w ') =
]‘/C;(P/ ,0') et ce que 'on vient de prouver dans le cas ¢’ € O impliquent que

fCP‘O(P/70J) - 4)DP/,O’(U/)' U
3.1.2 Corollaire. La fonction f, , ne dépend pas du choir de {p 0.

Preuve. Ceci résulte de la proposition 3.1.1, puisque ’ensemble des transformées
de Fourier {fc, (P, 0")}(ps o) détermine la fonction fe, . en effet, il est prouvé
dans [BZ] (cf. proposition 2.12) que, pour tout f € C°(G), f # 0, il existe une
représentation lisse irréductible 7 de G telle que w(f) # 0. O

On pourra donc écrire f,, , a la place de f¢, .
3.1.3 Corollaire. L’égalité [y, , = fop o vaut st O et O sont conjugués.
Preuve. La preuve est analogue a celle du corollaire 3.1.2. (|

3.2 Lorsque (P = MU,Q) € ©, posons [0] = {wo|lw € W o € O}, W(M,0) =
{w € WM, M)lwO = O}, <([0]) = [P(M)|"HWM|[W|~1 W (M, 0)| v(G|M)
d(O)| Stab gz (57 (0)] et feioy = <O Xo(pr,0nyc0, 0rclo) fopr o

Il résulte de 3.1.1 que la fonction f¢[O] vérifie les propriétés 3) et 4) énoncées
dans l'introduction. La propriété 5) est une conséquence directe de 2.4.

Apres avoir rappelé qu’il résulte de la proposition 2.12 dans [BZ] qu’un élément
de C°(G) est déterminé par ses transformées de Fourier (cf. remarque dans la
preuve du corollaire 3.1.2), on s’aper¢oit que I'on a montré le résultat suivant:

Théoréme. Soit ¢ dans PW(O). La fonction

fo= 3 Al fonon

(P,0)c©

est Vunique élément de C°(G) qui vérifie ﬁo(Ra) = ppolo) pour tout (P,0) €
0,0€0.

3.2.2 Corollaire. Pour que ¢ soit un élément de PW(O), 4l faut et il suffit qu’il

o~

existe [ dans C°(Q), telle que ppo(o) = f(P,o) pour tout (P,0) € ©, 0 € O.
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B. Une relation polynomiale

1.1 Si (w, V) est une représentation lisse de G et P = MU un sous-groupe
parabolique de G, notons mp la représentation lisse de M dans le module de
Jacquet Vp de V. Lorsque U est un sous-groupe ouvert compact de U, écrivons
V(U7) pour ’ensemble des éléments v € V tels que fU1 m(u)vdu = 0. Le noyau
V(U) de la projection canonique jp : V — Vp est la réunion des V(Uy), U
parcourant les sous-groupes ouverts compacts de U.

L’ensemble des éléments de V' invariants pour I’action par un sous-groupe ou-
vert H de G sera noté V7.

1.2 Soit O l'orbite inertielle d’'une représentation irréductible cuspidale de M. Un
point o de O sera dit W (M, M)-régulier , si wo % o pour tout w € W (M, M).
Rappelons que les fonctions rationnelles j?\ p» P € P(M), sont toutes égales a une
méme fonction, notée j, et que tout point W (M, M)-régulier de O est régulier
pour j.

Un élément o de O sera dit en position générale s’il vérifie les deux propriétés
suivantes:

(i) le caractere central de o est W (M, M)-régulier;

(ii) 5(o) # 0.

Fixons o € O. L’ensemble des x € X" (M) avec o ® x en position générale est
Zariski dense dans X™(M). Deux applications rationnelles sur O sont donc égales
des qu’elles coincident sur I’ensemble des points en position générale.

1.3 Proposition. Soient (0, E) une représentation irréductible cuspidale de M
et P' € P(M). Supposons o en position générale. Alors Uapplication

iZE— P wBE o= P (T (wo)Aw))o)(1)

wEW (M, M) weW (M, M)

se factorise par (i% E)p. Elle induit un isomorphisme

(i%o)p — @ wo.

weW (M, M)

Preuve: Le résultat énoncé relatif au module de Jacquet faible dans [W] au
cours de la preuve de V.1.1 se généralise sans probleme au cas cuspidal. O

2. Soit B l’'anneau des fonctions régulieres dune variété algébrique affine com-
plexe. La notion d'une B-famille de représentations admissibles a été définie dans
[BD]: ce sont les couples (7, V') formés d'un B-module V' et d’un homomorphisme
7 G — Autg(V) tels que: pour tout v € V| le stabilisateur de v dans G est un
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sous-groupe ouvert et pour tout sous-groupe ouvert H de G, le sous-module des
invariants V¥ est un B-module plat de type fini.

Le résultat suivant a été montré par Casselman dans le cas d'une représentation
admissible (cf. [Cs] propositions 4.1.4 et 4.1.6). Sa preuve se généralise au cas
d’une B-famille de représentations admissibles.

Proposition. Soient (mp, Vg) une B-famille de représentations admissibles de G,
P = MU wun sous-groupe parabolique semi-standard, et H un sous-groupe ouvert
compact de G admettant une décomposition d’lwahori par rapport a (P, M).
Alors il existe un sous-groupe ouvert compact Uy de U tel que VE NVg(U) C
Ve(Uy). Les espaces (VA), = mp(lgarr)Ve avec a € An positif pour P et
vérifiant alljat C HNU sont tous égauz & un méme espace, noté SH(Vp). Le
Joncteur de Jacquet induit un isomorphisme SH(Vg) — (Vg)E™™ de B-modules.

Preuve. Le B-module VA est de type fini grace & la B-admissibilité de 75. Comme
B est noethérien, le module VA N Vp(U) est également de type fini. L’existence
de U; est alors immédiate.

Pour montrer que le foncteur de Jacquet induit un isomorphisme (Vg)H —
(VB)gmM pour tout a € Ays vérifiant les hypotheses de la proposition, on peut
généraliser les arguments de [Cs|: le théoreme 3.3 de [Cs] qui est le seul résultat qui
utilise ’admissibilité reste valable sans cette hypothése (¢f. [BD] proposition 3.5.2).
Quant a I'égalité des espaces (Vp)I, on se raméne comme dans [Cs| proposition

a ?

416 a (Va)il,, € (V). Ces deux espaces sont égaux, puisque (Vp)L est

atay =
isomorphe & (V)™M et que le composé (Vp)f . — (V)i — (Vp)E™M est
également un isomorphisme. |

3. Fixons un couple parabolique semi-standard (P, M) et une représentation
irréductible cuspidale (o, E') de M. Choisissons un sous-groupe ouvert compact H
de GG admettant une décomposition d’Iwahori par rapport a tout couple parabolique
semi-standard. (On peut en trouver aussi petit que ’on veut.)

Notons B = Bj; 'anneau des fonctions régulieres sur la variété algébrique
X™(M). Comme dans [W], on déduit de (o, E) les B-familles de représentations
admissibles (o0p, Eg) et (g, Vi) = (i%0p,i%FEp) de M et G respectivement.
Rappelons que la B-famille algébrique (o5, Eg) est définie par

Ep :=FE®cB et op(m)(e®b) =c(m)e®bnb, pourme M,ec Eetbe B,
oll, pour m € M, on a noté b,, € B le polynéome défini par

bar(x) == x(m), pour tout x € X" (M).
La classe d’isomorphie de (o0, Fp) et (7p, Vp) ne change donc pas si on remplace

o par un élément de sa classe inertielle. On pourra donc écrire i%’Eo, B, Si on ne
veut distinguer aucun élément de O.
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3.1 Pour x € X" (M), notons E, et V, respectivement les espaces des représentati-
ons oc®y et ig(a@) X)- On dispose de morphismes de spécialisation sp, : Ep — Ey
et sp, : Vp — V, qui commutent avec I’action du groupe. Ainsi, toute application
polynomiale sur X" (M) a valeurs dans E ou ifgm xF correspond a un élément
de Ep ou Vg, et vice versa. On écrira également E,/, V,, et sp,, si on ne veut
distinguer aucun élément de O.

Le lemme suivant est une conséquence immédiate des définitions:

Lemme. Soit P' € P(M). L’égalité sp,(SE (V) = S (Vy) vaut pour tout
x € X"(M).

3.2 Pour b € B, notons b" 1’élément de B qui vérifie b¥ (x) = b(x ). On désignera
par E}. Despace E muni de la structure de B-module pour laquelle la multi-
plication scalaire B x EY, — EY, est donnée par (b,e},) — b"e}. Le produit de
dualité (,) sur F x E induit par extension des scalaires une forme B-linéaire M-
équivariante {, ) g sur Fg x E}. On en déduit une forme bilinéaire G-équivariante
(,)p sur Vg x V. Pour x € X" (M), sp,({,)p) induit alors par passage au quo-

tient le produit de dualité entre V), et V)fl.

Proposition. Soit P’ € P(M). Les B-modules SE (Vg) et Sg(vg/v) sont libres
de type fini et en dualité par {,)p.

Preuve. En complétant une base de E#™M en une base de F, on voit que EE™M
est un B-module libre de rang égal & la dimension de E¥™M_ On sait que (V)M
possede une filtration finie dont les sous-quotients sont des B-modules libres iso-
morphes & EH™™ _ On en déduit que (Vp)E"M est libre de méme rang que les
espaces (V, ) 2™ ou (VXV_l)g,ﬁM, x € X™(M). 1l en est de méme pour (Vp )Ig—,mM.
Fixons des bases {v; }icr et {v) }icr de SE, (Vi) et SE(V\). Tl suffit de montrer
que la matrice ((v;, vj) B)i,; est inversible, i.e. que son déterminant d appartient
a B*. Or, dans le cas contraire d serait contenu dans un idéal maximal m, de B
correspondant & un point x de X" (M). En spécialisant en Y, il en résulterait que
la forme bilinéaire sp, ((,)p) restreinte & SE, (V) x S%(va,l) serait dégénérée.

Ceci est faux (cf. [Cs| théoréme 4.2.4).
(Il

3.3 Notons O l'orbite inertielle de o. Rappelons que toute représentation lisse £’
de M admet une décomposition £’ = E'(O) @ E’(hors O), telle que tout sous-
quotient de E’'(O) soit dans O et qu’aucun sous-quotient de E’(hors O) ne le soit.

Pour P’ € P(M), notons SE,(Vp)(O) le sous-B-module de SE,(Vg), formé des
éléments & image dans (Vg ) 2™ (0). Définissons de fagon analogue S%(VBv OV,

SH, (V) (hors O) etc.
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3.3.1 Lemme. Les espaces SE (Vp)(O) et S%(ng)(hors OY) sont orthogonau.

Prewve. Soient v € SH,(V)(0) et vV € S%(Vg\,)(hors OY). 1l suffit de montrer
que sp,.({v,v¥)p) = 0, si o/ € O est en position générale. Fixons un tel o’.
On est donc ramené & montrer que (v,vV) = 0 pour v € SE(V,)(0) et v¥ €
S%(VUVN)(hors OY). Rappelons (cf. [Cs] paragraphe 4) qu’il existe un produit
bilinéaire M-équivariant (,)p sur jp(Vor) X jp(Vv) tel que

{v,0") = {Gpr(v), 550" ) pr-

Comme, par la proposition 1.3, jp/(V,/) ~ @wgw(M)M) wk, et que, par choix de
o', j5r (Vo) = @uew (a,ar) WEG v, il suffit de considérer le cas jp(v) € wEy et
Jpr(vY) € W EY,. Par choix de v et v¥, ou bien un des éléments jp: (v) et jpr(v")
est nul ou bien w # w’. La représentation ¢’ étant en position générale, les espaces
wk, et w'E, n’ont pas d’entrelacement, si w # w’. On en déduit que dans tous
les cas (jp/(v), j5r(v") )pr = 0. O

3.3.2 Corollaire. Les B-modules libres S (Vg)(O) et S%(ng)(ov) sont en
dualité par {,)p.

Prewve. 1 suffit de rappeler que S (Vp) = SE,(Vp)(0) @ S (Vg)(hors©). O
3.4 On suppose dans cette section que EH™M £ 0,

3.4.1 Lemme. Soit P’ € P(M). Tout sous-quotient non nul V' de Vp en tant
que G-module vérifie V1, (O) # 0.

Prewve. D’apres [BD] proposition 2.8, on a une injection

V/ —F @ ig//(Vé// (O))
PeP(M)

Par suite, V., (O) # 0 pour au moins un P” € P(M). Ceci équivaut a dire qu’il
existe o’ € O avec

0 # :[‘I()rn]\4(‘/l/3//7 0-//) = HOmG (V/7 igna—//).

Déduisons-en ¢’ € O avec Homy (V},,0') # 0: Par récurrence sur le nombre
d’hyperplans radiciels séparant P’ et P”  on se ramene a P” et P’ adjacents. Il
faut distinguer deux cas:

SiwP” £ P’ ouwa” ¢ O pour tout w € W(M, M), Vopérateur d’entrelacement
Jpripr(a”) est bien défini et inversible, d’oll par composition un élément non nul
de Homg(V",i%,0") = Homp (Vi , o).
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Dans le cas contraire, choisissons w € W(M, M) et o’ € O avec i$ p, (wo') =
i% o', En composant avec A(w), on trouve donc un élément non nul de
Homg(V',iS,0").

On en déduit que Vi, (O) # 0. O

3.4.2 Proposition.
Tout sous-G-module V' de Vg est engendré par V' N Sp(VE)(O).

Preuve. Notons V' le sous-G-module engendré par cet ensemble. On a 1’égalité
v M) = v, M 0), dou (V! VEDM (O) = 0 par exactitude du foncteur
de Jacquet. Comme H a été choisi tel que EE™™ —£ 0, il suit de 3.4.1 que V/ = V"’

(Il

4. Rappelons que les ensembles © et PW(©) ont été définis en A.3. On dira qu’un
élément ¢ de PW(O) a la propriété (P) en (P, 0), si ppo vérifie les conclusions
de la proposition 0.2. On dira également que ¢p o a la propriété (P).

Fixons pour tout (P,0) € © un sous-groupe ouvert compact distingué H =
H(O) de K admettant une décomposition d’Iwahori par rapport a tout couple
parabolique semi-standard et tel que tout élément de O admette des invariants
par rapport & H N M. On peut par ailleurs supposer H(O') = H si O et O’ sont
conjugués, ce que ’on fera désormais.

Pour (P, (9/) € 0, O conjugué a O, on peut donc parler, grace & 3.3.2, de la

projection <pP O "9 de i$Eo p sur SE (i Eo, B)(O’) de noyau égal a l'intersection

des noyaux des éléments de SE(iGEqv 5 )(O'Y). Si (P!, 0') = (P,0), on écrira
P’ P s

plus simplement 4,0‘;;’ o

4.1 Soit (P,0) € ©, H = H(O). Rappelons que tout élément ¢ de Fo g ®p
Egv pv ou de z'IGDEQ B®B igEOv, pgv correspond par ’application de spécialisation
sp, & une application polynomiale sur X"™(M) & valeurs respectivement dans

Eo® Egv oudans i . Eo®iE_ .. Eov, et vice versa. On écrira (o) = sp, ¢p.

HPO
(

Notons que ¢} o) est la projection de i$E, sur SE(i$E,)(0') de noyau

égal & l’mtersectlon des noyaux des éléments de S%( iSEY)(OM).

4.1.1 Lemme. Soient P € P(M), 0 € O et w € WE. Supposons o en position
générale. Alors on tm@we pour (P',0) € ©, O conjugué a O,

() Top(r)(SE (. )(O') = SR, Fo) (O)

(i) AMw)(S p/(ZpE )(O ) = Sp: (i pwEq )(O').

Preuve. 1l est clair par définition de SE, que l'image de SE,(i%E,)(O’) par les
opérateurs Jpr| p(0) et Mw) est contenu dans SE, (i%, E,) et SH,(i§ pwE,) respec-
tivement. Il résulte de la proposition 1.3 que tout sous-quotient de cette image
est en fait un élément de @’. Ceci prouve l'inclusion. Les opérateurs considérés
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étant bijectifs pour o en position générale, I'inclusion inverse s’en déduit par un
argument, de symétrie. [l

4.1.2 Lemme. Avec les notations et hypothéses du lemme 4.1.1, on trouve
. H,P'O'( \ _  HP O .
() Jon (@Yo E" (@) = GIES (0)Tpup(o);

(ii) Nw)eps ¥ (0) = ol (wo) A(w).

Prewve. Pour v € SE(i$E,)(0'), les deux égalités sont immédiates grace au
lemme 4.1.1. Si v est dans le noyau de Lplg’(l; i (o), il résulte du lemme 4.1.1 grace
a la propriété d’adjonction de Jp» p(o) et de AMw) que Jp» p(o)v (resp. A(w)v)

est un élément du noyau de @Ig}/P(;’O/(a) (resp. cpf}qu;’g(wa)). O

4.2 Lemme. Pour tout (P,0) € O, il existe un élément ¢ dans PW(©) avec

H(0)
YPO=%Ypo -

g;%?. Sinon ¢ps o = 0.

Les propriétés 1) et 2) du théoreme 0.1 sont vérifiées par définition de @I;;%’?.

Les propriétés 3) et 4) résultent des égalités (i) et (ii) du lemme 4.1.2. O

Prewve. 8i O/ = wOw™! avecw € W, posons ¢pr or = ¢

4.3 Posons W(M,0) = {w e W(M,M)lwO = O}.

Lemme. Supposons: si on a un élément ¢ de PW(O) et (P, O) vérifiant ppo =
4,011370 avee H = H(O), alors cet élément vérifie (P) en (P,0).
Alors la propriété (P) est vérifiée pour tout ¢ de PW(O) en tout (P, O).

Preuve. Fixons (P, 0). Posons Vg x VY, = i%FEo p xigEov7Bv. Montrons d’abord
que tout élément ¢ de PW(O) qui vérifie ppo € SE (Vp)(0) ®p SE(VEL)(0Y) a
la propriété (P) en (P, O):

En effet, de 4.2 et de nos hypotheses, il résulte 1’existence d’une application
polynomiale £p o sur O telle que, pour o € O,

YPo0) = > (Jpmp@)Aw) ® Tppp(0")A(w)épo(w o).
weW(M,0)
On en déduit que
ep,0(0) =ppo(0)eh (o)

= Y Upap@Aw) ® Jpjup(e A w))ep o(w ' o)epo(w o),
weW (M,0)

le produit dans la premiere ligne désignant la composition dans ’algebre End(igE(,).
Comme o — o5 O(w_la) est polynomiale, on a une relation du type voulu.
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L’ensemble des éléments ¢p o de Vg ® V5 qui sont la composante en (P, O)
d'un élément de PW(©) est un sous-G x G-module de Vg @V}, . Le sous-ensemble
formé des éléments ¢ p o qui vérifient par ailleurs la propriété (P) en est un G' x G-
sous-module. Par ce qui précede, ils ont la méme intersection avec S (Vp)(0) ®
S;—f(Vé/v )(OY) qui est non nulle par 4.2. 1l résulte alors de 3.4.2 appliqué au sous-

groupe parabolique P x P de G x G et & la représentation de M x M d’espace
Eop ® Epv gv = (Eo ® Epv)p que ces deux ensembles sont en fait égaux, d’olt
le lemme. (Il
5. Pour terminer la preuve de la proposition 0.2, il reste a montrer que wggg) ala
propriété (P) pour tout (P, O) € ©. Fixons (P, O). Posons F = Ep et H = H(O).
On notera parfois, pour o € O, par E, 'espace F il est muni de la représentation
ag.

5.1 Lemme. Soient o dans O, P’ € P(M) et v un élément non nul de (i%, ., BYH
a support dans (P' N K)H. Soit a € Ay vérifiant les propriétés de la proposition
du numéro 2 relatives a P’ et ilG;,EU,

Alors (i%,0)1gam)v est un élément non nul de S-g—/(ig,Eg) a support dans

(P'N K)H dont la valeur en 1 est proportionelle ¢ o(a)v(1).

Preuve. Notons v, 1’élément de ig/ F, dont la restriction a K est égal a v. Berivons
P’ = MU’. Pour k € K, on trouve

e) - mes(Hall) [, o ~ mes(HaH)
((i%0)Lpam)v)(k) = m /(zp/a(ha)v)(k)dh = 7mes(H) Ilvg(kha)dh.

Pour que kha € supp(v, ), il faut que kh € P'aHa ! = P'a(HN T )a~ . Comme
a est positif pour P/, a(HNT)a ! C HNTU’, dout k € (P’ N K)H. La fonction
(i,0)(1 sramr)v est done bien & support dans (P’ N K)H.

M/ v, (ha)dh. On calcule cette intégrale selon la

mes(H) Jgy

décomposition H = (HNU")(HNM')(HNU'). Désignant par @p:(h)mp: (h)up: (h)
la décomposition d’'un élément h € H suivant cette décomposition, on trouve
v, (ha) = (511[,//2(a)a(a)vg (e Y@p(h)a), puisque a = mp (h)up/(h)a € H par choix
de a. Comme a '@p/(h)a € supp(v,) C P'(H N U’) seulement si a 'ap: (h)a €
(H NU’), la deuxiéme assertion du lemme est immédiate. O

Sa valeur en 1 est

5.2 Fixons une base {e; };c; de E#™™ Notons {€ }ic; la base duale de (EV)H™M
et v; (resp. v;) I'élément de (i%mKE)H (resp. (i EY)H) a support dans (PN
K)H (resp. (PN K)H) vérifiant v;(1) = ¢; (vesp. v/(1) = ¢/).

5.2.1 Lemme. Soit o un point en position générale de O. Alorswv; € Sg(i%Eg)(O)
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et de plus, siwe W(M, M),

(pgpteon @) =af > " i

ou ¢y est une constante non nulle qui ne dépend pas du choix de o.

Preuve. D’apres le lemme 5.1, v; € Sg(i%Eg). Gréace a la proposition 1.3, il suffit
alors de prouver la derniere assertion. Soit w € W(M, M). On a

(T pp(wo)rw))es) (1) = / 010 (0 Lu)du,

UnwUw—1

si cet opérateur d’entrelacement est défini par des intégrales convergentes. Par la

décomposition de Bruhat, w 'u € PH seulement si w = 1. Alors
Joowtrw—1 Vie(u)du = mes(H N U)e;. Le cas général s’en déduit par prolonge-
ment analytique. (Il

5.3 Lemme. Soit 0 € O en position générale. Les ensembles {(Jp‘ﬁ(a))\(w))

”i}weW(M,O),ieI et {(Jp‘wp(O'v))\(W))Uiv}wew(M70)7i6[ forment des bases de
SH(SE,) (O) et Sg(igE;/v)(Ov) respectivement. On a

((Jp‘ﬁ(a))\(w))vi7 (Jp‘w/p(av))\(w/))v;/> = €20uw,u 05,
ot ¢ est une constante non nulle qui ne dépend pas du choiz de o.

Preuve. On va utiliser I'isomorphisme de la proposition 1.3. Soit «w’ € W (M, O).
On trouve

(Jpjw (W' )M w') T pp(o) Aw)vi)(1)
= (Jp‘w/p(w/O')Jw/P‘m(w/G'))\(’U/UJ)’U»L‘)(1)
= jP‘w,P‘m(w/a)(Jp‘m(w’a))\(w’w)vi)(l).
Gréce & 5.2.1, ceci n’est non nul que si w’ = w1, et alors
(JP‘W(w/a))\(w’w)vi)(l) = c1e; € wLE. Par ailleurs, jP‘w_lp‘F(w’la) =1L
On a donc bien une base de SH(i%E,) (O), puisque son image est une base de

@wEW(M,O) wh,.
Soient w,w’ € W(M,0), i,j € I. Alors

(Jpp(@)Aw))oi, (Jppw p (0 )N (W) o))
:</\(w/f1)Jw'P|p(U)JP|ﬁ(U))\(w)vi, 1};/>

:(Jle,_1P(u/i10)Jw/71P‘m(w/710))\(w/71w)vi, vjv)
= jp‘w/fllm(w/fla)(Jp‘m(w/fla)/\(w/f w)vy, v)).



414 V. Heiermann CMH

Le support de v;/ étant (PN K)H et ’élément & gauche étant invariant par H, ceci
n’est non nul que si (Jplm(w’*la))\(w”lw)vi)(1) # 0. Par 5.2.1, ceci n’est
possible que si w = w’. Dans ce cas jp‘w,lp‘p(w_la) = 1 et l’expression ci-dessus
devient par 5.2.1

/ / / _cl<(w710)(m)ei7 (wilav)(m)eﬁdﬂdudm =mes(H NU)ec16; 4,
MNK JUNK JHAT

d’ou le lemme. O

5.4 Posons &, (o) = 051 Yiervi ® v pour tout o € 0. On vérifie que c'est une
application polynomiale sur O. Par ce qui précede, on a

> Upap(@)Aw) ® Jppp(e )M w))éw (w o)

weW (M,0)
— Z 02_1 Z(JPIW(U))\(UJ)W ® Jpw (o)A (w)vy).
weW (M,0) el

En se rappelant que I’on a identifié i€ F, ®i% EY, a un sous-espace de Endc (1% E, ),
on déduit de 5.3 que cette expression est égale a Lpg o(0) pour o en position
générale. Par prolongement analytique, ces deux applications sont donc égales.

Lemme. Posons £(o) = |W (M, O)| ! > wew(m,0) Sw(0). Pour tout o € O, on a

pro@) = D> (Jpmp(@)Aw) @ Jppp(e)A(w)) &w o).
weW(M,0)

Preuve. En utilisant les regles de composition pour les opérateurs d’entrelacement,
ainsi que les propriétés de Lpg o relatives aux opérateurs d’entrelacement, on trouve
en effet:

Y Uppp@Aw) ® Tppup(e" )N w))ew (w o)
w,w €W (M,0)

= 3 (J prmarp (o)A (ww') ® Tpjuw p (0 )N (W) &y (w' T o)
w,w’ €W (M,0)

= Y (pp@Aw) @ Jpwp(@)Aw) D pppmep©) !
weW (M,0) w EW(M,0)
jP\wP\ww'P(a)71(Jp\m(wila)/\(w/) X Jle’P(wilav)/\(w/))gw’(w/ilwila)
= Z jP\wP(U)il(JP\wP(O')A(w) ® Jp\wp(av)h(w))wﬁo(w’lff)
weW (M,0)
= [W(M,0)| ¢F (o).
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